Improving Social Network Analysis to Enhance the Identification of Influential Nodes

By

Sadia Majeed Fall 2015-MS-15 (CSE) 00000118433

Supervisor

Dr. Muhammad Usman Qamar

DEPARTMENT OF COMPUTER ENGINEERING COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY ISLAMABAD August, 2019

Improving Social Network Analysis to Enhance the Identification of Influential Nodes

By

Sadia Majeed Fall 2015-MS-15 (CSE) 00000 118433

A thesis submitted in partial fulfillment of the requirements for the degree of MS Computer Software Engineering

> Thesis Supervisor: Dr. Muhammad Usman Qamar

Thesis Supervisor's Signature: ______

DEPARTMENT OF COMPUTER ENGINEERING COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY, ISLAMABAD August, 2019

Declaration

I hereby certify that I have developed this thesis titled as "*Improving social network analysis to enhance the identification of influential nodes*" entirely on the basis of my personal efforts under the sincere guidance of my supervisor Dr. Muhammad Usman Qamar. All of the sources used in this thesis have been cited and contents of this thesis have not been plagiarized. No portion of the work presented in this thesis has been submitted in support of any application for any other degree of qualification to this or any other university or institute of learning.

Signature of Student Sadia Majeed Fall 2015-MS-15 (CSE) 00000118433

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also according to the format given by the university.

Signature of Student Sadia Majeed Fall 2015-MS-15 (CSE) 00000118433

> Signature of Supervisor Dr. Muhammad Usman Qamar

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is attached.

Signature of Student Sadia Majeed Fall 2015-MS-15 (CSE) 00000118433

> Signature of Supervisor Dr. Muhammad Usman Qamar

Copyright Statement

- Copyright in text of this thesis rests with the student author. Copies (by any process) either in full, or of extracts, may be made only in accordance with instructions given by the author and lodged in the Library of NUST College of Electrical & Mechanical Engineering (CEME). Details may be obtained by the Librarian. This page must form part of any such copies made. Further copies (by any process) may not be made without the permission (in writing) of the author.
- The ownership of any intellectual property rights which may be described in this thesis is vested in NUST College of Electrical & Mechanical Engineering (CEME), subject to any prior agreement to the contrary, and may not be made available for use by third parties without the written permission of the CEME, which will prescribe the terms and conditions of any such agreement.
- Further information on the conditions under which disclosures and exploitation may take place is available from the Library of NUST College of Electrical & Mechanical Engineering, Islamabad.

Acknowledgements

I thank Almighty Allah (SWT) my Creator Allah for his ultimate guidance throughout my research. Nothing would have been possible without his profound blessing. For all praise is due to God, the Sustainer of all the worlds. Also, my admirations be upon Prophet Muhammad (PBUH) and his Holy Household for being source of guidance for people.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor **Dr. Muhammad Usman Qamar** for his help throughout my thesis and also for Data Engineering course which he has taught me. I can safely say that I haven't learned any other engineering subject in such depth than the ones which he has taught. Without his kind advice, encouragement, guidance and support, it was impossible for me to carry out this task.

I would also like to express my gratitude to my very kind co- supervisor **Dr. Farhan Khan**, for all he has done for me to complete this work.

I would also like to thank **Dr. Wasi Haider Butt** and **Dr. Muhammad Abbas** for being on my thesis guidance and evaluation committee.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable assistance to my study.

Dedicated to my parents whose tremendous support and cooperation led me to this wonderful accomplishment.

Abstract

In online social networks, social influence plays a vital role. Information in social networks propagates virally, as a consequence of this social networks are used to spread influence for multiple reasons including viral marketing, behavioral adoption, and opinion propagation. Numerous researchers are taking action to tackle this social influence study, including initial spreader detection, influence maximization, and influencer rankings, but there are numerous areas which are still quiet challenging. Detecting the influential nodes that occupy significant positions in social networks is a substantial problem as it relates to the effective distribution of information and has wide applications. Traditional ranking algorithms generally target only one out of global, local or community features. Global centrality is mostly measured in terms of betweenness centrality, which is deceptive as it assigns equal value to nodes of high degree scores which are central to local community and global bridges which connect different communities. Moreover, local centrality is usually measured by traditional degree centrality algorithm, which only considers the number of the nearest neighbors. We have used local centrality algorithm which take into consideration the number of the nearest and the next nearest neighbors of node. The thesis proposes a novel ranking framework in which we have taken into account both global and local features to measure influence. Global diversity is measured in terms of proposed bridge centrality method and local centrality is measured using local centrality method. The proposed approach is applied and tested on four different datasets. The thesis used a cross validation technique to measure the accuracy of proposed method. The hybrid classifier achieves 99% accuracy which is up to the mark. The overall aim of our research is to improve social network analysis to enhance the identification of influential nodes/ key players. The experimental results demonstrate that the proposed technique can rank influential nodes efficiently and accurately on social networks.

Key Words: Social Network Analysis (SNA); Data Mining ; Social influence spreaders; Online Social Network (OSN) ; Centrality Measures ; Performance ; Social influence analysis

Table of Contents

Declarati	on	iii
Language	e Correctness Certificate	iv
Plagiaris	n Certificate (Turnitin Report)	v
Copyrigh	t Statement	vi
Acknowl	edgements	vii
Abstract		ix
Table of	Contents	X
List of Fi	gures	xiii
List of Ta	bles	xiv
СНАРТЕ	R 1: INTRODUCTION	1
1.1	Overview	1
1.2	Background and Motivation	1
1.3	Problem Statement	
1.4	Thesis Contribution	
1.5	Thesis Outline	
СНАРТЕ	R 2: LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Background	5
2.2.1	Social Networks	5
2.2.2	Single-layer Social Network	5
2.2.3	Multi-layer Social Network	6
2.2.4	Social Network Analysis(SIA)	7
2.2.5	Social Network Metrics Measures	7
2.2.6	Visualization	
2.3	Selection and Rejection Criteria	
2.4	"Maintaining Quality Assessment"	
2.5	"Data Synthesis and Data Extraction	
2.6	Results	
2.6.1	Quantitative analysis of SIA approach	
2.6.2	Comparative Quantitative analysis	
2.6.3	Qualitative analysis of SIA approach followed	
2.6.4	Qualitative analysis About Complexity Level, Accuracy of SIA Approaches:"	
2.6.5	Qualitative analysis about dataset and Meta data:	
2.6.6	Qualitative analysis about achievements and limitations of SIA approach:"	
2.7	Discussion	
СНАРТЕ	R 3: RESEARCH METHODOLGY	

•••••		26
3.1	Proposed Bridge Centrality Algorithm	27
3.2	Local Centrality Algorithm	29
3.3	Influential nodes or key-players identification	29
СНАРТЕ	R 4: IMPLEMENTATION OF PROPOSED FRAMEWORK	30
3.1	Tool used	30
3.2	Datasets	30
3.2.1	Data Pre-processing	31
3.2.2	Anomalies Removal	31
3.2.3	Merging Duplicates	32
3.3	Noordin Terrorist Network Dataset (CASE - I)	32
Datas	set Collection	32
3.3.1	Centrality Measures	33
3.3.2	Key Player Identification	33
3.3.3	Visualization	34
3.4	Huawei Online Business Dataset (CASE - II)	36
Datas	set Collection	36
3.4.1	Centrality Measures	36
3.4.2	Key Player Identification	37
3.4.3	Visualization	38
3.5	Air Traffic Control Dataset (CASE - III)	40
3.5.1	Centrality Measures	41
3.5.2	Key Player Identification	41
3.5.3	Visualization	42
3.6	Soc_Firm_Hi_Tech Dataset (CASE - IV)	43
3.6.1	Centrality Measures	43
3.6.2	Key Player Identification	43
3.6.3	Visualization	44
СНАРТЕ	R 5: RESULTS AND DISCUSSION	45
5.1	Feature Selection	45
5.2	Classification and Prediction	45
5.2.1	Rapid Miner	45
5.2.2	Rapid Minor Process	46
5.2.3	Classifiers	46
5.2.4	Cross Validation	47
5.2.5	Voting	47
5.2.6	Performance Evaluation Model using Cross Validation	47
5.3	Key Player Evaluation	48
5.3.1	Classification	48

5.3.2	Comparison	. 50
CHAPTER	6: CONCLUSION AND FUTURE WORK	. 57
APPENDIX	-	. 64
Performar	nce Evaluation:	. 64

List of Figures

Figure 1: Single Layered Network	6
Figure 2: Multi-Layered Network	6
Figure 3: Comparison between Betweenness Centrality, Closeness Centrality and Degree Centrality	
Figure 4: Visualization of the Large-Scale Network	11
Figure 5: Overview of Research	12
Figure 6: Our Proposed Framework to Measure Influence	
Figure 7: The Figure shows (a) Betweeness Centrality and (b) Bridge Centrality for synthetic simple	graph.27
Figure 8: Data Pre-processing	
Figure 9: Noordin Top Terrorist Network (Case I) Visualization (Without Names)	
Figure 10: Noordin Top Terrorist Network (Case I) Visualization (With Names)	
Figure 12: Huawei (Case II) Visualization (With Names)	
Figure 13: Global International Bridge Airports Visualization in Air Traffic Control	
Figure 14: Air Traffic Control (Case III) Visualization	
Figure 15: Soc_Firm_Hi_Tech (Case IV) Visualization	
Figure 16: Hybrid Classifier Performance Evaluation Model using Cross Validation	47

List of Tables

Table 1: Quality Assessment Checklist	
Table 2: Data Extraction & Data Synthesis Details	
Table 3: No of Researches from their Corresponding Libraries	14
Table 4: No of Researches from their Corresponding Categories	
Table 5: Quantitative Analysis of Diffusion Model Used	
Table 6: Qualitative Analysis of SIA Approaches Characteristics	17
Table 7: Qualitative Analysis about Complexity, Accuracy and Comparative Technique off SIA App	oroach
Usage	
Table 8: Qualitative Analysis about Data Set and Its Meta Data Approach	
Table 9: Achievements and Limitations of SIA Approach	
Table 10: Centrality Analysis for Synthetic Simple Graph	
Table 11: Network Specifications	
Table 12: Metrics Values of Influential Nodes (Case I)	
Table 13: Key Player Identified in Case I	
Table 14: Metrics Values of Influential Nodes (Case II)	
Table 15: Key Player Identified in Case II	
Table 16: Metrics Values of Influential Nodes (Case III)	
Table 17: Key Player Identified in Case III	
Table 18: Metrics Values of Influential Nodes (Case IV)	
Table 19: Key Player Identified in Case IV	
Table 20: Selected Features Set	
Table 21: Statistical Performance Evaluation of Proposed Framework for key Player detection	
Table 22: Comparison of Hybrid Classifier with Existing classifiers	
Table 23: Comparison of Classifiers (CASE I)	
Table 24: Comparison of Classifiers (CASE II)	
Table 25: Comparison of Classifiers (CASE III)	53
Table 26: Comparison of Classifiers (CASE IV)	

CHAPTER 1: INTRODUCTION

In this chapter detailed introduction of research is presented. Section 1.1 shows the overview. Section 1.2 discusses the background and motivation for research work. Section 1.3 describes problem statement whereas Section 1.4 and Section 1.5 contain thesis contribution and thesis organizations.

1.1 Overview

Now days billions of users are using social networks as part of their routine. Social Influence is the behavioral change of a person due to the perceived relationship with other individuals. Ideas and information propagate through interactions between individuals on social networks. Influencers are renowned for playing an important role in many domains. In the marketing domain, the detection of influencers can be used to harness their viral power for spreading campaign relevant messages, maximizing the campaign's overall reach. Moreover, business organizations can use influencers to promote their product and services [11] [12]. There is wide research in this field.

1.2 Background and Motivation

Social influence plays a key role in online social networks. Information in social networks disseminate virally, due to this social networks are being used to spread influence for various purposes including behavior adoption, viral marketing, and opinion propagation. This has attracted many researchers to explore detection of influencer users on social networks as this can affect people decision making abilities. Ideas and information propagate through the interactions between individuals on social networks. An influencer is a person with the ability to persuade people, affecting their actions and behavior. Influence is defined as 'Change in an individual thoughts, feelings, attitudes, or behaviors that results from interaction with another individual or a group '[29]. Webster also interpret influence as 'the act or power of producing an effect without apparent exertion of force or direct exercise of command [30]. Influencer's are recognized for playing an important role in many domains. [53]

In the marketing domain, detection of influencer can be used to harness their viral power for spreading campaign relevant messages, maximizing the campaign's overall reach. In socialnetworking services, such as the most popular professional networking service, LinkedIn utilize influencer users for attracting the attention of regular users to promote contents and services. A motivating application is the viral marketing, opinion propagation and behavior adoption. Other real-world applications include recommendations systems and expert search engines. Moreover, business organizations can use influencer to promote their product and services. In this area many approaches are being adopted to measure influence in social networks. Researchers have looked upon this problem from two perspectives. The first group addresses the influence maximization problem which is defined as finding minimum number of users that can maximize diffusion of influence across social network. It is an observation based non deterministic technique usually represented as influence maximization [21] [27] [31]. The second group focuses on predictionbased technique to predict influencer users on social networks [25]. Some prediction-based measures take into account network topology to calculate centrality [20] - [27]. While other considered structure, as well as content to be spread, can be represented as topology and topicbased approach [28]. Similarly, some focus on content only usually represented as topic-based approach [27] [53].

