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ABSTRACT 

 

 

This project presents an analysis of the Transmission Control Protocol (TCP) and 

its different variants on IP and MPLS (Multi-protocol Label Switching) networks. TCP 

provides a trustworthy end-to-end data transfer under changeable wired networks. To 

overcome the problem of unreliability of IP network, TCP is used. Many service 

providers are now moving to MPLS over internet to transfer data, preferring it over 

traditional transferring strategies. Different variants of TCP show varying behavior in 

best effort Internet Protocol networks. This research presents an extensive investigational 

study of TCP variants under IP and MPLS networks by focusing Tahoe, Reno, New 

Reno, Sack and Vegas under File Transfer Protocol (FTP) and Constant Bit Rate (CBR) 

traffics. For analytical results of the proposed solution; demonstration of the IP and 

MPLS network is simulated over a limited number of nodes. The flow of descriptors to 

maintain network topology determines average delay, variance of delay, packets sent, 

packets received, packet dropped, throughput and congestion window size. Conclusions 

are drawn based on the simulation results, while comparisons between them have been 

elaborated.  

 

Under different traffic flows, it has been found that all variants are unable to adapt 

MPLS features. However, Vegas has shown potential outcomes with almost invariable 

en-to-end delay after a brief time period of delay oscillation in the early phase of 

application. The unwavering end-to-end delay of Vegas under MPLS makes it a striking 

option for average to huge size real-time networks. 

 

This research work has identified open problems related to the TCP protocol and 

its variants. To limit the scope of the research portion, error rate has been introduced only 

in single flow of FTP. This analysis has helped in investigation of congestion window 

patterns of the TCP variants with respect to different error rates induced over the 

network. 
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Chapter 01 

Introduction 
 

1.1 Transmission Control Protocol (TCP ) 
A TCP protocol is a transport layer protocol that provides a reliable and in-

order deliverance of data between two nodes. TCP is also a defensive protocol i.e. 

highly responsive to network congestion. A set of mechanisms is put into place to 

detect occurrence of congestion and alleviate its affects, effectively preventing 

communication breakdown. 

 To ensure reliability of communication, TCP uses an acknowledgement 

packet (ACK) as a response to a successfully delivered packet ensuring accurate 

delivery of packets. ACKs are cumulative; ideally, consecutive ACKs will differ 

by the size of a packet payload. In case of a lost packet, the next packet received 

will return ACK of the packet received before the loss, helping the sender to 

recognize two identical ACKs. These are called duplicate ACKs and are 

considered as a signal of a packet loss.  

Today’s Internet traffic is carried to a large extent using TCP, and as a 

result there has been a major amount of research toward modeling and 

comprehending the impact of this protocol on file transmission times and network 

utilization. TCP has been and will continue to be a growing protocol, and as such, 

one important task of these models is to make easy comparisons between the 

different variants of TCP. As TCP has gone through incremental modifications, 

the protocol itself has grown increasingly complex, which makes analytical 

modeling quite difficult. 

Consequently, a lot of the evaluation of TCP variations has been done 

using event driven simulators, such as ns-2, a network simulator developed at 

Lawrence Berkeley National Laboratory [1]. More recently, research has moved 

toward analytical modeling of the performance of TCP. This movement has been 

triggered by the limitations inbuilt in event driven simulations, which can be quite 

time consuming for fast networks and force researchers to use a packet level 
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granularity even when investigating large, complex networks. Also, when 

designed carefully, analytical models help researchers understand the 

effectiveness of new mechanisms being added to the protocol. As a result, many 

papers have been written introducing new, analytical models of performance of 

TCP. However, most of the analytical models focus on TCP-Reno, the most 

widely deployed variant of TCP, and there has been little research on analytical 

models of TCP-Vegas, a more recently proposed variant. 

Analytical models of Vegas have been difficult to develop because of the 

dependence of Vegas on the delay experienced by packets in the network. 

Specifically, Vegas uses observed delay to detect an incipient stage of congestion 

and tries to adjust the sending rate before packets are lost. Thus, unlike Reno, 

Vegas attempts to determine the correct sending rate without relying on packet 

losses. Prior studies on measurement and simulation of performance of Vegas 

suggest that in many situations it is able to provide users higher throughput and 

lower loss rates than Reno. Hence, it is an important task to model performance of 

TCP-Vegas in order to understand how this protocol performs in a network shared 

with other variants of TCP and how TCP-Vegas should be incrementally 

deployed. 
 

1.1.1 TCP Variants    
Some of TCP Variants are discussed below. 

1.8.1.1  TCP Tahoe 

The TCP Tahoe has method to pay compensation for the 

efficiency plunge due to the congestion related Packet loss. TCP 

Tahoe uses three mechanisms to organize the flow and deal with 

congestion: slow start (SS), congestion avoidance (CA), and fast 

retransmit, the operation of these mechanisms depends on two 

variables that the protocol maintains: cwnd 3 (congestion window 

size) and ssthresh (threshold value of slow start). After the 

connection is initiated, the cwnd is set to 1 and the ssthresh to 64 

(for an assumption that packet size is 1KB). The protocol enters 
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the SS phase in which it increases cwnd by 1 for every packet i.e. 

ACK received successfully. The consequence of the SS is that 

CWND grows exponentially i.e. is getting double per round-trip 

time (RTT). When cwnd surpasses ssthresh, the CA phase begins 

in which cwnd increases additively by 1/cwnd for each 

successfully ACKed packet. When the congestion event occurs, 

one of the following options is applied. If the loss is signaled by 

multiple duplicate ACKs, cwnd is halved and ssthresh is set to the 

new cwnd. The underlying principle for halving cwnd is that the 

network capacity is somewhere in between cwnd /2 and cwnd 

when the congestion event was initiated. If the packet loss is 

signaled by a timeout, the cwnd is set to 1 and ssthresh to half of 

the previous cwnd. At this point, the fast retransmit phase begins in 

which the lost packet is retransmitted immediately. TCP Reno 

would initiate fast recovery in which it would inflate cwnd by 3 (to 

account for the 3 duplicate ACKs received, indicating that 3 

packets have left the network). When the ACK for the lost packet 

is received the Fast Recovery mechanism would inflate cwnd to 

ssthresh. Since the CA phase increases the window additively [2]. 

 

1.8.1.2 TCP Reno 

TCP Reno is the standard implementation of the TCP 

protocol, which includes the congestion control algorithm proposed 

in 1988 by V. Jacobson. The TCP Tahoe has four mechanisms to 

compensate for the efficiency drop due to the congestion related 

packet loss.  TCP Reno uses four mechanisms to control the flow 

and deal with congestion: slow start (SS), congestion avoidance 

(CA), and fast retransmit. To calculate approximately the available 

bandwidth in the network TCP Reno induces packet losses. When 

there are no packet losses, TCP Reno continues to increase its 

window size by one during each round trip time. Whenever a 
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packet loss is experienced, it reduces its window size to one half of 

the present window size. This is called additive increase and 

multiplicative decrease. They have shown that such an algorithm 

leads to a fair allocation of bandwidth. TCP Reno, however, fails to 

achieve such fairness because TCP is not a synchronized rate based 

control scheme, which is necessary for the convergence. As can be 

conspicuously, congestion avoidance mechanism adopted by TCP 

Reno causes a periodic oscillation in the window size due to the 

constant update of the window size. This oscillation in the window 

size leads to an oscillation in the round trip delay of the packets. 

This oscillation results in larger delay and jitter. Moreover an 

inefficient use of the available bandwidth results in many 

retransmissions dropped packets.  Window size for each 

connection is updated at a rate, which depends on the round trip 

delay of the connection. Hence, the connections having shorter 

delays can update their window sizes faster compared to 

connections with longer delays, and thereby unfair share of the 

bandwidth is acquired by them. As a result, TCP Reno exhibits an 

undesirable prejudice against the connections with longer delays. 

The settings for the connection initiation are as follows: the 

cwnd is set to 1 and the ssthresh to 64. The protocol enters the SS 

phase in which it increases cwnd by 1 for each packet successfully 

ACKed affects growth of SS exponentially. When cwnd exceeds 

ssthresh, the congestion avoidance phase begins. As this phase 

starts after packet loss network becomes unstable. To make the 

network work appropriately a careful and calculated increase of 

cwnd is done, so cwnd is increased by 1/cwnd for each packet 

whose ACK has been received by the sender. When the congestion 

event occurs, one of two things can happen. Either loss is signaled 

by multiple duplicate ACKs, cwnd is halved and ssthresh is set to 

the new cwnd, or the packet loss is signaled by a timeout, the cwnd 
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is set to 1 and ssthresh to half of the previous cwnd. At this point, 

the fast retransmit phase begins in which the lost packet is 

retransmitted immediately. TCP Reno would initiate fast recovery 

in which it would inflate cwnd by 3 (to account for the 3 duplicate 

ACKs received, indicating that 3 packets have left the network). 

When the ACK for the lost packet is received the Fast Recovery 

mechanism would inflate cwnd to ssthresh. Since the CA phase 

increases the window additively and decreases it multiplicatively, 

its algorithm is called AIMD (additive increase multiplicative 

decrease) [2]. 

