

A framework to Optimize ORM Data Retrieval using Indexed Search
Engines

Author

Tassaddaq Sultan

FALL 2015-MS-15(CSE) 00000119224

MS-15 (CSE)

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

July 2019

A framework to Optimize ORM Data Retrieval using Indexed Search

Engines

Author

Tassaddaq Sultan

 FALL 2015-MS-15(CSE) 00000119224

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Software Engineering

Thesis Supervisor:

Dr. Farooque Azam

Thesis Supervisor’s Signature: ___________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

July 2019

i

DECLARATION

I certify that this research work titled “A framework to Optimize ORM Data Retrieval using

Indexed Search Engines” is my own work under the supervision of Dr. Farooque Azam. This work

has not been presented elsewhere for assessment. The material that has been used from other

sources has been properly acknowledged / referred.

Signature of Student

Tassaddaq Sultan

FALL 2015-MS-15(CSE) 00000119224

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also

according to the format given by the University for MS thesis work.

Signature of Student

Tassaddaq Sultan

FALL 2015-MS-15(CSE) 00000119224

Signature of Supervisor

iii

COPYRIGHT STATEMENT

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST College of E&ME. Details may be obtained by the

Librarian. This page must form part of any such copies made. Further copies (by any

process) may not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may

not be made available for use by third parties without the written permission of the College

of E&ME, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

ACKNOWLEDGEMENTS

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work at

every step and for every new thought which You setup in my mind to improve it. Indeed, I could

have done nothing without Your priceless help and guidance. Whosoever helped me throughout

the course of my thesis, whether my parents or any other individual was Your will, so indeed none

be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking

and continued to support me throughout in every department of my life.

I would also like to express my gratitude to my supervisor Dr. Farooque Azam and my co-

supervisor Dr. Wasi Haider Butt for their constant motivation and help throughout this thesis.

Also, for Software Development and Architecture (SDA) and Model-driven Software Engineering

(MDSE) courses which they have taught me. I can safely say that I haven't learned any other

engineering subject in such depth than the ones which he has taught.

I would like to pay special thanks to Muhammad Waseem Anwar for his incredible cooperation

and providing help at every phase of this thesis. He has guided me and encouraged me to carry on

and has contributed to this thesis with a major impact. Thank you for guiding me, often with big

doses of patience.

I would also like to thank my Guidance Committee Members Dr. Usman Akram and Dr. Rashid

Ahmed for being on my thesis guidance and evaluation committee. Some special words of

gratitude go to my friend M. Nouman Zafer who has always been a major support and cooperation

when things would get a bit discouraging.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study.

v

Dedicated to my exceptional parents whose tremendous support and

cooperation led me to this wonderful accomplishment

vi

ABSTRACT

Database management Systems (DBMS) are one the most critical component of a software

application. Searching data from DBMS is an enormous part in software performance. Text search

engines are also used for searching, but these engines lack sophisticated DBMS features.

Relational database management systems (RDBMS) are not quite compatible with modern object-

oriented languages. To overcome the complexity of data and object-oriented programming,

modern development practices adopted Object Relation Mapping frameworks (ORM). ORM bears

a layer of abstraction between object models and database. This layer automatically bridges objects

in OOP languages to database records, which results in significantly reducing custom mapping

code complexity. ORM has its advantages but on the other side it comes with be some challenges

too. In process of mapping objects and data, ORM keeps the relations between objects intact and

that results in retrieval of multiple objects from multiple tables. When the data is big and have a

hieratical structure, data retrieval or search becomes more complex. Database performance for the

retrieval of data are optimized by adding indexing to each table. Indexing makes search

significantly fast but also makes other processes slow because tables are required to be re-index

every time a record is changed. Hence an optimized solution is required to resolve this problem in

ORM search process. To overcome this problem, this research proposes a java-based framework

that can interact between ORM and search engine. It consumes search engine web APIs to provide

a layer that can convert and search objects to/from XML. It makes search process faster and

support ORM with its object-oriented methodology. Moreover, this framework not only reduces

performance load on databases but also makes search queries simpler when implemented in

development process. The results have been validated by two case studies, which were carried out

by implementing each approach. 1000 similar search queries were processed on each framework

and results shows 30 to 40 % improvement in query time.

Keywords: DBMS Search, Indexing, Text Search Engines, Solr inedexes, Object oriented

programming (OOP), Object Relation Mapping (ORM), Search optimization, Information

Retrieval, database indexing.

vii

TABLE OF CONTENTS

DECLARATION i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

COPYRIGHT STATEMENT... iii

ACKNOWLEDGEMENTS ...iv

ABSTRACT vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ..ix

CHAPTER 1: INTRODUCTION ... 11

1.1. Background Study .. 11

1.1.1. Relational Databases ... 11

1.1.2. Indexing ... 12

1.1.3. Text Search Engine ... 13

1.1.1. Object Relational Mapping .. 13

1.2. Problem Statement .. 14

1.3. Proposed Methodology ... 15

1.4. Research Contribution ... 16

1.5. Thesis Organization .. 16

CHAPTER 2: LITERATURE REVIEW ... 19

2.1. Literature Review ... 19

2.2. Research Gap .. 22

CHAPTER 3: PROPOSED FRAMEWORK .. 24

3.1. Architecture for Designing a Search System .. 25

3.2. Architecture for Tools and Techniques... 26

3.3. Data and Search .. 26

3.3.1. Hibernate Related Concepts .. 27

3.3.2. Search Indexer Related Concepts .. 28

3.3.3. Errors/Logging Related Concepts ... 29

3.3.4. Data Types and Enumerations ... 30

CHAPTER 4: IMPLEMENTATION .. 33

viii

4.1. Optimization Architecture ... 34

4.1.1. Control Flow .. 34

4.1.2. Optimized Control Flow ... 35

4.2. Data Conversion Architecture ... 36

4.3. Re-indexing Service .. 38

CHAPTER 5: VALIDATION ... 41

5.1. Case Study ... 41

5.1.1. Requirement Specification ... 41

5.1.2. Integration of ORMSEM Framework with Software System 42

5.1.3. Search and data retrieval ... 44

5.1.4. Verification .. 45

CHAPTER 6: DISCUSSION AND LIMITATION .. 51

6.1. Discussion... 51

6.2. Limitations ... 52

CHAPTER 7: CONCLUSION AND FUTURE WORK ... 54

APPENDIX A 55

REFERENCES 63

ix

LIST OF FIGURES

Figure 1: SOLR Architecture ... 13
Figure 2: Research Flow ... 16
Figure 3: Thesis Outline ... 17
Figure 4: Search Engine Working .. 24
Figure 5: Architecture for Web base Search System .. 25
Figure 6: Architecture for Tool and Techniques .. 26
Figure 8: Hibernate ... 28
Figure 9: Client Related Concepts .. 29
Figure 10: Errors/Logging Related Concepts ... 30
Figure 11: Data Types and Enumerations .. 31
Figure 12: Class Diagram of Our proposed Framework ... 33
Figure 13: Flow of data retrieval query using Database ... 34
Figure 14: Flow of data retrieval query without Database ... 35
Figure 15: Conversion Engine. ... 36
Figure 16: Object components. ... 37
Figure 17: Synchronizing Database with Search Engine. ... 39
Figure 18: Configure enumerations. ... 42
Figure 19: Running SOLR. ... 43

x

Chapter 1

Introduction

11

CHAPTER 1: INTRODUCTION

This section provides a detailed introduction about the research and research concepts. This

section is organized in multiple sub sections. Section 1.1 provides the background study, Section

1.2 presents the problem statement of research, Section 1.3 discusses the proposed methodology,

Section 1.4 gives the detail about research contribution, and thesis organization is presented in

Section 1.5.

