

 A Model-Driven Framework to Generate Data and Presentation

Layers’ Scaffolding Code for multiplatform Applications

Author

Mohammad Inayatullah

Registration Number

118350

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

AUGUST 2019

A Model-Driven Framework to Generate Data and Presentation

Layers’ Scaffolding Code for Multiplatform Applications

Author

Mohammad Inayatullah

Registration Number

118350

A thesis submitted in partial fulfillment of the requirements for the degree of

MS SOFTWARE Engineering

Thesis Supervisor:

Dr. Farooque Azam

Thesis Supervisor’s Signature: ____________________________________

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

AUGUST, 2019

i

Declaration

I certify that this research work titled “A Model-Driven Framework to Generate Data and

Presentation Layers’ Scaffolding Code for multiplatform Applications” is my own work. The

work has not been presented elsewhere for assessment. The material that has been used from

other sources it has been properly acknowledged / referred.

Signature of Student

Mohammad Inayatullah

FALL 2015-MS-15(CSE) 00000118350

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also

according to the format given by the University for MS thesis work.

Signature of Student

Mohammad Inayatullah

FALL 2015-MS-15(CSE) 0000018350

Signature of Supervisor

iii

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST College of E&ME. Details may be obtained by the

Librarian. This page must form part of any such copies made. Further copies (by any

process) may not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, and may not be made available for use by third parties

without the written permission of the College of E&ME, which will prescribe the terms

and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

Acknowledgements

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work

at every step and for every new thought which you setup in my mind to improve it. Indeed I could

have done nothing without your priceless help and guidance. Whosoever helped me throughout

the course of my thesis, whether my parents or any other individual was your will, so indeed none

be worthy of praise but you.

I am profusely thankful to my beloved parents who raised me when I was not capable of

walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Farooque Azam ,Dr.

Wasi Haider for their help throughout my thesis and also for Software Development and

Architecture (SDA) and Model Driven Software Engineering (MDSE) courses which they has

taught me. I can safely say that I haven't learned any other engineering subject in such depth than

the ones which he has taught.

 I would like to pay special thanks to Mr. Muhammad Waseem Anwar for his

tremendous support and cooperation. Each time I got stuck in something, he came up with the

solution. Without his help I wouldn’t have been able to complete my thesis. I appreciate his

patience and guidance throughout the whole thesis.

I would also like to thank Dr. Arslan Shaukat, Dr. Usman Akram for being on my thesis

guidance and evaluation committee.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

v

Dedicated to my family members whose extraordinary support and

cooperation always remained a source of motivation for me in

accomplishing this tremendous achievement.

vi

Abstract

The use of web and mobile applications is growing very rapidly in the modern era. Due to

high end demand of such applications, the software stakeholders want the applications to be

available on both mobile and web. In software industry this requires more efforts to develop

applications for both mobile and web. Consequently, more resources with different technology

experts are needed for the development of multiplatform applications. The software engineers

always look for time saving and robust methodology for good, quick and qualitative software

development. Web and mobile applications usually composed of three layers i.e. application,

business and data. Application layer deals with the UI related concepts that run on browser. On

the other hand, business layer deals with the business logic that is usually implemented on server

side. Finally, data layer deals the data access from database.

We have performed the literature review in which we found that a methodology is needed

where the software engineers can generate scaffolding code for the data and presentation layers

considering the modern development technologies of hybrid (ionic) and web apps (angular).

Normally in software industry, the system analysts design the class diagram and is handled over

to the software developers. The developers start writing code in client side technology, server side

technology and also generate database according to the class diagram.

We have proposed the model-based methodology for the development of applications for

both mobile and web applications, because, Model Driven Architecture (MDA) is renowned

software design approach in software industry that make the software development very rapid and

consistent. MDA facilitate the development of multiplatform applications from one UML diagram.

Specifically, by applying the principle of “Run everywhere after develop once”, we have designed

a profile which have data types and stereotypes of model, class and property meta-class. We have

generated the code from class diagram by Acceleo. Our methodology is validated by two case

studies demonstrating that the idea is workable. Moreover, one empirical case study was given to

12 industry professional, for evaluating the saving of development effort using the proposed

methodology. We found that the proposed approach reduced the amount of effort significantly.

Key Words: Hybrid App, Web App, Model-Based Scaffolding, CRUD, MDA, Web service

vii

Contents’ Table

Contents
Declaration ..i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

Copyright Statement ... iii

Acknowledgements ...iv

Abstract ...vi

Table of Contents .. vii

Figures’ List ... x

Tables’ List .. xii

List of Annexures ... xiii

CHAPTER 1: INTRODUCTION... 14

1.1 Background Study .. 15

1.1.1 Single Page Application ... 15

1.1.2 ASP.NET WebAPI .. 16

1.1.3 Entity Framework Core ... 17

1.1.4 Model Driven Software Engineering ... 19

1.2 Problem Statement ... 20

1.3 Proposed Methodology .. 20

1.4 Research Contribution .. 21

1.5 Thesis Organization ... 21

CHAPTER 2: LITERATURE REVIEW .. 24

2.1 Literature Review ... 24

2.1.1 Research Questions .. 24

2.1.2 Inclusion/Exclusion Criteria .. 25

2.1.3 Search Process ... 26

2.1.4 Quality Assessment.. 29

2.1.5 Data extraction & Synthesis... 29

2.1.6 Actual Data Extraction – Intermediate Results .. 30

2.2 Research Gaps .. 33

CHAPTER 3: PROPOSED METHODOLOGY ... 36

3.1 Description ... 36

2.3 Data types ... 38

2.4 Enumerations ... 39

2.4.1 HttpVerbsEnum ... 39

2.4.2 StringDVDataTypeEnum ... 40

2.4.3 NavigationEnum .. 40

viii

2.4.4 StringValidationEnum ... 40

2.4.5 FontIconEnum ... 41

2.4.6 CollectionPlacementEnum ... 42

2.5 Stereotypes ... 42

2.5.1 PropertyAttributes .. 43

2.5.2 StringTypeAttributes ... 43

2.5.3 IntegerTypeAttributes .. 44

2.5.4 DateTypeAttributes .. 44

2.5.5 IDAttributes ... 44

2.5.6 OperationAttributes ... 44

2.5.7 ModelAttributes ... 45

2.5.1 ClassAttributes ... 46

CHAPTER 4: IMPLEMENTATION .. 49

4.1 Web API Transformation ... 49

4.1.1 Controllers ... 49

4.1.1 Models ... 50

4.2 Web App Transformation .. 50

4.2 Hybrid App Transformation ... 52

4.3 Transformation Engine Architecture ... 52

4.3 Acceleo Code ... 54

CHAPTER 5: VALIDATION .. 60

5.1 Auditing System – A Case Study .. 60

5.1.1 Requirements of Auditing System ... 60

5.1.2 Modeling .. 60

5.1.3 Code Generation .. 61

5.1.4 Verification .. 71

5.1.2 Conventional VS Proposed methodology .. 75

5.2 LEXPERT (Lab Expert) .. 75

5.2.1 Requirements ... 75

Create, Read, Update and Delete Patient ... 76

Create, Read, Update Lab .. 76

Create, Read, Update Lab .. 76

Create, Read, Update Test ... 76

Create, Read, Update Doctor ... 76

Create, Read, Update Panel ... 76

Create, Read, Update Employee .. 76

5.2.2 Modeling .. 77

5.2.3 Code Generation .. 78

CHAPTER 6: COMPARATIVE ANALYSIS ... 81

ix

6.1 Comparison .. 81

CHAPTER 7: DISCUSSION AND LIMITATION .. 84

7.1 Discussion .. 84

7.2 Limitations ... 85

CHAPTER 8: CONCLUSION AND FUTURE WORK .. 87

REFERENCES .. 88

x

Figures’ List

FIGURE - 1.1: TRADITIONAL WEB APPLICATION .. 15
FIGURE - 1.2: SINGLE-PAGE APPLICATION ... 16
FIGURE - 1.3: WEB SERVICE USAGE STRUCTURE ... 16
FIGURE - 1.4: LAYER OF ENTITY FRAMEWORK .. 18
FIGURE - 1.5: DECISION CHART FOR ENTITY FRAMEWORK .. 18

FIGURE - 1.6: RESEARCH WORK FLOW .. 21
FIGURE - 1.7: THESIS OUTLINE .. 22
FIGURE - 2.1: SEARCH PROCESS DETAIL .. 28
FIGURE - 3.1: PROPOSED METHODOLOGY .. 37
FIGURE - 3.2: WORKFLOW OF PROPOSED METHODOLOGY ... 38

FIGURE - 3.3: DATA TYPES FOR CLASS DIAGRAM .. 39

FIGURE - 3.4: HTTP VERBS ENUMERATIONS .. 39

FIGURE - 3.5: STRING DB DATA TYPE ENUMERATION ... 40
FIGURE - 3.5: NAVIGATION ENUMERATION .. 40
FIGURE - 3.6: VALIDATION ENUMERATION .. 41
FIGURE - 3.7: FONT ICON ENUMERATION ... 41

FIGURE - 3.8: COLLECTION PLACEMENT ENUMERATION .. 42
FIGURE - 3.8: PROPERTY ATTRIBUTE STEREOTYPE .. 42

FIGURE - 3.9: OPERATION ATTRIBUTE STEREOTYPE .. 45
FIGURE - 3.10: MODEL ATTRIBUTE STEREOTYPE ... 45
FIGURE - 3.11: CLASS ATTRIBUTE STEREOTYPE .. 46