 

1.8.1.3 TCP New Reno 

TCP Reno Fast Retransmit and Fast Recovery are fairly 

efficient in dealing with the congestion packet if one packet is 

dropped in a congestion window. If multiple packets are dropped, 

TCP Reno will retransmit the first packet for which it received the 

duplicate ACK, and then it will exit the Fast Recovery phase. TCP 

Reno will reenter the Fast Recovery phase when it comes to know 

that more packets are dropped. The constant re-entering to the Fast 

Recovery phase affects the efficiency of the protocol. TCP New 

Reno tries to fix this problem by staying in the Fast Recovery 

phase as long as there are outstanding lost packets. That fact is 

recognized by the receiving the partial ACK. Partial ACK 

acknowledges the first packet retransmitted in the Fast Recovery 

phase that has not acknowledged all the packets transmitted before 

the Fast Recovery phase was . This implies that the retransmitted 

packet was not the only packet dropped in that window. TCP New 

Reno stays in the Fast Recovery as long as partial Asks are 

received [2]. 
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1.8.1.4 TCP Sack 

The major drawback of TCP Tahoe, Reno, and New Reno 

is that they are all dependant on the cumulative packet 

acknowledgements. This restrains the protocol from recognizing 

multiple lost packets in one RTT. If the sender wants to recover 

more aggressively, it might opt to retransmit the lost packet and 

enough of the successive packets to keep the pipe full. Such action 

might cause the transmission of packets that are already 

successfully received. TCP SACK (selective acknowledgements) 

allows for finer-grain information about the packets lost. SACK 

information carried to the sender in the TCP option field of the 

ACK header, contains the exact Information about the packets 

received. SACK option maintains the information about the block 

of packets received, i.e. the sequence numbers of the first and the 

last packet received within that block. If more than one packet has 

been dropped in one congestion window, SACK option will carry 

the information about several blocks differing by the sequence 

number of the dropped packets. This information allows TCP 

SACK to retransmit only the lost packets, thus providing a more 

aggressive loss recovery.  The goal of the congestion control 

mechanisms is the prevention of the congestion collapse; the 

communication breakdown due to the uncontrolled congestion at 

the routers. With these mechanisms in place, the window size is 

reduced on the first sign of congestion and gradually increased 

with time to return the network communication to its optimum rate. 

This paradigm gives the congested network necessary time to 

recover [2]. 
 

1.8.1.5 TCP Vegas 

TCP VEGAS introduces several new mechanisms to TCP 

including a proactive congestion avoidance technique, which does 
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not break the AIMD paradigm of the TCP protocol. Instead of 

increasing the sending rate until a packet loss occurs, TCP Vegas 

tries to prevent such losses by decreasing the sending rate when it 

senses incipient congestion even if there is no indication of packet 

loss. There is new retransmission mechanism in TCP VEGAS. 

TCP VEGAS feature two time out values. One of them is a normal 

coarse - grained RTO value similar to the one in TCP Reno and 

other is a fine –grained RTO value based on a more accurate RTT 

estimation. Whenever a duplicate ACK is received TCP VEGAS 

checks whether the difference between the current time and the 

timestamp recorded for the relevant segment is greater than the 

fine-grained RTO or not. In former case, that segment is 

retransmitted immediately without waiting for further duplicate 

ACKs. 

The proactive congestion control behavior of Vegas is 

based on RTT measurements. Once per RTT, Vegas compares the 

current measured throughput with the expected throughput. The 

expected throughput is computed as  

Expected throughput = widow size/base RTT 

 Where base RTT is the smallest observed RTT 

measurement for the connection and window size is the number of 

bytes currently in flight. The actual throughput is computed as  

Actual throughput = rttLen/rtt 

Where rtt is the average RTT of the segment acknowledged 

during the last RTT, whilst rttLen is the number of bytes 

transmitted during the last RTT. The difference (diff) between the 

two measurements is calculated in base RTT segments as follows: 
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baseRTTrttrttLenbaseRTTwindowsizediff *)//( +=  
 

 If the difference is under a certain threshold α then the 

congestion window is increased by a full segment size. If the 

difference is above a threshold β then this is taken as sign of 

incipient congestion and the congestion window decrease by a full 

segment size. Other wise, the congestion window remains 

unchanged. The decision process used to adjust the sending rate per 

RTT is summarized below: 
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  Finally, the slow start mechanism of Vegas uses a variation 

of the congestion avoidance mechanism to decide when to switch 

to the congestion avoidance phase. Vegas monitors the expected 

and actual rate per RTT and increases the congestion window to 

make the comparisons valid. As soon as a queue build up is 

detected (diff >1), Vegas moves on to the congestion avoidance 

phase [3]. 
 

1.2   Multiprotocol Label Switching (MPLS) 
The unstable growth of the Internet and the introduction of 

complicated services require an epoch-making change. MPLS was proposed 

as an alternative. MPLS is an Internet Engineering Task Force (IETF) 

specified protocol. MPLS provides various many services through networks 

i.e., routing, forwarding, switching of traffic flows and effective /efficient 

designation. One of the most important function of MLPS is that it identifies 

methods to supervise the traffic flows between different hardware, machines 

and even different applications. MPLS is not reliant on Layer-2 and Layer-3 
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protocols. It also provides a way to map IP addresses to simple, fixed-length 

labels used by different packet- forwarding and packet-switching 

technologies. 

MPLS is a switching technology that uses labels. In a MPLS network, 

arriving packets are allocated a label by a Label Edge Router (LER) in 

accordance to their Forwarding Equivalence Class (FEC). Packets are 

forwarded all along a Label Switch Path (LSP) where each Label Switch 

Router (LSR) puts together forwarding decisions based exclusively on the 

contents of the label, getting rid of the need to look for its IP address. At each 

hop, the LSR take off the existing label and assigns a new label for the next 

hop. Next hop also decides how to forward the packet by reading just the 

label on the packet. These established paths LSPs can guarantee a certain 

level of performance, to route around network congestion, or to create IP 

tunnels for network-based virtual private networks. The features of MPLS, 

make it achievable to deliver a variety of new services that can not be 

supported in the conventional Internet. 

MPLS uses a variety of protocols for label distribution, such as Label 

Distribution Protocol (LDP) or piggybacked on routing protocols like Border 

Gateway Protocol (BGP). It also provide interface to existing routing 

protocol i.e. Open Shortest Path First (OSPF) and Resource Reservation 

Protocol (RSVP). 

1.3  IP 

In the beginning the intention behind introducing Internet Protocol 

(IP) was to transport of data via e-mail, File Transfer Protocol (FTP) and 

telnet sessions. Soon IP became the most demanding and leading 

communication protocol because of its adaptability. In this protocol routing 

decision are taken with in the network on the basis of IP address of sender 

and destination. Some of the important features of IP are de-multiplexing of 

protocol, reassembling of packets and fragmentation of addresses.  
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1.4   Tools Used  
1.4.1 Network Simulator   

Tools used for performance analysis is ns-2 [4].It is the most 

efficient way to compare the studied TCP variants. Ns-2 is a UNIX based 

discrete network simulator. It provides support and enhancements for 

routing protocols, TCP schemes and also provides support for   different 

emerging networking technologies. It started in 1989 as an independent 

project (REAL network simulator), but since then has been evolved into a 

much larger project supported by DARPA and NSF with development 

contributions by Xerox PARC, University of California - Berkley, 

University of South California, Carnegie Mellon University, and Sun 

Microsystems. Today, this simulator is the standard testing tool for any 

development in the networking area since it allows for creation of a wide 

variety of different scenarios that are otherwise hard to implement 

practically. Thus ns-2 provides ideal environment for research studies. Ns2 

is written in C++/Tcl language which supports major necessities required 

by researchers. For making a new protocol in ns-2, the code has to be 

written in C++ .Default settings for the protocol to be analyzed, should be 

written in ns-default.tcl. Before   recompiling ns2 it is necessary to add the 

link of the newly added protocol at Makefile.ini. After recompiling ns-2 

the newly added protocol will be ready to use. 

TCP variants used here are implemented by their authors. Their 

source code is used in the simulations for running the scripts after adding 

in ns-2 by above mentioned procedure. 

1.8.2  Gnuplot  
Gnuplot is a graphical tool used to make graphs out of data file. 

Gnuplot is available for both the Linux and windows platform. Gnuplot 

offers analysis of data by making pie charts, bar graphs and line graphs. 

This tool makes it easy to analyze data. This tool has been used to generate 



11  

many graphs in this thesis, for example Graphs for throughput, delay and 

performance comparisons. 

1.8.3 Xgraph  
It is a UNIX based applications. XGraph is a utility present in ns2 

for analyzing the data present in the trace file. It helps to analyze behavior 

of congestion window, and Acknowledgments received by reading the 

given trace file.  
 

1.9   Problem Statement 
• To analyze network performance by recording the traffic transmitted over 

the network. 

• To carefully monitor traffic received from outside the Multi-Protocol 

Label Switching (MPLS) or sent outside MPLS, as well as transmitted 

within a local MPLS network. This way behaviors of different variants of 

Transmission Control Protocol (TCP) present in the network can be 

discovered, or the weaknesses of the variant can also be found in different 

traffics scenarios.  

• To compare performance of different IP variants via network monitoring 

and validation. 

• Detail literature study for “state of the art” technology in TCP/IP and 

MPLS.  

• Performance comparison in delay and throughput by increasing number 

of flows.  

• Performance comparison between the different protocols used in IP and 

MPLS through congestion window, delay and throughput.  

• To suggest better TCP variant for IP and MPLS networks.  
 

1.6 Description of Project 
The objective of this thesis is to develop an application which monitors the 

network traffic in order to determine the characteristics of TCP variants in the 
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network. The entire traffic flowing through the network is monitored and recorded 

regardless of the source and destination addresses. The information is stored in 

trace file that can be read using any editor. The information is stored in a manner 

so as to provide statistics regarding network usage at any particular interval and 

by any particular node in the network. This information can thus be used to 

compare and contrast the performance of TCP variants on IP and MPLS 

networks. 

To develop a simulation for network analysis which: 

Captures all the traffic on the network and will make a thorough and 

detailed analysis of the packets of each host on the network. i.e., Delay or time 

taken by a packet to reach destination.  

Also maintain statistics of the traffic.  

• Number of packet read 

• Number of packet sent 

• Number of packet received 

• average delay of all packets of network 

• variance of  delay  

• Will perform network monitoring in single as well as multiple flow 

networks.  

