An Empirical Model Based Optimal Architecture for N-Bits

M-Points Fast Fourier Transform

Author
Muhammad Ghashan Ali
00000206067

Supervisor
Dr. Shoab Ahmed Khan
Co-Supervisor
Dr. Sajid Gul Khawaja

DEPARTMENT OF COMPUTER ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY
ISLAMABAD
July 2019

An Empirical Model Based Optimal Architecture for N-Bits

M-Points Fast Fourier Transform

Author
Muhammad Ghashan Ali
00000206067

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Engineering

Supervisor
Dr. Shoab Ahmed Khan
Co-Supervisor
Dr. Sajid Gul Khawaja

Thesis Supervisor’s Signature:

Thesis Supervisor’s Signature:

DEPARTMENT OF COMPUTER ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD
FEBRUARY 2019

Declaration

I certify that this research work titled “An Empirical Model Based Optimal Architecture for
N-Bits M-Points Fast Fourier Transform” is my own work. The work has not been presented

elsewhere for assessment. The material that has been used from other sources it has been
properly acknowledged / referred.

Signature of Student
Muhammad Ghashan Ali
00000206067

Language Correctness Certificate

This thesis has been read by an English expert and is free of most typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

ii

Signature of Student
Muhammad Ghashan Ali
00000206067

Signature of Supervisor
Dr. Shoab Ahmed Khan

Signature of Co-Supervisor
Dr. Sajid Gul Khawaja

Copyright Statement

Copyright in text of this thesis rests with the student author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instructions given
by the author and lodged in the Library of NUST College of E&ME. Details may be
obtained by the Librarian. This page must form part of any such copies made. Further
copies (by any process) may not be made without the permission (in writing) of the
author.

The ownership of any intellectual property rights which may be described in this
thesis is vested in NUST College of E&ME, subject to any prior agreement to the
contrary, and may not be made available for use by third parties without the written
permission of the College of E&ME, which will prescribe the terms and conditions of
any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

iii

Acknowledgements

By the grace of the ALLAH Almighty, my Master’s thesis is finally complete. It was
quite an arduous exercise that could not have been completed without the help of ALLAH
Almighty and the strength that he bestowed upon me.

Moreover, | owe my deepest gratitude to my incredible supervisor Professor Dr.
Shoab Ahmed Khan for his patient guidance, motivation and appreciation throughout this the
course of this thesis. | am very thankful to him that he showed faith in me and allowed me
with one of my life’s greatest opportunity to work with him.

I am also highly obliged and grateful to my thesis co-supervisor Dr. Sajid Gul
Khawaja who always encouraged me in my entire thesis work, irrespective of whether its
thesis report, research publication, presentations, so on and so forth. Without him this
incredible journey would be pretty difficult.

Furthermore, a special thanks to Dr. Muhammad Usman Akram for his valueable
feedback in this research work. Many times he became a helping hand in execution of this
work.

| am also eternally grateful to my mother and sisters, Sharmeen and Ishmal, who
supported me. In addition to my friends and family, especially Engr. M. Wagas, Dr. Shoaib
& Dr. Johar who were a helping hand to me in every step of my journey. Their support was
what made me accomplish this herculean task.

Without their support — in every sense of the word — and constant guidance, this
thesis would never have been conceived or completed (and definitely not in time). | cannot
thank them enough for their role in the completion of this thesis and report. Additionally, 1
would like to express my gratitude towards everyone who provided me assistance in any

stage of this thesis accomplishment.

iv

In dedication
To my Father Mr. Wagar Akhtar (Late)
&
To my Mother Mrs. Samia Firasat:
for encouraging and supporting me to achieve this daunting task.
To my Siblings, Cousins and Friends:

for their patience, continuous care and support during my hard times.

Abstract

The use and vast implementation of Discrete Fourier Transform has revolutionized the world
and allowed the researchers to think of the modern world from a different perspective. The
discovery of Fast Fourier Transform has laid the foundation of an entirely new dimension to
the modern world. Keeping in view its utmost importance in the future industry researchers
tried to design its hardware architecture as per the requirement of the application. Several
architectures have been proposed time to time with new inventions in the previous designs.
Some architectures consider clock rate, some take architectural area into consideration, some
focuses on parallel execution of the algorithm, so on and so forth. Considering all these
inputs to the industry that has been a part to modern world time to time, this research presents
an empirical model based upon the optimal architectures for Fast Fourier Transform
algorithm for n-bits m-points input. This empirical model is obtained by making several
architectures and their respective characteristics are obtained. The data obtained is then
passed through a machine learning algorithm known as Regression Algorithm. Linear,
quadratic and cubic regression technique is applied to achieve the hierarchy of the designed
architectural parameters and this intern will provide us with the empirical models of the
architecture. This model will provide us with the specifications of the futuristic architecture
that mainly depends upon the one’s requirement i.e. either one considers a single parameter
or a tradeoff between different hardware parameters. The parameters that are mainly
considered are number of Slice LUT’s, LUT FF Pairs, clock rate, number of processing
elements and number of clock cycles required. This proposed methodology can be applied to

any hardware architectural designs for analysis and generation of empirical models.

Key Words: Discrete Fourier Transform, Fast Fourier Transform, Processing Element,

Butterfly Architecture, n Radix FFT, Permutation Matrix, Kronecker Product.

vi

Table of Contents

DECLARATION ..ottt sssssssss s ssssssssss s sssssssss s ssasssssnssn s nassnsnes
LANGUAGE CORRECTNESS CERTIFICATE........ccoommmmmmmnmmmmsmnnsssssssassnn
COPYRIGHT STATEMENTccosuiiimimmmnsnssmsmnsmsmssssnssssssssssssssssssssssssssssssssssssssassssaes
ACKNOWLEDGEMENTSccvsiimimimmnsmsmmninsmsses
L 2 . X O3 L,
TABLE OF CONTENTS......cccimmmmnmsemmmmsmsmsmnssssssnsses
LIST OF FIGURESoiiimimmmnmmnsmsssinsssssssssssss s ssssssssssssssssssssss s
LIST OF TABLES. ... s sssssssssssssssssssssss s sassssnes
CHAPTER 1 : INTRODUCTIONcccmimmsmmmsnmsemsssssssssnsses

1.1 MOTIVATION c.vtrrrreserssrsessesssssesssssssssessessssssesssssssasens

1.2 PROBLEM STATEMENT......ovuomerrerernessnesnns

1.3 AIMS AND OBJECTIVES ooooeeeeeeeeeeeseeeeeseseseee

1.4 STRUCTURE OF THESIS...vcuurermessresssessnnes

W wN =

CHAPTER 2 : LITERATURE REVIEW.......cccnmimimmnsnssssnsssssssssnans

2.1 INTRODUCTION TO FAST FOURIER TRANSFORM

2.2 RADIX 2 FAST FOURIER TRANSFORM

2.2 PROPOSED FFT ARCHITECTURES BY RESEARCHERS

CHAPTER 3 : METHODOLOGYccconmsmmmmmmmmmmnssmmmnssssss s s sssassnsas

3.1 EMPIRICAL MODEL FOR FFT......rrrrereenens

3.1 PROPOSED HARDWARE ARCHITECTURE

3.1.1 Basic Building Block / Butterfly Processing Element

3.1.2 Butterfly Processing Element Architecture
3.1.3 Field Programmable Gate Array (FPGA) Implementation
3.1.4 Select Lines for Proposed Architecture

3.2 WORKING OF EMPIRICAL MODEL....oeueeesessessesnns

CHAPTER 4 : EXPERIMENTAL RESULTS.......cccmnmmmmmmmmmnmsssnsssssssssssassssas
4.1 RESULTS AND DISCUSSIONccrveereereenseessersseens
4.2 EXECUTION, WORKING AND IMPLEMENTATION OF EMPIRICAL MODEL

CHAPTER 5 : CONCLUSION AND FUTURE WORK........ccosmmmmmmmmmsmnsmsnnsmsmssssssssseians
5.1 CONCLUSION woetersserssesssessssssssssesssssssssssssssssssssssssssees
5.2 CONTRIBUTION...ccueeseesnesseesssesssessesssesssesssesssesssssssssssesns
5.3 FUTURE WORK...ccnerrreerrerseesssesssesssessesssesssesssssssssssssssesns

CHAPTER 6 : REFERENCES.........cccoommmnmmmmssnssss s s sssassssas

ANNEXURE : FINDING THE UNIQUE PERMUTATION MATRIX FOR REVERSE ORDER
KRONECKER PRODUCT INTUITIVELY FOR FAST FOURIER TRANSFORM

1 INTRODUCTION ...vurerereecrsrsesesessssssssesesssssssesessssssssssessaees
2 PERMUTATION MATRIX....ocoeeerrerererenersereseaens
2.1 Rows and Column Permuted Matrix
3 KRONECKER PRODUCT AND PERMUTATION MATRIX
4 PROPOSED METHODOLOGY ..overereeerrerereresesessees

vii

5 OBSERVATION AND RESULTS 48
6 CONCLUSION covurrsresrssrsersesessessssssssssssssssssssessssssassasses 50
7 REFERENCES ..ttivresessessessessssssesssssssssessssssesssssssssesssssssssessessssssessesssssssssssases ERROR! BOOKMARK NOT DEFINED.

viii

List of Figures

FIGURE 2-1: RADIX 2- 8 POINT FAST FOURIER TRANSFORM ARCHITECTURE ...cevetvtrtetetetereresesesssesessesesesesesesesssssssssssssssssssnsssnsaes 5
FIGURE 3-1: INPUTS/OUTPUTS OF EMPIRICAL MODEL ...covrieueriresserssnsersesssnssessssssssens

FIGURE 3-2: BLOCK DIAGRAM OF PROPOSED ARCHITECTURE
FIGURE 3-3: HARDWARE IMPLEMENTATION OF 4 POINT FFT wiTH 1 PROCESSING ELEMENT
FIGURE 3-4: BUILDING BLOCK FOR FFT (BUTTERFLY PROCESSING ELEMENT)
FIGURE 3-5: BUTTERFLY ELEMENT ARCHITECTURE DESIGN

FIGURE 3-6: FPGA DESIGN FOR 4 POINT 1 PE ..ot

FIGURE 3-7: DETAILED RTL SCHEMATIC FOR 4 POINT 1 PE ARCHITECTURE ...ceisuereueueueeneneseseresesesesessssssssssessssssssnsnsssssssesens

FIGURE 3-8: FPGA DESIGN FOR 4 POINT 2 PE ...ttt ettt et bbb e e

FIGURE 3-9: DETAILED RTL SCHEMATIC FOR 4 POINT 2 PE ARCHITECTURE ...ccecvtetntnrereneneneneeseesesesesesesessssssesens

FIGURE 3-10: APPLICATION OF LINEAR, QUADRATIC AND CUBIC REGRESSION ON A RANDOM DATASET [29]

FIGURE 4-1: MATLAB FFT COMPLEX SIGNAL EXECUTIONcuetuiererererererereresesessssssssssesesssssssssssssesesssesssesessssssnsns

FIGURE 4-2: GENERATED WAVE FORM FOR 4 POINT FFT USING 1 PE ..ottt eenens

FIGURE 4-3: GENERATED WAVE FORM FOR 4 POINT FFT USING 2 PE ..ottt seenens

FIGURE 4-4: COMPARISON OF 8 BIT INPUT FOR M-POINT FFT ON BASIS OF FIGURE (A): SLICE LUT’s ; FIGURE (B)
LUT FF PAIRS; FIGURE (C)CLOCK RATE....cuiiueeeeeeuseseesssssssssesssssssssssssssessssssssssssssss s ssss s ssssssssssssnns 27

FIGURE 4-5:COMPARISON OF 16 BIT INPUT FOR M-POINT FFT ON BASIS OF FIGURE (A): SLICE LUT’s ; FIGURE (B)
LUT FF PAIRS; FIGURE (C)CLOCK RATE....cuiiueeeeeeuseseesssssssssesssssssssssssssessssssssssssssss s ssss s ssssssssssssnns 28

FIGURE 4-6: COMPARISON OF 32 BIT INPUT FOR M-POINT FFT ON BASIS OF FIGURE (A): SLICE LUT’s ; FIGURE (B)
LUT FF PAIRS; FIGURE (C)CLOCK RATE..irtuisessesressssssesssneses 29

FIGURE 4-7: REGRESSION TECHNIQUE FOR 8 BIT INPUT AND 1 PROCESSING ELEMENT FOR M-POINT FFT ON
FIGURE (A): SLICE LUT’s ; FIGURE (B) LUT FF PAIRS; FIGURE (C)CLOCK RATE.....covomerrernrerersssssessesssssenanns 30

FIGURE 4-8: COMPARISON OF 32 BIT INPUT FOR CLOCK RATE: ...vtveereresesssnssnssssssessessssssssssssssssssessesssssssssssssssssssssssssssssns 32

FIGURE ANNEX-0-1: GENERATION OF 4! PERMUTATIONS OF 4X4 IDENTITY ..ocovtresrresrresrsenssressssessssessssessssessssessssessssessssessenes 45

ix

file:///C:/Users/HP/Desktop/ICACTE%20Refund/Thesis/Final%20thesis%20Report10-10-19%20Dr.%20Sajid.docx%23_Toc19783152

List of Tables

TABLE 1: SELECT LINES FOR 4 POINT 1 PROCESSING ELEMENT ..ovcieteteteseetesesses st sessessassessssessssessssssssssessssensassesssssnses 20
TABLE 2: SELECT LINES FOR 4 POINT 2 PROCESSING ELEMENT ..ovuiicteteeresestereeesessesessessassssssse s sessssssssssessssensassesssssnsas 20
TABLE 3: SELECT LINES FOR 8 POINT 1 PROCESSING ELEMENT ..oveectetetesesteseees s sesessessasssssssessssesssssssssessssensassesssssnses 21
TABLE 4: SELECT LINES FOR 8 POINT 2 PROCESSING ELEMENT....ccoveteteereerstereesesssesssesassesssssssssesssssssssessssensassesssssnsas 21

TABLE 5: SELECT LINES FOR 8 POINT 4 PROCESSING ELEMENT
TABLE 6: EMPIRICAL MODELS FOR N-BIT {8, 16 AND 32}, M-POINT € {4, 8, 16 AND 32} FOR PROCESSING