1.1. Background Study

The purpose of this section is to introduce the background study of multiple concepts which have
been used in this research. These concepts include;

 Relational Databases

 Indexing

o Cluster Index

o Non-Cluster Index

 Text Search Engine

 Object Relational Mapping (ORM)

o Data Access Object (DAO)

1.1.1. Relational Databases

 Now a day’s software is playing an essential part in automating the business industry.

Almost all businesses and areas where software is the primary element, need to store and retrieve

their personal and confidential data. In software, databases are the elementary source for storing

and retrieval of data as well as providing security to the data. The stored data is controlled and

organized by Database Management Systems (DBMS). Database stores the data logically in form

of tables which consist of rows known as record and column and physically on disk space in units

of pages. The collection of pages creates heap data structure to store the data. To search a data

from the heap a row locator identity is needed. Row locator is a pointer contains the identity

number of documents, page number and page slot present on heap and it is enough of information

which is required to obtain any record from the database.

12

Database follows some restrict rules to organize data. Storage and retrieval of data is

carried out by mean of formal query languages such as SQL. The efficiency of queries has been

paid more attention because of rapidly growing data stored in databases. Moreover, the user

satisfaction and experience is mostly affected by the efficiency of queries in system where large

scale of data is used. Query engine loads data into memory in form of units of pages. While dealing

with large amount of data, the query engine distributes the data among multi-pages which can

cause low query efficiency. To search data from a database using queries, indexing is used to

optimize the search process [1]. Search engine indexing collects, parses and save data to improve

the information retrieval process. In indexing, an index contains the selected columns of relevant

data from a table. Purpose of storing an index is to optimize the searching speed and performance

of a query as well as it improves the computing power and time required by the search engine.

1.1.2. Indexing

In database such as SQL server, B+ tree is used for indexing purpose. It is a balanced multi

branch tree which optimize the I/O operations of the database. It provides the O(logN) time to the

query to perform its insert, update, delete and other dynamic operations. The working process of

index is to perform search on data present in form of tree starting from the root node. Index consist

of index key range and a pointer to next node of the branch. The bottom node of index is leaf node

that contains information about location or data itself. Searching required number of rows of data

using I/O operation in database is determined by index layer throughout the index’s root node to

leaf node. Hence, indexing provides same traversing lengths and efficiency for all queries to search

data from database.

Depending upon the data indexes are divided into two type; cluster Index and non-cluster

index. Every table contain 249 non-cluster index and one cluster index. Physical index is

categorized as cluster index while logical index is non-cluster index. Cluster index requires around

1.2 times of table’s disk space which is the average size of about 5% of the table [2]. The leaf node

of B+ tree in cluster index is data page and it may require splitting of data page and reorder in

index page while performing insert, update, delete and other dynamic operations. But physical

position of data does not change while dealing with non-cluster index. Non-cluster index is like

vocabulary page in a book and leaf node use the pointer to point the position of record. Hence in

non-cluster index tree do not contain data pages and is composed of index key entry.

13

1.1.3. Text Search Engine

A full text search engine provides services of indexing large data exposed through APIs to
be consumed by other software. As these engines are designed dedicatedly for search purposes,
they provide much superior index management and information retrieval. Fig 1 illustrate the
architecture of a sample search engine that communicates through web services with other
application systems. [4]

Figure 1: SOLR Architecture

1.1.1. Object Relational Mapping

Managing data consistency between source code and database is a difficult task,

especially for complex large-scale systems. As more systems become heavily dependent on

databases, it is important to abstract the database accesses from developers. Hence, developers

nowadays commonly make use of Object-Relation Mapping (ORM) frameworks to provide a

conceptual abstraction between objects in Object-Oriented Languages and data records in the

underlying database. Using ORM frameworks, changes to object states are automatically

propagated to the corresponding database records. A recent survey [9] shows that 67.5% of Java

developers use ORM frameworks (i.e., Hibernate [10]) to access the database, instead of using

14

JDBC or other frameworks. However, despite ORM’s popularity and simplicity, maintaining

ORM code (i.e., code that makes use of ORM frameworks) may be very different from

maintaining regular code due to the nature of ORM code. [6]

 ORMs are tightly linked with object models that makes data retravel specific to models.

That means whenever we are querying database for data retrieval, we will always get whole

object, including child objects or linked objects which is either required or not. This behavior

makes our application a little heavy. Data access models (DAO) are used in ORM models

specifically to make data retrieval simpler. DAO is a simplified version of big object to retrieve

only those entities or attributes from DB only which are needed.

1.2. Problem Statement

With evolution of software industry and modern paradigm of businesses. Data is becoming

the biggest asset of a software. More data makes a software more reliable. With this expansion in

data, data management is becoming more complicated especially for daily use applications. More

and more data make it hard for DBMS to perform CRUD operations on it. But the most affected

operation is search, especially in text.

Most significant factor of a software performance is its search capabilities. Keeping data

adding up every day, application’s search procedures need to be change. Indexers are often used

to overcome search problems. But we cannot index every column in DBMS or in OODB. After

every change in any record whole dataset needs to be re-indexed. This may significantly reduce

I/O accessing cost in query processing.

Now a day when technology is so advance, and AI is implemented in major processes.

Majority of DBMS are taking care of indexing process by themselves. But DBMS does not have

a concept of object-oriented structure. So, whenever we try to retrieve data, we have to query every

linked table. ORMs came across a long way to deduce this problem and established a link between

OOP and relational databases. Querying trough ORMs helps one way or another in going to use

DBMS and same is the cost data retrieval cost. This cost becomes a problem when there is a huge

data and it has object-oriented structure implemented by ORMs.

15

1.3. Proposed Methodology

Entire research is done in a very systematic way. Figure 2 represent the flow of research

step by step. In first step we identified the problem. Then proposed the ideal solution for the

problem identified in first step. We carried out a detailed and comprehensive literature review

which helped us to identify the optimal solution for the problem. We reviewed the researches

carried out related to our proposed solution, analyzed and compared them.