1.7 Scope of the Project 
This project is about developing a simulation for providing vital statistics 

about network usage by any particular variant of TCP and as well as comparison 

of a particular variant with others on the same network topology. This information 

is helpful to determine the cause of saturation in the network due to the presence 

of a malfunctioning node or packet loss. This simulation and research have broad 

usage as computer networks are becoming more and more complex everyday. 

There is an increasing need of analysis, diagnosis and testing of functionality of 

TCP variants on different networks especially on combination of networks.  

Particularly, all of the prior work on TCP-Vegas is based on a single 

sender of bulk transfer and most of the earlier work on Reno, New Reno, Tahoe, 

Vegas and Reno is limited to the examination of the throughput of a single sender 
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as a function of the loss rate in the network. But the present research extends this 

to multiple flows on single node and multiple flows on multiple nodes. 
 

 

1.8 Organization of study 
This thesis is organized in six chapters and two appendices. Present 

chapter is a general introduction on the subjects undertaken in the thesis and 

gives a brief overview of the work. The other chapters are organized as 

follows:  

• Chapter 2: The literature review is presented. The work done 

previously on TCP variant, IP networks and MPLS networks has been 

described. 

• Chapter 3: The system design is explained. The system is designed 

using the Network Simulator -2 (ns-2). It explains the various steps 

taken to design the system with the help of screen shots and flow 

chart.    

• Chapter 4: The performance of the system is evaluated by carrying 

out various tests on individual modules and results are discussed in 

detail regarding overall performance of developed system. 

• Chapter 5: Thesis conclusion and future work is included in this 

chapter.  
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Chapter 02 

IP and MPLS Networks 

2.1 Introduction 
Service providers are increasingly using Multi-protocol Label Switching 

(MPLS)/Internet Protocol (IP) networks for delivering a variety of services. While MPLS 

uses Label Distribution Protocol (LDP), it utilizes network resources best with its well-

organized, little overhead label and traffic engineering practices [5]. Real time data 

transfer networks require quality of service (QoS) which can be provided by 

Transmission Control Protocol (TCP) along with MPLS. These real time networks when 

use IP based networks as transmission require heavy overhead. Tahoe, Reno, Vegas, New 

Vegas and Sack etc. are few variants of TCP. These variants give different results in 

varying network scenarios; every version of TCP has its own drawbacks and benefits 

depending upon two factors. Firstly, the network conditions provided to them and 

secondly, the algorithm they are working on. Basically these algorithms are implemented 

and designed to give optimal performance under certain circumstances. 

On Internet greater part of traffic is run by TCP. Van Jacobson in [6] introduced 

an algorithm that is responsible for reliable delivery of all data and fair sharing of 

network resources. TCP is transport layer protocol that offers a trustworthy, connection-

oriented, byte-stream service. It also controls flow; as it stops sender from sending 

unmanageable data, which can otherwise overflow receiver’s buffer. Using congestion 

control mechanism TCP stops sender to insert a large amount of data into network. 
 

2.2 Background 
In the field of performance evaluation of TCP over IP and MPLS network, 

very few useful results from performance evaluations are available. It is also very 

hard to compare the results of different performance evaluations as they depend 

heavily on the used protocols and parameter settings. One of the examples of 

interesting TCP performance evaluation for IP and MPLS network is the network 

simulations carried out at the MAJU, Pakistan [7]. The research focuses on 

performance evaluation of certain variants of TCP protocol over IP and MPLS 
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network. The investigations mainly evaluated the performance of TCP in respect to 

different modes of IP and MPLS network and CBR traffic with different number of 

flows. This research basically analyzed three variants Reno, Tahoe and Vegas under 

changing traffic set-ups. It points out Vegas to be an out performer, which shows a 

jitter free constant end-to-end delay. 

In a diploma research carried out at University of Namur, numerous TCP 

variants were examined using network simulator NS-2, simulating different traffic 

scenarios with two types of traffic i.e. FTP and Telnet [8]. It was concluded that type 

of traffic also had a significant impact on overall performance of TCP in Universal 

Mobile Telecommunications System (UMTS) network. 

Zhong Ren in [9] presented a scheme to integrate mobile IP and MPLS 

networks. Techniques for controlling and signaling this integration are argued in 

detail, it also points out some problems of scalability of Mobile IP. MPLS is used to 

switch packets instead of IP tunneling. MPLS forwarding is much faster than IP 

forwarding as packet processing overhead is reduced for the reason that MPLS header 

is smaller than IP header. A similar sort of study is performed by M. Asante in [10] 

by analyzing the mobile IP and MPLS union architecture. The paper highlights the 

benefit of this union. 

There has been significant interest of researcher community in performance 

analysis of TCP variants. Most of the researches have been focuing on TCP 

congestion management in IP based networks.  

Adam Wierman in [11] gave a framework for analyzing TCP variations i.e. 

Vegas, Sack and Reno. He noted that the customized slow start mechanism 

commenced in Vegas hardly aided packet loss reduction however it resulted in 

wasting more time in the slow start phase. 

Mazleena Salleh and Ahmad Zaki Abu Bakar [12] compared TCP Tahoe, 

NewReno, Vegas, and Sack over self-similar traffic using NS2 for simulation. They 

found that NewReno did better than other TCP variants with respect to efficiency and 

throughput.  

The two well-known variants of TCP: Reno [13] which is widely used on 

internet and Vegas [14] which measures performance improvement of 37 to 71 
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percent better throughput over the Reno. TCP Congestion Control mechanism 

recognizes and illustrates four congestion control algorithms to be precise: slow start, 

congestion avoidance, fast retransmit, and fast recovery [15]. Jeonghoon Mo, Richard 

J. La, Venkat Anantharam, and Jean Walrand’s [16] results emphasize on former 

discussed research results. They demonstrated via simulation that Vegas utilized 

network resources more competently and fairly as compared to Reno. 

  Go Hasegawa and co-author [17] when compared performance of Reno and 

Vegas sharing bottleneck link on internet found out Reno to be a better performer. 

Similar results were concluded by Cheng P. Fu and Soung C. Liew in [18] where they 

compared performance of Reno and Vegas on asymmetric networks having 

bottleneck. 

Thomas Bonald in [19] compared Reno and Vegas keeping RTT measurement 

as testing template. They focused on long-term performance criterion i.e. average 

throughput and average buffer taken up. Their core conclusion was that TCP Vegas 

was better than Reno, as it shared on hand bandwidth fairly between users of different 

propagation delays.  

Yi-Cheng Chan in [20] has reported a few problematic sides of TCP Vegas 

which reduced its success in congestion avoidance. These characteristics are fairness, 

re-routing, constant congestion and network irregularity. Authors have also presented 

a router based congestion avoidance mechanism to trim down impact of Vegas 

problems. 

Ben Soh and Joel Sing have judged New Vegas a new variation of TCP 

Vegas, to overcome Vegas short comings. Vegas experiences decreased throughput in 

networks that have large bandwidth-delay product. Writers in [21] have confirmed 

New Vegas to have superior throughput because of its improved expansion 

administration of congestion window. Problems of fairness and multi-variant session 

of New Vegas are yet to be answered. 
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2.3 Contribution 
 

This examination is about developing a simulation for providing vital 

statistics about network usage by any particular variant of the TCP and as well as 

comparison of a particular variant with others on the same network topology. This 

information is helpful to determine causes of saturation in the network due to 

presence of a malfunctioning node or a packet lost. This simulation and research 

have broad usage as computer networks are becoming more and more complex 

everyday. There is an increasing need of analysis, diagnosis and testing of 

functionality TCP variants on different networks especially on combination of 

networks i.e. IP and MPLS networks integration.  

Particularly, all of the prior work on TCP-Vegas is based on a single 

sender of bulk transfer and most of the earlier work on New Reno, Sack, Tahoe, 

Vegas and Reno is limited to examination of throughput of a single sender as a 

function of loss rate in the network. But the current research extended this to 

multiple flows on single node and multiple flows on multiple nodes. 

This study considers a simulated analysis of many flows interacting 

through a variant of TCP in IP and MPLS network. However, in contrast to the 

former papers, our focus is not on modeling TCP, but on studying it in a common 

setting, and on the effects that variations of parameters have on the Average 

delay, congestion window and throughput produced by these variants.  

Interestingly, in addition to the last few papers mentioned above in connection 

with TCP, results show lack of information. This suggests an underlying common 

structure not yet fully understood. There has already been some interesting work 

done in the field of evaluating performance of TCP over IP and MPLS network. 

So evidently there is a query why has this research been done on performance 

study of TCP over IP and MPLS network. The main difference between the 

present work and the related work is that it not only focuses on work done on 

Reno Tahoe and Vegas but also on Sack and New Reno and on two types of 

traffic i.e. CBR and FTP and error rate is also introduced. The idea of studying 

TCP in terms of categories is very interesting as the internal mechanism of thes 
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selected TCP variants makes them behave differently from each other in same 

network conditions.  
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Chapter 03 

Design and Implementation of IP and MPLS Based 

Networks 

3 Experimental Setup 
3.1  Network Topology 

General architecture of MPLS and IP network integration is shown in the 

Figure.3.1. This architecture consists of total number of 13 nodes which are divided 

into two domains (MPLS and IP). 

MPLS domain consists on 7 nodes which are labeled as LSR1 to LSR7 and IP 

domain consist on 6 nodes named as node0 to node5. The IP domain consists of a 

sender and a receiver network each having three nodes. Links between nodes of 

MPLS and IP network are 1 Mb and 5ms node processing delay. All MPLS nodes are 

Label Distribution Protocol (LDP) enabled. Which provides mechanism for label 

distribution among MPLS enabled nodes. 