In Pakistan, marketing on social networks is not taken seriously. If this medium is explored intelligently then the social network medium has a potential to provide many new ways to market the audience with the help of influencers. Our research will be introducing a novel approach for the identification of most influential individuals within a social network. Although massive research efforts are being made to measure influence epidemic in social networks however there are several areas which are still challenging. [53]

The main motivation of the thesis is to improve the business and marketing strategies of the small-scale businesses, monitoring terrorist groups and their suspicious activities in social networks, identifying central nodes for information flow in social networks and identifying local domestic centers and the global international bridge airports [50] [51][53]. The purpose of this research is to find out the influential nodes or the key-players in different networks.

Application domains such as social networks produce large amounts of graph data. Therefore, the management and processing of graph data is gaining importance. These days we widely use tables and graphs to describe data and turn data into knowledge. In fact, a graphical illustration may be more revealing than data in tabular form, and it allows viewers to discover insight in the data without intensive study. A doctor patient health care network [49] performs its visualization and analysis using a relational database. Although a relational database offers numerous advantages such as transactions, reliable storage and access control but graph analysis is still considered challenging. Our motivation is to bridge this gap by performing social network analysis in SQL Server.

1.3 Problem Statement

Information epidemic via social network is being used virally to spread influence, which is a complex task and needs more robust and efficient techniques. The aim of this research is to improve the identification of influential nodes in a social network by exploiting network topology.

1.4 Thesis Contribution

Our focus is to research on the problem of identifying key-players in social networks. This research will be introducing a novel approach for the identification of most influential individuals within a social network which is the central challenge for the social influence analysis.

We have proposed a two-step framework to identifying influential spreaders. The epidemic spreaders should satisfy two network topology conditions: high local centrality and high global diversity. Global diversity is calculated by proposed bridge centrality algorithm and local features are considered to measure local centrality. Our proposed approach fulfills both conditions to compute final influence. Hence this technique identifies influential nodes efficiently and accurately.

1.5 Thesis Outline

The report is structured as follows:

- Chapter 2 discusses about basics of Social Network Analysis, Layers of Social Networks, Social Network Metrics Measures, Detailed Literature Review, SNA approaches, their characteristics, and limitations.
- Chapter 3 includes the implementation of proposed approach for key-player detection using bridge centrality and local centrality algorithm.

- Chapter 4 contains results and discussion of the research, accuracy evaluation, Classification and Prediction.
- Chapter 5 includes the Future work and Conclusion.

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

The objective of this literature review is to emphasize social influence analysis (SIA) approaches, their characteristics, and limits in the past five years. Chapter 2 uses material from reference [53], in which I have published systematic literature review (SLR) on social influence analysis. Figure.3 provides a summary of research.

2.2 Background

2.2.1 Social Networks

Social Networks are one of the key ingredients of our daily life. Social media provides the platform where people around the globe interact with each other, several people join to form the groups and several groups together crafts the network.

These nodes in social network can co-exist as an individual's (persons) or organization. And the relationship among them are represented by the edges. The social network can be undirected or directed, either unweighted or weighted.

These terms with respect to the graph theory are explained later. All the graph theory concepts are valid and can be applied on the social network. Examples of social network include Facebook, LinkedIn, Instagram, GitHub, Email etc.

2.2.2 Single-layer Social Network

The social network that comprises only one layer is called single-layer social network. In social networks, accounts of the individuals are present rather than themselves. In single layer social network, the nodes or users are existed once in the whole network. A single node or single users have only one account in one network.

If a person with more than one account appears. All his accounts are merged or only the one is selected, and all the rest are ignored.

The Figure.1 depicts the single layer social network containing multiple communities/ modules. The vertexes denote the nodes or actors and the edges and arcs denote the relations between nodes.

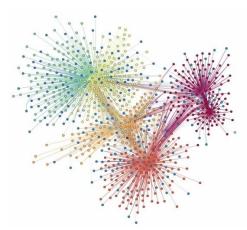


Figure 1: Single Layered Network

2.2.3 Multi-layer Social Network

The multi-layered social network is defined by the many names e.g. Multi-relational, Multi-dimensional term, multi- slice, multilevel and multi-type networks. Although the Multilayered network is most commonly used. In social networks, accounts of the individuals are present rather than themselves. In multilayer social network the user (Node) can exist in more than one layer of the social network e.g. one user can exist on Facebook, the very same user can also have an account on Instagram, twitter and many more. The Connection of the user in the same layer is called interlayer edges or relations and the edges or the connection on other layers are called intra layer edges or relations. The most significant part of this analysis is to map the nodes of two different layer in multilayer network. The Figure 2.2 shows the graphical representation of the multilayer social network.

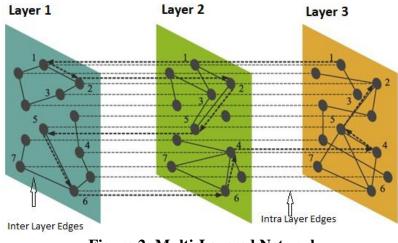


Figure 2: Multi-Layered Network

2.2.4 Social Network Analysis (SIA)

The common output of SIA is measuring the node's centrality and graphical visualization, which helps us to understand the extent and nature of connections between different nodes of the network.

The field of SIA is very vast and different scientists have explained the Social Network Analysis in different terms [34]. Likewise, according to Freeman, the techniques and procedures to uncover the hidden patterns of person interactions [35].

Usually, if we have to determine the most important and influential person from the company, we will be considering the persons and the managers that are sitting on the top of the company or the persons that are higher in the hierarchy.

Top managers are considered as the most influential as they are the decision makers. But that may not be true. The Social Network Analysis provides the right information regarding the importance. No matter where the person lies the importance of anyone is calculated how quickly the information will be spread via him/her or how accurately the information will be delivered.

2.2.4.1 Key-players

The most central area of the SIA is to identify the key-players which can help in epidemic. The exact definition of the key-player is dependent on the type of social network analysis. The simple and abstract definition of key-players is those nodes and individuals, which are more important/ influential in the network than the other. The importance of the key-player solely depends upon the type of analysis and the network.

2.2.5 Social Network Metrics Measures

2.2.5.1 Degree

The Degree identifies the connectedness of the nods in the graph by analyzing the direct contacts of the node with the rest of the network [36].

As mentioned earlier, Degree is the measure of the direct nodes or links of the selected node. The Degree Centrality is directly proportional to the connectivity. The equation for the calculation of the degree centrality is:

$$\boldsymbol{D}\boldsymbol{v} = \sigma i \boldsymbol{v}_{i=1}^{n} \tag{2.1}$$

Whereas, " σv " is the Degree Centrality (DC) measure of node v.

2.2.5.2 Closeness Centrality

The one drawback of the degree centrality is that, it only takes the direct attached nodes and links into the account.

While Closeness Centrality (CC) measures the shortest path of the selected node and the rest of the nodes in the network. [37] [38]

$$Cx = \frac{1}{y^{d(y,x)}} \tag{2.2}$$

Where d(y,x) is a measure of distance between the x and y. Closeness Centrality (CC) can also be defined as a time taken to disperse the information from one node to whole network.

2.2.5.3 Betweenness Centrality

Two nodes in the social network that are not directly linked does not means they do not interfere.

Nodes that are not adjacent might interact to each other through other nodes in the network, especially through the nodes that lies on the paths between the two. The nodes Betweenness Centrality is said to be high if it is present between many other nodes. Betweenness Centrality can be represented as:

$$CBv = \frac{\sigma \operatorname{st}(v)}{\sigma_{\operatorname{st}}}$$
(2.3)
$$s \neq v \neq t \in V$$

Where " σ st" is the total number of "shortest paths" from a node s to a node t and " σ st(v)" represents the number of paths that passes through v.

Now let us consider the network in Figure 3. Node A has higher Degree centrality. Node B has higher closeness centrality and Node C has higher Betweeness centrality.

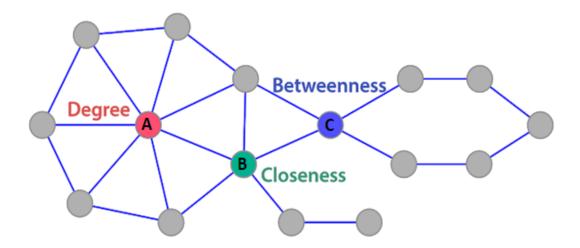


Figure 3: Comparison between Betweenness Centrality, Closeness Centrality and Degree Centrality measures

2.2.5.4 Eigenvector Centrality

Eigenvector Centrality is the measuring importance of a respective nodes in a social network significance depending on its links. [42] [43]

Vertex "v" whose Eigenvector Centrality is given as [39] [40]:

$$ECv = v_x = \frac{1}{\lambda_{\max}(A)} \sum_{j=1}^n a_{jx} v_j$$
(2.4)

Whereas v = (v1, 2) T refers an eigenvector for the max eigenvalue $\lambda_{\max(A)}$ of the adjacent matrix A.

2.2.5.5 Clustering Coefficient

Clustering Coefficient measures the likeliness of the nodes that are interrelated. The average local clustering coefficients for all vertices can be calculated [41].

$$C = \frac{1}{n} \frac{n}{i=1} C_i \tag{2.5}$$

2.2.5.6 Page Rank

Lary and Brin were the first to introduce the Page rank algorithm which are displayed from zero to ten.

Page rank is calculated with the help of the web network, where a links are treated as edges and nodes are the webpages themselves [44].

2.2.5.7 Eccentricity

The longest route from a node to the rest of the nodes in the network is called the Eccentricity of that node [45]. According to Eccentricity measure the nodes with higher Eccentricity are less central in the network.

Ec (v) =
$$\frac{1}{\max\{dist (v, w) : w \in V\}}$$
 (2.6)

2.2.5.8 No. of triangles

Holland [46] demonstrated a new method that the organization of social networks can also be represented by the amount of triangles. This calculation is important in determining many friends of node are friends of each other also.

2.2.6 Visualization

By Visualization we mean the social networks can be drawn manually or with the help of the available SNA tools. There are various ways to denote the social network the most common ones among them are Adjacency Matrix, Edges List and many more. Different tools require different types of the input's formats. E.g. The Gephi and Node XL requires the Adjacency Matrix in excel formats or CSV files, on the other hand MuxViz requires the edges list format for the visualization and analysis.

A network can consist of more than millions of node and various layers. The network with more than one layer is called multilayer social networks. Visual of these networks are very difficult and almost impossible to evaluate the relationships of the nodes.

For these types of the networks the different software are available to evaluate the network. Gephi is one of the software to evaluate the large-scale network. The Figure 4 shows the visualization of the large-scale network visualization provided by the Gephi Visualization Software.

Figure 4: Visualization of the Large-Scale Network

2.3 Selection and Rejection Criteria

- Subject Relevant and Latest Papers with Crucial Effects: Choose the results which are
 related to SIA perspective and must be supporting answers to our research questions. The
 selected research study should be published from the year 2014 to 2018 and have essential
 effects that are positive concerning SIA.
- **Publishers:** The research work that has been selected must be available in one of the five famous scientific databases.
- Result Oriented without Repetition: The results that are chosen should be related to our research area. The proposal and results of the research paper must be supported by experimentation. The entire studies in a particular research perspective should not be included. [53]

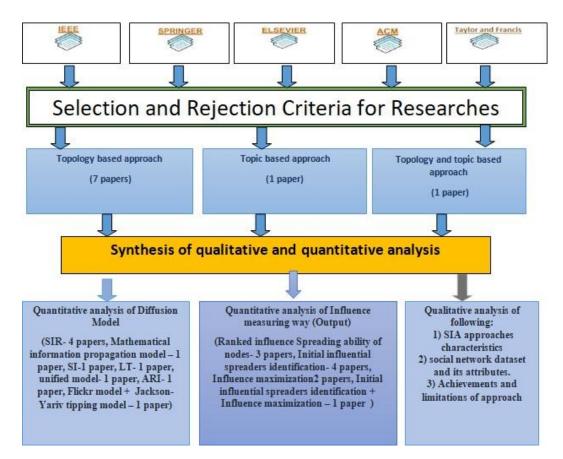


Figure 5: Overview of Research

2.4 Maintaining Quality Assessment

A quality criterion was developed that consists of quality assessment questions as described in the following TABLE 1 We have then provided 'yes 'and 'no 'answers to the quality assessment questions. [53]

Sr. No	Quality Assessment Checklist	
1	Is the data assessment showing facts that are concrete without any vague statements?	Yes/No
2	Have proper validation methods been used in this research and evaluation focus on its stated aims and purpose?	Yes/No

Table 1: Qual	ty Assessment	Checklist
---------------	---------------	-----------

	Is the study based on researches published in	
3	any of the five globally accepted scientific databases, and	Yes/No
	is conducted from the year 2014 to 2018?	