The proposed solution implements an approach that is going to make our data retrieval

process significantly faster than traditional methods. The propose framework will provide an

interface between our ORM and the text search engine. Our proposed framework is also going to

take care of boxing and unboxing of objects into readable formats for ORM and search engine as

well. Interaction of ORM and DBMS is reduced and use a separate search engine which also have

self-indexer. ORMs interacts with the search engine through our designed framework and it has

also capability to keep search index updated via a service that keeps DBMS blend with search

engine. The proposed methodology has been validated for two case studies of different sizes.

16

Figure 2: Research Flow

1.4. Research Contribution

Contribution of current research work are; changing and optimizing conventional

methodology of data retrieval and providing a new platform for ORM to interact with text indexers.

Detailed set of contributions of the proposed approach are as follows:

 We have developed a framework that provides an interface between JAVA and search engine

persisting object-oriented programing structures.

 We have made search engine capable of storing more than just text. Generation of XML,

boxing and unboxing of objects is a big part of it.

 Providing a time triggered service that can keep data updated on both data storages i.e. DBMS

and search engine.

 We have provided a framework that helps ORMs like hibernate to consume APIs of search

engine keeping its structure intact.

 We have provided a generic configurable a framework uses connections and configurable

variable to embed with any java project.

 We have provided validation of our proposed work using two benchmark case studies.

1.5. Thesis Organization

Figure 3 represent the organization of thesis. CHAPTER 1: deals with introduction having

detailed background study about the concepts used in the research, problem statement, research

contribution and thesis organization. CHAPTER 2: contains the literature review which provide

a description of work done in the field of Distributed Control System. In Literature review we also

highlights the research gaps that we encountered. CHAPTER 3: covers the details of proposed

framework used as a solution for identified problem. CHAPTER 4: presents the detailed

implementation regarding the proposed model, profile, tool and transformation engine along-with

its architecture. CHAPTER 5: provides the validation performed for our proposed methodology

using two important case studies. The two case studies selected for validation purposes are of

different domains and different sizes to make sure that our proposed approach works on every

case. Error! Reference source not found. contains a brief analysis of our proposed work with

previous researches. CHAPTER 6: contains a brief discussion on the work done and also contains

17

the limitations to our research. CHAPTER 7: concludes the research and recommends a future

work for the research.

Figure 3: Thesis Outline

18

Chapter 2

Literature Review

19

CHAPTER 2: LITERATURE REVIEW

This chapter presents research work that we carried out focusing on object relational mapping

interaction with databases and involvement of indexers. After a deep literature review of scrutiny

of our efforts and research we were able to find some research gaps which support our research

significantly.

2.1. Literature Review

Lujia et al., implemented an information retrieval system or corpus based on solr (a search

engine). The from mangolian websites stored in MySQL database. The problem of words with

same pronunciation but different shape was resolved. Using the approach proposed in [11], the

mangolian words are represented as latin characters and specific meaning is associated with ASCII

characters. The data crawled from mangolian websites and textbooks was transcoded which

involves transformation of original data to Unicode. The proposed retrieval approach involved

transformation of code for mangolian, building indexing document with solr, text clustering and

finally the retrieval.

Nemanja et al., proposed an ORM approach in order to exploit the optimization techniques

that minimize or abandon the positive effects of normalization by reducing the database

performance. This ORM approach is a hybrid approach which combines the static and dynamic

characteristics of model. This ORM transformation pattern involves the generation of object

identifier, incorporating mapping of single class inheritance, mapping associations, optimizing

transitive associations and storing the derived values. Authors also presented an initial framework

for detailed analysis and comparison of ORM approaches which use the de-normalization

techniques [12]. Another research provides detailed study on approaches that can be used for

maintaining the ORM code in Java [14]. ORM provides an abstraction between source code and

database. Authors highlighted that more detailed research is required for the use of ORM

framework in software maintenance community.

Yang et al., proposed an algorithm for full text retrieval using block linked list index

structure [13]. Experiment shows that the proposed approach increases the index initialization time

20

an also improves the efficiency of data retrieval. The approach has been implemented for large

data of Chinese full text retrieval system.

C. Giordano et al., presented the implementation of business application based on

Hibernate ORM framework which can communicate with Relational Database Management

System as well as noSQL database. The developed application provides performance evaluation

of selected two databases including MySQL and MangoDB. The system was later evaluated on

parameters like throughput, scalability and response time. Hibernate ORM facilitates in

development of DB independent applications which are portable or easily migrated across various

RDBMS [15].

Junwen Yang et al., provides a detailed survey of 12 real world ORM applications on the

basis of 9 generalized ORM performance anti-patterns. This research identifies fixated

performance issues for each application. Furthermore, causes of inefficiencies are discussed in

detail [16]. In another research, indexing has been focused for Information Retrieval systems [17].

Indexing process involves four stages: content specification, document tokenization, processing of

terms and building index. Multiple indexing algorithms like two-pass indexing, single-pass

indexing, and block indexing have been discussed by the authors.

Platonov et al., implemented an ORM Polar system and suggested a disk space

optimization method. Results obtained from the suggested methodology were compared with that

of RDBMS. The proposed method increases the possibilities of use of ORM for non-relational

Nosql databases (Polar). The results demonstrated that ORM can be used for specialized databases

and it successfully competes with same constructions for universal databases [18]. Another

research [19] discusses the use of ORM for modelling the domain ontologies for semantic web in

OWL or SWRL. The research proposed some rules for mapping structure and constraints of ORM

with SWRL.

Shailender et al., implemented Temporal Functionality in Objects with Role Models using

PostgreSQL, an open source ORM. The authors proposed a methodology where initially schema

of database is designed. After designing the database, mapping process is performed which maps

the TF-ORM with underlying relational database. Two types of rules are defined by the authors.

First is state transition rule and the other is binding rule for roles and classes with temporal

information. The proposed model has been validated for a hospital scenario [20].

21

In [21], Object Relational Mapping has been utilized for automating the persistence layer

of web-based systems. Authors have investigated that how ORM approach can be integrated to

support the event driven development. The proposed approach has been validated with running

example of RubiS web app benchmark example in order to evaluate the performance of approach.

QI Chunxia et al., worked on index-based query data in order to improve SQL Server

database query performance. The authors have explained the principles of properly using the

index-based approach and also highlighted the factors that can reduce the query efficiency. Some

query conditions, calculations and functions to be avoided in order to get effective indexing have

been discussed in detail [22]. Similarly, another research paper gives a demo of a tool named

‘TagTick’ which offers a fully functional annotation tagging environment for Apache Solr to data

curators [23]. The presented tool allows tagging and un-tagging actions over the index in work

sessions without compromising end users’ index searching activities.

Joseph Armas et al. worked with structured language query and ORMs simultaneously.

Using sql server on backend as database and Entity framework with C# as an ORM. The authors

focused on comparison of query performance between both data retrieval strategies [24]. Querying

and calculating time differences significantly shows that ORM performs well but this only problem

was that author compare single level of hierarchy. Object with no child objects or table with no

sub tables in relation. If we try multiple level of hierarchy, but system performance drops

significantly.

