
 An Empirical Model Based Optimal Architecture for N-Bits

M-Points Fast Fourier Transform

Author

Muhammad Ghashan Ali

00000206067

Supervisor

Dr. Shoab Ahmed Khan

Co-Supervisor

Dr. Sajid Gul Khawaja

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

July 2019

An Empirical Model Based Optimal Architecture for N-Bits

M-Points Fast Fourier Transform

Author

Muhammad Ghashan Ali

00000206067

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Engineering

Supervisor

Dr. Shoab Ahmed Khan

Co-Supervisor

Dr. Sajid Gul Khawaja

Thesis Supervisor’s Signature: __________________________________

Thesis Supervisor’s Signature: __________________________________

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

FEBRUARY 2019

i

Declaration

I certify that this research work titled “An Empirical Model Based Optimal Architecture for

N-Bits M-Points Fast Fourier Transform” is my own work. The work has not been presented

elsewhere for assessment. The material that has been used from other sources it has been

properly acknowledged / referred.

Signature of Student

Muhammad Ghashan Ali

00000206067

ii

Language Correctness Certificate

This thesis has been read by an English expert and is free of most typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

Muhammad Ghashan Ali

00000206067

Signature of Supervisor

Dr. Shoab Ahmed Khan

Signature of Co-Supervisor

Dr. Sajid Gul Khawaja

iii

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

 The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the College of E&ME, which will prescribe the terms and conditions of

any such agreement.

 Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

Acknowledgements

By the grace of the ALLAH Almighty, my Master’s thesis is finally complete. It was

quite an arduous exercise that could not have been completed without the help of ALLAH

Almighty and the strength that he bestowed upon me.

Moreover, I owe my deepest gratitude to my incredible supervisor Professor Dr.

Shoab Ahmed Khan for his patient guidance, motivation and appreciation throughout this the

course of this thesis. I am very thankful to him that he showed faith in me and allowed me

with one of my life’s greatest opportunity to work with him.

I am also highly obliged and grateful to my thesis co-supervisor Dr. Sajid Gul

Khawaja who always encouraged me in my entire thesis work, irrespective of whether its

thesis report, research publication, presentations, so on and so forth. Without him this

incredible journey would be pretty difficult.

Furthermore, a special thanks to Dr. Muhammad Usman Akram for his valueable

feedback in this research work. Many times he became a helping hand in execution of this

work.

I am also eternally grateful to my mother and sisters, Sharmeen and Ishmal, who

supported me. In addition to my friends and family, especially Engr. M. Waqas, Dr. Shoaib

& Dr. Johar who were a helping hand to me in every step of my journey. Their support was

what made me accomplish this herculean task.

 Without their support – in every sense of the word – and constant guidance, this

thesis would never have been conceived or completed (and definitely not in time). I cannot

thank them enough for their role in the completion of this thesis and report. Additionally, I

would like to express my gratitude towards everyone who provided me assistance in any

stage of this thesis accomplishment.

v

In dedication

To my Father Mr. Waqar Akhtar (Late)

&

To my Mother Mrs. Samia Firasat:

for encouraging and supporting me to achieve this daunting task.

To my Siblings, Cousins and Friends:

for their patience, continuous care and support during my hard times.

vi

Abstract

The use and vast implementation of Discrete Fourier Transform has revolutionized the world

and allowed the researchers to think of the modern world from a different perspective. The

discovery of Fast Fourier Transform has laid the foundation of an entirely new dimension to

the modern world. Keeping in view its utmost importance in the future industry researchers

tried to design its hardware architecture as per the requirement of the application. Several

architectures have been proposed time to time with new inventions in the previous designs.

Some architectures consider clock rate, some take architectural area into consideration, some

focuses on parallel execution of the algorithm, so on and so forth. Considering all these

inputs to the industry that has been a part to modern world time to time, this research presents

an empirical model based upon the optimal architectures for Fast Fourier Transform

algorithm for n-bits m-points input. This empirical model is obtained by making several

architectures and their respective characteristics are obtained. The data obtained is then

passed through a machine learning algorithm known as Regression Algorithm. Linear,

quadratic and cubic regression technique is applied to achieve the hierarchy of the designed

architectural parameters and this intern will provide us with the empirical models of the

architecture. This model will provide us with the specifications of the futuristic architecture

that mainly depends upon the one’s requirement i.e. either one considers a single parameter

or a tradeoff between different hardware parameters. The parameters that are mainly

considered are number of Slice LUT’s, LUT FF Pairs, clock rate, number of processing

elements and number of clock cycles required. This proposed methodology can be applied to

any hardware architectural designs for analysis and generation of empirical models.

Key Words: Discrete Fourier Transform, Fast Fourier Transform, Processing Element,

Butterfly Architecture, n Radix FFT, Permutation Matrix, Kronecker Product.

vii

Table of Contents

DECLARATION .. I

LANGUAGE CORRECTNESS CERTIFICATE ...II

COPYRIGHT STATEMENT ... III

ACKNOWLEDGEMENTS ... IV

ABSTRACT... VI

TABLE OF CONTENTS .. VII

LIST OF FIGURES ... IX

LIST OF TABLES ... X

CHAPTER 1 : INTRODUCTION .. 1
1.1 MOTIVATION .. 1
1.2 PROBLEM STATEMENT .. 2
1.3 AIMS AND OBJECTIVES .. 3
1.4 STRUCTURE OF THESIS .. 3

CHAPTER 2 : LITERATURE REVIEW .. 4
2.1 INTRODUCTION TO FAST FOURIER TRANSFORM ... 4
2.2 RADIX 2 FAST FOURIER TRANSFORM ... 5
2.2 PROPOSED FFT ARCHITECTURES BY RESEARCHERS .. 6

CHAPTER 3 : METHODOLOGY ..13
3.1 EMPIRICAL MODEL FOR FFT .. 13
3.1 PROPOSED HARDWARE ARCHITECTURE ... 14

3.1.1 Basic Building Block / Butterfly Processing Element ... 16
3.1.2 Butterfly Processing Element Architecture.. 17
3.1.3 Field Programmable Gate Array (FPGA) Implementation ... 18
3.1.4 Select Lines for Proposed Architecture .. 20

3.2 WORKING OF EMPIRICAL MODEL.. 22

CHAPTER 4 : EXPERIMENTAL RESULTS ..25
4.1 RESULTS AND DISCUSSION .. 25
4.2 EXECUTION, WORKING AND IMPLEMENTATION OF EMPIRICAL MODEL ... 32

CHAPTER 5 : CONCLUSION AND FUTURE WORK ..37
5.1 CONCLUSION ... 37
5.2 CONTRIBUTION .. 38
5.3 FUTURE WORK .. 38

CHAPTER 6 : REFERENCES ..40

ANNEXURE : FINDING THE UNIQUE PERMUTATION MATRIX FOR REVERSE ORDER
KRONECKER PRODUCT INTUITIVELY FOR FAST FOURIER TRANSFORM42

1 INTRODUCTION .. 42
2 PERMUTATION MATRIX ... 43

2.1 Rows and Column Permuted Matrix ... 43
3 KRONECKER PRODUCT AND PERMUTATION MATRIX.. 44
4 PROPOSED METHODOLOGY ... 45

viii

5 OBSERVATION AND RESULTS ... 48
6 CONCLUSION ... 50
7 REFERENCES ... ERROR! BOOKMARK NOT DEFINED.

ix

List of Figures

FIGURE 2-1: RADIX 2- 8 POINT FAST FOURIER TRANSFORM ARCHITECTURE ... 5
FIGURE 3-1: INPUTS/OUTPUTS OF EMPIRICAL MODEL .. 14
FIGURE 3-2: BLOCK DIAGRAM OF PROPOSED ARCHITECTURE... 15
FIGURE 3-3: HARDWARE IMPLEMENTATION OF 4 POINT FFT WITH 1 PROCESSING ELEMENT.. 16
FIGURE 3-4: BUILDING BLOCK FOR FFT (BUTTERFLY PROCESSING ELEMENT)... 17
FIGURE 3-5: BUTTERFLY ELEMENT ARCHITECTURE DESIGN ... 17
FIGURE 3-6: FPGA DESIGN FOR 4 POINT 1 PE .. 18
FIGURE 3-7: DETAILED RTL SCHEMATIC FOR 4 POINT 1 PE ARCHITECTURE ... 18
FIGURE 3-8: FPGA DESIGN FOR 4 POINT 2 PE .. 19
FIGURE 3-9: DETAILED RTL SCHEMATIC FOR 4 POINT 2 PE ARCHITECTURE ... 19
FIGURE 3-10: APPLICATION OF LINEAR, QUADRATIC AND CUBIC REGRESSION ON A RANDOM DATASET [29] 22
FIGURE 4-1: MATLAB FFT COMPLEX SIGNAL EXECUTION ... 25
FIGURE 4-2: GENERATED WAVE FORM FOR 4 POINT FFT USING 1 PE .. 26
FIGURE 4-3: GENERATED WAVE FORM FOR 4 POINT FFT USING 2 PE .. 26
FIGURE 4-4: COMPARISON OF 8 BIT INPUT FOR M-POINT FFT ON BASIS OF FIGURE (A): SLICE LUT’S ; FIGURE (B)

LUT FF PAIRS; FIGURE (C)CLOCK RATE... 27
FIGURE 4-5:COMPARISON OF 16 BIT INPUT FOR M-POINT FFT ON BASIS OF FIGURE (A): SLICE LUT’S ; FIGURE (B)

LUT FF PAIRS; FIGURE (C)CLOCK RATE... 28
FIGURE 4-6: COMPARISON OF 32 BIT INPUT FOR M-POINT FFT ON BASIS OF FIGURE (A): SLICE LUT’S ; FIGURE (B)

LUT FF PAIRS; FIGURE (C)CLOCK RATE... 29
FIGURE 4-7: REGRESSION TECHNIQUE FOR 8 BIT INPUT AND 1 PROCESSING ELEMENT FOR M-POINT FFT ON

FIGURE (A): SLICE LUT’S ; FIGURE (B) LUT FF PAIRS; FIGURE (C)CLOCK RATE .. 30
FIGURE 4-8: COMPARISON OF 32 BIT INPUT FOR CLOCK RATE: ... 32
FIGURE ANNEX-0-1: GENERATION OF 4! PERMUTATIONS OF 4X4 IDENTITY ... 45

file:///C:/Users/HP/Desktop/ICACTE%20Refund/Thesis/Final%20thesis%20Report10-10-19%20Dr.%20Sajid.docx%23_Toc19783152

x

List of Tables

TABLE 1: SELECT LINES FOR 4 POINT 1 PROCESSING ELEMENT .. 20
TABLE 2: SELECT LINES FOR 4 POINT 2 PROCESSING ELEMENT .. 20
TABLE 3: SELECT LINES FOR 8 POINT 1 PROCESSING ELEMENT .. 21
TABLE 4: SELECT LINES FOR 8 POINT 2 PROCESSING ELEMENT.. 21
TABLE 5: SELECT LINES FOR 8 POINT 4 PROCESSING ELEMENT ... 21
TABLE 6: EMPIRICAL MODELS FOR N-BIT {8, 16 AND 32}, M-POINT ∈ {4, 8, 16 AND 32} FOR PROCESSING

ELEMENTS ∈ {1, 2, 4, AND 8} .. 31
TABLE 7: REQUIREMENTS FOR GENERATION OF HARDWARE PARAMETERS: .. 32
TABLE 8: ARITHMETIC CALCULATIONS BASED ON EMPIRICAL MODEL FOR HARDWARE PARAMETERS STATED IN

TABLE 7 ... 33
TABLE 9: SQUARED ERROR FOR DIFFERENT PROCESSING ELEMENTS AS PER REQUIREMENT IN TABLE 7................ 33
TABLE 10: REQUIRED CYCLES FOR GENERATED HARDWARE FOR 4 PROCESSING ELEMENTS... 34
TABLE 11: ARITHMETIC CALCULATIONS BASED ON EMPIRICAL MODEL FOR HARDWARE PARAMETERS STATED IN TABLE 7

FOR 16 BIT INPUT .. 34
TABLE 12: REQUIRED CYCLES FOR GENERATED HARDWARE FOR 2 PROCESSING ELEMENTS... 35
TABLE 13: ARITHMETIC CALCULATIONS BASED ON EMPIRICAL MODEL FOR HARDWARE PARAMETERS STATED IN TABLE 7

FOR 32 BIT INPUT .. 35
TABLE 14: REQUIRED CYCLES FOR GENERATED HARDWARE FOR 1 PROCESSING ELEMENT .. 36
TABLE 15: SUMMARIZED SQUARED ERRORS FOR 8, 16 AND 32 BITS INPUT .. 36

1

Chapter 1 : INTRODUCTION

 With an adverse research in field of science and technology, Fast Fourier Transform

emerges out as one of the main basic tool for signal analysis and signal processing. The

actual implementation and usage of FFT in major applications in modern era, for instance in

implementation of 5G MIMO OFDM system [1], hearing devices, MRI, classical mechanics,

military purposes and much more [2], that depicts its utmost importance in daily life of an

individual.

In modern world, the data is expanding adversely. The amount of data we produce on

daily basis is truly mind blogging. Approximately 2.5 quintillion bytes of data [3] of data is

generated on daily basis. Almost 90% of the data currently present, has been generated over

the last two years [4]. With the increase in data generation the analytical tools are also

burdenized to improve the efficiency and performance of the current systems. Taking

software as research platform for analysis of such big data is generally a time taking task that

can be catered for using state of the art hardware, capable of performing such an immense

task in the meantime.

Considering the applications in of FFT in real life, the implementation of this

algorithm varies as per the requirement of the applications. Some applications consider the

hardware execution area to be minimized, some take frequency constraints into consideration,

few applications focuses on the parallelization of this algorithm to lessen the execution time

and many such requirements for several applications are addressed by researchers at different

times.

 In this report we present an empirical model based optimal architecture for FFT

algorithm that focuses on the requirement of the application and depicts its nearly possible

architecture based upon the proposed model, for n-Bits m-Points input considering hardware

parameters as Slice LUT’s, LUT FF Pairs, clock rate and clock cycle.

1.1 Motivation

It’s quiet difficult to believe, but in 1986, we had as little as 1% of today’s total media

storage capacity in digital form. By 2007, this number came up to 94%, which best illustrates

the speed at which digitalization came about now [5].

https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1

2

With an advent of digital world, signals and systems have made its way to the

technological path. Understanding, exploring and improving the world has always been a part

of human nature. During the last decade, several mind blowing researches on signal

processing have been made that entirely changed the thinking perspective of the digital world

that may consider discovery of Fast Fourier Transform by Cooley and Turkey [6] in 1965 on

the top of the list. With the passage of FFT has proved its utmost importance in the daily life

of an individual because of its immense use in major applications.

Since its usage varies as per its need in any application, in order to design a hardware

for its use in any area / field, we must design a generalized optimal hardware based upon real

time models / architectures, that is capable of performing all the desired task to a certain

level, so that one can meet his technological requirement as per his need.