 
Figure 3.1: General Network topology 

The traffic is Constant Bit Rate (CBR) and File Transfer Protocol (FTP) Traffic 

having packet size of 1500 kilo bytes with variable time interval. The simulation runs for 

100 seconds. Traffic source and destination are IP based networks. Some common 

networks parameters are shown in Table 3.1. 
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Attributes  
 

Values 
 

Bandwidths 1MB 
 

Link Processing Delay 5ms 
 

Number of hops  7 

Number IP nodes 6 
 

Packet size 1500 

 

Number of MPLS nodes 

 

7 

Table 3.1: Network parameter 

The different TCP variants in MPLS/IP network are analyzed using different 

scenarios. The numbers of flows of the link were varied in order to check the effect of 

different flows on the throughputs and delay. These traffics are run in both situations i.e. 

CBR and FTP. 

• Single Traffic 

• Single Traffic CBR 

• Single Traffic FTP 

 

• Multiple Traffic 

• Two flows Traffic 

• Two flows Traffic CBR 

• Two flows Traffic FTP 

• Four flows Traffic 

• Four flows Traffic CBR 

• Four flows Traffic FTP 

• Eight flows Traffic 

• Eight flows Traffic CBR 
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• Eight flows Traffic FTP 

 

3.2  Tool Command Language (TCL) Script 
3.2.1 Simulation initialization 

The first step of any tcl script file is to set a new network simulator, this 

preamble initializes the simulation. 

3.2.2 Predefine tracing 

Second step is predefined tracing. Files are opened to write trace-data for 

NAM and Xgraph or any other graph plotting tool like Gnuplot used by this 

research .Two files are opened and naming “mpls.nam” which records all 

information of nam and “mpls.tr” which traces all events in a simulation. 

There are many ways to collect output or trace data while simulation is 

running. Generally, trace data is prompt directly during the simulation is run, or 

stored in a file to be post-processed and analyzed. There are two main types of 

monitoring facility supported by the network simulator. The first, called traces, 

records each individual packet as it is received, sent, or dropped at a link or 

queue. The other type of monitoring is called monitors, which counts various 

interesting quantities such as packet and byte arrivals, departures, etc. Monitors 

examine counts linked to all packets. 

3.2.3 Trace File 

There are 14 trace entries .A screen shot of trace file is shown in Figure 

3.2.Column-wise details are as under: 

3.2.3.1 First column: 

• “+”  :  enque operations  

• “-”  :  deque operations  

• “r”   : receive events 

•  “d”  : drop event 

3.2.3.2 Second column 

 The simulated time (in seconds) at which each event occurred is listed 

in the second column.  
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3.2.3.3 Third and fourth columns 

The next two fields indicate between which two nodes tracing is 

happening. 

3.2.3.4 Fifth column 

 The next field is a descriptive name for the type of packet seen for 

example tcp, telnet, cbr, ack, LDP etc. 

3.2.3.5 Sixth column 

 The next field is the packet’s size, as encoded in its IP header. 

3.2.3.6 Seventh-ninth column 

The next field contains the flags. The flags are defined in the flags[] 

which is an array in source file (trace.cc). 

 
Figure 3.2: Screen shot of a trace file showing different columns 

Following are few of the flags are used:  

• “E” for Congestion Experienced (CE). 

• “N” for ECN-Capable-Transport (ECT) in IP header. 

• “C” for ECN-Echo. 
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• “A” for Congestion Window Reduced (CWR) indication in the 

TCP header.  

• “P” is for priority. 

• “F” for TCP Fast Start. 

3.2.3.7 Tenth column  

The next field gives the IP “flow identifier” field as defined for IP 

version 6.1.  

3.2.3.8 Eleventh and twelfth column 

 The subsequent two fields indicate the packet’s source and 

destination node addresses, respectively. 

3.2.3.9 Thirteenth column  

The following field indicates the sequence number. 

3.2.3.10 Last column  

The last field is a unique packet identifier. Every packet that is 

generated during simulation is allocated a fresh unique identifier. 

3.2.4 Finish procedure defined 

In next portion of script, Finish procedure is written which closes the trace 

file and opens Xgraph and NAM but it is called in the end. 

3.2.5 Awk Script  

To extract the required information from the traces generated by NS-2 

some scripting language is required. There are different scripting language such as 

perl, grep and awk.  

Awk script is used to calculate the required data from the traces generated 

by the Network Simulator. The awk scripting used in code is discussed below. 

3.2.5.1 Awk script for creation of send-receive information trace file 

This script takes trace file (mpls.tr) as input and saves all the entries in 

the output file (sendrecieve.tr) having value of columns 1 equal to “+” 

i.e., en-queue operation was performed, also the value of column 3 is 0 

and value column 4 is 2 i.e., tracing is between node 0 and node 2; value 

of column 5 is tcp and value of column 6 is 1500 i.e. the packet is of type 

tcp having size equal to 1500 bytes. Moreover entries in the output file 
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having value of columns 1 equal to “r” i.e., read operation is performed; 

also value of column 3 is 10 and value column 4 is 11 this shows that 

tracing is between node 10 and node 11, value of column 5 is tcp and 

value of column 6 is 1500 i.e. the packet is of type tcp having a size of 

1500 bytes. 

 
Figure 3.3: Screen shot of a trace file showing different columns 

The resultant output file (sendrecieve.tr) shown in Figure 3.3 

contains column 1, 2 and 11 which is used to extract more information. 

Where value of column1 shows operation performed on packets, value  of 

column 2 is the time on which event occured during simulation and 11th 

column is the packet’s source. 

3.2.5.2 Awk Script For Creation Of Congestion Window Information Trace File 

This script takes trace file (congwnd.tr) as input and gives 

newcongwnd.tr as output; which saves column 1 and 7 of input tracefile. This 

output file is used to draw graphs for analysis of congestion window behavior 

of MPLS-TCP variants with different error rates in single flow FTP traffic. 
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3.2.6 Script For Execution Of delay.cpp 

This script runs delay.cpp’s executable, takes senrecieve.tr as input and 

gives two files as output. This script is repeated with increasing number of flow 

i.e. for single flow it is written once only, twice for two flows, four times for four 

flows and eight times for eight flows. Each time it is called it takes an input file 

and generates two output files. 

3.2.7 Node Creation 

Following IP nodes are created: node0, node1, node2, node3, node4 and 

node5. The given MPLS nodes are also formed: LSR1, LSR2, LSR3, LSR4, 

LSR5, LSR6 and LSR7.  

3.2.8 Setting Link Parameters   

• The link is set as duplex  :  This creates a bi-directional 

link between node1 and node2. This parameter basically creates a 

duplex-link from two simplex links, one from node1 to node2 and the 

other from node2 to node1. 

• Bandwidth is set to 1 Mb :  it is Link bandwidth in bits 

per second. 

• Delay is set to 5ms  :  it is Link propagation delay 

in seconds. 

• Queue management DropTail :  The type of queue 

management used in the link. Default value is DropTail. 

3.2.9 Configure the Label Distribution Protocol (LDP) on all MPLS Node 

Install/configure LDP agents on all MPLS nodes, and set path restoration 

function that reroutes traffic around a link failure in a LSP to a substitute LSP. 

There are 2 options 

• "new": If a path doesn’t exist, create a different and fresh path . 

•  "drop": New alernative path is not created but loop length is set to 

address all MPLS nodes. 
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3.2.10 Set LDP-Message Color  

•  ldp-request-color   as  blue 

•  ldp-mapping-color  as  red 

•  ldp-withdraw-color   as  magenta 

•  ldp-release-color   as   orange 

•  ldp-notification-color  as  yellow 

Define trigger strategy, Label Distribution Control Mode and Label 

Allocation and Distribution Scheme. When the following line is skipped over, 

data-driven option is set for trigger strategy. This strategy can also be applied on 

every LSR. 

3.2.11 Scheduling of events 

It specifies the type of scheduler to be used for simulation. Different types of 

scheduler available are List, Calendar, Heap and RealTime. This simulation uses 

'List' scheduling of events. 

3.2.12 TCP Traffic Source 

Next step is creation of a TCP agent and connecting it to an application like 

FTP or Telnet, which will generate data. At various layers agents are endpoints 

where network-layer packets are created and used in the implementation of 

protocols. 

3.2.12.1 Protocol Agents 

There are number of agents supported in the simulator. Few of which used 

by this simulation are: 

The one-way TCP sending agents currently supported are: 

• Agent/TCP   :  a “tahoe” TCP sender 

• Agent/TCP/Reno   : a “Reno” TCP sender 

• Agent/TCP/Newreno  :  Reno with a modification 

• Agent/TCP/Sack1   :  TCP with selective repeat 

• Agent/TCP/Vegas   :  TCP Vegas 

The one-way TCP receiving agents currently supported are:  
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• Agent/TCPSink   :  TCP sink with one ACK per 

packet 

•  Agent/TCPSink/DelAck  :  TCP sink with configurable 

delay per ACK 

•  Agent/TCPSink/Sack1 :  selective ACK sink  

•  Agent/TCPSink/Sack1/DelAck  :  Sack1 with DelAck 

The two-way experimental sender currently supports only a Reno form of 

TCP: 

• Agent/TCP/FullTcp 

3.2.12.1.1 TCP Tahoe  

The “Tahoe” TCP agent Agent/TCP performs congestion control 

and round-trip-time estimation in a way similar to the version of TCP 

released with the 4.3BSD “Tahoe” UNIX system release from UC 

Berkeley. The congestion window size is enlarged by one packet per new 

ACK received during slow-start and is increased by 1 cwnd for each new 

ACK received during congestion avoidance. 

3.2.12.1.1.1 Responses to Congestion  

Tahoe assumes loss of a packet (due to congestion) when 

whenever retransmission timer expires or it observes 

NUMDUPACKS duplicate ACKs. In both scenarios, Tahoe sets 

threshold to half of the current window size or 2, whichever is 

bigger. It then initializes congestion window’s size back to the 

value of windowInit_. This is the point in simulation when TCP 

enters slow-start. 