2.5 Data Synthesis and Data Extraction

The data synthesis and extraction as shown in TABLE 2 is performed for specific researches for answering research questions. Data extraction is done on our specific researches by extracting a significant amount of data from them according to our inclusion/exclusion criteria. Whiles data synthesis is done by the detail study and analysis of our selected researches for proper identification of SIA approaches. TABLE 3 shows the research paper repositories names and their reference number. [53]

Sr. No	Description	Details			
	-				
1	Bibliographic Information	Author, title, details of publisher, details of			
		publishing year, research type			
	Exti	raction of data			
2	Overview	The basic objective of our selected research and			
		what it is about			
3	Results	Results taken from the selected research			
4	Data collection	Qualitative or Quantitative methods used			
5	Assumptions	Assumptions that were made to authenticate the			
		results used			
6	Validation	Method of validation used to authenticate its			
		proposal			
	Synthesis of data				
7	Classification	Relevance to one of the predefined categories			
		relevant to targeted social influence categories			

 Table 2: Data Extraction & Data Synthesis Details

	Quantitative Analysis of	Statistical data about diffusion model used and			
8	SIA approaches	influence measuring way; influence maximization			
		initial spreaders identification, ranking influencers			
		Subjective information about specific			
	Qualitative Analysis of	characteristics including testing complexity,			
9	SIA approaches	accuracy, limitations, achievements, dataset,			
		comparative classical measures of SIA approach, as			
		well as technique performance [53]			

Table 2. No	of Docoo	nahaa fran	a thain	Componen	ding	I ihnomiaa
Table 3: No	or resea	renes from	i then	Correspon	iaing .	Libraries

Sr. No	Scientific	Туре	Selected	No of Researches
	Database		Research	
			Method	
1	IEEE	Journal	[1]	0
		Conference		1
2	SPRINGER	Journal	[2], [3]	2
		Conference		0
3	ELSIVER	Journal	[4]–[8]	5
		Conference		0
4	ACM	Journal	[9]	0
		Conference		1
5	Taylor	Journal		0
	Francis	Conference		0

2.6 Results

We performed a detailed analysis of each research in order to assign them to the corresponding category. Classification results for selected researches for targeted SIA approaches are given in TABLE 4. [53]

2.6.1 Quantitative analysis of SIA approach

The following section represents results based on quantitative analysis of SIA approaches. Statistical results of SIA approaches are applied to diffusion models. We have analyzed diffusion model used by SIA approaches in TABLE 5. Mostly Susceptible Infected Recovered (SIR) model is used by SIA approaches. [53]

Sr. No	Social influence Categories	Relevant Research
1	Topology based approach	[1]–[7]
2	Topology and topic-based approach	[9]
3	Topic based approach	[8]

Table 4: No of Researches from their Corresponding Categories

2.6.2 Comparative Quantitative analysis

This section describes the qualitative analysis that is subjective information about specific characteristics including limitations, the complexity of time and space, dataset and its attributes, positive and negative aspects of SIA approaches. [53]

Sr. no	Diffusion Model	Relevant Research
1	Mathematical information propagation model	[4]
2	Susceptible Infected Recovered (SIR)	[5]–[8]
3	Susceptible-Infected (SI)	[1]
4	linear threshold (LT) influence propagation model	[3]
5	unified model	[2]
6	Flickr model + Jackson-Yariv tipping model	[2]

Table 5: Ouantitative Analysis of Diffusion Model Used

During the comparison of this SLR with existing surveys, we found out that literature review on this subject is scant. Kan Li et al. [16] recently published a review paper in which his focus was on microscopic and macroscopic models to study influence minimization, influence maximization and flow of influence along with influence evaluation metrics. Jimeng Sun et al. [14] in his review on SIA discussed the basic algorithms used for centrality measures such as betweenness, centrality and closeness, social influence models, influence maximization and its applications. Whereas our study has provided a comparative review of research discussing topology based, topic-based, topology and topic-based approach for influence measurement. These approaches measure influence in form of initial spreaders identification, influence maximization and ranking spreading ability of nodes using various techniques. Furthermore, it reveals which diffusion models are preferred by which type of approach. Qualitative analysis of computation complexity, accuracy, comparative technique, net- work (real/synthetic), dataset and its attributes, achievements, limitations and future directions are also explored. [53]

2.6.3 Qualitative analysis of SIA approach followed

Here is a brief description of techniques discussed in selected 9 research papers. TABLE 6 highlighted techniques, methods and models used by researchers in SIA. Moreover, strengths, limitations and future directions of research articles are depicted in TABLE 9.

Sheng Wen et al. [4] computed epidemic betweenness firstly based on presenting the propagation dynamics and then by computing the influence of each node reversely. This algorithm is suitable when information is sent from one node to multiple neighboring nodes through multi-paths to all reachable nodes. Furthermore, Jun Zhao [1] proposed communitybased distributed algorithm to identify initial spreaders from both overlapping communities and non-overlapping communities. Gennaro Cordasco [3] presented a fast and simple Minimum target set algorithm which works by iteratively deprecating nodes from the input digraph until a specific condition occurs and the node is considered irrelevant, which results in the addition of that node to the output target set. It also takes into account the influence of depreciated node on the outgo- ing neighbors. Additionally, Ajitesh Srivastava [2] proposed greedy seed-set selection algorithm. It is a greedy solution to maximize influence based on a unified model. Jonathan Herzig [9] discussed author-Reader Influence (ARI) model in which author write attractive content which readers cite. Citation leads to further diffusion to other readers. Likewise, Chanhyun Kang [8] proposed Diffusion Centrality (DC) algorithm which finds top influencers nodes using semantic characteristics of the social network. HyperDC algorithm is used which computes top k vertices for the small social network while Coarsening Back and Forth (CBAF) algorithm is also presented to compute top k vertices having the highest diffusion centrality in the huge social network. Shuai Gaoet al. [6] considered both the number of nearest and then next nearest neighbors and the topological connections among neighbors.

Moreover Yu-Hsiang Fu [7] proposed two-step framework: combine global diversity and local features. Lei Guo et al. take statistical properties of the network in consideration. Firstly, all nodes whose distance between nodes is at least 'r' are colored. Secondly, nodes with the same color are classified into the same set considering that the distance between nodes in the same set is at least r. Thirdly the nodes at the topmost position of the ranking list with the maximum degree in the same set are chosen as multiple spreaders.

As shown in TABLE 9 different influence models are being used for the topicbased and topology-based approaches. Topology based approaches used mathematical information propagation model, SIR model, SI model, unified and LT model whereas topic-based approach used AIR model and Flickr model. The SIR model is appropriate when a node once recovered, it would receive lifetime immunity and is not appropriate if a node was infected but is not contagious. In LT model nodes are either active or inactive. Whereas in SI mod- els, nodes never leave the contagious state and have lifetime infections. The unified model provides an efficient method for influence maximization. Moreover, ARI model is used for the topic-based approach as the model is recognized by means of a topic-based citation graph, where nodes symbolize authors and edges represent reader-to-author citations. [53]

Ref		Technique	Diffusion models	Factors	Result
	r			considered	
[4]	Sheng Wen	epidemic	Mathematical	Topology based	influence
	et al.	betweenness	information	approach	spreading
	2017		propagation model	Ranked	ability of nodes
[6]	Shuai Gao et	Local structural	Susceptible	Topology based	Ranked
	al.	centrality	Infected	approach	influence
	2014	measure	Recovered (SIR)		spreading ability
					of nodes
[7]	Yu-Hsiang	k-shell and	Susceptible	Topology based	Ranked
	Fu et al.	degree centrality	Infected	approach	influence
	2015		Recovered (SIR)		spreading ability
					of nodes

 Table 6: Qualitative Analysis of SIA Approaches Characteristics

[5]	Lei Guo et	distance-based	Susceptible-	Topology based	Initial influential
	al. 2016	coloring	Infected-	approach	spreaders
		method	Recovered (SIR)		identification
[1]	Jun Zhao	community-based	Susceptible-	Topology based	Initial influential
	2016	distributed	Infected (SI)	approach	spreaders
		algorithm			identification
[3]	Gennaro	Minimum target	linear threshold	Topology based	Initial influential
	Cordasco	set	(LT)	approach	spreaders
	et al. 2016	algorithm	influence		identification
			propagation model		
	Ajitesh	online seed set	unified model	Topology based	Influence
[2]	Srivastava et	selection		approach	maximization
	al. 2015	using unified			
		model (OSSUM)			
[9]	Jonathan	Extension of	Author-Reader	Topology and	Initial influential
	Herzig et	Topic-Sensitive	Influence	topic-based	spreaders
	al. 2014	PageRank	(ARI) model	approach	identification
		algorithm			
	Chanhyun	Diffusion	Flickr model +	Topic based	Initial influential
[8]	Kang et al.	Centrality (DC)	Jackson-Yariv	approach	spreaders
	2016		tipping model +		identification +
			SIR model of		Influence
			disease spread		maximization

2.6.4 Qualitative analysis About Complexity Level, Accuracy of SIA Approaches:

Level of complexity depends mainly on time and space required to compute influence. If the complexity level is high, then SIA approach becomes difficult and unfeasible to use for largescale networks. Accuracy and performance are measured as compared to competitive techniques. Computational complexity is defined (low, high) as compared to comparative technique. Social networks which are selected as dataset can be real as well as synthetic (artificially created.)

As depicted in TABLE 7. Epidemic betweenness [4] centrality has low computational complexity and higher accuracy. Local structural centrality measure [6] has a computational complexity greater than DC and LC but less than KS, BC, CC and gives more accurate results. K-shell and degree centrality when used together to measure local and global influence [7] [53]

Related	Comparative	Computation	Social networks	Accuracy/
researches	technique	complexity	(Real/Synthetic)	Performance
[4]	Random walk, flow	Low: O (n 2 T)	Synthetic + Real	High Accuracy
	shortest path			
[6]	k-shell (KS),	Greater than DC	real networks	High Accuracy
	degree (DC),	and LC, Less than		
	closeness (CC),	KS, BC, CC		
	betweenness (BC)			
	and local centrality			
	(LC)			
[7]	Betweenness,	O ((k)2 +(k)). n)	Collaboration +	High Accuracy
	Degree, Coreness,		Social (Real)	
	Closeness k-core			
	and PageRank			
[5]	Betweenness,	Not defined	Synthetic + Real	Outperforms than
	Degree, Coreness,			traditional
	Closeness			IS algorithm
	Randomly selecting			Better Performance
[1]	the initial	Not defined	Real	than random
	spreaders from the			selection
	social network,			
	randomly selecting			
	the initial diffusers			
				1

Table 7: Qualitative Analysis about Complexity, Accuracy and Comparative Technique off
SIA Approach Usage

	from the community			
[3]	Greedy strategy, TIP_DECOMP	O(E log V) Compareable with latest algorithms for MTS problem	Real	Outperforms than competitors
[2]	Degree, Degree Discount, Single Discount, CELF++, LDAG, SPS- CELF++	O(R E t)	Real	Better performance than competitors
[9]	TwitterRank, PageRank, Indegree centrality	Not defined	Real	14 % improvement than TwitterRank, improved on PageRank by 19%
[8]	Classical centrality measures	Liner but nonlinear for worst case	Real + synthetic	Better than classical measures

provided more accurate results than its competitors. Distance-based coloring method [5] outperforms than traditional IS algorithm. Community-based distributed algorithm [1] has better performance than random selection. The minimum target set algorithm [3] has comparable computational complexity with the algorithms for MTS problem and it outperforms than competitors. Seed selection algorithm [2] has better performance. Furthermore, Extension of Topic-Sensitive PageRank algorithm [9] also shown improvement. Diffusion Centrality (DC) has better performance than traditional measures and has Liner computational complexity but it becomes nonlinear for the worst case. [53]

2.6.5 Qualitative analysis about dataset and Meta data:

Furthermore TABLE 8 shows qualitative analysis about dataset and its attributes [53]

Selected	Dataset		Attributes	
Reference	Social networks Social networks (real)			
	(Synthetic)			
[4]	Erdos-Renyi	Enron Email network, the	Edges (Relation/links/	
	(ER), scale-free	protein-protein interaction	Communication) and	
	network, small-	(PPI) network and the U.S.	vertices(nodes)	
	world network	Power Grid network		
[6]	Not defined	Email, PGP, Twitter, Blog	Edges (Relation/links/	
			Communication) and	
			vertices(nodes)	
		Ca-AstroPh, ca-CondMat,	Edges (Relation/links/	
[7]	Not defined	ca-GrQc, C-HepTh,	Communication) and	
		Jazz-Mucians, Email-	vertices(nodes)	
		contacts, Email-Enron, C		
		eleganNeural, Dolphins,		
		LesMis, NetScience,		
		PloBlogs		
			Edges (Relation/links/	
[5]	ER	Polblogs, Erdos and	Communication) and	
		Routers networks	vertices(nodes) In Erdos EI	
			network (Nodes:scientist),	
			Polblogs network(Nodes: owner of	
			blog,), and in Routers network(
			Nodes: Routers)	
[1]	Not defined	Renren social network	Edges (Relation/links/	
		(Kind of Chinese	Communication) and	
		Facebook)	vertices(nodes)	
	1			

 Table 8: Qualitative Analysis about Data Set and Its Meta Data Approach

[3]	Not defined	Amazon, BlogCatalog, Ca-	Edges (Relation/links/
		AstrpPh, Ca-HepTH,	Communication) and
		Facebook, PowerGrid	vertices(nodes)
[2]	Not defined	Ca-HepTH, : co-authorship	Edges (Relation/links/
		network	Communication) and
			vertices(nodes)
[9]	Not defined	Twitter	Edges (Relation/links/
			Communication) and
			vertices(nodes) Nodes: Authors /
			Readers Edges: citations (Re
			tweets/Mentions/Replies)
[8]	GAME, STEAM	BlogCatalog, Enron Email,	Edges (Relation/links/
	data	wiki-Vote	Communication) and
			vertices(nodes)

2.6.6 Qualitative analysis about achievements and limitations of SIA approach:

The section is about achievement, limitations and future recommendations of approaches. [53]

Selected	Achievements	Limitations/Future Recommendations
Reference		
	Since epidemic can start from any node	After careful analysis, it was found that
[4]	in the real network.	when most nodes were left with one
	This measure has an edge on other	neighbor, their influence was almost the
	measures that each node can be starting	same to each other, which results in
	node or an intermediary. Moreover, it is	variation of interaction percentage of
	rapid for large-scale networks with low	nodes. This percentage decreases first and
	computational complexity [53]	then increases. [53]
[6]	This method is also robust for large-	This work can be extended by
	scale networks with community	incorporating information relevant to