We need to specialize hardware because in every aspect of life in modern world

everything is in its hardware form. Specializing the hardware is very much necessary to meet

up the day to day requirements in a way to meet the software requirement.

In the early stages of the digital technology, the algorithms were not that much

extensive and hence doesn’t need that much hardware execution, but in the modern world this

is currently not the case, now there is a special need to specialize the hardware so that we can

meet up with the software requirements and can excel in state of the art technology.

 As the required specs to execute the intensive algorithms are increased, the state of

the art hardware may not meet up the software requirements. This needs the hardware

researchers to get the way out of it. As any hardware specs is altered, there should have been

any trade off in some other specs, and hence it’s currently the need of the modern world to

excel the hardware to meet up the day to day requirements.

1.2 Problem Statement

FFT is being used in the modern era as a key to many bottlenecks faced in signal

processing. Its wide hardware applications forced the researchers to put their input into it, to

meet the requirements of the modern world using this technique. The purpose of this report is

to provide with an empirical model that is based upon optimal FFT architecture n-bits m-

Points using Field Programmable Gate Array (FPGA) as hardware platform. This empirical

model is obtained using a renowned machine learning algorithm i.e. regression algorithm.

3

This model will help the users in a way that they can predict their FFT architecture

constraints as per their need/requirement before its actual implementation.

Furthermore, the technique used in this report can be used in with any algorithm to

design its empirical model.

1.3 Aims and Objectives

Major objectives of the research are as follow:

 Formation of several optimal Architecture for Fast Fourier Transform.

 Architectural analysis of FFT architecture.

 Acquiring parameters for all the possible architectures for n-Bits m-points

 Generation of Empirical Model using Regression Algorithm on all the required

parameters.

 Optimal architecture generation as per one’s requirement by using empirical model.

1.4 Structure of Thesis

This work is structured as follows:

Chapter 2 gives review of the literature and the significant work done by researchers in past

few years for classification of heavenly entities using light curves.

Chapter 3 consists of the proposed methodology in detail. It includes the details about the

proposed FFT hardware.

Chapter 4 includes all the experimental results accompanied by relevant figures. In addition

to this, execution and working of the empirical model is also discussed in this

section.

Chapter 5 concludes the thesis and reveals future scope of this research

Chapter 6 contains the references used in this thesis report.

Annexure briefly describes an intuitive technique to achieve Permutation Matrix for finding

reverse order Kronecker Product to execute FFT.

4

Chapter 2 : LITERATURE REVIEW

FFT acts as a basic fundamental tool for almost all the up gradation that exists in the

modern era. This tool is considered as one of the most powerful tool that Signal Processing

have with itself. The actual implementation of anything that is used by people ends up in its

hardware form. As we are discussing here the use, implementation, execution and

implementations of FFT, many hardware implementations are proposed by researchers as per

the requirement and need of the application.

The domain of the stated report mainly centers the actual architectural implementation

of Fast Fourier Transform algorithm. Researchers have proposed many architectures based

upon their requirement and specification of different platforms e.g. Field Programmable Gate

Array (FPGA), Graphical Processing Unit (GPU), Central Processing Unit (CPU) etc. Some

of the proposed architectural designs of FFT on different platforms are discussed below.

2.1 Introduction to Fast Fourier Transform

Fourier transform is considered as one of the fundamental tools in any signal

processing and analysis [7] [8] that allows us to bifurcate individual frequency components of

any digital signal. Fourier Transform is one of the most well established transformers to

study a signal from frequency prospective, it’s analysis and filtering. It primarily concerned

with the representation of a signal by estimation of trigonometric functions or more precisely

by a series of periodic functions i.e. sinusoids. For a given sequence x(n), an n-point Discrete

Fourier Transform (DFT) can be calculated as

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 𝑘 = 0,1,2,… . . , 𝑁 − 1 (1)

𝑊𝑁
𝑛𝑘 is known as twiddle factor that can be calculated as,

𝑊𝑁
𝑛𝑘 = 𝑒−𝑗

2πnk
𝑁 = cos (

2𝜋𝑛𝑘

𝑁
) − 𝑗 sin (

2𝜋𝑛𝑘

𝑁
) (2)

The computational cost of direct implementation of DFT as stated in equation 1 is

O(N2). By using the symmetry and periodicity properties of the twiddle factors, the FFT

algorithm can reduce the complexity to O(N log2 N). The importance of this transform

cannot be denied especially considering about its importance from application and analysis

perspective in Engineering, Technology and research.

5

2.2 Radix 2 Fast Fourier Transform

FFT is considered as an elementary tool for conversion of time domain signal into

frequency domain that has wide applications in real life. The use of FFT in different

applications that requires its hardware implementation, cannot be denied. Several hardware

architectures of FFT algorithm by many researchers, implement and use this transform as per

their need of use, as its implementation technique and usage may vary, as some application

primarily concerns about frequency constraints, some with throughput, few towards hardware

efficient implementation whereas some take processing time into consideration. All such type

of architectures are precisely discussed. In addition to this, here we present an optimal

architecture for n-Bit m-Point Fast Fourier Transform that is mainly based upon the empirical

models for different hardware constraints that give the expected requirements of the

architecture as per the one’s need i.e. either one wants his hardware to be area efficient, time

efficient, a tradeoff between area and time or it may depend upon one’s requirement/priority

for implementation of his desired architecture.

 Here radix 2 implementation of Fast Fourier Transform is taken into consideration for

implementation Figure 2-1 and generation of an empirical model.

Figure 2-1: Radix 2- 8 Point Fast Fourier Transform Architecture

6

2.2 Proposed FFT Architectures by Researchers

Feifei shen at el. [9] demonstrates the advantages and validity of using GPUs for FFT

over CUPs especially when large input size is targeted. The proposed design has two types of

input textures: image data textures containing rectangular texture (RGBA) for MxN image

whereas other one secondary texture i.e. log (N) and N columns where each row stores the

real and imaginary part of primary rotating factor. In this way the FFT butterfly calculation

requires log (M) x log (N) times rendering. GPU used is Nividia Gefores 8600 video card as

hardware of GPU. Experimental comparison for different input size for open CV time, GPU

time and GPU maximum error were demonstrated by the author.

Mokhtar A.Aboleaze at el. [10] concentrated his research on energy consumption in

memory excess for FFT calculation. It was also investigated the effect of number of registers

in CPU to lessen the energy consumption in excessing the memory. It was also investigated

that the number memory access depends upon machine code, compiler, and writing the

memory. It was assumed in the paper that compiler uses available register to access in store

the data. The FFT algorithm that were used for comparison were radix two DIF FFT radix 4

and a Twiddle factor based FFT algorithm with reduced memory access.

Peter A. Milder et el. [11] used a well-known tool i.e. spiral, that automatically

generates corresponding hardware implementations, for DFT with non-power of two input

size. According to him most previous work on hardware implementations of non-power of

two sized input for DFT focuses on producing a solution for a specific

requirement/situation/application, i.e. a given problem size and performance requirement for

specified hardware. The author discusses 4 FFT algorithms including pease FFT, iterative

FFT, mixed radix FFT and Bluestein FFT.

Kota soloman Raju at el [12] proposed a DFT and IDFT hardware architecture based

on fluting point numbers to achieve accuracy and precision. General purpose arithmetic

modules based on 32 bit single precision IEEE.754 standard are design firstly and then

hardware architecture for DFT and IDFT based on radix two butterfly computation was

perform. Hardware sharing scheme was also introduced to lessen the hardware cost. To

design the architecture Verilog Hardware Description Language (VHDL) was used,

simulated on ModelSim 6.6E on Xilinx Virtex.5 LX110T board.

K Ganesoan at el. [13] proposed a general purpose sequential FFT processor for 1024

points. The processor in capable of performing 1024 point FFT execution in 26.3 msec. the

processor is configured in distributed processing system with Intel 8086 microprocessor.

7

Radix 2 hardware implementation was perform on ATRW (1003J) 12x12 bit multiplier cum

accumulator LSI chip was used an arithmetic unit. The proposed processor computes each

butterfly operation in 64 basic clock cycles taking 5.12 µ sec. the processor works on 20 KHz

sampling frequency.

Gouhui at el. [14] presented a novel design for configurable FFT/IFFT module to

provide scalability and reconfigurability. Here unified radix structure for radix 2,3,4,5 & 7 is

proposed. Furthermore issues for designing high performance Fourier algorithm for cognitive

radio communication and network systems are discussed. The clock period for the proposed

architecture is 1.988x10(-9) sec, whereas the fmax is 500 MHz.

Muniandi Kannan at el. [15] proposed DIT FFT pipelined hardware architecture for

low power multiplier less radix 4, single path delay comutator pipelined FFT processor for

16, 64 & 256 points for fixed points inputs. The proposed multiplier less architecture uses

common sub expression sharing so that it may replace complex multiplications by simple

shifting and addition operations. In this way a low power butterfly architecture is achieved.

59% and 43% power reduction is achieved for 16 points and 64 points radix 4 FFT when the

proposed architecture is compared with conventional FFT architecture based on non booth

coded wallence tree multiplier. The parameterization impact on power speed and

performance is also compared.

K. Indira Priyadarsini at el. [16] proposed a pipeline VLSI implementation for FFT,

that adoptes a single path delay feedback. A reconfigurable complex multiplier and bit

parallel multipliers are used to store the twiddle factors and eliminating ROM (Read only

Memory) and achieving a ROM less FFT processor, thus the architecture may consume low

power according to the author. This ROM less low power FFT processor can be used for

OFDM applications. The author has design a reconfigurable complex constant multiplier

such that the size of ROM for twiddle factors can be considerably shrunk.

Rozita Teymourzadeh at el [17] proposed an FFT architecture considering floating

points to achieved high precision FFT. Since floating point architecture limits maximum

clock frequency and increases the power consumption, the author focuses on improving the

speed, area, resolution, power consumption and latency for FFT architecture. The proposed

architecture illustrates VLSI for floating points parallel pipelined (FPP) 1024 radix 2

processor making used of single butterfly element incorporated for intelligent controller. The

proposed radix two FPP-FFT was optimized in AISC under Silterra 0.18 µm and Mimos 0.35

µm technology libraries. 32 bit data was processed and synthesized using Xilinx ISE

platform. Maximum clock frequency for FPP-FFT processor was obtained as 227 MHz. The

8

latency for 1024 points input is 22 µs. The Estimated power consumption for Silterra and

Mimos was 640 µW and 1.198 µW respectively.

Archana Fande at el.[18] developed a low power complex multiplier design to reduce

the hardware required to implement the FFT algorithm for Radix 4. The aim to implement a

complex multiplier is to offer high speed. Low power consumption and lesser area. In this

way this proposed architecture would be suitable for various high speed, low power VLSI

architectures. These three parameters i.e. power, area and speed are always tradeoff. The

implementation of the hardware architecture was done on Sparton 6 Trainer Kit and the

hardware characteristics were compared with Sparton 3 using VHDL. The maximum path

delay to implement the complex multiplier in Radix 4 was obtained to be 11.656 nsec.

Yazan Samir Algnabi at el.[19] proposed a novel multiplier less pipelined architecture

for Radix 22 SDF FFT based on using digital slicing technique to meet the requirement for

high speed wireless communications system standards. An optimal constant multiplication

arithmetic architectural design for multiplication of a particular input with specified twiddle

factor is also proposed by the author. The proposed architecture was simulated on MATLAB

and FPGA Virtex 4. The hardware design was tested on TLA5201 logic analyzer and a high

speed of 669.277 MHz was achieved. The author claimed his proposed architecture to be 3.35

times faster compared with the conventional architectures and it only consumes 20% of the

conventional butterfly area. The proposed architecture comprises of twiddle factors that are

saved in ROM, Digital slicing complex multiplier, processing elements that are generally

butterflies and Nlog2N counter

Yifan Bo at el.[20] proposed an FFT processor for low power applications for

variable length input. The author employed a modified fata scaling scheme and trading

method to improve SQNR (Signal to Noise Ratio) performance. Memory based architecture

is proposed to support variable length FFT processing. To reduce the power dissipation, a

tailored constant multiplier array is introduced in the data path. The author claims to perform

64 to 8192 input FFT at 100MHz processing speed. The SQNR of 55.4dB and 33.3dB are

achieved for 64 point and 8192 point FFT respectively.

Atin Mukerjee at el.[21] proposed an area efficient Radix 2 FFT architecture that

reuses the same butterfly element several times, that intern rescues the required area. To

reuse the butterfly element many times and forwarding the input to the same processing

element, a routing network is used that routes the input at a specified time. The proposed FFT

processor is simulated using VHDL and the results are simulated on Virtex 4 FPGA. The

9

author claims that this architecture outperforms the conventional architecture for N-Point

FFT Processor in terms of area that is reduces by a factor of LogN2 with +

Yousri Ourhani at el. [22] present an architecture based on radix 4 FFT algorithm

consisting of a novel memory sharing and dividing technique with processing elements

having parallel in parallel out capability. The proposed architecture is capable to perform N

Point FFT with 4/3 delay elements and involves a latency of N/4 cycles. The author

compared his architecture with R4SDC, R22SDC, RX4-B1, RX4-B2, RX4-B5 and XILINX

IP on basis of throughput by slice ratio. The analysis of the proposed design shows the

execution time to be 56% lower than obtained with Xilinx IP core and increase in 19% of

throughput by area ratio for 256 Point FFT.

Dariusz Puchala at el.[23] compared the effectiveness of selected variants of Radix 2

FFT on GPU's and CPU's. The algorithm that are taken for consideration differ in memory

consumption and data flow path arrangement that may affect the global memory coalescing

and cache memory exploitation. The author claimed that we can achieve 30 times more

acceleration in performing FFT on GPU's compared with CPU's for sufficiently large sized

inputs. It was also claimed that FFT phase coefficients calculation and bit reversal

permutation stages for GPU implementation highly outperforms the standard CPU

implementation. Another observation shared by the author is that the algorithms categorized

by the unified structures i.e. having identical stages are equally suited for both CPU's and

GPU's.

Praveen Kumar Jhariya at el. [24] compared two FFT architectures simulated on

FPGA. The designs are compared for 8 point input. The first design comprises of a butterfly

unit and a complex multiplier that is used several times in execution of FFT. Whereas in the

other design, 4 butterfly units along with 2 multipliers are used thrice in 8 point FFT

execution. It was concluded in the paper that the area required by the first design is less but

the latency of this design is comparatively higher as it took 12 butterfly cycles to compute 8

point FFT. On the other hand, second design shows comparatively higher performance but

consumes a larger architectural area.