ELEMENTS € {1, 2, 4, AND 8} ..ottt isssssesssssssssssss st ssssss s sssssss s sssesssns 31
TABLE 7: REQUIREMENTS FOR GENERATION OF HARDWARE PARAMETERS: ..ccvtveniirensiresrsessssesssesssesssesssesssessssessssens 32
TABLE 8: ARITHMETIC CALCULATIONS BASED ON EMPIRICAL MODEL FOR HARDWARE PARAMETERS STATED IN

LI = 0 OO OO TPT 33
TABLE 9: SQUARED ERROR FOR DIFFERENT PROCESSING ELEMENTS AS PER REQUIREMENT IN TABLE 7..cocvenene. 33
TABLE 10: REQUIRED CYCLES FOR GENERATED HARDWARE FOR 4 PROCESSING ELEMENTS.....ccccovvrrmrerereseesssssssesesesenenenes 34
TABLE 11: ARITHMETIC CALCULATIONS BASED ON EMPIRICAL MODEL FOR HARDWARE PARAMETERS STATED IN TABLE 7

FOR 116 BIT INPUT ..ueuteiriririetstetstesesssessse e e e e e e sesesssessssssssasesasssssssssssssssesesesessssssssesasasasasesessssssssnsssssssssssessssssesasasasassssssnsaes 34
TABLE 12: REQUIRED CYCLES FOR GENERATED HARDWARE FOR 2 PROCESSING ELEMENTS....ccovieninrninerenssssnesesesssssssnesesens 35
TABLE 13: ARITHMETIC CALCULATIONS BASED ON EMPIRICAL MODEL FOR HARDWARE PARAMETERS STATED IN TABLE 7

FOR 32 BIT INPUT .eeuteriereresestsessesesssssssssssssssesesesesessssssssssssesasassssssssssssssssssssssssssssssesesesasasesessssasssnsnssnsssssssssssesssasasasasssensnsaes 35
TABLE 14: REQUIRED CYCLES FOR GENERATED HARDWARE FOR 1 PROCESSING ELEMENT ..cvvtvuieninnninerenssssseseresssssssnesesens 36
TABLE 15: SUMMARIZED SQUARED ERRORS FOR 8, 16 AND 32 BITS INPUT ..vcevuerereeieeneresssessssesessesssssessssesssssesssssssassesssssases 36

Chapter 1 : INTRODUCTION

With an adverse research in field of science and technology, Fast Fourier Transform
emerges out as one of the main basic tool for signal analysis and signal processing. The
actual implementation and usage of FFT in major applications in modern era, for instance in
implementation of 5G MIMO OFDM system [1], hearing devices, MRI, classical mechanics,
military purposes and much more [2], that depicts its utmost importance in daily life of an
individual.

In modern world, the data is expanding adversely. The amount of data we produce on
daily basis is truly mind blogging. Approximately 2.5 quintillion bytes of data [3] of data is
generated on daily basis. Almost 90% of the data currently present, has been generated over
the last two years [4]. With the increase in data generation the analytical tools are also
burdenized to improve the efficiency and performance of the current systems. Taking
software as research platform for analysis of such big data is generally a time taking task that
can be catered for using state of the art hardware, capable of performing such an immense
task in the meantime.

Considering the applications in of FFT in real life, the implementation of this
algorithm varies as per the requirement of the applications. Some applications consider the
hardware execution area to be minimized, some take frequency constraints into consideration,
few applications focuses on the parallelization of this algorithm to lessen the execution time
and many such requirements for several applications are addressed by researchers at different
times.

In this report we present an empirical model based optimal architecture for FFT
algorithm that focuses on the requirement of the application and depicts its nearly possible
architecture based upon the proposed model, for n-Bits m-Points input considering hardware

parameters as Slice LUT’s, LUT FF Pairs, clock rate and clock cycle.

1.1 Motivation

It’s quiet difficult to believe, but in 1986, we had as little as 1% of today’s total media
storage capacity in digital form. By 2007, this number came up to 94%, which best illustrates

the speed at which digitalization came about now [5].

https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1

With an advent of digital world, signals and systems have made its way to the
technological path. Understanding, exploring and improving the world has always been a part
of human nature. During the last decade, several mind blowing researches on signal
processing have been made that entirely changed the thinking perspective of the digital world
that may consider discovery of Fast Fourier Transform by Cooley and Turkey [6] in 1965 on
the top of the list. With the passage of FFT has proved its utmost importance in the daily life
of an individual because of its immense use in major applications.

Since its usage varies as per its need in any application, in order to design a hardware
for its use in any area / field, we must design a generalized optimal hardware based upon real
time models / architectures, that is capable of performing all the desired task to a certain
level, so that one can meet his technological requirement as per his need.

We need to specialize hardware because in every aspect of life in modern world
everything is in its hardware form. Specializing the hardware is very much necessary to meet
up the day to day requirements in a way to meet the software requirement.

In the early stages of the digital technology, the algorithms were not that much
extensive and hence doesn’t need that much hardware execution, but in the modern world this
is currently not the case, now there is a special need to specialize the hardware so that we can
meet up with the software requirements and can excel in state of the art technology.

As the required specs to execute the intensive algorithms are increased, the state of
the art hardware may not meet up the software requirements. This needs the hardware
researchers to get the way out of it. As any hardware specs is altered, there should have been
any trade off in some other specs, and hence it’s currently the need of the modern world to

excel the hardware to meet up the day to day requirements.

1.2 Problem Statement

FFT is being used in the modern era as a key to many bottlenecks faced in signal
processing. Its wide hardware applications forced the researchers to put their input into it, to
meet the requirements of the modern world using this technique. The purpose of this report is
to provide with an empirical model that is based upon optimal FFT architecture n-bits m-
Points using Field Programmable Gate Array (FPGA) as hardware platform. This empirical

model is obtained using a renowned machine learning algorithm i.e. regression algorithm.

This model will help the users in a way that they can predict their FFT architecture
constraints as per their need/requirement before its actual implementation.
Furthermore, the technique used in this report can be used in with any algorithm to

design its empirical model.
1.3 Aims and Objectives
Major objectives of the research are as follow:

e Formation of several optimal Architecture for Fast Fourier Transform.

e Architectural analysis of FFT architecture.

e Acquiring parameters for all the possible architectures for n-Bits m-points

e Generation of Empirical Model using Regression Algorithm on all the required
parameters.

e Optimal architecture generation as per one’s requirement by using empirical model.
1.4 Structure of Thesis

This work is structured as follows:

Chapter 2 gives review of the literature and the significant work done by researchers in past
few years for classification of heavenly entities using light curves.

Chapter 3 consists of the proposed methodology in detail. It includes the details about the
proposed FFT hardware.

Chapter 4 includes all the experimental results accompanied by relevant figures. In addition
to this, execution and working of the empirical model is also discussed in this
section.

Chapter 5 concludes the thesis and reveals future scope of this research

Chapter 6 contains the references used in this thesis report.

Annexure briefly describes an intuitive technique to achieve Permutation Matrix for finding

reverse order Kronecker Product to execute FFT.

Chapter 2 : LITERATURE REVIEW

FFT acts as a basic fundamental tool for almost all the up gradation that exists in the
modern era. This tool is considered as one of the most powerful tool that Signal Processing
have with itself. The actual implementation of anything that is used by people ends up in its
hardware form. As we are discussing here the use, implementation, execution and
implementations of FFT, many hardware implementations are proposed by researchers as per
the requirement and need of the application.

The domain of the stated report mainly centers the actual architectural implementation
of Fast Fourier Transform algorithm. Researchers have proposed many architectures based
upon their requirement and specification of different platforms e.g. Field Programmable Gate
Array (FPGA), Graphical Processing Unit (GPU), Central Processing Unit (CPU) etc. Some

of the proposed architectural designs of FFT on different platforms are discussed below.

2.1 Introduction to Fast Fourier Transform

Fourier transform is considered as one of the fundamental tools in any signal
processing and analysis [7] [8] that allows us to bifurcate individual frequency components of
any digital signal. Fourier Transform is one of the most well established transformers to
study a signal from frequency prospective, it’s analysis and filtering. It primarily concerned
with the representation of a signal by estimation of trigopnometric functions or more precisely
by a series of periodic functions i.e. sinusoids. For a given sequence x(n), an n-point Discrete

Fourier Transform (DFT) can be calculated as
N-1

X(k) = Z XMW k= 01,2, ... ,N =1)

n=0

W is known as twiddle factor that can be calculated as,
nk _j2mk 2nnk . (2mnk
Wy*=e ' N =cos< N)—]Slﬂ(N) (2)

The computational cost of direct implementation of DFT as stated in equation 1 is

O(N2). By using the symmetry and periodicity properties of the twiddle factors, the FFT
algorithm can reduce the complexity to O(N log2 N). The importance of this transform
cannot be denied especially considering about its importance from application and analysis

perspective in Engineering, Technology and research.

2.2 Radix 2 Fast Fourier Transform

FFT is considered as an elementary tool for conversion of time domain signal into
frequency domain that has wide applications in real life. The use of FFT in different
applications that requires its hardware implementation, cannot be denied. Several hardware
architectures of FFT algorithm by many researchers, implement and use this transform as per
their need of use, as its implementation technique and usage may vary, as some application
primarily concerns about frequency constraints, some with throughput, few towards hardware
efficient implementation whereas some take processing time into consideration. All such type
of architectures are precisely discussed. In addition to this, here we present an optimal
architecture for n-Bit m-Point Fast Fourier Transform that is mainly based upon the empirical
models for different hardware constraints that give the expected requirements of the
architecture as per the one’s need i.e. either one wants his hardware to be area efficient, time
efficient, a tradeoff between area and time or it may depend upon one’s requirement/priority
for implementation of his desired architecture.

Here radix 2 implementation of Fast Fourier Transform is taken into consideration for

implementation Figure 2-1 and generation of an empirical model.

(> +)— X,

Xy

o X\

Ko
2 " 2
W' "
X5 ‘k’_ﬁ'
Xy }[’4
X5 “" x][’_g

()
(&)
()

—(+) A+ "‘
@ @ 1
()

()
(+)

Figure 2-1: Radix 2- 8 Point Fast Fourier Transform Architecture

2.2 Proposed FFT Architectures by Researchers

Feifei shen at el. [9] demonstrates the advantages and validity of using GPUs for FFT
over CUPs especially when large input size is targeted. The proposed design has two types of
input textures: image data textures containing rectangular texture (RGBA) for MxN image
whereas other one secondary texture i.e. log (N) and N columns where each row stores the
real and imaginary part of primary rotating factor. In this way the FFT butterfly calculation
requires log (M) x log (N) times rendering. GPU used is Nividia Gefores 8600 video card as
hardware of GPU. Experimental comparison for different input size for open CV time, GPU
time and GPU maximum error were demonstrated by the author.

Mokhtar A.Aboleaze at el. [10] concentrated his research on energy consumption in
memory excess for FFT calculation. It was also investigated the effect of number of registers
in CPU to lessen the energy consumption in excessing the memory. It was also investigated
that the number memory access depends upon machine code, compiler, and writing the
memory. It was assumed in the paper that compiler uses available register to access in store
the data. The FFT algorithm that were used for comparison were radix two DIF FFT radix 4
and a Twiddle factor based FFT algorithm with reduced memory access.

Peter A. Milder et el. [11] used a well-known tool i.e. spiral, that automatically
generates corresponding hardware implementations, for DFT with non-power of two input
size. According to him most previous work on hardware implementations of non-power of
two sized input for DFT focuses on producing a solution for a specific
requirement/situation/application, i.e. a given problem size and performance requirement for
specified hardware. The author discusses 4 FFT algorithms including pease FFT, iterative
FFT, mixed radix FFT and Bluestein FFT.

Kota soloman Raju at el [12] proposed a DFT and IDFT hardware architecture based
on fluting point numbers to achieve accuracy and precision. General purpose arithmetic
modules based on 32 bit single precision IEEE.754 standard are design firstly and then
hardware architecture for DFT and IDFT based on radix two butterfly computation was
perform. Hardware sharing scheme was also introduced to lessen the hardware cost. To
design the architecture Verilog Hardware Description Language (VHDL) was used,
simulated on ModelSim 6.6E on Xilinx Virtex.5 LX110T board.

K Ganesoan at el. [13] proposed a general purpose sequential FFT processor for 1024
points. The processor in capable of performing 1024 point FFT execution in 26.3 msec. the

processor is configured in distributed processing system with Intel 8086 microprocessor.

6

Radix 2 hardware implementation was perform on ATRW (1003J) 12x12 bit multiplier cum
accumulator LSI chip was used an arithmetic unit. The proposed processor computes each
butterfly operation in 64 basic clock cycles taking 5.12 p sec. the processor works on 20 KHz
sampling frequency.

Gouhui at el. [14] presented a novel design for configurable FFT/IFFT module to
provide scalability and reconfigurability. Here unified radix structure for radix 2,3,4,5 & 7 is
proposed. Furthermore issues for designing high performance Fourier algorithm for cognitive
radio communication and network systems are discussed. The clock period for the proposed
architecture is 1.988x10(-9) sec, whereas the fmax is 500 MHz.

Muniandi Kannan at el. [15] proposed DIT FFT pipelined hardware architecture for
low power multiplier less radix 4, single path delay comutator pipelined FFT processor for
16, 64 & 256 points for fixed points inputs. The proposed multiplier less architecture uses
common sub expression sharing so that it may replace complex multiplications by simple
shifting and addition operations. In this way a low power butterfly architecture is achieved.
59% and 43% power reduction is achieved for 16 points and 64 points radix 4 FFT when the
proposed architecture is compared with conventional FFT architecture based on non booth
coded wallence tree multiplier. The parameterization impact on power speed and
performance is also compared.

K. Indira Priyadarsini at el. [16] proposed a pipeline VLSI implementation for FFT,
that adoptes a single path delay feedback. A reconfigurable complex multiplier and bit
parallel multipliers are used to store the twiddle factors and eliminating ROM (Read only
Memory) and achieving a ROM less FFT processor, thus the architecture may consume low
power according to the author. This ROM less low power FFT processor can be used for
OFDM applications. The author has design a reconfigurable complex constant multiplier
such that the size of ROM for twiddle factors can be considerably shrunk.