3.2.12.1.2 TCP Reno  

 The Reno is TCP agent works similar to the Tahoe TCP agent, 

except it also includes fast recovery, where the current congestion window 

is inflated by the number of duplicate ACKs the TCP sender has received 

before receiving a new ACK. A new ACK refers to any ACK with a value 

higher than the highest observed until now. During a fast retransmit the 

TCP Reno agent does not return to slow-start. It also sets the congestion 
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window to half the current window size and resets ssthresh_ to match this 

value. 

3.2.12.1.3 TCP NewReno  

 This agent is basically an extension of the TCP Reno agent, but it 

performs different action when new ACKS are received. 

The sender must receive an ACK for the highest sequence number 

sent to exit fast recovery. Thus, new partial ACKs (those which represent 

new ACKs but do not represent an ACK for all outstanding data) do not 

reduce the window (and possibly lead to a stall, characteristic of Reno). 

3.2.12.1.4 Vegas TCP  

This agent implements TCP Vegas. It was given by Ted Kuo. 

3.2.12.1.5 Sack TCP 

 This agent implements selective repeat, based on selective ACKs 

provided by the receiver.  

3.2.12.2 TCP Receivers (sinks) 

These TCP senders represent one-way data senders. They must take in 

with a “TCP sink” object. 

3.2.12.3 Two-Way TCP Agents (FullTcp) 

The Agent/TCP/FullTcp object is a new addition to the suite of TCP 

agents supported in the simulator. It is under development. This agent is 

different from and is not compatible with the other agents, but does utilize 

somewhat the same architecture. It differs from these agents in the following 

ways: 

• connections are established (SYN/FIN packets are exchanged) 

•  bidirectional data transfer is supported 

•  sequence numbers are in bytes rather than packets 

3.2.13 Creating Sender agent and attaching to a node 

Script creates new sender agent and attaching it to sender node.  

• Maxcwnd is the upper bound on the congestion window for the TCP 

connection. If it is set to zero it will be ignored and this is also its 

default value. 



29  

• windowInit is the initial size of the congestion window on slow-

start. 

• packetSizet is the size in bytes to use for all packets from this 

source. 

• tcpTick is the TCP clock granularity for measuring roundtrip times. 

It is set by default 100ms which is not a standard value. 

Simulation sets the tcp agent’s maximum window to 40, set packetSize to 

1460 bytes, set tcpTick to 0.001, set windowInit to 2. All tcp variants have been 

set on same initial values. It is also defined here that the agent will be FTP/CBR 

and associates FTP/CBR with the TCP sender. 

3.2.14 Creating Receiver agent and attaching to node 

Receiver agent is created and attached to a reciever node and establish TCP 

connection. 

3.2.15 Trace MPLS/LDP packets 

Trace results of MPLS/LDP packets at a given LSR are dumped at the 

prompt. 

3.2.16 Simulation time 

The simulation runs for 100s. It arranges FTP/CBR session to range between 

1.0 seconds to 98.0 seconds. The packet sending is stopped 0.2 seconds before the 

simulation ends to avoid the packet loss making it sure that application received 

the last sent packet. 

The simulation comes to an end when the scheduler invokes the finish 

procedure. This procedure closes all trace files, and invokes nam visualization on 

one of the trace files. 

3.2.17 Start the simulation 

Finally, start the simulation using run command. 

Figure 3.4 shows the basic flow of simulation. 

 

3.3 Error rate induction 

Error model is one which introduces packet losses into a simulation. Error 

model simulates link-level errors or losses by two ways: either marking the 
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packet’s error flag or dumping the packet to a drop target. During simulations, 

errors can be induced from a simple model using the packet error rate; the other 

way is from more complex statistical and empirical models. To support a numbers 

of models, the unit of error can be specified in terms of packet, bits, or time-

based. 

If error unit is not specified, it will be in packets by default, and the random 

variable will be uniformly distributed from 0 to 1.  

Current simulation is creating error models with the packet error rate of 1 

percent (0.01) , 2 percent (0.02), 3 percent (0.03), 4 percent (0.04) and 5 percent 

(0.05) for all the tcp variants Reno, New Reno, Sack, Tahoe and Vegas under the 

scenario of  FTP traffic.  

3.3.1 Steps in creation of loss module 

Following steps are taken in creation of a loss module  

• Set its packet error rate to value(1-5) percent 

• Set the unit and random variable(this step is optional) 

• Set the error unit: packets (the default is packet) 

• Set target for dropped packets 

• Attach random variable to loss module 
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3.4  delay.cpp 
This file takes trace file (sendrecieve.tr) as input and gives two files as output. 

The first output contains packet sequence number and delay for that packet. The 

second output carries following information: 

• Number of entries read 

• Number of entries sent 

• Number of entries received 

• Average Delay of entries  

• Variance of  delay 

3.5  NAM Visualization of Topology 
Figure 3.5 shows the nam visualization of network topology. The circles with 

numbers show the nodes whereas lines connecting them show links between nodes. 

 
Figure 3.5: Screen shot of nam visualization 
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Node 0, 1, 2, 10, 11 and 12 are IP nodes in which first three are sender nodes and 

last three are receiver nodes. The intermediate ones from 4 to 9 are MPLS nodes and are 

LDP enabled. 

3.6 Running TCL Script 

Figure 3.6 shows the running of tcl script. In this case name of the script is 

“mpls.tcl” and command used to run the script is ns <name of script>.  

 

 
Figure 3.6: Example of MPLS Packet Trace 

 

When the 'trace-mpls' API is used, an example of trace result might appear as Figure 3.6 

shows. First field indicates the simulated time (in seconds) at which each event occurs. 

The next field indicates the address of the node that processes the packet. The next two 

fields indicate the packet's source and destination node addresses. The subsequent field 

indicates whether the received packet is unlabeled (U) or labeled (L). The next field is 

value of an incoming-label. Moreover a label operation is represented such as Push, Pop, 

and Swap. The subsequent two fields indicate the packet's out-going interface and out-
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going label. The last two fields indicate the shim header's TTL and size. A shim header is 

a special header placed between layers two and three of the OSI model. The shim header 

carries the label which is used to forward MPLS packets. 

3.7  Quality of service parameter 
3.7.1 Delay 

Delay is the time calculated by finding difference between the time sender 

application takes in passing the packet to transport protocol and reciever 

application in receiving of it. Delay is of great importance to some applications. 

One way Delay in MPLS and IP network is calculated using the different TCP 

variants by the following formula: 

                        Ts - Tr Delay =                 

Where Ts is the time stamp of packet sending and Tr is time stamp of 

packet receiving respectively. Mean delay is recorded for results and calculated 

using this formula. 

 N
Delay Total Delay  Mean =

         

Where n is the total number of packets sent in a simulation time. 

 

3.7.2 Throughput 

 

100Re x
PacketsSentNumberof

PacketscievedNumberofThroughputPercentage =  

 

3.7.3 Packet Loss  

 

PacketscievedNumberofPacketsSentNumberofLossPacket Re−=  
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Chapter 04 

Results and Discussions 

The performance of network links can be described by two main parameters: 

the bandwidth and the delay. The more bandwidth the higher would be end-to-end 

throughput and better quality-of-service for the applications. Delay is important in 

order to guarantee prompt response from the network. And in recent times, with 

advanced high speed networks, extra latency can even reduce consumption of a TCP 

stream. 

With disperse nature of the internet, many users share network resources; 

resultantly internet is unpredictable. As a direct result of this, an end user can never 

obtain expected performance. In the recent times it has become very important to 

observe the state of the network in order to estimate requirements for network 

planning, extra provisioning and bandwidth monitoring. Users want to verify whether 

they get the expected throughput and desired provisioning of network clouds. 

 This simulation consists of total number of 13 nodes; MPLS domain consists 

on 7 nodes and IP domain consist on 6 nodes. The IP domain consists of two 

networks each having three nodes. Links between nodes of MPLS and IP network are 

1 Mb and 5ms processing delay. The total simulation time is 100 seconds. Both traffic 

source and destination are IP based. 

  The different TCP variants in MPLS/IP network are analyzed using different 

cases. The numbers of flows of the link were varied in order to check the effect of 

different flows on the throughput and delay. These traffics are run in both scenarios 

CBR and FTP. A detail analysis is presented and discussed. 

4.1 Constant Bit Rate(CBR) 

CBR traffic was simulated on single and multiple flows and results were 

traced. These results are then presented in form of tables and figures for TCP 

NewReno, TCP Reno, TCP Sack, TCP Tahoe and TCP Vegas. 
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4.1.1 Single Traffic 

A CBR connection is established between node0 and node11 and this 

simulation is executed for New Reno, Reno, Sack, Tahoe and Vegas. Table 4.1(a) 

demonstrates average delays in milliseconds, while Table 4.1(b) depicts the 

percentage throughput of different variants on single flow. 

Protocol Delay(millisec) 
TCP New Reno 202.555 
TCP Reno 202.555 
TCP Sack 202.555 
TCP Tahoe 202.555 
TCP Vegas 149.277 

 
Table 4.1 (a): Delay of Single Flow CBR 

 
Protocol Percentage Throughput 
TCP New Reno 99.7 
TCP Reno 99.7 
TCP Sack 99.7 
TCP Tahoe 99.7 
TCP Vegas 99.8 

Table 4.1 (b): Percentage Throughput of Single Flow CBR 
 

There is small number of packet loss. Average delays and throughputs of all 

the variants are approximately same and TCP Vegas shows 25% lesser average 

delay than other variants.  

The behavior of TCP variants can also be observed by recording the average 

delay of packets on basis of their sequence numbers .i.e. average delay up to 

packet number 50,100,150 and so on for every variant is recorded, as shown in 
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Table 4.2.Figure 4.1 is depicting same information as in Table 4.2.As it is evident 

from the Figure that performance of Vegas is superior to other variants. 