The summary of the above stated case study is as follows:

Sr

No.
Researcher Platform Used Contribution/ Results Acquired/ Conclusions

I. Feifei shen GPU, CPU  Demonstrates the advantages and validity of

using GPUs for FFT over CUPs using large

input size
 GPU used is nividia Gefores 8600

10

 Experimental comparison for different input

size were demonstrated for :
 open CV time,
 GPU time
 GPU maximum error

II. Mokhtar

A.Aboleaze
CPU  Effect of number of registers in CPU to

lessen the energy consumption in excessing

the memory was investigated
 It was concluded that number memory

access depends upon:
 machine code
 compiler
 writing the memory.

III. Peter A.

Milder
Spiral, a tool

that

automatically

generates

corresponding

hardware

 A generalized DFT with non-power of two

input size was implemented using spiral,

that is not application oriented
 4 FFT algorithms were discussed including:

 Pease FFT

 Iterative FFT

 Mixed radix FFT

 Bluestein FFT

IV. Kota soloman

Raju
FPGA  Proposed a DFT and IDFT hardware

architecture based on fluting point numbers

to achieve accuracy and precision.
 Hardware sharing scheme was introduced

V. K Ganesoan Intel 8086

microprocessor
 sequential FFT processor for 1024 points in

26.3msec.
 Processor computes each butterfly operation

in 64 basic clock cycles taking 5.12 µ sec
 Works on 20KHz clock Rate

VI. Gouhui  Novel design for configurable FFT/IFFT

module to provide scalability and

reconfigurability.
 unified radix structure for radix 2,3,4,5 & 7

is proposed.

 This Fourier algorithm is proposed for

cognitive radio communication and network

systems
VII. Muniandi

Kannan
  Low power multiplier less radix 4, single

path delay comutator pipelined FFT

processor for Fixed point input.
 complex multiplications are replaced by

simple shifting and addition operations

hence achieving low power butterfly

architecture
 59% and 43% power reduction is achieved

11

for 16 points and 64 points radix 4 FFT
VIII. K. Indira

Priyadarsini

VLSI  Reconfigurable complex multiplier and bit

parallel multipliers are used to store the

twiddle factors and eliminating ROM

 ROM less FFT processor

 Processor is applicable for OFDM

applications

IX. Rozita

Teymourzadeh

VLSI  Floating Point FFT architecture is proposed

 Proposed architecture is focused on speed,

area, resolution, power consumption and

latency

 Proposed radix two floating points parallel

pipelined FPP-FFT was optimized in AISC

under Silterra and Mimos technology

libraries

 Clock Rate for the processor was calculated

to be 227 MHz, whereas the latency was

calculated to be 22 µs

X. Archana Fande VHDL  Proposed high speed low power VLSI

architecture and developed a low power

complex multiplier for Radix 4 FFT and

intern reduces the required hardware.

XI. Yazan Samir

Algnabi

MATLAB,

FPGA
 Proposed a novel multiplier less pipelined

architecture for Radix 22 SDF FFT

 Digital slicing technique was used.

 optimal constant multiplication arithmetic

architectural design for multiplication is also

proposed.

 Proposed architecture is 3.35 times faster

compared with the conventional

architectures as it consumes only 20% of the

conventional butterfly are

XII. Yifan Bo  Proposed variable length FFT processor for

low power applications

 Memory based architecture

 tailored constant multiplier array is

introduced to reduce power dissipation.

 64 to 8192 input FFT at 100MHz processing

speed

XIII. Atin Mukerjee VHDL

FPGA
 Radix 2 FFT architecture is introduced that

reuses the same butterfly element several

times

 Area reduces by a factor of LogN2 for N

point FFT

 There is also a negligible increase in

processing time for execution of the

algorithm.

XIV. Yousri

Ourhani

FPGA  An architecture with a novel memory

sharing and dividing technique with

12

processing elements having parallel in

parallel out capability is proposed

 Perform N Point FFT with 4/3 delay

elements with a latency of N/4 cycles

 Proposed design has execution time to be

56% lower compared with Xilinx IP core

 increase in 19% of throughput by area ratio

for 256 Point FFT

XV. Dariusz

Puchala

GPU, CPU  Compared the effectiveness of selected

variants of Radix 2 FFT on different

platforms

 Claimed to achieve 30 times more

acceleration in performing FFT on GPU's

compared with CPU's for sufficiently large

sized inputs.

XVI. Praveen

Kumar Jhariya

FPGA  Compared two FFT architectures for 8 bit

input, simulated on FPGA

 The cons and pros of both the architectures

are discussed in detail by the author

After considering summarized inputs by different researchers of their time, we can

say that the advancement in the modern technology was possible only because of the

hindrances and bottlenecks faced by the world. These barriers laid the foundation for an

advent of the new technology to the modern era. Different platforms were used that mainly

depend upon its use in the application e.g. FPGA, GPU etc. Furthermore, with the passage of

time as the technology gets inflated, the execution time using the same technique also became

an issue that is addressed accordingly by the researchers of that time. Same is the case with

the hardware area for the architecture and many other aspects of the same nature.

 The main issue that was faced by several developers, analysts, scientists and

researchers was that any up gradation in technology was more or less application limited. As

any verity is added to the application there needs to reassemble all the architectural design. In

other words we can say that the hardware is entirely reshaped as the application for which it

was designed. In this thesis report we have presented an empirical model for signal

processing Fast Fourier transform algorithm that can be reshaped as per the requirement of

the user and application, or in other words we can say that the architecture can be reshaped

as the requirements get changed that mainly depends upon the number of Processing

Elements (PE) used. Using this technique for hardware designing, we can achieve

parallelism, lesser hardware area, or any other efficiency in our hardware that designed with

the same architectural blocks.

13

Chapter 3 : METHODOLOGY

This part of the thesis presents the steps for developing an optimal architecture for

Fast Fourier Transform for an n-bits m-points input using p-processing elements. The

proposed architecture is briefly explained in this section. Furthermore the execution, working

and architectural design of the processing element will also be discussed. With the help of

several hardware architectures and its analysis, an empirical model based upon the several

hardware parameters for FFT will be developed using machine learning algorithm. This

model will be our empirical model for n-bits m-points FFT. With the help of this generated

model we will be able to predict the futuristic parameters of the desired FFT hardware design

and feasibility of its implementation, its characteristics and other parameters before actual

implementing it.

3.1 Empirical Model for FFT

 An empirical model is a generalized way for representation of a designed prototype

for the activities on basis of observation and experiment. It is generally used to represent

hierarchy of the results of the performed experiments. Furthermore, it is used for predicting

the futuristic results from the previously calculated dataset. Output requirements of the

hardware will be calculated by a decision tree i.e. either it has to consider any one of the

hardware parameter for optimization or a generalized hardware having a trade of for all the

parameters for generalized implementation as per ones requirement.

 In this report we are considering following hardware parameters for making our

empirical model i.e. number of Slice LUT’s, LUT FF Pairs, clock rate The inputs of the

system will be ‘m’ i.e. point of FFT, desired Slice LUT’s, LUT FF Pairs, clock rate and clock

cycles in which one wants the hardware to perform the FFT and the output will include the

actual number of Processing Elements, Slice LUT’s, LUT FF Pairs, clock rate and clock

cycles required to perform that m-point FFT for that architecture.

14

Figure 3-1: Inputs/Outputs of Empirical Model

 The model will provide the user with the nearest possible actual hardware

specifications. Most probably, it is quite possible to have a difference in the actual and

required specifications, but the model will provide the user with the error of the actual and

required specifications. After that it will be upto the user/designer of the architecture that how

much he can trade off on any hardware parameter that is either required hardware area,

number of clock cycles required to perform the desired task or clock rate or something else.

3.1 Proposed Hardware Architecture

 The proposed hardware architecture is based upon multiprocessor architecture (p-

processing elements), of homogenous PEs. These PEs are connected by a crossbar switch that

acts as a back bone for our architecture, shown in Figure 3-2.

 A crossbar switch is generally an assembly of switches between inputs and outputs.

The switches are arranged in a matrix. If a crossbar switch has M inputs and N outputs, then

it has M × N matrix cross-points where the connections cross. It is a matrix where each

crossbar switch runs between two points, in a design that is intended to hook up each part of

an architecture to every other part. A crossbar switch finds its applications in various

disciplines as on network and system on chips (NOC & SOC) [25,26], in network processors

that uses rotating round robin algorithm [27], reconfigurable crossbar switches in network

processors to increase the performance and flexibility for multiprocessors and computer

clusters[28], integrated designs and much more.

15

Figure 3-2: Block Diagram of Proposed Architecture

 The inputs for the processing element vary for every next cycle. In the stated

architecture a crossbar switch routes the input towards particular processing element, either

coming from original input (as in stage 1 of Figure 2-1) or some output that is treated as input

in the later cycles (Stage 2 and later of Figure 2-1). The routing of particular inputs towards

a specified processing element is achieved using an arbitrator (Figure: 3-2) . This arbitrator

generates the control signals that controls the of data from one processing element to another.

These control signals and its working will be discussed later on (Table:1-5).

 From Figure 2-1 it can be observed that maximum number of Processing elements

that can be used for parallel execution for m-point FFT are
𝑚

2
, as for radix 2 FFT every PE

has 2 inputs and after that, wastage of hardware resources will occur in every executing

cycle, as in every clock cycle, there will be some part of architecture without any assigned

task. On the other hand, by using number of P.E. ≤
𝑚

2
, all the hardware resources are used. For

FFT implementation, the architecture should be capable to feedback the generated outputs.

To reuse the output of the system again as input, demultiplexers are used so that the output

generated can be routed towards the particular input line for further usage if required/needed

using demux select line.

 To understand the working of the model let us suppose a 4 point input with 1 PE. In

the first cycle, original inputs will be forwarded towards original muxes from back muxes

(Figure 3-3) by using all the select lines as 0. The back mux has three inputs, one is the

original input, whereas other two are routed back inputs from the respective demultiplexers.

The original muxes have all the concerned inputs that will take part in FFT execution. The

input at 0 and 2 are firstly put forward using the select lines. In the next cycle of execution,

other two inputs (1 & 3) are given to the PE from original muxes (using select lines as 1 and

3). The outputs obtained in the respective cycles, are feedback through demultiplexers by

16

using the select lines same as used for muxes (labelled as original muxes in Figure 3-3). In

this way the first stage of 4 point FFT with 1 PE is executed. After the completion of the first

stage, in the second stage , system has three types of inputs in which the first is that of

original input, that will not take part in further execution of FFT, whereas the other two are

routed back inputs from the respective demultiplexers. For processing the 2nd stage, three

type of inputs are taken into account in back mux. To select the concerned input for

processing i.e. either original input or previously generated outputs (out1 or out2), select

lines are used. These select lines put forward the input to the original multiplexer. In the first

half, the select lines will be 0 & 1 whereas in the next half it will be 2 & 3. As stated the

select lines for demuxes are same as original muxes in the respective cycles to put forward

the generated output to its initial place. The described architecture is shown in Figure 3-3. In

this way a FFT for 4 Point input with 1 PE is processed.

Figure 3-3: Hardware Implementation of 4 Point FFT with 1 Processing Element

3.1.1 Basic Building Block / Butterfly Processing Element

 From the Figure 2-1, it can be noticed the main processing element for radix 2

hardware implementation of FFT illustrated are two adders and a multiplier. This is shown in

Figure 3-4, that acts as a building block for FFT execution, known as butterfly processing

element.

17

Figure 3-4: Building Block for FFT (Butterfly Processing Element)

 It can be noted here that the system has two inputs 𝑃&𝑄, a twiddle factor 𝑊and two

outputs 𝑋0 and 𝑋1. In FFT the inputs and twiddle factors plays the major (Pivotal) role in

processing of butterfly element, this basic building block of its architecture that can be

implemented as

𝑋0 = out1 = in1 + (in2 ∗ wn) … (3A) 𝑋1 = out2 = in1 + (in2 ∗ −wn)… (3B)

 𝐿𝑒𝑡 out1 = x1 + y1i & 𝑜𝑢𝑡2 = 𝑥2 + 𝑦2𝑖
𝐴𝑛𝑑 in1 = a + bi , in2 = c + di & 𝑤𝑛 = 𝑒 + 𝑓𝑖

 From (3A) & (3𝐵)

𝑥1 + 𝑦1𝑖 = (𝑎 + 𝑏𝑖) + ((𝑐 + 𝑑𝑖) ∗ (𝑒 + 𝑓𝑖))
= (𝑎 + 𝑐𝑒 − 𝑑𝑓) + (𝑏 + 𝑐𝑓 + 𝑑𝑒)𝑖 … (4𝐴)

𝑥2 + 𝑦2𝑖 = (𝑎 + 𝑏𝑖) + ((𝑐 + 𝑑𝑖) ∗ (−𝑒 − 𝑓𝑖))
= (𝑎 − 𝑐𝑒 + 𝑑𝑓) + (𝑏 − 𝑐𝑓 − 𝑑𝑒)𝑖 … (4𝐵)

3.1.2 Butterfly Processing Element Architecture

 The outcome of equations (4A)&(4B) are the two outputs of the PE, acting as

building block (butterfly processing element) for FFT. The hardware implementation of

butterfly element (4A-B) is shown in Figure 3-5:

Figure 3-5: Butterfly Element Architecture Design

 In the stated butterfly element 𝑎 + 𝑏𝑖 and 𝑐 + 𝑑𝑖 are the two inputs that are

participating in execution of FFT whereas 𝑒 + 𝑓𝑖 is the specific twiddle factor.

18

3.1.3 Field Programmable Gate Array (FPGA) Implementation

The FPGA architecture design after implementing the above model for 4 point FFT

using 1 processing element is depicted below in Figure 3-6. The stated hardware design has

signal to perform FFT and select lines as input and four output lines, as there is only one

processing element to perform FFT.

Figure 3-6: FPGA design for 4 point 1 PE

The detailed Register Transfer Level (RTL) schematic for the above architecture is

shown in the figure below. Here the muxes, demuxes and processing elements can be seen

properly that forms the basis of our architectural model.

Figure 3-7: Detailed RTL Schematic for 4 Point 1 PE Architecture

In the same way, using 2 processing elements for 4 point FFT, the FPGA design is
as follows:

19

Figure 3-8: FPGA design for 4 point 2 PE

The only difference that can be observed in performing 4 point FFT using 1 and 2

processing elements are, increase in number of muxes and demuxes resulting in increasing

the number of select lines. Whereas on the output side, as the number of processing elements

are doubles the output lines are increased accordingly. The detailed RTL Schematic for 4

point architecture using 2 processing elements is shown in the figure below:

Figure 3-9: Detailed RTL Schematic for 4 Point 2 PE Architecture

 Both the processing elements are shown in the above diagram. Furthermore,

the increase in number of select and output lines can be observed clearly as the number of

processing elements are increased.

20

Same methodology has been followed for n-Bits input of m-Points input with p-

Processing Elements. The select lines used for 4 and 8 Point FFT using p-Processing

Elements are shown in Table(1-5).