FIGURE - 4.1: ARCHITECTURE OF ANGULAR .. 51
FIGURE - 4.2: TRANSFORMATION ENGINE ARCHITECTURE .. 53

FIGURE - 4.2: TRANSFORMATION ENGINE INPUT MODEL INTERFACE .. 54

FIGURE - 4.3: CODE STRUCTURE OF CODE GENERATOR .. 55

FIGURE - 4.5: MAIN MODULE OF ACCELEO PROJECT .. 55
FIGURE - 4.6: ANGULAR MODULE OF ACCELEO PROJECT ... 56
FIGURE - 4.7: IONIC MODULE OF ACCELEO PROJECT .. 57

FIGURE - 4.8: ASP.NET WEB API MODULE OF ACCELEO PROJECT ... 58
FIGURE - 5.1: CLASS DIAGRAM OF AUDITING SYSTEM WITH APPLIED STEREOTYPES 61

FIGURE - 5.2: FILES STRUCTURE OF ANGULAR’S GENERATED CODE ... 61
FIGURE - 5.3: FILES STRUCTURE OF IONIC’S GENERATED CODE .. 62
FIGURE - 5.4: FILES STRUCTURE OF WEB API’S GENERATED CODE .. 62

FIGURE - 5.5: GENERATED CODE FOR MODEL OF EF CORE ... 63
FIGURE - 5.6: GENERATED CODE FOR CONTEXT OF EF .. 63
FIGURE - 5.7: GENERATED CODE FOR ASP.NET WEB API CONTROLLER 64

FIGURE - 5.8: GENERATED CODE FOR APP.MODULE.TS .. 64

FIGURE - 5.9: GENERATED CODE FOR ANGULAR’S APP.COMPONENT.TS .. 65
FIGURE - 5.10: GENERATED CODE FOR ANGULAR’S APP.COMPONENT.HTML 65
FIGURE - 5.11: GENERATED CODE FOR ANGULAR’S VIEW COMPONENTS – EMPLOYEE 66
FIGURE - 5.12: GENERATED CODE FOR CODE FOR ANGULAR’S COMPONENTS – EMPLOYEE 66
FIGURE - 5.13: GENERATED CODE FOR ANGULAR’S VIEW OF COMPONENTS-LIST – EMPLOYEE.... 67

FIGURE - 5.14: GENERATED CODE FOR CODE OF COMPONENTS-LIST – EMPLOYEE 67
FIGURE - 5.15: GENERATED CODE FOR ANGULAR’S CODE COMPONENTS-LIST – EMPLOYEE 68

FIGURE - 5.16: GENERATED CODE FOR ANGULAR’S MODEL CLASSES – EMPLOYEE 68

xi

FIGURE - 5.17: GENERATED CODE FOR ANGULAR’S SERVICES – EMPLOYEE 69

FIGURE - 5.18: GENERATED CODE FOR IONIC’S VIEW – EMPLOYEE ... 69
FIGURE - 5.19: GENERATED CODE FOR IONIC’S MODULE – EMPLOYEE ... 70
FIGURE - 5.20: GENERATED CODE FOR IONIC’S TYPESCRIPT OF PAGE – EMPLOYEE 70

FIGURE - 5.21: CODE DEPLOYED FOR AUDITING SYSTEM’S WEB API (C#) 71
FIGURE - 5.22: CODE DEPLOYED FOR AUDITING SYSTEM’S ANGULAR CODE 71
FIGURE - 5.23: CODE DEPLOYED FOR AUDITING SYSTEM’S AIONIC CODE 72
FIGURE - 5.24: COMPILING ANGULAR APP ... 72
FIGURE - 5.25: COMPILING IONIC APP .. 73

FIGURE - 5.26: COMPONENT VIEW OF ANGULAR’S WEB APP .. 73
FIGURE - 5.27: COMPONENT LIST VIEW OF ANGULAR’S WEB APP .. 74
FIGURE - 5.28: PAGE VIEW OF IONIC’S HYBRID APP .. 74
FIGURE - 5.29: DISPLAY OF ANGULAR’S APP ... 76

FIGURE - 5.30: CLASS DIAGRAM OF LEXPERT ... 77
FIGURE - 5.31: STRUCTURE OF GENERATED CODE FOR WEB APP (ANGULAR) 78

FIGURE - 5.32: STRUCTURE OF GENERATED CODE FOR HYBRID APP (IONIC) 79
FIGURE - 5.33: STRUCTURE OF GENERATED CODE FOR RESTFUL SERVICE (ASP.NET WEB API) 79

xii

Tables’ List

TABLE 2.1 - SEARCH PROCESS DETAIL .. 26
TABLE 2.2 - EXTRACTION OF DATA & SYNTHESIS ... 30
TABLE 2.3 - INTERMEDIATE RESULTS .. 30
TABLE 4.1 - HTTPVERBS TRANSFORMATION RULE (CRUD) .. 49
TABLE 4.2 - TRANSFORMATION RULES FOR RESTFUL API .. 50

TABLE 4.3 - TRANSFORMATION RULES FOR ANGULAR CODE (WEB APP) 51
TABLE 4.4 - TRANSFORMATION RULES FOR RESTFUL API .. 52
TABLE 5.1 - COMPARISON OF CONVENTIONAL TIME AND MODEL DRIVEN TIME 82

xiii

Annexures’ List

ANNEXURE - A ... 90
ANNEXURE - B ... 91
ANNEXURE - C ... 92
ANNEXURE - D ... 93

14

Chapter 1

Introduction

15

CHAPTER 1: INTRODUCTION

This first chapter delivers a comprehensive introduction of the performed research work which is

categorized in different sections. Section 1.1 presents background study. In Section 1.2 problem

statement is described. Section 1.3 is proposed methodology. Section 1.4 is research contribution

and Section 1.5 represents thesis organization.

1.1 Background Study

The background study introduces the concepts being used in this research which are;

1) Single Page Applications (SPA)

2) ASP.NET WebAPI

3) Entity Framwork Core.

The details of the following are given in subsequent sections.

1.1.1 Single Page Application

Single Page Application is also called SPA, SPA is a web application type when user can

interact with web application then user should feel to work like on desktop applications. Only single

page is loaded in the browser and contents are dynamically rewriting rather than retrieving and

loading of pages from server. Single Page Application (SPA) avoid the interruption caused by

rendering the pages on the server.

Figure - 1.1: Traditional Web Application

Client Server

Initial Request

 HTML

 HTML

Form Post

16

Figure - 1.2: Single-Page Application

1.1.2 ASP.NET WebAPI

ASP.NET API is a framework of .NET for (APIs) web services development. Developers

may create web API using this framework. The client like web browser, mobile devices or desktop

applications can consume the web service. ASP.NET WebAPI have very good support to RESTful

web services. RESTful API is an API (application program interface) which uses HTTP requests

to HTTP verbs like GET, POST, PUT and DELETE. This is useful to define an abstraction on the

top of the software frameworks which allow stakeholders to participate in the design and

development of apps. The structure of the web service is shown in Figure 1.3.

Figure - 1.3: Web Service Usage Structure

Client Server

Initial Request

 HTML

 HTML

 AJAX

https://searchwindevelopment.techtarget.com/definition/HTTP

17

1.1.3 Entity Framework Core

Entity Framework is an ORM (Object Relational Model) released by Microsoft with .NET

3.5 in 2008 [1]. Object Relational Mapper (ORM) is used to implement manipulation of database

using object-oriented programming language. ORM increase the productivity of software

development. Entity Framework is a means of interaction between underlying relational database

and application developed in .NET technologies. EF makes it easy for software engineers to map

database objects with .NET object model (C#, VB, etc.). Before .NET 3.5 the developers were

using ADO.NET for save or retrieve data from underlying database. In .NET framework the

developer can easily execute the queries using LINQ. Classes in the model represents the tables in

database. The underlying database can be generated from model classes of object oriented

programming language and also model classes of object oriented programming language can be

generated from database. Entity Framework is used in the data layer of application as shown in

Figure 1.4.Current version of Entity Framework is EF6. Three approaches of development are

existing in Entity Framework.

1. Model First Approach

2. Code First Approach

3. Database First Approach

In Model First Approach the entities along with concerned relationship and inheritance are

created on design using EDMX. This is a type of model driven approach to design the class

diagram on entity designer. The underlying database is generated from EDMX file and for each

class the table is created in database [2].

In Code First Approach the model classes along with concerned relationship and

inheritance are developed in the code like C# or VB. The underlying database is generated from

the code. The tables are created in database according to classes in code [3].

In Database First Approach the relational database is created first and the entity model is

generated according to the tables in the database.

18

Figure - 1.4: Layer of Entity Framework

When the developer is choosing that what approach of development in Entity framework is needed

then the following flow chart can help the developer to choose the entity framework approach.

Visual

Designer?

Database

Existing?

Yes

Classes

Existing?

Yes

Database First

Model First

Code First

Yes

Yes

No

No

Figure - 1.5: Decision chart for Entity Framework

19

Microsoft has also released the .NET Core 1.0 in 2014 [4]. .NET core is cross platform, open

source platform for developing applications. Currently latest version of .NET Core is 3.0. The

Entity Framework Core (EF Core) was released in June 2016 as an ORM for .NET Core. Same as

EF, the EF Core has LINQ which is a database query language. The productivity of development

increases due to LINQ. .NET core has two development approaches, one is Code First and second

is Database First. Model First approach is not existing in EF Core. In software development

industry the Code First approach has more importance as compared with others. In .NET core the

Model First Approach is not existing so for Model Driven Developer there is double effort one is

to design the system in UML class diagram and second is to code for UML class diagram in C#.

Normally the developers want to apply the rule of less typing, more code.