Table 9: Achievements and Limitations of SIA Approach

	structure and is more accurate than	community structure and structural
	traditional centrality measures. [53]	diversity. Furthermore, the structure of
		nodes with multi-hops from the target node
		can also be analyzed.
	An efficient approach to finding	Its limitation is dependent on the type of
[7]	spreaders with high global diversity in a	involved nodes. If maximum k shell
	large-scale network. This algorithm can	value for a network is lower in case of
	calculate global as well as local	smaller networks then global diversity
	influence [53]	cannot be calculated and influence
		measurement will be limited to local
		network layers. [53]
[5]	Performance of multiple spreaders is	Properties specifically sparsity (scattered)
	enhanced.	of the network can affect algorithm
		performance. In the future relationship of
		the optimal distance between multiple
		spreaders and network structure can be
		analyzed. [53]
[1]	Considers overlapping communities.	Only applicable on networks with
	Identifying initial spreaders in	community structure
	distributed manner. Applicable on large	
	networks	
[3]	Optimal solution. Support for directed	Performance correlates with network
	graphs provided [53]	modularity. In case of High modularity:
		influence is hard to spread and vice versa
[2]	Better seed selection. Can evaluate	This algorithm provides better seed
	different cases for large networks under	selection providing unified model is being
	different influence models. Consider	used [53]
	time and budget consumed during	
	diffusion	
L		

		ARI algorithm captures reader random
[9]	Considers both topology and topic	behavior whose goal is to select relevant
	relevance. Also, provide relatively good	author thus it does not differentiate
	results even with small sized profiles	between already known users or newly
	[53]	discovered authors. Considering this
		limitation, an algorithm can be developed
		which considers various aspects of the
		model while calculating authors influence
	This approach is highly efficient as it	This research opens up future directions to
[8]	studies scalability of network and uses	develop such models which can
	such approach for the large network	incorporate semantic aspects like mutual
	which results in lower runtime and	trust property, political factors, the voting
	better spread	trend in case of predicting election
		outcome which can be associated with
		edges and vertices

2.7 Discussion

In total, nine research studies have been covered in our literature review out of which seven articles of research are relevant to topology-based approach, topology and topic-based approach covered by just one research. One research targeted the topic-based approach. We also mentioned various characteristics of approaches practiced by practitioners including computation complexity, diffusion model used, comparative techniques, accuracy and performance which can be seen through TABLE 4, TABLE 5, TABLE 6 and TABLE 7. TABLE 8 reveals datasets used for social influence analysis. The dataset for different synthetic and real social networks are being used by SIA approaches. This table reveals which dataset is supported by specific technique and what dataset attributes are being considered. In this literature review, we also identified achievements and limitations of approaches practiced by researchers as given in the TABLE 9. This information facilitates researchers in classification and selection of approach over one another based on characteristics for specific purposes. [53]

CHAPTER 3: RESEARCH METHODOLGY

This chapter presents suggested methodology. Our aim is to develop and test an approach with higher accuracy to identify key-players in online social networks while exploiting network topology. This research will be introducing a novel approach for the identification of most influential individuals within a social network which is the central challenge for the social influence analysis.

In social network analysis centrality algorithms are classified as global and local measures. Local measure like degree centrality [36] only considers local features to measure influence and ignores global features. While algorithms like closeness centrality [37] [38] and betweenness centrality [33] consider global features only.

In this work we have considered topological structure to identify influencers. What distinguish us from traditional approaches is that this research considers global as well as local features while computing influence.

Traditional Betweenness centrality algorithm measures the node capability to connect different regions of network, which is deceptive as it assigns equal value to nodes of high degree score which are central to local community and global bridge which connects different communities. This distinction should be considered to find bridging nodes in the graph, which connect densely connected modules in a network.

Thus, we have measured local influence using local centrality algorithm [25] and for global influence measurement we have proposed an efficient bridge centrality algorithm which identify critical global bridging nodes in on-line social networks. Here Bridging centrality is used to indicate most critical nodes interrupting the information flow in the network.

Finally, we analyze local and global centrality to compute final centrality and rank nodes accordingly and consider top k nodes as influential nodes having high global centrality and local centrality. The proposed framework to measure influence is shown in Figure 6.

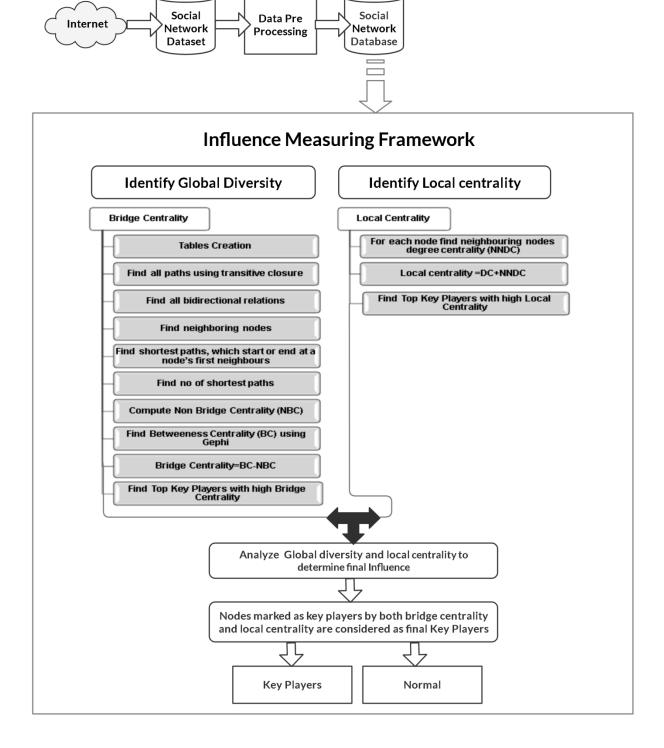
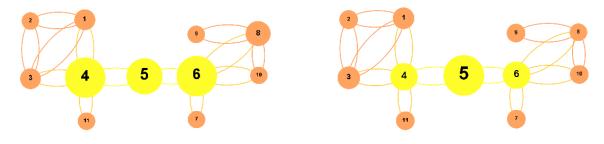


Figure 6: Our Proposed Framework to Measure Influence

3.1 Proposed Bridge Centrality Algorithm

The betweenness centrality (BC) [33] is the measure of centrality of node and is calculated as fraction of "shortest paths" (geodesic distance) which pass over the node of interest. BC has defect that it cannot distinguish between local central nodes (nodes which are central to its own community) and global central nodes (nodes that connect different communities) and thus attribute greater value to local centers than to global bridges as seen in figure 2. Whereas our proposed bridge centrality algorithm assigns higher scores to global node (a node connecting highly densely connected modules in a social network). For instance we want to highlight global nodes from local ones which are central to its own community, the simpler way is to discard betweenness centrality value for the node of interest, generated from the "shortest paths" which either start, or finish at a node's initial neighbors from the summation to calculate BC (Eq. 1.1)



(a) Betweeness Centrality
 (b) Bridge Centrality
 Figure 7: The Figure shows (a) Betweeness Centrality and (b) Bridge Centrality for synthetic simple graph.

Betweeness centrality does not distinguish Global nodes (Node 5 acting as bridge between communities) from local ones (Nodes 4 and 5 with high degree scores). Rather Bridge Centrality give higher centrality score to node 5 that plays role of global bridge. Node size shows its centrality score.

Label	Degree	Betweeness	Bridge	Betweeness	Bridge C	Bridge C
	Centrality	Centrality	Centrality	C Rank	Rank	Rank
5	2	25	16	2	1	1
4	4	27	3.5	1	2	2
6	4	27	3.5	1	2	2

Table 10:	Centrality	Analysis	for S	vnthetic	Simple	Graph
	Contra and		101 0	,		O tapin

The Table.10 depicts the centrality analysis for synthetic simple graph represented in Figure.7. It can be seen that node 4 and 6 have higher degree as well as betweeness centrality score, and are ranked as no 1 according to betweeness centrality, but according to bridge centrality

they are ranked as second influential node. However, Bridge centrality has ranked node 5 as higher centrality node, although it has less degree and betweeness centrality. Thus we can conclude that betweeness centrality attributes higher score to nodes of high degree centrality, whereas bridgeness clearly discriminates between the global bridge and local centers by assigning higher score to the global bridge. More generally, Figure.7 and Table 10 clearly shows, as for the synthetic network, that "bridgeness" provides a better ranking than betweeness centrality method. More officially in a graph "G = (V;E)" where V assigns the set of nodes and E assigns the set of links to the definition of a node j's betweeness centrality stand as:

$$BC(j) = \sum_{i \neq j \neq k} \frac{\sigma_{ik}(j)}{\sigma_{ik}} = \sum_{\substack{i \notin N_G(j) \text{ and } \\ k \notin N_G(j)}} \frac{\sigma_{ik}(j)}{\sigma_{ik}} + \sum_{\substack{i \in N_G(j) \text{ or } \\ k \in N_G(j)}} \frac{\sigma_{ik}(j)}{\sigma_{ik}}$$
(3.1)

where the summation runs over any distinctive node pairs i and k; σ_{ik} symbolizes the number of shortest paths between i and k; while $\sigma_{ik}(j)$ is the number of such shortest paths running through j. Decomposing Betweeness Centrality into two parts the initial term indicates actually the global term, bridgeness centrality, where we consider shortest paths between nodes not in the neighborhood of j (N_G(j)), whereas the next local term considers the shortest paths starting or ending in the neighbourhood of j. This definition also reveals that the bridgeness centrality value of a node j is always smaller or equal to the corresponding Betweeness Centrality value and they only vary by the local contribution of the first neighbours. Figure. 7 demonstrates the ability of bridgeness to highlight nodes that join different regions of a graph. Here the Betweeness Centrality (Fig. 7a) and bridgeness centrality values (Fig. 7b) calculated for nodes of the same network determine that bridgeness centrality allocates correctly the node , which is central globally, while Betweeness Centrality put forward a confusing image as it assigns greater centrality values to nodes with high degrees.

In our proposed bridge centrality measure we have calculated betweeness centrality (BC) score using Gephi tool and subtracted second term of equation 3.1 from BC to calculate bridge centrality value. The second term is calculated by following method using MS SQL.

 Step 1: Create table named "edges" with fields: Source node, target node, weight of edge connecting them and import dataset

- Step 2: Find all the paths between all nodes using transitive closure property and backtraceCTE recursive call
- Step 3: Find shortest paths which start or end in the neighborhood of node of interest. Calculate value which has to be subtracted from betweeness centrality to find bridge centrality

3.2 Local Centrality Algorithm

Local centrality (LC) is usually measured by traditional degree centrality algorithm, which only think through the number of the nearest neighbors". We have used local centrality algorithm which take into account the number of the nearby and the next nearest neighbors of node .

LC is calculated by following method using relational database.

- Calculate degree centrality using Gephi tool
- Calculate bidirectional edges of all links and add degree centrality of neighboring nodes for each node.
- Calculate final local centrality by adding neighboring nodes aggregated centrality and centrality of node of interest.

3.3 Influential nodes or key-players identification

 We have selected top k influential nodes from the network for both bridge centrality measure and local centrality measure separately after ranking them. To estimate how many key-players should be selected we use formula given in Eq 3.2 whereas k=10 in our case and N are total no of nodes. This gives estimated nodes to be selected as key-players for each dataset.

$$\mathbf{k} \left(\log(\mathbf{N}/\mathbf{k}) \right) \tag{3.2}$$

 Nodes which are marked as key-players by both bridge centrality as well as local centrality measure are considered as final Key-players or influential nodes, whereas others are marked as Normal ones.

In this way we can find the most influential users from social network which helps in influence dissemination. Thus, this methodology considers global diversity and local structure which is comparatively more efficient and accurate.

CHAPTER 4: IMPLEMENTATION OF PROPOSED FRAMEWORK

Our Proposed framework of global and local centrality measure is implemented for identification of the Key-players, and then classification methods are applied for evaluation of generated results. This process can be divided into 5 phases.

- 1. Social Network Selection (Dataset)
- 2. Pre-Processing of the Data
- Influential nodes identification using Global and Local Centrality measures. (For Global diversity Bridge Centrality Algorithm is used and for calculation of Local Influence Local Centrality Method is used.)
- 4. Visualization
- 5. Feature Selection, and Accuracy evaluation using Cross Validation and voting method (discussed in results and discussion section)

3.1 Tool used

Gephi which is an open source application is used for calculation of the betweeness and degree metrics.

MS SQL Server, is also used to calculate bridge centrality and local centrality.

3.2 Datasets

Serial No.	Network	Nodes	Edges (Directed)
Case I	Noordin Terrorist	79	400
	Network		
Case II	Online Huawei	1000	9865
	Social Network		
	(Instagram)		
Case III	Air Traffic Control	1226	2615
Case IV	Soc Firm Hi Tech	33	147

Table 11: Network Specifications

3.2.1 Data Pre-processing

Data pre-processing is essential part of the Social Media Network Analysis. Data sets are often noisy. Pre-processing of data has several steps some of them are removal of ambiguities and anomalies, either merge or remove the same nodes to remove data repetition. Pre-processing also includes the transformation of the data into desired format and saving the required file at desired location. [27].