3.1.4 Select Lines for Proposed Architecture

 The select lines for 4 Point FFT with 1 PE for back mux, original mux, memory

element and demux for the architecture in (Figure 3-3 & Figure 3-7) is shown in Table (1)

Clk

Cycle
sel_in0 sel_in1 sel_in2 sel_in3 Msel1 Msel2 addr DMsel1 DMsel2

1 0 0 0 0 0 2 1 X X

2 0 0 0 0 1 3 2 0 2

3 1 1 2 2 0 1 3 1 3

4 1 1 2 2 2 3 4 0 1

XXX Z Z Z Z Z Z Z 2 4
Table 1: Select Lines for 4 Point 1 Processing Element

 By increasing the processing elements from 1 to 2, another twiddle factor select line

i.e. ‘addr’, two ‘Msel’ lines for multiplexers and two ‘DMsel’ select lines for demultiplexers

will be added in the architecture as shown in Figure 3-9, is depicted in Table(2)

Clk

Cyc

sel_in

0

sel_in

1
sel_in2

sel_in

3

Msel

1

Msel

2

Ms

el3

Ms

el4

add

r

addr

1

DMsel

1

DMsel

2

DMsel

3

DMsel

4

1 0 0 0 0 0 2 1 3 1 2 X X X X

2 1 1 2 2 0 1 2 3 3 4 0 2 1 3

X Z Z Z Z Z Z Z Z Z Z 0 1 2 3
Table 2: Select Lines for 4 Point 2 Processing Element

 It should be noted here that in first cycle demux select lines are not initiated, being the

input that is in processing stage. When the processing of the first cycle is successfully done,

then it will be feed backward in the next cycle to its initial place. After the completion of the

cycle new inputs are forwarded with the help of select lines and the outputs are moved back

to their initial places using the previously used mux lines. In other words we can also say that

the current select lines are of input multiplexers, after passing through processing element,

will be select lines for demux in the next cycle

 For 8 point FFT the select lines using one, two and four processing elements are

shown in Table3, Table4 and Table 5 respectively. The select lines for the twiddle factor

‘addr’, two ‘Msel’ Lines for multiplexers and two ‘DMsel’ select lines would be added in the

architecture, in a similar way as in Table(1-2).

21

Clk.

Cyc

sel_i

n0

sel_i

n1

sel_i

n2

sel_i

n3

sel_i

n4

sel_i

n5

sel_i

n6

sel_i

n7

Ms

el1

Ms

el2

ad

dr

DMs

el1

DMs

el2

1 0 0 0 0 0 0 0 0 0 4 1 X X

2 0 0 0 0 0 0 0 0 2 6 2 0 4

3 0 0 0 0 0 0 0 0 1 5 3 2 6

4 0 0 0 0 0 0 0 0 3 7 4 1 5

5 1 1 1 1 2 2 2 2 0 2 5 3 7

6 1 1 1 1 2 2 2 2 4 6 6 0 2

7 1 1 1 1 2 2 2 2 1 3 7 4 6

8 1 1 1 1 2 2 2 2 5 7 8 1 3

9 1 1 2 2 1 1 2 2 0 1 9 5 7

10 1 1 2 2 1 1 2 2 2 3 10 0 1

11 1 1 2 2 1 1 2 2 4 5 11 2 3

12 1 1 2 2 1 1 2 2 6 7 12 4 5

xxx Z z z z z z z z z z z 6 7
Table 3: Select Lines for 8 Point 1 Processing Element

 By increasing the number of P.E. the number of clock cycles required to perform FFT

will lessen to half (Equation (5)), but the select lines will increase accordingly

Clk

Cyc

sel_

in0

sel_

in1

sel_

in2

sel_

in3

sel_

in4

sel_

in5

sel_

in6

sel_

in7

Ms

el1

Ms

el2

Ms

el3

Ms

el4

ad

dr1

ad

dr2

DM

sel1

DM

sel2

DM

sel3

DM

sel4

1 0 0 0 0 0 0 0 0 0 4 2 6 1 2 X X X X

2 0 0 0 0 0 0 0 0 1 5 3 7 3 4 0 4 2 6

3 1 1 1 1 2 2 2 2 0 2 4 6 5 6 1 5 3 7

4 1 1 1 1 2 2 2 2 1 3 5 7 7 8 0 2 4 6

5 1 1 2 2 1 1 2 2 0 1 2 3 9 10 1 3 5 7

6 1 1 2 2 1 1 2 2 4 5 6 7 11 12 0 1 2 3

xxx z z z z z z z z z z Z Z z z 4 5 6 7

Table 4: Select Lines for 8 Point 2 Processing Element

Clk

Cy

c

sel

_in

0

sel

_in

1

sel

_in

2

sel

_in

3

sel

_in

4

sel

_in

5

sel

_in

6

sel

_in

7

M

sel

1

M

sel

2

M

sel

3

M

sel

4

M

sel

5

M

sel

6

M

sel

7

M

sel

8

ad

dr

1

ad

dr

2

Ad

dr

3

ad

dr

4

1 0 0 0 0 0 0 0 0 0 4 2 6 1 5 3 7 1 2 3 4

2 1 1 1 1 2 2 2 2 0 2 4 6 1 3 5 7 5 6 7 8

3 1 1 2 2 1 1 2 2 0 1 2 3 4 5 6 7 9 10 11 12

Table 5: Select lines for 8 Point 4 Processing Element

 The DMux select lines are in same hierarchy as in previous tables i.e. same as Msel,

having number input value in the first cycle but in the second cycle, it would be same as

previously used Msel select line. Keeping in view the above stated select lines in the above

mentioned tables, same hierarchy will be followed for 16 point, 32 point, up till m-point

FFT. All these (Table1-5) acts as the select lines that are used by the arbitrator that act as

state machine. These distribution and routing of data for the architecture is managed via

control signals received from control unit that acts as state machine for the stated hardware

architectures.

22

3.2 Working of Empirical Model

 To make the empirical model, different architectures similar to the architecture stated

in Figure: 3-3 for n-Bits ∈ {8, 16 and 32}, m-Point ∈ {4, 8, 16 and 32} with p-processing

elements ∈ {1, 2, 4 and 8} were modeled and their comparative parameters were taken into

consideration for the modelling of the empirical model. The acquired results, are accumulated

and an algorithm of machine learning known as regression algorithm of order 1, 2 and 3 was

implemented.

 Regression analysis is a form of predictive modelling technique which calculates the

relationship between a target (i.e. dependent variable) and predictor (i.e. independent

variable) in form of a function. This technique is used for forecasting, time series modelling

and finding the causal effect relationship between the variables and much more. Regression

technique actually generates a function of order 1,2,3…..nth, which is a linear curve in case of

1st order, quadratic in case of 2nd order and cubic in case of order 3, and this goes up till nth

order generation. The implementation of linear, quadratic and cubic regression on a random

dataset is shown in figure below, however, the use of this technique in case of making the

empirical model will be discussed shortly in the upcoming chapter.

Figure 3-10: Application of Linear, Quadratic and Cubic Regression on a Random Dataset [29]

 The inputs will be passed through the empirical model and will predict the

requirement of for the futuristic parameters if only one parameter is taken into consideration.

Whereas on the other hand if two or more parameters are taken for granted, the hardware will

be calculated for all the set parameters and an optimized specifications of hardware will be

generated, having tradeoff for all the set parameters.

23

 As discussed earlier, the clock cycles required by the proposed architecture depends

upon the number of processing elements. With the increase in number of processing elements

the clock cycles will lessen accordingly or vice versa. The clock cycles required to perform

FFT for m-point using p-processing elements can be calculated using eq. 5 as below:

𝑭𝒐𝒓
𝒎

𝟐 ∗ 𝒙
 Processing Elements  (𝐥𝐨𝐠𝟐𝐦) ∗ 𝒙 "𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆𝒔" ; 𝒙 = 𝟏, 𝟐,… .

𝒎

𝟐
 (5)

 Eq. 5 is a generalized representation for clock cycles required to perform m-Point

FFT having
𝑚

2 ∗ 𝑥
 number of Processing Elements, it would take (log2𝑚) ∗ 𝑥 clock cycles,

where:𝑥 = 1, 2,……
𝑚

2
. As we are catering here Radix 2 FFT architecture that why we use

log2 , if we propose an architecture of Radix n, then similarly logn will be used in equation 5.

 To execute the empirical model for actual implementation and prediction of the

parameters of the futuristic architecture either taking into account a single parameter or all

the stated parameters, following steps are to be followed:

1. Take number of input bits and points for FFT (Input)

2. Take desired parameters Slice LUT’s, LUT FF Pars, clock rate and clock cycle (Input:

Take either 1 or more as required)

3. If (ii) has only 1 parameter: Pass the number of points of FFT from (i) through the

specific model (Table 6) and deliver the output.

4. Pass the number of Processing Elements from (iii) and calculate clock cycles using

equation (5) of the hardware.

5. If (ii) has 2 or more parameters: Pass the number of points for FFT from (i) through

all the specific models (Linear Regression model for Slice LUT and LUT-FF Pairs,

Quadratic Regression for Clock Rate) for n-bit input (Table 6).

6. Repeat step (iv) for all the models generated in (v) to calculate the clock cycles.

7. Calculate the percentage error between the outputs from (v& vi) with desired

parameters from (ii).

8. Output the model with the least percentage error.

9. Pass the number of Processing Elements from (vii) and calculate clock cycles using

equation (5).

In this section of the thesis we have presented an architecture for m-points

with p-processing elements. In this architecture, the processing element that acts as

the basis of the hardware is actually the butterfly architecture of the FFT that is briefly

y elaborated in the given section. The architectural design of the processing element

that is the main building block of the hardware design, is also shown in this section.

24

In addition to this, the select lines that are the main fundamentals of the

proposed architecture which helps in routing and selection of the selected input is also

shown in this section. Furthermore the stepwise processing and execution of the

empirical model is also encountered. In addition to this a generalized formula to

calculate the number of clock cycles required to perform FFT with variable number

of processing elements is also proposed in this section. However experimental results,

empirical model and its working is elaborated in the next chapters.

25

Chapter 4 : EXPERIMENTAL RESULTS

4.1 Results and Discussion

 In order to make our empirical model for specified hardware parameters for proposed

FFT architecture, several experimentation for the implementation of hardware architecture

were performed similar to architecture stated in the Figure (3-3, 3-7 & 3-9) using n-bit ∈ {8,

16 and 32}, m-Points for FFT ∈{ 4, 8, 16 and 32 } with p-processing elements ∈ {1 2 4 and 8

PE's}. All the possible combinations of n, m and p were designed. The platform used for

designing and implementation of all the architectures is on Xilinx using HDL Verilog coding.

The FPGA used for this purpose is XC7A100T that mainly belongs to Artix family of

FTG256 package.

 The hardware designs for 4 point input FFT using 1 and 2 processing elements are

discussed in the previous section. For confirming the feasibility of our architecture, we have

performed FFT algorithm on our model. The bench mark to decide, whether our model is

working properly or not, we have executed FFT on a complex signal on MATLAB and then

confirmed it on our model. The 4 point complex signal FFT on MATLAB is shown in Figure

4-1. Signal to perform FFT is [-1+4i 5-8i -3+4i 9-5i].

Figure 4-1: MATLAB FFT Complex Signal Execution

To wave form achieved using 1 processing element for 4 points input for the same

signal using the hardware design stated in Figure 3-7 is shown below:

26

Figure 4-2: Generated Wave Form for 4 Point FFT using 1 PE

 In addition to this, using 2 processing elements, the output wave form from the

architectural design stated in Figure 3-9 is shown below.

Figure 4-3: Generated Wave Form for 4 Point FFT using 2 PE

27

From both the above Figures (4-2 & 4-3), the output signal is same. The only

difference that lies in between the two wave forms is that, if we use 1 PE, the output will be

achieved in two cycles whereas using 2 PE, the output is received in a single cycle.

 The performance of all the implemented architectures were evaluated on the basis of

hardware parameters i.e. number of slice LUT's, LUT FF Pairs and clock frequency of that

particular specified characteristical architecture. These three parameters were analyzed for all

the possible architectures for all the possible combinations of n, m and p.

 For 8 bit input of m-point∈{ 4, 8, 16 and 32 } FFT using p-Processing Elements ∈ {1

2 4 and 8 PE's}. Making constant input as 8 bit and variable m-points and p-processing

elements we came up with the results as shown in Figure 4-4.

 Figure (A) Figure (B)

Figure (C)

Figure 4-4: Comparison of 8 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B) LUT FF
Pairs; Figure (C)Clock Rate

 In the same way by increasing the input bits different results are achieved. For

instance, using 16 bit input with variable input point FFT and Processing Elements, the

architecture specifications are used in the following manner as depicted below:

0

2000

4000

6000

8000

10000

8 Bit 1 PE 8 Bit 2 PE 8 Bit 4 PE 8 Bit 8 PE

364 532593 790
14441077 1370

2468

4728

2110 2656

4779

9124

N
O

. O
F

 S
L

IC
E

 L
U

T
'S

8 BIT INPUT WITH DIFFERENT PES

Comparion of 8 Bit Input for
Slice LUT's

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

0

500

1000

1500

8 Bit 1 PE 8 Bit 2 PE 8 Bit 4 PE 8 Bit 8 PE

65 10381 127
277

121 183
389

733

210
304

632

1217

N
O

. O
F

 L
U

T
 F

F
 P

A
IR

S

8 BIT INPUT WITH DIFFERENT PES

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

120

140

160

8 Bit 1 PE 8 Bit 2 PE 8 Bit 4 PE 8 Bit 8 PE

157.557 159.528

148.783 148.566 148.166
144.588 142.653 142.284 141.551

135.602 135.422 135.09 134.429

C
L

O
C

K
 R

A
T

E
 I

N
 M

H
Z

8 BIT INPUT WITH DIFFERENT PES

Comparison for 8 Bit Input for Clock
Rate

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

28

Figure (A) Figure (B)

 Figure (C)

 Figure 4-5:Comparison of 16 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B) LUT
FF Pairs; Figure (C)Clock Rate

 In addition to this different results are obtained when we increase the number of input

bits. This is also noted that the hierarchy of the results are similar to that of the previously

found results with different input bit size. The observations for different hardware parameters

for 32 bit input are shown below.