Jiawei Han et al worked on structural difference indexes between object-oriented data

(hierarchal) and single level data. Due to complex structure of objects via class/subclass, attributes,

associations, navigation between objects by composition hierarchy it is highly recommended that

data indexed should have the same capabilities [25]. Another research by Yang Lai et al, also

support the same concept [26]. Using Hadoop, HDFS and MapReduce with Java persistence API

(ORM) and comparing MySQL Clustering shows a significant perform improvement. And

analyzing that big data failure with MySQL Clustering.

In [27], a brief study is carried out ORM performance query and its flaws author also

recommend some anti patterns that are necessary for ORM performance. Problems like unwanted

column data retrieval, aggressive computation of DBMS queries, query batching etc. were also

analyzed.

22

2.2. Research Gap

This section deals with the research gap and proposed solution in industrial scale usage of

data repositories. With automation of every industry now we are more depending on software than

ever before. Due to expansion of this software industry we are generating data exponentially. Data

generated in last 5 years is approx. 97 % of whole data ever created. Data storage in merely in

DBMS is not working anymore. Database systems are developed with additional features, but each

comes with their own cons. Database management systems are responsible to enable user to

perform CRUD operations, but data retrieval is the most curtail one. All operation except create

operation must performs retrieval or search operation to complete itself. So, all other operations

have great dependency on data retrieval. Considering the size of data that we are working with, it

also is the costliest one.

Previous carried out research have contributed a lot in this domain, and we have

significantly improved and different variety of database systems. Continuing best programming

practices researchers also implemented middle ware like ORMs to distribute the load on DBMSs.

ORMs have their draw back, as they are keeping out data in a OOP structured form but makes data

retrieval more complicated as it also retrieves all the assisted objects too. Multiple researches

presented noble approaches to improve the architecture of system and made the design and

implementation of the system, a complex and sophisticated process. Adding indexers to DBMS

improved data retrieval significantly. But DBMS indexer can’t handle huge data especially when

we are talking about relational and hierarchal data. Indexers need to be updated every time there

is create, update or delete operation performed. As they are built into DBMS it cost them a lot to

re-index huge data every time there is an operation performed. Majority of the work carried out is

on tightly coupled ORM, indexer and database. Making in efficient query systems. [27]

The solution that we proposed is significantly helpful in separating these frameworks and

systems to distribute load on separate resources. Creating a middle ware between them not only

improve data retrieval efficient also open a new variety of customizations and object compatibility

support. Furthermore, we have provided an open source and generic solution for the data retrieval

which can keep data synced with database having lesser complexity.

23

Chapter 3

Proposed Framework

24

CHAPTER 3: PROPOSED FRAMEWORK

As discussed, earlier Data management and retrieval system is a widely used as software

systems which control, monitors and execute the critical processes of the industry and execution

of these critical processes depend on size of data. Developing a system that can save time and

performance makes either of complexity cost unbalanced. To provide a generic, well-coordinated

and interoperable platform ORM and search engine mapper (ORMSEM) is proposed. Figure 4

shows the overview of framework. The data transactions between a search engine and a web

application that supports ORM and it can communicate to search engine by web APIs. The data

retrieval system is the integral part of the Software Systems where performance depends on data

transactions. To maintain and synchronize data between database and search engine, a data search-

based retrieval system needs to connect with it and other parameters such ORM to process the data

etc. Thus, multiple concepts need to be integrated to provide a generic data retrieval system for

software systems which needs search in big data.

The purpose of this chapter is to give detail of concepts used in the proposed solution. The

recommended solution is based on Object oriented architecture and object relational mapping

Figure 4: Search Engine Working

25

3.1. Architecture for Designing a Search System

A search system is usually designed along with other data bases like sql to enhance the

performance of system but with the ORM is in the middle it is still not very effective because of

extra data retrieval calls to database.

Figure 5 The data is still being retrieved from database because ORMs like hibernate or

entity can only support conversion of objects to data and vice versa with only DBMS. To take it

further introducing a new framework between ORM and search engines ORM can be supported.

Figure 5: Architecture for Web base Search System

26

3.2. Architecture for Tools and Techniques

Tool support is an important factor to increase the productivity of software development.

A tool support architecture to support the framework is shown in Figure 6. It consists of four

layers development environment, ORM, database and Simulation Tools. Development

environment contains the Eclipse Neon which is an open source environment having variety of

plugin available in market for software development and modeling purpose. ORM layer in eclipse

provides a communication between object-oriented programming and data tables. Eclipse support

ORMs like hibernate and entity to help conversion of data from table rows to linked objects. The

simulation tool layer contains Visual Studio, simulator, Output Analyzer, Address space updater

and visual displayer. These tools are for testing the code, address space and data.

Figure 6: Architecture for Tool and Techniques

3.3. Data and Search

The proposed solution implements an approach that is going to make our data retrieval

process significantly faster than traditional methods. The propose framework will provide an

interface between our ORM and the text search engine. Our proposed framework is also going to

take care of boxing and unboxing of objects into readable formats for ORM and search engine as

well. Interaction of ORM and DBMS is reduced and use a separate search engine which also have

27

self-indexer. ORMs interacts with the search engine through our designed framework and it has

also capability to keep search index updated via a service that keeps DBMS blend with search

engine. Figure 7 explains a brief flow.

We can completely skip a data retrieval call from database. Our framework will enable us

to get objects from search engines.

Figure 7. Control flow of solution

3.3.1. Hibernate Related Concepts

Figure 7 Hibernate is an open source Java persistence framework project. It performs

powerful object-relational mapping and query databases using HQL and SQL. Hibernate is a great

tool for ORM mappings in Java. It can cut down a lot of complexity and thus defects as well from

your application, which may otherwise find a way to exist. This is especially boon for developers

with limited knowledge of SQL.

28

Initially started as an ORM framework, hibernate has spun off into many projects, such as

Hibernate Search, Hibernate Validator, Hibernate OGM (for NoSQL databases), and so on.

Figure 7: Hibernate

3.3.2. Search Indexer Related Concepts

Concept related to indexer shown in Figure 8. A full text search engine provides services

of indexing large data exposed through APIs to be consumed by other software. As these engines

are designed dedicatedly for search purposes, they provide much superior index management and

information retrieval. Fig 1 illustrate the architecture of a sample search engine that communicates

through web services with other application systems. [4].

29

Figure 8: Client Related Concepts

3.3.3. Errors/Logging Related Concepts

Figure 90 represents the concepts related to data conversion logs and errors. Logging

stereotype is introduced for the modeling of conversion concept and contains the attributes; Name

to specify its identity, Appender which states the conversion type, and Parameters which contains

the necessary information about the conversion. Loggercontext is introduced to model the

necessary parameters for conversion and it’s high and low values in integer. ErrorsAndException

stereotype represents the concepts of errors and exceptions that could possibly occur during

connection or at any stage of data transmission. It contains the attributes; Connection Error which

deals with error occur during connectivity, Slrlookup checks if the requested input crosses the

limited range of memory, and Logout checks if connection could not be established with in specific

time.