Number of 

Packets New Reno

 

Reno 

 

Sack 

 

Tahoe 

 

Vegas 

50 0.169064 0.169064 0.169064 0.169064 0.130308 

100 0.185912 0.185912 0.185912 0.185912 0.12552 

150 0.191528 0.191528 0.191528 0.191528 0.130333 

200 0.194336 0.194336 0.194336 0.194336 0.135159 

250 0.196021 0.196021 0.196021 0.196021 0.138056 

300 0.197144 0.197144 0.197144 0.197144 0.139986 

350 0.197946 0.197946 0.197946 0.197946 0.141365 

400 0.198548 0.198548 0.198548 0.198548 0.1424 

450 0.199016 0.199016 0.199016 0.199016 0.143204 

500 0.19939 0.19939 0.19939 0.19939 0.143848 

550 0.199697 0.199697 0.199697 0.199697 0.144374 

600 0.199952 0.199952 0.199952 0.199952 0.144813 

650 0.200168 0.200168 0.200168 0.200168 0.145184 

700 0.200353 0.200353 0.200353 0.200353 0.145503 

750 0.200514 0.200514 0.200514 0.200514 0.145779 

800 0.200654 0.200654 0.200654 0.200654 0.14602 

850 0.200778 0.200778 0.200778 0.200778 0.146233 

900 0.200888 0.200888 0.200888 0.200888 0.146422 

950 0.200987 0.200987 0.200987 0.200987 0.146591 

1000 0.201075 0.201075 0.201075 0.201075 0.146744 

1050 0.201155 0.201155 0.201155 0.201155 0.146882 

1100 0.201228 0.201228 0.201228 0.201228 0.147007 

1150 0.201295 0.201295 0.201295 0.201295 0.147122 

1200 0.201356 0.201356 0.201356 0.201356 0.147227 

Table 4.2: End-to-end delay for TCP Variants New Reno, Reno, Sack, Tahoe and 

Vegas under CBR Single Flow 
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Figure 4.1: Comparison of TCP Variants with Single Traffics under CBR 

4.1.2 Two Flows   

This part of simulation creates two flows; both flows are of CBR type and 

start at same time. Node0 is sending data to Node 11 and Node1 is sending data to 

Node12.The intermediate cloud is MPLS and both senders and receivers are IP 

based. Tables 4.3(a) and 4.3(b) demonstrate delay and percentage throughput of 

different variations of TCP. 

Average delay of all the variants is approximately same and TCP Vegas 

shows 40% lesser average delay than other variants. TCP Vegas does well again 

on two flows than other variants while analyzing average delay. Figure 4.2 gives 

an idea about average delays of all variants under observation at an interval after 

50, 100, 150, 200 and so on until 1200 packets respectively.  
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Table 4.3 (a): Delay of Two Flows CBR 
 

Protocol Percentage Throughput 
TCP New Reno 99.5 
TCP Reno 99.5 
TCP Sack 99.5 
TCP Tahoe 99.5 
TCP Vegas 99.8 

 
Table 4.3 (b): Percentage Throughput of Two Flows CBR 

 

Figure 4.2: Comparison of TCP Variants with Two Traffics under CBR 

Protocol FlowID Delay(millisec)
TCP New Reno Flow1 440.808 

Flow2 441.058 
TCP Reno Flow1 440.808 

Flow2 441.058 
TCP Sack Flow1 440.808 

Flow2 441.058 
TCP Tahoe Flow1 440.808 

Flow2 441.058 
TCP Vegas Flow1 173.061 

Flow2 173.150 
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4.1.3 Four Flows  

Simulation produces four flows; all CBR flows were started 

simultaneously.  There are two sessions on Node0 that are sending data to Node 

11 and two sessions on Node1 which are sending data to Node12. The 

intermediate cloud is MPLS and both senders and receivers are IP networks. 

Tables 4.4(a) and 4.4(b) illustrate average delay of each flow and percentage 

throughput of variants of TCP under observation. 

Protocol Flow ID Delay(millisec)
TCP New Reno Flow1 585.640 

Flow2 596.261 
Flow3 603.354 
Flow4 597.696 

TCP Reno Flow1 570.435 

Flow2 610.045 
Flow3 587.092 
Flow4 593.988 

TCP Sack Flow1 601.222 
Flow2 611.663 
Flow3 625.661 
Flow4 604.966 

TCP Tahoe Flow1 573.041 
Flow2 576.960 
Flow3 578.665 
Flow4 578.468 

TCP Vegas Flow1 243.911 
Flow2 243.576 
Flow3 243.959 
Flow4 243.959 

 
Table 4.4 (a): Delay of Four Flows CBR 
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Protocol Percentage Throughput 
TCP New Reno 98.5 
TCP Reno 98.5 
TCP Sack 98.3 
TCP Tahoe 98.5 
TCP Vegas 99.7 

Table 4.4 (b): Percentage Throughput of Four Flows CBR 
 

Vegas dropped very few packets and had highest throughput. On the 

whole average delay is amplified. Average delay of all the variants is 

approximately similar and only TCP Vegas demonstrated 40% smaller average 

delay. This proves better performance of TCP Vegas on four flows than other 

variants. 

 
Figure 4.3: Four Flows CBR 

 

At the start of simulation as exposed in Figure 4.3, fluctuation is seen because of 

network instability in Vegas but rest of variants show this instability till the end of 
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the simulation. The smoothness of line of Vegas behavior proves that after 

sending few packets the delay remains the same for rest of traffic, this proves that 

the delays of the packets remain same throughout simulation time. 

 

 

Figure 4.4: Comparison of TCP Variants with Four Traffics under CBR 

Figure 4.4 is another outlook of packet’s average delay plotted against 

their sequence number when the simulation sends some numbers of packets i.e. 

50,100,150,200 and so on. TCP Reno has highest delay peak reaching 0.65 

seconds until the end of simulation. TCP Reno is the TCP variant that induces 

packet losses as a sign of congestion.   

4.1.4 Eight Flows  

Simulation generates eight flows; all flows are of CBR type and start 

concurrently.  There are four sessions on Node0 and four sessions on Node1 that 

are sending data to Node 11 and Node12 respectively. The intermediate cloud is 
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MPLS and both senders and receivers are IP based. Tables 4.5(a) and 4.5(b) give 

details average delay of all eight flows and percentage throughput of different 

variants of TCP. 

Protocol Flow ID Delay(millisec)
TCP New Reno Flow1 700.279869 

Flow2 735.202271 
Flow3 674.296937 
Flow4 720.512184 

Flow5 735.973601 

Flow6 749.842139 

Flow7 721.417000 

Flow8 691.349018 
TCP Reno Flow1 658.346388 

Flow2 660.996949 
Flow3 636.468069 
Flow4 639.180377 

Flow5 707.880977 

Flow6 699.855385 

Flow7 623.428567 

Flow8 673.569345 
TCP Sack Flow1 682.262498 

Flow2 687.364703 
Flow3 664.239830 
Flow4 681.605197 

Flow5 735.834975 

Flow6 692.867648 

Flow7 691.358682 

Flow8 763.340669 
TCP Tahoe Flow1 628.499090 

Flow2 630.102096 
Flow3 646.907666 
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Flow4 633.740541 

Flow5 657.795324 

Flow6 688.076014 

Flow7 620.713057 

Flow8 646.306347 
TCP Vegas Flow1 313.645456 

Flow2 313.955819 
Flow3 314.289876 
Flow4 314.623111 

Flow5 313.748911 

Flow6 314.079965 

Flow7 314.415467 

Flow8 313.531206 
Table 4.5 (a): Delay of Eight Flows CBR 

 
Protocol Percentage Throughput 
TCP New Reno 95.7 
TCP Reno 96.5 
TCP Sack 96.2 
TCP Tahoe 96.1 
TCP Vegas 99.6 

 
Table 4.5 (b): Percentage Throughput of Eight Flows CBR 

 
On eight flows New Reno shows even worst performance. TCP 

Sack delay reaches highest peaks of 0.5 seconds. The variation of delay 

for individual packet shows instability of New Reno in increasing flows 

environment. 

The traffic sent rate is increasing by number of flows; the delay 

also increases because more packets are induced by the traffic generator 

that further increases queuing delay, as total end-to-end delay is composed 
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of transmission delay, propagation delay, and queuing delay. More packets 

sent mean more queuing delay. Only few packets were lost in Vegas 

simulation whereas more packets were dropped in other variants of TCP. 

Collectively average delay increased with increase in flows but still 

Average delay of all the variants is roughly identical and TCP Vegas 

shows 50% lesser average delay than other variants. TCP Vegas gives 

highest throughput and lowest average delay. 

 

Figure 4.5: Comparison of TCP Variants with Eight Traffics under CBR 

Figure 4.5 is portraying packets’ average delay plotted against their 

sequence number for different intervals i.e. 50,100,150,200 and so on 

packets were sent before that observation. TCP sack has highest delay 

reaching 0.9 second, but from, 200th packet till the end of simulation New 

Reno is giving highest peaks of average delay.  

 



46  

4.2 File Transfer Protocol (FTP) 

FTP traffic has been run on single and multiple flows and results are recorded 

thereby. These results are then presented in structure of tables and figures for TCP 

NewReno, TCP Reno, TCP Sack, TCP Tahoe and TCP Vegas. 

4.2.1 Single Traffic 

An FTP connection is set up between node0 and node1 and this simulation is 

executed for New Reno, Reno, Sack, Tahoe and Vegas. Table 4.6(a) shows the 

values of these simulation average delays in milliseconds, while Table 4.6(b) 

depicts the percentage throughput of different variants on single flow and it can 

be examined that all variants are giving 100% throughput. 