 Figure (A) Figure (B)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

16 Bit 1 PE 16 Bit 2 PE 16 Bit 4 PE 16 Bit 8 PE

726 10401184 1552
28002155 2932

5256

9968

4204
5187

9162

17237

16 BIT INPUT WITH DIFFERENT PES

Comparion of 16 Bit Input for Slice
LUT's

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

0

500

1000

1500

2000

16 Bit 1 PE 16 Bit 2 PE 16 Bit 4 PE 16 Bit 8 PE

105 187125 227

501

169
338

677

1261

253
484

1015

1937

16 BIT INPUT WITH DIFFERENT PES

Comparison of 16 Bit Slice Fully
used LUT FF Pairs

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

110

120

130

140

150

160

16 Bit 1 PE 16 Bit 2 PE 16 Bit 4 PE 16 Bit 8 PE

155.113
149.959

144.818 144.613 144.234
140.841 138.816 138.466 137.771

132.301 132.13 131.813 131.184

16 BIT INPUT WITH DIFFERENT PES

Comparion of 16 Bit Input for Clock
Rate

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

0

10000

20000

30000

40000

50000

32 Bit 1 PE 32 Bit 2 PE 32 Bit 4 PE 32 Bit 8 PE

1278 19202076 3016 54403738 5204
9224

21515

7275 10067

17770

41518

32 BIT INPUT WITH DIFFERENT PES

Comparion of 32 Bit Input for Slice
LUT's

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

0

2000

4000

6000

32 Bit 1 PE 32 Bit 2 PE 32 Bit 4 PE 32 Bit 8 PE

205 410241 482
965

327 618
1237

2495

441
834

1763

4066

32 BIT INPUT WITH DIFFERENT PES

Comparison of 32 Bit Slice Fully
used LUT FF Pairs

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

29

Figure (C)

 Figure 4-6: Comparison of 32 bit input for m-Point FFT on basis of Figure (A): Slice LUT’s ; Figure (B)

LUT FF Pairs; Figure (C)Clock Rate

 Graphical analysis for Slice LUT’s of the hardware implemented in Figure 4-4 (A),

Figure 4-5 (A) and Figure 4-6(A) shows that it increases as the number of point for FFT

increases. In addition to this same trend was followed by the LUT FF Pairs Figure 4-4 (B)

Figure 4-5(B) and Figure 4-6(B). Whereas unlike other two, clock rate decreases as the

number of points for FFT increased Figure 4-4(C) Figure 4-5(C) and Figure 4-6(C). Another

observation that was made in the clock rate was that, by increasing the processing elements

the clock rate does not show a valuable change, infect it shows rigidity in its clock rate Figure

4-4(C) Figure 4-5(C) and Figure 4-6(C).

 For a generalized empirical model for the architecture similar to Figure 3-3, the data

acquired from several experiments for distinct specifications i.e. different input bits points

and processing elements, were passed through a conventional machine learning algorithm i.e.

regression algorithm of order 1, (linear regression), order 2 (quadratic regression) and order

3(cubic regression). The execution of this algorithm for 8 bit input using 1 Processing

Element for the stated parameters are depicted in Figure 4-7.

 Figure (A) Figure (B)

90

95

100

105

110

115

32 Bit 1 PE 32 Bit 2 PE 32 Bit 4 PE 32 Bit 8 PE

111.811
109.28

106.36 106.25 106.045
104.199 103.191 102.997 102.749

99.45 99.353 99.174 98.975

32 BIT INPUT WITH DIFFERENT PES

Comparison for 32 Bit input for
Clock Rate

4 Point FFT 8 Point FFT 16 Point FFT 32 Point FFt

y = -0.0036x3 + 0.3724x2 + 53.187x + 145.52

y = 62.591x + 97.13
y = 0.1857x2 + 55.714x + 137.17

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35N
o

. o
f

Sl
ic

e
L

U
T

's

No. of Points for FFT

Slice LUT's Comparison for 8 Bit input 1 Processing
Element

y = 5.237x + 40.696

y = 0.0331x2 + 4.0109x + 47.833

y = -0.0021x3 + 0.1432x2 + 2.5208x + 52.762

0

50

100

150

200

250

0 5 10 15 20 25 30 35

N
o

 o
f S

li
ce

 L
U

T
 F

F
 P

ai
rs

No. of Points for FFT

LUT FF Pairs Comparison for
8 Bit input 1 Processing Element

30

Figure (C)

Figure 4-7: Regression Technique for 8 Bit Input and 1 Processing Element for m-Point FFT on Figure (A): Slice
LUT’s ; Figure (B) LUT FF Pairs; Figure (C)Clock Rate

 From Figure 4-7 it is observed that after applying linear, quadratic and cubic

regression, there exists a very minor difference in their output for slice LUT’s and LUT FF

Pairs compared to original ones, whereas the data highly under fits using linear regression,

whereas the data highly over fits by using cubic regression while considering the clock rate.

So for representing the clock rate, quadratic regression is the most nominal and gives better

results compared with the other two. The equation of linear, quadratic and cubic regression

can be seen on the generated graphs (Figure: 4-7).

 In view of the above we can say that, the best model that depict the hierarchy of the

acquired data for making the empirical model in case of slice LUT’s and LUT FF pairs are

the first order polynomial (i.e. Linear Regression) whereas in case of clock rate its of

second order equation (i.e.

Quadratic Regression).

 Graph plot and equations for the above mentioned hardware characteristics are for 8

bit input constitutes the same hierarchy for n bit input. In the same way, by applying the

regression technique on n-bits ∈ {8,16 and 32}, m-Points ∈ {4,8,16 and 32} for processing

elements ∈ {1, 2, 4, and 8} following equations/results are obtained as in Table 6:

y = -0.7061x + 157.22

y = 0.0211x2 - 1.4889x + 161.78

y = -0.005x3 + 0.2797x2 - 4.9878x + 173.35

130

135

140

145

150

155

160

0 5 10 15 20 25 30 35

C
lo

ck
 R

at
e

(M
H

z)

No. of Points for FFT

Clock Rate (MHz) Comparison for
8 Bit input 1 Processiing Element

31

 ith-Order Model
 Number of Slice LUTs

Number of Fully used LUT

FF-Pairs
Clock Rate MHz

Linear
Quadr

atic
Cubic

Linea

r

Quadra

tic
Cubic Linear

Quadrat

ic
Cubic

8

Bit

s

1

Processin

g Element

y =
62.591x +

97.13

y =
0.1857x2
+ 55.714x
+ 137.17

y = -
0.0036x3 +
0.3724x2 +
53.187x +

145.52

y =
5.237x +
40.696

y =
0.0331x2 +
4.0109x +

47.833

y = -
0.0021x3 +
0.1432x2 +
2.5208x +

52.762

y = -
0.7061x +

157.22

y =
0.0211x2 -
1.4889x +

161.78

y = -
0.005x3 +
0.2797x2 -
4.9878x +

173.35

2

Processin

g Element

y =
76.391x +

191.13

y =
0.3827x2
+ 62.214x
+ 273.67

y = -
0.0036x3 +
0.3724x2 +

53.187x +
145.52

y =
7.237x +

70.696

y =
0.0331x2 +
6.0109x +

77.833

y = -
0.0021x3 +
0.1432x2 +

4.5208x +
82.762

y = -
0.7607x +

157.95

y =
0.0369x2 -
2.129x +
165.92

y = -
0.0055x3 +
0.3216x2 -

5.9804x +
178.66

4

Processin

g Element

y =

139.74x +
288.5

y =
0.6849x2
+ 111.56x
+ 507.67

y = 0.6849x2

+ 111.56x +
507.67

y =

14.848x
+ 155.5

y =
0.0495x2 +
12.812x +

171.33

y =
0.0495x2 +
12.812x +

171.33

y = -

0.5312x +
151.76

y =
0.0119x2 -
1.0209x +

155.57

y =
0.0119x2 -
1.0209x +

155.57

8

Processin

g Element

y =
274.75x +

332

y =
274.75x +

332

y = 274.75x
+ 332

y =
30.25x +

249

y = 30.25x
+ 249

y = 30.25x
+ 249

y = -
0.4451x +

148.67

y = -
0.4451x +

148.67

y = -
0.4451x +

148.67

16

Bit

s

1

Processin

g Element

y =
124.67x +

197.17

y =
0.3261x2
+ 112.59x

+ 267.5

y = -
0.0105x3 +
0.8672x2 +
105.27x +

291.71

y =
5.3043x
+ 83.435

y = -
0.002x2 +
5.379x +

83

y = -
0.0019x3 +
0.0938x2 +
4.0833x +

87.286

y = -
0.7174x +

154.03

y =
0.0266x2 -
1.7039x +

159.77

y = -
0.0062x3 +
0.3476x2 -
6.047x +

174.14

2

Processin

g Element

y =
149.58x +

434.04

y = -
0.5049x2

+ 168.28x
+ 325.17

y = -
0.1794x3 +
8.7318x2 +
43.312x +

738.52

y =
10.696x
+ 148.57

y = -
0.1139x2 +

14.915x +
124

y = -
0.0186x3 +
0.8438x2 +
1.9583x +

166.86

y = -
0.6018x +

150.41

y =
0.0189x2 -

1.3035x +
154.49

y = -
0.0014x3 +
0.0892x2 -
2.254x +
157.64

4

Processin

g Element

y =
262.09x +

847

y = -
2.6198x2
+ 369.87x
+ 8.6667

y = -
2.6198x2 +
369.87x +

8.6667

y =
21.375x
+ 332

y = -
0.0365x2 +
22.875x +

320.33

y = -
0.0365x2 +
22.875x +

320.33

y = -
0.503x +
147.56

y =
0.0127x2 -
1.0262x +

151.63

y =
0.0127x2 -
1.0262x +

151.63

8

Processin

g Element

y =

454.31x +
2699

y =

454.31x +
2699

y = 454.31x
+ 2699

y =

42.25x +
585

y = 42.25x
+ 585

y = 42.25x
+ 585

y = -

0.4117x +
144.36

y = -

0.4117x +
144.36

y = -

0.4117x +
144.36

32

Bit

s

1

Processin

g Element

y =
214.83x +

369.26

y =
0.5761x2
+ 193.49x

+ 493.5

y = -
0.0047x3 +
0.8203x2 +
190.19x +

504.43

y =
8.4391x
+ 176.91

y = -
0.1032x2 +
12.26x +
154.67

y = -
0.0106x3 +
0.4427x2 +
4.875x +

179.1

y = -
0.3904x +

111.31

y =
0.0138x2 -
0.8999x +

114.28

y = -
0.0033x3 +
0.1832x2 -
3.1927x +

121.86

2

Processin

g Element

y =
291.55x +

678.57

y =
1.057x2 +

252.39x +
906.5

y = 0.0468x3
- 1.3516x2 +

284.98x +
798.71

y =
15.026x
+ 360.61

y = -
0.1358x2 +

20.055x +
331.33

y = -
0.0022x3 -
0.0208x2 +

18.5x +
336.48

y = -
0.334x +
109.53

y = 0.01x2 -
0.7052x +

111.69

y = -
0.0009x3 +
0.0566x2 -
1.3352x +

113.77

4

Processin

g Element

y =
516.66x +

1167

y =
2.5469x2

+ 411.87x
+ 1982

y = 2.5469x2
+ 411.87x +

1982

y =
33.196x
+ 702

y = -
0.0469x2 +

35.125x +
687

y = -
0.0469x2 +

35.125x +
687

y = -
0.2795x +

107.96

y =
0.0059x2 -

0.5231x +
109.85

y =
0.0059x2 -

0.5231x +
109.85

8

Processin

g Element

y =
1252.3x +

1578

y =
1252.3x +

1578

y = 1252.3x
+ 1578

y =
98.063x

+ 1054

y =
98.063x +

1054

y = 98.063x
+ 1054

y = -
0.1647x +

104.08

y = -
0.1647x +

104.08

y = -
0.1647x +

104.08

Table 6: Empirical Models for n-bit {8, 16 and 32}, m-Point ∈ {4, 8, 16 and 32} for processing elements ∈ {1, 2, 4, and

8}

32

 Now for the number of clock cycles that are required for the execution for m points

input using p-processing elements irrespective of number of input bits required can be

depicted by the following graph

Figure 4-8: Comparison of 32 bit input for Clock Rate:

 From the Figure 4-8, it is observed that the number of clock cycles required for the

execution of n-points FFT using p- processing elements are decreased as the number of

processing elements are increased. Furthermore it should also be noted that the number of

PE’s must not increase by
𝑚

2
 and the minimum of stages / cycles in which m-point FFT can

be executed is 𝑙𝑜𝑔2𝑚, as after that wastage of hardware resources will start.

4.2 Execution, Working and Implementation of Empirical Model

 To show the practical implementation of the generated empirical models, of first order

for slice LUT’s and LUT FF Pairs; and second order for clock rate, let us suppose a scenario

for generation of FFT hardware having different required specs from the user. In this scenario

the user has following hardware requirements stated in Table 7.

Requirements

Desired

Input Bits 8

Input Points 32

Slice LUT 2500

LUT FF Pairs 350

Clock Rate 250

Table 7: Requirements for Generation of Hardware Parameters:

0

20

40

60

80

 1
Processin
g Element

 2
Processin
g Element

 4
Processin
g Element

 8
Processin
g Element

4 Pt 4 2 0 0

8 Pt 12 6 3 0

16 Pt 32 16 8 4

32 Pt 80 40 20 10

4 2 0 0
12 6 3 0

32

16
8 4

80

40

20
10

No of clock cycles required for Execution of FFT using p -
Processing Elements

4 Pt 8 Pt 16 Pt 32 Pt

33

 The hardware requirements for all the stated parameters is generated one by one in

accordance with the specifications for making the hardware to achieve a tradeoff for all the

parameters.

 Initially the number of input bits are taken into consideration that depicts the family

of empirical model i.e. either it would be 8, 16, or 32 bit input. After finalizing the family, the

number of input points are put in the model and their error with required specs are calculated.

The accumulative error that is taken into consideration is the squared error, because the error

acquired after subtraction can be both positive and negative, depending upon one’s

requirement. That generated model will be considered which has least accumulative error

ratio, or in other words for an optimal hardware implementation, that model is considered to

which the squared error is least or bearable compared to others. The implementation of

empirical model for Table 7 is shown as follows:

8 Bit 1 PE 8 Bit 2 PE

Slice LUT
LUT FF

Pairs
Clock Rate Slice LUT

LUT FF

Pairs
Clock Rate

Answer 2100.042 208.28 231.0312 2635.642 302.28 271.8336

Error -0.1904523 -0.6804301 -0.08210492 0.0514645 -0.15786687 0.0803197

Squared Error 0.03627211 0.462985244 0.006741219 0.00264859 0.02492195 0.0064513

Total Squared

Error
0.505998572 0.034021804

8 Bit 4 PE 8 Bit 8 PE

Slice LUT
LUT FF

Pairs
Clock Rate Slice LUT

LUT FF

Pairs

Clock

Rate

Answer 4760.18 630.636 200.4244 9124 1217 134.4268

Error 0.47480978 0.445004725 -0.24735312 0.72599737 0.71240756 -0.859748

Squared Error 0.22544432 0.198029206 0.06118356 0.52707218 0.50752453 0.739167

Total Squared

Error
0.484657093 1.773763688

Table 8: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7

 The squared errors for all PE € {1, 2, 4, 8} are as follows

No. of PE. Squared Error

1 0.505998572

2 0.034021804

4 0.484657093

8 1.773763688
Table 9: Squared Error for different Processing Elements as per Requirement in Table 7

 As stated earlier, that hardware is selected in which it has the least squared error

compared to all the remaining ones, or the one with the bearable error. In this case the

hardware specs of the third case having 4 PEs is selected The reason to choose 4 PE is that it

34

can perform the FFT execution comparatively faster as compared to 1 and 2 PEs and the

error of 0.48 is also bearable to an extent.