Rozita Teymourzadeh at el [17] proposed an FFT architecture considering floating
points to achieved high precision FFT. Since floating point architecture limits maximum
clock frequency and increases the power consumption, the author focuses on improving the
speed, area, resolution, power consumption and latency for FFT architecture. The proposed
architecture illustrates VLSI for floating points parallel pipelined (FPP) 1024 radix 2
processor making used of single butterfly element incorporated for intelligent controller. The
proposed radix two FPP-FFT was optimized in AISC under Silterra 0.18 pum and Mimos 0.35
pm technology libraries. 32 bit data was processed and synthesized using Xilinx ISE

platform. Maximum clock frequency for FPP-FFT processor was obtained as 227 MHz. The

7

latency for 1024 points input is 22 ps. The Estimated power consumption for Silterra and
Mimos was 640 pW and 1.198 uW respectively.

Archana Fande at el.[18] developed a low power complex multiplier design to reduce
the hardware required to implement the FFT algorithm for Radix 4. The aim to implement a
complex multiplier is to offer high speed. Low power consumption and lesser area. In this
way this proposed architecture would be suitable for various high speed, low power VLSI
architectures. These three parameters i.e. power, area and speed are always tradeoff. The
implementation of the hardware architecture was done on Sparton 6 Trainer Kit and the
hardware characteristics were compared with Sparton 3 using VHDL. The maximum path
delay to implement the complex multiplier in Radix 4 was obtained to be 11.656 nsec.

Yazan Samir Algnabi at el.[19] proposed a novel multiplier less pipelined architecture
for Radix 22 SDF FFT based on using digital slicing technique to meet the requirement for
high speed wireless communications system standards. An optimal constant multiplication
arithmetic architectural design for multiplication of a particular input with specified twiddle
factor is also proposed by the author. The proposed architecture was simulated on MATLAB
and FPGA Virtex 4. The hardware design was tested on TLA5201 logic analyzer and a high
speed of 669.277 MHz was achieved. The author claimed his proposed architecture to be 3.35
times faster compared with the conventional architectures and it only consumes 20% of the
conventional butterfly area. The proposed architecture comprises of twiddle factors that are
saved in ROM, Digital slicing complex multiplier, processing elements that are generally
butterflies and Nlog2N counter

Yifan Bo at el.[20] proposed an FFT processor for low power applications for
variable length input. The author employed a modified fata scaling scheme and trading
method to improve SQNR (Signal to Noise Ratio) performance. Memory based architecture
is proposed to support variable length FFT processing. To reduce the power dissipation, a
tailored constant multiplier array is introduced in the data path. The author claims to perform
64 to 8192 input FFT at 100MHz processing speed. The SQNR of 55.4dB and 33.3dB are
achieved for 64 point and 8192 point FFT respectively.

Atin Mukerjee at el.[21] proposed an area efficient Radix 2 FFT architecture that
reuses the same butterfly element several times, that intern rescues the required area. To
reuse the butterfly element many times and forwarding the input to the same processing
element, a routing network is used that routes the input at a specified time. The proposed FFT

processor is simulated using VHDL and the results are simulated on Virtex 4 FPGA. The

author claims that this architecture outperforms the conventional architecture for N-Point
FFT Processor in terms of area that is reduces by a factor of LogN2 with +

Yousri Ourhani at el. [22] present an architecture based on radix 4 FFT algorithm
consisting of a novel memory sharing and dividing technique with processing elements
having parallel in parallel out capability. The proposed architecture is capable to perform N
Point FFT with 4/3 delay elements and involves a latency of N/4 cycles. The author
compared his architecture with R4SDC, R22SDC, RX4-B1, RX4-B2, RX4-B5 and XILINX
IP on basis of throughput by slice ratio. The analysis of the proposed design shows the
execution time to be 56% lower than obtained with Xilinx IP core and increase in 19% of
throughput by area ratio for 256 Point FFT.

Dariusz Puchala at el.[23] compared the effectiveness of selected variants of Radix 2
FFT on GPU's and CPU's. The algorithm that are taken for consideration differ in memory
consumption and data flow path arrangement that may affect the global memory coalescing
and cache memory exploitation. The author claimed that we can achieve 30 times more
acceleration in performing FFT on GPU's compared with CPU's for sufficiently large sized
inputs. It was also claimed that FFT phase coefficients calculation and bit reversal
permutation stages for GPU implementation highly outperforms the standard CPU
implementation. Another observation shared by the author is that the algorithms categorized
by the unified structures i.e. having identical stages are equally suited for both CPU's and
GPU's.

Praveen Kumar Jhariya at el. [24] compared two FFT architectures simulated on
FPGA. The designs are compared for 8 point input. The first design comprises of a butterfly
unit and a complex multiplier that is used several times in execution of FFT. Whereas in the
other design, 4 butterfly units along with 2 multipliers are used thrice in 8 point FFT
execution. It was concluded in the paper that the area required by the first design is less but
the latency of this design is comparatively higher as it took 12 butterfly cycles to compute 8
point FFT. On the other hand, second design shows comparatively higher performance but
consumes a larger architectural area.

The summary of the above stated case study is as follows:

St | Researcher Platform Used | Contribution/ Results Acquired/ Conclusions
No.

I. | Feifei shen GPU, CPU e Demonstrates the advantages and validity of
using GPUs for FFT over CUPs using large
input size

e GPU used is nividia Gefores 8600

Experimental comparison for different input
size were demonstrated for :

= open CV time,

= GPU time

= GPU maximum error

II. | Mokhtar CPU o Effect of number of registers in CPU to
A.Aboleaze lessen the energy consumption in excessing
the memory was investigated

e |t was concluded that number memory
access depends upon:

* machine code
= compiler
= writing the memory.
I11. | Peter A. Spiral, a tool e A generalized DFT with non-power of two
Milder that input size was implemented using spiral,
automatically that is not application oriented
generates e 4 FFT algorithms were discussed including:
corresponding
hardware = Pease FFT
= lterative FFT
» Mixed radix FFT
= Bluestein FFT
IV. | Kota soloman | FPGA e Proposed a DFT and IDFT hardware
Raju architecture based on fluting point numbers
to achieve accuracy and precision.

e Hardware sharing scheme was introduced

V.| K Ganesoan Intel 8086 e sequential FFT processor for 1024 points in
microprocessor 26.3msec.

e Processor computes each butterfly operation
in 64 basic clock cycles taking 5.12 p sec

e Works on 20KHz clock Rate

VI. | Gouhui e Novel design for configurable FFT/IFFT
module to provide scalability and
reconfigurability.

e unified radix structure for radix 2,3,4,5 & 7
is proposed.

e This Fourier algorithm is proposed for
cognitive radio communication and network
systems

VIIL | Muniandi e Low power multiplier less radix 4, single
Kannan path delay comutator pipelined FFT

processor for Fixed point input.

complex multiplications are replaced by
simple shifting and addition operations
hence achieving low power butterfly
architecture

59% and 43% power reduction is achieved

10

for 16 points and 64 points radix 4 FFT

VIII.

K. Indira
Priyadarsini

VLSI

Reconfigurable complex multiplier and bit
parallel multipliers are used to store the
twiddle factors and eliminating ROM

ROM less FFT processor

Processor is applicable for OFDM
applications

IX.

Rozita
Teymourzadeh

VLSI

Floating Point FFT architecture is proposed
Proposed architecture is focused on speed,
area, resolution, power consumption and
latency

Proposed radix two floating points parallel
pipelined FPP-FFT was optimized in AISC
under Silterra and Mimos technology
libraries

Clock Rate for the processor was calculated
to be 227 MHz, whereas the latency was
calculated to be 22 ps

Archana Fande

VHDL

Proposed high speed low power VLSI
architecture and developed a low power
complex multiplier for Radix 4 FFT and
intern reduces the required hardware.

XL

Yazan Samir
Algnabi

MATLAB,
FPGA

Proposed a novel multiplier less pipelined
architecture for Radix 22 SDF FFT

Digital slicing technique was used.

optimal constant multiplication arithmetic
architectural design for multiplication is also
proposed.

Proposed architecture is 3.35 times faster
compared with the conventional
architectures as it consumes only 20% of the
conventional butterfly are

XII.

Yifan Bo

Proposed variable length FFT processor for
low power applications

Memory based architecture

tailored constant multiplier array is
introduced to reduce power dissipation.

64 to 8192 input FFT at 100MHz processing
speed

XIIL

Atin Mukerjee

VHDL
FPGA

Radix 2 FFT architecture is introduced that
reuses the same butterfly element several
times

Area reduces by a factor of LogN» for N
point FFT

There is also a negligible increase in
processing time for execution of the
algorithm.

XIV.

Yousri
Ourhani

FPGA

An architecture with a novel memory
sharing and dividing technique with

11

processing elements having parallel in
parallel out capability is proposed

e Perform N Point FFT with 4/3 delay
elements with a latency of N/4 cycles

e Proposed design has execution time to be
56% lower compared with Xilinx IP core

e increase in 19% of throughput by area ratio
for 256 Point FFT

XV. | Dariusz GPU, CPU e Compared the effectiveness of selected
Puchala variants of Radix 2 FFT on different
platforms

e Claimed to achieve 30 times more
acceleration in performing FFT on GPU's
compared with CPU's for sufficiently large

sized inputs.
XVI. | Praveen FPGA e Compared two FFT architectures for 8 bit
Kumar Jhariya input, simulated on FPGA

e The cons and pros of both the architectures
are discussed in detail by the author

After considering summarized inputs by different researchers of their time, we can
say that the advancement in the modern technology was possible only because of the
hindrances and bottlenecks faced by the world. These barriers laid the foundation for an
advent of the new technology to the modern era. Different platforms were used that mainly
depend upon its use in the application e.g. FPGA, GPU etc. Furthermore, with the passage of
time as the technology gets inflated, the execution time using the same technigue also became
an issue that is addressed accordingly by the researchers of that time. Same is the case with
the hardware area for the architecture and many other aspects of the same nature.

The main issue that was faced by several developers, analysts, scientists and
researchers was that any up gradation in technology was more or less application limited. As
any verity is added to the application there needs to reassemble all the architectural design. In
other words we can say that the hardware is entirely reshaped as the application for which it
was designed. In this thesis report we have presented an empirical model for signal
processing Fast Fourier transform algorithm that can be reshaped as per the requirement of
the user and application, or in other words we can say that the architecture can be reshaped
as the requirements get changed that mainly depends upon the number of Processing
Elements (PE) used. Using this technique for hardware designing, we can achieve
parallelism, lesser hardware area, or any other efficiency in our hardware that designed with

the same architectural blocks.

12

Chapter 3 : METHODOLOGY

This part of the thesis presents the steps for developing an optimal architecture for
Fast Fourier Transform for an n-bits m-points input using p-processing elements. The
proposed architecture is briefly explained in this section. Furthermore the execution, working
and architectural design of the processing element will also be discussed. With the help of
several hardware architectures and its analysis, an empirical model based upon the several
hardware parameters for FFT will be developed using machine learning algorithm. This
model will be our empirical model for n-bits m-points FFT. With the help of this generated
model we will be able to predict the futuristic parameters of the desired FFT hardware design
and feasibility of its implementation, its characteristics and other parameters before actual

implementing it.
3.1 Empirical Model for FFT

An empirical model is a generalized way for representation of a designed prototype
for the activities on basis of observation and experiment. It is generally used to represent
hierarchy of the results of the performed experiments. Furthermore, it is used for predicting
the futuristic results from the previously calculated dataset. Output requirements of the
hardware will be calculated by a decision tree i.e. either it has to consider any one of the
hardware parameter for optimization or a generalized hardware having a trade of for all the
parameters for generalized implementation as per ones requirement.

In this report we are considering following hardware parameters for making our
empirical model i.e. number of Slice LUT’s, LUT FF Pairs, clock rate The inputs of the
system will be ‘m’ i.e. point of FFT, desired Slice LUT’s, LUT FF Pairs, clock rate and clock
cycles in which one wants the hardware to perform the FFT and the output will include the
actual number of Processing Elements, Slice LUT’s, LUT FF Pairs, clock rate and clock

cycles required to perform that m-point FFT for that architecture.

13

Input Bits No of Processing Elements

Input Points No. of Slice LUT’s

No. of Slice LUT’s .
No. of LUT FF Pairs

No. of LUT FF pairs Clock Rate

Clock Rate No. of Clock Cycles

Clock Cycles

Figure 3-1: Inputs/Outputs of Empirical Model

The model will provide the user with the nearest possible actual hardware
specifications. Most probably, it is quite possible to have a difference in the actual and
required specifications, but the model will provide the user with the error of the actual and
required specifications. After that it will be upto the user/designer of the architecture that how
much he can trade off on any hardware parameter that is either required hardware area,

number of clock cycles required to perform the desired task or clock rate or something else.

3.1 Proposed Hardware Architecture

The proposed hardware architecture is based upon multiprocessor architecture (p-
processing elements), of homogenous PEs. These PEs are connected by a crossbar switch that
acts as a back bone for our architecture, shown in Figure 3-2.

A crossbar switch is generally an assembly of switches between inputs and outputs.
The switches are arranged in a matrix. If a crossbar switch has M inputs and N outputs, then
it has M x N matrix cross-points where the connections cross. It is a matrix where each
crossbar switch runs between two points, in a design that is intended to hook up each part of
an architecture to every other part. A crossbar switch finds its applications in various
disciplines as on network and system on chips (NOC & SOC) [25,26], in network processors
that uses rotating round robin algorithm [27], reconfigurable crossbar switches in network
processors to increase the performance and flexibility for multiprocessors and computer

clusters[28], integrated designs and much more.

14

Arbitrator

Proces sing
Element

Processing
Element

Crossbar Switch

Processing
Element

Processing Processing
Element Element
.
. .
. .
.
- .
Fome -

Output
Figure 3-2: Block Diagram of Proposed Architecture

The inputs for the processing element vary for every next cycle. In the stated
architecture a crossbar switch routes the input towards particular processing element, either
coming from original input (as in stage 1 of Figure 2-1) or some output that is treated as input
in the later cycles (Stage 2 and later of Figure 2-1). The routing of particular inputs towards
a specified processing element is achieved using an arbitrator (Figure: 3-2) . This arbitrator
generates the control signals that controls the of data from one processing element to another.
These control signals and its working will be discussed later on (Table:1-5).

