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Abstract 

The use and vast implementation of Discrete Fourier Transform has revolutionized the world 

and allowed the researchers to think of the modern world from a different perspective. The 

discovery of Fast Fourier Transform has laid the foundation of an entirely new dimension to 

the modern world. Keeping in view its utmost importance in the future industry researchers 

tried to design its hardware architecture as per the requirement of the application. Several 

architectures have been proposed time to time with new inventions in the previous designs. 

Some architectures consider clock rate, some take architectural area into consideration, some 

focuses on parallel execution of the algorithm, so on and so forth. Considering all these 

inputs to the industry that has been a part to modern world time to time, this research presents 

an empirical model based upon the optimal architectures for Fast Fourier Transform 

algorithm for n-bits m-points input. This empirical model is obtained by making several 

architectures and their respective characteristics are obtained. The data obtained is then 

passed through a machine learning algorithm known as Regression Algorithm. Linear, 

quadratic and cubic regression technique is applied to achieve the hierarchy of the designed 

architectural parameters and this intern will provide us with the empirical models of the 

architecture. This model will provide us with the specifications of the futuristic architecture 

that mainly depends upon the one’s requirement i.e. either one considers a single parameter 

or a tradeoff between different hardware parameters. The parameters that are mainly 

considered are number of Slice LUT’s, LUT FF Pairs, clock rate, number of processing 

elements and number of clock cycles required. This proposed methodology can be applied to 

any hardware architectural designs for analysis and generation of empirical models. 

 

 

Key Words: Discrete Fourier Transform, Fast Fourier Transform, Processing Element, 

Butterfly Architecture, n Radix FFT, Permutation Matrix, Kronecker Product. 
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Chapter 1 : INTRODUCTION 

 With an adverse research in field of science and technology, Fast Fourier Transform 

emerges out as one of the main basic tool for signal analysis and signal processing. The 

actual implementation and usage of FFT in major applications in modern era, for instance in 

implementation of 5G MIMO OFDM system [1], hearing devices, MRI, classical mechanics, 

military purposes and much more [2], that depicts its utmost importance in daily life of an 

individual.  

In modern world, the data is expanding adversely. The amount of data we produce on 

daily basis is truly mind blogging. Approximately 2.5 quintillion bytes of data [3] of data is 

generated on daily basis. Almost 90% of the data currently present, has been generated over 

the last two years [4]. With the increase in data generation the analytical tools are also 

burdenized to improve the efficiency and performance of the current systems. Taking 

software as research platform for analysis of such big data is generally a time taking task that 

can be catered for using state of the art hardware, capable of performing such an immense 

task in the meantime. 

Considering the applications in of FFT in real life, the implementation of this 

algorithm varies as per the requirement of the applications. Some applications consider the 

hardware execution area to be minimized, some take frequency constraints into consideration, 

few applications focuses on the parallelization of this algorithm to lessen the execution time 

and many such requirements for several applications are addressed by researchers at different 

times. 

 In this report we present an empirical model based optimal architecture for FFT 

algorithm that focuses on the requirement of the application and depicts its nearly possible 

architecture based upon the proposed model, for n-Bits m-Points input considering hardware 

parameters as Slice LUT’s, LUT FF Pairs, clock rate and clock cycle. 

1.1 Motivation 

It’s quiet difficult to believe, but in 1986, we had as little as 1% of today’s total media 

storage capacity in digital form. By 2007, this number came up to 94%, which best illustrates 

the speed at which digitalization came about now [5]. 

https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
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With an advent of digital world, signals and systems have made its way to the 

technological path. Understanding, exploring and improving the world has always been a part 

of human nature. During the last decade, several mind blowing researches on signal 

processing have been made that entirely changed the thinking perspective of the digital world 

that may consider discovery of Fast Fourier Transform by Cooley and Turkey [6] in 1965 on 

the top of the list. With the passage of FFT has proved its utmost importance in the daily life 

of an individual because of its immense use in major applications. 

Since its usage varies as per its need in any application, in order to design a hardware 

for its use in any area / field, we must design a generalized optimal hardware based upon real 

time models / architectures, that is capable of performing all the desired task to a certain 

level, so that one can meet his technological requirement as per his need. 

We need to specialize hardware because in every aspect of life in modern world 

everything is in its hardware form. Specializing the hardware is very much necessary to meet 

up the day to day requirements in a way to meet the software requirement. 

In the early stages of the digital technology, the algorithms were not that much 

extensive and hence doesn’t need that much hardware execution, but in the modern world this 

is currently not the case, now there is a special need to specialize the hardware so that we can 

meet up with the software requirements and can excel in state of the art technology.   

  As the required specs to execute the intensive algorithms are increased, the state of 

the art hardware may not meet up the software requirements. This needs the hardware 

researchers to get the way out of it.  As any hardware specs is altered, there should have been 

any trade off in some other specs, and hence it’s currently the need of the modern world to 

excel the hardware to meet up the day to day requirements. 

 

1.2 Problem Statement 

FFT is being used in the modern era as a key to many bottlenecks faced in signal 

processing. Its wide hardware applications forced the researchers to put their input into it, to 

meet the requirements of the modern world using this technique. The purpose of this report is 

to provide with an empirical model that is based upon optimal FFT architecture n-bits m- 

Points using Field Programmable Gate Array (FPGA) as hardware platform. This empirical 

model is obtained using a renowned machine learning algorithm i.e. regression algorithm. 
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This model will help the users in a way that they can predict their FFT architecture 

constraints as per their need/requirement before its actual implementation.  

Furthermore, the technique used in this report can be used in with any algorithm to 

design its empirical model. 

1.3 Aims and Objectives 

Major objectives of the research are as follow:  

 Formation of several optimal Architecture for Fast Fourier Transform. 

 Architectural analysis of FFT architecture. 

 Acquiring parameters for all the possible architectures for n-Bits m-points 

 Generation of Empirical Model using Regression Algorithm on all the required 

parameters. 

 Optimal architecture generation as per one’s requirement by using empirical model. 

1.4 Structure of Thesis 

This work is structured as follows: 

Chapter 2 gives review of the literature and the significant work done by researchers in past 

few years for classification of heavenly entities using light curves. 

Chapter 3 consists of the proposed methodology in detail. It includes the details about the 

proposed FFT hardware. 

Chapter 4 includes all the experimental results accompanied by relevant figures. In addition 

to this, execution and working of the empirical model is also discussed in this 

section. 

Chapter 5 concludes the thesis and reveals future scope of this research  

Chapter 6 contains the references used in this thesis report. 

Annexure briefly describes an intuitive technique to achieve Permutation Matrix for finding 

reverse order Kronecker Product to execute FFT. 
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Chapter 2 :  LITERATURE REVIEW 

FFT acts as a basic fundamental tool for almost all the up gradation that exists in the 

modern era. This tool is considered as one of the most powerful tool that Signal Processing 

have with itself. The actual implementation of anything that is used by people ends up in its 

hardware form. As we are discussing here the use, implementation, execution and 

implementations of FFT, many hardware implementations are proposed by researchers as per 

the requirement and need of the application. 

The domain of the stated report mainly centers the actual architectural implementation 

of Fast Fourier Transform algorithm. Researchers have proposed many architectures based 

upon their requirement and specification of different platforms e.g. Field Programmable Gate 

Array (FPGA), Graphical Processing Unit (GPU), Central Processing Unit (CPU) etc. Some 

of the proposed architectural designs of FFT on different platforms are discussed below. 

2.1 Introduction to Fast Fourier Transform  

Fourier transform is considered as one of the fundamental tools in any signal 

processing and analysis [7] [8] that allows us to bifurcate individual frequency components of 

any digital signal.  Fourier Transform is one of the most well established transformers to 

study a signal from frequency prospective, it’s analysis and filtering.  It primarily concerned 

with the representation of a signal by estimation of trigonometric functions or more precisely 

by a series of periodic functions i.e. sinusoids. For a given sequence x(n), an n-point Discrete 

Fourier Transform (DFT) can be calculated as 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

    𝑘 = 0,1,2,… . . , 𝑁 − 1                     (1) 

𝑊𝑁
𝑛𝑘  is known as twiddle factor that can be calculated as, 

𝑊𝑁
𝑛𝑘 = 𝑒−𝑗

2πnk
𝑁 = cos (

2𝜋𝑛𝑘

𝑁
) − 𝑗 sin (

2𝜋𝑛𝑘

𝑁
)                (2) 

The computational cost of direct implementation of DFT as stated in equation 1 is 

O(N2). By using the symmetry and periodicity properties of the twiddle factors, the FFT 

algorithm can reduce the complexity to O(N log2 N). The importance of this transform 

cannot be denied especially considering about its importance from application and analysis 

perspective in Engineering, Technology and research.   
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2.2 Radix 2 Fast Fourier Transform 

FFT is considered as an elementary tool for conversion of time domain signal into 

frequency domain that has wide applications in real life. The use of FFT in different 

applications that requires its hardware implementation, cannot be denied. Several hardware 

architectures of FFT algorithm by many researchers, implement and use this transform as per 

their need of use, as its implementation technique and usage may vary, as some application 

primarily concerns about frequency constraints, some with throughput, few towards hardware 

efficient implementation whereas some take processing time into consideration. All such type 

of architectures are precisely discussed. In addition to this, here we present an optimal 

architecture for n-Bit m-Point Fast Fourier Transform that is mainly based upon the empirical 

models for different hardware constraints that give the expected requirements of the 

architecture as per the one’s need i.e. either one wants his hardware to be area efficient, time 

efficient, a tradeoff between area and time or it may depend upon one’s requirement/priority 

for implementation of his desired architecture. 

 Here radix 2 implementation of Fast Fourier Transform is taken into consideration for 

implementation Figure 2-1 and generation of an empirical model. 

 

 

 
Figure 2-1: Radix 2- 8 Point Fast Fourier Transform Architecture 
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2.2 Proposed FFT Architectures by Researchers 

Feifei shen at el. [9] demonstrates the advantages and validity of using GPUs for FFT 

over CUPs especially when large input size is targeted. The proposed design has two types of 

input textures: image data textures containing rectangular texture (RGBA) for MxN image 

whereas other one secondary texture i.e. log (N) and N columns where each row stores the 

real and imaginary part of primary rotating factor. In this way the FFT butterfly calculation 

requires log (M) x log (N) times rendering. GPU used is Nividia Gefores 8600 video card as 

hardware of GPU. Experimental comparison for different input size for open CV time, GPU 

time and GPU maximum error were demonstrated by the author. 

Mokhtar A.Aboleaze at el. [10] concentrated his research on energy consumption in 

memory excess for FFT calculation. It was also investigated the effect of number of registers 

in CPU to lessen the energy consumption in excessing the memory. It was also investigated 

that the number memory access depends upon machine code, compiler, and writing the 

memory. It was assumed in the paper that compiler uses available register to access in store 

the data. The FFT algorithm that were used for comparison were radix two DIF FFT radix 4 

and a Twiddle factor based FFT algorithm with reduced memory access. 

Peter A. Milder et el. [11] used a well-known tool i.e. spiral, that automatically 

generates corresponding hardware implementations, for DFT with non-power of two input 

size. According to him most previous work on hardware implementations of non-power of 

two sized input for DFT focuses on producing a solution for a specific 

requirement/situation/application, i.e. a given problem size and performance requirement for 

specified hardware. The author discusses 4 FFT algorithms including pease FFT, iterative 

FFT,  mixed radix FFT and Bluestein FFT. 

Kota soloman Raju at el [12] proposed a DFT and IDFT hardware architecture based 

on fluting point numbers to achieve accuracy and precision. General purpose arithmetic 

modules based on 32 bit single precision IEEE.754 standard are design firstly and then 

hardware architecture for DFT and IDFT based on radix two butterfly computation was 

perform. Hardware sharing scheme was also introduced to lessen the hardware cost. To 

design the architecture Verilog Hardware Description Language (VHDL) was used, 

simulated on ModelSim 6.6E on Xilinx Virtex.5 LX110T board. 

K Ganesoan at el. [13] proposed a general purpose sequential FFT processor for 1024 

points. The processor in capable of performing 1024 point FFT execution in 26.3 msec. the 

processor is configured in distributed processing system with Intel 8086 microprocessor. 
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Radix 2 hardware implementation was perform on ATRW (1003J) 12x12 bit multiplier cum 

accumulator LSI chip was used an arithmetic unit. The proposed processor computes each 

butterfly operation in 64 basic clock cycles taking 5.12 µ sec. the processor works on 20 KHz 

sampling frequency. 

Gouhui at el. [14] presented a novel design for configurable FFT/IFFT module to 

provide scalability and reconfigurability. Here unified radix structure for radix 2,3,4,5 & 7 is 

proposed. Furthermore issues for designing high performance Fourier algorithm for cognitive 

radio communication and network systems are discussed. The clock period for the proposed 

architecture is 1.988x10(-9) sec, whereas the fmax is 500 MHz. 