 After finding the number of processing elements, i.e. 4 in the given case, the next step

is to find the number of clock cycles required by the hardware for execution. Considering

equation (5) for finding the requires number of cycles. The input and the results that are

obtained after using the stated equation is shown in the table below

x 4

Processing Elements 4

Number of required cycles 20
Table 10: Required Cycles for Generated Hardware for 4 Processing Elements

 Now in the same way if we increase the number of bits of input in Table: 7 from 8 bit

input to 16 bit, keeping all the other required specifications same, the hardware parameters

acquired from the empirical model will be as follows:

16 Bit 1 PE 16 Bit 2 PE

Slice LUT
LUT FF

Pairs
Clock Rate Slice LUT

LUT FF

Pairs
Clock Rate

Answer 4186.61 253.1726 241.5332 5220.6 490.842 215.5556

Error 0.40285816 -0.38245607 -0.03505439 0.52112784 0.28693958 -0.1597936

Squared Error 0.1622947 0.146272653 0.001228811 0.27157423 0.08233432 0.025534

Total Squared

Error
0.30979616 0.379442538

16 Bit 4 PE 16 Bit 8 PE

Slice LUT
LUT FF

Pairs
Clock Rate Slice LUT

LUT FF

Pairs

Clock

Rate

Answer 9233.88 1016 197.4732 17236.92 1937 157.5344

Error 0.72925791 0.655511811 -0.26599458 0.85496249 0.81930820 -0.586955

Squared Error 0.53181709 0.429695734 0.07075311 0.73096086 0.67126594 0.3445161

Total Squared

Error
1.032265943 1.74674294

Table 11: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7 for
16 Bit input

 In such a case as stated in Table: 11 we can consider both two and four processing

elements, this all depends upon the requirement of the application that either it needs an

architecture that consumes less resources of it wants a faster FFT execution. In this case if the

application requires a processor with least resources then 1 processing element can be the

best possible architectural model. On the other hand if the application requires an FFT that

35

can be completed in less time then 4 PE are preferable. Whereas in case of an application that

needs both faster execution as well as lesser resources then the model with 2 PEs is the best

model among all. If we consider 4 processing elements, the number of clock cycles would be

same as shown in in Table: 10, whereas if we consider the design for 2 processing elements,

then the required number of clock cycles would be as follows:

x 8

Processing Elements 2

Number of required cycles 40
Table 12: Required Cycles for Generated Hardware for 2 Processing Elements

 Using a model of 2 PE may have a tradeoff in all the requirements from the user.

 Now at last considering the empirical model for a 32 bit input while considering the

same specifications as stated earlier in Table: 7. After implementation and execution of the

empirical model for 32 bit input, the results are as follows:

32 Bit 1 PE 32 Bit 2 PE

Slice LUT
LUT FF

Pairs
Clock Rate Slice LUT

LUT FF

Pairs
Clock Rate

Answer 7243.82 446.9612 157.208 10008.17 841.442 144.4964

Error 0.65487823 0.216934266 -0.59024986 0.75020408 0.58404738 -0.7301469

Squared Error 0.42886549 0.047060476 0.348394897 0.56280617 0.34111134 0.5331145

Total Squared

Error
0.824320866 1.437032025

32 Bit 4 PE 32 Bit 8 PE

Slice LUT
LUT FF

Pairs
Clock Rate Slice LUT

LUT FF

Pairs

Clock

Rate

Answer 17700.12 1764.272 132.6308 41651.6 4192.016 109.3504

Error 0.85875802 0.801617891 -0.88493171 0.9399783 0.91650795 -1.286228

Squared Error 0.73746534 0.642591243 0.78310412 0.8835592 0.83998682 1.6543837

Total Squared

Error
2.163160703 3.377929755

Table 13: Arithmetic Calculations based on Empirical Model for Hardware Parameters Stated in Table 7 for
32 Bit input

In the above table, the difference in between the squared errors is much higher as

compared to the previous calculations done for 8 and 16 bit input. So for an input of 32 bit

with the given required specifications, it would be more appropriate to consider the hardware

architecture with one processing element. Considering equation (5), the total number of clock

cycles required for an architecture having one PE will be as follows:

36

x 16

Processing Element 1

Number of required cycles 80
Table 14: Required Cycles for Generated Hardware for 1 Processing Element

 So for one processing element a total of 80 clock cycles are required to execute the

FFT algorithm. Here it is also concluded that as the processing elements are increased, the

required number of clock cycles are lessened accordingly

 The summarized squared inputs for 8, 16 and 32 bit inputs for the requirements stated

in Table 7 is as follows.

No. of

PE.

Squared Error for 8 Bit

Input

Squared Error for 16 Bit

Input

Squared Error for 32 Bit

Input

1 0.505998572 0.30979616 0.824320866

2 0.034021804 0.379442538 1.09592884

4 0.423489529 1.032265943 2.163160703

8 1.773763688 1.075485162 3.377929755

Table 15: Summarized Squared Errors for 8, 16 and 32 Bits input

 Considering how much error is bearable and with how many bits of input we can

achieve our expected results, we can have our best possible architectural model. For instance,

let us suppose that a squared error of around 1.05 is bearable, then we can use 4 or 8

processing elements using 16 bit input whereas in case of 32 bit input we can use either 1 or 2

processing elements that may vary from application to application. So with the summarized

squared error table we can also find out with how much of our input bits signal, which model

will be best suitable among all the models, considering how much squared error is can be

tolerable.

So, in this section of the report we have summarized, how our empirical model will

work, by taking a generic specifications with different input bit size. The results of the

implementation of the generated model by increasing the input bit size and its effect on the

squared error are also shown in this section.

 It should be noted here that all the calculations shown above as the implementation

and execution of the empirical model includes all the stated parameters of the hardware that

we are considering i.e. number of slice LUT’s, LUT FF pairs and clock rate. On the other

hand, besides taking into account all the specifications, if any one specification is taken into

consideration from the user, then that hardware is considered which have least or bearable

squared error specific to the particular hardware specification.

37

Chapter 5 : CONCLUSION AND FUTURE WORK

5.1 Conclusion

 In this report we have presented a Fast Fourier Transform architecture for m-Points ∈

{4,8,16 and 32} using p-Processing Elements ∈ {1, 2, 4, and 8}. The basic building block

for FFT algorithm is the butterfly architecture that is modeled as the processing element in

the proposed model. These processing element are required to perform the desired m-points

Fast Fourier Transform. After the formation of architectural design of all the possible

hardware architectures, their analysis w.r.t. several hardware parameters i.e. number of Slice

LUTs, LUT FF pairs, number of clock cycles required to perform m-point FFT and clock rate

is done. An empirical model based upon n-Bits, m-Points and p-Processing Elements for

FFT using a renowned machine learning algorithm i.e. Regression Technique, is proposed

after the analysis of the architecture on the stated parameters. Linear regression, quadratic

regression and cubic regression is implemented on the acquired data to generate the most

generalized empirical model.

 The desired parameters that are required to perform m-Points FFT by the user are

considered as bench mark for the future architectural design and are passed through the

particular empirical model. If we consider all the stated parameters then, the squared

difference in value of specifications from the user and the actual architectural specs is taken.

After the summation of the squared difference of all the parameters, either that model is

considered for the implementation of design which has least squared error or that model is

taken into consideration that has bearable squared error to increase the efficiency of the

future hardware. In this way this model will provide the closest related real optimum

specifications of actual parameterized hardware characteristics including the required number

of processing elements, which needs to be incorporated to design the hardware. However if

we consider a single parameter e.g. only number of Slice LUTs or some other, then the

square error of only that parameter is considered. Rest of the procedure for choosing the

optimal architecture is same in both the conditions.

 An observation that is made in this context is that the number of clock cycles required

by the architecture to perform m-points FFT is inversely proportional to the number of

processing elements in that hardware design. Moreover, the number of bits of input directly

38

affect other parameters of the hardware architecture e.g. number of Slice LUTs, LUT-FF

Pairs etc.

 This thesis report can help the researchers for prediction of their FFT hardware

specifications based upon their need/requirement including their parameter of interest e.g.

area efficient, time efficient architecture etc. hence we are able to estimate the hardware

feasibility before designing the actual hardware.

 In addition to this, the technique proposed in the report to analyze the hardware

specification, and predicting the futuristic parameters after making their empirical model and

then finding its feasibility as per one’s requirement, doesn’t only refers to the hardware

stated. Infect this technique can be applied to any system and thus allowing the researchers to

predict their desired system before its actual implementation.

5.2 Contribution

 Following are the primary contributions of this research work:

 We propose a reconfigurable architecture for n-bits, m-points Fast Fourier Transform

(FFT) algorithm using p-processing elements.

 Empirical model for n-bits and m-points input for FFT is introduced, that can

calculate the feasibility of the futuristic architecture.

 Pre-calculating the specifications and parameters of an optimized FFT architecture

that is based upon one’s need/requirement.

 A relation for number of clock cycles required to perform m-Point using n-Radix FFT

is introduced.

 A procedure for finding the unique Permutation Matrix out of n! Permutation

Matrices is introduced (Annex).

5.3 Future Work

Following tasks can be performed as future work in contribution to this report:

 Empirical model for floating point input can be designed.

 Devise an empirical model for fully parallel pipelined FFT architecture.

 Finding the effects of the same architecture on different hardware platforms e.g.

GPUs, CPUs, FPGA etc.

 Applying several techniques to increase the efficiency of any parameter e.g. using

multiplier less pipelined processor [15], ROM less FFT processor [16] etc.

39

 Empirical model for Radix-x FFT can be modelled.

 Effect of using different Radix FFT on empirical model and its effect on empirical

model can be can be studied.

 Empirical model for different variants of FFT [11] can be modelled, to predict that

which variant of FFT is the most feasible, as per one’s need.

40

 Chapter 6 : REFERENCES

[1] Gnanishivaram, K. and Neeraja, S., 2014. FFT/IFFT Processor Design for 5G MIMO OFDM
Systems. International Journal, 3(3).

[2] https://cadcammodelling.wordpress.com/2011/04/14/fourier-transform-and-its-applications/

Accessed on July 23rd,2019 Time: 1130 hrs

[3] https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-

day-the-mind-blowing-stats-everyone-should-read/#1271a74860ba Accessed on July

19th,2019 Time: 1400 hrs

[4] https://www.sciencedaily.com/releases/2013/05/130522085217.htm Accessed on June

29th,2019 Time: 1700 hrs

[5] https://www.sgl-rotec.com/history-evolution-digital-media/ Accessed on July 02nd,2019 Time:

2000 hrs

[6] Cooley, J.W. and Tukey, J.W., 1965. An algorithm for the machine calculation of complex
Fourier series. Mathematics of computation, 19(90), pp.297-301.

[7] Lenssen, N. and Needell, D., 2014. An introduction to fourier analysis with applications to

music. Journal of Humanistic Mathematics, 4(1), pp.72-91.
[8] Tjahyanto, A., Suprapto, Y.K., Purnomo, M.H. and Wulandari, D.P., 2012, May. Fft-based

features selection for javanese music note and instrument identification using support vector

machines. In 2012 IEEE International Conference on Computer Science and Automation

Engineering (CSAE) (Vol. 1, pp. 439-443). IEEE.
[9] Shen, F., Song, Z., Wu, C., Geng, J. and Wang, Q., 2015. Research on the fast Fourier

transform of image based on GPU. arXiv preprint arXiv:1505.08019.
[10] Aboleaze, M.A. and Elnaggar, A., 2006, June. Reducing memory references for FFT

calculation. In Proc. of the International Conference on Computer Design (pp. 26-28).
[11] Milder, P.A., Franchetti, F., Hoe, J.C. and Püschel, M., 2010, March. Hardware

implementation of the discrete fourier transform with non-power-of-two problem size. In 2010
IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1546-1549).
IEEE.

[12] Raju, K.S., Sengar, V., Gangal, M., Tanwar, P. and Prasad, P.B., Hardware Implementation
of Discrete Fourier Transform and its Inverse Using Floating Point Numbers.

[13] Ganesan, K., Govardhanarajan, T.S., Dhurkadas, A. and Veerabhadraiah, S., 1982.
Hardware realization of a general purpose FFT processor in a distributed processing
configuration. Defence Science Journal, 32(1), pp.41-46.

[14] Wang, G., Yin, B., Cho, I., Cavallaro, J.R., Bhattacharyya, S. and Takala, J., 2014, May.
Efficient architecture mapping of FFT/IFFT for cognitive radio networks. In 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3933-
3937). IEEE.

[15] Kannan, M. and Srivatsa, S., 2009. Hardware Implementation Low Power High Speed FFT
Core. International Arab Journal of Information Technology (IAJIT), 6(1).

[16] Indirapriyadarsini, K., Kamalakumari, S. and Prasannakumar, G., VLSI Implementation of
Pipelined Fast Fourier Transform. International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET), 1(4).

[17] Teymourzadeh, R., 2017. High Resolution Single-Chip Radix II FFT Processor for High-Tech
Application. Fourier Transforms: High-tech Application and Current Trends, p.67.

[18] Fande, A. and Sahu, A., Efficient Implementation & Comparison of Signed Complex Multiplier
on FPGA using FFT Algorithm. International Journal of Scientific Research Engineering &
Technology (IJSRET), 3(2), pp.188-191.

[19] Algnabi, Y.S., Aldaamee, F.A., Teymourzadeh, R., Othman, M. and Islam, M.S., 2012,
September. Novel architecture of pipeline Radix 2 2 SDF FFT Based on digit-slicing
technique. In 2012 10th IEEE International Conference on Semiconductor Electronics
(ICSE) (pp. 470-474). IEEE.

[20] Bo, Y., Dou, R., Han, J. and Zeng, X., 2013. A hardware-efficient variable-length FFT
processor for low-power applications. In 2013 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (pp. 1-4). IEEE.

https://cadcammodelling.wordpress.com/2011/04/14/fourier-transform-and-its-applications/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#1271a74860ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#1271a74860ba
https://www.sciencedaily.com/releases/2013/05/130522085217.htm
https://www.sgl-rotec.com/history-evolution-digital-media/

41

[21] Mukherjee, A., Sinha, A. and Choudhury, D., 2014. A novel architecture of area efficient FFT
algorithm for FPGA implementation. ACM SIGARCH Computer Architecture News, 42(5),
pp.1-6.

[22] Ouerhani, Y., Jridi, M. and Alfalou, A., 2012. AREA-DELAY EFFICIENT FFT
ARCHITECTURE USING PARALLEL PROCESSING AND NEW MEMORY SHARING
TECHNIQUE. Journal of Circuits, Systems, and Computers, 21(06), p.1240018.