30

Figure 9: Errors/Logging Related Concepts

3.3.4. Data Types and Enumerations

Figure 10 shows the all data types and enumerations used in modeling of above discussed

concepts. Enumeration EntryClassNames is introduced to represent the classes that need to be

indexed i.e Acglhead, Acglhead, ComBranch and ComCompany. These classes are specified to

indicate the level of object to be indexed and the specific classes that should be added to search

engine. Function codes are also used to read and write data on these memory types. SolrColelction

enumeration contains the set i.e. in which our data is going to be stored on search engine.

PackageNames contains the package name in which our models initially lie.

31

Figure 10: Data Types and Enumerations

32

Chapter 4

Implementation

33

CHAPTER 4: IMPLEMENTATION

This chapter deals with the implementation detail for ORM and Search Engine Mapper

(ORMSEM) (a tool we have proposed to enable ORM to directly get data in object form from

search engine). The tool we have implemented has three main features. Firstly, it provides the

facility to synchronize database with search engine while keeping its object model. Secondly, it

provides facility to convert xml documents to ORM objects. And finally, it provides a custom level

object search (including Elastic search). Figure 11 shows the main Class structure of our proposed

framework. The base of our work strictly depends on Object Oriented Architecture. We have used

Eclipse Database development and hibernate in our project. Hibernate is being used as an ORM to

communicate between our objects and database.

Figure 11: Class Diagram of Our proposed Framework

34

4.1. Optimization Architecture

In this section optimization and its conversion procedures are discussed which are used to

map the model from ORM and transform it into indexers stings and address space. The process of

modifying or converting an OOP model into text or another model is known as boxing of objects

and the formal rules which are used to transform the concept of one model to another model or

text are usually maintain. The main aim of transformation or conversion is focused to develop the

set of formal rules to ensure model continuity and to reduction of information loss and effort as

much as possible.

4.1.1. Control Flow

Conversion of objects to text or indexer documents is usually denoted as the focus is to

develop the textual or code artifacts from the model. The engine which is used to carry out

conversion process is being designed in our framework. Current section explains the different

calls an application is to make and how data is being retrieved. In Figure 13 it is explained that

how an architecture of a well indexed system works. How multiple calls must be made to get

complete objects from database.

Figure 12: Flow of data retrieval query using Database

35

4.1.2. Optimized Control Flow

After transformation engine being emplaced the complexity of architecture is optimized.

As shown in Figure 14,Error! Reference source not found. call to database is completely omitted

which is the most expensive in terms of complexity and performance. A simple search call to

indexer or search engine via the transformation engine ORM can retrieve objects. This phase of

process is known as unboxing of objects. It converts text back to objects to support OOP and

ORMs.

Figure 13: Flow of data retrieval query without Database

As data is being retrieved directly from text search engine it is connected to database

anymore. Any change to this retrieved data will not be reflected to database. Any update this data

will have to be manually save to database. As the second call showing in Figure 14 any update in

object will have to be updated to database through ORM. And later it will be automatically synced

to search engine through our re-indexing service, as discussed in section 4.3. To retrieve data or

objects search methods are being implemented. Search is carried out through SearchDoc, it takes

36

search filter as parameters. Filters can be applied on multiple object level in hierarchy to retrieve

most suitable objects found.

4.2. Data Conversion Architecture

The data conversion is the core of our framework, it solely responsible for converting

objects to SolrDocuments and from SolrDocuments to ORM objects. transformation engine is

responsible for converting the model into string and then into solr documents and its architecture

is presented in Figure 14. SolrAdapter contains methods that are responsible for conversions. A

concept of serialization and deserialization is used to support solrdocument with ORM or java

objects. Already built-in serialization in java supports only XML formats to in order to convert it

into solrdocumetns we need to develop our own conversion engine, which is using same concept.

Figure 14: Conversion Engine.

Main interface of the transformation engine contains three major sub-components; Main

Screen, Launcher, WinMain and Text Refiner. Main Screen is the main executor of the

transformation engine which provides list of actions it can perform and provides graphical user

interface with help of buttons and text field. Launch and WinMain are the java classes which

implement these functionalities. Text Refiner is a java class which is used to convert the strings

into proper format for further use. It provides access to three main functionalities of application

37

i.e. Papyrus, Address space updater and Transformation Engine. Papyrus button provide access to

open Papyrus which is the source tool for modeling. Address space updater provide access to a

tool which is specially created for editing address space file containing devices information. And

finally, transformation engine can be accessed by button provided in Main Interface. Interface for

transformation engine is provided in Figure 15. Transformation Engine takes the UML model and

path of destination folder for generating the code from model using the browse button. Check

boxes are provided for user to select only the type of output he needs to generate. Generate button

is provided to generate the required outputs. Status bar show the progress of the transformation

process. A Reset is provided to clear all fields i.e. input model path, destination folder path, status

and all check boxes. Close button is provided to closes the interface from the screen.

Figure 15: Primitive Object components.

 Figure 16: Non-Primitive Object components.

38

Transformation: POJOs are the Plain Old Java Objects, which were easy to handle because

they contain only primitive datatypes as shown in Figure 16. Conversion of these objects are easy.

For non-primitive objects have complex structures as shown in Figure 16a. These objects are hard

to serialize as they have complex member types. Java Reflection is used in our framework to define

rules and deal with the details and specifications of objects. Objects are being converted to text

keeping object data and data member types with them. Links with other objects are also maintained

by linking solrDocuments Ids with one another, a unique UUID is being used to maintain each

object identificaition. an ain Interface accepts the UML model as input and passes it to the

transformation.

4.3. Re-indexing Service

As our database and clients need to be synchronized. We created a service i.e. ReImdexAll.

what it does is firstly it delete all the solr documents that are already indexed in engine and then

ORM provide it the objects in bulk to re index. Bulk data transactions have less complexity and

takes less time. A query is being made by ORM to database to return all the objects of some model

already mentioned in enumeration EntryClassName. Now as ORM is already integrated with our

framework It calls ReImdexAll and provide that list of objects to solrAdapter which is then beign

converted to solr documents. Now these solr documents are going to be indexed on search engine.

These solr documents are query able and can be searched easily. As we have created the documents

on the objects relation bases, so it is query able even on multiple level.

This re-indexing service is needed to be running after some intervals (sync), so our data

can be up to date in search Engine. Or may be called by every CRUD event (async). As shown in

Figure 17.

39

Figure 18: Synchronizing Database with Search Engine.

40

Chapter 5

Validation

41

CHAPTER 5: VALIDATION

This section deals with the implementation and validity of our proposed framework with help

of case studies. The case study is discussed and documented in descriptive form. The Capital Cars

Rental case study is discussed and validated in Section 5.1.