Protocol Delay(millisec) 
TCP New Reno 202.551 
TCP Reno 202.551 
TCP Sack 202.551 
TCP Tahoe 202.551 
TCP Vegas 149.270 

 
Table 4.6 (a): Delay of TCP Variants on Single Flow FTP 

 
Protocol Percentage Throughput 
TCP New Reno 100 
TCP Reno 100 
TCP Sack 100 
TCP Tahoe 100 
TCP Vegas 100 

 
Table 4.6 (b): Percentage Throughput of TCP Variants on Single Flow FTP 

 
On FTP flow there is no packet loss. Average delay of all the variants is 

more or less alike and TCP Vegas shows 25% lesser average delay than other 

variants. The accomplishments of TCP variants can also be observed by recording 
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the delay of packets .i.e. average delay of simulation traced until 50, 100, 150 and 

so on. Figure 4.6 is graphical representation of information represented in Table 

4.7. 

 

 

Figure 4.6: Comparison of TCP Variants with Single Traffics under FTP 
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Number of 

Packet New Reno 

 

Reno 

 

Sack 

 

Tahoe 

 

Vegas 

50 0.169064 0.169064 0.169064 0.169064 0.130308

100 0.185912 0.185912 0.185912 0.185912 0.12552

150 0.191528 0.191528 0.191528 0.191528 0.130333

200 0.194336 0.194336 0.194336 0.194336 0.135159

250 0.196021 0.196021 0.196021 0.196021 0.138056

300 0.197144 0.197144 0.197144 0.197144 0.139986

350 0.197946 0.197946 0.197946 0.197946 0.141365

400 0.198548 0.198548 0.198548 0.198548 0.1424

450 0.199016 0.199016 0.199016 0.199016 0.143204

500 0.19939 0.19939 0.19939 0.19939 0.143848

550 0.199697 0.199697 0.199697 0.199697 0.144374

600 0.199952 0.199952 0.199952 0.199952 0.144813

650 0.200168 0.200168 0.200168 0.200168 0.145184

700 0.200353 0.200353 0.200353 0.200353 0.145503

750 0.200514 0.200514 0.200514 0.200514 0.145779

800 0.200654 0.200654 0.200654 0.200654 0.14602

850 0.200778 0.200778 0.200778 0.200778 0.146233

900 0.200888 0.200888 0.200888 0.200888 0.146422

950 0.200987 0.200987 0.200987 0.200987 0.146591

1000 0.201075 0.201075 0.201075 0.201075 0.146744

1050 0.201155 0.201155 0.201155 0.201155 0.146882

1100 0.201228 0.201228 0.201228 0.201228 0.147007

1150 0.201295 0.201295 0.201295 0.201295 0.147122

1200 0.201356 0.201356 0.201356 0.201356 0.147227

Table 4.7: End-to-end delay for TCP Variants New Reno, Reno, Sack, Tahoe and 

Vegas under FTP Single Flow 
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4.2.2 Two Flows  

This module of simulation produces two flows, both flows are of FTP type 

and all flows start at the same time. Node0 is sending data to Node 11 and Node1 

is sending data to Node12. The intermediate cloud is MPLS and both senders and 

receivers are IP based. 

The Table 4.8(a) is about average delay in milliseconds whereas Table 

4.8(b) depicts percentage throughputs. In this model of FTP flow there is no 

packet loss. Average delay of all the variants is roughly similar but TCP Vegas 

shows 40% lesser average delay than other variants. In other words, TCP Vegas 

performs superior on two flows than other variants keeping average delay under 

discussion. 

Protocol FlowID Delay(millisec)
TCP New Reno Flow1 440.777 

Flow2 441.031 
TCP Reno Flow1 440.777 

Flow2 441.031 
TCP Sack Flow1 440.777 

Flow2 441.031 
TCP Tahoe Flow1 440.777 

Flow2 441.031 
TCP Vegas Flow1 173.062 

Flow2 173.152 
 

Table 4.8 (a): Delay of TCP Variants on Two Flows FTP 
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Protocol Percentage Throughput 
TCP New Reno 100 
TCP Reno 100 
TCP Sack 100 
TCP Tahoe 100 
TCP Vegas 100 

 
Table 4.8 (b): Percentage Throughput of TCP Variants on Two Flows FTP 

 
 

Figure 4.7 shows the behavior of TCP variants observed by recording the 

delay of the packets plotted with their sequence numbers .i.e. average delay after 

packet number 50, 100, 150 and so on, sent by every variant, is traced. 

 

 

Figure 4.7: Comparison of TCP Variants with Two Traffics under FTP 
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4.2.3 Four Flows  

Simulation creates four flows; all flows are of FTP type; they start parallel 

to each other.  There are two sessions on Node0 that is sending data to Node 11 

and two sessions on Node1 which is sending data to Node12. Together senders 

and receivers are IP based communicating via MPLS network. Tables 4.9(a) and 

4.9(b) exhibit average delay and percentage throughput of different variants of 

TCP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4.9 (a): Delay of TCP Variants on Four Flows FTP 

Protocol Flow ID Delay(millisec)
TCP New Reno Flow1 605.975 

Flow2 605.082 
Flow3 615.735 
Flow4 608.651 

TCP Reno Flow1 569.332 
Flow2 609.487 
Flow3 586.963 
Flow4 592.969 

TCP Sack Flow1 605.138 
Flow2 612.934 
Flow3 627.058 
Flow4 606.446 

TCP Tahoe Flow1 572.651 
Flow2 576.190 
Flow3 578.452 
Flow4 577.673 

TCP Vegas Flow1 243.926 
Flow2 243.585 
Flow3 243.975 
Flow4 243.694 
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Protocol Percentage Throughput 
TCP New Reno 99.9 
TCP Reno 99.2 
TCP Sack 99.0 
TCP Tahoe 96.1 
TCP Vegas 100 

 
Table 4.9 (b): Percentage Throughput of TCP Variants on Four Flows FTP 

 
 

Vegas is giving 100% throughput as there is no packet lost. Generally a 

rise in average delay is observed but still all the variants are more or less at same 

level except TCP Vegas which shows 40% lesser average delay than other 

variants. This shows that TCP Vegas performs better on four flows than other 

variants in case of average delay analysis, similarly packet loss is much lesser 

than other variants of TCP. 

 

 
Figure 4.8: Four Flows FTP 



53  

The Figure 4.8 gives a glimpse of behaviors of TCP variants by plotting 

average delay of packets in seconds across y-axis. Each sharp edge shows the 

abrupt change in delay of that particular variant. Vegas shows a little jitter in  the 

beginning but later on illustrates a smooth performance, this show that the delay 

of the packets remains the same throughout simulation time. There is no packet 

loss in TCP Vegas. TCP Reno has highest delay reaching 1.8 second, until the end 

of simulation Reno is giving highest peaks of delay.  

 

Figure 4.9: Comparison of TCP Variants with Four Traffics under FTP 

Figure 4.9 illustrates the behavior of TCP variants observed by recording the 

delay of packets on basis of their sequence numbers .i.e. average delay of packets 

after transmission of 50,100,150 and so on packets for every variant. 

4.2.4 Eight Flows  

Eight FTP flows are generated that are started at same time. Four sessions 

are maintained at Node0 that is sending data to Node 11 and four sessions at 
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Node1 that is sending data to Node12. The intermediate cloud is MPLS and both 

senders and receivers are IP based. Tables 4.10(a) and 4.10(b) show average delay 

in milliseconds and percentage throughput of different variants of TCP. 

No packet loss is monitored in Vegas, while there are evidences that packets 

are lost by other variants. 

Protocol Flow ID Delay(millisec)
TCP New Reno Flow1 691.869927 

Flow2 662.255458 
Flow3 688.122176 
Flow4 699.388716 

Flow5 687.965784 

Flow6 728.847338 

Flow7 689.433813 

Flow8 661.223415 
TCP Reno Flow1 660.768065 

Flow2 660.907158 
Flow3 636.338427 
Flow4 638.675302 

Flow5 708.683366 

Flow6 700.968139 

Flow7 623.384563 

Flow8 673.609520 
TCPSack Flow1 685.240279 

Flow2 692.608726 
Flow3 666.291201 
Flow4 683.729984 

Flow5 739.583802 

Flow6 733.796826 

Flow7 695.336639 

Flow8 767.577396 
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TCPTahoe Flow1 626.950386 
Flow2 629.545637 
Flow3 645.618190 
Flow4 632.915162 

Flow5 656.544641 

Flow6 686.928511 

Flow7 618.480730 

Flow8 645.734697 
TCP Vegas Flow1 313.654211 

Flow2 313.970171 
Flow3 314.307196 
Flow4 314.649593 

Flow5 313.759531 

Flow6 314.096555 

Flow7 314.434729 

Flow8 313.537906 
Table 4.10 (a): Delay of TCP Variants on Eight Flows FTP 

 
Protocol Percentage Throughput 
TCP New Reno 96.5 
TCP Reno 97.4 
TCP Sack 96.8 
TCP Tahoe 97.0 
TCP Vegas 100 

 
Table 4.10 (b): Percentage Throughput of TCP Variants on Eight Flows FTP 

 
Cumulatively there is a rise in average delay; however TCP Vegas shows 

50% lesser average delay than other variants, Average delay of all the other 

variants is almost similar. This shows that TCP Vegas performs better on eight 

flows than other variants keeping average delay under observation; packet loss of 
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Vegas is zero but other variants of TCP did not give 100% throughput. New Reno 

gave lowest throughput. 

 
Figure 4.10: Comparison of TCP Variants with Eight Traffics under FTP 

Figure 4.10 shows the behavior of TCP variants observed by recording the 

delay of packets on basis of their sequence numbers .i.e. delay of packet number 

50,100,150 and so on for every variant is documented. 

4.3   Error rate induction in FTP Single Flow 

TCP provides reliable end to end transport layer protocol. Nowadays 

approximately 90% traffic on internet is using this protocol. Congestion 

avoidance in TCP allows the application to increase by one packet whenever an 

acknowledgement is received; allowing full utilization of available bandwidth. 