1.1.4 Model Driven Software Engineering

Model-driven software engineering (MDSE) is a software design approach to abstract the

complexity of development of software systems. It makes the design and development of software

applications simple. This is commonly useful in different domains like web applications,

embedded systems etc. and is used in complex application development. Model Driven approach

uses models as a combination of guidelines which can be used in structuring and organizing design

specifications. This approach creates abstraction layer to separate application and business logic

from platform specific technology. The functionality of system can first be defined as a platform

independent model (PIM). The model which is platform independent, is a type model for a system

which have no any implementation information particular to technology. A platform specific

model is a model of a system that has implementation information particular to technology.

Transformation techniques convert platform independent models that identify the operations of

systems to produce platform specific models that identify the details of how those systems use the

capabilities of their platforms to provide their operations.

The MDA model is related to multiple standards. Among them UML (Unified Modelling

Language) is one of the most powerful language which has been used by many software engineers.

UML provide a standard way to make visualize the design of a software system. UML diagrams

are of two categories, Behavioral UML diagrams and Structural UML diagrams . The diagrams

which represent the structure of the system are structural whereas the diagrams which describes

the functionality of the software system are behavioral. UML conceptual models can be

https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Software_system

20

customized and extended using a UML profile diagram. A profile is a lightweight extension

mechanism to the UML standard.

1.2 Problem Statement

Emerging of technologies is very fast, the developers when receive the UML diagrams

from system analyst, the developer get starting the writing code from scratch. In case of class

diagram the developer have to implement the code for

1) Database tables

2) Server side model classes

3) Client side model classes in typescript or JavaScript

This is a difficult task to write the code on three sides. Writing the same class model in the

different place there may be more chance of error and also time consuming. Due to high end

demand of mobile apps the application owner want the application should be on both mobile and

web app. This is the reason the developing the code for both, hybrid and web app, is a tedious task.

There is a need of model driven methodology to generate code for mobile app, web app and

service. There are some more reason to develop a generator from class diagram to classes of client

side and server side technologies.

Developers are currently lacking modeling tools to generate code of EF Core model, web api

controller and at the same time UI code like angular, react, vue.

1.3 Proposed Methodology

The methodology for the research is systematic which is depicted for the below diagram

given in figure 1.6. The diagram show the steps of systemic research that is performed. First of all

the Systemic Literature review is performed and then the research gap found from literature

review. In research gap the problem is identified. A comprehensive literature is performed for the

problem. The solution for the problem is proposed. The proposed solution of the problem is model

driven scaffolding code generation of CRUD operation for web based applications. UML profile

and stereotypes for different purposes are defined. In the research a tool is developed for

transformation of code from class diagram to underlying technologies. The transformation is

verified by two case studies one is auditing system and other is LEXPERT (Pathology Lab

Management System)

21

Figure - 1.6: Research Work Flow

1.4 Research Contribution

The contribution made in this research work are as follows:

 Defining stereotypes for class diagram of web applications both for server side and Client

side (UI).

 Transformation engine to generate client side (UI) and backend code implementation by

transforming class diagram model to underlying code in Angular, Ionic , ASP.NET Web

API, EF Core. The transformation engine is developed using Acceleo.

 Validation of the proposed work by deploying it to Auditing System and LEXPERT

(Pathology Lab Management System)

1.5 Thesis Organization

Figure 1.7 represent the thesis organization. Chapter 1: Deals with introduction consisting

of background study about the concepts used in research, problem statement, research contribution

Systematic

Literature

Review

Research Gap
Problem

Identification

Problem

Solution

Proposed

Methodology

Implementation

Validation Conclusion Future work

22

and thesis organization. Chapter 2: Comprises of systemic literature review and research gap that

is found in the systematic literature review. Chapter 3: Consist of description of the proposed

methodology for the identified problem. This is a model driven base methodology. Chapter 4:

Describes the implementation of the proposed methodology in detail. The transformation engine

is discussed along with the architecture of the code of transformation engine. Chapter 5: The

validation of proposed methodology is discussed in this chapter. The validation is done by two

case studies. One is Auditing system and other is LEXPERT (Lab Expert, Pathology Lab

Management System). The proposed methodology is validated by these two case studies correctly.

Chapter 6: composed of analysis of proposed work with the previous research work and the

conventional software development. Chapter 7: A brief discussion on the work done is presented

in this chapter. It also contains the limitations in our research. Chapter 8: Concludes the research

and future work for the research is recommended.

Introduction

Chapter 1

Literature

Review

Chapter 2

Proposed

Methodology

Chapter 3

Implementation

Chapter 4

Validation

Chapter 5

Comparative

Analysis

Chapter 6

Discussion

and Limitation

Chapter 7

Conclusion

and Future

Work

Chapter 8

Figure - 1.7: Thesis Outline

23

Chapter 2

Literature Review

24

CHAPTER 2: LITERATURE REVIEW

Research work conducted from 2010 to 2019 in code generation for web application is

described in this chapter. System Literature review is performed in literature review. Out of 27156

papers 15 are selected for literature review. From these papers we find the research gap which also

mentioned in this chapter.

2.1 Literature Review

Context: Model driven code transformation for web is a specialized research area under

Model-Driven Engineering (MDE). So much research is done in this area resulting in an enormous

amount of publications. Objective: A SLR is necessary to give an extensive examination of the

work done in Model code transformation in web applications. Method: A detailed systematic

literature review is conducted on Model driven code transformation with web as a focal point. We

defined different criteria according to our research questions to identify and shortlist a number of

key studies related to our research area. After examining different studies on the basis of our

inclusion/exclusion criteria, we shortlisted 30 publications. Results: Our systematic literature

review show the general status of the essential features of the model driven code transformation

for web and finalized the tool which are needed to develop for the code transformation in web. For

example, related to code transformation in web artifact, it was observed that creating domain

specific languages plays a central role in a lot of model driven web technologies. Conclusion: Our

findings propose that tool is needed to be developed which can generate domain specific code from

class diagram for latest web and hybrid technologies like angular, ionic, react reactjs and vue etc.

2.1.1 Research Questions

1. From 2010 to 2019, what most significant researches have been reported where UML to

code transformation has been utilized.

2. What tools are available for model tool transformation from UML to code

3. Technologies that are used for transformation of UML to code

4. For what domain of software the transformation tools are developed

5. What is the need of developer as transformation tool from UML to Code in web

technologies.

6. Which technology needs more work in MDSE based transformation from UML To Code

25

2.1.2 Inclusion/Exclusion Criteria

A concrete standard needs to be defined to approve and disapprove of a particular research. The

following six criteria are defined to select or reject a research work:

1. Relevance of Subject:

Select only that research work that is pertinent to our research area. We should be able to find the answers to

the research questions that are defined above. Unconcerned research work will be rejected.

2. 2010-2019:

Chosen research work must be published from 2010 to 2019. The research work which is published

before 2010 will be discarded so that to assure the consideration of most current research.

3. Publisher:

Selected Research work will be from following eminent scientific databases

· IEEE

· SPRINGER

· ELSEVIER

· ACM

4. Crucial-effects:

The performed research which is to be chosen must have constructive outcomes with respect to

Model-Driven transformation of UML to Code. Those research work will be discarded which have

no critical results on Model-Driven transformation and UML to Code generation.

5. Results-oriented:

The research work which is to be chosen must be result oriented. That research work which is

verified through weak validation method will be discarded.

6. Repetition:

That research work which is identical in area of Model-Driven transformation, UML to Code

generation then only one of them will be selected and the remaining will be discarded.

26

2.1.3 Search Process

Inclusion/Exclusion criteria which are defined in the section given above, limited our

performed search on some filters. According to conditions we have chosen four databases for

researching the papers to perform Systematic Literature Review. The databases that are chosen

contains high standard conference proceedings and journal. We also get some help from the books,

which are in stock of these databases. The databases which we choose for searching materials are

IEEE, SPRINGER, ELSEVIER and ACM. We apply the filter on the year of publication of the

paper i.e. from 2010 to 2019. In our search process we use operators (AND/OR) that we may get

precise accurate results The result of this process is depicted in Table 2.1.

Table 2.1 - Search Process Detail

Sr.# Search Term Operator Search Result

IEEE Springer Elsevier ACM

1 UML Code Transformation AND 94 2720 4 52

2 Model Driven Code Generation AND 641 6298 19 470

3 Acceleo Transformation AND 8 126 0 1

4 Model Driven Angularjs AND 1 24 0 0

5 Model Driven PHP AND 22 1483 3 7

6 Model Driven Javascript - 32 935 5 46

7 Code from UML AND 463 4361 12 110

8 Model Driven SPA AND 41 373 0 4

9 Model Driven ASP.NET AND 1 103 160 0

10 Model Driven web development AND 465 7662 17 393

https://docs.google.com/document/d/1jP_QFwY_ozaqZ_FqvrIa2TnZ-GKZcGXBjDUPNQklis0/edit#bookmark=kix.z3jgmanlq56a

27

We further narrow our research for getting the most desired material. We perform following steps:

 Some performed search terms are cited and then by defining inclusion/exclusion we come

up with 27156 results.

 After the title seeing and removing duplicates we left out 2322.

 After reading the abstract we feel that 1075 researches are not satisfying our scope of

research. So we discard those 15234 researches.

 We discard 634 papers after going through the overview of papers.

 201 papers are rejected on the basis of general study.

 Full text was not available for 56 papers, so we discard those papers.

 There were about 34 researches which were eBooks and webpages. We discard 34

researches.

· On the detailed study of remaining papers we finalized 150 papers which are related to our

preferred study. The remaining are rejected. So at the end we have 150 papers remaining, from

which we are performing our SLR on 15 papers. This complete process is shown in Figure 2.1.

https://docs.google.com/document/d/1zxyiLlqLRcuv5jwoLZA0JG_KWhsPppBb3RyBLM7Oipw/edit#bookmark=id.k4e4pqnatsg6

28

Figure - 2.1: Search Process Detail

29

2.1.4 Quality Assessment

The quality of studies is important to be assessed likewise inclusion/exclusion criteria:

 A methodical inclusion/exclusion criteria still needs to be provided

 Variations of study results needs to be validated

 The effectiveness of individual studies needs to be weighted when outcomes are

incorporated

 To control the understanding of discoveries and check the quality of deductions.