From Figure 2-1 it can be observed that maximum number of Processing elements

that can be used for parallel execution for m-point FFT are % as for radix 2 FFT every PE

has 2 inputs and after that, wastage of hardware resources will occur in every executing

cycle, as in every clock cycle, there will be some part of architecture without any assigned

task. On the other hand, by using number of P.E. 5%, all the hardware resources are used. For

FFT implementation, the architecture should be capable to feedback the generated outputs.
To reuse the output of the system again as input, demultiplexers are used so that the output
generated can be routed towards the particular input line for further usage if required/needed
using demux select line.

To understand the working of the model let us suppose a 4 point input with 1 PE. In
the first cycle, original inputs will be forwarded towards original muxes from back muxes
(Figure 3-3) by using all the select lines as 0. The back mux has three inputs, one is the
original input, whereas other two are routed back inputs from the respective demultiplexers.
The original muxes have all the concerned inputs that will take part in FFT execution. The
input at 0 and 2 are firstly put forward using the select lines. In the next cycle of execution,
other two inputs (1 & 3) are given to the PE from original muxes (using select lines as 1 and

3). The outputs obtained in the respective cycles, are feedback through demultiplexers by

15

using the select lines same as used for muxes (labelled as original muxes in Figure 3-3). In
this way the first stage of 4 point FFT with 1 PE is executed. After the completion of the first
stage, in the second stage , system has three types of inputs in which the first is that of
original input, that will not take part in further execution of FFT, whereas the other two are
routed back inputs from the respective demultiplexers. For processing the 2nd stage, three
type of inputs are taken into account in back mux. To select the concerned input for
processing i.e. either original input or previously generated outputs (outl or out2), select
lines are used. These select lines put forward the input to the original multiplexer. In the first
half, the select lines will be 0 & 1 whereas in the next half it will be 2 & 3. As stated the
select lines for demuxes are same as original muxes in the respective cycles to put forward
the generated output to its initial place. The described architecture is shown in Figure 3-3. In
this way a FFT for 4 Point input with 1 PE is processed.

in0 =0
In0O_ol ——» 1 ‘ >
‘ F_in0 '
IN0_o2 —» 2 1 :
F_inO ~0 Twiddle Factors ‘
. sel_in0 F_inl -1
in1 l 6 Fin2—-s2 -) o *Ino_o1
| F_in3 PEin_1 addr X+yi
Inl_ol ‘ i "3 ‘ 1i »In1l_ol
nl_o > 1 | o A e y g \ |
‘ F_inl “ oyt ” 2 » In2_ol
| | |
In2_o2 »2 Msell PEin_1“ ‘ 3| » In3_o1l
outl ?
i | \|
Neelina Butterfly Element ‘ ' DMsel1
in2 >0 ?
PEin_2 ‘ ‘ out2 ol »In0_o2
|
In3_o1l > 1 | > 1 , In1_o2
‘ F2in2 outzw ‘ In2_o2
{ 2! » In2_o
In3_o2 - >2 F_inO -0 ‘
! F_inl > 1 ‘ 3/ , In3_o2
. sel_in2
£ 1 F_in2 > 2 |
in3 - - 0 ‘ ‘ PEin 2 DMsel2
F_in3 .3 =
In4_ol > 1 >
F_in3 Msel2
In4_o2 »2
[
' sel_in3
|
Back Mux Original Mux DMux
Figure 3-3: Hardware Implementation of 4 Point FFT with 1 Processing Element
3.1.1 Basic Building Block / Butterfly Processing Element

From the Figure 2-1, it can be noticed the main processing element for radix 2
hardware implementation of FFT illustrated are two adders and a multiplier. This is shown in

Figure 3-4, that acts as a building block for FFT execution, known as butterfly processing
element.

16

P

Xop
|54
o

Figure 3-4: Building Block for FFT (Butterfly Processing Element)

It can be noted here that the system has two inputs P&Q, a twiddle factor Wand two

outputs X, and X;. In FFT the inputs and twiddle factors plays the major (Pivotal) role in
processing of butterfly element, this basic building block of its architecture that can be
implemented as

X, = outl =inl+ (in2 * wn) ...(3A)

X1
Let outl = x1 + y1i
And inl = a+ bi

From (3A) & (3B)

& out2 = x2+y2i
,in2=c+di & wn=e+fi

x1+ yli = (a + bi) + ((c + di) * (e + fi))
=(a+ce—df)+ (b+cf +de)i

out2 = in1 + (in2 * —wn) ... (3B)

x2 +y2i = (a + bi) + ((c + di) * (—e — fi))
.. (44)

=(a—ce+df)+(b—cf —de)i ..(4B)
3.1.2 Butterfly Processing Element Architecture

The outcome of equations (4A)&(4B) are the two outputs of the PE,

acting as
building block (butterfly processing element) for FFT. The hardware implementation of
butterfly element (4A-B) is shown in Figure 3-5:
e+fi
ef
le iiei N f ‘ f
Slocy A R) S(x) d x
cHdl — 1= ‘7 —F— ‘ |+ e (a+ce-df)
|€€ 'de cf df | —N ‘ — outl
(X)| -2 X)) (X)) - X [t) (b+cf+de)i
-de _cf =df| | | | ;
-ce| ,g,,,‘ g = 1 B
| |
a B S | B [| T ‘ » 7+ ;m (a-ce+df) . out2
a+bi_ e [s | . e
a-ce a+ce bcf] btcf| ||| 7 ¥ (b-cf-de)i

Figure 3-5: Butterfly Element Architecture Design

In the stated butterfly element a + bi and ¢ + di are the two inputs that are
participating in execution of FFT whereas e + fi is the specific twiddle factor.

17

3.1.3 Field Programmable Gate Array (FPGA) Implementation

The FPGA architecture design after implementing the above model for 4 point FFT

using 1 processing element is depicted below in Figure 3-6. The stated hardware design has

signal to perform FFT and select lines as input and four output lines, as there is only one

processing element to perform FFT.

r N
20ar(31:0) out1_I{31:0)
Omseliaie) |
DMsei2(31:0) |
inseloato) |

insel 1(31:0)

insei2(31:0)

insel3(31:0) out1_R{31:0)
n_sel(31.0) |

Ino_I(31.)

in0_R(31:0)

in1_I{31:0)

in1_R(31:0)

in2_Ir31:0) out2_i(31:0)

in2_Ri3i:0)
in3_l31:0)

in3_R(31:0)

Msel1(31.0]
Msel2(31.0)
<k out2_R(31:0)

| N -

Figure 3-6: FPGA design for 4 point 1 PE

The detailed Register Transfer Level (RTL) schematic for the above architecture is
shown in the figure below. Here the muxes, demuxes and processing elements can be seen
properly that forms the basis of our architectural model.

]

A

T
i
|

i,

t .
[
I

Figure 3-7: Detailed RTL Schematic for 4 Point 1 PE Architecture

In the same way, using 2 processing elements for 4 point FFT, the FPGA design is

as follows:

18

Sut1_RI31:0)

ourE_I3 10,

oooooooooo

Suts_R31:0)

Figure 3-8: FPGA design for 4 point 2 PE

The only difference that can be observed in performing 4 point FFT using 1 and 2
processing elements are, increase in number of muxes and demuxes resulting in increasing
the number of select lines. Whereas on the output side, as the number of processing elements
are doubles the output lines are increased accordingly. The detailed RTL Schematic for 4

point architecture using 2 processing elements is shown in the figure below:

— = gy S

=
}

i
i

Figure 3-9: Detailed RTL Schematic for 4 Point 2 PE Architecture

Both the processing elements are shown in the above diagram. Furthermore,
the increase in number of select and output lines can be observed clearly as the number of

processing elements are increased.

19

Same methodology has been followed for n-Bits input of m-Points input with p-
Processing Elements. The select lines used for 4 and 8 Point FFT using p-Processing
Elements are shown in Table(1-5).

3.1.4 Select Lines for Proposed Architecture

The select lines for 4 Point FFT with 1 PE for back mux, original mux, memory
element and demux for the architecture in (Figure 3-3 & Figure 3-7) is shown in Table (1)

Ccy:/lclie sel_in0 | sel_inl | sel_in2 | sel_in3 | Msell | Msel2 | addr | DMsell | DMsel2
1 0 0 0 0 0 2 1 X X
2 0 0 0 0 1 3 2 0 2
3 1 1 2 2 0 1 3 1 3
4 1 1 2 2 2 3 4 0 1
XXX Z Z Z 7 7 7 Z 5 4

Table 1: Select Lines for 4 Point 1 Processing Element

By increasing the processing elements from 1 to 2, another twiddle factor select line
1.e. ‘addr’, two ‘Msel’ lines for multiplexers and two ‘DMsel’ select lines for demultiplexers

will be added in the architecture as shown in Figure 3-9, is depicted in Table(2)

Clk | sel_in | sel_in sel in2 sel_in | Msel | Msel | Ms | Ms | add | addr | DMsel | DMsel | DMsel | DMsel
Cyc 0 1 - 3 1 2 el3 | eld r 1 1 2 3 4

1 0 0 0 0 0 2 1 3 1 2 X X X X
2 1 1 2 2 0 1 2 3 3 4 0 2 1 3
X Z Z 4 4 Z 4 4 Z Z Z 0 1 2 3

Table 2: Select Lines for 4 Point 2 Processing Element

It should be noted here that in first cycle demux select lines are not initiated, being the
input that is in processing stage. When the processing of the first cycle is successfully done,
then it will be feed backward in the next cycle to its initial place. After the completion of the
cycle new inputs are forwarded with the help of select lines and the outputs are moved back
to their initial places using the previously used mux lines. In other words we can also say that
the current select lines are of input multiplexers, after passing through processing element,

will be select lines for demux in the next cycle

For 8 point FFT the select lines using one, two and four processing elements are
shown in Table3, Table4 and Table 5 respectively. The select lines for the twiddle factor
‘addr’, two ‘Msel’ Lines for multiplexers and two ‘DMsel’ select lines would be added in the

architecture, in a similar way as in Table(1-2).

20

Clk. | sel i | sel i|seli|seli|seli]|seli|seli|seli| Ms | Ms | ad | DMs | DMs

Cyc n(nl n2 n3 n4 nsS né n7 ell | el2 | dr ell el2
1 0 0 0 0 0 0 0 0 0 4 1 X X
2 0 0 0 0 0 0 0 0 2 6 2 0 4
3 0 0 0 0 0 0 0 0 1 5 3 2 6
4 0 0 0 0 0 0 0 0 3 7 4 1 5
5 1 1 1 1 2 2 2 2 0 2 5 3 7
6 1 1 1 1 2 2 2 2 4 6 6 0 2
7 1 1 1 1 2 2 2 2 1 3 7 4 6
8 1 1 1 1 2 2 2 2 5 7 8 1 3
9 1 1 2 2 1 1 2 2 0 1 9 5 7
10 1 1 2 2 1 1 2 2 2 3 10 0 1
11 1 1 2 2 1 1 2 2 4 5 11 2 3
12 1 1 2 2 1 1 2 2 6 7 12 4 5

XXX Z z z V4 V4 V4 V4 z z z z 6 7

Table 3: Select Lines for 8 Point 1 Processing Element

By increasing the number of P.E. the number of clock cycles required to perform FFT

will lessen to half (Equation (5)), but the select lines will increase accordingly

Clk | sel_ | sel_ | sel_ | sel_ | sel_ | sel_ | sel_ [sel_ | Ms | Ms | Ms | Ms | ad ad DM DM | DM DM
Cyc in0 inl in2 in3 in4 in5 in6 in7 ell [el2 | el3 [el4 | drl | dr2 | sell | sel2 | sel3 | sel4
1 0 0 0 0 0 0 0 0 0 4 2 6 1 2 X X X X
2 0 0 0 0 0 0 0 0 1 5 3 7 3 4 0 4 2 6
3 1 1 1 1 2 2 2 2 0 2 4 6 5 6 1 5 3 7
4 1 1 1 1 2 2 2 2 1 3 5 7 7 8 0 2 4 6
5 1 1 2 2 1 1 2 2 0 1 2 3 9 10 1 3 5 7
6 1 1 2 2 1 1 2 2 4 5 6 7 11 | 12 0 1 2 3
XXX z z z z z z z z z z z z z z 4 5 6 7
Table 4: Select Lines for 8 Point 2 Processing Element
Clk | sel sel sel sel sel sel sel sel M M M M M M M M | ad | ad | Ad | ad
Cy | _in| _in| _in| _in| _in| _in | _in| _in | sel | sel | sel | sel | sel | sel | sel | sel | dr | dr | dr | dr
c 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4
1 0 0 0 0 0 0 0 0 0 4 2 6 1 5 3 I 1 2 3 4
2 1 1 1 1 2 2 2 2 0 2 4 6 1 3 5 I 5 6 7 |8
3 1 1 2 2 1 1 2 2 0 1 2 3 4 5 6 I 9 10 | 11 | 12

Table 5: Select lines for 8 Point 4 Processing Element

The DMux select lines are in same hierarchy as in previous tables i.e. same as Msel,

having number input value in the first cycle but in the second cycle, it would be same as

previously used Msel select line. Keeping in view the above stated select lines in the above

mentioned tables, same hierarchy will be followed for 16 point, 32 point, up till
FFT. All these (Tablel-5) acts as the select lines that are used by the arbitrator that act as

m-point

state machine. These distribution and routing of data for the architecture is managed via

control signals received from control unit that acts as state machine for the stated hardware

architectures.

21

3.2 Working of Empirical Model

To make the empirical model, different architectures similar to the architecture stated
in Figure: 3-3 for n-Bits € {8, 16 and 32}, m-Point € {4, 8, 16 and 32} with p-processing
elements € {1, 2, 4 and 8} were modeled and their comparative parameters were taken into
consideration for the modelling of the empirical model. The acquired results, are accumulated
and an algorithm of machine learning known as regression algorithm of order 1, 2 and 3 was
implemented.