 Most important feature of TCP is its Congestion Control strategy. In wired 

network, whenever there is a packet loss, it indicates that network is congested. 

Inducing error rate explicitly shows the behavior of different TCP variants, as 
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some variants reduce congestion window unnecessarily. Performance of TCP is 

affected by various factors like link capacity, RTT, random losses, short flows etc. 

As IP is an unreliable network, adding TCP to it is for providing reliability via 

sliding window scheme, ACK, sequence number and control flow to avoid 

overflowing of receiver buffer [22]. 

Protocol Delay 
(sec) 

Variance 
(millisec) 

TCP New 
Reno 

0.145702 0.001609 

TCP Reno 0.145680 0.002137 
TCP Sack 0.145641 0.001558 
TCP Tahoe 0.143764 0.001775 
TCP Vegas 0.131559 0.000884 

Table 4.11: Delay and Variance of TCP Variants with 1% Error Rate 

Protocol Delay 
(millisec) 

Variance 
(millisec) 

TCP New 
Reno 

0.135669 0.002390 

TCP Reno 0.138227 0.003512 
TCP Sack 0.135028 0.001944 
TCP Tahoe 0.137339 0.002414 
TCP Vegas 0.129579 0.003029 

Table 4.12: Delay and Variance of TCP Variants with 2% Error Rate 

Protocol Delay 
(millisec) 

Variance 
(millisec) 

TCP New 
Reno 

0.136803 0.003754 

TCP Reno 0.139429 0.005499 
TCP Sack 0.134300 0.002736 
TCP Tahoe 0.136965 0.003030 
TCP Vegas 0.131611 0.003224 

Table 4.13: Delay and Variance of TCP Variants with 3% Error Rate 
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Protocol Delay 
(millisec) 

Variance 
(millisec) 

TCP New 
Reno 

0.142735 0.010064 

TCP Reno 0.143514 0.007368 
TCP Sack 0.135631 0.003895 
TCP Tahoe 0.141868 0.005738 
TCP Vegas 0.136873 0.008297 

Table 4.14: Delay and Variance of TCP Variants with 4% Error Rate 

Protocol Delay 
(millisec) 

Variance 
(millisec) 

TCP New 
Reno 

0.143130 0.006641 

TCP Reno 0.149531 0.011490 
TCP Sack 0.139308 0.005425 
TCP Tahoe 0.143978 0.006306 
TCP Vegas 0.140118 0.010976 

Table 4.15: Delay and Variance of TCP Variants with 5% Error Rate 

TCP Tahoe is the scheme of TCP that deploys slow start mechanism to 

prevent the problem of congestion. It is a reactive mechanism. New Reno is an 

active variant of TCP which is used for multiple packet losses. It provides the 

solution for oscillating congestion window to resolve problem faced by TCP 

Reno. For the solution to the problems of TCP’s inability to tell about the multiple 

packet-dropping, TCP Sack was proposed. TCP Vegas is the proactive variant of 

TCP that anticipates the intended congestion on the basis of round trip times of 

the data packets. A comparison of the values of all flavors of TCP under test is 

shown in Table 4.11 to 4.15 on IP and MPLS network.  
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Figure 4.11: Percentage throughput of TCP variants with different Error Rates 

 
Figure 4.11 gives an idea about percentage throughput achieved by TCP 

variants. As the probability of packet loss is increased 1 to 5% the throughput of 

variants deteriorates. This is because every time a retransmitted packet is lost, the 

frequency of dropped packet increases and all variants of TCP suffer from numerous 

drops and timeouts. When random packet loss was introduced, throughput of all 

variants remained the same i.e. 98, 97, 96, 95 and 94 percent for 1, 2, 3, 4 and 5 

percent error rate respectively. Vegas gave lowest end-to-end delay till 3% error rate 

but dramatically TCP Sack gave delay even lower than Vegas for 4 and 5 % error 

rate.  

The congestion window of all the sources frequently goes down to the smaller 

value. New Reno had largest value of average congestion window in 1% error rate 

case. But, Vegas had largest value and Tahoe had smallest value of average 
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congestion window throughout the experiment scenarios, this shows Tahoe’s 

inferiority to Vegas. 

It is evident that as loss rate increases, throughput decreases. So, it can be 

concluded that there exists an inverse relationship between loss rates and throughput. 

As error rate increases throughput decreases gradually. Similarly congestion window 

size also decreases as observed in Table 4.16. 

 

 
Protocol Average 

Congestion 
Window 

1% Error 
Rate 

Average 
Congestion 

Window 
2% Error 

Rate 

Average 
Congestion 

Window 
3% Error 

Rate 

Average 
Congestion 

Window 
4% Error 

Rate 

Average 
Congestion 

Window 
5% Error 

Rate 
TCP New Reno 13.6817 

 
9.88161 

 
8.238325 

 
7.110332 

 
5.899398 

 
TCP Reno 13.32309 

 
9.504204 

 
8.021566 

 
6.503233 

 
5.660716 

 
TCP Sack 13.66305 

 
9.766847 

 
8.297817 

 
7.012776 

 
5.865765 

 
TCP Tahoe 12.30899 9.252068 

 
7.836436 

 
6.232895 

 
5.406906 

 
TCP Vegas 13.11434 

 
10.87495 

 
10.07931 

 
8.910358 

 
8.471908 

 
 

Table 4.16: Average Congestion Window Size of TCP Variants with different 

Error rates  
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Chapter 05 

Conclusions and Future Work 
 

5.1 Conclusion  
TCP is arguably the most significant protocol on the internet today. The most 

important feature of TCP is its complex algorithms for congestion control. TCP tries to 

achieve the best bandwidth rate vigorously on any network. It keeps on pushing high 

transfer rate but continuously reduces this transfer rate on detecting errors from time to 

time. Observing the behavior of TCP reveals alot about behaviors of different variants of 

TCP on IP and MPLS network.  It produced charts that plot throughput, congestion 

window, average end-to-end delay, variance of delay, sent / received data, sequence 

number analysis and packet lost etc. 

This chapter will recapitulate the key results obtained while simulating the 

protocols and it will also show whether it has resolved the research problem rose in the 

beginning of the thesis.  The future work is also mentioned briefly, and will conclude the 

report. 

 

5.1.1 Summary of Results 
This project studies the behavior and performance of TCP when applied over 

wired IP and MPLS network by surveying the TCP versions based on End-to-End 

scheme which have been designed for best-effort traffic. A variety of results are 

achieved from the simulation analysis using performance parameters when TCP 

versions were applied over the IP and MPLS network. 

A number of variants of TCP exist, that are classically well-known for their 

particular congestion control and packet loss recovery methods integrated into the 

protocol. The research sticks to the simulation results as evidence that TCP variants 

have minor effect on the overall results except in few cases. Simulation observation 

based on TCP Reno, New Reno, Sack, Tahoe and Vegas clearly describes about the 

performance evaluation through measuring throughput, delay and congestion window 

for FTP and CBR.   
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Thus, TCP Vegas showed superior performance and improved throughput 

over the other variants. As the Vegas being delay based protocol, when it observes 

RTT increases, it assumes that it is due to network congestion and decreases the 

sending rate. In particular, the throughput performance of TCP Vegas over a lossless 

wired network exhibits a 40-50 % improvement over Reno, New Reno, Tahoe and 

Sack implementations. Simulation was run for different number of flows: single to 

two, four and eight flows for both FTP and CBR traffics. The performance of all the 

variants gradually decreases with increase in the number of competitive flows. 

In scenario of FTP the Vegas even did not lose a single packet till eight flows 

because of its better congestion avoidance strategy. And also gave highest throughput 

throughout the experimentation. Vegas utilized the bandwidth more efficiently than 

other flavors of TCP. 

Also 1 to 5% error rate was induced to carefully observe the congestion 

window size, throughput and delay of all above mentioned variants. When random 

packet loss was introduced, throughput of all variants remained same i.e. 98, 97, 96, 

95 and 94 percent for 1, 2, 3, 4 and 5 percent error rate respectively. Vegas gave 

lowest end-to-end delay till 3% error rate but dramatically TCP Sack gave delay even 

lower than Vegas for 4 and 5 % error rate. Vegas had largest average congestion 

window size and Tahoe had smallest average congestion window, this shows Tahoe’s 

inferiority to Vegas. 

Another important finding about this IP and MPLS network which have 

nominal IP neighboring, is that Vegas can be a very good and reliable choice to be 

used in real-time data transmission because of its stable jitter free end-to-end delay 

behavior. 

5.2  Future Work  
This portion now discusses several directions for future work, both in addressing 

the limitations of this work and in exploring new possibilities. In future we hope to 

increase the application scale by running the network with particular attention on real-

time applications (VOIP and Streaming multimedia). This simulation did not conduct any 

real world testing. Although the major goal is not to have an applicability study in this 

work, it is crucial to check in a real word system. 
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In addition, it did not pay attention to the multicast, wireless, or anything like that 

kind of network environment. This test has focused on a fixed network environment. 

Once it is proved whether IP and MPLS work fine in a real world, it is encouraged to 

move on to one of those areas. This work has focused on MPLS-based technologies. An 

in-depth analysis of current and future optical network technology (GMPLS) may be the 

future area of work. 

Finally, we assumed that the packet size is fixed. There can be another chance to look 

into more detail for a variable packet size. Similarly, other network parameters can be 

altered to examine behavior of the variants, for example number of IP and MPLS nodes, 

bandwidth, delay and error rate. Also, selection of other variants of TCP protocols 

(especially New Vegas) can be useful for the performance evaluation or other parameters 

of performance could be considered for simulation. 

Simulation is done in NS-2, another possibility is doing the same work through another 

tool like OPNET.  
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