Muniandi Kannan at el. [15] proposed DIT FFT pipelined hardware architecture for 

low power multiplier less radix 4, single path delay comutator pipelined FFT processor for 

16, 64 & 256 points for fixed points inputs. The proposed multiplier less architecture uses 

common sub expression sharing so that it may replace complex multiplications by simple 

shifting and addition operations. In this way a low power butterfly architecture is achieved. 

59% and 43% power reduction is achieved for 16 points and 64 points radix 4 FFT when the 

proposed architecture is compared with conventional FFT architecture based on non booth 

coded wallence tree multiplier. The parameterization impact on power speed and 

performance is also compared. 

K. Indira Priyadarsini at el. [16] proposed a pipeline VLSI implementation for FFT, 

that adoptes a single path delay feedback. A reconfigurable complex multiplier and bit 

parallel multipliers are used to store the twiddle factors and eliminating ROM (Read only 

Memory) and achieving a ROM less FFT processor, thus the architecture may consume low 

power according to the author. This ROM less low power FFT processor can be used for 

OFDM applications. The author has design a reconfigurable complex constant multiplier 

such that the size of ROM for twiddle factors can be considerably shrunk. 

Rozita Teymourzadeh at el [17] proposed an FFT architecture considering floating 

points to achieved high precision FFT. Since floating point architecture limits maximum 

clock frequency and increases the power consumption, the author focuses on improving the 

speed, area, resolution, power consumption and latency for FFT architecture. The proposed 

architecture illustrates VLSI for floating points parallel pipelined (FPP) 1024 radix 2 

processor making used of single butterfly element incorporated for intelligent controller. The 

proposed radix two FPP-FFT was optimized in AISC under Silterra 0.18 µm and Mimos 0.35 

µm technology libraries. 32 bit data was processed and synthesized using Xilinx ISE 

platform. Maximum clock frequency for FPP-FFT processor was obtained as 227 MHz. The 
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latency for 1024 points input is 22 µs. The Estimated power consumption for Silterra and 

Mimos was 640 µW and 1.198 µW respectively. 

Archana Fande at el.[18] developed a low power complex multiplier design to reduce 

the hardware required to implement the FFT algorithm for Radix 4. The aim to implement a 

complex multiplier is to offer high speed. Low power consumption and lesser area. In this 

way this proposed architecture would be suitable for various high speed, low power VLSI 

architectures. These three parameters i.e. power, area and speed are always tradeoff. The 

implementation of the hardware architecture was done on Sparton 6 Trainer Kit and the 

hardware characteristics were compared with Sparton 3 using VHDL. The maximum path 

delay to implement the complex multiplier in Radix 4 was obtained to be 11.656 nsec. 

Yazan Samir Algnabi at el.[19] proposed a novel multiplier less pipelined architecture 

for Radix 22 SDF FFT based on using digital slicing technique to meet the requirement for 

high speed wireless communications system standards. An optimal constant multiplication 

arithmetic architectural design for multiplication of a particular input with specified twiddle 

factor is also proposed by the author. The proposed architecture was simulated on MATLAB 

and FPGA Virtex 4. The hardware design was tested on TLA5201 logic analyzer and a high 

speed of 669.277 MHz was achieved. The author claimed his proposed architecture to be 3.35 

times faster compared with the conventional architectures and it only consumes 20% of the 

conventional butterfly area. The proposed architecture comprises of twiddle factors that are 

saved in ROM, Digital slicing complex multiplier, processing elements that are generally 

butterflies and Nlog2N counter 

Yifan Bo at el.[20]  proposed an FFT processor for low power applications for 

variable length input. The author employed a modified fata scaling scheme and trading 

method to improve SQNR (Signal to Noise Ratio) performance. Memory based architecture 

is proposed to support variable length FFT processing. To reduce the power dissipation, a 

tailored constant multiplier array is introduced in the data path. The author claims to perform 

64 to 8192 input FFT at 100MHz processing speed. The SQNR of 55.4dB and 33.3dB are 

achieved for 64 point and 8192 point FFT respectively. 

Atin Mukerjee at el.[21] proposed an area efficient Radix 2 FFT architecture that 

reuses the same butterfly element several times, that intern rescues the required area. To 

reuse the butterfly element many times and forwarding the input to the same processing 

element, a routing network is used that routes the input at a specified time. The proposed FFT 

processor is simulated using VHDL and the results are simulated on Virtex 4 FPGA. The 
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author claims that this architecture outperforms the conventional architecture for N-Point 

FFT Processor in terms of area that is reduces by a factor  of LogN2 with + 

Yousri Ourhani at el. [22] present an architecture based on radix 4 FFT algorithm 

consisting of a novel memory sharing and dividing technique with processing elements 

having parallel in parallel out capability. The proposed architecture is capable to perform N 

Point FFT with 4/3 delay elements and involves a latency of N/4 cycles. The author 

compared his architecture with R4SDC, R22SDC, RX4-B1, RX4-B2, RX4-B5 and XILINX 

IP on basis of throughput by slice ratio. The analysis of the proposed design shows the 

execution time to be 56% lower than obtained with Xilinx IP core and increase in 19% of 

throughput by area ratio for 256 Point FFT. 

Dariusz Puchala at el.[23] compared the effectiveness of selected variants of Radix 2 

FFT on GPU's and CPU's. The algorithm that are taken for consideration differ in memory 

consumption and data flow path arrangement that may affect the global memory coalescing 

and cache memory exploitation. The author claimed that we can achieve 30 times more 

acceleration in performing FFT on GPU's compared with CPU's for sufficiently large sized 

inputs. It was also claimed that FFT phase coefficients calculation and bit reversal 

permutation stages for GPU implementation highly outperforms the standard CPU 

implementation. Another observation shared by the author is that the algorithms categorized 

by the unified structures i.e. having identical stages are equally suited for both CPU's and 

GPU's. 

Praveen Kumar Jhariya at el. [24] compared two FFT architectures simulated on 

FPGA. The designs are compared for 8 point input. The first design comprises of a butterfly 

unit and a complex multiplier that is used several times in execution of FFT. Whereas in the 

other design, 4 butterfly units along with 2 multipliers are used thrice in 8 point FFT 

execution. It was concluded in the paper that the area required by the first design is less but 

the latency of this design is comparatively higher as it took 12 butterfly cycles to compute 8 

point FFT. On the other hand, second design shows comparatively higher performance but 

consumes a larger architectural area. 

The summary of the above stated case study is as follows: 

Sr 

No. 
Researcher Platform Used Contribution/ Results Acquired/ Conclusions 

I.  Feifei shen  GPU, CPU  Demonstrates the advantages and validity of 

using GPUs for FFT over CUPs using large 

input size 
 GPU used is nividia Gefores 8600 
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 Experimental comparison for different input 

size were demonstrated for : 
 open CV time,  
 GPU time  
 GPU maximum error  

II.  Mokhtar 

A.Aboleaze 
CPU  Effect of number of registers in CPU to 

lessen the energy consumption in excessing 

the memory was investigated 
 It was concluded that number memory 

access depends upon: 
  machine code 
 compiler 
 writing the memory. 

III.  Peter A. 

Milder 
Spiral, a tool 

that 

automatically 

generates 

corresponding 

hardware 

 A generalized DFT with non-power of two 

input size was implemented using spiral, 

that is not application oriented 
 4 FFT algorithms were discussed including: 

 Pease FFT 

  Iterative FFT 

  Mixed radix FFT  

 Bluestein FFT 

IV.  Kota soloman 

Raju 
FPGA  Proposed a DFT and IDFT hardware 

architecture based on fluting point numbers 

to achieve accuracy and precision. 
 Hardware sharing scheme was introduced 

V.  K Ganesoan Intel 8086 

microprocessor 
 sequential FFT processor for 1024 points in 

26.3msec. 
 Processor computes each butterfly operation 

in 64 basic clock cycles taking 5.12 µ sec 
 Works on 20KHz clock Rate 

VI.  Gouhui   Novel design for configurable FFT/IFFT 

module to provide scalability and 

reconfigurability. 
 unified radix structure for radix 2,3,4,5 & 7 

is proposed. 

 This Fourier algorithm is proposed for 

cognitive radio communication and network 

systems 
VII.  Muniandi 

Kannan 
  Low power multiplier less radix 4, single 

path delay comutator pipelined FFT 

processor for Fixed point input. 
 complex multiplications are replaced by 

simple shifting and addition operations 

hence achieving low power butterfly 

architecture 
 59% and 43% power reduction is achieved 
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for 16 points and 64 points radix 4 FFT 
VIII.  K. Indira 

Priyadarsini 

VLSI  Reconfigurable complex multiplier and bit 

parallel multipliers are used to store the 

twiddle factors and eliminating ROM 

 ROM less FFT processor 

 Processor is applicable for OFDM 

applications 

IX.  Rozita 

Teymourzadeh 

VLSI  Floating Point FFT architecture is proposed 

 Proposed architecture is focused on speed, 

area, resolution, power consumption and 

latency  

 Proposed radix two floating points parallel 

pipelined FPP-FFT was optimized in AISC 

under Silterra and Mimos technology 

libraries 

 Clock Rate for the processor was calculated 

to be 227 MHz, whereas the latency was 

calculated to be 22 µs 

X.  Archana Fande VHDL  Proposed high speed low power VLSI 

architecture and developed a low power 

complex multiplier for Radix 4 FFT and 

intern reduces the required hardware. 

XI.  Yazan Samir 

Algnabi 

MATLAB,  

FPGA  
 Proposed a novel multiplier less pipelined 

architecture for Radix 22 SDF FFT 

 Digital slicing technique was used. 

 optimal constant multiplication arithmetic 

architectural design for multiplication is also 

proposed. 

 Proposed architecture is 3.35 times faster 

compared with the conventional 

architectures as it consumes only 20% of the 

conventional butterfly are 

XII.  Yifan Bo   Proposed variable length  FFT processor for 

low power applications 

 Memory based architecture 

 tailored constant multiplier array is 

introduced to reduce power dissipation. 

 64 to 8192 input FFT at 100MHz processing 

speed 

XIII.  Atin Mukerjee VHDL 

FPGA 
 Radix 2 FFT architecture is introduced that 

reuses the same butterfly element several 

times 

 Area reduces by a factor  of LogN2 for N 

point FFT 

 There is also a negligible increase in 

processing time for execution of the 

algorithm. 

XIV.  Yousri 

Ourhani 

FPGA  An architecture with a novel memory 

sharing and dividing technique with 
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processing elements having parallel in 

parallel out capability is proposed 

 Perform N Point FFT with 4/3 delay 

elements with a latency of N/4 cycles 

 Proposed design has execution time to be 

56% lower compared with Xilinx IP core 

 increase in 19% of throughput by area ratio 

for 256 Point FFT 

XV.  Dariusz 

Puchala 

GPU, CPU  Compared the effectiveness of selected 

variants of Radix 2 FFT on different 

platforms 

 Claimed to achieve 30 times more 

acceleration in performing FFT on GPU's 

compared with CPU's for sufficiently large 

sized inputs. 

XVI.  Praveen 

Kumar Jhariya 

FPGA  Compared two FFT architectures for 8 bit 

input, simulated on FPGA 

 The cons and pros of both the architectures 

are discussed in detail by the author 

 

After considering summarized inputs by different researchers of their time, we can 

say that the advancement in the modern technology was possible only because of the 

hindrances and bottlenecks faced by the world. These barriers laid the foundation for an 

advent of the new technology to the modern era. Different platforms were used that mainly 

depend upon its use in the application e.g. FPGA, GPU etc. Furthermore, with the passage of 

time as the technology gets inflated, the execution time using the same technique also became 

an issue that is addressed accordingly by the researchers of that time. Same is the case with 

the hardware area for the architecture and many other aspects of the same nature.  

 The main issue that was faced by several developers, analysts, scientists and 

researchers was that any up gradation in technology was more or less application limited. As 

any verity is added to the application there needs to reassemble all the architectural design. In 

other words we can say that the hardware is entirely reshaped as the application for which it 

was designed. In this thesis report we have presented an empirical model for signal 

processing Fast Fourier transform algorithm that can be reshaped as per the requirement of 

the user and application,  or in other words we can say that the architecture can be reshaped 

as the requirements get changed that mainly depends upon the number of Processing 

Elements (PE) used. Using this technique for hardware designing, we can achieve 

parallelism, lesser hardware area, or any other efficiency in our hardware that designed with 

the same architectural blocks. 
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Chapter 3 : METHODOLOGY  

 
This part of the thesis presents the steps for developing an optimal architecture for 

Fast Fourier Transform for an n-bits m-points input using p-processing elements. The 

proposed architecture is briefly explained in this section. Furthermore the execution, working 

and architectural design of the processing element will also be discussed. With the help of 

several hardware architectures and its analysis, an empirical model based upon the several 

hardware parameters for FFT will be developed using machine learning algorithm. This 

model will be our empirical model for n-bits m-points FFT. With the help of this generated 

model we will be able to predict the futuristic parameters of the desired FFT hardware design 

and feasibility of its implementation, its characteristics and other parameters before actual 

implementing it.  