 The understanding of results needs to be controlled and the quality of derivations needs to

be checked

 Further research analysis needs to be guided

2.1.5 Data extraction & Synthesis

The objective of this subject is to propose a tenet for systematic reviews acceptable for model

driven software engineering research worker. A scientific research may suggest after the evaluation

of all the present accessible studies that is applicable to a selected research question or the selected

topic or area of interest for development. The objective of the systematic review is to display a good

analysis of the topic of study by employing a procedure that is dependable, detailed and auditable.

The guideline has been custom-made to replicate the particular issues of software engineering

research. It doesn't consider the effect of inquiry sort on the audit techniques, nor will it determine

personally systems required to attempt meta-examination. The extraction of data & synthesis is

given in Table 2.2

30

Table 2.2 - Extraction of Data & Synthesis

Sr.# Title Description

a Record Information The information that contains Title of research, author, year of

publication, the details of publisher and research type (whether it

is journal or conference)

b Overview The fundamental proposition and target of the research work that

is selected

c Outcome Outcome of the research

d Data gathering The data collected is qualitative or quantitative

e Presumption To prove outcomes, some presumptions are defined

f Validations Approval strategy to accept the proposition

2.1.6 Actual Data Extraction – Intermediate Results

 We found 135 researches related to our point of interest. Among these researches we

perform our SLR on 15 researches. The general overview of these selected researches is given

in Table 2.3.

 Table 2.3 - Intermediate Results

1 Wutthichai

Chansuwath [5]

In this paper a UML profile and transformation tool is developed

for AngularJS application. This tool is for the use of system

architect/analyst. The tool generate the templates for the developer

to make the application development fast. If the system analyst is

not aware of angular then this will be difficult for the him/her to use

the developed profile.

https://docs.google.com/document/d/1zxyiLlqLRcuv5jwoLZA0JG_KWhsPppBb3RyBLM7Oipw/edit#bookmark=id.764nt71owdxw

31

2 Hanane BENOUDA.

[6]

In this paper a tool is discussed which is developed by Author. The

tool is generating the code from class diagram using acceleo.

Mainly the CRUD operations are implemented. The tool is

generating code for cross platform mobile apps. This work can be

enhanced for other mobile applications like android or iOS.

3 Sarra Roubi [7] This paper is discussing the model driven approach for RIA

application using IFML(Interaction Flow Modeling Language).

Authors have defined metamodel for RIA and also developed the

transformation tool.

4 Sarra Roubi [8] The authors have published paper in 2015 for RIA. Here the author

has discussed the approach for RIA MVC. They have defined

metamodels and developed the generating tool. They have

suggested to include more components in the future

5 Salvador Martinez et.

al [9]

In the paper the suite WebRatio is discussed which is developed by

authors for generating code for mobile applications. The tool is

generating the code for Apache Cordova framework

6 Kriengkri

Pongpanjanthra [10]

A tool is discussed in this paper developed in StarUML generating

the UI of web portal from class diagram of navigation of web site.

Angular is used as front end technology for generating UI.

Functional requirements are not implemented here in this tool. This

tool is just generating the UI of site with navigation functionality.

7 Jose Luis Herrero

Agustin [11]

In this paper a model driven architecture for web application

development is proposed. In this proposed method the focus is on

ajax tools. WCF which .NET technology for web service is focused

for backend code generation. A profile is developed with web

domain.

32

8 Siti Azreena Mubin.

[12]

In this paper a design mode called UEWDM (UML-Extension

Web Design Model) is proposed for the development of web

application. UEWDM is extension of existing web design model.

The focus of proposed designed model is on association and

relationship. In three main stages the proposed design model is

divided, namely navigational design, conceptual design and user

interface design.

9 Tomas Cerny [13] In this paper three profiles are designed for the web application

which target the technologies like JPA, Hibernate. The profiles are

for class diagram. The future work is suggested to do this same

work for the advanced technologies

10 Nilber Vittorazzi

Almeida [14]

In this paper a code generation tool is presented which transform

code from FramWeb to CSharp code. The CRUD features are

generate for CSharp code in this tool.

11 Aljendro Cortines

[15]

In this paper a web based development tool is proposed which can

generate code using the agile methodology. And whenever changes

are made to the model those changes are also replicate on code also.

Future work is suggested to do the same work for modern

framework of web technologies

12 Zuriel Morales [16] In this paper a tool is discussed which is developed by authors. In

the tool the web application code is generated from model of web

for PHP technology. In the model the archetiche can place the

entities of Form, input etc

13 Piero Fraternali [17] In this paper Model driven approach for the web development is

propsoed which insteam of WEBML. The tool is for RIAs which

generate code from class diagram to java base mvc. View is

generate in LZX

33

14 Rober Rodriguez-

Echeverria [18]

The tool AutoCRUD developed by the authors is presented in this

paper. AutoCRUD is for webRatio which generate CRUD

operations in IFML (Interacting Flow Modeling Language). For

future work two things are suggested (1) enhancing the register

functionality to provide pattern-based IFML (2) From pre-existing

IFML model register patters

15 Sofia Larissa da

Costa [19]

In this paper the authors describe the designed Stereotype for UI to

improve the development of Web Portals by using model driven

approach to build the UI (User Interaction) for Web applications.

The proposed UI Stereotype for Web Portals, can generate different

Web portals with the same intention and from a common set of

metamodels, fostering reuse in UI Engineering.

2.2 Research Gaps

This section discusses the research gaps from the literature review. After analyzing the

above literature, it has been observed that many researches have worked on transformation of code

from models but we found that there is a very limited work to transform code from class diagram

to its specific technology [9, 10, 11]. The transformation from class diagram that is done is for old

technologies and also only for client side or server side technologies. Now a day in market SPA

(Single Page Application) is cry of the day in web development applications. Latest technologies

like Angular, React, vue etc. are emerged for Single Page Applications.

Wutthichai Chansuwath [1] has worked on transformation to angular but in this paper the author

has build profiles for parts of angular application. In this like activity this is a tedious task for the

System Analyst to make the diagram. There is a need if the Analyst to develop the methodology

where is system analyst is not aware of underlying technologies and the class diagram is build up,

after that the developer transform the class diagram to the scaffolding code of CRUD operations

in many technologies like angular, react, vue and server side technologies like ASP.NET Web API

and Entity Framework.

34

We also find that in Framework which have three famous approaches. One is Code First approach,

second is Database first approach and thirst is Model (EDMX) first approach. Entity framework

core is an Object Relational Mapper ORM in .NET core in which this is appreciated to follow the

code first approach although database first approach is also existing, but model (EDMX) first

approach is not existing in Entity Framework core. In code first approach which is highly

recommended, the code writing is a time consuming task. So in there is need of a methodology to

be developed for transformation of class diagram to Entity Framework classes.

35

Chapter 3

Proposed Methodology

36

CHAPTER 3: PROPOSED METHODOLOGY

As we have discussed that developing web applications in software industry is growing to

Single Page Application (SPA). Angular, React and Vue are well known client side technologes

technologies for SPA (Single Page Application). System Analyst build up class diagram for the

system.

As we discussed that software industry is growing towards Single Page Application

development (SPA) in web technologies. Developing such applications need two side development

one is client side and other is server side. It means that there will be entities models on both sides,

server side and client side. This chapter described our proposed methodology for the resolving the

issue discussed in the research gap.

In UML, a profile provides a light-weight generic extension mechanism that UML models

may be customized for particular platforms and domains. which are based on various elements:

Stereotypes (allow you to increase UML vocabulary) , Tag values(used to extend the UML

properties so that we can add additional information in the specification of a model element) and

Constraints(to specify conditions that must be held true at all time). These all are applied to

specific element of model such as Classes, Operations, Attributes, Activities etc.

3.1 Description

In our proposed methodology the system analyst has to design the class diagram by

applying the designed stereotypes and the software developer will generate the client side and

server side code will be generated for multiple technologies of Web UI and Mobile applications.

The code generate from the class diagram is the scaffolding of CRUD operations for client side

and server side. The developer can easily change the code after getting the scaffolding. When the

system analyst build up the class diagram for software developers then the developer will

transform the Class diagram to code of underlying technologies like Angular, Ionic, React and

React Native. The specialty of our proposed methodology is that the code generated is for both

web and mobile application. The code transformer is written in ACCELEO which is tool of eclipse.

Our proposed methodology is depicted in the Figure 3.1.

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Domain_model

37

C# EF Core

Model Classes

ASP.NET Web

API Controllers

Angular Ionic

React Native

Angular

ReactJS

Service

code

Mobile’s

Hybrid app

Web App

Meta model

RESTful Service

Templates

Hybrid app Templates

Web app Templates

Figure - 3.1: Proposed Methodology

Our proposed methodology is developed in Unified Modeling Language tool Papyrus

based on Eclipse. Our proposed profile provides stereotypes to properties of the class diagram

from where both server side and client side code is to be generated. These stereotypes are the

extensions of UML meta-classes and it provide support to modeling using multiple UML

diagrams. In our proposed methodology we have focused to make the profile very simple and easy

that new user can use the profile very easily and have no hurdles to apply the stereotypes of profiles

to the class diagram. The detail of stereotypes is described in this chapter.

On client side we have focused technologies like Angular, Ionic, React and vuejs and on

server side we have focused the C# with ASP.NET WebAPI core and Entity Framework Core. In

our proposed methodology we have create some data types according to the data types of C#.