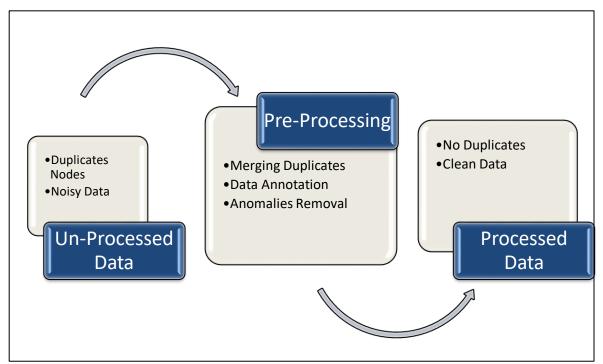


Figure 8: Data Pre-processing

3.2.2 Anomalies Removal

3.2.2.1 Missing Values

- Remove the valusses with the missing terms. Removal should not delete more than the 6% of the Data
- Fill the missing values. Either replace with frequent or average value
- Use the predicting algorithm to predict the missing values. Predicting algorithm include Decision Tree, Classification Model and Regression

3.2.2.2 Aggregation

The Purpose of the aggregation is to remove the irrelevant features and merge the same attributes. For example, date and time can be merged, similarly Month, day and year can be combined to create the single attribute.

Aggregation has several benefits including Reduction of the Data, Abstract view and data stability.

3.2.2.3 Irrelevant features

Irrelevant features, we mean sometime the data contain such information that is of no use in the analysis and visualization. Several attributes of an entity have information that is not useful in the analysis and prediction e.g. Students' ID is often irrelevant to the task of predicting student's grades

3.2.3 Merging Duplicates

If node with same id is repeated it is considered once to remove duplication by merging duplicate nodes.

3.3 Noordin Terrorist Network Dataset (CASE - I)

The Data of the Noordin Top Terrorist Network[24] includes data about associations of terrorist entities with terrorist / insurgent organisations, academic institutions, companies, and religious institutions.

It also labels which people are colleagues, relatives, friends, and co-religionists, and details which people offered logistical assistance or participated in training activities, terrorist activities, and conferences.

Dataset Collection

The "Noordin Top Terrorist Network" data was taken mainly from the International Crisis Group's "Terrorism in Indonesia: Noordin's Networks," which includes relational data on the 79 people mentioned in Appendix C of that publication .

3.3.1 Centrality Measures

Id	Label	Bridge	Semi Local	Role
		Centrality	Centrality	
59	Noordin Mohammed Top	1408.10199	624	Key-player
4	Abdullah Sunata	460.831298	224	Key-player
13	Ahmad Rofiq Ridho	339.991069	392	Key-player
23	Azhari Husin	257.420997	424	Key-player
45	Iwan Dharmawan	252.664116	316	Key-player
33	Hambali	107.649999	202	Key-player
60	Purnama Putra	138.028210	254	Key-player
73	Ubeid	79.6827643	236	Key-player

Table 12: Metrics Values of Influential Nodes (Case I)

3.3.2 Key Player Identification

Key-players:

Key-players are the nodes that are more important/ influential than the other ones in the network. The table below represents the most influential/ Key nodes of the Noor Din Terrorist Network with higher global and local metrics than that of other nodes in the Network.

Eight nodes are identified as key-players/ influential nodes and remaining nodes are considered as Normal ones in this dataset.

Label	Role	Label	Role	Label	Role
Noordin	Key-player	Azhari	Key-player	Purnam	Key-player
Mohammed		Husin		a Putra	
Hambali	Key-player	Iwan	Key-player	Ubeid	Key-player
		Dharmawan			
Ahmad Rofiq Ridho	Key-player	Abdullah	Key-player		
		Sunata			

Table 13: Key Player Identified in Case I

3.3.3 Visualization

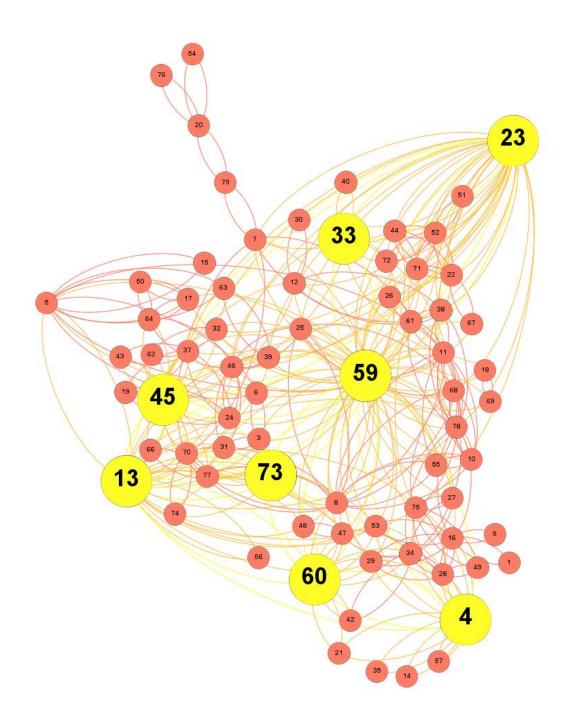


Figure 9: Noordin Top Terrorist Network (Case I) Visualization (Without Names)

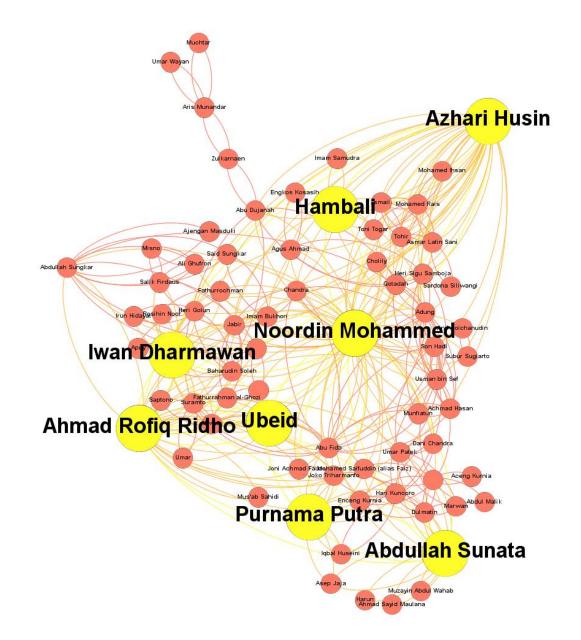


Figure 10: Noordin Top Terrorist Network (Case I) Visualization (With Names)

As seen in Figure above size of nodes depends on its metrics value, node with greater size have higher centrality metrics and vice versa.

The yellow larger dots represent Key-players identified in the network. They are more influential than the other individuals present in the network as they have higher global and local metrics values and other are considered as Normal nodes.

3.4 Huawei Online Business Dataset (CASE - II)

Huawei Technologies Co. Ltd. is a Chinese multinational networking company with headquarters in Shenzhen, Guangdong, with telecommunications facilities and services. It is the world's biggest manufacturer of telecommunications machinery, having surpassed Ericsson in 2012. In Fortune Magazine, Huawei became 83rd of Fortune Global 500 in 2017.

Application:

Research and Development: Huawei R&D is now using the instruments and methods of social network assessment to improve its company positions. Huawei Company's major achievement is that it promotes its goods through social media.

Dataset Collection

This network was collected by crawling the pages of the Instagram Huawei social media platform. Web crawlers API extract posts and remarks from Instagram.

3.4.1 Centrality Measures

Id	Label	Bridge Centrality	Semi Local Centrality	Role
92	Farah Samad	7116.797	431	Key-player
698	Alveena	6510.52	510	Key-player
294	Alexis	6056.993	504	Key-player
305	Hallie	5709.086	424	Key-player
691	Ishku Ishku	5590.225	448	Key-player
112	Larissa	5517.392	392	Key-player
4	Porter Devries	5451.984	402	Key-player
188	Waseem	5366.571	406	Key-player
71	Muhammad Rehan	5154.732	422	Key-player
204	Kai	5084.549	404	Key-player
556	KH Hassan	4755.948	452	Key-player
115	Archie	4658.19	422	Key-player

Table 14: Metrics Values of Influential Nodes (Case II)

500	Misno	4624.053	442	Key-player
559	Oliver	4483.264	394	Key-player
103	Robbie	4278.208	372	Key-player
408	Aleena	4214.568	414	Key-player
175	Naja	4188.324	370	Key-player
6	Ladawn Creason	4160.996	378	Key-player
776	Danish Saifullah	4098.818	450	Key-player
523	Erin	3935.482	404	Key-player
481	Ramos	3895.791	416	Key-player
914	Betsy	3866.713	390	Key-player
465	Evan	3851.907	422	Key-player

3.4.2 Key Player Identification

Key Players:

Key-players are the nodes in a social network that are more important/ influential than the other ones in the network. The table below represents the most influential/ Key customers of the Huawei Network with higher global and local metrics values than that of other nodes in the Network.

Twenty three nodes are identified as key-players/ influential nodes and remaining nodes are considered as Normal ones in this dataset.

Label	Role	Label	Role	Label	Role
Farah Samad	Key-player	Waseem	Key-player	Robbie	Key-player
Alveena	Key-player	KH Hassan	Key-player	Aleena	Key-player
Alexis	Key-player	Kai	Key-player	Naja	Key-player
Ishku Ishku	Key-player	Archie	Key-player	Hallie	Key-player
Muhammad	Key-player		Key-player		Key-player
Rehan		Misno		Erin	

 Table 15: Key Player Identified in Case II

Porter	Key-player		Key-player		Key-player
Devries		Oliver		Ramos	
Ladawn	Key-player		Key-player		Key-player
Creason		Evan		Betsy	
Danish	Key-player		Key-player		
Saifullah		Larissa			

3.4.3 Visualization

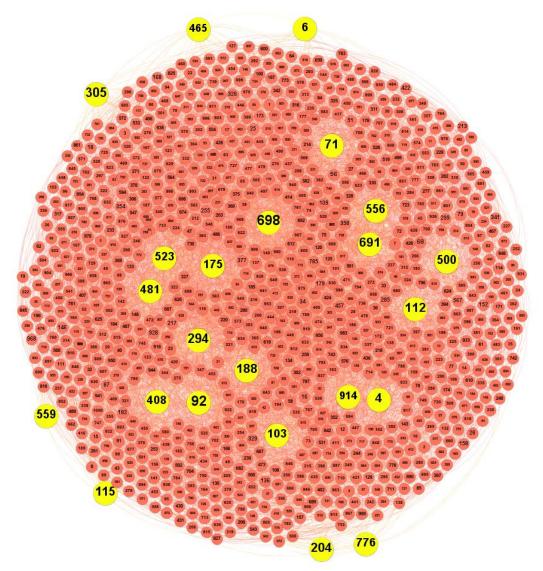


Figure 11: Huawei (Case II) Visualization (Without Names)

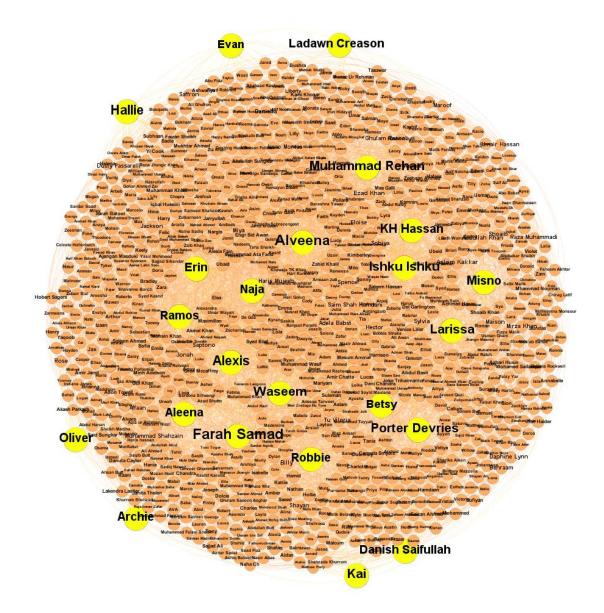


Figure 12: Huawei (Case II) Visualization (With Names)

As seen in Figure above size of nodes depends on its metrics value, node with greater size have higher centrality metrics and vice versa.

The Yellow larger Dots Represent the Key player identified in the network. They are more important than the other individuals present in the network as they have higher metrics values and remaining are considered as Normal nodes.

3.5 Air Traffic Control Dataset (CASE - III)

This network was constructed from the USA's FAA (Federal Aviation Administration) National Flight Data Center (NFDC), Preferred Routes Database. Nodes in this network represent airports or service centers and links are created from strings of preferred routes recommended by the NFDC [50] [51]. In the figure below yellow nodes represents the global international bridge airports in Air traffic control Network identified by bridge centrality algorithm. The node size increases with increase in bridge centrality value.

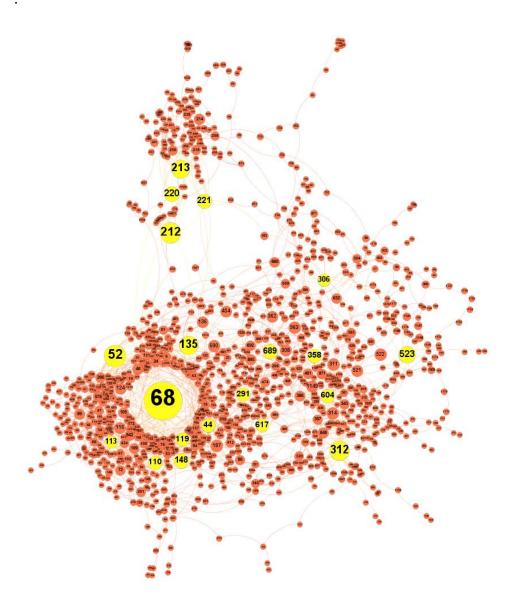


Figure 13: Global International Bridge Airports Visualization in Air Traffic Control

3.5.1 Centrality Measures

Id	Label	Bridge Centrality	Semi Local Centrality	Role
Iu	Laber	Druge Centranty	Semi Local Centranty	Kole
68	68	204725.9	302	Key-player
52	52	103412.5	335	Key-player
312	312	85710.34	165	Key-player
135	135	83832.02	174	Key-player
148	148	58609.04	218	Key-player
110	110	51926.14	225	Key-player
119	119	51313.56	135	Key-player
44	44	50631.72	249	Key-player
113	113	42856.69	284	Key-player
187	187	42581.84	168	Key-player
116	116	39212.37	242	Key-player
308	308	38361.15	132	Key-player
124	124	36933.5	178	Key-player
46	46	34040.02	235	Key-player
89	89	31930.56	198	Key-player
266	266	30558.54	127	Key-player

 Table 16: Metrics Values of Influential Nodes (Case III)

3.5.2 Key Player Identification

Key-players are the nodes in a social network that are more central than the other ones in the network. The table below represents the most important/ Key nodes of the Air Traffic Network with higher global and local metrics than that of other nodes in the Network.