3.1 Empirical Model for FFT 

 An empirical model is a generalized way for representation of a designed prototype 

for the activities on basis of observation and experiment. It is generally used to represent 

hierarchy of the results of the performed experiments. Furthermore, it is used for predicting 

the futuristic results from the previously calculated dataset. Output requirements of the 

hardware will be calculated by a decision tree i.e. either it has to consider any one of the 

hardware parameter for optimization or a generalized hardware having a trade of for all the 

parameters for generalized implementation as per ones requirement.  

 In this report we are considering following hardware parameters for making our 

empirical model i.e. number of Slice LUT’s, LUT FF Pairs, clock rate The inputs of the 

system will be ‘m’ i.e. point of FFT, desired Slice LUT’s, LUT FF Pairs, clock rate and clock 

cycles in which one wants the hardware to perform the FFT and the output will include the 

actual number of Processing Elements, Slice LUT’s, LUT FF Pairs, clock rate and clock 

cycles required to perform that m-point FFT for that architecture. 
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Figure 3-1: Inputs/Outputs of Empirical Model 

 

 The model will provide the user with the nearest possible actual hardware 

specifications. Most probably, it is quite possible to have a difference in the actual and 

required specifications, but the model will provide the user with the error of the actual and 

required specifications. After that it will be upto the user/designer of the architecture that how 

much he can trade off on any hardware parameter that is either required hardware area, 

number of clock cycles required to perform the desired task or  clock rate or something else. 

3.1 Proposed Hardware Architecture  

 

 The proposed hardware architecture is based upon multiprocessor architecture (p-

processing elements), of homogenous PEs. These PEs are connected by a crossbar switch that 

acts as a back bone for our architecture, shown in Figure 3-2. 

 A crossbar switch is generally an assembly of switches between inputs and outputs. 

The switches are arranged in a matrix. If a crossbar switch has M inputs and N outputs, then 

it has M × N matrix cross-points where the connections cross. It is a matrix where each 

crossbar switch runs between two points, in a design that is intended to hook up each part of 

an architecture to every other part. A crossbar switch finds its applications in various 

disciplines as on network and system on chips (NOC & SOC) [25,26], in network processors 

that uses rotating round robin algorithm [27], reconfigurable crossbar switches in network 

processors to increase the performance and flexibility for multiprocessors and computer 

clusters[28], integrated designs and much more. 
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Figure 3-2:  Block Diagram of Proposed Architecture 

 The inputs for the processing element vary for every next cycle. In the stated 

architecture a crossbar switch routes the input towards particular processing element, either 

coming from original input (as in stage 1 of Figure 2-1) or some output that is treated as input 

in the later cycles (Stage 2 and later of Figure 2-1). The routing  of  particular inputs towards 

a specified processing element is achieved using an arbitrator (Figure: 3-2) . This arbitrator 

generates the control signals that controls the of data from one processing element to another. 

These control signals and its working will be discussed later on (Table:1-5). 

 From Figure 2-1 it can be observed that maximum number of Processing elements 

that can be used for parallel execution for m-point FFT are 
𝑚

2
, as for radix 2 FFT every PE 

has 2 inputs and after that, wastage of hardware resources will occur in every executing 

cycle, as  in every clock cycle, there will be some part of architecture without any assigned 

task. On the other hand, by using number of P.E. ≤
𝑚

2
, all the hardware resources are used. For 

FFT implementation, the architecture should be capable to feedback the generated outputs. 

To reuse the output of the system again as input, demultiplexers are used so that the output 

generated can be routed towards the particular input line for further usage if required/needed 

using demux select line. 

 To understand the working of the model let us suppose a 4 point input with 1 PE. In 

the first cycle, original inputs will be forwarded towards original muxes from back muxes 

(Figure 3-3) by using all the select lines as 0. The back mux has three inputs, one is the 

original input, whereas other two are routed back inputs from the respective demultiplexers. 

The original muxes have all the concerned inputs that will take part in FFT execution. The 

input at 0 and 2 are firstly put forward using the select lines. In the next cycle of execution, 

other two inputs (1 & 3) are given to the PE from original muxes  (using select lines as 1 and 

3). The outputs obtained in the respective cycles, are feedback through demultiplexers by 
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using the select lines same as used for muxes (labelled as original muxes in Figure 3-3). In 

this way the first stage of 4 point FFT with 1 PE is executed. After the completion of the first 

stage, in the second stage , system has three types of inputs in which the first is that of 

original input, that will not take part in further execution of FFT, whereas the other two are 

routed back inputs from the respective demultiplexers. For processing the 2nd stage, three 

type of inputs are taken into account in back mux. To select the concerned input for 

processing i.e.  either original input or previously generated outputs (out1 or out2), select 

lines are used.  These select lines put forward the input to the original multiplexer. In the first 

half, the select lines will be 0 & 1 whereas in the next half it will be 2 & 3. As stated the 

select lines for demuxes are same as original muxes in the respective cycles to put forward 

the generated output to its initial place.  The described architecture is shown in Figure 3-3. In 

this way a FFT for 4 Point input with 1 PE is processed.  

 
  

 
Figure 3-3: Hardware Implementation of 4 Point FFT with 1 Processing Element 

3.1.1 Basic Building Block / Butterfly Processing Element 

 From the Figure 2-1, it can be noticed the main processing element for radix 2 

hardware implementation of FFT illustrated are two adders and a multiplier. This is shown in 

Figure 3-4, that acts as a building block for FFT execution, known as butterfly processing 

element.  
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Figure 3-4: Building Block for FFT (Butterfly Processing Element) 

 It can be noted here that the system has two inputs 𝑃&𝑄, a twiddle factor 𝑊and two 

outputs 𝑋0 and 𝑋1. In  FFT the inputs and twiddle factors  plays the major (Pivotal) role in 

processing of butterfly element, this basic building block of its architecture that can be  

implemented as 

 

𝑋0 = out1 = in1 + (in2 ∗  wn)  … (3A)        𝑋1 =  out2 = in1 + (in2 ∗  −wn)… (3B) 
 

 𝐿𝑒𝑡         out1 =  x1 + y1i       &             𝑜𝑢𝑡2 =  𝑥2 + 𝑦2𝑖 
𝐴𝑛𝑑            in1 = a + bi    , in2 = c + di   &      𝑤𝑛 = 𝑒 + 𝑓𝑖  

 From  (3A) & (3𝐵) 
 

𝑥1 + 𝑦1𝑖 = (𝑎 + 𝑏𝑖) + ((𝑐 + 𝑑𝑖) ∗ (𝑒 + 𝑓𝑖))  
= (𝑎 + 𝑐𝑒 − 𝑑𝑓) + (𝑏 + 𝑐𝑓 + 𝑑𝑒)𝑖  … (4𝐴) 

 

 

𝑥2 + 𝑦2𝑖 = (𝑎 + 𝑏𝑖) + ((𝑐 + 𝑑𝑖) ∗ (−𝑒 − 𝑓𝑖))  
= (𝑎 − 𝑐𝑒 + 𝑑𝑓) + (𝑏 − 𝑐𝑓 − 𝑑𝑒)𝑖  … (4𝐵) 

 

3.1.2 Butterfly Processing Element Architecture 

 The outcome of  equations (4A)&(4B) are the two outputs of the PE,  acting as 

building block (butterfly processing element) for FFT. The hardware implementation of 

butterfly element (4A-B) is shown in Figure 3-5: 

 
Figure 3-5: Butterfly Element Architecture Design 

 

 In the stated butterfly element 𝑎 + 𝑏𝑖 and 𝑐 + 𝑑𝑖  are the two inputs that are 

participating in execution of FFT whereas 𝑒 + 𝑓𝑖 is the specific twiddle factor. 
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3.1.3 Field Programmable Gate Array (FPGA) Implementation 

The FPGA architecture design after implementing the above model for 4 point FFT 

using 1 processing element is depicted below in Figure 3-6. The stated hardware design has 

signal to perform FFT and select lines as input and four output lines, as there is only one 

processing element to perform FFT. 

 

Figure 3-6: FPGA design for 4 point 1 PE 

The detailed Register Transfer Level (RTL) schematic for the above architecture is 

shown in the figure below. Here the muxes, demuxes and processing elements can be seen 

properly that forms the basis of our architectural model. 
 

 
Figure 3-7: Detailed RTL Schematic for 4 Point 1 PE Architecture 

In the same way, using 2 processing elements for 4 point FFT, the FPGA design is 
as follows: 
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Figure 3-8: FPGA design for 4 point 2 PE 

The only difference that can be observed in performing 4 point FFT using 1 and 2 

processing elements are, increase in number of muxes and demuxes resulting in increasing 

the number of select lines. Whereas on the output side, as the number of processing elements 

are doubles the output lines are increased accordingly. The detailed RTL Schematic for 4 

point architecture using 2 processing elements is shown in the figure below: 

 

Figure 3-9: Detailed RTL Schematic for 4 Point 2 PE Architecture 

 Both the processing elements are shown in the above diagram. Furthermore, 

the increase in number of select and output lines can be observed clearly as the number of 

processing elements are increased. 
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Same methodology has been followed for n-Bits input of m-Points input with p-

Processing Elements. The select lines used for 4 and 8 Point FFT using p-Processing 

Elements are shown in Table(1-5).  

3.1.4 Select Lines for Proposed Architecture 

 The select lines for 4 Point FFT with 1 PE  for back mux, original mux, memory 

element and demux for the architecture in (Figure 3-3 & Figure 3-7) is shown in Table (1) 

 

Clk 

Cycle 
sel_in0 sel_in1 sel_in2 sel_in3 Msel1 Msel2 addr DMsel1 DMsel2 

1 0 0 0 0 0 2 1 X X 

2 0 0 0 0 1 3 2 0 2 

3 1 1 2 2 0 1 3 1 3 

4 1 1 2 2 2 3 4 0 1 

XXX Z Z Z Z Z Z Z 2 4 
Table 1: Select Lines for 4 Point 1 Processing Element 

 

  By increasing the processing elements from 1 to 2, another twiddle factor select line 

i.e. ‘addr’, two ‘Msel’ lines for multiplexers and two ‘DMsel’ select lines for demultiplexers 

will be added in the architecture as shown in Figure 3-9, is depicted in Table(2) 

 

 

Clk 

Cyc 

sel_in

0 

sel_in

1 
sel_in2 

sel_in

3 

Msel

1 

Msel

2 

Ms

el3 

Ms

el4 

add

r 

addr

1 

DMsel

1 

DMsel

2 

DMsel

3 

DMsel

4 

1 0 0 0 0 0 2 1 3 1 2 X X X X 

2 1 1 2 2 0 1 2 3 3 4 0 2 1 3 

X Z Z Z Z Z Z Z Z Z Z 0 1 2 3 
Table 2: Select Lines for 4 Point 2 Processing Element 

 

 It should be noted here that in first cycle demux select lines are not initiated, being the 

input that is in processing stage. When the processing of the first cycle is successfully done, 

then it will be feed backward in the next cycle to its initial place. After the completion of the 

cycle new inputs are forwarded with the help of select lines and the outputs are moved back 

to their initial places using the previously used mux lines. In other words we can also say that 

the current select lines are of input multiplexers, after passing through processing element, 

will be select lines for demux in the next cycle   
 

 For 8 point FFT the select lines using one, two and four processing elements are 

shown in Table3, Table4 and Table 5 respectively. The select lines for the twiddle factor 

‘addr’, two ‘Msel’ Lines for multiplexers and two ‘DMsel’ select lines would be added in the 

architecture, in a similar way as in Table(1-2). 
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Clk.