[23] Puchała, D., Stokfiszewski, K., Yatsymirskyy, M. and Szczepaniak, B., 2015, September.
Effectiveness of Fast Fourier Transform implementations on GPU and CPU. In 2015 16th
International Conference on Computational Problems of Electrical Engineering (CPEE) (pp.
162-164). IEEE.

[24] Jhariya, P.K. and Dodkey, N., 2016. Implementation of Fast Fourier Transform using
Resource Reuse Technique on FPGA. Int. Journal of Scientific Research in Science,
Engineering and Technology, 2(1), pp.2395-1990.

[25] Kumar, A., Gautam, G. and Ram, V.K., 2016. FPGA Implementation of 2x2 Crossbar

Switch. International Journal of Engineering Science, 7435.
[26] Khan, M.A. and Ansari, A.Q., 2011. Design of 8-bit programmable crossbar switch for

network-on-chip router. In Trends in Network and Communications (pp. 526-535). Springer,

Berlin, Heidelberg.
[27] Ganiee, S.A., Ganiee, S.A. and Dar, J.R., FPGA Design of 8 bit 4× 4 Crossbar Switch for

Multi Processor System on Chip Using Round Robin Arbitration Algorithm.
[28] Freitas, H.C., Carvalho, M.B., Amaral, A.M., Diniz, A.R., Martins, C.A. and Ramos, L.E.,

2006, May. Reconfigurable crossbar switch architecture for network processors. In 2006 IEEE

International Symposium on Circuits and Systems (pp. 4-pp). IEEE.
[29] https://towardsdatascience.com/polynomial-regression-bbe8b9d97491 as on September 10,

2019 at 1530 Hrs.

https://towardsdatascience.com/polynomial-regression-bbe8b9d97491

42

Annexure : FINDING THE UNIQUE PERMUTATION MATRIX FOR

REVERSE ORDER KRONECKER PRODUCT INTUITIVELY FOR

FAST FOURIER TRANSFORM

1 Introduction

 All the experimentations, observations and results related to the subject are

incorporated in the stated chapter being it to be a minor research project that leads to our

actual research.

 This section of the report presents a unique method for finding the unique

Permutation Matrix out of n! matrices, to perform Fast Fourier Transform using Kronecker

Product. This uniquely identified permutation matrix is used to attain the reverse order

Kronecker product without using the same technique, as used for obtaining the original

Kronecker product.

 Kronecker product, plays an imperative role in major disciplines of science as in

mathematics, linear algebra, big data analysis and signal processing etc. that acts as a nucleus

in the formation of this modern era especially from application perspective [1]. This product

also finds its applications in matrix calculus [2], system theory [3], differential equations [4]

that are the basis for circuit analysis and much more. A well-established transform to study a

time domain signal from frequency perspective, filtering and analysis is Fourier transform

[5]. Kronecker product is an arithmetic tool that finds its significance in many applications in

field of research.

 The main problem that arises during the implementation of the Kronecker product is

its computation cost, especially to those algorithms in which it is used repeatedly. This

problem becomes a bottleneck while computing two or more products simultaneously,

especially when, in the same arithmetic calculation original and reverse order Kronecker

product are to be calculated, e.g. in formulation of DFT as stated in equation 6, that is taken

as a building block for the formation of this technique.

 𝐹𝑛2
′ = (𝐼𝑛⊗𝐹𝑛)𝐷𝑛2(𝐹𝑛⊗ 𝐼𝑛) (1)

 Keeping in view the calculation of Kronecker product, an intuitive approach is

proposed to bypass the rigorous calculations required to compute the permutation matrix.

Here mechanism that calculates a unique permutation matrix is presented, so that

43

computation time for finding the reverse order product decreases, and reverse order

Kronecker product from its original may be generated with minimum computations.

 In such cases where we have to compute the original and reverse order KP at same

time, being it to be computationally expensive algorithm, we can use Permutation Matrix for

this purpose to reuse the previously calculated product for further use as below:

 𝐹𝑛2
′ = (𝐼𝑛⊗𝐹𝑛)𝐷𝑛2𝑃𝑛2(𝐹𝑛⊗ 𝐼𝑛)𝑃𝑛2 (2)

 And hence by using the permutation matrix, we can find the DFT with less

computation using the previously calculated Kronecker Product.

2 Permutation Matrix

 Permutation matrix is a binary matrix having two entries (i.e. 0 & 1), and is obtained

by permuting the columns /rows of an 𝑛𝑥𝑛 identity matrix. Note that every permutation in the

identity matrix provides us with a unique permutation matrix that leads us towards different

solutions after its multiplication with original matrix. For instance, let us suppose a 4x4

matrix, multiplied with different permutation matrices of same order as below:

[

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31
𝑎41

𝑎32
𝑎42

𝑎33
𝑎43

𝑎34
𝑎44

] [

1 0 0 0
0 0 0 1
0
0
1
0
0 0
1 0

] = [

𝑎11 𝑎13 𝑎14 𝑎12
𝑎21 𝑎23 𝑎24 𝑎22
𝑎31
𝑎41

𝑎33
𝑎43

𝑎34
𝑎44

𝑎32
𝑎42

] (3)

Using a different permutation matrix of same order as:

[

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31
𝑎41

𝑎32
𝑎42

𝑎33
𝑎43

𝑎34
𝑎44

] [

0 0 0 1
0 0 1 0
1
0
0
1
0 0
0 0

] = [

𝑎13 𝑎14 𝑎12 𝑎11
𝑎23 𝑎24 𝑎22 𝑎21
𝑎33
𝑎43

𝑎34
𝑎44

𝑎32
𝑎42

𝑎31
𝑎41

] (4)

 Hence from (3) & (4), using different permutation matrices multiplied with same

matrix, different results are obtained.

2.1 Rows and Column Permuted Matrix

 From (3) & (4), it is observed that in matrix multiplication, using PM after the

original matrix swaps the columns of the original matrix. However, to achieve a row

permuted matrix, the permutation matrix is placed behind the original matrix as below:

44

[

0 0 0 1
0 0 1 0
1
0
0
1
0 0
0 0

] [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31
𝑎41

𝑎32
𝑎42

𝑎33
𝑎43

𝑎34
𝑎44

] = [

𝑎41 𝑎42 𝑎43 𝑎44
𝑎31 𝑎32 𝑎33 𝑎34
𝑎11
𝑎21

𝑎12
𝑎22

𝑎13
𝑎23

𝑎14
𝑎24

] (5)

 So from (4) and (5) it can be observed that for same 𝑛𝑥𝑛 permutation matrix, the

placement of the PM will decide the resultant matrix either to be a row permuted matrix or a

column permuted matrix.

3 Kronecker Product and Permutation Matrix

 Let us suppose we have A and B matrices of 𝑚𝑥𝑛 and 𝑝𝑥𝑞 order respectively, then

the Kronecker product of A & B would be as

 A⊗B = [
𝑎11 ∗ 𝐁 … 𝑎1𝑛 ∗ 𝐁
⋮ ⋱ ⋮

𝑎𝑚1 ∗ 𝐁 ⋯ 𝑎𝑚𝑛 ∗ 𝐁
] (6)

 that can be expressed more explicitly as

[

𝑎11𝑏11 𝑎11𝑏12 …
𝑎11𝑏21 𝑎11𝑏22 ⋯
⋮ ⋮ ⋱

𝑎11𝑏1𝑞 … 𝑎1𝑛𝑏11
𝑎11𝑏2𝑞 … 𝑎1𝑛𝑏21
⋮ ⋯ ⋮

… … 𝑎1𝑛𝑏1𝑞
⋯ ⋯ 𝑎1𝑛𝑏2𝑞
⋯ ⋱ ⋮

𝑎11𝑏𝑝1 𝑎11𝑏𝑝2 ⋯

⋮ ⋮ ⋱
⋮ ⋮ ⋱

𝑎11𝑏𝑝𝑞 ⋯ 𝑎1𝑛𝑏𝑝1
⋮ ⋱ ⋮
⋮ ⋱ ⋮

⋯ ⋯ 𝑎1𝑛𝑏𝑝𝑞
⋮ ⋱ ⋮
⋮ ⋱ ⋮

𝑎𝑚1𝑏11 𝑎𝑚1𝑏12 ⋯
𝑎𝑚1𝑏21 𝑎𝑚1𝑏22 ⋯
⋮

𝑎𝑚1𝑏𝑝1

⋮
𝑎𝑚1𝑏𝑝2

⋱
⋯

𝑎𝑚1𝑏1𝑞 ⋯ 𝑎𝑚𝑛𝑏11
𝑎𝑚1𝑏2𝑞 ⋯ 𝑎𝑚𝑛𝑏21
⋮

𝑎𝑚1𝑏𝑝𝑞
⋱
⋯

⋮
𝑎𝑚𝑛𝑏𝑝1

⋯ ⋯ 𝑎𝑚𝑛𝑏1𝑞
⋯ ⋯ 𝑎𝑚𝑛𝑏2𝑞
⋮
⋯

⋱
⋯

⋮
𝑎𝑚𝑛𝑏𝑝𝑞]

 And the reverse product i.e. B⊗A can be written as

 B⊗A =[
𝑏11 ∗ 𝐀 … 𝑏1𝑝 ∗ 𝐀
⋮ ⋱ ⋮

𝑏𝑝1 ∗ 𝐀 ⋯ 𝑏𝑝𝑞 ∗ 𝐀
] (7)

 From (6) and (7) it can be observed that A⊗B and B⊗A are entirely different

matrices. But from A⊗B, B⊗A can be achieved just by swapping some of the rows and

45

columns with the specific permutations. In other words we can say that A⊗B and B⊗A are

permutation equivalent matrices, and there exists a unique permutation matrix such that

 B⊗A = 𝑃(A⊗ B)𝑃𝑇 (8)
 Furthermore, another characteristic of this unique permutation matrix is that the

transpose and inverse of the unique PM is same as the PM itself, as

 𝑃 = 𝑃−1 = 𝑃𝑇 (9)
 All remaining 𝑛𝑥𝑛 PM’s, doesn’t qualify the above property due to which they are

not classified as the unique PM for Kronecker Product

4 Proposed Methodology

 Let us suppose two, 2𝑥2 matrices 𝐴 and 𝐵 for understanding. The two Kronecker

products A⊗B, as in (6), and B⊗A, as in (7) will be as follows,

 A⊗ B = [

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12
𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22
𝑎21𝑏11
𝑎21𝑏21

𝑎21𝑏12
𝑎21𝑏22

𝑎22𝑏11
𝑎22𝑏21

𝑎22𝑏12
𝑎22𝑏22

] (10)

Similarly

 B⊗ A = [

𝑎11𝑏11 𝑎12𝑏11 𝑎11𝑏12 𝑎12𝑏12
𝑎21𝑏11 𝑎22𝑏11 𝑎21𝑏12 𝑎22𝑏12
𝑎11𝑏21
𝑎21𝑏21

𝑎12𝑏21
𝑎22𝑏21

𝑎11𝑏22
𝑎21𝑏22

𝑎12𝑏22
𝑎22𝑏22

] (11)

 Total number of permutation matrices that can be produced from an nthorder identity

matrix are calculated as

 𝑛𝑜. 𝑜𝑓 𝑃𝑀𝑠 𝑓𝑜𝑟 𝐼𝑛𝑥𝑛 = 𝑛! (12)
 As 𝐴 & 𝐵 are both 2𝑥2 order matrices and the order of their

Kronecker Product will be 4𝑥4, thus in this case a 4x4 identity matrix

will be used as PM that generates 4! i.e. 24 different permutation

matrices as stated in (12) which are shown in Figure Annex-1.

 Out of these 24 matrices as shown in Figure Annex 1, a single

unique permutation matrix say P4 (𝑒𝑞. 13) satisfies the requirements

for reverse order Kronecker product as stated in (9). From the above

two matrices (10) and (11) it can be observed that from A⊗ B we can

easily produce B⊗ A just by swapping second and third rows and then

Figure Annex-0-1: Generation of 4!
Permutations of 4x4 Identity

46

swapping same columns. To achieve this, an identity matrix will be used, that is also

swapped in the same manner, and is then multiplied as in (4) & (5).

 𝑃4 = [

1 0 0 0
0 0 1 0
0
0
1
0
0
0
0
1

] (13)

 That is same number of rows are swapped from the identity matrix to make unique

permutation matrix, that satisfies the unique PM property and hence by substituting, it may

become

𝑃𝑀 ∗ B⊗A ∗ PM

= [

1 0 0 0
0 0 1 0
0
0
1
0
0
0
0
1

] [

𝑎11𝑏11 𝑎12𝑏11 𝑎11𝑏12 𝑎12𝑏12
𝑎21𝑏11 𝑎22𝑏11 𝑎21𝑏12 𝑎22𝑏12
𝑎11𝑏21
𝑎21𝑏21

𝑎12𝑏21
𝑎22𝑏21

𝑎11𝑏22
𝑎21𝑏22

𝑎12𝑏22
𝑎22𝑏22

] [

1 0 0 0
0 0 1 0
0
0
1
0
0
0
0
1

]

= A⊗ B
 These operations will eventually give us the results, that corresponds to our reverse

order Kronecker Product i.e. A⊗ B

4.1 Formation of n xn Permutation Matrix

 In order to find the uniquely identified permutation matrix that satisfies requirements

for reverse order Kronecker calculation stated in (6) and (7), we take two matrices 𝐴 and 𝐵 of

order 2x2 having Kronecker product of order 4x4 as discussed earlier

𝐴 ⊗ 𝐵 ⟹

(1𝑠𝑡)
𝑎11𝑏11
𝑎11𝑏21

𝑎21𝑏11
𝑎21𝑏12

(2𝑛𝑑)
𝑎11𝑏12
𝑎11𝑏22

𝑎21𝑏21
𝑎22𝑏22

(3𝑟𝑑)
𝑎12𝑏11
𝑎12𝑏21

𝑎22𝑏11
𝑎22𝑏21

(4𝑡ℎ)
𝑎12𝑏12 (I)

𝑎12𝑏22 (II)

𝑎22𝑏12 (III)

𝑎22𝑏22 (IV)

 Whereas it’s reverse order Kronecker product would be as

B⊗ A ⟹

(1𝑠𝑡)
𝑎11𝑏11
𝑎21𝑏11

𝑎11𝑏21
𝑎21𝑏21

(2𝑛𝑑)
𝑎12𝑏11
𝑎22𝑏11

𝑎12𝑏21
𝑎22𝑏21

(3𝑟𝑑)

𝑎11𝑏12
𝑎21𝑏12

𝑎11𝑏22
𝑎21𝑏22

(4𝑡ℎ)

𝑎12𝑏12 (I)

𝑎22𝑏12 (II)

𝑎12𝑏22 (III)

𝑎22𝑏22 (IV)

47

 The swapping hierarchy of entries from 𝐴 ⊗ 𝐵 towards 𝐵 ⊗ 𝐴 is shown below.