5.1. Case Study

This case study is explained and validated by dividing it in four sections. Section 5.1.1

contains the Requirement specification of the automated home. Section 5.1.2 contains the UML

class diagram to present the system architecture of the required system. Section 5.1.3 shows the

retrieval of results in form of Objects. And lastly Section 5.1.4 contains verification of the system.

5.1.1. Requirement Specification

In this era of technology, home automation has been growing rapidly. This section contains

the detail of hardware and its specifications for business process automation. Generic

specifications are given in this section about hardware deployed in a company and along with

software specification of accounting system. So, search optimization for data acquisition must be

done intelligently.

Database: The data retrieval system is dependent upon database because all the data is to

be dump in database server. The database server we are using for this case study is going to be

MySql. All the data is going to be saved in database server and then later synchronized to search

engine after some time intervals.

ORM: The data retrieval system for capital car rentals should have a mapper to

communicate between database and a web applicator or web application and search engine. Our

data retrieval system is going to be integrated with this ORM to communicate with search engine

that will return objects instead of strings to ORM. The open source ORM we are using in this case

study is hibernate. A service is being designed to convert objects from data base through ORM so

the data could be dumped in search engine and synchronized.

42

Text Search Engine: The accounting system should contain a search engine server for

data retrieval and search purposes. The search engine should accept the connection request from

our deigned framework and retrieve data in objects form. This server should be configured as a

text indexer and should re-index on every data sync. We have a synchronizing service, so it should

be constantly connected with that service. We are using SOLR, a full text search engine which is

an open soured and elastic search supported.

Communication Specifications: The data acquisition system should be implemented

using Web APIs and JSON data to communicate between retrieval system and search engine.

Search parameters: Data retrieval system should accept multi-level search depending

upon objects relations. It should provide query able document with multiple filters. Also enabling

users for elastic search.

5.1.2. Integration of ORMSEM Framework with Software System

As our proposed tool is to provide a communication between ORMs and search engine it

must be integrated with software applications ORM. Importing our framework’s library into

Eclipse project. Initial configuration is required for complete integration. Enumerations are

required to be specified as shown in Figure 197. But before that SOLR must be installed and

running in the background as Figure 208. Create a new collection to store our data in. or we can

use the default collection i.e. collection1. As in Figure 219

Figure 228: Configure enumerations.

43

Figure 23: Running SOLR.

 Solr uses a specific port i.e. 8983. Although its changeable but default is usually recommended.

Solr have a web portal through which it can be managed and configured. It works on core; every core can

have multiple collections and each collection can contain separate data.

44

Figure 20: Creating Collection1.

Solr is the main package used to contain whole communication model model the system.

Containing multiple classes for different purposes. SolrAdapter is main with built in methods to

communicate with solr search engine.

 SolrAdapter contains method reindexAll which is going to act as a service to synchronize

database with our search engine. ORM is going to use this method to transfer data between

database server and search engine server.

5.1.3. Search and data retrieval

To perform search opinations we again need to communicate throws SolrAdapter class

methods. SearchDoc is created with desired object type and SolrFilters is provided as a parameter

to SearchDoc and create a filter on a document. Solr deals only in solr documents on adding data

we have to create solr documents and on retrieval we need to create filters on document to get data

in XML form and then converted to objects of their respective types’ latter. We can also apply

elastic search by using these searchDoc. Following are two operations we are going to perform in

current case study.

45

1. Adding all data to solr engine throw indexing service as shown in Figure 21.

2. Apply search to acgldet object with some filter to this and get all linked objects as shown

in Figure 22.

Status shows the progress of transformation process.

Figure 21: Synchronizing database.

Figure 22: Performing Search.

5.1.4. Verification
Results of execution and search time was compared by querying 1000 searches by traditional
approaches and our current framework. Java as a programming language, hibernate as an ORM
and SOLR as a text search engine was used. Real time industrial data was used which was
provided by a software company looking for a better search solution. Figure 23 is an ERD of
database used for current scenario.

46

Figure 23: ERD of case study data.

Table 1 is a record specification of data in case study.

Table name Records
account 1370
acglhead 32835
acgldet 153395
combranch 4
Company 1

Table 1: ERD of case study data.

47

Figure 24: Querying using tradition hibernate search.

Figure 25: Querying using framework.

48

Table 2 After running continues 1000 queries following were the results.

Type Start min Start Sec End Min End Sec Start time End time Cost (Sec)
Database 42 12.042 42 15.677 2532.042 2535.677 3.635
Database 42 17.657 42 21.136 2537.657 2541.136 3.479
Database 42 22.724 42 25.905 2542.724 2545.905 3.181
Database 42 27.339 42 30.802 2547.339 2550.802 3.463
Database 42 32.526 42 35.868 2552.526 2555.868 3.342
Database 42 37.638 42 41.031 2557.638 2561.031 3.393
Database 42 42.687 42 45.843 2562.687 2565.843 3.156
Database 42 47.504 42 50.697 2567.504 2570.697 3.193
Database 42 52.311 42 55.417 2572.311 2575.417 3.106
Database 42 57.34 43 0.693 2577.34 2580.693 3.353
Database 43 2.757 43 6.519 2582.757 2586.519 3.762
Database 43 8.181 43 11.511 2588.181 2591.511 3.33
Database 43 13.171 43 16.618 2593.171 2596.618 3.447
Database 43 18.428 43 21.524 2598.428 2601.524 3.096
Database 43 22.966 43 25.978 2602.966 2605.978 3.012
Database 43 27.768 43 31.123 2607.768 2611.123 3.355
Database 43 32.889 43 35.941 2612.889 2615.941 3.052

Table 2: Querying time tradition hibernate search.

Table 3 After running continues 1000 queries using framework following were the results

Type Start min Start Sec End Min End Sec Start time End time Cost (Sec)
Framework 42 15.677 42 17.657 2535.677 2537.657 1.98
Framework 42 21.136 42 22.724 2541.136 2542.724 1.588
Framework 42 25.905 42 27.339 2545.905 2547.339 1.434
Framework 42 30.802 42 32.526 2550.802 2552.526 1.724
Framework 42 35.868 42 37.638 2555.868 2557.638 1.77
Framework 42 41.031 42 42.687 2561.031 2562.687 1.656
Framework 42 45.843 42 47.504 2565.843 2567.504 1.661
Framework 42 50.697 42 52.311 2570.697 2572.311 1.614
Framework 42 55.417 42 57.34 2575.417 2577.34 1.923
Framework 43 0.693 43 2.756 2580.693 2582.756 2.063
Framework 43 6.519 43 8.181 2586.519 2588.181 1.662
Framework 43 11.511 43 13.171 2591.511 2593.171 1.66
Framework 43 35.941 43 37.429 2615.941 2617.429 1.488
Framework 43 40.558 43 41.947 2620.558 2621.947 1.389
Framework 43 44.872 43 46.477 2624.872 2626.477 1.605
Framework 43 49.721 43 51.08 2629.721 2631.08 1.359
Framework 43 54.095 43 55.446 2634.095 2635.446 1.351

Table 3: Querying using Framework.