Cyc 

sel_i

n0 

sel_i

n1 

sel_i

n2 

sel_i

n3 

sel_i

n4 

sel_i

n5 

sel_i

n6 

sel_i

n7 

Ms

el1 

Ms

el2 

ad

dr 

DMs

el1 

DMs

el2 

1 0 0 0 0 0 0 0 0 0 4 1 X X 

2 0 0 0 0 0 0 0 0 2 6 2 0 4 

3 0 0 0 0 0 0 0 0 1 5 3 2 6 

4 0 0 0 0 0 0 0 0 3 7 4 1 5 

5 1 1 1 1 2 2 2 2 0 2 5 3 7 

6 1 1 1 1 2 2 2 2 4 6 6 0 2 

7 1 1 1 1 2 2 2 2 1 3 7 4 6 

8 1 1 1 1 2 2 2 2 5 7 8 1 3 

9 1 1 2 2 1 1 2 2 0 1 9 5 7 

10 1 1 2 2 1 1 2 2 2 3 10 0 1 

11 1 1 2 2 1 1 2 2 4 5 11 2 3 

12 1 1 2 2 1 1 2 2 6 7 12 4 5 

xxx Z z z z z z z z z z z 6 7 
Table 3: Select Lines for 8 Point 1 Processing Element 

 

 By increasing the number of P.E. the number of clock cycles required to perform FFT 

will lessen to half (Equation (5)), but the select lines will increase accordingly 

 

Clk

Cyc 

sel_

in0 

sel_

in1 

sel_

in2 

sel_

in3 

sel_

in4 

sel_

in5 

sel_

in6 

sel_

in7 

Ms

el1 

Ms

el2 

Ms

el3 

Ms

el4 

ad

dr1 

ad

dr2 

DM

sel1 

DM

sel2 

DM

sel3 

DM

sel4 

1 0 0 0 0 0 0 0 0 0 4 2 6 1 2 X X X X 

2 0 0 0 0 0 0 0 0 1 5 3 7 3 4 0 4 2 6 

3 1 1 1 1 2 2 2 2 0 2 4 6 5 6 1 5 3 7 

4 1 1 1 1 2 2 2 2 1 3 5 7 7 8 0 2 4 6 

5 1 1 2 2 1 1 2 2 0 1 2 3 9 10 1 3 5 7 

6 1 1 2 2 1 1 2 2 4 5 6 7 11 12 0 1 2 3 

xxx z z z z z z z z z z Z Z z z 4 5 6 7 

Table 4:  Select Lines for 8 Point 2 Processing Element 

 
Clk

Cy

c 

sel

_in

0 

sel

_in

1 

sel

_in

2 

sel

_in

3 

sel

_in

4 

sel

_in

5 

sel

_in

6 

sel

_in

7 

M

sel

1 

M

sel

2 

M

sel

3 

M

sel

4 

M

sel

5 

M

sel

6 

M

sel

7 

M

sel

8 

ad

dr

1 

ad

dr

2 

Ad

dr

3 

ad

dr

4 

1 0 0 0 0 0 0 0 0 0 4 2 6 1 5 3 7 1 2 3 4 

2 1 1 1 1 2 2 2 2 0 2 4 6 1 3 5 7 5 6 7 8 

3 1 1 2 2 1 1 2 2 0 1 2 3 4 5 6 7 9 10 11 12 

Table 5: Select lines for 8 Point 4 Processing Element 

 

 The DMux select lines are in same hierarchy as in previous tables i.e. same as Msel, 

having number input value in the first cycle but in the second cycle, it would be same as 

previously used Msel select line. Keeping in view the above stated select lines in the above 

mentioned tables, same hierarchy will be followed for 16 point, 32 point, up till   m-point 

FFT. All these (Table1-5) acts as the select lines that are used by the arbitrator that act as 

state machine. These distribution and routing of data for the architecture is managed via 

control signals received from control unit that acts as state machine for the stated hardware 

architectures. 
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3.2 Working of Empirical Model 

 To make the empirical model, different architectures similar to the architecture stated 

in Figure: 3-3 for n-Bits ∈ {8, 16 and 32}, m-Point ∈ {4, 8, 16 and 32} with p-processing 

elements ∈ {1, 2, 4 and 8} were modeled and their comparative parameters were taken into 

consideration for the modelling of the empirical model. The acquired results, are accumulated 

and an algorithm of machine learning known as regression algorithm of order 1, 2 and 3 was 

implemented. 

  Regression analysis is a form of predictive modelling technique which calculates the 

relationship between a target (i.e. dependent variable) and predictor (i.e. independent 

variable) in form of a function. This technique is used for forecasting, time series modelling 

and finding the causal effect relationship between the variables and much more. Regression 

technique actually generates a function of order 1,2,3…..nth,  which is a linear curve in case of 

1st order, quadratic in case of 2nd order and cubic in case of order 3, and this goes up till nth 

order generation. The implementation of linear, quadratic and cubic regression on a random 

dataset is shown in figure below, however, the use of this technique in case of making the 

empirical model will be discussed shortly in the upcoming chapter. 

 

Figure 3-10: Application of Linear, Quadratic and Cubic Regression on a Random Dataset [29] 

   The inputs will be passed through the empirical model and will predict the 

requirement of for the futuristic parameters if only one parameter is taken into consideration. 

Whereas on the other hand if two or more parameters are taken for granted, the hardware will 

be calculated for all the set parameters and an optimized specifications of hardware will be 

generated, having tradeoff for all the set parameters. 
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 As discussed earlier, the clock cycles required by the proposed architecture depends 

upon the number of processing elements. With the increase in number of processing elements 

the clock cycles will lessen accordingly or vice versa. The clock cycles required to perform 

FFT for m-point using p-processing elements can be calculated using eq. 5 as below: 

𝑭𝒐𝒓  
𝒎

𝟐 ∗ 𝒙
 Processing Elements   (𝐥𝐨𝐠𝟐𝐦) ∗ 𝒙  "𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆𝒔"   ;  𝒙 = 𝟏, 𝟐,… .

𝒎

𝟐
         (5) 

 Eq. 5 is a generalized representation for clock cycles required to perform m-Point 

FFT having
𝑚

2 ∗ 𝑥
  number of Processing Elements, it would take (log2𝑚) ∗ 𝑥 clock cycles, 

where:𝑥 =  1, 2,……
𝑚

2
. As we are catering here Radix 2 FFT architecture that why we use 

log2 , if we propose an architecture of Radix n, then similarly logn will be used in equation 5. 

 To execute the empirical model for actual implementation and prediction of the 

parameters of the futuristic architecture either taking into account a single parameter or all 

the stated parameters, following steps are to be followed: 

1. Take number of input bits and points for FFT (Input) 

2. Take desired parameters Slice LUT’s, LUT FF Pars, clock rate and clock cycle (Input: 

Take either 1 or more as required) 

3. If (ii) has only 1 parameter: Pass the number of points of FFT from (i) through the 

specific model (Table 6) and deliver the output. 

4. Pass the number of Processing Elements from (iii) and calculate clock cycles using 

equation (5) of the hardware. 

5. If (ii) has 2 or more parameters: Pass the number of points for FFT from (i) through 

all the specific models (Linear Regression model for Slice LUT and LUT-FF Pairs, 

Quadratic Regression for Clock Rate) for n-bit input (Table 6). 

6. Repeat step (iv) for all the models generated in (v) to calculate the clock cycles. 

7. Calculate the percentage error between the outputs from (v& vi) with desired 

parameters from (ii). 

8. Output the model with the least percentage error. 

9. Pass the number of Processing Elements from (vii) and calculate clock cycles using 

equation (5). 

In this section of the thesis we have presented an architecture for m-points 

with p-processing elements. In this architecture, the processing element that acts as 

the basis of the hardware is actually the butterfly architecture of the FFT that is briefly 

y elaborated in the given section. The architectural design of the processing element 

that is the main building block of the hardware design, is also shown in this section.  
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In addition to this, the select lines that are the main fundamentals of the 

proposed architecture which helps in routing and selection of the selected input is also 

shown in this section. Furthermore the stepwise processing and execution of the 

empirical model is also encountered. In addition to this a generalized formula to 

calculate the number of clock cycles required to perform FFT with variable  number 

of processing elements is also proposed in this section. However experimental results, 

empirical model and its working is elaborated in the next chapters. 
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Chapter 4 : EXPERIMENTAL RESULTS 

4.1 Results and Discussion 

 In order to make our empirical model for specified hardware parameters for proposed 

FFT architecture, several experimentation for the implementation of hardware  architecture 

were performed similar to  architecture stated in the Figure (3-3, 3-7 & 3-9)  using n-bit ∈ {8, 

16 and 32}, m-Points for FFT ∈{ 4, 8, 16 and 32 } with p-processing elements ∈ {1 2 4 and 8 

PE's}. All the possible combinations of n, m and p were designed.  The platform used for 

designing and implementation of all the architectures is on Xilinx using HDL Verilog coding.  

The FPGA used for this purpose is XC7A100T that mainly belongs to Artix family of 

FTG256 package.  

 The hardware designs for 4 point input FFT using 1 and 2 processing elements are 

discussed in the previous section. For confirming the feasibility of our architecture, we have 

performed FFT algorithm on our model. The bench mark to decide, whether our model is 

working properly or not, we have executed FFT on a complex signal on MATLAB and then 

confirmed it on our model. The 4 point complex signal FFT on MATLAB is shown in Figure 

4-1. Signal to perform FFT is [ -1+4i    5-8i    -3+4i    9-5i]. 

 

 

Figure 4-1: MATLAB FFT Complex Signal Execution 

  

To wave form achieved using 1 processing element for 4 points input for the same 

signal using the hardware design stated in Figure 3-7 is shown below: 
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Figure 4-2: Generated Wave Form for 4 Point FFT using 1 PE 

 In addition to this, using 2 processing elements, the output wave form from the 

architectural design stated in Figure 3-9 is shown below. 

 

Figure 4-3: Generated Wave Form for 4 Point FFT using 2 PE 
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From both the above Figures (4-2 & 4-3), the output signal is same. The only 

difference that lies in between the two wave forms is that, if we use 1 PE, the output will be 

achieved in two cycles whereas using 2 PE, the output is received in a single cycle. 

  The performance of all the implemented architectures were evaluated on the basis of 

hardware parameters i.e. number of slice LUT's, LUT FF Pairs and clock frequency of that 

particular specified characteristical architecture. These three parameters were analyzed for all 

the possible architectures for all the possible combinations of n, m and p. 

 For 8 bit input of m-point∈{ 4, 8, 16 and 32 } FFT using p-Processing Elements ∈ {1 

2 4 and 8 PE's}. Making constant input as 8 bit and variable m-points and p-processing 

elements we came up with the results as shown in Figure 4-4. 

 

 
 Figure (A)               Figure (B) 

 
Figure (C) 

Figure 4-4: Comparison of 8 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B) LUT FF 
Pairs; Figure (C)Clock Rate 

 In the same way by increasing the input bits different results are achieved. For 

instance, using 16 bit input with variable input point FFT and Processing Elements, the 

architecture specifications are used in the following manner as depicted below: 
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Figure (A)        Figure (B) 

 
             Figure (C) 

           Figure 4-5:Comparison of 16 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B) LUT 
FF Pairs; Figure (C)Clock Rate 

 In addition to this different results are obtained when we increase the number of input 

bits. This is also noted that the hierarchy of the results are similar to that of the previously 

found results with different input bit size. The observations for different hardware parameters 

for 32 bit input are shown below.  
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Figure (C) 

           Figure 4-6: Comparison of 32 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B) 

LUT FF Pairs; Figure (C)Clock Rate 

 

 Graphical analysis for Slice LUT’s of the hardware implemented in Figure 4-4 (A), 

Figure 4-5 (A) and Figure 4-6(A) shows that it increases as the number of point for FFT 

increases. In addition to this same trend was followed by the LUT FF Pairs Figure 4-4 (B) 

Figure 4-5(B) and Figure 4-6(B). Whereas unlike other two, clock rate decreases as the 

number of points for FFT increased Figure 4-4(C) Figure 4-5(C) and Figure 4-6(C). Another 

observation that was made in the clock rate was that, by increasing the processing elements 

the clock rate does not show a valuable change, infect it shows rigidity in its clock rate Figure 

4-4(C) Figure 4-5(C) and Figure 4-6(C). 

 For a generalized empirical model for the architecture similar to Figure 3-3, the data 

acquired from several experiments for distinct specifications i.e. different input bits points 

and processing elements, were passed through a conventional machine learning algorithm i.e. 

regression algorithm of order 1, (linear regression), order 2 (quadratic regression) and order 

3(cubic regression). The execution of this algorithm for 8 bit input using 1 Processing 

Element for the stated parameters are depicted in Figure 4-7. 
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Figure (C)   

Figure 4-7: Regression Technique for 8 Bit Input and 1 Processing Element for m-Point FFT on Figure (A): Slice 
LUT’s ; Figure (B) LUT FF Pairs; Figure (C)Clock Rate 

 

 From Figure 4-7 it is observed that after applying linear, quadratic and cubic 

regression, there exists a very minor difference in their output for slice LUT’s and LUT FF 

Pairs compared to original ones, whereas the data highly under fits using linear regression, 

whereas the data  highly over fits by using  cubic regression while considering the clock rate. 

So for representing the clock rate, quadratic regression is the most nominal and gives better 

results compared with the other two. The equation of linear, quadratic and cubic regression 

can be seen on the generated graphs (Figure: 4-7). 