Regression analysis is a form of predictive modelling technique which calculates the
relationship between a target (i.e. dependent variable) and predictor (i.e. independent
variable) in form of a function. This technique is used for forecasting, time series modelling
and finding the causal effect relationship between the variables and much more. Regression
technique actually generates a function of order 1,2,3.....n™ which is a linear curve in case of
1% order, quadratic in case of 2" order and cubic in case of order 3, and this goes up till nth
order generation. The implementation of linear, quadratic and cubic regression on a random
dataset is shown in figure below, however, the use of this technique in case of making the

empirical model will be discussed shortly in the upcoming chapter.

—20 4

—40 4

—60 4

-804 / -—- degree=1
—-= degree=2
—— degree=3
e fraining set

—100 -

-4 -2 0 2 4

Figure 3-10: Application of Linear, Quadratic and Cubic Regression on a Random Dataset [29]

The inputs will be passed through the empirical model and will predict the
requirement of for the futuristic parameters if only one parameter is taken into consideration.
Whereas on the other hand if two or more parameters are taken for granted, the hardware will
be calculated for all the set parameters and an optimized specifications of hardware will be

generated, having tradeoff for all the set parameters.

22

As discussed earlier, the clock cycles required by the proposed architecture depends
upon the number of processing elements. With the increase in number of processing elements
the clock cycles will lessen accordingly or vice versa. The clock cycles required to perform

FFT for m-point using p-processing elements can be calculated using eq. 5 as below:

m
% Processing Elements = (log, m) * x "Clock Cycles" ; x =1,2, Y (5)

Eq. 5 is a generalized representation for clock cycles required to perform m-Point

For

FFT havingzme number of Processing Elements, it would take (log, m) * x clock cycles,
where:xx = 1,2, % As we are catering here Radix 2 FFT architecture that why we use

log, , if we propose an architecture of Radix n, then similarly log,, will be used in equation 5.

To execute the empirical model for actual implementation and prediction of the
parameters of the futuristic architecture either taking into account a single parameter or all
the stated parameters, following steps are to be followed:

1. Take number of input bits and points for FFT (Input)

2. Take desired parameters Slice LUT’s, LUT FF Pars, clock rate and clock cycle (Input:
Take either 1 or more as required)

3. If (ii) has only 1 parameter: Pass the number of points of FFT from (i) through the
specific model (Table 6) and deliver the output.

4. Pass the number of Processing Elements from (iii) and calculate clock cycles using
equation (5) of the hardware.

5. If (ii) has 2 or more parameters: Pass the number of points for FFT from (i) through
all the specific models (Linear Regression model for Slice LUT and LUT-FF Pairs,
Quadratic Regression for Clock Rate) for n-bit input (Table 6).

6. Repeat step (iv) for all the models generated in (V) to calculate the clock cycles.

7. Calculate the percentage error between the outputs from (v& vi) with desired
parameters from (ii).

8. Output the model with the least percentage error.

9. Pass the number of Processing Elements from (vii) and calculate clock cycles using
equation (5).

In this section of the thesis we have presented an architecture for m-points
with p-processing elements. In this architecture, the processing element that acts as
the basis of the hardware is actually the butterfly architecture of the FFT that is briefly
y elaborated in the given section. The architectural design of the processing element

that is the main building block of the hardware design, is also shown in this section.

23

In addition to this, the select lines that are the main fundamentals of the
proposed architecture which helps in routing and selection of the selected input is also
shown in this section. Furthermore the stepwise processing and execution of the
empirical model is also encountered. In addition to this a generalized formula to
calculate the number of clock cycles required to perform FFT with variable number
of processing elements is also proposed in this section. However experimental results,

empirical model and its working is elaborated in the next chapters.

24

Chapter 4 : EXPERIMENTAL RESULTS

4.1 Results and Discussion

In order to make our empirical model for specified hardware parameters for proposed
FFT architecture, several experimentation for the implementation of hardware architecture
were performed similar to architecture stated in the Figure (3-3, 3-7 & 3-9) using n-bit € {8,
16 and 32}, m-Points for FFT €{ 4, 8, 16 and 32 } with p-processing elements € {1 2 4 and 8
PE's}. All the possible combinations of n, m and p were designed. The platform used for
designing and implementation of all the architectures is on Xilinx using HDL Verilog coding.
The FPGA used for this purpose is XC7A100T that mainly belongs to Artix family of
FTG256 package.

The hardware designs for 4 point input FFT using 1 and 2 processing elements are
discussed in the previous section. For confirming the feasibility of our architecture, we have
performed FFT algorithm on our model. The bench mark to decide, whether our model is
working properly or not, we have executed FFT on a complex signal on MATLAB and then
confirmed it on our model. The 4 point complex signal FFT on MATLAB is shown in Figure
4-1. Signal to perform FFT is [-1+4i 5-8i -3+4i 9-5i].

[Command Window @

>> Signal = [-1+4i 5-8i -3+4i 9-5i]
Signal =
-1.0000 + 4.0000i 5.0000 - 8.0000i -3.0000 + 4.0000i 9.0000 - 5.0000i

>> f£ft (Signal)

10.0000 - 5.0000i -1.0000 + 4.0000i -18.0000 +21.0000i 5.0000 - 4.0000i

Figure 4-1: MATLAB FFT Complex Signal Execution

To wave form achieved using 1 processing element for 4 points input for the same

signal using the hardware design stated in Figure 3-7 is shown below:

25

0 Ps A
2§ out1_R[31:0] (XX
2 out1_1[31:0] (xX
2§ out2_R[31:0] (XX
2§ out2_1[31:0] (XX
R in0_R[31:0]
R in0_1[31:0]
2 in1_R[31:0]
2§ in1_1[31:0]
2§ in2_R[31:0]
Rf in2_1[31:0]
R in3_R[31:0]
R in3_1[31:0]
R Msel1[31:0]
R Msel2[31:0]
2 DMsel1[31:0]
2 DMsel2[31:0]
2§ addr[31:0]
2 insel0[31:0]
2 insel1[31:0]
R insel2[31:0]
2 insel3[31:0]

15 ok

200 ns
14 [X 10 X
-13 [X -5 X

400 ns 600 ns 800 ns

o< > < >

on,k:
EN
><
3
>< L
ENICIREIAES

3 [X 21 X

Gf [of [B] G| o] |v| [B] &

ol N N [Nf|e
SINICHENE
| |w| || =] o
< < > > >
w || |of|w| |~

of|o||o||e] X ~ A~ X <

ISIRENIR

Figure 4-2: Generated Wave Form for 4 Point FFT using 1 PE

In addition to this, using 2 processing elements, the output wave form from the
architectural design stated in Figure 3-9 is shown below.

0ns 200 ns 400 ns 600 ns 800 ns

2§ out1_R[31:0] x4 10
3§ out1_1[31:0] (8
3§ out2_R[31:0] x(14
24 out2_1[31:0] x(___-13
2§ out3_R[31:0] x(__2
2§ out3_1[31:0] x(__0
25 out4_R[31:0] X4
2§ out4_1[31:0] x{ 3
& in0_R[31:0] -1
& in0_1[31:0] 4
& in1_R[31:0] 5
& in1_1[31:0] -8
@ in2_R[31:0] -3
2 in2_1[31:0] 4
& in3_R[31:0] 9
& in3_1[31:0] -5
2 Msel1[31:0] 0
2 Msel2[31:0] 2
B Msel3[31:0]
i Msel4[31:0] 3
) DMsel1[31:0]
) DMsel2[31:0]
) DMsel3[31:0]
2 DMsel4[31:0]
2 addr1[31:0]
B addr2[31:0] 4
& insel0[31:0]
B insel1[31:0]
R insel2[31:0]
2 insel3[31:0]

15 ok

5< 54 50 5 5 50 e 5
%

...
> >
N

o|lo||lof|o| ||l N N N N
NN =] =] W] [N W] =] [N O

< < S K S S AL N AN AN

Figure 4-3: Generated Wave Form for 4 Point FFT using 2 PE

26

From both the above Figures (4-2 & 4-3), the output signal is same. The only
difference that lies in between the two wave forms is that, if we use 1 PE, the output will be
achieved in two cycles whereas using 2 PE, the output is received in a single cycle.

The performance of all the implemented architectures were evaluated on the basis of
hardware parameters i.e. number of slice LUT's, LUT FF Pairs and clock frequency of that
particular specified characteristical architecture. These three parameters were analyzed for all
the possible architectures for all the possible combinations of n, m and p.

For 8 bit input of m-pointe{ 4, 8, 16 and 32 } FFT using p-Processing Elements € {1
2 4 and 8 PE's}. Making constant input as 8 bit and variable m-points and p-processing

elements we came up with the results as shown in Figure 4-4.

Comparion of 8 Bit Input for

Slice LUT's
9124

4779 4728 = 632

2656 | 2468 ' 89
2110 304 | 27 !
144
360877 539070 ﬁ 5812210 1082483 n
- - - =

8Bit1PE 8Bit2PE 8Bit4PE 8Bit8PE 8Bit1PE 8Bit2PE 8Bit4PE 8Bit8PE
8 BIT INPUT WITH DIFFERENT PES 8 BIT INPUT WITH DIFFERENT PES

* 4 Point FFT * 8 Point FFT ™ 16 Point FFT ¥ 32 Point FFt * 4 Point FFT * 8 Point FFT ® 16 Point FFT * 32 Point FFt

Figure (A) Figure (B)

Comparison for 8 Bit Input for Clock
Rate

157557 159.528

148,78 148.566 148.166
P+/Poag 142.653 142.284 141551

T.602]-5.4-22 qS.O‘)]i4_429

8Bit1PE 8Bit2PE 8Bit4PE 8Bit8PE
8 BIT INPUT WITH DIFFERENT PES
¥ 4 Point FFT ¥ 8 Point FFT ™ 16 Point FFT * 32 Point FFt

=
(o)}
=

140

[EEN
N
=

N
T
=
=
[
:
=4
&
Qo
|
&)

Figure (C)

Figure 4-4: Comparison of 8 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B) LUT FF
Pairs; Figure (C)Clock Rate

In the same way by increasing the input bits different results are achieved. For
instance, using 16 bit input with variable input point FFT and Processing Elements, the

architecture specifications are used in the following manner as depicted below:

27

Comparion of 16 Bit Input for Slice Comparison of 16 Bit Slice Fully
LUT's 17237 used LUT FF Pairs

ity

9968 1261

9162 1015 !

50 5187 5256 !
16Bit1PE 16Bit2PE 16Bit4PE 16 Bit8 PE 16Bit1PE 16Bit2PE 16Bit4PE 16 Bit8 PE

2932 280
55 g
72161@1- 1049 ﬁ -
16 BIT INPUT WITH DIFFERENT PES
16 BIT INPUT WITH DIFFERENT PES * 4 Point FFT ~* 8 Point FFT ™ 16 Point FFT * 32 Point FFt
* 4 Point FFT * 8 Point FFT ™ 16 Point FFT * 32 Point FFt

Figure (A) Figure (B)

84 | 501
105286693 1827237:%]!

-

Comparion of 16 Bit Input for Clock
Rate

160 155.113

sigppn,, i
: : 144.234
150 120841 138.816 138.466 137.771

140 301 2.13 1.813 8184
130 -

120

110
16 Bit 1 PE 16 Bit 2 PE 16 Bit 4 PE 16 Bit 8 PE

16 BIT INPUT WITH DIFFERENT PES
* 4 Point FFT * 8 Point FFT ™ 16 Point FFT * 32 Point FFt

Figure (C)

Figure 4-5:Comparison of 16 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B) LUT
FF Pairs; Figure (C)Clock Rate

In addition to this different results are obtained when we increase the number of input
bits. This is also noted that the hierarchy of the results are similar to that of the previously
found results with different input bit size. The observations for different hardware parameters

for 32 bit input are shown below.

Comparion of 32 Bit Input for Slice Comparison of 32 Bit Slice Fully
LUT's used LUT FF Pairs

41518
6000

17770 21518 4000

24

0067 9
5424 2000

1
75 04
123@3’2173.% 193@5%. = 20BAA2¥41 414)861%34

0
32 Bl e -2 Bit 8 PE 32Bit1PE 32Bit2PE 32Bit4PE 32 Bit 8 PE

32 BIT INPUT WITH DIFFERENT PES 32 BIT INPUT WITH DIFFERENT PES
¥ 4 Point FFT * 8 Point FFT ™ 16 Point FFT * 32 Point FFt * 4 Point FFT * 8 Point FFT ™ 16 Point FFT * 32 Point FFt

Figure (A) Figure (B)

28

No. of Slice LUT's

Sl

2500
2000

1500

1000

Comparison for 32 Bit input for
Clock Rate
111.811
1= 109.28

110 -106.36 106.25 106.045
104.199 103.191 102.997 102.749

105 45 353 174 975
100 q

95
90

32Bit1PE 32Bit2PE 32Bit4PE 32Bit8PE

32 BIT INPUT WITH DIFFERENT PES
* 4 Point FFT * 8 Point FFT ™ 16 Point FFT * 32 Point FFt

Figure (C)
Figure 4-6: Comparison of 32 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B)
LUT FF Pairs; Figure (C)Clock Rate

Graphical analysis for Slice LUT’s of the hardware implemented in Figure 4-4 (A),
Figure 4-5 (A) and Figure 4-6(A) shows that it increases as the number of point for FFT
increases. In addition to this same trend was followed by the LUT FF Pairs Figure 4-4 (B)
Figure 4-5(B) and Figure 4-6(B). Whereas unlike other two, clock rate decreases as the
number of points for FFT increased Figure 4-4(C) Figure 4-5(C) and Figure 4-6(C). Another
observation that was made in the clock rate was that, by increasing the processing elements
the clock rate does not show a valuable change, infect it shows rigidity in its clock rate Figure
4-4(C) Figure 4-5(C) and Figure 4-6(C).