49

Table 4 shows a comparison between both times consumed while executing. It is showing

significant difference between both calls.

Type Cost in sec

Average by Database (Hibernate) 1.5525

Average by Framework 1.2125

Average Improvement 21.2
Table 4: Querying using Framework

50

Chapter 6

Discussion and Limitation

51

CHAPTER 6: DISCUSSION AND LIMITATION

Section 6.1 contains a detailed discussion on proposed research work and Section 6.2 deals

with the limitations of the research.

6.1. Discussion

From this research, it has been analyzed that there is very trivial amount of work has been

carried out to optimize search that can support object relational mapping. Researchers who tried

to optimize search using indexers or search engines kept their focus on either text base search or

didn’t try to add ORM in the picture at all. As modern technology is advancing ORMs are more in

practice then ever. Most of the researches are search specific like elastic search, text indexing or

database tuning. A very little amount of work was found in which researchers tried to map these

modern technologies together. Our proposed solution is a step towards uniting ORM and search

engines to achieve improved results.

Motive behind this work is to provide a generic system that can communicate between

ORMs and search engines, independent of object entities and save time cost of data retrieval. In

order to implement it we have used an open source search engine which support web APIs so we

should not be depending upon platform. It has a high compatibility to communicate and transform

data between both application and support different platforms. Moreover, indexer and search

engines are already heavily used in large data applications where search is required.

The proposed framework generates code artifacts for the data retrieval framework by

lowering the cost of development. The model developed to represent the data retrieval framework

shows higher abstraction of the system and is much smaller than expressed in code. It is less

sensitive to changes in business requirement as it is easier to understand the behavior of the system,

manage changes, and maintaining the application at abstract level. A large number of

functionalities can be added to the system in same amount of time resulting in minimizing the cost

of time and a smaller number of people are required to build the system using model driven

approach. Furthermore, the search engine and ORMs used in our proposed framework is available

in market as a freeware library which also reduce the cost of the overall system.

52

In order to validate our proposed framework, we have selected a real time case study. In

which we are going to index data into search engine and import into database. A comparison will

be done after evaluating the time cost difference. The purpose of choosing the case study of this

size is only to validate our proposed system.

6.2. Limitations

Our proposed research is a step towards the grouping of ORM and text search engines but

there exist limitation and constraints. We have validated it in a case study with real time data and

it shown significant results, but out entity model was not that complicated. Scenarios exists where

it might have to deal with way too much complex models and deep heretical object search. In such

scenario boxing and unboxing techniques my gives limited results.

53

Chapter 7

Conclusion and Future Work

54

CHAPTER 7: CONCLUSION AND FUTURE WORK

Our proposed framework provides a generic solution to overcome the compatibilities issues

between ORMs and search engine or indexer. It is consuming web APIs of indexer and provides a

middle layer for the communication with ORM. It uses a generic concept of boxing and unboxing

of objects. It is always synchronized with the help of an independent service which makes data

available for search all the time. Framework support generic configurations to define which objects

needs to be saved and up to what depth. Framework support a query able document that can contain

a defined query in order to search not only with in the object but also sub objects. Currently it is

been developed for java and supports Hibernate. As this framework is not constrained to its

containing project it can be used for multiple projects to search data from same search engine. It

significantly minimalizes the cost of search in large data and especially if multiple level object

search is required. The results are validated on test data provided for the test case and it shows

significant differences.

Future work includes making framework more generic using transformation and model

driven approached which will be easy to implement and specification of entities will not be

required. Currently its platform dependent and works with java and hibernate only.

55

APPENDIX A

USER MANUAL

1. Download Instructions
1.1.ORM and Search Engine Mapper (ORMSEM)

Download ORM and search engine mapper (ORMSEM) from ORMSEM website as:
“ORMSEM.zip”
Extract ORMSEM.zip file. You will find “ORMSEM” Folder.
In the “ORMSEM” folder, you will find two files shown in Figure 1 below.

Figure 1: Files in “ORMSEM” folder

Add ORMSEM to java project.

1.2.Sample Case Studies

Download sample data of case study from ORMSEM website. (Capital Car Rentals Data of
transaction) from ORMSEM website as “Sample-DataCaseStudy.zip”
Extract Sample- DataCaseStudy.zip file. You will find “DATA” folder as shown in Figure 2.

Figure 2: Sample Case Study folder

Open this folder and you will find a file named “DBScript.sql” for database tables and data.

2. Prerequisites for ORMSEM

Java Runtime Environment (JRE) version 8 or above is required to be installed in order to
create a java project.
Slf4J.jar need to add as a dependency to java project to make ORMSEM useable.
SOLR search engine is also required to use ORMSEM.
We have tested ORMSEM on all neon or higher versions of eclipse. However, we are confident
that ORMSEM can also be executed on previous versions of eclipse. And using without IDE it
will work fine too.

56

3. Execution of ORMSEM

Copy and add ORMSEM to your project with other dependencies.
As shown in Figure 3.

Figure 3: ORMSEM as dependency
The ORMSEM contains three main functionalities.
 Configurations: Configure ORMSEM into your project by adding Enums in certain packages.
 Index All: A service that sync database with solr search engine.
 Search: Search with in object and child objects comparing attributes.

3.1. Configurations

Add a package named “com.ORMIndexer.ORMIndexerRelation.BLL.Solr”.

57

Add Enum “EnterClassName” with entity name that need to be indexed into created package.
As shown in Figure 4

Figure 4: EnterClassName as Enum

Add Enum “PackageNames” with entities package name that need to be indexed.
As shown in Figure 5

Figure 5: PackageNames as Enum

Add Enum “Sol Collection” with collection name on solr server.
As shown in Figure 6

Figure 6: SolrCollection as Enum

3.2.Indexed All

Consume a method reindexAllLocations() in to sync database and solr data.
Firstly, import data from “DBscript.sql” file to mySql database and start solr server.
Import data by executing provided query with data in it. Figure 7

58

Figure 7: Data import

3.3.Search

Search can be performed by consuming methods in SolrAdapter class. Figure 8 shows a brief
concept of implementing search method.

Figure 8: Search method consumed

59

3.4.Verification

Results of execution and search time was compared by querying 1000 searches by traditional
approaches and our current framework. Java as a programming language, hibernate as an ORM
and SOLR as a text search engine was used. Real time industrial data was used which was
provided by a software company looking for a better search solution. Figure 9 is an ERD of
database used for current scenario.

Figure 9: ERD of case study data.

Table 1 is a record specification of data in case study.

Table name Records
account 1370
acglhead 32835
acgldet 153395
combranch 4
Company 1

Table 1: ERD of case study data.

60

Figure 10: Querying using tradition hibernate search.

Figure 11: Querying using framework.

61

Table 2 After running continues 1000 queries following were the results.