These central nodes represent domestic centers and the global international bridge airports in Air traffic control Network.

Label	Role	Label	Role	Label	Role
68	Key-player	44	Key-player	308	Key-player

Table 17: Key Player Identified in Case III

52	Key-player	113	Key-player	124	Key-player
312	Key-player	187	Key-player	46	Key-player
135	Key-player	116	Key-player	119	Key-player
148	Key-player	110	Key-player		Key-player

3.5.3 Visualization

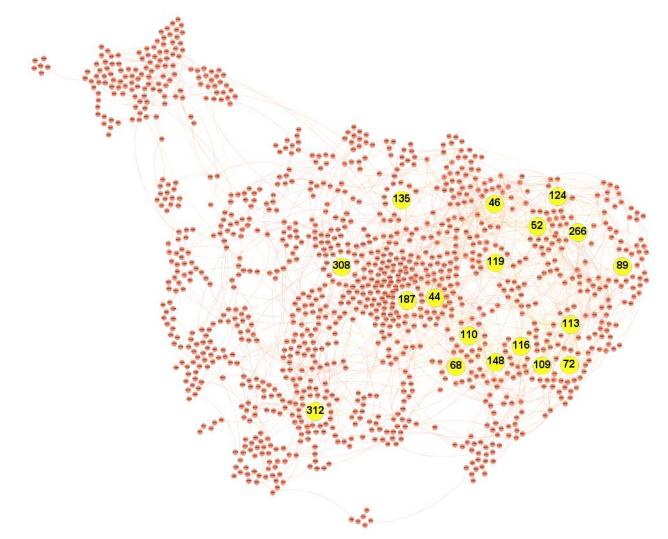


Figure 14: Air Traffic Control (Case III) Visualization

As seen in Figure above size of nodes depends on its metrics value, node with greater size have higher centrality metrics and vice versa. The Yellow larger Dots Represent the Key-player identified in the network. They are more important than the other individuals present in the network as they have higher metrics values.

3.6 Soc_Firm_Hi_Tech Dataset (CASE - IV)

This dataset is taken from a graph and network repository containing hundreds of realworld networks and benchmark datasets.

"Soc_Firm_Hi_Tech" dataset is a social network dataset, which consists of 33 nodes and 147 edges.

3.6.1 Centrality Measures

Id	Label	Bridge Centrality	Semi Local Centrality	Role
29	29	178.5832	346	Key-player
33	33	72.33210	263	Key-player
24	24	76.16515	203	Key-player
4	4	62.72002	244	Key-player

 Table 18: Metrics Values of Influential Nodes (Case IV)

3.6.2 Key Player Identification

Key-players are the nodes in a social network that are more central than the other ones in the network. The table below represents the most important/ Key nodes of the Soc Firm Hi Tech Network with higher global and local metrics than that of other nodes in the Network.

Node 29, 33, 4 and 24 are considered as Key-players or the most influential node in the network. The table 19 shows key-players identified for "Soc Firm Hi Tech" dataset.

LabelRoleLabelRole29Key-player33Key-player4Key-player24Key-player

 Table 19: Key Player Identified in Case IV

3.6.3 Visualization

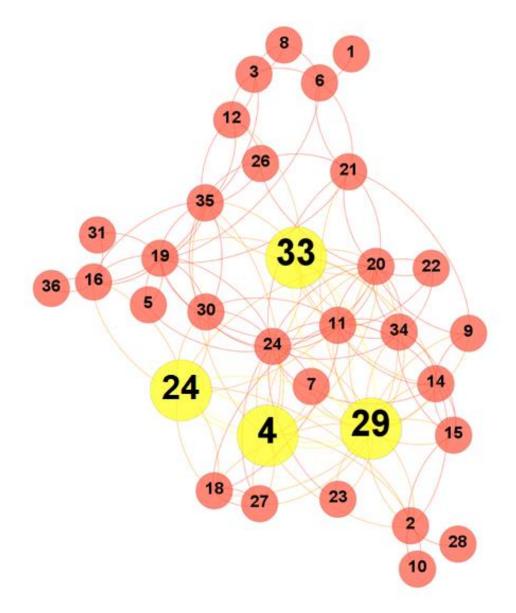


Figure 15: Soc_Firm_Hi_Tech (Case IV) Visualization

As seen in Figure above size of nodes depends on its metrics value, node with greater size have higher centrality metrics and vice versa.

The Yellow larger Dots Represent the "Key-player" identified in the network. They are more important than the other individuals present in the network as they have higher metrics values and remaining are considered as Normal nodes.

CHAPTER 5: RESULTS AND DISCUSSION

This Chapter of the Research covers the results and analysis of the proposed method for identification of the influential nodes (Key-players) in the network. The detailed analysis of proposed system is performed in this section. We carry out a series of experimentations to evaluate the accuracy of the suggested framework.

The performance of recommended system is measured using specificity, sensitivity, and accuracy. We simulate four real networks in the experiments, which include Noordin Terrorist Network, Online Huawei Social Network (Instagram), Air Traffic Control and Soc firm Hi Tech.

5.1 **Feature Selection**

We have calculated betweeness centrality, degree centrality, bridge centrality and local centrality. Feature selection/ relevance analysis are done to select the feature of interest from the feature set. Betweeness centrality and degree centrality is of no use as it is irrelevant to our analysis. So, bridge centrality and local centrality is selected on the basis of the nature of the analysis being performed on the dataset as shown in table below.

Features Selected				
Global Diversity	Local Influence			
Proposed Bridge Centrality Algorithm	Local Centrality Algorithm			

Table 20. Selected Features Set

5.2 **Classification and Prediction**

Classification uses the given input to predict the outcome. Classification is used to solve out the wide range of the problems i.e. either simple or complex problems [28] [29].

5.2.1 Rapid Miner

Rapid miner is an open source software tool that provides the users the platform to train and test the classification models for various applications [33]. We have used Rapid miner tool to test and train the proposed hybrid classifier to predict the key-players in the networks.

5.2.2 Rapid Minor Process

The Figure 1 (Appendix) shows the main and level 0 Process having Retrieved Dataset and Cross Validation operated connected to Output for performance evaluation. While Figure 2 (Appendix) show the level 1 process. It reveals what is inside cross validation operator. Cross Validation operator contains Voting operator which combines the generated result of all three classifiers. As far as 3rd level process is concerned, it contains the operators to measure the performance and prediction classifiers as shown in Figure 3 (Appendix). Further figures show single classifiers and hybrid classifiers along with generated result example.

5.2.3 Classifiers

Classifiers use the phenomenon of training and testing. The division of the provided data into two disjoint sets is performed i.e. training and testing subsets. $f_{(x)} = f_{xtr} + f_{xte}$ Training f_{xtr} and testing f_{xte} subsets contains the objects of the both classes i.e. (Key-players and Normal). The objects in these subsets are added randomly, so that the subsets are biasness free. The selected classifier is trained using the "training subset" f_{xtr} and, performance of the model is evaluated using the "testing subset" f_{xte} .

5.2.3.1 Naïve Bayes

Naive Bayes is a low-variance, high-bias classifier , and even with a tiny information set, it can create a good model. It's easy to use and cost-effective computationally. Typical instances of use include categorization of text, including identification of spam, assessment of feelings, and recommendation systems.

5.2.3.2 Decision Tree

Decision Tree divides the entire dataset into smaller sub-sets and creates a decision tree. ID3 developed by "J. R. Quinlan" is the basis and primary algorithm used for decision trees.

5.2.3.3 SVM Algorithm

In machine learning, support-vector machines(SVMs) are supervised learning models with related learning algorithms that examine data used for classification and regression analysis.

5.2.4 Cross Validation

Cross validation is process which is used to estimate and assess the performance of a created and designed model. The "Cross-validation operator" is mostly used to test the performance of the trained operator to be used in the practice.

Cross validation is process that is dependent on two sub processes. These two processes are called the testing sub phase and the training sub phase. Throughout the training phase the model is trained on the labeled dataset. Then the trained model is applied in the testing phase. The results of the testing phase determine the performance of the trained model.

Example Set is divided into K subsets of equal sizes. The K-1 subsets are than used for the training and the remaining one is used for the testing of the trained model. The procedure is reiterated K many times such that the data once used for the testing is not tested again. The results from all the iterations are combined or either averaged to produce the single output estimation.

5.2.5 Voting

"Ensembles voting (Rapid Minor Operator)" is used to combine the predictive power of more than one classifier to achieve better outcomes than the single classifier outcomes. Three classifiers have been trained to predict the appropriate result, these are C_{SVM} , C_{dt} , C_{Naive} . For each test instance v_i a_i is calculated for "n" classifiers trained by means of feature vector f vi. Voting techniques based on prediction of majority lastly predict 1 (key-player) or 0 (ordinary member).

> $a = vote(a_{i(c)}, a_{i(c+1)}, \dots, a_{i(c+n)})$ Where $a_{i(c)} = C_{SVM}(f_{vi}),$ $a_{i(c+1)} = C_{dt}(f_{vi}),$ $a_{i(c+n)} = C_{svm}(f_{vi}).$

5.2.6 Performance Evaluation Model using Cross Validation

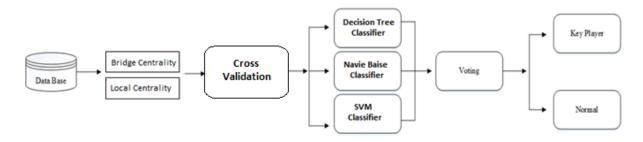


Figure 16: Hybrid Classifier Performance Evaluation Model using Cross Validation

5.3 Key Player Evaluation

The most significant area of the social network analysis is to identify the key-players. The exact definition of the key-player is dependent on the type of social network analysis. The simple and abstract definition of key-players are those nodes and individuals, which are more important in the network than the other. The importance of the key-player solely depends upon the type of analysis and the network. The Classifiers predict the role of the nodes on the basis of the trained dataset.

Cross Validation is a very useful technique for assessing the effectiveness of the model. Kfold Cross-Validation along with voting method is used for measuring accuracy of proposed method of influential nodes identification with the help of tool named Rapid Miner.

5.3.1 Classification

The detailed results of the proposed framework are depicted in this section. The performance rating and throughput of proposed method is calculated using various measures, which include:

- Sensitivity (SEN),
- Specificity (SPEC),
- Accuracy (ACC)

These measures are calculated using Equation (5.1), Equation (5.2) and Equation (5.3) respectively.

Sensitivity =
$$\frac{TP}{(TP + FN)}$$
 (5.1)

Specificity =
$$\frac{\text{TN}}{(\text{TN} + \text{FP})}$$
 (5.2)

Accuracy =
$$\frac{(TP + TN)}{(TP + FP + FN + TN)}$$
 (5.3)

- "TP are the number of the key-players that are recognized correctly by the model known as true positive
- TN is called the true negatives. It is the number of the normal nodes that are recognized correctly.

- FP are false positives, it defines the number of the normal nodes that are recognized as the key-players.
- FN also called False Negatives, it illustrates the number of the key-players that are recognized as the normal during the classification phase.

The trained models are tested with the help of cross validation technique. The Value of K is selected in such a way that the about 80% of data has been used as training and remaining 20% data as testing. The experimental procedures are repeated K=5 times. The Table.21 illustrates result set of proposed paradigm for key-player detection on all networks given in case studies.

 Table 21: Statistical Performance Evaluation of Proposed Framework for key Player detection

Case study	Sensitivity	Sensitivity Specificity	
Ι	62.50%	98.41%	94.29%
II	81.25%	100.00%	98.55%
III	83.33%	99.67%	99.43%
IV	100.00%	50.00%	93.81%

The hybrid classifier is compared with individual SVM, Naive Bayes and Decision Tree classifiers. The table.22 shows the comparison of all the terms of accuracy for key-player detection.

Table 22. Comparison of Hybrid Classifier with Existing classifiers								
Methods	Case Study-I	Case Study-II	Case Study–III	Case Study-IV				
SVM	94.29%	97.12%	99.10%	87.62%				
Naive Bayes	92.86%	97.60%	97.47%	84.76%				
Decision Tree	90.00%	99.52%	99.59%	90.95%				
Proposed Hybrid	94.29%	98.55%	99.43%	93.81%				
Classifier								

 Table 22: Comparison of Hybrid Classifier with Existing classifiers

The proposed methodology has been tested by means of four case studies. The outcomes noticeably prove the validity and correctness of proposed frame work.

5.3.2 Comparison

The tables below illustrates the prediction outcome for top 40 nodes including key-players and normal nodes regarding the classification of all the 3 classifiers and the one proposed hybrid classifier for all four case studies.