For a generalized empirical model for the architecture similar to Figure 3-3, the data
acquired from several experiments for distinct specifications i.e. different input bits points
and processing elements, were passed through a conventional machine learning algorithm i.e.
regression algorithm of order 1, (linear regression), order 2 (quadratic regression) and order
3(cubic regression). The execution of this algorithm for 8 bit input using 1 Processing

Element for the stated parameters are depicted in Figure 4-7.

ice LUT's Comparison for 8 Bitinput 1 Processing LUT FF Pairs Comparison for
Element 8 Bit input 1 Processing Element
250
y=62.591x +97.13 g 00y: 5.237x + 40.696
y =0.1857x% + 55.714x + 137.17 & Ty=0.0331x* + 4.0109x + 47.833
=-0.0036x% +0.3724x% +53.187x + 1 i §°2-0.0021x% + 0.1432x7 + 2.52
= 100
o)
— 50
5]
=0
0 5 10 15 20 25 30 35 L‘Uj 0 5 10 15 20 25
No. of Points for FFT 2 No. of Points for FFT
Z
Figure (A) Figure (B)

29

30

35

Clock Rate (MHz) Comparison for
8 Bit input 1 Processiing Element

150

145

y=-0.7061x + 157.22
140

y=0.0211x?%- 1.4889x + 161.78
13y =-0.005x3 + 0.2797x%- 4.9878x + 173.35

Clock Rate (MHz)

130
0 5 10 15 20 25 30 35

No. of Points for FFT
Figure (C)
Figure 4-7: Regression Technique for 8 Bit Input and 1 Processing Element for m-Point FFT on Figure (A): Slice
LUT’s ; Figure (B) LUT FF Pairs; Figure (C)Clock Rate

From Figure 4-7 it is observed that after applying linear, quadratic and cubic
regression, there exists a very minor difference in their output for slice LUT’s and LUT FF
Pairs compared to original ones, whereas the data highly under fits using linear regression,
whereas the data highly over fits by using cubic regression while considering the clock rate.
So for representing the clock rate, quadratic regression is the most nominal and gives better
results compared with the other two. The equation of linear, quadratic and cubic regression
can be seen on the generated graphs (Figure: 4-7).

In view of the above we can say that, the best model that depict the hierarchy of the
acquired data for making the empirical model in case of slice LUT’s and LUT FF pairs are
the first order polynomial (i.e. Linear Regression) whereas in case of clock rate its of
second order equation (i.e.

Quadratic Regression).

Graph plot and equations for the above mentioned hardware characteristics are for 8
bit input constitutes the same hierarchy for n bit input. In the same way, by applying the
regression technique on n-bits € {8,16 and 32}, m-Points € {4,8,16 and 32} for processing

elements € {1, 2, 4, and 8} following equations/results are obtained as in Table 6:

30

i""-Order Model

Numbe i
r of Slice LUTs Number of Fully used LUT
_ FF-Pai
Lin Quadr] - Irs Clock Rate M
ar | atic Cubic Linea | Quadra _ 2
. - r tic Cubic Linear Quadrat Cubi
y = - - i u IC
Processin 62.591x + 0.1857x2 0.0036x3 + y= y= =- Ic
g Elem 97.13 + 55.714x 0.3724x2 + 5.937X + 0.0331x2 + 0.0021x3 + y=- y= =-
ent +13717 | 53187x+ 40606 | 40109+ 014392 + | 0.7061x + | 0-0211x*- 0.005x® +
, 145,52 47.833 2-55208X + 157.22 1.4889x + 0.2797x? -
_ = =- 2.762 ' 16 4.9878
y 1.78 X +
8 | Processin | 63" 0327 | 00086C+ | y= y= = 17335
Bit | g Elem lo113 | *62214x 03724x2+ | 7.237x + | 00331+ 0.002L + | y=- y= =
s ent +o7367 | 53187x+ | 70.696 6.0100x + | 01432+ | 0.7607x + 0.0360x2 . | 0-0095¢° +
4) E 145.52 77.833 4.5208x + 157.95 2.129x + 0.3216x2 -
Processin | 139.7ax+ | 08%49¢ | %7 0.6849x* | y= y= 82)/'7—62 69 | “iag’
g Element | 2885 J:r 15101.56x + 151017-5667x + | 14.848x 01-0495X2 + | 0.0495x + y=- y= y=
3 7.67 : +155.5 21-;3%2x + | 1281ox+ | 05312x+ 0.0119x2- | 0.0119x-
Processin | 274 - - = 17133 1176 llf 2O+ | L0209
| 5x+ | 274.75x+ | Y= 214 75X y= _ 95.57 155.57
g ement 332 332 +332 3025x+ | Y™ 30.25x | y=30.25x y=- y=-
249 +249 + 249 0.4451x + y=-
. 148,67 0.4451x + 0.4451x +
- = =- ' 148.67
Processin 124.67x + 0.3261x? 0.0105x* + y= =" - e
g Elem 19717 | +11259 0.8672x2+ | 5.3043x | 0002+ 0.0019x° + | y=- = ="
ent vo675 | 10527x+ | +83435 53705+ | 0:0938x*+ | 0.7174x+ 0.0266x2 - | 0:0062¢ +
) 291.71 83 4-333‘23? + | 15403 | 1703+ 0(-53476x2 -
_ —. = .286 159.77 .047x +
16 | Processin | 14%:58x+ 0.50a0x2 | 01794+ - =. =- 17414
Bit | g Elem 43404 | t168.28x 87318 + | 10.696x | 0139+ 0.0186x° + y=- y= =-
S ent vaos17 | 43812x+ | +14857 14.915% + | 0-8438x*+ | 0.6018x + 0.0189x2 - | Q00
4 - 738.52 124 19563+ | 15041 1.3035x + 02-0592X2 -
. = =- = . 1 .254x
Processin | 262.09x + 2.6198x2 | 2.6198x + y= iy =- i 157-64+
g Element ga1 | 3862.87x 36087x + | 21-375% %0365X2 + | 0.0365x2+ | Y=° y= y=
o 6667 8.6667 + 332 2.875x + 22 875x + 0.503x + 0.0127x2 - 0.0127x2 -
. _ - : 320.33 320.33 14756 | L0262¢+ | 10262+
rocessin | 454.31x+ | 454.31x + y = 454.31x = °163 151.63
g Element | 2% 2699 X | gp gk | VTSR | YT AR =- =
+ - =-
, 585 5 vsgs | OALTcr) 04ILIX+ | 04LLTX+
_ y= y=- : 144.36
Processin | 21483+ 057612 | 0004+ | y= =- y=- -
36006 | + 19349 0.8203x*+ | 8.43 0.10322 + | 0:0106X°+ =- = =-
g Element 190 91x y % 0
+4935 19x+ | +17691 | 12:26x+ 0.4427x%+ | 0.3904x + 0.0138x? - 0.0033x° +
504.43 154.67 4875x+ | 11131 | 0899+ 0.1832x -
2 y= = | y=00468¢ 91 11428 | ST
Processin 291.55x + 1.057x% + | -1.3516x% + = y=- . 121.86
32 678 25239 + 0.1358x2 + | 0:0022¢- = =-
2 | g Element 57 284.08x + | 12-026X X+ =- | y=0.01x?
Bit 906.5 SLOXT | +36061 | 29X St | oduns | Toroams | ot
331.33 18.5x + 109.53 -7052x + 0.0566x2 -
S - 336.48 - 111.69 1.3352x +
Pro 4 . 516.66x + 2.5460% | ¥ :42'5469X2 = . y L
C +411. . =
essin 1167 | * :‘rllg.87x 19227)(+ | 33.196x %0469)(2 + | 0.0469x2 + y=- y= y=
g Element 82 +702 5.125x+ | 35.125x+ | 02/9X+ 0.0059%* - | 0.0059x -
3 687 687 10796 | OS2+ | 0523+
. - 85
Processin | 1250 y= 109.85
g Elem 3x+ | 1252.3x+ | Y7 1252:3x y= y=
ent 1578 1578 + 1578 38-:3?3)(08.063x+ | Y~ 98.063x 0 1y =- y=- y=
Table 6: Empirical Models for n-bi sl e 1054 | 0T Mooe T | Vloaos
n-bit {8, 16 and 32}, m-Poi .08 104.08
, m-Point € {4, 8, 16 and 104.08
, 8, 16 and 32} for processing element
s€{l,2 4,and

8}

31

Now for the number of clock cycles that are required for the execution for m points
input using p-processing elements irrespective of number of input bits required can be
depicted by the following graph

No of clock cycles required for Execution of FFT using p-

Processing Elements
80

80

60
32 40

40 16 20
12
20 4 2 6 03 8 . 00 4 10

J -

1 2 4 8
Processin Processin Processin Processin
g Element g Element g Element g Element

4 2 0

12 6
32 16 8

80 40 20
* 8 Pt ®16 Pt ¥ 32 Pt
Figure 4-8: Comparison of 32 bit input for Clock Rate:

From the Figure 4-8, it is observed that the number of clock cycles required for the
execution of n-points FFT using p- processing elements are decreased as the number of

processing elements are increased. Furthermore it should also be noted that the number of

PE’s must not increase by % and the minimum of stages / cycles in which m-point FFT can

be executed is log,m, as after that wastage of hardware resources will start.
4.2 Execution, Working and Implementation of Empirical Model

To show the practical implementation of the generated empirical models, of first order
for slice LUT’s and LUT FF Pairs; and second order for clock rate, let us suppose a scenario
for generation of FFT hardware having different required specs from the user. In this scenario

the user has following hardware requirements stated in Table 7.

Requirements

Input Bits 8

Input Points 32

Desired Slice LUT 2500
LUT FF Pairs 350

Clock Rate 250

Table 7: Requirements for Generation of Hardware Parameters:

32

The hardware requirements for all the stated parameters is generated one by one in
accordance with the specifications for making the hardware to achieve a tradeoff for all the
parameters.

Initially the number of input bits are taken into consideration that depicts the family
of empirical model i.e. either it would be 8, 16, or 32 bit input. After finalizing the family, the
number of input points are put in the model and their error with required specs are calculated.
The accumulative error that is taken into consideration is the squared error, because the error
acquired after subtraction can be both positive and negative, depending upon one’s
requirement. That generated model will be considered which has least accumulative error
ratio, or in other words for an optimal hardware implementation, that model is considered to
which the squared error is least or bearable compared to others. The implementation of

empirical model for Table 7 is shown as follows:

8 Bit 1 PE 8 Bit 2 PE
Slice LUT LUT FF Clock Rate | Slice LUT LUT FF Clock Rate
Pairs Pairs
Answer 2100.042 208.28 231.0312 | 2635.642 30228 | 271.8336
Error -0.1904523 | -0.6804301 | -0.08210492 | 0.0514645 | -0.15786687 | 0.0803197
Squared Error | 0,03627211 0.006741219 | 0.00264859 0.0064513
Total Squared 0.505998572 0.034021804
Error
8 Bit 4 PE 8 Bit 8 PE
sticeLUT | FYTFF | GlockRate | Slicerur | LYTFF Clock
Pairs Pairs Rate
Answer 4760.18 630.636 200.4244 9124 1217 | 134.4268
Error 0.47480978 | 0.445004725 | -0.24735312 | 0.72599737 | 0.71240756 | -0.859748
Squared Error | 0.22544432 | 0.198029206 | 0.06118356 | 0.52707218 0.739167
Total Squared 0.484657093 1773763688
Error

Table 8: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7

The squared errors for all PE € {1, 2, 4, 8} are as follows

No. of PE. Squared Error
1 0.505998572
2 0.034021804
4 0.484657093
8 1.773763688

Table 9: Squared Error for different Processing Elements as per Requirement in Table 7

As stated earlier, that hardware is selected in which it has the least squared error
compared to all the remaining ones, or the one with the bearable error. In this case the

hardware specs of the third case having 4 PEs is selected The reason to choose 4 PE is that it

33

can perform the FFT execution comparatively faster as compared to 1 and 2 PEs and the
error of 0.48 is also bearable to an extent.

After finding the number of processing elements, i.e. 4 in the given case, the next step
is to find the number of clock cycles required by the hardware for execution. Considering
equation (5) for finding the requires number of cycles. The input and the results that are

obtained after using the stated equation is shown in the table below

X 4
Processing Elements 4
Number of required cycles | 20

Table 10: Required Cycles for Generated Hardware for 4 Processing Elements

Now in the same way if we increase the number of bits of input in Table: 7 from 8 bit

input to 16 bit, keeping all the other required specifications same, the hardware parameters
acquired from the empirical model will be as follows:

16 Bit 1 PE 16 Bit 2 PE
Slice LUT LUT FF Clock Rate | Slice LUT LUT FF Clock Rate
Pairs Pairs
Answer 4186.61 253.1726 241.5332 5220.6 490.842 215.5556
Error 0.40285816 | -0.38245607 | -0.03505439 | 0.52112784 0.28693958 | -0.1597936

Squared Error

0.1622947 | 0146272653 | 0.001228811

Total Squared

0.27157423 0.025534

0.30979616 0.379442538
Error
16 Bit 4 PE 16 Bit 8 PE
stice LUT | “YTFF | Clock Rate | Slice LUT LUT FF Clock
Pairs Pairs Rate
Answer 9233.88 1016 197.4732 17236.92 1937 | 157.5344
Error 0.72925791 | 0.655511811 | -0.26599458 | 0.85496249 | 0.81930820 | -0.586955
Squared Error 0.53181709 0.07075311 | 0.73096086 0.3445161
Total Squared 1032265943 174674294

Error

Table 11: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7 for
16 Bit input

In such a case as stated in Table: 11 we can consider both two and four processing

elements, this all depends upon the requirement of the application that either it needs an
architecture that consumes less resources of it wants a faster FFT execution. In this case if the
application requires a processor with least resources then 1 processing element can be the

best possible architectural model. On the other hand if the application requires an FFT that

34

can be completed in less time then 4 PE are preferable. Whereas in case of an application that
needs both faster execution as well as lesser resources then the model with 2 PEs is the best
model among all. If we consider 4 processing elements, the number of clock cycles would be

same as shown in in Table: 10, whereas if we consider the design for 2 processing elements,

then the required number of clock cycles would be as follows:

X 8
Processing Elements 2
Number of required cycles | 40

Table 12: Required Cycles for Generated Hardware for 2 Processing Elements

Using a model of 2 PE may have a tradeoff in all the requirements from the user.
Now at last considering the empirical model for a 32 bit input while considering the

same specifications as stated earlier in Table: 7. After implementation and execution of the

empirical model for 32 bit input, the results are as follows:

32 Bit 1 PE 32 Bit 2 PE
Slice LUT LUT FF Clock Rate Slice LUT LUT FF Clock Rate
Pairs Pairs
Answer 7243.82 446.9612 157208 | 10008.17 841.442 | 144.4964
Error 0.65487823 | 0.216934266 | -0.59024986 | 075020408 | 0.58404738 | -0.7301469
Squared Error | 0.42886549 0.348394897 | 0.56280617 0.5331145
Total Squared 0.824320866 1437032025
Error
32 Bit 4 PE 32 Bit 8 PE
stice LUT | FYTFF | GlockRate | slicerut | LFYTFF Clock
Pairs Pairs Rate
Answer 17700.12 1764.272 132.6308 41651.6 4192.016 | 109.3504
Error 0.85875802 | 0.801617891 | -0.88493171 | 0.9399783 | 0.91650795 | -1.286228
Squared Error | 0.73746534 078310412 | 0.8835592 1.6543837
Total Squared 2163160703 3.377929755
Error

Table 13: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7 for
32 Bit input

In the above table, the difference in between the squared errors is much higher as

compared to the previous calculations done for 8 and 16 bit input. So for an input of 32 bit
with the given required specifications, it would be more appropriate to consider the hardware
architecture with one processing element. Considering equation (5), the total number of clock

cycles required for an architecture having one PE will be as follows:

35

X 16
Processing Element 1

Number of required cycles | 80
Table 14: Required Cycles for Generated Hardware for 1 Processing Element

So for one processing element a total of 80 clock cycles are required to execute the
FFT algorithm. Here it is also concluded that as the processing elements are increased, the
required number of clock cycles are lessened accordingly

The summarized squared inputs for 8, 16 and 32 bit inputs for the requirements stated
in Table 7 is as follows.