Type Start min Start Sec End Min End Sec Start time End time Cost (Sec)
Database 42 12.042 42 15.677 2532.042 2535.677 3.635
Database 42 17.657 42 21.136 2537.657 2541.136 3.479
Database 42 22.724 42 25.905 2542.724 2545.905 3.181
Database 42 27.339 42 30.802 2547.339 2550.802 3.463
Database 42 32.526 42 35.868 2552.526 2555.868 3.342
Database 42 37.638 42 41.031 2557.638 2561.031 3.393
Database 42 42.687 42 45.843 2562.687 2565.843 3.156
Database 42 47.504 42 50.697 2567.504 2570.697 3.193
Database 42 52.311 42 55.417 2572.311 2575.417 3.106
Database 42 57.34 43 0.693 2577.34 2580.693 3.353
Database 43 2.757 43 6.519 2582.757 2586.519 3.762
Database 43 8.181 43 11.511 2588.181 2591.511 3.33
Database 43 13.171 43 16.618 2593.171 2596.618 3.447
Database 43 18.428 43 21.524 2598.428 2601.524 3.096
Database 43 22.966 43 25.978 2602.966 2605.978 3.012
Database 43 27.768 43 31.123 2607.768 2611.123 3.355
Database 43 32.889 43 35.941 2612.889 2615.941 3.052

Table 2: Querying time tradition hibernate search.

Table 3 After running continues 1000 queries using framework following were the results

Type Start min Start Sec End Min End Sec Start time End time Cost (Sec)
Framework 42 15.677 42 17.657 2535.677 2537.657 1.98
Framework 42 21.136 42 22.724 2541.136 2542.724 1.588
Framework 42 25.905 42 27.339 2545.905 2547.339 1.434
Framework 42 30.802 42 32.526 2550.802 2552.526 1.724
Framework 42 35.868 42 37.638 2555.868 2557.638 1.77
Framework 42 41.031 42 42.687 2561.031 2562.687 1.656
Framework 42 45.843 42 47.504 2565.843 2567.504 1.661
Framework 42 50.697 42 52.311 2570.697 2572.311 1.614
Framework 42 55.417 42 57.34 2575.417 2577.34 1.923
Framework 43 0.693 43 2.756 2580.693 2582.756 2.063
Framework 43 6.519 43 8.181 2586.519 2588.181 1.662
Framework 43 11.511 43 13.171 2591.511 2593.171 1.66
Framework 43 35.941 43 37.429 2615.941 2617.429 1.488
Framework 43 40.558 43 41.947 2620.558 2621.947 1.389
Framework 43 44.872 43 46.477 2624.872 2626.477 1.605
Framework 43 49.721 43 51.08 2629.721 2631.08 1.359
Framework 43 54.095 43 55.446 2634.095 2635.446 1.351

Table 3: Querying using Framework.

62

Table 4 shows a comparison between both time consumed while executing. It showing

significant difference between both calls.

Type Cost in sec

Average by Database (Hibernate) 1.5525

Average by Framework 1.2125

Average Improvement 21.2
Table 4: Querying using Framework

63

REFERENCES

[1] Jiang Wenpei ,SQL Server 2005 Practical Tutorial [M],Post & Telecommunication Press,

2006.12

[2] De Luke, Microsoft SQL Server 7 Performance Optimization [M]. Machinery Industry Press,

2000.8.

[3] Working Conference on Mining Software Repositories, An Empirical Study on the Practice of

Maintaining Object-Relational Mapping Code in Java Systems, 2016 IEEE

[4] WANG Hong-man1, WANG He-wei1, Design and implementation of SOLR-based

information retrieval system for value-added services, 2008 IEEE

[5] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora. Detecting

performance anti-patterns for applications developed using object-relational mapping. In

Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pages

1001–1012, 2014.

[6] Tse-Hsun Chen, An Empirical Study on the Practice of Maintaining Object-Relational

Mapping Code in Java Systems 2015, Working Conference on Mining Software Repositories

[7] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful database schema evolution: The prism

workbench. in Proc. VLDB Endow., 1(1):761–772, Aug. 2008

[8] D. Qiu, B. Li, and Z. Su. An empirical analysis of the co-evolution of schema and code in

database applications. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 125–135, 2013.

[9] ZeroturnAround. Java tools and technologies landscape for 2015.

http://zeroturnaround.com/rebellabs/ java-tools-and-technologies-landscape-for-2014/. Last

accessed March 10 2015

[10] J. Community. Hibernate. http://www.hibernate.org/. Last accessed March 10 2016.

[11] Lujia Ma, Wei Bao,Wugedele Bao, Wuriga Yuan, Tao Huang, XiaoBing Zhao, A

Mongolian Information Retrieval System Based on Solr, 2017.

[12] Nemanja Kojic and Dragan Milicev, A Survey of Object-Relational Transformation

Patterns for High-performance UML-based Applications.

[13] Yang Yang and Hongyun Ning, Block Linked List Index Structure for Large Data Full

Text Retrieval, 2107.

64

[14] Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan, Michael W. Godfrey,

Mohamed Nasser and Parminder Flora, An Empirical Study on the Practice of Maintaining

Object-Relational Mapping Code in Java Systems, 2016.

[15] Chitra Babu and Gunasingh G, DESH: Database Evaluation System With Hibernate ORM

Framework, 2016.

[16] Junwen Yang and Cong Yan, How not to structure your database-backed web applications:

a study of performance bugs in the wild, 2018.

[17] Harpreet Kaur and Vishal Gupta, Indexing Process Insight and Evaluation.

[18] Platonov Y. and Artamonova E., Managing Big Data Using Specified System Polar, 2017.

[19] Wenlin Pan, Mapping ORM into SWRL, 2013.

[20] Shailender Kumar, Rahul Rishi and Rupender Duggal, Implementation of Temporal

Functionality in Objects with Roles Model (TF-ORM).

[21] Peng Li, Object-Relational event (ORE) middleware for push-based content delivery from

the application tier.

[22] QI Chunxia, On Index-based Query in SQL Server Database, 2016.

[23] Michele Artini, Claudio Atzori, Alessia Bardi, Sandro La Bruzzo and Paolo Manghi,

TagTick: A Tool for Annotation Tagging over Solr indexes.

[24] Joseph Armas, Optimization of Code Lines and Time of Access to Information through

ObjectRelational Mapping (ORM) Using Alternative Tools of Connection to Database

Management Systems (DBMS) 2017 2nd International Conference on System Reliability and

Safety

[25] Jiawei Han, Join Index Hierarchy: An Indexing Structure for Efficient Navigation in

Object-Oriented Databases

[26] Yang Lai, An Efficient Data Mining Framework on Hadoop using Java Persistence API.

2010 10th IEEE International Conference on Computer and Information Technology (CIT

2010)

[27] Ömer Yüksel, Jerry den Hartog, Sandro Etalle, 2016, “Reading between the Fields:

Practical, Effective Intrusion Detection for Distributed Control System”, ACM Proceedings of

the 31st Annual ACM Symposium on Applied Computing.