These data types are described in this chapter. We have create a structure of stereotypes related to

Application Structure are defined. The details of each of the stereotype along with its functionality

is discussed in the sub section. Transformation rules are defined for model to text transformation.

We have focused to make it so much easy for the system analyst to create the class diagram as per

the profile defined. The workflow of proposed methodology is shown in Figure 3.2.

38

Figure - 3.2: Workflow of Proposed Methodology

2.3 Data types

As discussed that we are targeting multiple technologies to generate code for. The data types of

C# are more from other concerned technologies so we focused on the C# to designee the data types

in the model. We designed the data types like Int32, byte, sbyte, short, ushort, int, uint, long, ulong,

float, double, decimal, char, bool, string and DateTime. The C# data types are chosen for modeling

because C# has more data types than other so we can easily implement the transformation for

other technologies. The data types designed I given in the Figure 3.3.

Launcher Tool

System Analyst
Develop

UML Model

System Modeler
Import UML Model

Transformation Engine

Applying Corresponding

Stereotypes

Insert value for attributes of

stereotypes

Class Diagram

Develop

Instance Model

Profiled Instance

Model

Eclipse Papyrus

Project

UML Model

RESTful Service (ASP.NET

WEB API)

Web App Code (Angular)

Hybrid App Code (Ionic)

Generated

Code

Files

39

Figure - 3.3: Data Types for Class Diagram

2.4 Enumerations

As we need enumeration in our model for stereotype, so the enumerations designed in our

proposed methodology is described one by one on this section.

2.4.1 HttpVerbsEnum

HttpVerbsEnum is for the action method of CRUD operation. This is to be applied to the

MetaClass of operation. The Enumeration is given in the Figure 3.4.

Figure - 3.4: Http Verbs Enumerations

40

2.4.2 StringDVDataTypeEnum

“StringDBTypeEnum” is the enumeration of list of database string data types. This is to be

applied the MetaClass of Property for the string data types. This is to specify for database that

what string data types should be in the database. The Enumeration is given in the Figure3.5.

Figure - 3.5: String DB Data Type Enumeration

2.4.3 NavigationEnum

In our UI the navigation panel is to set on left, right or top side. The navigation placement is

possible by “NavigationEnum” Enumeration. The “NaviagationEnum” is to be applied to

MetaClass of Property. The Enumeration is given in the Figure 3.5.

Figure - 3.5: Navigation Enumeration

2.4.4 StringValidationEnum

Normally in the applications the fields have validation like email, URL, onlyalphabets etc.

The validation means that the useer can enter data with some specific restriction otherwise the data

entered will not be acceptable. So for this purpose we have designed the enumeration

41

“StringValidationEnum”. The “StringValidationEnum” is to be applied to MetaClass of Property.

The Enumeration is given in the Figure 3.6.

Figure - 3.6: Validation Enumeration

2.4.5 FontIconEnum

In the UI we are applying the font icon to each field for that purpose the “FontIconEnum” is

designed. The “FontIconEnum” is to be applied to MetaClass of Property. The Enumeration is

given in the Figure 3.7.

Figure - 3.7: Font Icon Enumeration

42

2.4.6 CollectionPlacementEnum

In the Web UI the tabular collection of objects is to be placed with editor page or separate

page, for this purpose the “CollectionPlacementEnum” enumeration is designed. The

“CollectionPlacementEnum” is to be applied to MetaClass of Property. The Enumeration is given

in the Figure 3.8.

Figure - 3.8: Collection Placement Enumeration

2.5 Stereotypes

The stereotypes of UML model designed in our proposed methodology is discussed one by one in

given below sections. The diagram of stereotypes is shown in

Figure - 3.8: Property Attribute Stereotype

43

2.5.1 PropertyAttributes

The “PropertyAttributes” stereotype defined is of Meta-Class property. The

“PropertyAttributes” stereotype is given in Figure 3.8. The properties in “PropertyAttributes” are

discussed below

 Placeholder: In the UI of application, placeholder is used for the helping text inside

the control. By this property the system analyst can write the placeholder for a field of

class. “Placeholder” is of type string.

 FontIcon: In the UI of application there is an option to show the font icon with each

field of class. “FontIcon” is used for this purpose. “FontIcon” if of enumeration type.

 ToolTip: “ToolTip” is for the purpose of showing tip for the user of control. In the UI

to show the tip the text is to be set in this property of stereotype.

 IsRequired: “IsRequired” is for the purpose of required validation. Which this property

of stereotype is checked it means that user will enter this value otherwise the form will

not be submitted.

“PropertyAttributes” has four sub inherited stereotypes, named “StringTypeAttributes”

and “IntegerTypeAttribte”, “DateTypeAttribute”, “IDAttribute”. Each of these is discussed below

in detail

2.5.2 StringTypeAttributes

“StringTypeAttributes” stereotype is inherited from “PropertyAttributes”. The properties

of “StringTypeAttributes” is discussed in detail below

 DBType: “DBType” is of type “StringDBDataTypeEnum” enumeration. This for the

purpose of specifying the string fields of the class for database. When the C# code to

generate for Entity Framework core there is need for string data types to be specified

for according to database. In out methodology we are focusing on SQL Server database.

 MinimumLenght: This is for specifying the minimum length of string type. This

property is of integer type.

 MaximumLength : This is for specifying the maximum length of string type. This

property is of integer type.

44

 IsRepresentative : In the UI the collection of items is to be shown in dropdown, list or

radio buttons. To show objects in collection one field need to display for each item. For

that purpose we have include the property “IsRpresentative” in the

“PropertyAttributes”. This is of type Boolean, means that this can be set true or false.

 Validator: This property of stereotype is for the validation of controls. Validation can

be email, URL, onlyalphabets or any other thing. Validator is of type

“StringValidatorEnum” enumeration.

2.5.3 IntegerTypeAttributes

“IntegerTypeAttributes” stereotype is inherited from PropertyAttributes. The properties of

“IntegerTypeAttributes” is discussed in detail below

 Minimum: This is for specifying the minimum of integer type. This property is of

integer type.

 Maximum: This is for specifying the maximum of integer type. This property is of

integer type.

2.5.4 DateTypeAttributes

“DateTypeAttributes” stereotype is inherited from PropertyAttributes. The properties of

“DateTypeAttributes” is discussed in detail below

 DateFormat: For the developer this is required to give the format of date. This is

possible from this property of “DateTypeAttribute”

2.5.5 IDAttributes

 “IDAttributes” stereotype is inherited from PropertyAttributes. The properties of IDAttributes is discussed

in detail below

 IsID: “IsID” show that the field to which the stereotype is applied is to be ID (key)

field of the class.

2.5.6 OperationAttributes

“OperationAttributes” stereotype is of type meta-class Operation. This is for the operation class diagram.

The model of OperationAttributes is given in the figure.

45

Figure - 3.9: Operation Attribute Stereotype

The detail of “Operationattribute” is discussed below.

 HttpVerb: “Httpverb” is property of type “HttpVerbsEnum” enumeration type. For

specifying the operation in the CRUD operation this stereotype can be used.

2.5.7 ModelAttributes

 “ModelAttributes” stereotype is of type meta-class Model. This for the Model of the diagram. The model of

“ModelAttributes” is given in the figure.

Figure - 3.10: Model Attribute Stereotype

46

The detail of ModelAttributes is given discussed below

 NavigationAllocation: This property of stereotype “NavigationAllocation” is of

type “NavigationEnum” enumeration. One can set the Navigation panel

placement in UI by left or top.

 Namespace: This property of stereotype Namespace is of type string type. One

can write the namespace of application by using this stereotype.

 WebServiceUrl: The code generator is generating code for web API (web

service). To consume that web service in UI, the web service URL is to be

mentioned in this property of stereotype.

2.5.1 ClassAttributes

“ClassAttributes” stereotype is of type meta-class Class. This for the Class of the diagram.

The model of “ClassAttributes” is given in the figure.

Figure - 3.11: Class Attribute Stereotype

The detail of ClassAttributes is given discussed below

47

 IsCollectionOnSamePage: This property of stereotype

“IsCollectionOnSamePage” is of type CollectionPlacementEnum enumeration. On

UI the tabular collection of the objects is to be placed in the same of page of editor

or different page. This is possible by applying this stereotype.

 IsAutoCompleteForm: This property of stereotype “IsAutoCompleteForm” is of

type Boolean. On UI when the user enter some data in the fields next time the field

can be auto populated by writing the first character of the previous data. This is

called autocomplete. In our methodology this is possible by

“IsAutoCompleteForm” property of stereotype.

48

Chapter 4

Implementation

49

CHAPTER 4: IMPLEMENTATION

The implementation of our proposed methodology is discussed in detail in this chapter.

Papyrus modeling editor is used for modeling. Acceleo is used for the transformation from model

to text. The transformation engine transform the class diagram to Service side code like ASP.NET

Web API, Web App code like Angular and Hybrid App Code like Ionic.

4.1 Web API Transformation

For web API the class diagram is transformed to C#. This is done for the controllers of

web API and model classes of Entity Framework core.

4.1.1 Controllers

The controllers is the concept of MVC where the action methods are existing to respond in

to the action coming from view. The controller concept is also implemented in the ASP.NET Web

API. In Web API the action methods are according to the Http Verbs (GET, POST, PUT, and

DELETE) which is CRUD operation.

In our implementation we have generate controller for each class in the class diagram inside

the folder named Controllers on the root of project. The code for action methods of CRUD

operation is generated according to the “OperationAttributes” which is stereotype of meta-class

operation. The action methods of controller are beautified by HTTP verbs annotation. Table 4.1

show the implementation of HTTP verbs.