No. of | Squared Error for 8 Bit | Squared Error for 16 Bit | Squared Error for 32 Bit
PE. Input Input Input

1 0.505998572 0.30979616 0.824320866

2 0.034021804 0.379442538 1.09592884

4 0.423489529 1.032265943 2.163160703

8 1.773763688 1.075485162 3.377929755

Table 15: Summarized Squared Errors for 8, 16 and 32 Bits input

Considering how much error is bearable and with how many bits of input we can
achieve our expected results, we can have our best possible architectural model. For instance,
let us suppose that a squared error of around 1.05 is bearable, then we can use 4 or 8
processing elements using 16 bit input whereas in case of 32 bit input we can use either 1 or 2
processing elements that may vary from application to application. So with the summarized
squared error table we can also find out with how much of our input bits signal, which model
will be best suitable among all the models, considering how much squared error is can be
tolerable.

So, in this section of the report we have summarized, how our empirical model will
work, by taking a generic specifications with different input bit size. The results of the
implementation of the generated model by increasing the input bit size and its effect on the
squared error are also shown in this section.

It should be noted here that all the calculations shown above as the implementation
and execution of the empirical model includes all the stated parameters of the hardware that
we are considering i.e. number of slice LUT’s, LUT FF pairs and clock rate. On the other
hand, besides taking into account all the specifications, if any one specification is taken into
consideration from the user, then that hardware is considered which have least or bearable

squared error specific to the particular hardware specification.

36

Chapter 5 : CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this report we have presented a Fast Fourier Transform architecture for m-Points €
{4,8,16 and 32} using p-Processing Elements € {1, 2, 4, and 8}. The basic building block
for FFT algorithm is the butterfly architecture that is modeled as the processing element in
the proposed model. These processing element are required to perform the desired m-points
Fast Fourier Transform. After the formation of architectural design of all the possible
hardware architectures, their analysis w.r.t. several hardware parameters i.e. number of Slice
LUTs, LUT FF pairs, number of clock cycles required to perform m-point FFT and clock rate
is done. An empirical model based upon n-Bits, m-Points and p-Processing Elements for
FFT using a renowned machine learning algorithm i.e. Regression Technique, is proposed
after the analysis of the architecture on the stated parameters. Linear regression, quadratic
regression and cubic regression is implemented on the acquired data to generate the most
generalized empirical model.

The desired parameters that are required to perform m-Points FFT by the user are
considered as bench mark for the future architectural design and are passed through the
particular empirical model. If we consider all the stated parameters then, the squared
difference in value of specifications from the user and the actual architectural specs is taken.
After the summation of the squared difference of all the parameters, either that model is
considered for the implementation of design which has least squared error or that model is
taken into consideration that has bearable squared error to increase the efficiency of the
future hardware. In this way this model will provide the closest related real optimum
specifications of actual parameterized hardware characteristics including the required number
of processing elements, which needs to be incorporated to design the hardware. However if
we consider a single parameter e.g. only number of Slice LUTs or some other, then the
square error of only that parameter is considered. Rest of the procedure for choosing the
optimal architecture is same in both the conditions.

An observation that is made in this context is that the number of clock cycles required
by the architecture to perform m-points FFT is inversely proportional to the number of

processing elements in that hardware design. Moreover, the number of bits of input directly

37

affect other parameters of the hardware architecture e.g. number of Slice LUTs, LUT-FF
Pairs etc.

This thesis report can help the researchers for prediction of their FFT hardware
specifications based upon their need/requirement including their parameter of interest e.g.
area efficient, time efficient architecture etc. hence we are able to estimate the hardware
feasibility before designing the actual hardware.

In addition to this, the technique proposed in the report to analyze the hardware
specification, and predicting the futuristic parameters after making their empirical model and
then finding its feasibility as per one’s requirement, doesn’t only refers to the hardware
stated. Infect this technique can be applied to any system and thus allowing the researchers to
predict their desired system before its actual implementation.

5.2 Contribution

Following are the primary contributions of this research work:

e We propose a reconfigurable architecture for n-bits, m-points Fast Fourier Transform
(FFT) algorithm using p-processing elements.

e Empirical model for n-bits and m-points input for FFT is introduced, that can
calculate the feasibility of the futuristic architecture.

e Pre-calculating the specifications and parameters of an optimized FFT architecture
that is based upon one’s need/requirement.

e Arrelation for number of clock cycles required to perform m-Point using n-Radix FFT
is introduced.

e A procedure for finding the unique Permutation Matrix out of n! Permutation

Matrices is introduced (Annex).
5.3 Future Work

Following tasks can be performed as future work in contribution to this report:

e Empirical model for floating point input can be designed.

e Devise an empirical model for fully parallel pipelined FFT architecture.

e Finding the effects of the same architecture on different hardware platforms e.g.
GPUs, CPUs, FPGA etc.

o Applying several techniques to increase the efficiency of any parameter e.g. using

multiplier less pipelined processor [15], ROM less FFT processor [16] etc.
38

Empirical model for Radix-x FFT can be modelled.

Effect of using different Radix FFT on empirical model and its effect on empirical
model can be can be studied.

Empirical model for different variants of FFT [11] can be modelled, to predict that

which variant of FFT is the most feasible, as per one’s need.

39

Chapter 6 : REFERENCES

[1] Gnanishivaram, K. and Neeraja, S., 2014. FFT/IFFT Processor Design for 5G MIMO OFDM
Systems. International Journal, 3(3).

[2] https://cadcammodelling.wordpress.com/2011/04/14/fourier-transform-and-its-applications/
Accessed on July 23,2019 Time: 1130 hrs

[3] https://mwww.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-
day-the-mind-blowing-stats-everyone-should-read/#1271a74860ba Accessed on July
19 2019 Time: 1400 hrs

[4] https://www.sciencedaily.com/releases/2013/05/130522085217.htm Accessed on June
29th,2019 Time: 1700 hrs

[5] https://www.sgl-rotec.com/history-evolution-digital-media/ Accessed on July 02"¢,2019 Time:
2000 hrs

[6] Cooley, JW. and Tukey, J.W., 1965. An algorithm for the machine calculation of complex
Fourier series. Mathematics of computation, 19(90), pp.297-301.

[7] Lenssen, N. and Needell, D., 2014. An introduction to fourier analysis with applications to
music. Journal of Humanistic Mathematics, 4(1), pp.72-91.

[8] Tjahyanto, A., Suprapto, Y.K., Purnomo, M.H. and Wulandari, D.P., 2012, May. Fft-based
features selection for javanese music note and instrument identification using support vector
machines. In 2012 IEEE International Conference on Computer Science and Automation
Engineering (CSAE) (Vol. 1, pp. 439-443). IEEE.

[9] Shen, F., Song, Z., Wu, C., Geng, J. and Wang, Q., 2015. Research on the fast Fourier
transform of image based on GPU. arXiv preprint arXiv:1505.08019.

[10]Aboleaze, M.A. and Elnaggar, A., 2006, June. Reducing memory references for FFT
calculation. In Proc. of the International Conference on Computer Design (pp. 26-28).

[L1]Milder, P.A., Franchetti, F., Hoe, J.C. and Puschel, M., 2010, March. Hardware
implementation of the discrete fourier transform with non-power-of-two problem size. In 2010
IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1546-1549).
IEEE.

[12]Raju, K.S., Sengar, V., Gangal, M., Tanwar, P. and Prasad, P.B., Hardware Implementation
of Discrete Fourier Transform and its Inverse Using Floating Point Numbers.

[13]Ganesan, K., Govardhanarajan, T.S., Dhurkadas, A. and Veerabhadraiah, S., 1982.
Hardware realization of a general purpose FFT processor in a distributed processing
configuration. Defence Science Journal, 32(1), pp.41-46.

[14]Wang, G., Yin, B., Cho, I., Cavallaro, J.R., Bhattacharyya, S. and Takala, J., 2014, May.
Efficient architecture mapping of FFT/IFFT for cognitive radio networks. In 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3933-
3937). IEEE.

[15]Kannan, M. and Srivatsa, S., 2009. Hardware Implementation Low Power High Speed FFT
Core. International Arab Journal of Information Technology (IAJIT), 6(1).

[16] Indirapriyadarsini, K., Kamalakumari, S. and Prasannakumar, G., VLSI Implementation of
Pipelined Fast Fourier Transform. International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET), 1(4).

[17] Teymourzadeh, R., 2017. High Resolution Single-Chip Radix Il FFT Processor for High-Tech
Application. Fourier Transforms: High-tech Application and Current Trends, p.67.

[18] Fande, A. and Sahu, A., Efficient Implementation & Comparison of Signed Complex Multiplier
on FPGA using FFT Algorithm. International Journal of Scientific Research Engineering &
Technology (IJSRET), 3(2), pp.188-191.

[19]Algnabi, Y.S., Aldaamee, F.A., Teymourzadeh, R., Othman, M. and Islam, M.S., 2012,
September. Novel architecture of pipeline Radix 2 2 SDF FFT Based on digit-slicing
technique. In 2012 10th IEEE International Conference on Semiconductor Electronics
(ICSE) (pp. 470-474). IEEE.

[20]Bo, Y., Dou, R., Han, J. and Zeng, X., 2013. A hardware-efficient variable-length FFT
processor for low-power applications. In 2013 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (pp. 1-4). IEEE.

40

https://cadcammodelling.wordpress.com/2011/04/14/fourier-transform-and-its-applications/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#1271a74860ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#1271a74860ba
https://www.sciencedaily.com/releases/2013/05/130522085217.htm
https://www.sgl-rotec.com/history-evolution-digital-media/

[21] Mukherjee, A., Sinha, A. and Choudhury, D., 2014. A novel architecture of area efficient FFT
algorithm for FPGA implementation. ACM SIGARCH Computer Architecture News, 42(5),
pp.1-6.

[22]Ouerhani, Y., Jridi, M. and Alfalou, A., 2012. AREA-DELAY EFFICIENT FFT
ARCHITECTURE USING PARALLEL PROCESSING AND NEW MEMORY SHARING
TECHNIQUE. Journal of Circuits, Systems, and Computers, 21(06), p.1240018.

[23]Puchata, D., Stokfiszewski, K., Yatsymirskyy, M. and Szczepaniak, B., 2015, September.
Effectiveness of Fast Fourier Transform implementations on GPU and CPU. In 2015 16th
International Conference on Computational Problems of Electrical Engineering (CPEE) (pp.
162-164). IEEE.

[24]Jhariya, P.K. and Dodkey, N., 2016. Implementation of Fast Fourier Transform using
Resource Reuse Technique on FPGA. Int. Journal of Scientific Research in Science,
Engineering and Technology, 2(1), pp.2395-1990.

[25]Kumar, A., Gautam, G. and Ram, V.K., 2016. FPGA Implementation of 2x2 Crossbar
Switch. International Journal of Engineering Science, 7435.

[26]Khan, M.A. and Ansari, A.Q., 2011. Design of 8-bit programmable crossbar switch for
network-on-chip router. In Trends in Network and Communications (pp. 526-535). Springer,
Berlin, Heidelberg.

[27]Ganiee, S.A., Ganiee, S.A. and Dar, J.R., FPGA Design of 8 bit 4x 4 Crossbar Switch for
Multi Processor System on Chip Using Round Robin Arbitration Algorithm.

[28] Freitas, H.C., Carvalho, M.B., Amaral, A.M., Diniz, A.R., Martins, C.A. and Ramos, L.E.,
2006, May. Reconfigurable crossbar switch architecture for network processors. In 2006 IEEE
International Symposium on Circuits and Systems (pp. 4-pp). |EEE.

[29] https://towardsdatascience.com/polynomial-regression-bbe8b9d97491 as on September 10,
2019 at 1530 Hrs.

41

https://towardsdatascience.com/polynomial-regression-bbe8b9d97491

Annexure : FINDING THE UNIQUE PERMUTATION MATRIX FOR
REVERSE ORDER KRONECKER PRODUCT INTUITIVELY FOR
FAST FOURIER TRANSFORM

1 Introduction

All the experimentations, observations and results related to the subject are
incorporated in the stated chapter being it to be a minor research project that leads to our
actual research.

This section of the report presents a unique method for finding the unique
Permutation Matrix out of n! matrices, to perform Fast Fourier Transform using Kronecker
Product. This uniquely identified permutation matrix is used to attain the reverse order
Kronecker product without using the same technique, as used for obtaining the original
Kronecker product.

Kronecker product, plays an imperative role in major disciplines of science as in
mathematics, linear algebra, big data analysis and signal processing etc. that acts as a nucleus
in the formation of this modern era especially from application perspective [1]. This product
also finds its applications in matrix calculus [2], system theory [3], differential equations [4]
that are the basis for circuit analysis and much more. A well-established transform to study a
time domain signal from frequency perspective, filtering and analysis is Fourier transform
[5]. Kronecker product is an arithmetic tool that finds its significance in many applications in
field of research.