 In view of the above we can say that, the best model that depict the hierarchy of the 

acquired data for making the empirical model  in case of slice LUT’s and LUT FF pairs are 

the first order polynomial  (i.e. Linear Regression) whereas in case of clock rate  its of  

second order equation (i.e.  

Quadratic Regression). 

 Graph plot and equations for the above mentioned hardware characteristics are for 8 

bit input constitutes the same hierarchy for n bit input. In the same way, by applying the 

regression technique on n-bits ∈ {8,16 and 32}, m-Points ∈ {4,8,16 and 32} for processing 

elements ∈ {1, 2, 4, and 8} following equations/results are obtained as in Table 6:  
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 ith-Order Model 
 Number of Slice LUTs 

Number of Fully used LUT 

FF-Pairs 
Clock Rate MHz 

Linear 
Quadr

atic  
Cubic 

Linea

r 

Quadra

tic  
Cubic Linear 

Quadrat

ic  
Cubic 

8 

Bit

s 

1 

Processin

g Element 

y = 
62.591x + 

97.13 

y = 
0.1857x2 
+ 55.714x 
+ 137.17 

y = -
0.0036x3 + 
0.3724x2 + 
53.187x + 

145.52 

y = 
5.237x + 
40.696 

y = 
0.0331x2 + 
4.0109x + 

47.833 

y = -
0.0021x3 + 
0.1432x2 + 
2.5208x + 

52.762 

y = -
0.7061x + 

157.22 

y = 
0.0211x2 - 
1.4889x + 

161.78 

y = -
0.005x3 + 
0.2797x2 - 
4.9878x + 

173.35 

2 

Processin

g Element 

y = 
76.391x + 

191.13 

y = 
0.3827x2 
+ 62.214x 
+ 273.67 

y = -
0.0036x3 + 
0.3724x2 + 

53.187x + 
145.52 

y = 
7.237x + 

70.696 

y = 
0.0331x2 + 
6.0109x + 

77.833 

y = -
0.0021x3 + 
0.1432x2 + 

4.5208x + 
82.762 

y = -
0.7607x + 

157.95 

y = 
0.0369x2 - 
2.129x + 
165.92 

y = -
0.0055x3 + 
0.3216x2 - 

5.9804x + 
178.66 

4 

Processin

g Element 

y = 

139.74x + 
288.5 

y = 
0.6849x2 
+ 111.56x 
+ 507.67 

y = 0.6849x2 

+ 111.56x + 
507.67 

y = 

14.848x 
+ 155.5 

y = 
0.0495x2 + 
12.812x + 

171.33 

y = 
0.0495x2 + 
12.812x + 

171.33 

y = -

0.5312x + 
151.76 

y = 
0.0119x2 - 
1.0209x + 

155.57 

y = 
0.0119x2 - 
1.0209x + 

155.57 

8 

Processin

g Element 

y = 
274.75x + 

332 

y = 
274.75x + 

332 

y = 274.75x 
+ 332 

y = 
30.25x + 

249 

y = 30.25x 
+ 249 

y = 30.25x 
+ 249 

y = -
0.4451x + 

148.67 

y = -
0.4451x + 

148.67 

y = -
0.4451x + 

148.67 

16 

Bit

s 

1 

Processin

g Element 

y = 
124.67x + 

197.17 

y = 
0.3261x2 
+ 112.59x 

+ 267.5 

y = -
0.0105x3 + 
0.8672x2 + 
105.27x + 

291.71 

y = 
5.3043x 
+ 83.435 

y = -
0.002x2 + 
5.379x + 

83 

y = -
0.0019x3 + 
0.0938x2 + 
4.0833x + 

87.286 

y = -
0.7174x + 

154.03 

y = 
0.0266x2 - 
1.7039x + 

159.77 

y = -
0.0062x3 + 
0.3476x2 - 
6.047x + 

174.14 

2 

Processin

g Element 

y = 
149.58x + 

434.04 

y = -
0.5049x2 

+ 168.28x 
+ 325.17 

y = -
0.1794x3 + 
8.7318x2 + 
43.312x + 

738.52 

y = 
10.696x 
+ 148.57 

y = -
0.1139x2 + 

14.915x + 
124 

y = -
0.0186x3 + 
0.8438x2 + 
1.9583x + 

166.86 

y = -
0.6018x + 

150.41 

y = 
0.0189x2 - 

1.3035x + 
154.49 

y = -
0.0014x3 + 
0.0892x2 - 
2.254x + 
157.64 

4 

Processin

g Element 

y = 
262.09x + 

847 

y = -
2.6198x2 
+ 369.87x 
+ 8.6667 

y = -
2.6198x2 + 
369.87x + 

8.6667 

y = 
21.375x 
+ 332 

y = -
0.0365x2 + 
22.875x + 

320.33 

y = -
0.0365x2 + 
22.875x + 

320.33 

y = -
0.503x + 
147.56 

y = 
0.0127x2 - 
1.0262x + 

151.63 

y = 
0.0127x2 - 
1.0262x + 

151.63 

8 

Processin

g Element 

y = 

454.31x + 
2699 

y = 

454.31x + 
2699 

y = 454.31x 
+ 2699 

y = 

42.25x + 
585 

y = 42.25x 
+ 585 

y = 42.25x 
+ 585 

y = -

0.4117x + 
144.36 

y = -

0.4117x + 
144.36 

y = -

0.4117x + 
144.36 

32 

Bit

s 

1 

Processin

g Element 

y = 
214.83x + 

369.26 

y = 
0.5761x2 
+ 193.49x 

+ 493.5 

y = -
0.0047x3 + 
0.8203x2 + 
190.19x + 

504.43 

y = 
8.4391x 
+ 176.91 

y = -
0.1032x2 + 
12.26x + 
154.67 

y = -
0.0106x3 + 
0.4427x2 + 
4.875x + 

179.1 

y = -
0.3904x + 

111.31 

y = 
0.0138x2 - 
0.8999x + 

114.28 

y = -
0.0033x3 + 
0.1832x2 - 
3.1927x + 

121.86 

2 

Processin

g Element 

y = 
291.55x + 

678.57 

y = 
1.057x2 + 

252.39x + 
906.5 

y = 0.0468x3 
- 1.3516x2 + 

284.98x + 
798.71 

y = 
15.026x 
+ 360.61 

y = -
0.1358x2 + 

20.055x + 
331.33 

y = -
0.0022x3 - 
0.0208x2 + 

18.5x + 
336.48 

y = -
0.334x + 
109.53 

y = 0.01x2 - 
0.7052x + 

111.69 

y = -
0.0009x3 + 
0.0566x2 - 
1.3352x + 

113.77 

4 

Processin

g Element 

y = 
516.66x + 

1167 

y = 
2.5469x2 

+ 411.87x 
+ 1982 

y = 2.5469x2 
+ 411.87x + 

1982 

y = 
33.196x 
+ 702 

y = -
0.0469x2 + 

35.125x + 
687 

y = -
0.0469x2 + 

35.125x + 
687 

y = -
0.2795x + 

107.96 

y = 
0.0059x2 - 

0.5231x + 
109.85 

y = 
0.0059x2 - 

0.5231x + 
109.85 

8 

Processin

g Element 

y = 
1252.3x + 

1578 

y = 
1252.3x + 

1578 

y = 1252.3x 
+ 1578 

y = 
98.063x 

+ 1054 

y = 
98.063x + 

1054 

y = 98.063x 
+ 1054 

y = -
0.1647x + 

104.08 

y = -
0.1647x + 

104.08 

y = -
0.1647x + 

104.08 

Table 6: Empirical Models for n-bit {8, 16 and 32}, m-Point ∈ {4, 8, 16 and 32} for processing elements ∈ {1, 2, 4, and 

8} 
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 Now for the number of clock cycles that are required for the execution for m points 

input using p-processing elements irrespective of number of input bits required can be 

depicted by the following graph 

 
Figure 4-8: Comparison of 32 bit input for Clock Rate: 

        

 From the Figure 4-8, it is observed that the number of clock cycles required for the 

execution of n-points FFT using p- processing elements are decreased as the number of 

processing elements are increased. Furthermore it should also be noted that the number of 

PE’s must not increase by 
𝑚

2
  and the minimum of  stages / cycles in which m-point FFT can 

be executed is 𝑙𝑜𝑔2𝑚, as after that wastage of hardware resources will start. 

4.2 Execution, Working and Implementation of Empirical Model  

 To show the practical implementation of the generated empirical models, of first order 

for slice LUT’s and LUT FF Pairs; and second order for clock rate, let us suppose a scenario 

for generation of FFT hardware having different required specs from the user. In this scenario 

the user has following hardware requirements stated in Table 7. 

  

                                        

Requirements   

Desired 

Input Bits 8 

Input Points 32 

Slice LUT 2500 

LUT FF Pairs 350 

Clock Rate 250 

  
Table 7: Requirements for Generation of Hardware Parameters: 
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 The hardware requirements for all the stated parameters is generated one by one in 

accordance with the specifications for making the hardware to achieve a tradeoff for all the 

parameters. 

 Initially the number of input bits are taken into consideration that depicts the family 

of empirical model i.e. either it would be 8, 16, or 32 bit input. After finalizing the family, the 

number of input points are put in the model and their error with required specs are calculated. 

The accumulative error that is taken into consideration is the squared error, because the error 

acquired after subtraction can be both positive and negative, depending upon one’s 

requirement. That generated model will be considered which has least accumulative error 

ratio, or in other words for an optimal hardware implementation, that model is considered  to 

which the squared error is least or bearable compared to others. The implementation of 

empirical model for Table 7 is shown as follows: 

  

8 Bit 1 PE 8 Bit 2 PE 

Slice LUT 
LUT FF 

Pairs 
Clock Rate Slice LUT 

LUT FF 

Pairs 
Clock Rate 

Answer 2100.042 208.28 231.0312 2635.642 302.28 271.8336 

Error -0.1904523 -0.6804301 -0.08210492 0.0514645 -0.15786687 0.0803197 

Squared Error 0.03627211 0.462985244 0.006741219 0.00264859 0.02492195 0.0064513 

Total Squared 

Error 
0.505998572 0.034021804 

  

8 Bit 4 PE 8 Bit 8 PE 

Slice LUT 
LUT FF 

Pairs 
Clock Rate Slice LUT 

LUT FF 

Pairs 

Clock 

Rate 

Answer 4760.18 630.636 200.4244 9124 1217 134.4268 

Error 0.47480978 0.445004725 -0.24735312 0.72599737 0.71240756 -0.859748 

Squared Error 0.22544432 0.198029206 0.06118356 0.52707218 0.50752453 0.739167 

Total Squared 

Error 
0.484657093 1.773763688 

Table 8: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7 

 The squared errors for all PE € {1, 2, 4, 8} are as follows 

 

No. of PE. Squared Error 

1 0.505998572 

2 0.034021804 

4 0.484657093 

8 1.773763688 
Table 9: Squared Error for different Processing Elements as per Requirement in Table 7 

 As stated earlier, that hardware is selected in which it has the least squared error 

compared to all the remaining ones, or the one with the bearable error. In this case the 

hardware specs of the third case having 4 PEs is selected The reason to choose 4 PE is that it 
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can perform the FFT execution comparatively faster  as compared to 1 and 2 PEs and the 

error of 0.48  is also bearable to an extent. 

 After finding the number of processing elements, i.e. 4 in the given case, the next step 

is to find the number of clock cycles required by the hardware for execution. Considering 

equation (5) for finding the requires number of cycles. The input and the results that are 

obtained after using the stated equation is shown in the table below 
 

x 4 

Processing Elements 4 

Number of required cycles 20 
Table 10: Required Cycles for Generated Hardware for 4 Processing Elements 

 
 Now in the same way if we increase the number of bits of input in Table: 7 from 8 bit 

input to 16 bit, keeping all the other required specifications same, the hardware parameters 

acquired from the empirical model will be as follows: 

 

  

16 Bit 1 PE 16 Bit 2 PE 

Slice LUT 
LUT FF 

Pairs 
Clock Rate Slice LUT 

LUT FF 

Pairs 
Clock Rate 

Answer 4186.61 253.1726 241.5332 5220.6 490.842 215.5556 

Error 0.40285816 -0.38245607 -0.03505439 0.52112784 0.28693958 -0.1597936 

Squared Error 0.1622947 0.146272653 0.001228811 0.27157423 0.08233432 0.025534 

Total Squared 

Error 
0.30979616 0.379442538 

  

16 Bit 4 PE 16 Bit 8 PE 

Slice LUT 
LUT FF 

Pairs 
Clock Rate Slice LUT 

LUT FF 

Pairs 

Clock 

Rate 

Answer 9233.88 1016 197.4732 17236.92 1937 157.5344 

Error 0.72925791 0.655511811 -0.26599458 0.85496249 0.81930820 -0.586955 

Squared Error 0.53181709 0.429695734 0.07075311 0.73096086 0.67126594 0.3445161 

Total Squared 

Error 
1.032265943 1.74674294 

Table 11: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7 for 
16 Bit input 

 
 In such a case as stated in Table: 11 we can consider both two and four processing 

elements, this all depends upon the requirement of the application that either it needs an 

architecture that consumes less resources of it wants a faster FFT execution. In this case if the 

application requires a processor with least resources then 1 processing element can be the 

best possible architectural model. On the other hand if the application requires an FFT that 
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can be completed in less time then 4 PE are preferable. Whereas in case of an application that 

needs both faster execution as well as lesser resources then the model with 2 PEs is the best 

model among all. If we consider 4 processing elements, the number of clock cycles would be 

same as shown in in Table: 10, whereas if we consider the design for 2 processing elements, 

then the required number of clock cycles would be as follows: 

x 8 

Processing Elements 2 

Number of required cycles 40 
Table 12: Required Cycles for Generated Hardware for 2 Processing Elements 

 Using a model of 2 PE may have a tradeoff in all the requirements from the user. 
 