Table 4.1 - HttpVerbs transformation rule (CRUD)

No. HttpVerbsEnum HTTP Verbs C# annotation

1. Create POST [HttpPost]

2. Read GET [HttpGet]

3. Read GET [HttpGet(“{id}”]

4. Update PUT [HttpPut(“{id}”]

5. Delete DELETE [HttpDelete“{id}”]

Two action methods are generating for the GET HTTP Verb. One is without parameters which is

for retrieving all the record from database and other is with parameter of id of the class which is

50

for reserving of one record of specific id. All other action methods are according to the rules of

controller of ASP.NET Web API.

4.1.1 Models

Our methodology is generating server side model class code in C# for Entity Framework.

As we have discussed that Entity Framework Core and Entity Framework 7 have no features of

EDMX (A modeling tool in visual studio). We are transforming the class diagram to C# model

classes focusing on Entity Framework Core but this can also work for Entity Framework 7. From

these model classes the database tables is to be generated by using command Add-Migration and

Update-Database. For each class in diagram class is to be generated in C#. Implementation rules

are described in the following Table 4.2.

Table 4.2 - Transformation rules for RESTful API

No

.
Category Language Generated File Naming Generated File Path

UML

1 API Controller C# Class name + “Controller.cs” WebAPI/Controller
Class

2 EF Model Class C# Class name + “.cs” WebAPI/Model

3 Conext C# Model name + “Context.cs” WebAPI/Model Model

4.2 Web App Transformation

Transformation of UI for Web App is done for angular 8. As discussed the code for angular

8 is in typescript. In our transformation engine the code is generated with best architecture

approach of UI angular. On HTML side the reactive form approach code is generating in our code

generator. We have adopted the three layer architecture on the UI side code. Services are generated

which communicate with the Web API. The data retrieval and data sending is possible by services.

Classes on typescript are generated according to the class diagram. The architecture of the Angular

is depicted in Figure 4.1

51

Figure - 4.1: Architecture of Angular

The file types that we are generating by our code generator is listed below

 Model classes

 Services

 View App Component

 Code App Component

 Module

 View Component

 Code Component

 View Component-List

 Code Component-List

The class are generated according to the classes in the model of class diagram. The description of

transformation rules for angular’s web app are described in Table 4.3.

Table 4.3 - Transformation rules for Angular code (Web App)

No

.
Category Language Generated File Naming Generated File Path

UML

1 App Module Typescript app.Module.ts

Angular/App/

Model

2 App Routing Typescript routing.module.ts

3 AppComponent
HTML app.Component.html

TypeScript app.Component.ts

4 Inerface TypeScript Class name + “model.ts”
Angular/App/shared/

Class

5 Service TypeScript Class name + “.service.ts”

6 Component HTML Classname +“.component.html”

“Angular/App/” +class name

+”s/”+ class name

7 Component Typescript Class name + “.component.ts”

8 Component List
HTML Class name + “.component-List.html”

Typescript Class name + “.component-List.ts”

52

4.2 Hybrid App Transformation

Transformation of hybrid App is done for Ionic. In our transformation engine the code is generated

with best architecture approach of Ionic. We have adopted the three layer architecture on the UI

side code. Services are generated which communicate with the Web API. The data retrieval and

data sending is possible by services. Classes on typescript are generated according to the class

diagram. The transformation rules of hybrid app in ionic is given in Table 4.4.

Table 4.4 - Transformation rules for RESTful API

No

.

Category Language Generated File Naming Generated File Path

UML

1 App Module Typescript “app.module.ts”

Ionic/App/

Model

2 App Routing Typescript “app-routing.module.ts”

3 App Component
HTML “app.Component.html”

TypeScript “app.Component.ts”

4 Inerface TypeScript Class name + “model.ts” Ionic/App/ Model/

Class

5 Service TypeScript Class name + “service.ts” Ionic /App/Servies/

6 Page

HTML Class name + “.page.html”

Ionic/App/ +Class name+”s/”

TypeScript Class name + “.page.ts”

TypeScript Class name + “.module.ts”

7 List Page

HTML Class name + “-list.page.html”

Ionic/App/ +Class name+”s/”

TypeScript Class name + “-list.page.ts”

TypeScript Class name + “-list.module.ts”

4.3 Transformation Engine Architecture

The architecture of the transformation engine is shown in Figure 4.2. The tool used for model to

text transformation is Acceleo. There transformation engine comprises of two main components

i.e. User Interface (UI) and Acceleo transformation.

53

Figure - 4.2: Transformation Engine Architecture

Main Interface: The main interface of the transformation engine consists of three main sub-

components which are WinMain, Main Screen, Launcher and Text Refiner. The main executor of

the transformation engine is Main Screen which provide list of actions it can perform and provide

graphical user interface with help of buttons and text field. The java classes which implement these

functionalities are Launch and WinMain. Text Refiner is a java class that convert the strings into

proper format for further use. The interface for transformation engine is provide in Figure 8.

Transformation Engine takes the UML model and path of output folder for generating the code

from model using the browse button. Generate button is provided to generate the required outputs.

Console shows the progress of the transformation process. A Reset is provided to clear all fields

i.e. input model path, output folder path and console. Close button is provided to closes the

interface from the screen.

54

Figure - 4.2: Transformation Engine Input Model Interface

4.3 Acceleo Code

The code structure of acceleo project is organized according to the target code. As the generator

is generating the code for angular web app, ionic hybrid app and ASP.NET web API, we have

organized the code structure according to the target code. The code structure and all the code of

angular web app, ionic hybrid app and ASP.NET Web API are shown in Figures 4.3. The main

module of the acceleo code is calling all the sub modules like angular, ionic and web api. The code

of main module of acceleo project is shown in Figure 4.5. The code for generating of angular’s

web app is shown in Figure 4.6. The code for generating ionic app is shown in Figure 4.7 and the

code for RESTful service is show in Figure 4.8.

55

Figure - 4.3: Code structure of code generator

Figure - 4.5: Main module of Acceleo Project

56

Figure - 4.6: Angular module of Acceleo Project

57

Figure - 4.7: Ionic module of Acceleo Project

58

Figure - 4.8: ASP.NET Web API module of Acceleo Project

59

Chapter 5

Validation and verification

60

CHAPTER 5: VALIDATION

After implementing a proposed methodology, validation is an important step in the field of

research and especially in Model Driven Software Engineering. In this section the proposed and

implemented methodology is discussed in detail. We have validated our proposed methodology

by two case studies. One is Auditing System discussed in Section 5.1 and other is LEXPERT (Lab

Expert which is Pathology lab Management System) discussed in Section 5.2.

5.1 Auditing System – A Case Study

Auditing System is the web based application for entering the data of audit performed by

auditor. This is a small application already developed in ASP.NET Core. We choose this as best

case study for our proposed methodology. This case study is divided into four sections. Firstly, the

requirements of the real time chat application are discussed in Section 5.1.1. Secondly, Section

5.1.2 contains the UML class diagram applied profile to present the system architecture of the

required system. Section 5.1.3 shows the transformation results in the form of generated code.

And finally, Section 5.1.4 contains verification of the system.

5.1.1 Requirements of Auditing System

This system is for keeping the record of auditing that is auditing for a company. The

fuctional requirements for this system are given below

 There should be many auditing companies.

 One auditor can do job only in one company

 There should be many employees in one company

 Auditing of client company can be done by only one company

 The user could create, read, update and delete auditing company

 The user could create, read, update and delete auditing employee

 The user could create, read, update and delete auditing client

 The user could create, read, update and delete auditing audit

5.1.2 Modeling

 The class diagram of auditing system is designed and the designed profile and data types are

applied. The class diagram after applying the profile is show in Figure 5.1.

61

Figure - 5.1: Class diagram of Auditing System with applied stereotypes

5.1.3 Code Generation

This section highlights the code generation process from our proposed transformation engine.

Required input for the transformation is Class diagram which is UML model with extension .uml.

UML model with .uml extension is selected as input model and target folder on is provided as

output folder for generated code files. Code is generated for ASP.NET Web API, Angular and

Ionic. The structures of generated files are shown in the Figure 5.2, 5.3 and 5.4. The generated

code is show in Figures 5.5 to 5.17

Figure - 5.2: Files Structure of Angular’s Generated Code

62

Figure - 5.3: Files Structure of Ionic’s Generated Code

Figure - 5.4: Files Structure of Web API’s Generated Code

63

Figure - 5.5: Generated Code for Model of EF Core

Figure - 5.6: Generated Code for Context of EF

64

Figure - 5.7: Generated Code for ASP.NET Web API Controller

Figure - 5.8: Generated Code for app.module.ts

65

Figure - 5.9: Generated Code for Angular’s app.component.ts

Figure - 5.10: Generated Code for Angular’s app.component.html

66

Figure - 5.11: Generated Code for Angular’s View Components – Employee

Figure - 5.12: Generated Code for Code for Angular’s Components – Employee

67

Figure - 5.13: Generated Code for Angular’s View of Components-List – Employee

Figure - 5.14: Generated Code for Code of Components-List – Employee

68

Figure - 5.15: Generated Code for Angular’s Code Components-List – Employee

Figure - 5.16: Generated Code for Angular’s Model Classes – Employee

69

Figure - 5.17: Generated Code for Angular’s Services – Employee

Figure - 5.18: Generated Code for Ionic’s View – Employee

70

Figure - 5.19: Generated Code for Ionic’s Module – Employee

Figure - 5.20: Generated Code for Ionic’s Typescript of page – Employee

71

5.1.4 Verification

For verification of generated code, its compilation and execution are necessary. Therefore, we

deploy this code in angular application. We created an angular application and pasted our

generated code accordingly. The code and generated output are shown in Figures 5.21 – 5.28.