The main problem that arises during the implementation of the Kronecker product is
its computation cost, especially to those algorithms in which it is used repeatedly. This
problem becomes a bottleneck while computing two or more products simultaneously,
especially when, in the same arithmetic calculation original and reverse order Kronecker
product are to be calculated, e.g. in formulation of DFT as stated in equation 6, that is taken
as a building block for the formation of this technique.

Fra =, Q@ E)Dp2(F, ® I,) (1)

Keeping in view the calculation of Kronecker product, an intuitive approach is

proposed to bypass the rigorous calculations required to compute the permutation matrix.

Here mechanism that calculates a unique permutation matrix is presented, so that

42

computation time for finding the reverse order product decreases, and reverse order
Kronecker product from its original may be generated with minimum computations.

In such cases where we have to compute the original and reverse order KP at same
time, being it to be computationally expensive algorithm, we can use Permutation Matrix for

this purpose to reuse the previously calculated product for further use as below:

Fr2= (I, ® F)Dy2Pp2(F, @ [Py 2)
And hence by using the permutation matrix, we can find the DFT with less

computation using the previously calculated Kronecker Product.
2 Permutation Matrix

Permutation matrix is a binary matrix having two entries (i.e. 0 & 1), and is obtained
by permuting the columns /rows of an nxn identity matrix. Note that every permutation in the
identity matrix provides us with a unique permutation matrix that leads us towards different
solutions after its multiplication with original matrix. For instance, let us suppose a 4x4
matrix, multiplied with different permutation matrices of same order as below:

Ay A A3 Qua|rl 0 0 O a1 A3 Qa4 Qg2
] lo 0 0 1f_|a2x az %2 A2 3)
0O 1 0 O 31 O3z Q34 Az
0O 01 0 Qg1 Q43 Qyq Ay
Using a different permutation matrix of same order as:

all alz a’13 a14 0 0 0
__|as3 Q4gy zz2 Az (4)

1
0 0
1 0 d3zz3 Q434 QA3 043z
0 0

_o O

1
0
0

Hence from (3) & (4), using different permutation matrices multiplied with same
matrix, different results are obtained.

2.1 Rows and Column Permuted Matrix

From (3) & (4), it is observed that in matrix multiplication, using PM after the
original matrix swaps the columns of the original matrix. However, to achieve a row

permuted matrix, the permutation matrix is placed behind the original matrix as below:

43

0 0 0 17|a11 Q12 %3 Gug Agq Qg Q43 Qaa
0 0 1 O0ffan a2 @23 Qo4 _ |Gz azp; @33 Q34 (5)
1 0 0 O0]fasz1 Az daszz azg A1 Q12 Q13 Qg4
0 1 0 0llas1 Q42 Q43 Q4 dz1 Az Qz3 dpg

So from (4) and (5) it can be observed that for same nxn permutation matrix, the
placement of the PM will decide the resultant matrix either to be a row permuted matrix or a

column permuted matrix.
3 Kronecker Product and Permutation Matrix

Let us suppose we have A and B matrices of mxn and pxq order respectively, then
the Kronecker product of A & B would be as
a1 *B ... a;,*B

AQRB = : : (6)

A1 *B 0 apm, ¥ B

that can be expressed more explicitly as

[allbll a11b12 en allblq e alnbll es es alnblq T
a11by1 ay1byp - a11b2q v Qypbyy e e alanq
allbpl a11bp2 allbpq alnbpl alnbpq
amlbll amlblz oot amlblq ot amnbll ot o amnblq
Ami1by1 Apibay - amleq o Ampbyy e e amanq

_amlbpl amlbpz XX amlbpq css amnbpl eoe ces amnbpq-

And the reverse product i.e. BQA can be written as

b11+xA .. blpx*A

BRA = (7)

bpl*A - bpg=*A

From (6) and (7) it can be observed that AQB and BQA are entirely different

matrices. But from A®QB, BQA can be achieved just by swapping some of the rows and

44

columns with the specific permutations. In other words we can say that AQB and BRQA are

permutation equivalent matrices, and there exists a unique permutation matrix such that

B®A = P(AQ B)PT (8)
Furthermore, another characteristic of this unique permutation matrix is that the

transpose and inverse of the unique PM is same as the PM itself, as
p=p1=pT (9)
All remaining nxn PM’s, doesn’t qualify the above property due to which they are

not classified as the unique PM for Kronecker Product
4 Proposed Methodology

Let us suppose two, 2x2 matrices A and B for understanding. The two Kronecker
products AQB, as in (6), and BQA, as in (7) will be as follows,
ay1byy ay1bi; Aizbin agbyy
ai1byy ajibyy; aizby1 Agzby;

AR B= 10
az1by1 ap1bi; azbyy agybyg; (10)
Ay1by1 Ap1byy Apbyy aAgpb;;
Similarly
ay1b11 agpbyy agbiz agaby
BRA = Az1b11 Agzbyy Q21b1z Aabiy 11)

A11b21 Qizby1 Ay1bay Agpby;
Az1b21 Agpby1 Az1by; Ayoby;
Total number of permutation matrices that can be produced from an n™order identity

matrix are calculated as

no.of PMs for I, = n! (12)
As A & B are both 2x2 order matrices and the order of their H F .. ; i! ET]

Kronecker Product will be 4x4, thus in this case a 4x4 identity matrix

will be used as PM that generates 4! i.e. 24 different permutation E E] E E

matrices as stated in (12) which are shown in Figure Annex-1.

"

Out of these 24 matrices as shown in Figure Annex 1, a single ﬁ E Eﬂ
unique permutation matrix say P, (eq.13) satisfies the requirements @ @
for reverse order Kronecker product as stated in (9). From the above ' — |
two matrices (10) and (11) it can be observed that from A @ B we can % @ ﬁ ﬂ
easily produce B ® A just by swapping second and third rows and then & — &=

i R s

45

Figure Annex-0-1: Generation of 4!

Permutations of 4x4 Identity

swapping same columns. To achieve this, an identity matrix will be used, that is also
swapped in the same manner, and is then multiplied as in (4) & (5).

P, =

O —=O O

0
0
0 (13)
1

O O O

1
0
0
0
That is same number of rows are swapped from the identity matrix to make unique

permutation matrix, that satisfies the unique PM property and hence by substituting, it may

become

PM *B ® A * PM

1 0 0 071[@1b11 aizbir a11biz ai2bi2]p1 0
_10 0 1 0]||@21b11 a2b1y az1b12 Az2h12[|0 0

0 1 0 Offaiibzr agzbar aqiby; agpby, ([0 1

0 0 0 1'lazibyr azabar Gpibpy by it0 0
= AQB

These operations will eventually give us the results, that corresponds to our reverse
order Kronecker Product i.e. A Q@ B

4.1 Formation of n xn Permutation Matrix
In order to find the uniquely identified permutation matrix that satisfies requirements
for reverse order Kronecker calculation stated in (6) and (7), we take two matrices A and B of

order 2x2 having Kronecker product of order 4x4 as discussed earlier
(1st) (an) (3rd) (4th)
aiibyy agibiz agbyy by (D)

AQ®B :>a11b21 ay1by; aipbyy agpbyy (10)

Az1b11 Ap1by1 aAzb11 ayyby, (1ID)

Az1D12 Apzbz; Agbay Gzpby; (IV)
Whereas it’s reverse order Kronecker product would be as

(15 @y 34 @™

aq1b11 apbyy agby; agpbg; (D
BR A= Az1b11 Qzobyy Apbiy azyby; (D)

a11by1 agpbyy ag1by; ag,by, (10)

Ay1by1 Azby1 Ap1byy ayyby, v)

46

o o O

_ oo O

The swapping hierarchy of entries from A @ B towards B @ A is shown below.
Furthermore, these are the swapped rows similar to the swapping of rows/columns of an

identity matrix to form a uniquely identified PM,

1 2 3 4 1 3 2 4

5 6 7 8 9 11 10 12
9 10 11 12 5 7 6 8
13 14 15 16 13 15 14 16

AQB = B A
It can be observed in the above case that reverse order KP i.e. B® A can be attained

from A ® B by swapping the 2nd and 3rd rows and then same columns or vice versa.
Taking A @B and reshaping to make it B ®A using the assigned labels would lead towards

the formation of permutation matrix as below

AQRQB=>1 23 4
BRA=>1 324

It is observed that the 1st and 4th rows of both are at the same place where as other
2nd and 3rd rows/columns are swapped with each other. Considering the stated hierarchy,
from A @ B the permutations of rows of B @ A can be achieved as follows:

1
A®B-)1234-)[é i]-)g S>[1 3 2 4> BQ®A
4

In order to transform B @ A from A @ B, the matrix entries are first row permuted
then column permuted. As stated earlier, the swapping hierarchy of the Kronecker product, to
achieve its reverse order, is same as that of identity matrix. For the given example, the
uniquely identified PM can be achieved using the same transitions of rows/columns as stated
above. Here entries depict the placement of ‘1’ in each row/column of identity matrix. This
swapping technique would lead us towards the unique permutation matrix that is used as

uniquely identified Kronecker permutation matrix

4.2 Pseudo code
Let us suppose two matrices A and B of nxn dimensions. The generation of B @ A

from A ® B is to formulated by using an n? permutation matrix. This permutation matrix
can be formulated as follows:

1. Generate a natural number nxn dimensional matrix having n? entities.

2. Reshape the matrix column wise in such a way that each (n+1)st column lies beneath

the nth column.

47

A®B =

3. Make this column vector into a row vector.

4. The entities of this row vector point out towards the position of ‘1’ at a specific
row/column. Write 1’ at every place pointing by the row vector and all other entries
besides these locations are ‘0's.

5. This generated matrix is the required uniquely identified permutation matrix.

The implementation of the pseudo code for 4x4 PM is as follows

t dld thloooth

15 2n 37 4 5

Sl e P B F R A R O
4 0 0 0 1

Similarly for 16x16 PM, it can be obtained by the swapping of natural number matrix

rows/columns and following rows will come one after the other in 16x16 identity matrix as

[1St’ 5th’ 9th’ 13th’ an’ 6th, 10th, 14th’ 31‘d’ 7th’ 11th’15th’ 8th, 12th, 16th]

5 Observation and Results

In order to compare our proposed methodology, we generated random matrices of
order 4x4 till 20x20 for Kronecker Product, requiring permutation matrix of order 16 x16 up
to 400x400 to calculate its reverse order. The Kronecker product for these matrices were
calculated and afterwards derived from their reverse order product, by generating
permutation matrix. It is observed the original KP and the one calculated using its reverse
order using PM is always same and their difference gives the null matrix that verifies the

applicability of this technique. For instance let us suppose two matrices of order 3x3.

a b c j k1

A=|d e f|&B=[m n o

g h i p q T
ak al bj bk bl «¢j ck cl] raj bj cj ak bk ck al
an ao bm bn bo cm cn co di e fj dk ek fk dl
aq ar bp bgq br cp cq cr gi hj ij gk hk ik gl
dk dl e ek el fj fk fl am bm c¢m an bn cn ao
dn do em en eo fm fn fo|&BQA=|dm em fm dn en fn do
dq dr ep eq er fp fq fr gm hm im gn hn in go
gk gl hj hk hl ij ik il ap bp c¢cp aq bq cq ar
gn go hm hn ho im in io dp ep fp dq eq fq dr
99 gr hp hq hr ip iq ir| Lgp hp ip gq hq iq gr

The Permutation Matrix of order 9x9 using the stated methodology will be:

48

bl
el
hl
bo
eo
ho
br
er
hr

— (Unique PM)

cl
fl
il
co
fo
io
cr

r

5[4 7 25 8 3 6 9] > I,=PM,

| — |
o
Ul N
[e)JNON]
|
l-
O AW OUTNID P

PM9:

Coococococo o R
cCcoocoorRro o O
cCcorRroococo oo
cCoocoococo RO
cCcoocorRmr oo oo
oORrRocoocococ oo
cCcoococoocor oo
coorocoococ oo
~r o oo OococOo oo

As stated in (8) & (9),

BXRA = P(AQB)PT where, P= p~1 = pT

Substituting (9) in (8), it would become

BRA = PA®B)P
So using the above equation,

P[(A®B)P"]=

raj ak al bj bk bl <c¢j ck cl]
am an ao bm bn bo cm c¢n co

ap aq ar bp bg br <c¢p cq cr

di dk dl e ek el fj fk fl

PMgijdm dn do em en eo fm fn fo|PM,
dp dq dr ep eq er fp fq fr
gl gk gl hj hk hl ij ik il

gm gn go hm hn ho im in io

Llgp g9q gr hp hq hr ip iq ir |

49

raj bj c¢j ak bk ck al bl cl
am bm cm an bn cn ao bo co
ap bp cp aq bqg cq ar br cr
d e fj dk ek fk dl el fl
= PMy|dm em fm dn en fn do eo fo
dp ep fp dq eq fq dr er fr
gl hj ij gk hk ik gl hl il
gm hm im gn hn in go ho io
Llgp hp ip gq hq iq gr hr irl

T aj bj ¢ ak bk ck al bl cl]
d e fj dk ek fk dl el fl
gi hj ij gk hk ik gl hl il

am bm cm an bn cn ao bo co

={dm em fm dn en fn do eo fol=B®A
gm hm im gn hn in go ho io
ap bp c¢p aq bq cq ar br cr
dp ep fp dq eq fq dr er fr
L gp hp ip gq hq iq gr hr irl

The results obtained are by calculating the reverse product directly, and by evaluating
it through permutation matrix technique gives the same result, as the subtraction of the two,

gives a null matrix, that intern proves the reliability of this methodology.
6 Conclusion

This area of report gives a brief overview of Kronecker product and its
implementation in finding the reverse order multiplication, as in formulation DFT in signal
processing using a unique permutation matrix technique by finding it intuitively. This would
lessen its computation cost by not calculating the reverse product being it to be
computationally expensive algorithm and intern evaluating it by using the ground principles
of matrix theory through a unique permutation matrix, from the same previously found
Kronecker product. The computation cost to calculate the PM for reverse order KP will be
minimum as the entities for an nxn unique PM can be depicted directly, without finding it
from n! PM’s.

50