 Now at last considering the empirical model for a 32 bit input while considering the 

same specifications as stated earlier in Table: 7. After implementation and execution of the 

empirical model for 32 bit input, the results are as follows: 

 

  

32 Bit 1 PE 32 Bit 2 PE 

Slice LUT 
LUT FF 

Pairs 
Clock Rate Slice LUT 

LUT FF 

Pairs 
Clock Rate 

Answer 7243.82 446.9612 157.208 10008.17 841.442 144.4964 

Error 0.65487823 0.216934266 -0.59024986 0.75020408 0.58404738 -0.7301469 

Squared Error 0.42886549 0.047060476 0.348394897 0.56280617 0.34111134 0.5331145 

Total Squared 

Error 
0.824320866 1.437032025 

  

32 Bit 4 PE 32 Bit 8 PE 

Slice LUT 
LUT FF 

Pairs 
Clock Rate Slice LUT 

LUT FF 

Pairs 

Clock 

Rate 

Answer 17700.12 1764.272 132.6308 41651.6 4192.016 109.3504 

Error 0.85875802 0.801617891 -0.88493171 0.9399783 0.91650795 -1.286228 

Squared Error 0.73746534 0.642591243 0.78310412 0.8835592 0.83998682 1.6543837 

Total Squared 

Error 
2.163160703 3.377929755 

Table 13: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7 for 
32 Bit input 

  

In the above table, the difference in between the squared errors is much higher as 

compared to the previous calculations done for 8 and 16 bit input. So for an input of 32 bit 

with the given required specifications, it would be more appropriate to consider the hardware 

architecture with one processing element. Considering equation (5), the total number of clock 

cycles required for an architecture having one PE will be as follows: 
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x 16 

Processing Element 1 

Number of required cycles 80 
Table 14: Required Cycles for Generated Hardware for 1 Processing Element 

 So for one processing element a total of 80 clock cycles are required to execute the 

FFT algorithm. Here it is also concluded that as the processing elements are increased, the 

required number of clock cycles are lessened accordingly 

 The summarized squared inputs for 8, 16 and 32 bit inputs for the requirements stated 

in Table 7 is as follows. 

No. of 

PE. 

Squared Error for 8 Bit 

Input 

Squared Error for 16 Bit 

Input 

Squared Error for 32 Bit 

Input 

1 0.505998572 0.30979616 0.824320866 

2 0.034021804 0.379442538 1.09592884 

4 0.423489529 1.032265943 2.163160703 

8 1.773763688 1.075485162 3.377929755 

Table 15: Summarized Squared Errors for 8, 16 and 32 Bits input 

 Considering how much error is bearable and with how many bits of input we can 

achieve our expected results, we can have our best possible architectural model. For instance, 

let us suppose that a squared error of around 1.05 is bearable, then we can use 4 or 8 

processing elements using 16 bit input whereas in case of 32 bit input we can use either 1 or 2 

processing elements that may vary from application to application. So with the summarized 

squared error table we can also find out with how much of our input bits signal, which model 

will be best suitable among all the models, considering how much squared error is can be 

tolerable. 

So, in this section of the report we have summarized, how our empirical model will 

work, by taking a generic specifications with different input bit size. The results of the 

implementation of the generated model by increasing the input bit size and its effect on the 

squared error are also shown in this section. 

 It should be noted here that all the calculations shown above as the implementation 

and execution of the empirical model includes all the stated parameters of the hardware that 

we are considering i.e. number of slice LUT’s, LUT FF pairs and clock rate. On the other 

hand, besides taking into account all the specifications, if any one specification is taken into 

consideration from the user, then that hardware is considered which have least or bearable 

squared error specific to the particular hardware specification. 
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Chapter 5 : CONCLUSION AND FUTURE WORK 

 

5.1  Conclusion  

 In this report we have presented a Fast Fourier Transform architecture for m-Points ∈ 

{4,8,16 and 32}   using p-Processing Elements ∈ {1, 2, 4, and 8}. The basic building block 

for FFT algorithm is the butterfly architecture that is modeled as the processing element in 

the proposed model. These processing element are required to perform the desired m-points 

Fast Fourier Transform. After the formation of architectural design of all the possible 

hardware architectures, their analysis w.r.t. several hardware parameters i.e. number of Slice 

LUTs, LUT FF pairs, number of clock cycles required to perform m-point FFT and clock rate 

is done.  An empirical model based upon n-Bits, m-Points and p-Processing Elements for 

FFT using a renowned machine learning algorithm i.e. Regression Technique, is proposed 

after the analysis of the architecture on the stated parameters. Linear regression, quadratic 

regression and cubic regression is implemented on the acquired data to generate the most 

generalized empirical model.  

 The desired parameters that are required to perform m-Points FFT by the user are 

considered as bench mark for the future architectural design and are passed through the 

particular empirical model. If we consider all the stated parameters then, the squared 

difference in value of specifications from the user and the actual architectural specs is taken. 

After the summation of the squared difference of all the parameters, either that model is 

considered for the implementation of design which has least squared error or that model is 

taken into consideration that has bearable squared error to increase the efficiency of the 

future hardware. In this way this model will provide the closest related real optimum 

specifications of actual parameterized hardware characteristics including the required number 

of processing elements, which needs to be incorporated to design the hardware.  However if  

we consider a single parameter e.g. only number of Slice LUTs or some other, then the 

square error of only that parameter is considered. Rest of the procedure for choosing the 

optimal architecture is same in both the conditions. 

 An observation that is made in this context is that the number of clock cycles required 

by the architecture to perform m-points FFT is inversely proportional to the number of 

processing elements in that hardware design.  Moreover, the number of bits of input directly 
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affect other parameters of the hardware architecture e.g. number of Slice LUTs, LUT-FF 

Pairs etc. 

 This thesis report can help the researchers for prediction of their FFT hardware 

specifications based upon their need/requirement including their parameter of interest e.g. 

area efficient, time efficient architecture etc. hence we are able to estimate the hardware 

feasibility before designing the actual hardware.  

 In addition to this, the technique proposed in the report to analyze the hardware 

specification, and predicting the futuristic parameters after making their empirical model and 

then finding its feasibility as per one’s  requirement, doesn’t only refers to the hardware 

stated. Infect this technique can be applied to any system and thus allowing the researchers to 

predict their desired system before its actual implementation.  

5.2  Contribution   

 Following are the primary contributions  of  this research work: 

 We propose a reconfigurable architecture for n-bits, m-points Fast Fourier Transform 

(FFT) algorithm using p-processing elements. 

 Empirical model for n-bits and m-points input for FFT is introduced, that can 

calculate the feasibility of the futuristic architecture. 

 Pre-calculating the specifications and parameters of an optimized FFT architecture 

that is based upon one’s need/requirement. 

 A relation for number of clock cycles required to perform m-Point using n-Radix FFT 

is introduced. 

 A procedure for finding the unique Permutation Matrix out of n! Permutation 

Matrices is introduced (Annex). 

5.3  Future Work  

Following tasks can be performed as future work in contribution to this report: 

 Empirical model for floating point input can be designed. 

 Devise an empirical model for fully parallel pipelined FFT architecture. 

 Finding the effects of the same architecture on different hardware platforms e.g. 

GPUs, CPUs, FPGA etc. 

 Applying several techniques to increase the efficiency of any parameter e.g. using 

multiplier less pipelined processor [15], ROM less FFT processor [16] etc. 
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 Empirical model for Radix-x FFT can be modelled. 

 Effect of using different Radix FFT on empirical model and its effect on empirical 

model can be can be studied. 

 Empirical model for different variants of FFT [11] can be modelled, to predict that 

which variant of FFT is the most feasible, as per one’s need. 
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Annexure : FINDING THE UNIQUE PERMUTATION MATRIX FOR 

REVERSE ORDER KRONECKER PRODUCT INTUITIVELY FOR 

FAST FOURIER TRANSFORM 

1 Introduction 

 All the experimentations, observations and results related to the subject are 

incorporated in the stated chapter being it to be a minor research project that leads to our 

actual research. 

 This section of the report presents a unique method for finding the unique 

Permutation Matrix out of n! matrices, to perform Fast Fourier Transform using Kronecker 

Product. This uniquely identified permutation matrix is used to attain the reverse order 

Kronecker product without using the same technique, as used for obtaining the original 

Kronecker product.  

 Kronecker product, plays an imperative role in major disciplines of science as in 

mathematics, linear algebra, big data analysis and signal processing etc. that acts as a nucleus 

in the formation of this modern era especially from application perspective [1]. This product 

also finds its applications in matrix calculus [2], system theory [3], differential equations [4] 

that are the basis for circuit analysis and much more. A well-established transform to study a 

time domain signal from frequency perspective, filtering and analysis is Fourier transform 

[5]. Kronecker product is an arithmetic tool that finds its significance in many applications in 

field of research. 

 The main problem that arises during the implementation of the Kronecker product is 

its computation cost, especially to those algorithms in which it is used repeatedly. This 

problem becomes a bottleneck while computing two or more products simultaneously, 

especially when, in the same arithmetic calculation original and reverse order Kronecker 

product are to be calculated, e.g. in formulation of DFT as stated in equation 6, that is taken 

as a building block for the formation of this technique. 

    𝐹𝑛2
′ = (𝐼𝑛⊗𝐹𝑛)𝐷𝑛2(𝐹𝑛⊗ 𝐼𝑛)     (1) 

 Keeping in view the calculation of Kronecker product, an intuitive approach is 

proposed to bypass the rigorous calculations required to compute the permutation matrix. 

Here mechanism that calculates a unique permutation matrix is presented, so that 
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computation time for finding the reverse order product decreases, and reverse order 

Kronecker product from its original may be generated with minimum computations. 

 In such cases where we have to compute the original and reverse order KP at same 

time, being it to be computationally expensive algorithm, we can use Permutation Matrix for 

this purpose to reuse the previously calculated product for further use as below: 

                 𝐹𝑛2
′ = (𝐼𝑛⊗𝐹𝑛)𝐷𝑛2𝑃𝑛2(𝐹𝑛⊗ 𝐼𝑛)𝑃𝑛2             (2)  

 And hence by using the permutation matrix, we can find the DFT with less 

computation using the previously calculated Kronecker Product. 

2 Permutation Matrix 

 Permutation matrix is a binary matrix having two entries (i.e. 0 & 1), and is obtained 

by permuting the columns /rows of an 𝑛𝑥𝑛 identity matrix. Note that every permutation in the 

identity matrix provides us with a unique permutation matrix that leads us towards different 

solutions after its multiplication with original matrix. For instance, let us suppose a 4x4 

matrix, multiplied with different permutation matrices of same order as below: 

[

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31
𝑎41

𝑎32
𝑎42

𝑎33
𝑎43

𝑎34
𝑎44

] [

1 0 0 0
0 0 0 1
0
0
1
0
0 0
1 0

] = [

𝑎11 𝑎13 𝑎14 𝑎12
𝑎21 𝑎23 𝑎24 𝑎22
𝑎31
𝑎41

𝑎33
𝑎43

𝑎34
𝑎44

𝑎32
𝑎42

] (3) 

Using a different permutation matrix of same order as: 

[

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31
𝑎41

𝑎32
𝑎42

𝑎33
𝑎43

𝑎34
𝑎44

] [

0 0 0 1
0 0 1 0
1
0
0
1
0 0
0 0

] =  [

𝑎13 𝑎14 𝑎12 𝑎11
𝑎23 𝑎24 𝑎22 𝑎21
𝑎33
𝑎43

𝑎34
𝑎44

𝑎32
𝑎42

𝑎31
𝑎41

] (4) 

  

 Hence from (3) & (4), using different permutation matrices multiplied with same 

matrix, different results are obtained. 

2.1 Rows and Column Permuted Matrix 

 From (3) & (4), it is observed that in matrix multiplication, using PM after the 

original matrix swaps the columns of the original matrix. However, to achieve a row 

permuted matrix, the permutation matrix is placed behind the original matrix as below: 
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[

0 0 0 1
0 0 1 0
1
0
0
1
0 0
0 0

] [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31
𝑎41

𝑎32
𝑎42

𝑎33
𝑎43

𝑎34
𝑎44

] =  [

𝑎41 𝑎42 𝑎43 𝑎44
𝑎31 𝑎32 𝑎33 𝑎34
𝑎11
𝑎21

𝑎12
𝑎22

𝑎13
𝑎23

𝑎14
𝑎24

]  (5) 

 So from (4) and (5) it can be observed that for same 𝑛𝑥𝑛 permutation matrix, the 

placement of the PM will decide the resultant matrix either to be a row permuted matrix or a 

column permuted matrix.  

3 Kronecker Product and Permutation Matrix 

 Let us suppose we have A and B matrices of 𝑚𝑥𝑛 and 𝑝𝑥𝑞 order respectively, then 

the Kronecker product of A & B would be as 

            A⊗B = [
𝑎11 ∗ 𝐁 … 𝑎1𝑛 ∗ 𝐁
⋮ ⋱ ⋮

𝑎𝑚1 ∗ 𝐁 ⋯ 𝑎𝑚𝑛 ∗ 𝐁
]                  (6) 

 
 that can be expressed more explicitly as 

 

[
 
 
 
 
 
 
 
 
 
 
𝑎11𝑏11 𝑎11𝑏12 …
𝑎11𝑏21 𝑎11𝑏22 ⋯
⋮ ⋮ ⋱

𝑎11𝑏1𝑞 … 𝑎1𝑛𝑏11
𝑎11𝑏2𝑞 … 𝑎1𝑛𝑏21
⋮ ⋯ ⋮

… … 𝑎1𝑛𝑏1𝑞
⋯ ⋯ 𝑎1𝑛𝑏2𝑞
⋯ ⋱ ⋮

𝑎11𝑏𝑝1 𝑎11𝑏𝑝2 ⋯

⋮ ⋮  ⋱
⋮ ⋮  ⋱

𝑎11𝑏𝑝𝑞 ⋯ 𝑎1𝑛𝑏𝑝1
⋮ ⋱  ⋮
⋮ ⋱ ⋮

⋯ ⋯ 𝑎1𝑛𝑏𝑝𝑞
⋮  ⋱ ⋮
⋮  ⋱ ⋮

𝑎𝑚1𝑏11 𝑎𝑚1𝑏12 ⋯
𝑎𝑚1𝑏21 𝑎𝑚1𝑏22 ⋯
⋮

𝑎𝑚1𝑏𝑝1

⋮
𝑎𝑚1𝑏𝑝2

⋱
⋯

𝑎𝑚1𝑏1𝑞 ⋯ 𝑎𝑚𝑛𝑏11
𝑎𝑚1𝑏2𝑞 ⋯ 𝑎𝑚𝑛𝑏21
⋮

𝑎𝑚1𝑏𝑝𝑞
⋱
⋯

⋮
𝑎𝑚𝑛𝑏𝑝1

⋯ ⋯ 𝑎𝑚𝑛𝑏1𝑞
⋯ ⋯ 𝑎𝑚𝑛𝑏2𝑞
⋮
⋯

⋱
⋯

⋮
𝑎𝑚𝑛𝑏𝑝𝑞]

 
 
 
 
 
 
 
 
 
 

 

 
 And the reverse product i.e. B⊗A can be written as 

 

             B⊗A =[
𝑏11 ∗ 𝐀 … 𝑏1𝑝 ∗ 𝐀
⋮ ⋱ ⋮

𝑏𝑝1 ∗ 𝐀 ⋯ 𝑏𝑝𝑞 ∗ 𝐀
]                      (7) 

 
 From (6) and (7) it can be observed that A⊗B and B⊗A are entirely different 

matrices. But from A⊗B, B⊗A can be achieved just by swapping some of the rows and 
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columns with the specific permutations. In other words we can say that A⊗B and B⊗A are 

permutation equivalent matrices, and there exists a unique permutation matrix such that 

                         B⊗A =   𝑃(A⊗ B )𝑃𝑇                      (8) 
 Furthermore, another characteristic of this unique permutation matrix is that the 

transpose and inverse of the unique PM is same as the PM itself, as 

                                  𝑃 =  𝑃−1 = 𝑃𝑇                            (9) 
 All remaining 𝑛𝑥𝑛 PM’s, doesn’t qualify the above property due to which they are 

not classified as the unique PM for Kronecker Product 

4  Proposed Methodology 

 Let us suppose two, 2𝑥2 matrices 𝐴 and 𝐵   for understanding. The two Kronecker 

products A⊗B, as in (6), and B⊗A, as in (7) will be as follows, 

        A⊗ B = [

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12
𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22
𝑎21𝑏11
𝑎21𝑏21

𝑎21𝑏12
𝑎21𝑏22

𝑎22𝑏11
𝑎22𝑏21

𝑎22𝑏12
𝑎22𝑏22

] (10) 

Similarly 

      B⊗ A = [

𝑎11𝑏11 𝑎12𝑏11 𝑎11𝑏12 𝑎12𝑏12
𝑎21𝑏11 𝑎22𝑏11 𝑎21𝑏12 𝑎22𝑏12
𝑎11𝑏21
𝑎21𝑏21

𝑎12𝑏21
𝑎22𝑏21

𝑎11𝑏22
𝑎21𝑏22

𝑎12𝑏22
𝑎22𝑏22

] (11) 

 Total number of permutation matrices that can be produced from an nthorder identity 

matrix are calculated as 

                    𝑛𝑜. 𝑜𝑓 𝑃𝑀𝑠 𝑓𝑜𝑟 𝐼𝑛𝑥𝑛 =  𝑛!              (12) 
 As 𝐴 & 𝐵 are both 2𝑥2 order matrices and the order of their 

Kronecker Product will be 4𝑥4, thus in this case a 4x4 identity matrix 

will be used as  PM that generates 4! i.e. 24 different permutation 

matrices as stated in (12) which are shown in Figure Annex-1. 

 
 Out of these 24 matrices as shown in Figure Annex 1, a single 

unique permutation matrix say P4 (𝑒𝑞. 13) satisfies the requirements 

for reverse order Kronecker product as stated in (9). From the above 

two matrices (10) and (11) it can be observed that from A⊗ B we can 

easily produce B⊗ A just by swapping second and third rows and then 

Figure Annex-0-1: Generation of 4! 
Permutations of 4x4 Identity 
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swapping same columns. To achieve this, an identity matrix will be used, that is also 

swapped in the same manner, and is then multiplied as in (4) & (5). 

                            𝑃4 = [

1 0 0 0
0 0 1 0
0
0
1
0
0
0
0
1

]                           (13) 

 That is same number of rows are swapped from the identity matrix to make unique 

permutation matrix, that satisfies the unique PM property and hence by substituting, it may 

become  

𝑃𝑀 ∗ B⊗A ∗ PM

= [

1 0 0 0
0 0 1 0
0
0
1
0
0
0
0
1

] [

𝑎11𝑏11 𝑎12𝑏11 𝑎11𝑏12 𝑎12𝑏12
𝑎21𝑏11 𝑎22𝑏11 𝑎21𝑏12 𝑎22𝑏12
𝑎11𝑏21
𝑎21𝑏21

𝑎12𝑏21
𝑎22𝑏21

𝑎11𝑏22
𝑎21𝑏22

𝑎12𝑏22
𝑎22𝑏22

] [

1 0 0 0
0 0 1 0
0
0
1
0
0
0
0
1

]

=  A⊗ B 
 These operations will eventually give us the results, that corresponds to our reverse 

order Kronecker Product i.e. A⊗ B 

 

4.1 Formation of  n xn Permutation Matrix  
 

 In order to find the uniquely identified permutation matrix that satisfies requirements 

for reverse order Kronecker calculation stated in (6) and (7), we take two matrices 𝐴 and 𝐵 of 

order 2x2 having Kronecker product of order 4x4 as discussed earlier  

𝐴 ⊗  𝐵   ⟹

(1𝑠𝑡)
𝑎11𝑏11 
𝑎11𝑏21
  

𝑎21𝑏11  
𝑎21𝑏12

(2𝑛𝑑)
𝑎11𝑏12  
𝑎11𝑏22
  

𝑎21𝑏21  
𝑎22𝑏22

(3𝑟𝑑)
𝑎12𝑏11  
𝑎12𝑏21
  

𝑎22𝑏11  
𝑎22𝑏21

(4𝑡ℎ)        
𝑎12𝑏12 (I)

  
𝑎12𝑏22  (II)

  
𝑎22𝑏12 (III)

  
𝑎22𝑏22 (IV)

 

 Whereas it’s reverse order Kronecker product would be as  

B⊗  A ⟹ 

(1𝑠𝑡)
𝑎11𝑏11  
𝑎21𝑏11
  

𝑎11𝑏21  
𝑎21𝑏21

(2𝑛𝑑)
𝑎12𝑏11  
𝑎22𝑏11
  

𝑎12𝑏21  
𝑎22𝑏21

(3𝑟𝑑)

𝑎11𝑏12  
𝑎21𝑏12
  

𝑎11𝑏22  
𝑎21𝑏22

(4𝑡ℎ)           

𝑎12𝑏12    (I)
  

𝑎22𝑏12 ( II)
  

𝑎12𝑏22 (III)
  

𝑎22𝑏22 (IV)
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 The swapping hierarchy of entries from 𝐴  ⊗ 𝐵  towards 𝐵  ⊗ 𝐴  is shown below. 

Furthermore, these are the swapped rows similar to the swapping of rows/columns of an 

identity matrix to form a uniquely identified PM, 

[

1 2 3 4
5 6 7 8
9
13

10
14

11
15

12
16

]
               
↔   [

1 3 2 4
9 11 10 12
5
13

7
15

6
14

8
16

] 

𝐴 ⊗ 𝐵          ⟺          𝐵 ⊗ 𝐴 
 It can be observed in the above case that reverse order KP i.e. B⊗  A can be attained 

from 𝐴 ⊗  𝐵  by swapping the 2nd and 3rd rows and then same columns or vice versa. 

Taking A ⊗B and reshaping to make it B ⊗A using the assigned labels would lead towards 

the formation of permutation matrix as below 

𝐴 ⊗ 𝐵   1   2  3   4    

𝐵 ⊗ 𝐴  1   3  2  4 
 It is observed that the 1st and 4th rows of both are at the same place where as other 

2nd and 3rd rows/columns are swapped with each other. Considering the stated hierarchy, 

from 𝐴 ⊗ 𝐵 the permutations of rows of 𝐵 ⊗ 𝐴 can be achieved as follows: 

𝐴 ⊗ 𝐵   1   2  3   4   [
1 2
3 4

]   

1
3
2
4

     [1 3 2 4]   𝐵 ⊗ 𝐴    

 In order to transform 𝐵 ⊗ 𝐴 from 𝐴 ⊗ 𝐵, the matrix entries are first row permuted 

then column permuted. As stated earlier, the swapping hierarchy of the Kronecker product, to 

achieve its reverse order, is same as that of identity matrix. For the given example, the 

uniquely identified PM can be achieved using the same transitions of rows/columns as stated 

above. Here entries depict the placement of ‘1’ in each row/column of identity matrix. This 

swapping technique would lead us towards the unique permutation matrix that is used as 

uniquely identified Kronecker permutation matrix 

4.2 Pseudo code 
 Let us suppose two matrices A and B of 𝑛𝑥𝑛 dimensions. The generation of B ⊗ A 

from A ⊗  B is to formulated by using an 𝑛2  permutation matrix. This permutation matrix 

can be formulated as follows: 

1. Generate a natural number 𝑛𝑥𝑛 dimensional matrix having 𝑛2 entities. 

2. Reshape the matrix column wise in such a way that each (n+1)st column lies beneath 

the nth column. 
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3. Make this column vector into a row vector. 

4. The entities of this row vector point out towards the position of ‘1’ at a specific 

row/column. Write ‘1’ at every place pointing by the row vector and all other entries 

besides these locations are ‘0`s. 