Figure - 5.21: Code Deployed for Auditing System’s Web API (C#)

Figure - 5.22: Code Deployed for Auditing System’s Angular code

72

Figure - 5.23: Code Deployed for Auditing System’s Aionic code

Figure - 5.24: Compiling Angular app

73

Figure - 5.25: Compiling Ionic app

Figure - 5.26: Component View of Angular’s Web App

74

Figure - 5.27: Component List View of Angular’s Web App

Figure - 5.28: Page View of Ionic’s Hybrid App

75

5.1.2 Conventional VS Proposed methodology

The conventional development is taking more time than developing through model driven

methodology that we have proposed. This reduce the initial development time, improve the level

of abstraction and improve the quality of application. The development of same domain

application on mobile and web need minimum three skills, experience in hybrid app development

(ionic), experience in web app development (angular) and experience in web service development

(ASP.NET Web API).

For comparison of the proposed methodology with conventional method we have chosen 12

developers and divide with four groups. Each group had three developer with different skills. On

developer of Ionic, one of angular and one of asp.net Web API are chosen in each group. The

developers have develop the hybrid app, web app and RESTful service by conventional and model

driven methodology. The comparison of development time is shown in the table 1. We found that

model driven methodology is more than 5 times more time saving.

5.2 LEXPERT (Lab Expert)

LEXPERT (Lab Expert) is a pathology Lab Management System that is developed in WPF

with WCF service and already available in market. We select LEXPERT as our case study in our

proposed methodology for generating scaffolding CRUD code for web and mobile applications.

The case study is divided into four sections. Firstly, the requirements of LEXPERT application are

discussed in Section 5.2.1. Secondly, Section 5.2.2 contains the UML class diagram with applied

profile to present the system architecture of the required system. Furthermore, Section 5.2.3 shows

the transformation results in the form of generated code.

5.2.1 Requirements

This part gives the detailed description of the functional and non-functional requirements proposed

by the client. The purpose of this project is to provide a friendly environment to maintain the record

of patients and their performed tests and to generate reports. The main purpose of this project is to

observe cash inflow. Requirements that we have gather are divided in the following categories.

76

Create, Read, Update and Delete Patient

The user can apply CRUD operations on patient records in user friendly mode.

Create, Read, Update Lab

Lab consist of many tests. The user can Create, Read and update Lab operations on patient

records in user friendly mode.

Create, Read, Update Lab

Lab consist of many tests. The user can Create, Read and update Lab operations on patient

records in user friendly mode.

Create, Read, Update Test

Apply CRUD operation on Test

Create, Read, Update Doctor

Apply CRUD operation on Doctor

Create, Read, Update Panel

Apply CRUD operation on panel

Create, Read, Update Employee

Apply CRUD operation on Employee

Work flow can be best understand by the following diagram

Figure - 5.29: Display of Angular’s app

77

5.2.2 Modeling

The class diagram of the LEXPERT is designed and the developed stereotypes are

applied with the required values. The class diagram of LEXPERT is shown in Figure 5.30

Figure - 5.30: Class diagram of LEXPERT

78

5.2.3 Code Generation

As the code generated for the Auditing system, in the same way the code is generated for

RESTful server (ASP.NET Web API), Web app (Angular) and Hybrid app (Ionic). The code

structures for web app (Angular), Hybrid app (Ionic) and Web API are shown in Figures 5.31,

5.32 and 5.33.

Figure - 5.31: Structure of Generated Code for Web App (Angular)

79

Figure - 5.32: Structure of Generated Code for Hybrid App (Ionic)

Figure - 5.33: Structure of Generated Code for RESTful Service (ASP.NET Web API)

80

Chapter 6

Comparative Analysis

81

CHAPTER 6: COMPARATIVE ANALYSIS

The previous chapter deals with the implementation and validation aspects of the proposed

work. The proposed framework presents the modeling of software system into class diagram by

applying the defined profile at higher abstraction level. To model the concepts of system Unified

Modeling Language (UML) profile is proposed and transformation of model into code has been

carried out using transformation engine for implementation purpose. Our proposed approach

provided a major contribution in the field of model driven engineering. Our proposed methodology

is more efficient than conventional one.

6.1 Comparison

For comparison we selected 12 developers and divide in four group, with three developer in

each group. In each group the three developers selected with different skills (ASP.NET, Ionic,

Angular). The time for conventional development and the time by our proposed methodology is

noted for comparison. After comparison we found that our proposed methodology is five times

more efficient than conventional one. This section discusses the comparison of conventional

development with our proposed solution.

The Auditing system is selected for validation of our proposed methodology. The 12

developers have developed the auditing system in four groups conventionally and the time for each

developer is noted. In each group one developer have skills of developing in .NET, Second

developer have skills of developing web app in angular and third developer have skills of

developing in mobile app in ionic. After noting the time of every single developer in each group

the total time is calculated.

In the second phase the Auditing system is developed by four groups by our proposed model

driven methodology. In this methodology the time calculation is different from that of

conventional. As the developers had no skills in model driven development, so we have trained

the developers on our proposed methodology. The time of training is also considered in calculation

of time. The post processing time is also considered in calculation of time. The time of training,

time of modeling, and time post processing is added and for each group and total time is calculated.

In final the average time of conventional and model driven development is calculated and from

that data we found that our proposed methodology is more than five time efficient than

82

conventional development. The detail of develops’ work shown in Annexures A, B, C and D.

The comparison performed is shown in Table 5.

Table 5.1 - Comparison of conventional time and model driven time

No. Category Experience

Conventional

Method
Model Driven Method

Application
Time

(hours)
Total Training Modeling

Post

Processing
Total

G
ro

u
p

 1
 1 Developer1 7 1.5

121.5

3

3

0.5

21

RESTful Service in
ASP.NET Core

2 Developer2 9 40 3 3 Web App in Angular

3 Developer3 4 80 3.5 5
Hybrid Mobile App in

Ionic

G
ro

u
p

 2
 1 Developer1 17 2

78

3

2.5

0.5

17

RESTful Service in
ASP.NET Core

2 Developer2 4 36 3 2.5 Web App in Angular

3 Developer3 6 40 2.5 3
Hybrid Mobile App in

Ionic

G
ro

u
p

 3

1 Developer1 15 1.5

105.5

2

2

0.5

15.5

RESTful Service in
ASP.NET Core

2 Developer2 3 54 3 3 Web App in Angular

3 Developer3 8 50 2.5 2.5
Hybrid Mobile App in

Ionic

G
ro

u
p

 4
 1 Developer1 9 1.5

92.5

2

2.5

0.5

17.35

RESTful Service in
ASP.NET Core

2 Developer2 12 55 2.5 4 Web App in Angular

3 Developer3 15 36 2.5 3.5
Hybrid Mobile App in

Ionic

 Average

99.4

17.7

The Model driven methodology is 5.6 times more efficient than coneventional. 99.4/17.7 = 5.6

83

Chapter 7

Discussion along with Limitation

84

CHAPTER 7: DISCUSSION WITH LIMITATION

This section is divided into two sub sections. A detailed discussion on the proposed research

work is described in Section 7.1. Section 7.2 deals with the limitation of the research.

7.1 Discussion

Due to rapid growth in the use of mobile apps, the software owners demanding for the system

of same domain to be on both mobile and web apps. The data and presentation layers are involved

commonly in more applications. This is the reason that we have proposed and developed a

methodology which can save the development time and can generate the scaffolding code for the

data layer (RESTful Server) and presentation layer (web app and hybrid app). The profile is

designed and the designed profile is to be applied to class diagram from which the scaffolding

code is generated in C# for RESTful Server, Ionic for hybrid app and angular for web app. The

key advantages of our proposed methodology are are:

1) It reduced the time of development.

2) It provides high level of abstraction

3) This is open source and reusable

4) It offers early stage evolutionary prototyping

5) It improve the code quality

The models proposed in our solution are at high abstraction level and are easily understandable

by various stakeholders. These models neglect the implementation details, thus simplifying the

low-level implementation complexity. Furthermore, it reduces time and cost of development. The

generated code is deployed into its respective environment for verification.

Our proposed framework has been validated on two case studies: Auditing System and Lexpert

(Lab expert which is pathology lab management system). Both case studies require data layer and

presentation layer. The first case study is chosen for comparison of conventional development with

that of model driven development.

85

7.2 Limitations

Our proposed solution provides automated code generation for data layer and presentation

layer of applications, however, there exist some limitations. Firstly, the profile designed does not

cover some scenarios like the selection of code architecture or selection of sylesheets. Secondly,

it need to generate the code for react, react native and vue. Furthermore, transformation rules for

only Root types and object types are provided as they are used across the most applications.

86

Chapter 8

Conclusion along with Future Work

87

CHAPTER 8: CONCLUSION ALONG WITH FUTURE WORK

In this research, we propose model driven scaffolding code generation for web and mobile

application to model the requirements at high abstraction level. The proposed profile comprises

several stereotypes related to frontend and backend concepts to model the data layer and

presentation layer of applications. Providing a consistent user experience across different

connection types is a difficult task. Low level implementation of such application types is a

complex process. To reduce this implementation complexity, we model the requirements at high

level of abstraction. These models generate code through the transformation engine. Verification

of the generated code is done by deploying it to their respective implementation environments.

The research work is the first step to make the applications development process simpler

and time saving. Particularly, model driven scaffolding code generation has been proposed which

adapts the concept of UML Class Diagram, to model the data layer and presentation layer of

applications. A complete transformation engine is developed to transform the source models into

target low level implementation code. We have covered the transformation of profiled class

diagram to RESTful service (C#), web app (angular) and hybrid app (ionic). The transformation

engine implementation is carried out in Acceleo through Model to Text approach. We demonstrate

the applicability of our proposed tool through two case studies.

In future, we may plan to give the option to choose the some extra feature like the code

architecture and stylesheets on UI. Moreover, further frontend enhancement is required to fully

provide all the features. We also plan to enrich our base application with other frameworks like

vue, react etc.