Label	Role	Prediction	Prediction	Prediction	Prediction
		(Role)	(Role)	(Role)	(Role)
		Hybrid	Decision	Naive Bayes	SVM Classifier
		Classifier	Tree	Classifier	
			Classifier		
60	Key-player	Normal-nodes	Key-player	Normal-nodes	Normal-nodes
13	Key-player	Key-player	Key-player	"Key-player"	Key-player
73	Key-player	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
4	Key-player	"Key-player"	Normal-nodes	Key-player	Key-player
23	Key-player	"Key-player"	Key-player	Key-player	Key-player
59	Key-player	"Key-player"	Key-player	Key-player	Key-player
45	Key-player	"Key-player"	Key-player	Key-player	Key-player
33	Key-player	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
79	Normal-nodes	Normal-nodes	Normal-nodes	"Key-player"	Normal-nodes
20	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
75	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
24	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
29	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
27	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
53	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
69	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes

 Table 23: Comparison of Classifiers (CASE I)

14	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
35	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
40	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
15	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
9	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
5	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
39	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
11	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
47	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
26	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
67	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
43	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
66	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
30	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
76	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
1	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
31	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
7	Normal-nodes	Key-player	Normal-nodes	Key-player	Key-player
60	Key-player	Normal-nodes	Key-player	Normal-nodes	Normal-nodes
13	Key-player	Key-player	Key-player	Key-player	Key-player
73	Key-player	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
4	Key-player	Key-player	Normal-nodes	Key-player	Key-player

Butt, Wasi Haider, M. Usman Akram, Shoab A. Khan, and Muhammad Younus Javed [54] in his research on covert network analysis used "Noordin Top Terrorist Network" for Keyplayers detection in social network and found out that only 8 nodes are influential enough to be considered as Key-players. Similarly as seen in Table.23 our proposed method has also ranked 8 nodes as Key-players and remaining ones are ranked as Normal-nodes nodes.

Label.	Role	De 24: Comparis Prediction	Prediction	Prediction	Prediction
		(Role)	(Role)	(Role)	(Role)
		Hybrid	Decision	Naive Bayes	SVM Classifier
		Classifier	Tree	Classifier	
			Classifier		
183	Key-player	Key-player	Key-player	Key-player	Key-player
72	Key-player	Key-player	Key-player	Key-player	Key-player
162	Key-player	Key-player	Key-player	Key-player	Normal-nodes
117	Key-player	Key-player	Key-player	Key-player	Key-player
80	Key-player	Key-player	Key-player	Key-player	Key-player
45	Key-player	Key-player	Key-player	Key-player	Normal-nodes
118	Key-player	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
27	Key-player	Key-player	Key-player	Key-player	Key-player
167	Key-player	Key-player	Key-player	Key-player	Key-player
74	Key-player	Key-player	Key-player	Key-player	Key-player
1	Key-player	Key-player	Key-player	Key-player	Key-player
116	Key-player	Key-player	Key-player	Key-player	Key-player
200	Key-player	Key-player	Key-player	Key-player	Normal-nodes
62	Key-player	Key-player	Key-player	Key-player	Key-player
78	Key-player	Normal-nodes	Key-player	Normal-nodes	Normal-nodes
132	Key-player	Normal-nodes	Key-player	Normal-nodes	Normal-nodes
130	Normal-nodes	Normal-nodes	Normal-nodes	Key-player	Normal-nodes
147	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
59	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
180	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
36	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
194	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
67	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
14	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes

Table 24. C	omporison of	Classifiars (CASE ID
1 able 24: C	omparison of	Classifiers (CASE II)

23	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
183	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
72	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
162	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
117	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
80	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
45	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
118	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
27	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
167	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
74	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
1	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
116	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
200	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
62	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes

Table 25: Comparison of Classifiers (CASE III)

Label.	Role	Prediction	Prediction	Prediction	Prediction
		(Role)	(Role)	(Role)	(Role)
		Hybrid	Decision	Naive Bayes	SVM Classifier
		Classifier	Tree	Classifier	
			Classifier		
119	Key-player	Normal-nodes	Key-player	Key-player	Normal-nodes
46	Key-player	Key-player	Key-player	Key-player	Key-player
72	Key-player	Key-player	Key-player	Key-player	Normal-nodes
312	Key-player	Key-player	Key-player	Key-player	Key-player
113	Key-player	Key-player	Key-player	Key-player	Key-player
187	Key-player	Key-player	Key-player	Key-player	Normal-nodes
266	Key-player	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
135	Key-player	Key-player	Key-player	Key-player	Key-player

110	Key-player	Key-player	Key-player	Key-player	Key-player	
116	Key-player	Key-player	Key-player	Key-player	Key-player	
109	Key-player	Key-player	Key-player	Key-player	Key-player	
52	Key-player	Key-player	Key-player	Key-player	Key-player	
148	Key-player	Key-player	Key-player	Key-player	Key-player	
44	Key-player	Key-player	Key-player	Key-player	Key-player	
308	Key-player	Normal-nodes	Normal-nodes	Key-player	Normal-nodes	
68	Key-player	Key-player	Key-player	Key-player	Key-player	
124	Key-player	Key-player	Key-player	Key-player	Normal-nodes	
89	Key-player	Key-player	Key-player	Key-player	Normal-nodes	
291	Normal-nodes	Normal-nodes	Normal-nodes	Key-player	Normal-nodes	
311	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
454	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
895	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
578	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
842	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
692	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
86	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
659	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
157	Normal-nodes	Normal-nodes	Normal-nodes	Key-player	Normal-nodes	
6	Normal-nodes	Normal-nodes	Normal-nodes	Key-player	Normal-nodes	
238	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
67	Normal-nodes	Normal-nodes	Normal-nodes	Key-player	Normal-nodes	
16	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
206	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
179	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
319	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
1147	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	
629	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	

176	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
788	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes

Table 26: Comparison of Classifiers (CASE IV)							
Label.	Role	Prediction	Prediction	Prediction	Prediction		
		(Role)	(Role)	(Role)	(Role)		
		Hybrid	Decision Tree	Naive Bayes	SVM Classifier		
		Classifier	Classifier	Classifier			
4	Key-player	Normal-nodes	Key-player	Normal-nodes	Normal-nodes		
13	Key-player	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
33	Key-player	Key-player	Key-player	Key-player	Normal-nodes		
29	Key-player	Key-player	Key-player	Key-player	Normal-nodes		
19	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
6	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
14	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
15	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
23	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
31	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
1	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
24	Normal-nodes	Normal-nodes	Normal-nodes	Key-player	Normal-nodes		
21	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
9	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
18	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
27	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
5	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
2	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
3	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
10	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
8	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		
36	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes		

T. 6 01 ifi **TTT**

35	Normal-nodes	Normal-nodes	Normal-nodes	Key-player	Normal-nodes
12	Normal-nodes	Normal-nodes	Key-player	Normal-nodes	Normal-nodes
16	Normal-nodes	Normal-nodes	Key-player	Normal-nodes	Normal-nodes
26	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
7	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
34	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
20	Normal-nodes	Normal-nodes	Normal-nodes	Key-player	Normal-nodes
11	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
30	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
22	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes
28	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes	Normal-nodes

CHAPTER 6: CONCLUSION AND FUTURE WORK

It has become essential to study the influence spread mechanism owing to its immense impact on social networks but due to the complex nature of SIA it is actually challenging. A lot of practitioners have been working in this area. In this research, we have represented a novel approach to identify most influential nodes which can help in influence dissemination. Influence is mostly spread by nodes which have more global influence connecting communities of the social network. Moreover, locally central nodes spread influence in its own community. Thus, Global and local both features should be considered while recognizing influence spreaders. Our proposed approach computes influence by considering global diversity as well as local features of the network topology to identify influential nodes. For global diversity we have proposed bridge centrality algorithm, where as local is measured with the help of local centrality algorithm. The nodes with higher bridge centrality and local centrality metrics are considered top key-players/ Influential nodes.

Moreover, we have overcome limitation of Betweeness Centrality (BC) and Degree Centrality (DC) measure. BC has defect that it cannot distinguish between local central nodes and global central nodes and thus attribute greater score to local centers than to global bridges. Whereas our proposed bridge centrality algorithm assigns higher scores to global nodes . Traditional degree centrality algorithm, only considers the number of the nearest neighbors . We have used local centrality algorithm which take into consideration the number of the nearest and the next nearest neighbors of node.

The proposed approach is applied on Huawei Online Dataset of Instagram, Air Traffic control dataset, Noordin Top Network and Soc_Firm_Hi_Tech dataset. The thesis used a cross validation technique to measure the accuracy of proposed method in which the prediction of the influential nodes is done by the voting or various classifiers. The hybrid classifier achieves 99% accuracy which is up to the mark. The overall aim of our research is to improve social network analysis to enhance the identification of influential nodes/ key-players. The experimental results show that the proposed technique can rank influential nodes efficiently and accurately on social networks.

This manuscript has also discussed several opportunities for the future research. In the future, we recommend researchers to expand our approach to study "multi-layered social

networks" and "dynamic social networks". Most of the current research emphases on the singletype network, multi-type networks should be taken into consideration. In fact, users can have several social networks accounts like twitter, Facebook, LinkedIn, GitHub and many others. So, scholars can measure, combine influence for users on multiple networks in which nodes of different network layers are mapped in multi-type-network. Moreover, the research community can additionally address matters concerning scalability and complexity while including topic distribution and network structure under a single model and calculate approximately diffusion models being used on real large social networks for influence measurement.

REFERENCES

- Jun, Z.: 'Initial Spreaders in Online Social Networks', 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016
- [2] Srivastava, A., Chelmis, C., and Prasanna, V.K.: 'The unified model of social influence and its application in influence maximization ', Social Network Analysis and Mining, 2015, 5, (1)
- [3] Cordasco, G., Gargano, L., and Rescigno, A.A.: 'On finding small sets that influence large networks ', Social Network Analysis and Mining, 2016, 6, (1)
- [4] Wen, S., Jiang, J.J., Liu, B., Xiang, Y., and Zhou, W.L.: 'Using epidemic betweenness to measure the influence of users in complex networks ',
- [5] Journal of Network and Computer Applications, 2017, 78, pp. 288-299
- [6] Guo, L., Lin, J.H., Guo, Q., and Liu, J.G.: 'Identifying multiple influential spreaders in term of the distance-based coloring ', Physics Letters A, 2016, 380, (7-8), pp. 837-842
- [7] Gao, S., Ma, J., Chen, Z.M., Wang, G.H., and Xing, C.M.: 'Ranking the spreading ability of nodes in complex networks based on local structure ', Physica A, 2014, 403, pp. 130-147
- [8] Fu, Y.H., Huang, C.Y., and Sun, C.T.: 'Using global diversity and local topology features to identify influential network spreaders ', Physica A, 2015, 433, pp. 344-355
- [9] Kang, C.H., Kraus, S., Molinaro, C., Spezzano, F., and Subrahmanian, V.S.: 'Diffusion centrality: A paradigm to maximize spread in social networks', Artificial Intelligence, 2016, 239, pp. 70-96
- [10] Herzig, J., Mass, Y., and Roitman, H.: 'An author-reader influence model for detecting topic-based influencers in social media ', 2014, pp. 46-55
- [11] Kitchenham, B.: 'Procedures for performing systematic reviews ', Keele, UK, Keele University, 2004, 33, (2004), pp. 1-26
- [12] Clauset, Aaron, Mark EJ Newman, and Cristopher Moore. 'Finding community structure in very large networks.'Physical review E 70.6 (2004): 066111.
- [13] LR Xiong Z L, Jiang W J, Wang G J. 'Evaluating user community influence in online social networks. Proceedings of 2012 IEEE 11thIn- ternational Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), '2012: 640-64

- [14] Aftab Farooq, Gulraiz Javaid, M. Uzair, M. Usman Akram, 'Detection of influential nodes using social network analysis based on network metrics ', Computing, Mathematics and Engineering Technologies (iCoMET), 2018 International Conference, Doi: 10.1109/ICOMET.2018.8346372
- [15] G. Atwal and D. Bryson, 'Luxury Brands in Emerging Markets (Bas- ingstoke: Palgrave Macmillan), '2014
- [16] Sun, J., Tang, J. 'A survey of models and algorithms for social influence analysis. In Social network data analytics, 'Springer, Boston, MA. 2011, pp. 177-214
- [17] Adali, Sibel, Xiaohui Lu, and Malik Magdon-Ismail. 'Attentive Be- tweenness Centrality (ABC): Considering Options and Bandwidth When Measuring Criticality.'SocialCom/PASSAT. 2012.
- [18] COMTRADE, U. N. 'Commodity Trade Statistics,'2016.
- [19] Li K, Zhang L, Huang H. 'Social Influence Analysis: Models, Methods, and Evaluation ', Engineering, 2018,
- [20] Jun, Z.: 'Initial Spreaders in Online Social Networks', 2016 54th An- nual Allerton Conference on Communication, Control, and Computing (Allerton), 2016
- [21] Srivastava, A., Chelmis, C., and Prasanna, V.K.: 'The unified model of social influence and its application in influence maximization ', Social Network Analysis and Mining, 2015, 5, (1)
- [22] Cordasco, G., Gargano, L., and Rescigno, A.A.: 'On finding small sets that influence large networks ', Social Network Analysis and Mining, 2016, 6, (1)
- [23] Wen, S., Jiang, J.J., Liu, B., Xiang, Y., and Zhou, W.L.: 'Using epidemic betweenness to measure the influence of users in complex networks ',
- [24] Journal of Network and Computer Applications, 2017, 78, pp. 288-299
- [25] Guo, L., Lin, J.H., Guo, Q., and Liu, J.G.: 'Identifying multiple influential spreaders in term of the distance-based coloring', Physics Letters A, 2016, 380, (7-8), pp. 837-842
- [26] Gao, S., Ma, J., Chen, Z.M., Wang, G.H., and Xing, C.M.: 'Ranking the spreading ability of nodes in complex networks based on local structure ', Physica A, 2014, 403, pp. 130-147