5. This generated matrix is the required uniquely identified permutation matrix. 

 The implementation of the pseudo code for 4𝑥4 PM is as follows 

1𝑠𝑡

→  [
1 2
3 4

]  
2𝑛𝑑

→  [

1
3
2
4

]   
3𝑟𝑑

→   [1 3 2 4]    
4𝑡ℎ

→    [

1 0 0 0
0 0 1 0
0
0
1
0
0
0
0
1

]    
5𝑡ℎ

→     (𝑈𝑛𝑖𝑞𝑢𝑒 𝑃𝑀)  

   Similarly for 16x16 PM, it can be obtained by the swapping of natural number matrix 

rows/columns and following rows will come one after the other in 16𝑥16 identity matrix as 

[1𝑠𝑡, 5𝑡ℎ, 9𝑡ℎ, 13𝑡ℎ, 2𝑛𝑑 , 6𝑡ℎ, 10𝑡ℎ, 14𝑡ℎ, 3𝑟𝑑 , 7𝑡ℎ, 11𝑡ℎ,15𝑡ℎ, 8𝑡ℎ, 12𝑡ℎ, 16𝑡ℎ] 

5 Observation and Results 

 In order to compare our proposed methodology, we generated random matrices of 

order 4x4 till 20x20 for Kronecker Product, requiring permutation matrix of order 16 x16 up 

to 400x400 to calculate its reverse order. The Kronecker product for these matrices were 

calculated and afterwards derived from their reverse order product, by generating 

permutation matrix. It is observed the original KP and the one calculated using its reverse 

order using PM is always same and their difference gives the null matrix that verifies the 

applicability of this technique.  For instance let us suppose two matrices of order  3𝑥3. 

A = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

]  & B = [
𝑗 𝑘 𝑙
𝑚 𝑛 𝑜
𝑝 𝑞 𝑟

] 

 

A⊗𝐵 = 

[
 
 
 
 
 
 
 
 
 
𝑎𝑗 𝑎𝑘 𝑎𝑙
𝑎𝑚 𝑎𝑛 𝑎𝑜
𝑎𝑝 𝑎𝑞 𝑎𝑟

𝑏𝑗 𝑏𝑘 𝑏𝑙
𝑏𝑚 𝑏𝑛 𝑏𝑜
𝑏𝑝 𝑏𝑞 𝑏𝑟

𝑐𝑗 𝑐𝑘 𝑐𝑙
𝑐𝑚 𝑐𝑛 𝑐𝑜
𝑐𝑝 𝑐𝑞 𝑐𝑟

𝑑𝑗 𝑑𝑘 𝑑𝑙
𝑑𝑚 𝑑𝑛 𝑑𝑜
𝑑𝑝 𝑑𝑞 𝑑𝑟

𝑒𝑗 𝑒𝑘 𝑒𝑙
𝑒𝑚 𝑒𝑛 𝑒𝑜
𝑒𝑝 𝑒𝑞 𝑒𝑟

𝑓𝑗 𝑓𝑘 𝑓𝑙
𝑓𝑚 𝑓𝑛 𝑓𝑜
𝑓𝑝 𝑓𝑞 𝑓𝑟

𝑔𝑗 𝑔𝑘 𝑔𝑙
𝑔𝑚 𝑔𝑛 𝑔𝑜
𝑔𝑝 𝑔𝑞 𝑔𝑟

ℎ𝑗 ℎ𝑘 ℎ𝑙
ℎ𝑚 ℎ𝑛 ℎ𝑜
ℎ𝑝 ℎ𝑞 ℎ𝑟

𝑖𝑗 𝑖𝑘 𝑖𝑙
𝑖𝑚 𝑖𝑛 𝑖𝑜
𝑖𝑝 𝑖𝑞 𝑖𝑟 ]

 
 
 
 
 
 
 
 
 

  & B⊗𝐴 = 

[
 
 
 
 
 
 
 
 
 
𝑎𝑗 𝑏𝑗 𝑐𝑗
𝑑𝑗 𝑒𝑗 𝑓𝑗
𝑔𝑗 ℎ𝑗 𝑖𝑗

𝑎𝑘 𝑏𝑘 𝑐𝑘
𝑑𝑘 𝑒𝑘 𝑓𝑘
𝑔𝑘 ℎ𝑘 𝑖𝑘

𝑎𝑙 𝑏𝑙 𝑐𝑙
𝑑𝑙 𝑒𝑙 𝑓𝑙
𝑔𝑙 ℎ𝑙 𝑖𝑙

𝑎𝑚 𝑏𝑚 𝑐𝑚
𝑑𝑚 𝑒𝑚 𝑓𝑚
𝑔𝑚 ℎ𝑚 𝑖𝑚

𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑑𝑛 𝑒𝑛 𝑓𝑛
𝑔𝑛 ℎ𝑛 𝑖𝑛

𝑎𝑜 𝑏𝑜 𝑐𝑜
𝑑𝑜 𝑒𝑜 𝑓𝑜
𝑔𝑜 ℎ𝑜 𝑖𝑜

𝑎𝑝 𝑏𝑝 𝑐𝑝
𝑑𝑝 𝑒𝑝 𝑓𝑝
𝑔𝑝 ℎ𝑝 𝑖𝑝

𝑎𝑞 𝑏𝑞 𝑐𝑞
𝑑𝑞 𝑒𝑞 𝑓𝑞
𝑔𝑞 ℎ𝑞 𝑖𝑞

𝑎𝑟 𝑏𝑟 𝑐𝑟
𝑑𝑟 𝑒𝑟 𝑓𝑟
𝑔𝑟 ℎ𝑟 𝑖𝑟 ]

 
 
 
 
 
 
 
 
 

 

 
 The Permutation Matrix of order 9𝑥9 using the stated methodology will be: 
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 [
1 2 3
4 5 6
7 8 9

]
.
→

[
 
 
 
 
 
 
 
1
4
7
2
5
8
3
6
9]
 
 
 
 
 
 
 

   
.
→ [1 4 7 2 5 8 3 6 9]  

.
→   𝐼9 = 𝑃𝑀9 

 

𝑃𝑀9 =  

[
 
 
 
 
 
 
 
 
1 0 0
0 0 0
0 0 0

0 0 0
1 0 0
0 0 0

0 0 0
0 0 0
1 0 0

0 1 0
0 0 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 0 0
0 1 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 1]

 
 
 
 
 
 
 
 

 

 As stated in  (8) & (9),  

 

B⊗A =   𝑃(A⊗ B )𝑃𝑇  where,   𝑃 =  𝑃−1 = 𝑃𝑇 

 
 Substituting (9) in (8), it would become 

 

B⊗ A =   𝑃(A⊗ B ) 𝑃. 
 So using the above equation, 

 𝑃[(A⊗ B )𝑃𝑇] = 

𝑃𝑀9

[
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑎𝑗 𝑎𝑘 𝑎𝑙
𝑎𝑚 𝑎𝑛 𝑎𝑜
𝑎𝑝 𝑎𝑞 𝑎𝑟

𝑏𝑗 𝑏𝑘 𝑏𝑙
𝑏𝑚 𝑏𝑛 𝑏𝑜
𝑏𝑝 𝑏𝑞 𝑏𝑟

𝑐𝑗 𝑐𝑘 𝑐𝑙
𝑐𝑚 𝑐𝑛 𝑐𝑜
𝑐𝑝 𝑐𝑞 𝑐𝑟

𝑑𝑗 𝑑𝑘 𝑑𝑙
𝑑𝑚 𝑑𝑛 𝑑𝑜
𝑑𝑝 𝑑𝑞 𝑑𝑟

𝑒𝑗 𝑒𝑘 𝑒𝑙
𝑒𝑚 𝑒𝑛 𝑒𝑜
𝑒𝑝 𝑒𝑞 𝑒𝑟

𝑓𝑗 𝑓𝑘 𝑓𝑙
𝑓𝑚 𝑓𝑛 𝑓𝑜
𝑓𝑝 𝑓𝑞 𝑓𝑟

𝑔𝑗 𝑔𝑘 𝑔𝑙
𝑔𝑚 𝑔𝑛 𝑔𝑜
𝑔𝑝 𝑔𝑞 𝑔𝑟

ℎ𝑗 ℎ𝑘 ℎ𝑙
ℎ𝑚 ℎ𝑛 ℎ𝑜
ℎ𝑝 ℎ𝑞 ℎ𝑟

𝑖𝑗 𝑖𝑘 𝑖𝑙
𝑖𝑚 𝑖𝑛 𝑖𝑜
𝑖𝑝 𝑖𝑞 𝑖𝑟 ]

 
 
 
 
 
 
 
 
 

 𝑃𝑀9

 
  
  
  
  
 
 

]
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= 𝑃𝑀9

[
 
 
 
 
 
 
 
 
 
𝑎𝑗 𝑏𝑗 𝑐𝑗
𝑎𝑚 𝑏𝑚 𝑐𝑚
𝑎𝑝 𝑏𝑝 𝑐𝑝

𝑎𝑘 𝑏𝑘 𝑐𝑘
𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑎𝑞 𝑏𝑞 𝑐𝑞

𝑎𝑙 𝑏𝑙 𝑐𝑙
𝑎𝑜 𝑏𝑜 𝑐𝑜
𝑎𝑟 𝑏𝑟 𝑐𝑟

𝑑𝑗 𝑒𝑗 𝑓𝑗
𝑑𝑚 𝑒𝑚 𝑓𝑚
𝑑𝑝 𝑒𝑝 𝑓𝑝

𝑑𝑘 𝑒𝑘 𝑓𝑘
𝑑𝑛 𝑒𝑛 𝑓𝑛
𝑑𝑞 𝑒𝑞 𝑓𝑞

𝑑𝑙 𝑒𝑙 𝑓𝑙
𝑑𝑜 𝑒𝑜 𝑓𝑜
𝑑𝑟 𝑒𝑟 𝑓𝑟

𝑔𝑗 ℎ𝑗 𝑖𝑗
𝑔𝑚 ℎ𝑚 𝑖𝑚
𝑔𝑝 ℎ𝑝 𝑖𝑝

𝑔𝑘 ℎ𝑘 𝑖𝑘
𝑔𝑛 ℎ𝑛 𝑖𝑛
𝑔𝑞 ℎ𝑞 𝑖𝑞

𝑔𝑙 ℎ𝑙 𝑖𝑙
𝑔𝑜 ℎ𝑜 𝑖𝑜
𝑔𝑟 ℎ𝑟 𝑖𝑟 ]

 
 
 
 
 
 
 
 
 

 

                                                                                                                                 

      =  

[
 
 
 
 
 
 
 
 
 
𝑎𝑗 𝑏𝑗 𝑐𝑗
𝑑𝑗 𝑒𝑗 𝑓𝑗
𝑔𝑗 ℎ𝑗 𝑖𝑗

𝑎𝑘 𝑏𝑘 𝑐𝑘
𝑑𝑘 𝑒𝑘 𝑓𝑘
𝑔𝑘 ℎ𝑘 𝑖𝑘

𝑎𝑙 𝑏𝑙 𝑐𝑙
𝑑𝑙 𝑒𝑙 𝑓𝑙
𝑔𝑙 ℎ𝑙 𝑖𝑙

𝑎𝑚 𝑏𝑚 𝑐𝑚
𝑑𝑚 𝑒𝑚 𝑓𝑚
𝑔𝑚 ℎ𝑚 𝑖𝑚

𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑑𝑛 𝑒𝑛 𝑓𝑛
𝑔𝑛 ℎ𝑛 𝑖𝑛

𝑎𝑜 𝑏𝑜 𝑐𝑜
𝑑𝑜 𝑒𝑜 𝑓𝑜
𝑔𝑜 ℎ𝑜 𝑖𝑜

𝑎𝑝 𝑏𝑝 𝑐𝑝
𝑑𝑝 𝑒𝑝 𝑓𝑝
𝑔𝑝 ℎ𝑝 𝑖𝑝

𝑎𝑞 𝑏𝑞 𝑐𝑞
𝑑𝑞 𝑒𝑞 𝑓𝑞
𝑔𝑞 ℎ𝑞 𝑖𝑞

𝑎𝑟 𝑏𝑟 𝑐𝑟
𝑑𝑟 𝑒𝑟 𝑓𝑟
𝑔𝑟 ℎ𝑟 𝑖𝑟 ]

 
 
 
 
 
 
 
 
 

  = 𝐵 ⊗A 

  

The results obtained are by calculating the reverse product directly, and by evaluating 

it through permutation matrix technique gives the same result, as the subtraction of the two, 

gives a null matrix, that intern proves the reliability of this methodology. 

6 Conclusion 

 This area of report gives a brief overview of Kronecker product and its 

implementation in finding the reverse order multiplication, as in formulation DFT in signal 

processing using a unique permutation matrix technique by finding it intuitively. This would 

lessen its computation cost by not calculating the reverse product being it to be 

computationally expensive algorithm and intern evaluating it by using the ground principles 

of matrix theory through a unique permutation matrix, from the same previously found 

Kronecker product. The computation cost to calculate the PM for reverse order KP will be 

minimum as the entities for an 𝑛x𝑛 unique PM can be depicted directly, without finding it 

from n! PM’s.  

 

 