88

REFERENCES

[1] Entity Framework, https://en.wikipedia.org/wiki/Entity_Framework

[2] Model First, https://docs.microsoft.com/en-us/ef/ef6/modeling/designer/workflows/model-first

[3] Code First to a New Database, https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/

workflows/new-database.

[4] .NET Core, https://en.wikipedia.org/wiki/.NET_Core

[5] W. Chansuwath, T. Senivongse; A model –driven development of web applications using

AngularJS framework; IEEE 15th International Conference on Computer and Information

Science (ACIS); (2016)

[6] H.Benouda, M. Azizi, M. Moussaui; Automatic code generation within MDA approach

for Cross-platform mobile apps; First IEEE International Conference on Embedded &

Distributed Systems (EDiS) (2017)

[7] S. Roubi, M. Erramdani, S. Mbarki; A model driven approach to generate graphical user

interfaces for Rich Internet Applications using Interaction Flow Modeling Language; 15th

IEEE International Conference on Intelligent Systems Design and Applications (ISDA);

(2015)

[8] S. Roubi, M. Erramdani, S. Mbarki; Modeling and generating graphical user interface for

MVC Rich Internet Application using a model driven approach; International Conference

on Information Technology for Organizations Development (IR4OD); (2016)

[9] R. Acerbis, A. Bongio, M. Brambilla, S. Butti; Model–Driven Development of Cross-

Platform Mobile Applications with Web Ratio and IFML; 2nd ACM International

Conference on Mobile Software Engineering and Systems (MOBILESoft); (2015)

[10] K. Pongpanjanthra, Y. Limpiyakorn; Model-Based Approach to Generating Web Portals;

5th International Conference on IT Convergence and Security (ICITCS); (2015);

https://en.wikipedia.org/wiki/Entity_Framework
https://docs.microsoft.com/en-us/ef/ef6/modeling/designer/workflows/model-first
https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/
https://en.wikipedia.org/wiki/.NET_Core

89

[11] J. Luis Herrero Agustin, Model-Driven web applications; IEEE International Science and

Information Conference (SAI); (2015)

[12] S. Azreena Mubin, A. Hazri Jantan, A. Kamaruddin, Y. Limpiyakorn; UML Stereotypes

for the Development of Process Interaction-Driven Web Applications; ACM Proceedings

of the 2nd International Conference in HCI and UX Indonesia (CHIuXiD) (2016);

[13] T. Cerny, E. Song; UML-based enhanced rich form generation; ACM Proceedings of the

2011 Model-Driven web applications; IEEE International Science and

Information Conference (SAI); (2015)

[14] N. Vittorazzi de Almeida, S. Louzada, V. E. Silva Souza; A Model-Driven Approach for

Code Generation for Web-based information Systems Built with Frameworks; ACM

Proceedings Symposium on Multimedia and the web. (WebMedia) (2017)

[15] A. Cortinas, C. Bernaschina, M. R. Luaces, P. Fraternali; Enabling Agile Web

Development through In-Browser Code Generation and Evaluation; International

Conference on Model and Data Engineering; (2017)

[16] Z. Morales, C. Magana, J. A. Aguilar, A. Zaldivar-Colado, C. Tripp-Barba, S. Misra, O.

Garcia, E. Zurita; A Baseline Domain Specific Language Proposal for Model-Driven Web

Engineering Code Generation. Springer International Conference on Computational

Science and Its Applications (ICCSA); (2016)

[17] P. Fraternali, S. Comai, A. Bozzon, G. T. Carughi; Engineering rich internet applications

with a model-driven approach; ACM Transactions on the Web (TWEB); (2010)

[18] R. Rodriguez-Echeverria, J. C. Preciado, J. Sierra, J. M. Conejero, F. Sahchez-Figueroa;

AutoCRUD: Automatic generation of CRUD specifications in interaction flow modelling

language; Elsevier (2018)

[19] S. L, da Costa, V. V. G. Neto, J. L. de Oliveira; A User Interface Stereotype to Build

Web Portals; 9th Latin American Web Congress (LA-Web); (2014)

90

Annexure - A
Verification – Group1

 A Model-Driven Framework to generate data and presentation layers’

scaffolding code for Multiplatform applications

(Auditing System)

Developer 1
Name: Abdullah Saeed_________ Email: asaeed@thepointofit.com____ Experience: 7 years_

Conventional Coding Time: 1.5 hours___

Model Driven Coding Time:

Training: 3 hours___ Modeling: 3 Hours___ Post Processing: 0.5 hours____ Total: 6.5 hours__

Participation: Developing RESTful Service in ASP.NET_______ Date: 11th July 2019________

Developer 2
Name: Tanzeel ur Rahman _____ Email: trehman@thepointofit.com___ Experience: 9 years_

Conventional Coding Time: 40 hours__

Model Driven Coding Time:

Training: 3 hours___ Modeling: 0 Hours___ Post Processing: 3 hours_____ Total: 6 hours____

Participation: Developing Web App in Angular________________ Date: 20th July 2019_____

Developer 3
Name: Muhammad Aqib _____ Email: maqib@thepointofit.com______ Experience: 4 years_

Conventional Coding Time: 80 hours__

Model Driven Coding Time:

Training: 3.5 hours__ Modeling: 0 Hours___ Post Processing: 5 hours_____ Total: 8.5 hours___

Participation: Developing Hybrid Mobile App in Ionic__________ Date: _22nd July 2019_____

Total: Conventional Time: 121.5 hours Model Driven Time: 21 hours|

91

Annexure - B
Verification – Group2

 A Model-Driven Framework to generate data and presentation layers’

scaffolding code for Multiplatform applications

(Auditing System)

Developer 1
Name: Muhammad Imran______ Email: ibodla@lmkr.com__________ Experience: 17 years

Conventional Coding Time: 2 hours___

Model Driven Coding Time:

Training: 3 hours___ Modeling: 2.5 Hours__ Post Processing: 0.5 hours____ Total: 6 hours____

Participation: Developing RESTful Service in ASP.NET_______ Date: 24th July 2019________

Developer 2
Name: Faisal Ishfaq ___________ Email: faisalishfaq81z@gmail.com__ Experience: 5 years_

Conventional Coding Time: 36 hours__

Model Driven Coding Time:

Training: 3 hours___ Modeling: 0 Hours___ Post Processing: 2.5 hours____ Total: 5.5hours___

Participation: Developing Web App in Angular________________ Date: 30th July 2019_____

Developer 3
Name: Tasaddaq Sultan _______ Email: tassaddaq-sultan @live.com__ Experience: 6 years_

Conventional Coding Time: 40 hours__

Model Driven Coding Time:

Training: 2.5 hours__ Modeling: 0 Hours___ Post Processing: 3 hours_____ Total: 5.5 hours___

Participation: Developing Hybrid Mobile App in Ionic__________ Date: _31th July 2019_____

Total: Conventional Time: 78 hours Model Driven Time: 17 hours|

92

Annexure - C
Verification – Group3

 A Model-Driven Framework to generate data and presentation layers’

scaffolding code for Multiplatform applications

(Auditing System)

Developer 1
Name: Haroon Waheed________ Email: hwaheed@thepointofit.com___ Experience: 15 years

Conventional Coding Time: 1.5 hours___

Model Driven Coding Time:

Training: 2 hours___ Modeling: 2 Hours___ Post Processing: 0.5 hours____ Total: 4.5 hours___

Participation: Developing RESTful Service in ASP.NET_______ Date: 4th August 2019______

Developer 2
Name: Sadiqullah__ ___________ Email: sadiq.ullah@teo-intl.com____ Experience: 3 years_

Conventional Coding Time: 54 hours__

Model Driven Coding Time:

Training: 3 hours___ Modeling: 0 Hours___ Post Processing: 3 hours_____ Total: 6 hours____

Participation: Developing Web App in Angular________________ Date: 8th August 2019_____

Developer 3
Name: Asfandyar Nasim ______ Email: asfandyar@emumba.com____ Experience: 8 years_

Conventional Coding Time: 50 hours__

Model Driven Coding Time:

Training: 2.5 hours__ Modeling: 0 Hours___ Post Processing: 2.5 hours____ Total: 5 hours____

Participation: Developing Hybrid Mobile App in Ionic__________ Date: _10th August 2019___

Total: Conventional Time: 105.5 hours Model Driven Time: 15.5 hours|

93

Annexure - D
Verification

 A Model-Driven Framework to generate data and presentation layers’

scaffolding code for Multiplatform applications

(Auditing System)

Developer 1
Name: Tanzeel ur Rahman______ Email: trehman@thepointofit.com__ Experience: 9 years_

Conventional Coding Time: 1.5 hours___

Model Driven Coding Time:

Training: 2 hours___ Modeling: 2.5 Hours__ Post Processing: 0.5 hours____ Total: 5 hours____

Participation: Developing RESTful Service in ASP.NET_______ Date: 11th July 2019________

Developer 2
Name: Farhan Khan___________ Email: fsaif@thepointofit.com ______ Experience: 12 years

Conventional Coding Time: 55 hours__

Model Driven Coding Time:

Training: 2.5 hours__ Modeling: 0 Hours___ Post Processing: 4 hours_____ Total: 6.5hours___

Participation: Developing Web App in Angular________________ Date: 29th July 2019_____

Developer 3
Name: Haroon Waheed _______ Email: hwaheed@thepointofit.com___ Experience: 15 years

Conventional Coding Time: 36 hours__

Model Driven Coding Time:

Training: 2.5 hours__ Modeling: 0 Hours___ Post Processing: 3.5 hours_____ Total: 6 hours___

Participation: Developing Hybrid Mobile App in Ionic__________ Date: _31th July 2019_____

Total: Conventional Time: 92.5 hours Model Driven Time: 17.35 hours