Furthermore, these are the swapped rows similar to the swapping of rows/columns of an

identity matrix to form a uniquely identified PM,

[

1 2 3 4
5 6 7 8
9
13

10
14

11
15

12
16

]

↔ [

1 3 2 4
9 11 10 12
5
13

7
15

6
14

8
16

]

𝐴 ⊗ 𝐵 ⟺ 𝐵 ⊗ 𝐴
 It can be observed in the above case that reverse order KP i.e. B⊗ A can be attained

from 𝐴 ⊗ 𝐵 by swapping the 2nd and 3rd rows and then same columns or vice versa.

Taking A ⊗B and reshaping to make it B ⊗A using the assigned labels would lead towards

the formation of permutation matrix as below

𝐴 ⊗ 𝐵  1 2 3 4

𝐵 ⊗ 𝐴  1 3 2 4
 It is observed that the 1st and 4th rows of both are at the same place where as other

2nd and 3rd rows/columns are swapped with each other. Considering the stated hierarchy,

from 𝐴 ⊗ 𝐵 the permutations of rows of 𝐵 ⊗ 𝐴 can be achieved as follows:

𝐴 ⊗ 𝐵  1 2 3 4  [
1 2
3 4

] 

1
3
2
4

  [1 3 2 4]  𝐵 ⊗ 𝐴

 In order to transform 𝐵 ⊗ 𝐴 from 𝐴 ⊗ 𝐵, the matrix entries are first row permuted

then column permuted. As stated earlier, the swapping hierarchy of the Kronecker product, to

achieve its reverse order, is same as that of identity matrix. For the given example, the

uniquely identified PM can be achieved using the same transitions of rows/columns as stated

above. Here entries depict the placement of ‘1’ in each row/column of identity matrix. This

swapping technique would lead us towards the unique permutation matrix that is used as

uniquely identified Kronecker permutation matrix

4.2 Pseudo code
 Let us suppose two matrices A and B of 𝑛𝑥𝑛 dimensions. The generation of B ⊗ A

from A ⊗ B is to formulated by using an 𝑛2 permutation matrix. This permutation matrix

can be formulated as follows:

1. Generate a natural number 𝑛𝑥𝑛 dimensional matrix having 𝑛2 entities.

2. Reshape the matrix column wise in such a way that each (n+1)st column lies beneath

the nth column.

48

3. Make this column vector into a row vector.

4. The entities of this row vector point out towards the position of ‘1’ at a specific

row/column. Write ‘1’ at every place pointing by the row vector and all other entries

besides these locations are ‘0`s.

5. This generated matrix is the required uniquely identified permutation matrix.

 The implementation of the pseudo code for 4𝑥4 PM is as follows

1𝑠𝑡

→ [
1 2
3 4

]
2𝑛𝑑

→ [

1
3
2
4

]
3𝑟𝑑

→ [1 3 2 4]
4𝑡ℎ

→ [

1 0 0 0
0 0 1 0
0
0
1
0
0
0
0
1

]
5𝑡ℎ

→ (𝑈𝑛𝑖𝑞𝑢𝑒 𝑃𝑀)

 Similarly for 16x16 PM, it can be obtained by the swapping of natural number matrix

rows/columns and following rows will come one after the other in 16𝑥16 identity matrix as

[1𝑠𝑡, 5𝑡ℎ, 9𝑡ℎ, 13𝑡ℎ, 2𝑛𝑑 , 6𝑡ℎ, 10𝑡ℎ, 14𝑡ℎ, 3𝑟𝑑 , 7𝑡ℎ, 11𝑡ℎ,15𝑡ℎ, 8𝑡ℎ, 12𝑡ℎ, 16𝑡ℎ]

5 Observation and Results

 In order to compare our proposed methodology, we generated random matrices of

order 4x4 till 20x20 for Kronecker Product, requiring permutation matrix of order 16 x16 up

to 400x400 to calculate its reverse order. The Kronecker product for these matrices were

calculated and afterwards derived from their reverse order product, by generating

permutation matrix. It is observed the original KP and the one calculated using its reverse

order using PM is always same and their difference gives the null matrix that verifies the

applicability of this technique. For instance let us suppose two matrices of order 3𝑥3.

A = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] & B = [
𝑗 𝑘 𝑙
𝑚 𝑛 𝑜
𝑝 𝑞 𝑟

]

A⊗𝐵 =

[

𝑎𝑗 𝑎𝑘 𝑎𝑙
𝑎𝑚 𝑎𝑛 𝑎𝑜
𝑎𝑝 𝑎𝑞 𝑎𝑟

𝑏𝑗 𝑏𝑘 𝑏𝑙
𝑏𝑚 𝑏𝑛 𝑏𝑜
𝑏𝑝 𝑏𝑞 𝑏𝑟

𝑐𝑗 𝑐𝑘 𝑐𝑙
𝑐𝑚 𝑐𝑛 𝑐𝑜
𝑐𝑝 𝑐𝑞 𝑐𝑟

𝑑𝑗 𝑑𝑘 𝑑𝑙
𝑑𝑚 𝑑𝑛 𝑑𝑜
𝑑𝑝 𝑑𝑞 𝑑𝑟

𝑒𝑗 𝑒𝑘 𝑒𝑙
𝑒𝑚 𝑒𝑛 𝑒𝑜
𝑒𝑝 𝑒𝑞 𝑒𝑟

𝑓𝑗 𝑓𝑘 𝑓𝑙
𝑓𝑚 𝑓𝑛 𝑓𝑜
𝑓𝑝 𝑓𝑞 𝑓𝑟

𝑔𝑗 𝑔𝑘 𝑔𝑙
𝑔𝑚 𝑔𝑛 𝑔𝑜
𝑔𝑝 𝑔𝑞 𝑔𝑟

ℎ𝑗 ℎ𝑘 ℎ𝑙
ℎ𝑚 ℎ𝑛 ℎ𝑜
ℎ𝑝 ℎ𝑞 ℎ𝑟

𝑖𝑗 𝑖𝑘 𝑖𝑙
𝑖𝑚 𝑖𝑛 𝑖𝑜
𝑖𝑝 𝑖𝑞 𝑖𝑟]

 & B⊗𝐴 =

[

𝑎𝑗 𝑏𝑗 𝑐𝑗
𝑑𝑗 𝑒𝑗 𝑓𝑗
𝑔𝑗 ℎ𝑗 𝑖𝑗

𝑎𝑘 𝑏𝑘 𝑐𝑘
𝑑𝑘 𝑒𝑘 𝑓𝑘
𝑔𝑘 ℎ𝑘 𝑖𝑘

𝑎𝑙 𝑏𝑙 𝑐𝑙
𝑑𝑙 𝑒𝑙 𝑓𝑙
𝑔𝑙 ℎ𝑙 𝑖𝑙

𝑎𝑚 𝑏𝑚 𝑐𝑚
𝑑𝑚 𝑒𝑚 𝑓𝑚
𝑔𝑚 ℎ𝑚 𝑖𝑚

𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑑𝑛 𝑒𝑛 𝑓𝑛
𝑔𝑛 ℎ𝑛 𝑖𝑛

𝑎𝑜 𝑏𝑜 𝑐𝑜
𝑑𝑜 𝑒𝑜 𝑓𝑜
𝑔𝑜 ℎ𝑜 𝑖𝑜

𝑎𝑝 𝑏𝑝 𝑐𝑝
𝑑𝑝 𝑒𝑝 𝑓𝑝
𝑔𝑝 ℎ𝑝 𝑖𝑝

𝑎𝑞 𝑏𝑞 𝑐𝑞
𝑑𝑞 𝑒𝑞 𝑓𝑞
𝑔𝑞 ℎ𝑞 𝑖𝑞

𝑎𝑟 𝑏𝑟 𝑐𝑟
𝑑𝑟 𝑒𝑟 𝑓𝑟
𝑔𝑟 ℎ𝑟 𝑖𝑟]

 The Permutation Matrix of order 9𝑥9 using the stated methodology will be:

49

 [
1 2 3
4 5 6
7 8 9

]
.
→

[

1
4
7
2
5
8
3
6
9]

.
→ [1 4 7 2 5 8 3 6 9]

.
→ 𝐼9 = 𝑃𝑀9

𝑃𝑀9 =

[

1 0 0
0 0 0
0 0 0

0 0 0
1 0 0
0 0 0

0 0 0
0 0 0
1 0 0

0 1 0
0 0 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 0 0
0 1 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 1]

 As stated in (8) & (9),

B⊗A = 𝑃(A⊗ B)𝑃𝑇 where, 𝑃 = 𝑃−1 = 𝑃𝑇

 Substituting (9) in (8), it would become

B⊗ A = 𝑃(A⊗ B) 𝑃.
 So using the above equation,

 𝑃[(A⊗ B)𝑃𝑇] =

𝑃𝑀9

[

[

𝑎𝑗 𝑎𝑘 𝑎𝑙
𝑎𝑚 𝑎𝑛 𝑎𝑜
𝑎𝑝 𝑎𝑞 𝑎𝑟

𝑏𝑗 𝑏𝑘 𝑏𝑙
𝑏𝑚 𝑏𝑛 𝑏𝑜
𝑏𝑝 𝑏𝑞 𝑏𝑟

𝑐𝑗 𝑐𝑘 𝑐𝑙
𝑐𝑚 𝑐𝑛 𝑐𝑜
𝑐𝑝 𝑐𝑞 𝑐𝑟

𝑑𝑗 𝑑𝑘 𝑑𝑙
𝑑𝑚 𝑑𝑛 𝑑𝑜
𝑑𝑝 𝑑𝑞 𝑑𝑟

𝑒𝑗 𝑒𝑘 𝑒𝑙
𝑒𝑚 𝑒𝑛 𝑒𝑜
𝑒𝑝 𝑒𝑞 𝑒𝑟

𝑓𝑗 𝑓𝑘 𝑓𝑙
𝑓𝑚 𝑓𝑛 𝑓𝑜
𝑓𝑝 𝑓𝑞 𝑓𝑟

𝑔𝑗 𝑔𝑘 𝑔𝑙
𝑔𝑚 𝑔𝑛 𝑔𝑜
𝑔𝑝 𝑔𝑞 𝑔𝑟

ℎ𝑗 ℎ𝑘 ℎ𝑙
ℎ𝑚 ℎ𝑛 ℎ𝑜
ℎ𝑝 ℎ𝑞 ℎ𝑟

𝑖𝑗 𝑖𝑘 𝑖𝑙
𝑖𝑚 𝑖𝑛 𝑖𝑜
𝑖𝑝 𝑖𝑞 𝑖𝑟]

 𝑃𝑀9

]

50

= 𝑃𝑀9

[

𝑎𝑗 𝑏𝑗 𝑐𝑗
𝑎𝑚 𝑏𝑚 𝑐𝑚
𝑎𝑝 𝑏𝑝 𝑐𝑝

𝑎𝑘 𝑏𝑘 𝑐𝑘
𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑎𝑞 𝑏𝑞 𝑐𝑞

𝑎𝑙 𝑏𝑙 𝑐𝑙
𝑎𝑜 𝑏𝑜 𝑐𝑜
𝑎𝑟 𝑏𝑟 𝑐𝑟

𝑑𝑗 𝑒𝑗 𝑓𝑗
𝑑𝑚 𝑒𝑚 𝑓𝑚
𝑑𝑝 𝑒𝑝 𝑓𝑝

𝑑𝑘 𝑒𝑘 𝑓𝑘
𝑑𝑛 𝑒𝑛 𝑓𝑛
𝑑𝑞 𝑒𝑞 𝑓𝑞

𝑑𝑙 𝑒𝑙 𝑓𝑙
𝑑𝑜 𝑒𝑜 𝑓𝑜
𝑑𝑟 𝑒𝑟 𝑓𝑟

𝑔𝑗 ℎ𝑗 𝑖𝑗
𝑔𝑚 ℎ𝑚 𝑖𝑚
𝑔𝑝 ℎ𝑝 𝑖𝑝

𝑔𝑘 ℎ𝑘 𝑖𝑘
𝑔𝑛 ℎ𝑛 𝑖𝑛
𝑔𝑞 ℎ𝑞 𝑖𝑞

𝑔𝑙 ℎ𝑙 𝑖𝑙
𝑔𝑜 ℎ𝑜 𝑖𝑜
𝑔𝑟 ℎ𝑟 𝑖𝑟]

 =

[

𝑎𝑗 𝑏𝑗 𝑐𝑗
𝑑𝑗 𝑒𝑗 𝑓𝑗
𝑔𝑗 ℎ𝑗 𝑖𝑗

𝑎𝑘 𝑏𝑘 𝑐𝑘
𝑑𝑘 𝑒𝑘 𝑓𝑘
𝑔𝑘 ℎ𝑘 𝑖𝑘

𝑎𝑙 𝑏𝑙 𝑐𝑙
𝑑𝑙 𝑒𝑙 𝑓𝑙
𝑔𝑙 ℎ𝑙 𝑖𝑙

𝑎𝑚 𝑏𝑚 𝑐𝑚
𝑑𝑚 𝑒𝑚 𝑓𝑚
𝑔𝑚 ℎ𝑚 𝑖𝑚

𝑎𝑛 𝑏𝑛 𝑐𝑛
𝑑𝑛 𝑒𝑛 𝑓𝑛
𝑔𝑛 ℎ𝑛 𝑖𝑛

𝑎𝑜 𝑏𝑜 𝑐𝑜
𝑑𝑜 𝑒𝑜 𝑓𝑜
𝑔𝑜 ℎ𝑜 𝑖𝑜

𝑎𝑝 𝑏𝑝 𝑐𝑝
𝑑𝑝 𝑒𝑝 𝑓𝑝
𝑔𝑝 ℎ𝑝 𝑖𝑝

𝑎𝑞 𝑏𝑞 𝑐𝑞
𝑑𝑞 𝑒𝑞 𝑓𝑞
𝑔𝑞 ℎ𝑞 𝑖𝑞

𝑎𝑟 𝑏𝑟 𝑐𝑟
𝑑𝑟 𝑒𝑟 𝑓𝑟
𝑔𝑟 ℎ𝑟 𝑖𝑟]

 = 𝐵 ⊗A

The results obtained are by calculating the reverse product directly, and by evaluating

it through permutation matrix technique gives the same result, as the subtraction of the two,

gives a null matrix, that intern proves the reliability of this methodology.

6 Conclusion

 This area of report gives a brief overview of Kronecker product and its

implementation in finding the reverse order multiplication, as in formulation DFT in signal

processing using a unique permutation matrix technique by finding it intuitively. This would

lessen its computation cost by not calculating the reverse product being it to be

computationally expensive algorithm and intern evaluating it by using the ground principles

of matrix theory through a unique permutation matrix, from the same previously found

Kronecker product. The computation cost to calculate the PM for reverse order KP will be

minimum as the entities for an 𝑛x𝑛 unique PM can be depicted directly, without finding it

from n! PM’s.