- [27] Fu, Y.H., Huang, C.Y., and Sun, C.T.: 'Using global diversity and local topology features to identify influential network spreaders', Physica A, 2015, 433, pp. 344-355
- [28] Kang, C.H., Kraus, S., Molinaro, C., Spezzano, F., and Subrahmanian, V.S.: 'Diffusion centrality: A paradigm to maximize spread in social networks ', Artificial Intelligence, 2016, 239, pp. 70-96
- [29] Herzig, J., Mass, Y., and Roitman, H.: 'An author-reader influence model for detecting topic-based influencers in social media ', 2014, pp. 46-55
- [30] Kitchenham, B.: 'Procedures for performing systematic reviews ', Keele,
- [31] UK, Keele University, 2004, 33, (2004), pp. 1-26
- [32] Newman, Mark EJ, and Michelle Girvan. 'Finding and evaluating com- munity structure in networks.'Physical review E 69.2 (2004): 026113.
- [33] Kempe, David, Jon Kleinberg, and Eva Tardos. 'Maximizing the spread of influence through a social network.'Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2003.
- [34] Wasserman, Stanley, and Katherine Faust. Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.
- [35] Brandes, Ulrik. 'A faster algorithm for betweenness centrality.'Journal of mathematical sociology 25.2 (2001): 163-177.
- [36] "http://www.orgnet.com/sna.html," [Online]. Available: http://www.orgnet.com/sna.html [Accessed May 2018].
- [37] L. C. Freeman, "The Study of Social Networks," [Online]. Available: http://www.insna.org/INSNA/na_inf.html.
- [38] Laat, Maarten de; Lally, Vic; Lipponen, Lasse; Simons, Robert-Jan (2007-03-08).
 "Investigating patterns of interaction in networked learning and computer-supported collaborative learning: A role for Social Network Analysis". International Journal of Computer-Supported Collaborative Learning. 2 (1): 87–103. doi:10.1007/s11412-007-9006-4
- [39] index of a graph". Psychometrika. 31: 581–603. Doi:10.1007/bf02289527.

- [40] Dunne, C., Shneiderman, B.: Improving graph drawing readability by incorporating readability metrics: A software tool for network analysts, University of Maryland, Human-Computer Interaction Lab Tech Report HCIL-2009-13 (2009)
- [41] P. Bonacich and P. Lloyd, —Eigenvector-like measures of centralityfor asymmetric relations, Social Networks, vol. 23, no. 3, pp.191–201, 2001
- [42] Jungeun Kim and Jae-Gil Lee. 2015. Community Detection in Multi-Layer Graphs: A Survey. SIGMOD Rec. 44, 3 (December 2015), 37-48.
- [43] Greenhow, C. and Robelia, B.: Old Communication, New Literacies: Social Network Sites as Social Learning Resources. Journal of Computer-Mediated Communication, 14:130– 1161.doi: 10.1111/j.1083-6101.2009.01484.x (2009)
- [44] T. Opsahl, F. Agneessens, and J. Skvoretz, "Node centrality in weighted networks: Generalizing degree and shortest paths." Social Networks, vol. 32, no. 3, pp. 245–251, 2010.
- [45] S. P. Borgatti, "Centrality and network flow," Social Networks, vol. 27, no. 1, pp. 55–71, 2005.
- [46] Tuhena Sen "Modified Page Rank Algorithm: Efficient Version of Simple Page Rank with Time, Navigation and Synonym Factor" 2017 International Conference on Computational Intelligence and Networks DOI 10.1109/CINE.2017.24
- [47] Holland PW, Leinhardt S (1975) Local structure in social networks. In: Heise D(ed) Sociological methodology. Jossey-Bass, San Francisco
- [48] "http://rapidminer.com/," [Online]. Available: http://rapidminer.com/. [Accessed 2018].
- [49] https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/HIM3016.pdf
- [50] Kunegis, Jérôme. "Konect: the koblenz network collection." Proceedings of the 22nd International Conference on World Wide Web. ACM, 2013.
- [51] Federal Aviation Administration. Air traffic control system command center. http://www.fly.faa.gov/
- [52] Roberts N, Everton SF. Roberts and Everton Terrorist Data: Noordin Top Terrorist Network (Subset), Machine-readable data file

- [53] Majeed, Sadia, Usman Qamar, and Aftab Farooq. "State of art techniques for social influence analysis: A systematic literature review." 2018 International Conference on Frontiers of Information Technology (FIT). IEEE, 2018.
- [54] Butt, Wasi Haider, et al. "Covert network analysis for key player detection and event prediction using a hybrid classifier." The Scientific World Journal 2014 (2014).
- [55] Gao, Shuai, et al. "Ranking the spreading ability of nodes in complex networks based on local structure." Physica A: Statistical Mechanics and its Applications 403 (2014): 130-147.

APPENDIX

Performance Evaluation:

Below is the image representation of the created classification model for performance evaluation/ accuracy measurement using the Rapidminer. These images are very helpful to set up the workflow.

Section 1: Level 0, Level 1 and Level 2 classification process

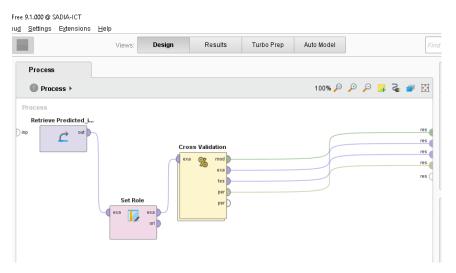


Figure 1. Level 0 Classification Process Diagram

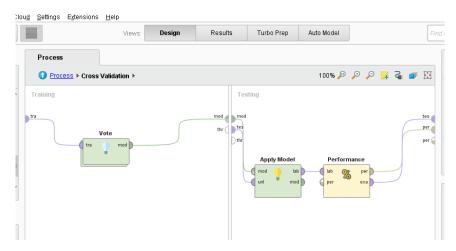


Figure 2. Level 1 Classification Process Diagram

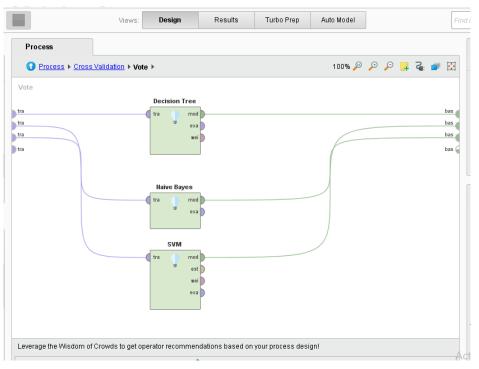
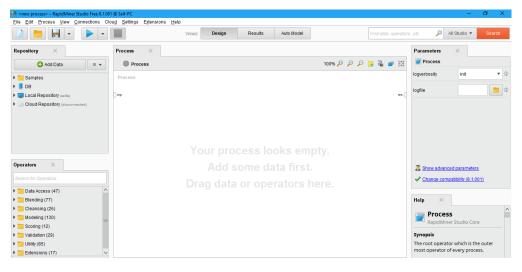


Figure 3. Level 2 Classification Process Diagram

Section 2: Steps for detailed evaluation

Step 1: Open Blank Process.



Step 2: Load the Datasets

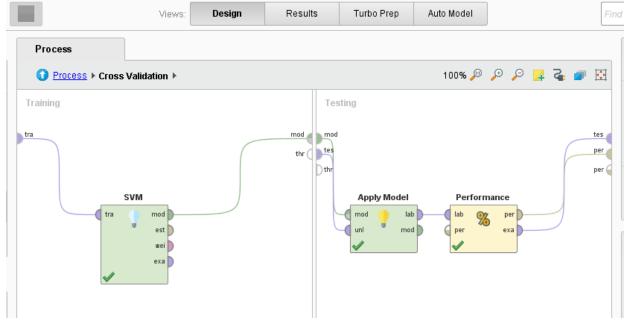
Press the Add Data Button to open a new dialogue box for the addition of the Dataset. Navigate to the path where dataset is located.

Elle Eat Frocess Tem Connections Cloud	Import Data - Where is your data?	Auto Model	×	setc 🔎 All	Studio 🔻 Search			
Reposit	Where is your data?				Parameters ×			
eemples				logverbosity	init 🔻 🛈			
DB Da Local Repository (seife) Oclud Repository (disconnected)	My Computer	Database		logfile	0			
	Get support for more data sources	from the RapidMiner Marketplace!						
Operators ×				Show advanced	<u>i parameters</u>			
Search for Operators Data Access (47)				✓ <u>Change compa</u>	t <u>ibility (8.1.001)</u>			
 Blending (77) Cleansing (26) 				Help ×	^			
Modeling (130)				Process	Studio Core			
Scoring (12)					Studio Core			
Validation (29)				Synopsis				
Utility (85) Extensions (17)			Cancel	The root operator most operator of	which is the outer every process.			
Get more operators from the Marketplace	A Recommenda	ions unavailable		Description	× •			

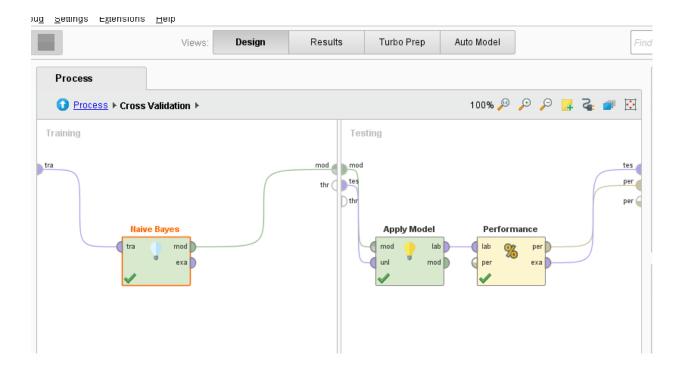
Step 3: Process Creation

Search for the required operators in the search bar. Join the wires to create the connection

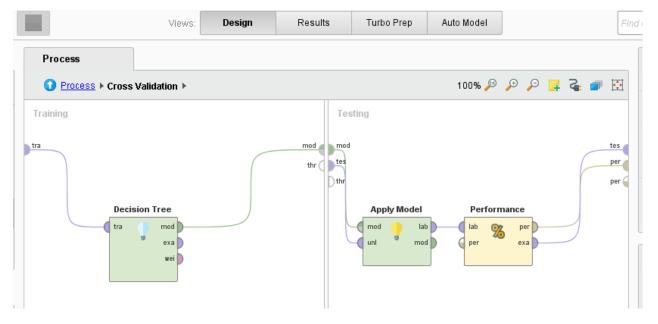
SVM Process



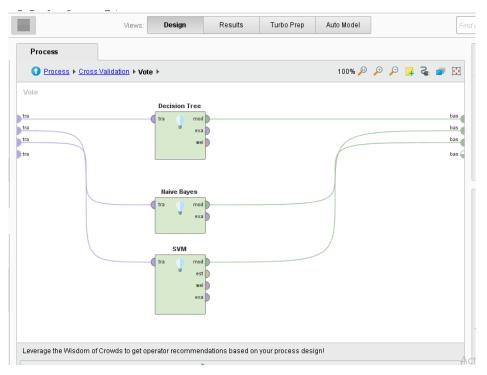
Naïve Bayes Process



Decision Tree Process

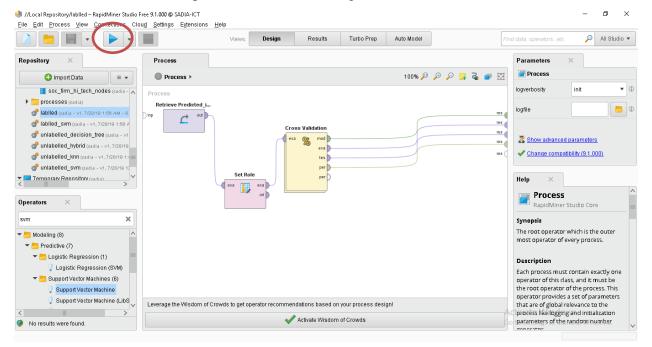


Hybrid Classifier Process



Step 4: Generating Results

After the Process is created press the Run Button to generate the results.



Result History				🐒 PerformanceVector (Performance) 🛛 🛛 🗙					
ExampleSet (Cross Validation) 🛛 🛛			ExampleSet (Set Role)			🤉 Va	🔮 Vote Model (Vote) 🛛 🛛		
	Open in Turbo Prep 👫 Auto Model		Filter (1,000 / 1,000 examples): all					T	
Data	Row No.	Role	prediction(R	confidence(confidence(ld	Label	bridge_cent	semi_local
	1	Key Player	Key Player	1	0	112	112	5517.392	392
Σ	2	Key Player	Key Player	1	0	500	500	4624.053	442
Statistics	3	Key Player	Key Player	0.667	0.333	79	79	4489.127	360
	4	Normal	Normal	0.333	0.667	217	217	4411.131	350
-	5	Normal	Normal	0.333	0.667	103	103	4278.208	372
Charts	6	Normal	Normal	0.333	0.667	28	28	4177.910	352
	7	Normal	Normal	0.333	0.667	213	213	3882.726	363
	8	Normal	Normal	0	1	465	465	3851.907	422
Advanced	9	Normal	Normal	0	1	354	354	3780.573	370
Charts	10	Normal	Normal	0	1	91	91	3551.037	280
	11	Normal	Normal	0	1	941	941	3532.532	386
	12	Normal	Normal	0	1	861	861	3372.315	372
Annotations	13	Normal	Normal	0	1	77	77	3289.910	310
	<	K1==1	k1==1	0		274	274	2222.002	>

Generated Results: