A Model-Driven Framework to Generate Data and Presentation

Layers’ Scaffolding Code for multiplatform Applications

Author

Mohammad Inayatullah

Registration Number
118350

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER ENGINEERING
COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY
ISLAMABAD
AUGUST 2019

A Model-Driven Framework to Generate Data and Presentation

Layers’ Scaffolding Code for Multiplatform Applications

Author
Mohammad Inayatullah

Registration Number
118350

A thesis submitted in partial fulfillment of the requirements for the degree of
MS SOFTWARE Engineering

Thesis Supervisor:

Dr. Farooque Azam

Thesis Supervisor’s Signature:

DEPARTMENT OF COMPUTER ENGINEERING
COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,
ISLAMABAD
AUGUST, 2019

Declaration

| certify that this research work titled “A Model-Driven Framework to Generate Data and
Presentation Layers’ Scaffolding Code for multiplatform Applications” is my own work. The
work has not been presented elsewhere for assessment. The material that has been used from

other sources it has been properly acknowledged / referred.

Signature of Student
Mohammad Inayatullah

FALL 2015-MS-15(CSE) 00000118350

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also
according to the format given by the University for MS thesis work.

Signature of Student

Mohammad Inayatullah
FALL 2015-MS-15(CSE) 0000018350

Signature of Supervisor

Copyright Statement

Copyright in text of this thesis rests with the student author. Copies (by any process) either
in full, or of extracts, may be made only in accordance with instructions given by the author
and lodged in the Library of NUST College of E&ME. Details may be obtained by the
Librarian. This page must form part of any such copies made. Further copies (by any
process) may not be made without the permission (in writing) of the author.

The ownership of any intellectual property rights which may be described in this thesis is
vested in NUST College of E&ME, and may not be made available for use by third parties
without the written permission of the College of E&ME, which will prescribe the terms
and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

Acknowledgements

| am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work
at every step and for every new thought which you setup in my mind to improve it. Indeed I could
have done nothing without your priceless help and guidance. Whosoever helped me throughout
the course of my thesis, whether my parents or any other individual was your will, so indeed none

be worthy of praise but you.

| am profusely thankful to my beloved parents who raised me when | was not capable of
walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Farooque Azam ,Dr.
Wasi Haider for their help throughout my thesis and also for Software Development and
Architecture (SDA) and Model Driven Software Engineering (MDSE) courses which they has
taught me. | can safely say that | haven't learned any other engineering subject in such depth than

the ones which he has taught.

I would like to pay special thanks to Mr. Muhammad Waseem Anwar for his
tremendous support and cooperation. Each time | got stuck in something, he came up with the
solution. Without his help I wouldn’t have been able to complete my thesis. I appreciate his

patience and guidance throughout the whole thesis.

| would also like to thank Dr. Arslan Shaukat, Dr. Usman Akram for being on my thesis

guidance and evaluation committee.

Finally, 1 would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

Dedicated to my family members whose extraordinary support and
cooperation always remained a source of motivation for me in

accomplishing this tremendous achievement.

Abstract

The use of web and mobile applications is growing very rapidly in the modern era. Due to
high end demand of such applications, the software stakeholders want the applications to be
available on both mobile and web. In software industry this requires more efforts to develop
applications for both mobile and web. Consequently, more resources with different technology
experts are needed for the development of multiplatform applications. The software engineers
always look for time saving and robust methodology for good, quick and qualitative software
development. Web and mobile applications usually composed of three layers i.e. application,
business and data. Application layer deals with the Ul related concepts that run on browser. On
the other hand, business layer deals with the business logic that is usually implemented on server
side. Finally, data layer deals the data access from database.

We have performed the literature review in which we found that a methodology is needed
where the software engineers can generate scaffolding code for the data and presentation layers
considering the modern development technologies of hybrid (ionic) and web apps (angular).
Normally in software industry, the system analysts design the class diagram and is handled over
to the software developers. The developers start writing code in client side technology, server side
technology and also generate database according to the class diagram.

We have proposed the model-based methodology for the development of applications for
both mobile and web applications, because, Model Driven Architecture (MDA) is renowned
software design approach in software industry that make the software development very rapid and
consistent. MDA facilitate the development of multiplatform applications from one UML diagram.
Specifically, by applying the principle of “Run everywhere after develop once”, we have designed
a profile which have data types and stereotypes of model, class and property meta-class. We have
generated the code from class diagram by Acceleo. Our methodology is validated by two case
studies demonstrating that the idea is workable. Moreover, one empirical case study was given to
12 industry professional, for evaluating the saving of development effort using the proposed
methodology. We found that the proposed approach reduced the amount of effort significantly.
Key Words: Hybrid App, Web App, Model-Based Scaffolding, CRUD, MDA, Web service

Vi

Contents’ Table

Contents
(DT F= T AT o OSSOSO i
LANGUAGE CORRECTNESS CERTIFICATE ..ottt sttt sttt sttt sne et saes ii
COPYIIGNT STATEIMENT ..ottt et b et b e bt b e bt e bbbt bt e b e s e eb e nb e eb e ab e s e eb e nb e s e e bt ab e e ebenre e iii
y Aol 10TV T=To o T=T o =T o SRR iv
Y 0L 4 =T OO OSSOSO SOTRTSPR vi
LI 101 (=0 O] a1 (-] o SRR vii
FIGUEES” LIST ..ttt b bt h et h bt bbbt e bbbt e Eeh £ e bt A Eeh e b e b e s e eb e e b e s e e bt e b e s e bt nbehe b e s r e e e b e nnene e X
LI Lo [= S T L TR U PR PT PR PRPRPR xii
ST OF ANNEXUFTES ...ttt ettt ettt b bbb e e et eb e b e e E e b £ e b e b e R b e eh e e Rt e bt eh £ e b e e m b et e nb e b e ebeebeese et e ntenbenns Xiii
CHAPTER 1: INTRODUCTION. ...ttt ettt et e et te e et e e s ta e e te e e abe e e beeanteeebeeeteesnbeeeneeennes 14
11 BaCKGIOUNT STUAY ..ot bbbt b et b ettt b e et b et b 15
O O S T To | (=30 o =N o]] o= o oSS 15
10,2 ASP.INET WEDAPI ...ttt sttt ettt bbb e et sb e et e nb e e benee e sbeneeneas 16
1.1.3 ENLitY FramEWOIK COEcuiiuiieiiitiiieiiite ettt sttt ettt sttt bbbttt sb ekt sb e e et e sbe et e nne e 17
1.1.4 Model Driven SOftware ENGINEEIINGc..eviiiiiiiiieiiereee ettt 19
1.2 PrODIEM STAIEMENTottt bbbt bt bt e e bbb e b bt e bt e e e nn e 20
1.3 L] oToRSycTo Y/ [=1 oo o o] o Y A S 20
14 RESEAIrCH CONIIIDULION.eiiiie ittt ettt reese e s et e saesaestesreeneeseeneeneeneens 21
15 THESIS OFGANIZALION ...ttt bbbt bbbt b ettt be e b 21
CHAPTER 2: LITERATURE REVIEWocoiiiiit ittt sttt sa ettt sne e anesne e 24
2.1 LITEIALUIE REVIBWeiiitieeeie ittt bbbkt b bbbt bt bt e st et e b sbeeb e e bt e bt e s e e e e benae s 24
211 RESEAICH QUESTIONS......ciiieieetietieiee ettt ettt s e e e e bestesbeeseeneesaeteeesaesteeneaneereeeenteneens 24
2.1.2 INCIUSION/EXCIUSION CIITEITA .o.vvivveiieiieieisie ettt sttt ne e e st e tesaesresneeneeeeneentennens 25
2.1.3 SBAICI PIOCESS ...ttt bbbt b bbbt bt h et b e b bbbt nt et e et nre s 26
2,14 QUAITEY ASSESSIMIENL. ... civeeiteiteiieeie et e st este et e e e st e st e e s teeste e teeseeaseeasseste e beesteesteasaesseesaeesteenseaneesnsenseenreens 29
2.1.5 Data extraCtion & SYNTNESIS.curiiiiiiiitirieiei ettt 29
2.1.6 Actual Data Extraction — Intermediate RESUILS...........cooiiiiiiieeiee e 30
2.2 RESEAICI GAPS ... e.vieieeie ettt e et e et e e at e e b et e b e e te e te e R e e e Re e nbe e be e te et e aateatt e teeteeteenreaneen 33
CHAPTER 3: PROPOSED METHODOLOGYocueititiiieiitiiieiesiesieiestesieestestesessesaeestesaesessessessssessesessessesessessesens 36
3.1 (DTSl 71T o OO OO SO SO SO TR SO PRSP 36
2.3 U B 1Y 011 TP PP PPN 38
2.4 ENUMETALIONS ...ttt bttt bbbt bt e s et e ke s bt b e s bt e bt e st e e e b seeebesbeebe e s e e benbenaens 39
241 HIPVEIDSENUM ...ttt e bbbt e e bt e e et et sb e e b e e beebe e st et e benaens 39
242 StriNgDVDAtaTYPEENUM.....cuiiiiiiiiiitiiieete ettt ettt ettt ettt bbbt sne e enes 40
243 NAVIGAIONENUM ...ttt bbbttt s bt s bt b ettt b e enes 40

P S v [(o V= Lo = Vi o] a1 = o o SRS 40

b oS o] o1 (o] o =1 o1V o U TSR PRSPPI 41
2.4.6 ColleCtionPIaCemMENTENUMiiiiiie ittt sttt et et et saesbesseene et e nbenbesee s 42
2.5 B (=] £T0] Y01 PP UPRPPPUPRPR 42
TS o (] o T=T o /A 1 o101 =TSSR 43
252 SHINGTYPEAIIIDULES ...t bttt b et 43
253 INtEgErTYPEAIIIULES ...ttt 44
R B T (=l Y/ L= AN 4] o0 (USSR 44
2.5.5 IDAIIIULES ...ttt b bbbt bt Rt b et n ettt b e enes 44
256 OPEratiONALIIIDULESo.eieiitiiecct bbbttt e et b bt 44
257 IMOGEIAIIIDULES ...ttt ettt st b et e se et e b et sbesbesbeeneeseeeenteneens 45
251 CIASSATIITDULES. ...ttt bbbt e bbbt bt bt e bt e e et et e sb e et e e be e bt e s e e b et b s 46
CHAPTER 4: IMPLEMENTATION ..ottt sttt sttt st ettt sae e ebesbeseebesbeeesesneseas 49
41 A VT I o I - T) {0 7= LA o PSS 49
T N o 11 {0 | [£ SSS 49
.11 MOGEIS ... bbbt h bR R e bbbt bbbt et ne b e 50
4.2 Web APP TranSfOrMAtIONcc.oiiiiic e te et e e e st e s te e te e beeneesraesrees 50
4.2 Hybrid APP TransSfOrMATIONooveiiiieiie bbbttt b et be e 52
4.3 Transformation ENGINe AFChITECTUIEcouiiiiiiiiiee bbbttt bbb 52
4.3 AACCEIBO COR...... et b bbb bbbt bt b et e b eb e b bt bt e b e e e e e b nns 54
CHAPTER 5: VALIDATION L.ttt st sttt bbbt sb e ebesbeseebesbe e ebeseeseabeneereas 60
5.1 Auditing SYStEM — A CASE STUAYeiveiiiiiieiieiiite ettt sb e bbbt b e bbb 60
5.1.1 Requirements Of AUAItING SYSTEIM ..ottt 60
L0t 2 |V T o [o oSSR SSSRRR 60
TN I B O 1o [T 1 T 14T TS TP URURUROUPTPON 61
TN Y) o 14T o PSSR 71
5.1.2 Conventional VS Proposed MethodoIOgyccuriiiiiiiiiniiiiiiecieee s 75
5.2 LEXPERT (LA EXPEIL) 1.veiteieiiiteiieieiteieie sttt sttt sttt sttt sttt sttt sttt st e e s st s ese st st enesbe e ese st nens 75
LT R =T [T =T 1=] SRRSO 75
Create, Read, Update and Delete PAtIENT..........coocviiiieieieieie e sttt sae e 76
Create, Read, UPAAte Labcccoiiiiiiiicie sttt e e stenteseeeneeneeneeseenee e e 76
Create, Read, UPate LaDc.coi ittt et et ea et et e e e e teeraesneesteenreereenes 76
Create, REAM, UPAALE TESEcouiitiiieitiiiieieee ittt b ettt b e bt sb e b b e e et e b sb et e st e eb e e b e e neeneenbe b e 76
QL= I = To I oo P L < D o Tod o SR 76
Create, Read, UPAate PANELcccviiiieieie ettt st be et e e e e testesneeneeneeneenee e e 76
Create, Read, Update EMPIOYEEooiiiiiieie et bbbttt sb e bbbt nn b e 76
LT 2 |V, oo (=] 110 o DO URURTUTPRN 77
LT B o To [T 1T] USSR 78
CHAPTER 6: COMPARATIVE ANALYSIS ...ttt sttt sttt ee e sneesreenneenneenes 81

LG T0 @0 T - T o S 81

CHAPTER 7: DISCUSSION AND LIMITATION ..ottt ittt sttt sa et s et sae e stesneneas 84
8 TS St T o BRSSP 84
7.2 LIMITALIONS ...ttt ettt ettt ettt b e e b e bbbt b e e e b s bt e b e e b s e e bt e bt e b e e b b e b e e be e e bt ebe st ene et b nenber e 85

CHAPTER 8: CONCLUSION AND FUTURE WORKociiiiitieiie ettt 87

REFERENCES ...ttt sttt sttt 4 et be s 4 st e te s b et et a4 a2 e £e e 4 et e Re e be st e Re e ket e b e e b et e beebe b e beabe s erenbenseneste s ens 88

Figures’ List

FIGURE - 1.1:
FIGURE - 1.2:
FIGURE - 1.3:

TRADITIONAL VWEB APPLICATION . etetuteetett e e ettt e e et e e e e eeaseeesetaeessetneessetnseeseenneas 15
SINGLE-PAGE APPLICATION ...ttt eetttttttteisteeetetesstsssssesesssessssssssessesssstssnsreessessssssnnns 16
VWEB SERVICE USAGE STRUCTUREciiiiietttee et e e e eeee e e e e e e e eeeeeeeeaaeeeeeeeeeenaaeeeaees 16

FIGURE - 1.4: LAYER OF ENTITY FRAMEWORKcciiiiittttiiieeeeisiiiitirrreeeeeessssisssresesssessssssssssesssssens 18
FIGURE - 1.5: DECISION CHART FOR ENTITY FRAMEWORKuuvuvuvuiiririiiieririrsnsisrssssesererenesereren. 18
FIGURE - 1.6: RESEARCH WORK FLOWuutiiiiiiiie ittt e e snibbbre e s s s e s s s saabaraeese e 21
FIGURE = 1.7 THESIS OUTLINE ..vvtttiiiieiiiiiiittttiieeeeesssssbbssesssesssssssabbbssessssesssssssbbbesssssesssssssrasesssesens 22
FIGURE - 2.1: SEARCH PROCESS DETAIL ..uuutttiiiiiiee ittt seiiibrree s s e e s s s snabbbaeesssesssssssrasanesesens 28
FIGURE - 3.1: PROPOSED METHODOLOGY ...utvtiiiiiieeiiiiirrrieieeeesssssissrssesssessssssssssesssssessssssssssssssseses 37
FIGURE - 3.2: WORKFLOW OF PROPOSED METHODOLOGYcooiiiitiirreiiieeeisiiiirrieeeeeeesssssssnssesesesens 38
FIGURE - 3.3: DATA TYPES FOR CLASS DIAGRAMcccvtttiiiiieii ettt ettt s e saabaraee e 39
FIGURE - 3.4 HTTP VERBS ENUMERATIONS 111viiiiiiiiiiiiiiiieiiee e e s s ieitibsressseesssssssssbesesssesssssssssssesssssens 39
FIGURE - 3.5: STRING DB DATA TYPE ENUMERATIONeuuiiiiiiiiieitireiiriee e e s seirtbeeen e e e s s svsvaneeeee e 40
FIGURE - 3.5. NAVIGATION ENUMERATION ...1tttiiiieiiiiiiiiiriiee e e e sesbbbrres s e e s s sssbbbaeesssesssssasrarasssssens 40
FIGURE - 3.6: VALIDATION ENUMERATION ..vvvviiiiiee ittt e e s etbbreee e s e e e s s sssabbbeee s s s e s s s s sssbaseneseeens 41
FIGURE - 3.7. FONT ICON ENUMERATION . .uttttiiiiieeiiiiiiitieeee e e e s s ssibibsressseessssssbsbasesssessssssssrssssssesens 41
FIGURE - 3.8: COLLECTION PLACEMENT ENUMERATIONcciiiiiiiiittttieiiieees s seirtreeen e e e e s s svsvaseeeee e 42
FIGURE - 3.8: PROPERTY ATTRIBUTE STEREOTYPEuuttiiiiieiiiiiiiiitriesese e s s s ssstsreeesssesssssssnssesssssens 42
FIGURE - 3.9: OPERATION ATTRIBUTE STEREOTYPE ...uuutttiiiieeiiiiiittrriesieeessssssssreeesssesssssssssssessseses 45
FIGURE - 3.10: MODEL ATTRIBUTE STEREOTYPEiiicitttttiiieeeiiiiitirrieseseessssistsbesesssesssssssnssesssssens 45
FIGURE - 3.11: CLASS ATTRIBUTE STEREOTYPE ...ccoiiicttttteiieeeesssisittreterssessssssssssbeeesssessssssssssseseseses 46
FIGURE - 4.1: ARCHITECTURE OF ANGULAR .11tttiiiiiiiiiiitiieiie e ibibrres s s e e s s s ssabbbaassssesssssasraranesesens 51
FIGURE - 4.2: TRANSFORMATION ENGINE ARCHITECTUREcoooieittreiiriie e e sittteeee e e e s s savsvaree e e e 53
FIGURE - 4.2: TRANSFORMATION ENGINE INPUT MODEL INTERFACEccoiiiiiiiiiiiie e eesiirrieeeee e 54
FIGURE - 4.3: CODE STRUCTURE OF CODE GENERATOR ...vvvitiieeiiiiitrrreereeeessssssssreessssssssssssssseseseses 55
FIGURE - 4.5: MAIN MODULE OF ACCELEO PROJECT .. uuuttiiiiiiii ittt s st n s siabaree e 55
FIGURE - 4.6: ANGULAR MODULE OF ACCELEO PROJECT vuviiiiiiiiiiitiitiii e ettt svsvanee e 56
FIGURE - 4.7 IONIC MODULE OF ACCELEO PROJECT ...uvutiiiiiiiiiii ittt siabaree e 57
FIGURE - 4.8: ASP.NET WEB APl MODULE OF ACCELEO PROJECT .vvvvviieiiiiiiitrieiiie e sesivvvveeee e 58
FIGURE - 5.1: CLASS DIAGRAM OF AUDITING SYSTEM WITH APPLIED STEREOTYPES.......ccovvveverennn. 61
FIGURE - 5.2: FILES STRUCTURE OF ANGULAR’S GENERATED CODEccooiiittvieieie e eeeivrieeeee e 61
FIGURE - 5.3: FILES STRUCTURE OF IONIC’S GENERATED CODEuvviiiiieiiiiiiiiiieieie e s isivsveeese e 62
FIGURE - 5.4: FILES STRUCTURE OF WEB API’S GENERATED CODEcccoiiitttieiiie e eeeirrieeeee e 62
FIGURE - 5.5: GENERATED CODE FOR MODEL OF EF COREoooccttttiiiiie ettt 63
FIGURE - 5.6: GENERATED CODE FOR CONTEXT OF EF..uvvviiiiiiii et 63
FIGURE - 5.7: GENERATED CODE FOR ASP.NET WEB APl CONTROLLERccvvvieieeeeiiiiiirereeeeeen, 64
FIGURE - 5.8: GENERATED CODE FOR APP.MODULE.TS .uvttttiieeiiiiiirrreiitieeessssssssreeesssessssssssssssssseses 64
FIGURE - 5.9: GENERATED CODE FOR ANGULAR’S APP.COMPONENT.TS ...coivvvrrrriiieeeesiiiinrereeeneeens 65
FIGURE - 5.10: GENERATED CODE FOR ANGULAR’S APP.COMPONENT.HTML ..vvvvviiiereeiiiiiireieeeneen, 65
FIGURE - 5.11: GENERATED CODE FOR ANGULAR’S VIEW COMPONENTS — EMPLOYEE.........cee...... 66
FIGURE - 5.12: GENERATED CODE FOR CODE FOR ANGULAR’S COMPONENTS — EMPLOYEE........... 66
FIGURE - 5.13: GENERATED CODE FOR ANGULAR’S VIEW OF COMPONENTS-LIST — EMPLOYEE.... 67
FIGURE - 5.14: GENERATED CODE FOR CODE OF COMPONENTS-LIST — EMPLOYEEcccvvvvevernnnn. 67
FIGURE - 5.15: GENERATED CODE FOR ANGULAR’S CODE COMPONENTS-LIST — EMPLOYEE......... 68
FIGURE - 5.16: GENERATED CODE FOR ANGULAR’S MODEL CLASSES — EMPLOYEE.......cccvvvvernenn. 68

FIGURE - 5.17: GENERATED CODE FOR ANGULAR’S SERVICES — EMPLOYEEoevvvvieieeeeeeeeeininnnn, 69

FIGURE - 5.18: GENERATED CODE FOR IONIC’S VIEW — EMPLOYEE.......cccvveeiiitiiee e 69
FIGURE - 5.19: GENERATED CODE FOR IONIC’S MODULE — EMPLOYEEocccvttviiieeee e, 70
FIGURE - 5.20: GENERATED CODE FOR IONIC’S TYPESCRIPT OF PAGE — EMPLOYEEccvveeennnee. 70
FIGURE - 5.21: CODE DEPLOYED FOR AUDITING SYSTEM’S WEB APl (C#) ..oocvviiieieecieiees 71
FIGURE - 5.22: CODE DEPLOYED FOR AUDITING SYSTEM’S ANGULAR CODE........cccvvveeeiiirvieeennne 71
FIGURE - 5.23: CODE DEPLOYED FOR AUDITING SYSTEM’S AIONIC CODEuvvvviiieieeiiiiiireieneneen, 72
FIGURE - 5.24: COMPILING ANGULAR APP ...vviiiiiitiieeeiiitteeeesitaeeessitsaeessaissssesssbssesssssssssssssssssesssnsens 72
FIGURE - 5.25: COMPILING IONIC APP ...ttt ettt brt e e s e e s s st b bae e s s s e s s s s sabbbareeeseeeas 73
FIGURE - 5.26: COMPONENT VIEW OF ANGULAR’S WEB APPccciviiiiiiiriie ettt 73
FIGURE - 5.27: COMPONENT LIST VIEW OF ANGULAR’SWEB APP ...vveviieiiiiiiieiiee e 74
FIGURE - 5.28: PAGE VIEW OF IONIC S HYBRID APPvtiiiiiiiiiee ettt et enrae e 74
FIGURE - 5.29: DISPLAY OF ANGULAR’S APP ..eoiiiiiiiiiiiittiiiie e e s seibtbttes st e e s s s easbbbaes s s s e s s s s sasbaranesesens 76
FIGURE - 5.30: CLASS DIAGRAM OF LEXPERT ...ovviiiiiiiii ettt 77
FIGURE - 5.31: STRUCTURE OF GENERATED CODE FOR WEB APP (ANGULAR)ccoveiveiiniirienienienns 78
FIGURE - 5.32: STRUCTURE OF GENERATED CODE FOR HYBRID APP (IONIC)ccvveviviieiciieciees 79

FIGURE - 5.33: STRUCTURE OF GENERATED CODE FOR RESTFUL SERVICE (ASP.NET WEB API) 79

xi

Tables’ List

TABLE 2.1 - SEARCH PROCESS DETAIL wuvvtviiiiieiiii ittt sttbrtee e s e s eabbbean s s s e s s s s sbabsbsessssssssennns 26
TABLE 2.2 - EXTRACTION OF DATA & SYNTHESISuvviiiiiiiiiie et srrie e st e sabaee e s saaae e e snraee s 30
TABLE 2.3 - INTERMEDIATE RESULTS 1.uuttttiiiiieiii i iitireiis e e e s sttt bee e s e s s s s seabbbsaes s s e s s s s sabsbsbeessssssssasnns 30
TABLE 4.1 - HTTPVERBS TRANSFORMATION RULE (CRUD)oeiviiiicice e 49
TABLE 4.2 - TRANSFORMATION RULES FOR RESTFUL AP ...ttt 50
TABLE 4.3 - TRANSFORMATION RULES FOR ANGULAR CODE (WEB APP)ceoviiiieiieeie e 51
TABLE 4.4 - TRANSFORMATION RULES FOR RESTFUL APL.....covtiiiiiiiiie e 52
TABLE 5.1 - COMPARISON OF CONVENTIONAL TIME AND MODEL DRIVEN TIME.....ccveeiiivieeeiinennnn. 82

xii

Annexures’ List

AANNEXURE = A o1t tttttttttutsssstsessssseasssssssssesesssssssssssssss s s sssse s s ss s s beseseseesbessssss b e ssbebebebe b e b e be b e b e be b ebebebebebebees 90
ANNEXURE = B ..ottt ettt e e ettt e e s s bb e e e e e bt e e e e s eab e e e e s sbb e e e e s aabreee s 91
F NN L S (0 S 92
ANNEXURE = Dottt ettt s bt e e s et e e ettt e e s s bbb e e e e e abb e e e e s bt e e e e s sbaaeeesaabraeeas 93

Xiii

14

Chapter 1
Introduction

CHAPTER 1: INTRODUCTION

This first chapter delivers a comprehensive introduction of the performed research work which is
categorized in different sections. Section 1.1 presents background study. In Section 1.2 problem
statement is described. Section 1.3 is proposed methodology. Section 1.4 is research contribution

and Section 1.5 represents thesis organization.

1.1 Background Study

The background study introduces the concepts being used in this research which are;
1) Single Page Applications (SPA)
2) ASP.NET WebAPI
3) Entity Framwork Core.

The details of the following are given in subsequent sections.

1.1.1 Single Page Application

Single Page Application is also called SPA, SPA is a web application type when user can
interact with web application then user should feel to work like on desktop applications. Only single
page is loaded in the browser and contents are dynamically rewriting rather than retrieving and
loading of pages from server. Single Page Application (SPA) avoid the interruption caused by

rendering the pages on the server.

Initial Request

HTML

Form Post

HTML

Figure - 1.1: Traditional Web Application

15

Initial Request

HTML

AJAX

HTML

Figure - 1.2: Single-Page Application

1.1.2 ASP.NET WebAPI

ASP.NET API is a framework of .NET for (APIs) web services development. Developers
may create web API using this framework. The client like web browser, mobile devices or desktop
applications can consume the web service. ASP.NET WebAPI have very good support to RESTful
web services. RESTful API is an API (application program interface) which uses HTTP requests
to HTTP verbs like GET, POST, PUT and DELETE. This is useful to define an abstraction on the
top of the software frameworks which allow stakeholders to participate in the design and

development of apps. The structure of the web service is shown in Figure 1.3.

Er S

Figure - 1.3: Web Service Usage Structure

16

https://searchwindevelopment.techtarget.com/definition/HTTP

1.1.3 Entity Framework Core

Entity Framework is an ORM (Object Relational Model) released by Microsoft with .NET
3.51n 2008 [1]. Object Relational Mapper (ORM) is used to implement manipulation of database
using object-oriented programming language. ORM increase the productivity of software
development. Entity Framework is a means of interaction between underlying relational database
and application developed in .NET technologies. EF makes it easy for software engineers to map
database objects with .NET object model (C#, VB, etc.). Before .NET 3.5 the developers were
using ADO.NET for save or retrieve data from underlying database. In .NET framework the
developer can easily execute the queries using LINQ. Classes in the model represents the tables in
database. The underlying database can be generated from model classes of object oriented
programming language and also model classes of object oriented programming language can be
generated from database. Entity Framework is used in the data layer of application as shown in
Figure 1.4.Current version of Entity Framework is EF6. Three approaches of development are
existing in Entity Framework.

1. Model First Approach
2. Code First Approach
3. Database First Approach

In Model First Approach the entities along with concerned relationship and inheritance are
created on design using EDMX. This is a type of model driven approach to design the class
diagram on entity designer. The underlying database is generated from EDMX file and for each

class the table is created in database [2].
In Code First Approach the model classes along with concerned relationship and
inheritance are developed in the code like C# or VB. The underlying database is generated from

the code. The tables are created in database according to classes in code [3].

In Database First Approach the relational database is created first and the entity model is

generated according to the tables in the database.

17

Business Layer

(Business Entilies/Domain Classes)

Data Layer

Database

Figure - 1.4: Layer of Entity Framework
When the developer is choosing that what approach of development in Entity framework is needed

then the following flow chart can help the developer to choose the entity framework approach.

Visual
Designer?

Yes

Database
Existing?

Yes

Classes
Existing?

Yes)

Figure - 1.5: Decision chart for Entity Framework

18

Microsoft has also released the .NET Core 1.0 in 2014 [4]. .NET core is cross platform, open
source platform for developing applications. Currently latest version of .NET Core is 3.0. The
Entity Framework Core (EF Core) was released in June 2016 as an ORM for .NET Core. Same as
EF, the EF Core has LINQ which is a database query language. The productivity of development
increases due to LINQ. .NET core has two development approaches, one is Code First and second
is Database First. Model First approach is not existing in EF Core. In software development
industry the Code First approach has more importance as compared with others. In .NET core the
Model First Approach is not existing so for Model Driven Developer there is double effort one is
to design the system in UML class diagram and second is to code for UML class diagram in C#.

Normally the developers want to apply the rule of less typing, more code.

1.1.4 Model Driven Software Engineering

Model-driven software engineering (MDSE) is a software design approach to abstract the
complexity of development of software systems. It makes the design and development of software
applications simple. This is commonly useful in different domains like web applications,
embedded systems etc. and is used in complex application development. Model Driven approach
uses models as a combination of guidelines which can be used in structuring and organizing design
specifications. This approach creates abstraction layer to separate application and business logic
from platform specific technology. The functionality of system can first be defined as a platform
independent model (PIM). The model which is platform independent, is a type model for a system
which have no any implementation information particular to technology. A platform specific
model is a model of a system that has implementation information particular to technology.
Transformation techniques convert platform independent models that identify the operations of
systems to produce platform specific models that identify the details of how those systems use the
capabilities of their platforms to provide their operations.

The MDA model is related to multiple standards. Among them UML (Unified Modelling
Language) is one of the most powerful language which has been used by many software engineers.
UML provide a standard way to make visualize the design of a software system. UML diagrams
are of two categories, Behavioral UML diagrams and Structural UML diagrams . The diagrams
which represent the structure of the system are structural whereas the diagrams which describes

the functionality of the software system are behavioral. UML conceptual models can be

19

https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Software_system

customized and extended using a UML profile diagram. A profile is a lightweight extension
mechanism to the UML standard.

1.2 Problem Statement

Emerging of technologies is very fast, the developers when receive the UML diagrams
from system analyst, the developer get starting the writing code from scratch. In case of class
diagram the developer have to implement the code for

1) Database tables
2) Server side model classes
3) Client side model classes in typescript or JavaScript

This is a difficult task to write the code on three sides. Writing the same class model in the
different place there may be more chance of error and also time consuming. Due to high end
demand of mobile apps the application owner want the application should be on both mobile and
web app. This is the reason the developing the code for both, hybrid and web app, is a tedious task.
There is a need of model driven methodology to generate code for mobile app, web app and
service. There are some more reason to develop a generator from class diagram to classes of client
side and server side technologies.

Developers are currently lacking modeling tools to generate code of EF Core model, web api

controller and at the same time Ul code like angular, react, vue.

1.3 Proposed Methodology

The methodology for the research is systematic which is depicted for the below diagram
given in figure 1.6. The diagram show the steps of systemic research that is performed. First of all
the Systemic Literature review is performed and then the research gap found from literature
review. In research gap the problem is identified. A comprehensive literature is performed for the
problem. The solution for the problem is proposed. The proposed solution of the problem is model
driven scaffolding code generation of CRUD operation for web based applications. UML profile
and stereotypes for different purposes are defined. In the research a tool is developed for
transformation of code from class diagram to underlying technologies. The transformation is
verified by two case studies one is auditing system and other is LEXPERT (Pathology Lab

Management System)

20

1.4

Systematic
Literature
Review

:> Problem
Research Ga P
P Identification

) Proposed <: Problem
Implementation Methodology Solution

Validation :>[Conclusion :> Future work

Figure - 1.6: Research Work Flow

Research Contribution

The contribution made in this research work are as follows:

1.5

Defining stereotypes for class diagram of web applications both for server side and Client
side (UI).

Transformation engine to generate client side (Ul) and backend code implementation by
transforming class diagram model to underlying code in Angular, lonic , ASP.NET Web
API, EF Core. The transformation engine is developed using Acceleo.

Validation of the proposed work by deploying it to Auditing System and LEXPERT
(Pathology Lab Management System)

Thesis Organization

Figure 1.7 represent the thesis organization. Chapter 1: Deals with introduction consisting

of background study about the concepts used in research, problem statement, research contribution

21

and thesis organization. Chapter 2: comprises of systemic literature review and research gap that
is found in the systematic literature review. Chapter 3: Consist of description of the proposed
methodology for the identified problem. This is a model driven base methodology. Chapter 4:
Describes the implementation of the proposed methodology in detail. The transformation engine
is discussed along with the architecture of the code of transformation engine. Chapter 5: The
validation of proposed methodology is discussed in this chapter. The validation is done by two
case studies. One is Auditing system and other is LEXPERT (Lab Expert, Pathology Lab
Management System). The proposed methodology is validated by these two case studies correctly.
Chapter 6: composed of analysis of proposed work with the previous research work and the
conventional software development. Chapter 7: A brief discussion on the work done is presented
in this chapter. It also contains the limitations in our research. Chapter 8: Concludes the research

and future work for the research is recommended.

' Proposed ' Implementation

Methodology

Literature
Introduction Review

- / - /

I
[os

Conclusion . . :
Discussion Comparative I
and Future N . Validation
Work and Limitation Analysis

Figure - 1.7: Thesis Outline

22

23

Chapter 2
Literature Review

CHAPTER 2: LITERATURE REVIEW

Research work conducted from 2010 to 2019 in code generation for web application is
described in this chapter. System Literature review is performed in literature review. Out of 27156
papers 15 are selected for literature review. From these papers we find the research gap which also

mentioned in this chapter.

2.1 Literature Review

Context: Model driven code transformation for web is a specialized research area under
Model-Driven Engineering (MDE). So much research is done in this area resulting in an enormous
amount of publications. Objective: A SLR is necessary to give an extensive examination of the
work done in Model code transformation in web applications. Method: A detailed systematic
literature review is conducted on Model driven code transformation with web as a focal point. We
defined different criteria according to our research questions to identify and shortlist a number of
key studies related to our research area. After examining different studies on the basis of our
inclusion/exclusion criteria, we shortlisted 30 publications. Results: Our systematic literature
review show the general status of the essential features of the model driven code transformation
for web and finalized the tool which are needed to develop for the code transformation in web. For
example, related to code transformation in web artifact, it was observed that creating domain
specific languages plays a central role in a lot of model driven web technologies. Conclusion: Our
findings propose that tool is needed to be developed which can generate domain specific code from

class diagram for latest web and hybrid technologies like angular, ionic, react reactjs and vue etc.

2.1.1 Research Questions

1. From 2010 to 2019, what most significant researches have been reported where UML to
code transformation has been utilized.

What tools are available for model tool transformation from UML to code
Technologies that are used for transformation of UML to code

For what domain of software the transformation tools are developed

o ~ N

What is the need of developer as transformation tool from UML to Code in web
technologies.
6. Which technology needs more work in MDSE based transformation from UML To Code

24

2.1.2 Inclusion/Exclusion Criteria

A concrete standard needs to be defined to approve and disapprove of a particular research. The

following six criteria are defined to select or reject a research work:

1. Relevance of Subject:
Select only that research work that is pertinent to our research area. We should be able to find the answers to
the research questions that are defined above. Unconcerned research work will be rejected.

2. 2010-2019:
Chosen research work must be published from 2010 to 2019. The research work which is published

before 2010 will be discarded so that to assure the consideration of most current research.

3. Publisher:
Selected Research work will be from following eminent scientific databases
IEEE
SPRINGER
ELSEVIER
ACM
4. Crucial-effects:
The performed research which is to be chosen must have constructive outcomes with respect to
Model-Driven transformation of UML to Code. Those research work will be discarded which have

no critical results on Model-Driven transformation and UML to Code generation.

5. Results-oriented:
The research work which is to be chosen must be result oriented. That research work which is

verified through weak validation method will be discarded.
6. Repetition:

That research work which is identical in area of Model-Driven transformation, UML to Code

generation then only one of them will be selected and the remaining will be discarded.

25

2.1.3 Search Process

Inclusion/Exclusion criteria which are defined in the section given above, limited our
performed search on some filters. According to conditions we have chosen four databases for
researching the papers to perform Systematic Literature Review. The databases that are chosen
contains high standard conference proceedings and journal. We also get some help from the books,
which are in stock of these databases. The databases which we choose for searching materials are
IEEE, SPRINGER, ELSEVIER and ACM. We apply the filter on the year of publication of the

paper i.e. from 2010 to 2019. In our search process we use operators (AND/OR) that we may get

precise accurate results The result of this process is depicted in Table 2.1.

Table 2.1 - Search Process Detail

Search Term Operator Search Result

Springer | Elsevier
‘ UML Code Transformation 94 2720 4 52
Model Driven Code Generation AND 641 6298 19 470
‘ Acceleo Transformation AND 8 126 0 1
Model Driven Angularjs AND 1 24 0 0
Model Driven PHP AND 22 1483 3 7
‘ Model Driven Javascript - 32 935 5 46
‘ Code from UML AND 463 4361 12 110
8 ‘ Model Driven SPA AND 41 373 0 4
9 ‘ Model Driven ASP.NET AND 1 103 160 0
10 ‘ Model Driven web development AND 465 7662 17 393

26

https://docs.google.com/document/d/1jP_QFwY_ozaqZ_FqvrIa2TnZ-GKZcGXBjDUPNQklis0/edit#bookmark=kix.z3jgmanlq56a

We further narrow our research for getting the most desired material. We perform following steps:

Some performed search terms are cited and then by defining inclusion/exclusion we come
up with 27156 results.

After the title seeing and removing duplicates we left out 2322.

After reading the abstract we feel that 1075 researches are not satisfying our scope of
research. So we discard those 15234 researches.

We discard 634 papers after going through the overview of papers.

201 papers are rejected on the basis of general study.

Full text was not available for 56 papers, so we discard those papers.

There were about 34 researches which were eBooks and webpages. We discard 34

researches.

On the detailed study of remaining papers we finalized 150 papers which are related to our

preferred study. The remaining are rejected. So at the end we have 150 papers remaining, from

which we are performing our SLR on 15 papers. This complete process is shown in Figure 2.1.

27

https://docs.google.com/document/d/1zxyiLlqLRcuv5jwoLZA0JG_KWhsPppBb3RyBLM7Oipw/edit#bookmark=id.k4e4pqnatsg6

IEEE

Elsevier ACM

Ca

Reiection on basis of title/ repetition

Selected

Rescarches

Figure - 2.1: Search Process Detail

28

2.1.4 Quality Assessment

The quality of studies is important to be assessed likewise inclusion/exclusion criteria:

2.15

A methodical inclusion/exclusion criteria still needs to be provided

Variations of study results needs to be validated

The effectiveness of individual studies needs to be weighted when outcomes are
incorporated

To control the understanding of discoveries and check the quality of deductions.

The understanding of results needs to be controlled and the quality of derivations needs to
be checked

Further research analysis needs to be guided

Data extraction & Synthesis

The objective of this subject is to propose a tenet for systematic reviews acceptable for model

driven software engineering research worker. A scientific research may suggest after the evaluation

of all the present accessible studies that is applicable to a selected research question or the selected

topic or area of interest for development. The objective of the systematic review is to display a good

analysis of the topic of study by employing a procedure that is dependable, detailed and auditable.

The guideline has been custom-made to replicate the particular issues of software engineering

research. It doesn't consider the effect of inquiry sort on the audit techniques, nor will it determine

personally systems required to attempt meta-examination. The extraction of data & synthesis is

given in Table 2.2

29

Table 2.2 - Extraction of Data & Synthesis

Sr.# Title

Description

a Record Information

The information that contains Title of research, author, year of
publication, the details of publisher and research type (whether it

is journal or conference)

b Overview The fundamental proposition and target of the research work that
is selected

c Outcome Outcome of the research

d Data gathering The data collected is qualitative or quantitative

e Presumption To prove outcomes, some presumptions are defined

f Validations Approval strategy to accept the proposition

2.1.6 Actual Data Extraction — Intermediate Results

We found 135 researches related to our point of interest. Among these researches we

perform our SLR on 15 researches. The general overview of these selected researches is given

in Table 2.3.

Table 2.3 - Intermediate Results

1 | Wutthichai
Chansuwath [5]

In this paper a UML profile and transformation tool is developed
for AngularJS application. This tool is for the use of system
architect/analyst. The tool generate the templates for the developer
to make the application development fast. If the system analyst is
not aware of angular then this will be difficult for the him/her to use

the developed profile.

30

https://docs.google.com/document/d/1zxyiLlqLRcuv5jwoLZA0JG_KWhsPppBb3RyBLM7Oipw/edit#bookmark=id.764nt71owdxw

Hanane BENOUDA.
[6]

In this paper a tool is discussed which is developed by Author. The
tool is generating the code from class diagram using acceleo.
Mainly the CRUD operations are implemented. The tool is
generating code for cross platform mobile apps. This work can be

enhanced for other mobile applications like android or iOS.

Sarra Roubi [7]

This paper is discussing the model driven approach for RIA
application using IFML(Interaction Flow Modeling Language).
Authors have defined metamodel for RIA and also developed the

transformation tool.

Sarra Roubi [8]

The authors have published paper in 2015 for RIA. Here the author
has discussed the approach for RIA MVC. They have defined
metamodels and developed the generating tool. They have
suggested to include more components in the future

Salvador Martinez et.
al [9]

In the paper the suite WebRatio is discussed which is developed by
authors for generating code for mobile applications. The tool is

generating the code for Apache Cordova framework

Kriengkri
Pongpanjanthra [10]

A tool is discussed in this paper developed in StarUML generating
the Ul of web portal from class diagram of navigation of web site.
Angular is used as front end technology for generating UI.
Functional requirements are not implemented here in this tool. This

tool is just generating the Ul of site with navigation functionality.

Jose Luis Herrero
Agustin [11]

In this paper a model driven architecture for web application
development is proposed. In this proposed method the focus is on
ajax tools. WCF which .NET technology for web service is focused
for backend code generation. A profile is developed with web

domain.

31

Siti Azreena Mubin.
[12]

In this paper a design mode called UEWDM (UML-Extension
Web Design Model) is proposed for the development of web
application. UEWDM is extension of existing web design model.
The focus of proposed designed model is on association and
relationship. In three main stages the proposed design model is
divided, namely navigational design, conceptual design and user

interface design.

Tomas Cerny [13]

In this paper three profiles are designed for the web application
which target the technologies like JPA, Hibernate. The profiles are
for class diagram. The future work is suggested to do this same

work for the advanced technologies

10

Nilber Vittorazzi
Almeida [14]

In this paper a code generation tool is presented which transform
code from FramWeb to CSharp code. The CRUD features are

generate for CSharp code in this tool.

11

Aljendro Cortines
[15]

In this paper a web based development tool is proposed which can
generate code using the agile methodology. And whenever changes
are made to the model those changes are also replicate on code also.
Future work is suggested to do the same work for modern

framework of web technologies

12

Zuriel Morales [16]

In this paper a tool is discussed which is developed by authors. In
the tool the web application code is generated from model of web
for PHP technology. In the model the archetiche can place the
entities of Form, input etc

13

Piero Fraternali [17]

In this paper Model driven approach for the web development is
propsoed which insteam of WEBML. The tool is for RIAs which
generate code from class diagram to java base mvc. View is

generate in LZX

32

14 | Rober Rodriguez- | The tool AutoCRUD developed by the authors is presented in this
Echeverria [18] paper. AutoCRUD is for webRatio which generate CRUD
operations in IFML (Interacting Flow Modeling Language). For
future work two things are suggested (1) enhancing the register
functionality to provide pattern-based IFML (2) From pre-existing
IFML model register patters

15 [Sofia Larissa da | In this paper the authors describe the designed Stereotype for Ul to
Costa [19] improve the development of Web Portals by using model driven
approach to build the Ul (User Interaction) for Web applications.
The proposed Ul Stereotype for Web Portals, can generate different
Web portals with the same intention and from a common set of

metamodels, fostering reuse in Ul Engineering.

2.2 Research Gaps

This section discusses the research gaps from the literature review. After analyzing the
above literature, it has been observed that many researches have worked on transformation of code
from models but we found that there is a very limited work to transform code from class diagram
to its specific technology [9, 10, 11]. The transformation from class diagram that is done is for old
technologies and also only for client side or server side technologies. Now a day in market SPA
(Single Page Application) is cry of the day in web development applications. Latest technologies
like Angular, React, vue etc. are emerged for Single Page Applications.

Woutthichai Chansuwath [1] has worked on transformation to angular but in this paper the author
has build profiles for parts of angular application. In this like activity this is a tedious task for the
System Analyst to make the diagram. There is a need if the Analyst to develop the methodology
where is system analyst is not aware of underlying technologies and the class diagram is build up,
after that the developer transform the class diagram to the scaffolding code of CRUD operations
in many technologies like angular, react, vue and server side technologies like ASP.NET Web API

and Entity Framework.

33

We also find that in Framework which have three famous approaches. One is Code First approach,
second is Database first approach and thirst is Model (EDMX) first approach. Entity framework
core is an Object Relational Mapper ORM in .NET core in which this is appreciated to follow the
code first approach although database first approach is also existing, but model (EDMX) first
approach is not existing in Entity Framework core. In code first approach which is highly
recommended, the code writing is a time consuming task. So in there is need of a methodology to

be developed for transformation of class diagram to Entity Framework classes.

34

Chapter 3
Proposed Methodology

35

CHAPTER 3: PROPOSED METHODOLOGY

As we have discussed that developing web applications in software industry is growing to
Single Page Application (SPA). Angular, React and Vue are well known client side technologes
technologies for SPA (Single Page Application). System Analyst build up class diagram for the
system.

As we discussed that software industry is growing towards Single Page Application
development (SPA) in web technologies. Developing such applications need two side development
one is client side and other is server side. It means that there will be entities models on both sides,
server side and client side. This chapter described our proposed methodology for the resolving the
issue discussed in the research gap.

In UML, a profile provides a light-weight generic extension mechanism that UML models
may be customized for particular platforms and domains. which are based on various elements:
Stereotypes (allow you to increase UML vocabulary) , Tag values(used to extend the UML
properties so that we can add additional information in the specification of a model element) and
Constraints(to specify conditions that must be held true at all time). These all are applied to
specific element of model such as Classes, Operations, Attributes, Activities etc.

3.1 Description

In our proposed methodology the system analyst has to design the class diagram by
applying the designed stereotypes and the software developer will generate the client side and
server side code will be generated for multiple technologies of Web Ul and Mobile applications.
The code generate from the class diagram is the scaffolding of CRUD operations for client side
and server side. The developer can easily change the code after getting the scaffolding. When the
system analyst build up the class diagram for software developers then the developer will
transform the Class diagram to code of underlying technologies like Angular, lonic, React and
React Native. The specialty of our proposed methodology is that the code generated is for both
web and mobile application. The code transformer is written in ACCELEO which is tool of eclipse.

Our proposed methodology is depicted in the Figure 3.1.

36

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Domain_model

O Aeceleo | CHEF Core

Model Classes

Service
code

Meta model rr__m | ASP.NET Web

API Controllers

RESTful Service
Templates

1

» Angular lonic
W—_ :> Mobile's | |
Hybrid app
Hybrid app Templates ¥ React Native
[rr_—

» Angular
e 9
[

Web app Templates Web App —

> ReactJS

Figure - 3.1: Proposed Methodology

Our proposed methodology is developed in Unified Modeling Language tool Papyrus
based on Eclipse. Our proposed profile provides stereotypes to properties of the class diagram
from where both server side and client side code is to be generated. These stereotypes are the
extensions of UML meta-classes and it provide support to modeling using multiple UML
diagrams. In our proposed methodology we have focused to make the profile very simple and easy
that new user can use the profile very easily and have no hurdles to apply the stereotypes of profiles
to the class diagram. The detail of stereotypes is described in this chapter.

On client side we have focused technologies like Angular, lonic, React and vuejs and on
server side we have focused the C# with ASP.NET WebAPI core and Entity Framework Core. In
our proposed methodology we have create some data types according to the data types of C#.
These data types are described in this chapter. We have create a structure of stereotypes related to
Application Structure are defined. The details of each of the stereotype along with its functionality
is discussed in the sub section. Transformation rules are defined for model to text transformation.
We have focused to make it so much easy for the system analyst to create the class diagram as per

the profile defined. The workflow of proposed methodology is shown in Figure 3.2.

37

Develop

System Analyst ~ ---- UML Model™™

Class Diagram

i i / ... Develop > ;
[eeeeeeeenees ><> [eeeee-- » ’ Instance Model /

I ; PR Applying Corresponding
Launcher Tool ; System Modeler : Stereoypes
Import UML Model Eclipse Papyrus : .
: Project Profiled Instance *
i : Model
: : Insert value for attributes of
[emmemmemmeee UML Model- -======--- stereotypes
Transformation Engine
RESTHul Service (ASP.NET
: WEB API)
Generated
Code
Fileg ==-n=-= > Web App Code (Angular)
Hybrid App Code (lonic)

Figure - 3.2: Workflow of Proposed Methodology

2.3 Data types

As discussed that we are targeting multiple technologies to generate code for. The data types of
C# are more from other concerned technologies so we focused on the C# to designee the data types
in the model. We designed the data types like Int32, byte, sbyte, short, ushort, int, uint, long, ulong,
float, double, decimal, char, bool, string and DateTime. The C# data types are chosen for modeling
because C# has more data types than other so we can easily implement the transformation for
other technologies. The data types designed | given in the Figure 3.3.

38

«DataTypes «DataTypes «DataTypes «DataTypes «DataTypes
shyte short int leng byte
«DataTypes «DataTypes «DataTypes «DataTypes «DataTypes
ushort FEE] yint ulong] float double
«DataTypes «DataTypes «DataTypes «DataTypes «DataTypes
decimal char string bool DateTime

Figure - 3.3: Data Types for Class Diagram

2.4 Enumerations

As we need enumeration in our model for stereotype, so the enumerations designed in our

proposed methodology is described one by one on this section.

2.4.1 HttpVerbsEnum

HttpVerbsEnum is for the action method of CRUD operation. This is to be applied to the

MetaClass of operation. The Enumeration is given in the Figure 3.4.

sEnumeration=
FE] HttpVerbsEnum

= Create
= Read

=l Update
= Delete

Figure - 3.4: Http Verbs Enumerations

39

2.4.2 StringDVDataTypeEnum

“StringDBTypeEnum” is the enumeration of list of database string data types. This is to be
applied the MetaClass of Property for the string data types. This is to specify for database that

what string data types should be in the database. The Enumeration is given in the Figure3.5.

«Enumeration»
‘€] StringDBDataTypeEnum
=l none
= varchar
= text
= nchar
= nvarchar
= ntext
= char

Figure - 3.5: String DB Data Type Enumeration

2.4.3 NavigationEnum

In our Ul the navigation panel is to set on left, right or top side. The navigation placement is
possible by “NavigationEnum” Enumeration. The “NaviagationEnum” is to be applied to

MetaClass of Property. The Enumeration is given in the Figure 3.5.

«Enumeration=
FE| NavigationEnum
= Top
= Lef
= Right

Figure - 3.5: Navigation Enumeration

2.4.4 StringValidationEnum

Normally in the applications the fields have validation like email, URL, onlyalphabets etc.
The validation means that the useer can enter data with some specific restriction otherwise the data

entered will not be acceptable. So for this purpose we have designed the enumeration

40

“StringValidationEnum”. The “StringValidationEnum” is to be applied to MetaClass of Property.

The Enumeration is given in the Figure 3.6.

«Enumeration»
EE StringValidatorEnum
= none
= email
= url
= onlyalphabets

Figure - 3.6: Validation Enumeration

245 FontlconEnum

In the Ul we are applying the font icon to each field for that purpose the “FontlconEnum” is
designed. The “FontlconEnum” is to be applied to MetaClass of Property. The Enumeration is

given in the Figure 3.7.

«Enumeration»
FontlconEnum

= none

= home

= city

= flag

= mall

= telephone
=l mobile
= calender
= password
= chair

= notes

= card

= building
= fingerprint
= person

Figure - 3.7: Font Icon Enumeration

41

2.4.6 CollectionPlacementEnum

In the Web Ul the tabular collection of objects is to be placed with editor page or separate
page, for this purpose the “CollectionPlacementEnum” enumeration is designed. The
“CollectionPlacementEnum” is to be applied to MetaClass of Property. The Enumeration is given
in the Figure 3.8.

«Enumeration»
€] CollectionPlacementEnum
=l SepartePage
= SamePage

Figure - 3.8: Collection Placement Enumeration

2.5 Stereotypes

The stereotypes of UML model designed in our proposed methodology is discussed one by one in

given below sections. The diagram of stereotypes is shown in

«Metaclasss
Property
«Stereotype» 4 «Stereotype»
PropertyAttributes IDAttributes
= + PlaceHolder: String [1] = + IdOption: DBKeyOptionEnum [1]
= + Fontlcon: FontlconEnum [1]
&= + ToolTip: String [1]
=] + IsRequired: Boolean [1]
«Stereotypes «Stereoctypes «Stereotype»
StringTypeAttributes IntegerTypeAttributes DateTypeAttribute
Eg + DBType: StringDBDataTypeEnum [1] = + Minimum: Integer [1] = + DateFormat: String [1]
+ MinimumLength: Integer [1] = + Maximum: Integer [1]
Eg + MaximumLength: Integer [1]
& + Validator: StringValidatorEnum [1]

=l + IsObjectRepresentation: Boolean [1]

Figure - 3.8: Property Attribute Stereotype

42

2.5.1 PropertyAttributes

The “PropertyAttributes” stereotype defined is of Meta-Class property. The

“PropertyAttributes ” stereotype is given in Figure 3.8. The properties in “PropertyAttributes ” are

discussed below

Placeholder: In the Ul of application, placeholder is used for the helping text inside
the control. By this property the system analyst can write the placeholder for a field of
class. “Placeholder ” is of type string.

Fontlcon: In the Ul of application there is an option to show the font icon with each
field of class. “Fontlcon ” is used for this purpose. “Fontlcon” if of enumeration type.
ToolTip: “ToolTip” is for the purpose of showing tip for the user of control. In the Ul
to show the tip the text is to be set in this property of stereotype.

IsRequired: “IsRequired” is for the purpose of required validation. Which this property
of stereotype is checked it means that user will enter this value otherwise the form will

not be submitted.

“PropertyAttributes” has four sub inherited stereotypes, named “StringTypeAttributes”

and “IntegerTypeAttribte ”, “DateTypeAttribute ”, “IDAttribute ”. Each of these is discussed below

in detail

2.5.2 StringTypeAttributes

“StringTypeAttributes” stereotype is inherited from “PropertyAttributes”. The properties

of “StringTypeAttributes " is discussed in detail below

DBType: “DBType " is of type “StringDBDataTypeEnum” enumeration. This for the
purpose of specifying the string fields of the class for database. When the C# code to
generate for Entity Framework core there is need for string data types to be specified
for according to database. In out methodology we are focusing on SQL Server database.
MinimumLenght: This is for specifying the minimum length of string type. This
property is of integer type.

MaximumLength : This is for specifying the maximum length of string type. This

property is of integer type.

43

e IsRepresentative : In the Ul the collection of items is to be shown in dropdown, list or
radio buttons. To show objects in collection one field need to display for each item. For
that purpose we have include the property “IsRpresentative” in the
“PropertyAttributes . This is of type Boolean, means that this can be set true or false.

e Validator: This property of stereotype is for the validation of controls. Validation can
be email, URL, onlyalphabets or any other thing. Validator is of type

“StringValidatorEnum ” enumeration.

2.5.3 IntegerTypeAttributes
“IntegerTypeAttributes” stereotype is inherited from PropertyAttributes. The properties of
“IntegerTypeAttributes ” is discussed in detail below
e Minimum: This is for specifying the minimum of integer type. This property is of
integer type.
e Maximum: This is for specifying the maximum of integer type. This property is of

integer type.

2.5.4 DateTypeAttributes

“DateTypeAttributes” stereotype is inherited from PropertyAttributes. The properties of

“DateTypeAttributes” is discussed in detail below

e DateFormat: For the developer this is required to give the format of date. This is

possible from this property of “DateTypeAttribute ”

2.5.5 |IDAttributes

“IDAttributes ” stereotype is inherited from PropertyAttributes. The properties of IDAttributes is discussed

in detail below

e IsID: “IsID” show that the field to which the stereotype is applied is to be ID (key)
field of the class.

2.5.6 OperationAttributes

“OperationAttributes ” stereotype is of type meta-class Operation. This is for the operation class diagram.

The model of OperationAttributes is given in the figure.

44

«Metaclass»
Operation

*

«Stereotype»
OperationAttributes

Ed - HttpVerb: HttpVe...

Figure - 3.9: Operation Attribute Stereotype

The detail of “Operationattribute ” is discussed below.
e HttpVerb: “Httpverb” is property of type “HttpVerbsEnum ” enumeration type. For

specifying the operation in the CRUD operation this stereotype can be used.

2.5.7 ModelAttributes

“ModelAttributes ” stereotype is of type meta-class Model. This for the Model of the diagram. The model of

“ModelAttributes” is given in the figure.

«Metaclasss
Model

*

«Stereotypes
ModelAttributes

(= + NavigationAllocation: NavigationEnum [1]
= + Namescpace: String [1]
=l + Web5ervicelrl: String [1]

Figure - 3.10: Model Attribute Stereotype

45

The detail of ModelAttributes is given discussed below

e NavigationAllocation: This property of stereotype “NavigationAllocation ” is of
type “NavigationEnum” enumeration. One can set the Navigation panel
placement in Ul by left or top.

e Namespace: This property of stereotype Namespace is of type string type. One
can write the namespace of application by using this stereotype.

e WebServiceUrl: The code generator is generating code for web API (web
service). To consume that web service in Ul, the web service URL is to be

mentioned in this property of stereotype.

2.5.1 ClassAttributes

“ClassAttributes ” stereotype is of type meta-class Class. This for the Class of the diagram.

The model of “ClassAttributes ” is given in the figure.

«Metaclass»
Class

«Stereotype»
ClassAttributes
£3 + CollectionPlacement: CollectionPlacementEnum [1]
=] + IsAutoCompleteForm: Boolean [1]
=l + IsRequiredinFrontEnd: Boolean [1]
=3 + Fontlcon: FontlconEnum [1]

Figure - 3.11: Class Attribute Stereotype

The detail of ClassAttributes is given discussed below

46

IsCollectionOnSamePage: This property of stereotype
“IsCollectionOnSamePage " is of type CollectionPlacementEnum enumeration. On
Ul the tabular collection of the objects is to be placed in the same of page of editor
or different page. This is possible by applying this stereotype.

IsAutoCompleteForm: This property of stereotype “IsAutoCompleteForm” is of
type Boolean. On Ul when the user enter some data in the fields next time the field
can be auto populated by writing the first character of the previous data. This is
called autocomplete. In our methodology this is possible by

“IsAutoCompleteForm” property of stereotype.

47

48

Chapter 4
Implementation

CHAPTER 4: IMPLEMENTATION

The implementation of our proposed methodology is discussed in detail in this chapter.
Papyrus modeling editor is used for modeling. Acceleo is used for the transformation from model
to text. The transformation engine transform the class diagram to Service side code like ASP.NET
Web API, Web App code like Angular and Hybrid App Code like lonic.

4.1 Web API Transformation

For web API the class diagram is transformed to C#. This is done for the controllers of
web APl and model classes of Entity Framework core.

4.1.1 Controllers

The controllers is the concept of MVC where the action methods are existing to respond in
to the action coming from view. The controller concept is also implemented in the ASP.NET Web
API. In Web API the action methods are according to the Http Verbs (GET, POST, PUT, and
DELETE) which is CRUD operation.

In our implementation we have generate controller for each class in the class diagram inside
the folder named Controllers on the root of project. The code for action methods of CRUD
operation is generated according to the “OperationAttributes” which is stereotype of meta-class
operation. The action methods of controller are beautified by HTTP verbs annotation. Table 4.1
show the implementation of HTTP verbs.

Table 4.1 - HttpVerbs transformation rule (CRUD)

No. HttpVerbsEnum HTTP Verbs C# annotation
1. Create POST [HttpPost]
2. Read GET [HttpGet]
3. | Read GET [HttpGet(*“{id}”]
4. | Update PUT [HttpPut(“{id}”]
5. | Delete DELETE [HttpDelete* {id}”]

Two action methods are generating for the GET HTTP Verb. One is without parameters which is

for retrieving all the record from database and other is with parameter of id of the class which is

49

for reserving of one record of specific id. All other action methods are according to the rules of
controller of ASP.NET Web API.

41.1 Models

Our methodology is generating server side model class code in C# for Entity Framework.
As we have discussed that Entity Framework Core and Entity Framework 7 have no features of
EDMX (A modeling tool in visual studio). We are transforming the class diagram to C# model
classes focusing on Entity Framework Core but this can also work for Entity Framework 7. From
these model classes the database tables is to be generated by using command Add-Migration and
Update-Database. For each class in diagram class is to be generated in C#. Implementation rules

are described in the following Table 4.2.

Table 4.2 - Transformation rules for RESTful API

g Category Language Generated File Naming Generated File Path UML
1 API Controller C# Class name + “Controller.cs” WebAPI/Controller

Class
2 EF Model Class C# Class name + “.cs” WebAPI/Model
3 Conext C# Model name + “Context.cs” WebAPI/Model Model

4.2 Web App Transformation

Transformation of Ul for Web App is done for angular 8. As discussed the code for angular
8 is in typescript. In our transformation engine the code is generated with best architecture
approach of Ul angular. On HTML side the reactive form approach code is generating in our code
generator. We have adopted the three layer architecture on the Ul side code. Services are generated
which communicate with the Web API. The data retrieval and data sending is possible by services.
Classes on typescript are generated according to the class diagram. The architecture of the Angular

is depicted in Figure 4.1

50

I Module N mModule

L]
ICovponent i Service
N S S R & Template "Metadata

i T T T T T T T
1 Module |« Medule | | Directive
! al 1! = 1 = N _
_=anis 1Kl = == {}
Event
lnjector Binding

ESED

Figure - 4.1: Architecture of Angular

The file types that we are generating by our code generator is listed below
Model classes

Services

View App Component

Code App Component

Module

View Component

Code Component

View Component-List

Code Component-List

The class are generated according to the classes in the model of class diagram. The description of
transformation rules for angular’s web app are described in Table 4.3.

Table 4.3 - Transformation rules for Angular code (Web App)

No

Category Language Generated File Naming Generated File Path UML

51

4.2 Hybrid App Transformation

Transformation of hybrid App is done for lonic. In our transformation engine the code is generated
with best architecture approach of lonic. We have adopted the three layer architecture on the Ul
side code. Services are generated which communicate with the Web API. The data retrieval and
data sending is possible by services. Classes on typescript are generated according to the class

diagram. The transformation rules of hybrid app in ionic is given in Table 4.4.

Table 4.4 - Transformation rules for RESTful API

No Category Language Generated File Naming Generated File Path UML
1 App Module Typescript “app.module.ts”
2 App Routing Typescript “app-routing.module.ts” lonic/App/ Model
HTML “app.Component.htm]”
3 App Component
TypeScript “app.Component.ts”
4 Inerface TypeScript Class name + “model.ts” lonic/App/ Model/
5 Service TypeScript Class name + “service.ts” lonic /App/Servies/
HTML Class name + “.page.html”
6 Page TypeScript Class name + “.page.ts” G /el R Cl PR T 2/ Class
TypeScript Class name + “.module.ts”
HTML Class name + “-list.page.html”
7 List Page TypeScript Class name + “-list.page.ts” G/ El R El PR T
TypeScript Class name + “-list. module.ts”

4.3 Transformation Engine Architecture

The architecture of the transformation engine is shown in Figure 4.2. The tool used for model to
text transformation is Acceleo. There transformation engine comprises of two main components

i.e. User Interface (UIl) and Acceleo transformation.

52

Architecture of Transformation Engine

Inputs

Mehade il

Datinaton
LI [y

N
=

Liser Interface
MainSereen. v
Lawncher.java
WIHMAIN
v
Text Refiner. java
Mol java

Acceleo Transformation

Generule. iva

generate.mtl

Tranalormation Rules

=E
Angular +
WEb API Code

Figure - 4.2: Transformation Engine Architecture

Main Interface: The main interface of the transformation engine consists of three main sub-

components which are WinMain, Main Screen, Launcher and Text Refiner. The main executor of

the transformation engine is Main Screen which provide list of actions it can perform and provide

graphical user interface with help of buttons and text field. The java classes which implement these

functionalities are Launch and WinMain. Text Refiner is a java class that convert the strings into

proper format for further use. The interface for transformation engine is provide in Figure 8.

Transformation Engine takes the UML model and path of output folder for generating the code

from model using the browse button. Generate button is provided to generate the required outputs.

Console shows the progress of the transformation process. A Reset is provided to clear all fields

i.e. input model path, output folder path and console. Close button is provided to closes the

interface from the screen.

53

{£/ Transformation Engine - u X

Input Model: | Browse...
Output Folder: Browse...
Reset senerate
Console
Close

Figure - 4.2: Transformation Engine Input Model Interface

4.3 Acceleo Code

The code structure of acceleo project is organized according to the target code. As the generator
is generating the code for angular web app, ionic hybrid app and ASP.NET web API, we have
organized the code structure according to the target code. The code structure and all the code of
angular web app, ionic hybrid app and ASP.NET Web API are shown in Figures 4.3. The main
module of the acceleo code is calling all the sub modules like angular, ionic and web api. The code
of main module of acceleo project is shown in Figure 4.5. The code for generating of angular’s
web app is shown in Figure 4.6. The code for generating ionic app is shown in Figure 4.7 and the
code for RESTful service is show in Figure 4.8.

54

W ';E org.eclipse.accelec.module.ClassDiagramTransformer
B\ IRE System Library [JavaSE-11]
E\ Plug-in Dependencies
w 2B src
i org.eclipse.acceleo.module.ClassDiagramTransformer

v L org.eclipse.acceleo.module.ClassDiagramTransformer.Angular
I AngularMainfodulemtl
1 AngularTypescriptMaodule.mtl
1 AngularViewModule.mil

v {2 org.eclipse.accelea.module.ClassDiagramTransformer.Common
I AngularCommoniodulemtl
L CueriesModule.mtl

v L org.eclipse.acceleo.module.ClassDiagramTransformer.lonic
I lenichMainbodulemtl
I lonicTypescripthodule.mtl
I

i)

v f} org.eclipse.acceleo.module.ClassDiagramTransformer.main
[J] Main.java
I rain.mitl

onicYiewhModulemtl

B org.eclipse.accelen.module.ClassDiagramTransformer.React)S
B org.eclipse.accelen.module.ClassDiagramTransformer.ReactMative
v {2 org.eclipse.acceleo.module.ClassDiagramTransformer.REST Service
I RESTServiceCSharpMainModule.mtl
I RESTServiceCSharpModulemtl

Figure - 4.3: Code structure of code generator

[comment encoding = UTF-8 /]
[module main{ 'http://www.eclipse.org/uml2/5.8.8/UML")/]
[import org::eclipse::accelec::module::ClassDiagramTransformer: :Angular: :AngularMainModule/]

[import org::eclipse::acceleo::module::ClassDiagramTransformer: :Ionic: :IonicMainModule/]

[import org::eclipse::accelec::module::ClassDiagramTransformer: :React]s: :React]SMainModule/]

[import org::eclipse::acceleo::module::ClassDiagramTransformer: :ReactNative: :ReactNativeMainMedule/]
[import org::eclipse::acceleo::module::ClassDiagramTransformer: :RESTService: tRESTServiceCSharpMainModule/]

[template public mainMedel(aModel : Model)]
[comment @main /]
[generateAngularCede(atodel)/]
[generatelenicCode(aMedel)/]
[generateRESTServiceCSharpCode (atodel)/]

[/template]

Figure - 4.5: Main module of Acceleo Project

55

[comment encoding = UTF-8 /]
[module AngularMainModule('http://www.eclipse.org/uml2/5.6.8/0ML")]

[import org::eclipse::acceleo::module::ClassDiagramTransformer: tAngular: :AngularTypeScriptModule/]
[import org::eclipse::acceleo::module::ClassDiagramTransformer: tAngular: tAngularViewModule/]
[import org::eclipse::acceleo::module::ClassDiagramTransformer: :Common: :AngularCommonModule/]

' [template public generateAngularCode(aModel : Model)]

[file {'Angular/App/app.module.ts’, false, "UTF-8")]
[modelToAngularApptiodule (aModel) /]

[/file]

[file {'Angular/App/routing/routing.module.ts’, false, "UTF-3"}]
modelToeAngularRoutingComponent(aMedel)/
[/File] B g-omp
ile

[file {'Angular/App/app.component.html’, false, 'UTF-8")]
modelToAngulardppCompenentView(aModel)/
B ppLomp
[/file]

[file ('Angular/App/app.component.ts’, false, 'UTF-8')]
[modelTeAngularAppComponentCode (aModel) /]
[/file]

[for (c: Class | aModel.ownedElement->filter(Class))]
[file {'Angular/App/shared/'+c.name+’.model.ts’, false, "UTF-3')]
[classTeTypeScriptInterface(c)/]
[/file]

[file {'Angular/App/shared/'+c.namet’.service.ts', false, 'UTF-8'}]
[classTeTypessriptService(c)/]
[/file]

[file {'Angular/App/'+c.name+’s/"+c.namet’/'+c.namet’ . component.html’, false, "UTF-3'}]

[f{.5c}assTnﬂngular[umpunentview(cjf]
ile

[file ('Angular/App/'+c.name+'s/"+c.name+’/'+c.namet’.component.ts’, false, 'UTF-8")]

[f{.5c}assTnﬂngular[umpunenttnde(c)!]
ile

[file {'Angular/App/'+c.name+'s/"+c.name+’/ +c.namet’-list.component.html', false, "UTF-3')]

[f{.Ec}assTnﬂngulartumpunentListview(c)f]
ile

[file {'Angular/App/'+c.name+'s/"+c.namet+’/'+c.namet’-list.component.ts', false, "UTF-8')]

[f{.Ec}assTnﬂngulartumpunentList[nde(c)f]
ile

[/for]
[/template]

Figure - 4.6: Angular module of Acceleo Project

56

[comment encoding = UTF-8 /]

[module IcnicMainModule("http://www.eclipse.org/uml2/5.8.8/UML"}]

[import org::eclipse::acceleo: :module: :ClassDiagramTransformer: :Tonic: :TonicTypeScriptModule/]
[import org::eclipse::acceleo: :module: :ClassDiagramTransformer: :Ionic: :IonicViewModule/]

[template public generatelonicCode(aModel : Model)]
[file ('Ionic/App/app.module.ts’, false, 'UTF-8'")]
[modelTolenicAppModule(aModel) /]
[/file]
[file {'Ionic/App/app-routing.module.ts', false, 'UTF-8'"}]
[modelTolenicRoutingMedule (aModel)/]
[/file]
[file {'Ionic/App/app.component.ts’, false, 'UTF-8')]
[modelTolenicAppComponentCode (aMadel) /]
[/file]
[file {'Icnic/App/app.component.html’, false, 'UTF-8"})]
[modelTolenicAppComponentView(aModel)/]
[/file]
[file {'Ionic/App/app.component.scss', false, 'UTF-8")]
[modelTocss(aModel)/]
[/file]
[for (c: Class | aModel.ownedElement->filter{Class))]
[file ('Ienic/App/Model/"+c.namet’ . model.ts®, false, 'UTF-8')]
[classToTypescriptInterface(c)/]
[/file]
[file ('Ionic/App/Services/'+c.namet’.service.ts’, false, "UTF-8'")]
[classToTypessriptService(c)/]
[/file]
[file ('Ionic/App/'+c.name.tolower()+'/ "+c.name.tolower()+' .module.ts', false, 'UTF-3')]
[classTolenicPageModule(c)/]
[/file]
[file ('Ionic/App/'+c.name.tolower()+'/ '+c.name.tolower()+" .page.ts’, false, "UTF-8'}]
[classTolenicPageCode(c)/]
[/file]
[file ('Ionic/App/'+c.name.tolower()+'/ "+c.name.tolower()+".page.spec.ts’, false, "UTF-8')]
[classTolonicPagespecsCode(c)/]
[/file]
[file ('Ionic/App/'+c.name.tolower()+'/ '+c.name.tolower()+' .page.html’, false, 'UTF-3'}]
[classTolonicPageView(c)/]
[/file]
[file ('Ionic/App/'+c.name.tolower()+'/ "+c.name.tolower()+'.page.scss’, false, 'UTF-3')]
[classTocss(c)/]
[/file]
[file ('Ionic/App/'+c.name.tolower()+'/ '+c.name.tolower()+ ' -list.module.ts", false, "UTF-8'}]
[classTolenicPagelistModule(c)/]
[/file]
[file ('Ionic/App/'+c.name.tolower()+'/ "+c.name.tolower()+'-1list.page.ts", false, "UTF-8')]
[classTolenicPagelistCode(c)/]
[/file]
[file ('Ionic/App/'+c.name.tolower()+'/ '+c.name.tolower()+ ' -list.page.html’, false, "UTF-8'}]
[classTolonicPagelistview(c)/]
[/file]]
[file ('Ionic/App/'+c.name.tolower()+'/ '+c.name.tolower()+ ' -list.page.scss", false, "UTF-8'"}]
[classTocss(c)/]
[/+ile]
[/fer]
[/template]

Figure - 4.7: lonic module of Acceleo Project

57

[comment encoding = UTF-8 /]
[module RESTServiceCSharpMainModule('http://www.eclipse.org/uml2/5.8.8/UML"Y]
[import org::eclipse::accelec::module::ClassDiagramTransformer: :RESTService: :RESTServiceCSharpiodule/]

template public generateRESTServiceCSharpCode(aModel : Model
P p g p
file (aModel.name+'Lpi/Model/ " +aModel.name + "Context.cs', false, 'UTF-8'
p
[modelToContextClass(aModel} /]
[/file]

[for (c: Class | aModel.ownedElement->filter({Class))]
[file (c.getModel().name+'Api/Model/ " +c.name + '.cs', false, 'UTF-3")]
[classToEFCorePOCO(c) /]
[/file]

[file (c.getModel().name+'Api/Controllers/’'+c.name + 'Controller.cs', false, 'UTF-8')]
[classTokebAPICoreController{c)/]
[/file]

[/for]
[/template]

Figure - 4.8: ASP.NET Web API module of Acceleo Project

58

Chapter 5
Validation and verification

59

CHAPTER 5: VALIDATION

After implementing a proposed methodology, validation is an important step in the field of
research and especially in Model Driven Software Engineering. In this section the proposed and
implemented methodology is discussed in detail. We have validated our proposed methodology
by two case studies. One is Auditing System discussed in Section 5.1 and other is LEXPERT (Lab
Expert which is Pathology lab Management System) discussed in Section 5.2.

5.1 Auditing System — A Case Study

Auditing System is the web based application for entering the data of audit performed by
auditor. This is a small application already developed in ASP.NET Core. We choose this as best
case study for our proposed methodology. This case study is divided into four sections. Firstly, the
requirements of the real time chat application are discussed in Section 5.1.1. Secondly, Section
5.1.2 contains the UML class diagram applied profile to present the system architecture of the
required system. Section 5.1.3 shows the transformation results in the form of generated code.

And finally, Section 5.1.4 contains verification of the system.

5.1.1 Requirements of Auditing System

This system is for keeping the record of auditing that is auditing for a company. The
fuctional requirements for this system are given below

There should be many auditing companies.

One auditor can do job only in one company

There should be many employees in one company

Auditing of client company can be done by only one company
The user could create, read, update and delete auditing company
The user could create, read, update and delete auditing employee
The user could create, read, update and delete auditing client
The user could create, read, update and delete auditing audit

5.1.2 Modeling

The class diagram of auditing system is designed and the designed profile and data types are
applied. The class diagram after applying the profile is show in Figure 5.1.

60

=(lassStereotypes

H ClientCompany H AuditCompany
& «IdPropertyStereatypes + ClientCompanyld: int [1] & «ldPropertyStereotypes + AuditCompanyld: int [1]
O «5tringPropertyStereotypes + Name: string [1] & «StringPropertySterectypes + Mame: string [1]
& «StringPropertyStereatypes + StreetAddrees: string [1] (& «StringPropertyStereotypes + StreetAddress: string [1]

= «5tringPropertyStereotype» + Emial: string [1]

1 + clientcompany + alditcompany

+audit ¥ + employke *
L] L]
E Audit E Employee
= «ldPropertyStereotypes + Auditld: int [1]) = «ldPropertyStereotypes + Employeeld: int [1]
= «StringPropertyStereotype» + LogPort: string [1] - audit Tz «5tringPropertyStereotypes + FirstName: string [1]
= «DatePropertyStereotype» + DatelsoLog: DateTime [1] *——— | (& «5tringPropertyStereotype» + LastName: string [1]
= «DatePropertyStereotype» + DateCheckFrom: DateTime [1] | = + emplojé& «5tringPropertyStereotypes + StreetAddress: string [1]
= «StringPropertyStereotypes + Notes: string [1] =1 «StringPropertyStereotypes + Phone: string [1]

Figure - 5.1: Class diagram of Auditing System with applied stereotypes

5.1.3 Code Generation

This section highlights the code generation process from our proposed transformation engine.
Required input for the transformation is Class diagram which is UML model with extension .uml.
UML model with .uml extension is selected as input model and target folder on is provided as
output folder for generated code files. Code is generated for ASP.NET Web API, Angular and
lonic. The structures of generated files are shown in the Figure 5.2, 5.3 and 5.4. The generated

code is show in Figures 5.5 t0 5.17

w [= Angular
w [= App
= AuditCompanys
w = Audits
= Audit
= ClientCompanys
= Employees
[= routing
= shared
< » app.component.html
TS5 app.component.ts
TS app.modulets

Figure - 5.2: Files Structure of Angular’s Generated Code

61

v (= App
w = audit

TS audit-listmedulets
< » audit-list.page.html
“ audit-list.pagescss
TS audit-list.pagets
TS audit.medulets
< » audit.page.html
& audit.pagescss
TS audit.page.spects
TS audit.pagets

= auditcompany

[clientcompany

= employee

= Model

== Services

TS app-routing.modulets

< » app.component.html

¢ app.component.scss

TS app.componentts

TS app.modulets

Figure - 5.3: Files Structure of lonic’s Generated Code

w [= Api

w = Controllers
C# AuditCompanyController.cs
C# AuditController.cs
C# ClientCompanyController.cs
C# EmployeeController.cs

w = Model
C# Audit.cs
C+ AuditCompany.cs
C# AuditingSystemContext.cs
C# ClientCompany.cs
C# Context.cs
C# Employee.cs

4t

Figure - 5.4: Files Structure of Web API’s Generated Code

62

= A Case Study - Auditing System
v'_é‘ org.eclipse.accelec.module.ClassDiagramTransfermer
=\ JRE Systern Library [JavaSE-11]
=\ Plug-in Dependencies
v [src
f org.eclipse.accelea.module.ClassDiagram Transformer
2 org.eclipse.acceleo.module. ClassDiagramTransformer.Angular
~ & org.eclipse.accelen.module ClassDiagram Transformer.Commen
1@ AngularCommonModule.mtl
[QueriesModule.mt!
2 org.eclipse.acceleo.module. ClassDiagramTransformer.lonic
~ Hi org.eclipse.accelen.module.ClassDiagram Transformer.main
[3] Mainjava
L& main.mtl
2 org.eclipse.acceleo.module.ClassDiagramTransformer.React)S
& org.eclipse.accelen.module ClassDiagram Transformer.ReactNative
w H org.eclipse.acceleo.module.ClassDiagramTransformer RESTService
1| RESTServiceCSharpMainModule.mtl
l# RESTServiceCSharpModule.mt!
7 META-INF
w [src-gen
(= Angular
~ = Api
~ = Controllers
C# AuditCompanyController.cs
C# AuditController.cs
C# ClientCompanyController.cs
C* EmployeeController.cs
~ = Model
C# Audit.cs
C# AuditCompany.cs
C+# AuditingSystemContext.cs
C# ClientCompany.cs
C# Employee.cs
(= lonic
(= tasks
\my build.properties

» L—_ﬂ?org.ecllpse.a(ce\eo.mDdu\e.CIasleagramTransformer b (= sre-gen b 2 Api b (= Model b C* Employeecs

1 using System;

2 using System.Collections.Generic;

3 using System.ComponentModel.DataAnnotations;

4 using System.ComponentModel.DataAnnotations.Schema;
5 using System.Ling;

6 using System.Threading.Tasks;

7

8

namespace AuditingSystemApi.Models

95
1@ public class Employee

ue {

12 public Employee ()

13 {

14 }

15

16 [Key]

17

182 public int Employeeld { get; set; }

19

28 [Column(TypeName = "wvarchar(48)")]

218 public string FirstName { get; set; }

22

23 [Column(TypeName = “varchar(48)")]

242 public string LastName { get; set; }

25

26 [Column(TypeName = "varchar(158)")]
272 public string StreetAddress { get; set; }
28

29 [Column(TypeName = “varchar(11)")]

362 public string Phone { get; set; }

31

32

33

34 public int AuditCompanyId { get; set; }
35 public AuditCompany AuditCompany { get; set; }
36

37 public IList<Audit> Audits { get; set; }
38

39 }

40 }

41

az |

Figure - 5.5: Generated Code for Model of EF Core

= A Case Study - Auditing System
VE; org.eclipse.acceleo.medule.ClassDiagramTransformer

1
= JRE System Library [JavaSE-11] 2
=\ Plug-in Dependencies 3
v [src 4
i org.eclipse.acceleo.module ClassDiagramTransformer :
2 org.eclipse.accelen.module ClassDiagramTransformer. Angular 5
w {2 org.eclipse.acceleo.module.ClassDiagramTransformer.Common 8
14 AngularCommenMedule.mt] as
4 QueriesModule.mtl 18
H2 org.eclipse.acceleo.module.ClassDiagramTransfermer.lonic E_
~ f# org.eclipse.acceleo.module ClassDiagram Transformer.main 3
[Mainjava 14
[main.mtl 15
2 org.eclipse.acceleo.module.ClassDiagramTransformer.React)s 16
£ orgeeclipse.acceleo.module ClassDiagram Transformer ReactMative |+~
v 2 org.eclipse.accelea.module ClassDiagramTransformer.RESTService 19
i RESTServiceCSharpMainMedule.mtl 20
|4 RESTServiceCSharpModule.mtl 21
= META-INF 228
[src-gen ;i
= Angular 25
v (= Api 26
~ = Controllers 27

C# AuditCompanyController.cs
C* AuditController.cs
C# ClientCompanyController.cs
C# EmplayesController.cs
v (= Model
C# Audit.cs
€+ AuditCompany.cs
€+ AuditingSystemContext.cs
C# ClientCompany.cs
€+ Employee.cs
(= lonic
(= tasks
|6y build properties

using Microsoft.AspNetCere.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

using System;

using System.Ccllections.Generic;

using System.Ling;

using System.Threading.Tasks;

namespace AuditingSystemApi.todels
public class AuditingSystemContext : IdentityDbContext

public AuditingSystemContext(DbContextOpticns<AuditingSystemContext> options)

}

public jee> Employee { get; set; }

public DbSet<ClientCompany> ClientCompany { get; set; }

public Dbset<audity Audit { get; set; }
public DbSet<AuditCompany> AuditCompany { get; set; }

ride void OnMedelCreating(MedelBuilder modelBuilder)

base.OnMadelCreating (modelBuilder);

Figure - 5.6: Generated Code for Context of EF

63

» 'Lr_";‘org‘echpse‘accaleumudu\e‘CIasleagramTran:forrﬂer b [sre-gen b (5 Api b [Model » € AuditingSystemContext.cs

: base(options)

= A Case Study - Auditing System
~ 1 org.eclipse.acceleo. module.ClassDiagramTransformer
= JRE System Library [JavaSE-11]
=i Plug-in Dependencies
~ @8 src
org.eclipse.acceleo.module.ClassDiagramTransformer
B3 org.eclipse.acceleo.module.ClassDiagramTransformer.Angular

SO R W

~ [org.eclipse.acceleo.module.ClassDiagramTransfermer.Common

oo

L AngulartCommonModule.mt!
1) QueriesModule.mtl
2 org.eclipse.acceleo.module.ClassDiagramTransformer.lonic
~ # org.eclipse.acceleo.module.ClassDiagramTransformer.main
4] Main.java
I main.mtl
2 org.eclipse.acceleo.module.ClassDiagramTransformer Reactls :
2 org.eclipse.acceleo.module.ClassDiagramTransformer ReactNative ’

5
i

~ 2 org.eclipse.acceleo.module.ClassDiagramTransformer.RESTService
[l RESTServiceCSharpMainMedule.mtl
I RESTServiceCSharpModule.mtl

o

@

= META-INF 2

~ [src-gen -
v (= Angular <o

~ (= App 6

= AuditCompanys 7

= Audits 3

3
3
3
3
3
3
3
3

(= ClientCompanys

(= Employees

(= routing

(= shared

<> app.component.html

TS app.compenent.ts
TS app.modulets
~ = Api
~ = Controllers

7}

o @

s

€+ AuditCompanyController.cs
C# AuditController.cs
C# ClientCompanyController.cs

ST
Shrl e
T

€+ EmployeeController.cs
~ = Model
C# Audit.cs
C# AuditCompany.cs
C# AuditingSystemContext.cs
C# ClientCompany.cs
C# Employes.cs

9

&

(= lonic =2
(= tasks zi'
s build.properties =5
v [Porfile-EmpowerClassDiagram 56

using
using
using
using
using
using

ivate readonly A Case Study - Auditing Sy

» 1= org.eclipse.acceleo.module.ClassDiagramTransformer » (= src-gen b (5> Api b [Controllers » €+ EmployeeController.cs
using System.Threading.Tasks;
ing Microsoft.AspNetCore.Http;
crosoft. AspletCore.Myc;
Microsoft.EntityFrameworkCore;
system.Collections.Generic;
System.Ling;
AuditingSystemApi.todels;

namespace AuditingSystemApi.Controllers

erBase

temContext _context;

EmployeeController(s Case Study - Auditing SystemContext context)

_context-context;
api/Employee
et]
IEnumerable<Employes> GetEmployee()

return _context.Employee;

nResult> GetEmployee([FromRoute] int id)
if (!ModelState.IsValid)
i

return BadRequest(ModelState);
¥

var employee - await _context.Employee.Findasync(id);
if (employee == null)
i

return NotFound();
1

return Ok(employee);

nResult> PutEmployee([FromR

cute] int id,

jee employee)
if (IModelstate.Isvalid)
i

return BadRequest(ModelState);

Figure - 5.7: Generated Code for ASP.NET Web API Controller

=% A Case Study - Auditing System
v 'g,f; org.eclipse.accelec.module.ClassDiagramTransformer
=\ JRE System Library [JavaSE-11]
= Plug-in Dependencies
v [src
£ org.eclipse.acceles.module.ClassDiagramTransformer
H org.eclipse.acceleo.module.ClassDiagramTransformer.Angular
w % org.eclipse.acceleo.module.ClassDiagramTransformer.Common
1 AngularCommonModule.mtl
& QueriesModule.mtl
H org.eclipse.acceleo.module.ClassDiagramTransformer.lonic
w 1 org.eclipse.accelen.module.ClassDiagramTransformer.main
Main,java
&1 main.mtl

H% org.eclipse.acceleo.module.ClassDiagramTransformer.React)S
2 org.eclipse.acceles.module.ClassDiagramTransformer.ReactMative
w HL org.eclipse.accelec.module.ClassDiagramTransformer,RESTService
= RESTServiceCSharpMainModule.mitl
] RESTServiceCSharpModule.mtl
4= META-INF
v = src-gen
~ [= Angular
~ = App
= AuditCompanys
(= Audits
= ClientCompanys
= Employees
(= routing
(= shared
<> app.component.html

TS app.compeonentts
15 app.modulets
= Api
== lonic
(= tasks
|14 build.properties

7]

[N Y R

=)

G B W E S

R

- &

[

~ @k

2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3

a

B
@

Wk

import { BrowserModule } from ‘@angular/platform-browser®;
import { MgModule } from ‘@angular/core’;
impert { FormsModule, ReactiveFormsModule } from “@angular/forms™
import { HttpClientModule } from “@angular/common/http"
import { BrowserAnimationsModule } from '@angular/platform-browser/animations’;
import { ToastrModule } from 'ngx-toastr';
import { AppComponent } from './app.component';
import { MatToolbarModule, MatIconModule, MatSidenavModule, MatListModule, MatButtonM
import { RoutingModule } from './routing/routing.module’;
import { MainNavComponent } from './main-nav/main-nav.component’;
import { LayoutModule } from '@angular/cdk/layout’
import { EmployeeComponent } from './Employees/Employee/Employee.component’;
import { EmployeelistComponent } from './Employees/Employee/Employee-list.component’;
import { EmployeeService } from './shared/Employee.service’;
import { ClientCompanyComponent } from './ClientCompanys/ClientCompany/ClientCompany.
import { ClientCompanylListComponent } from './ClientCempanys/ClientCompany/ClientComp
import { ClientCompanyService } from './shared/ClientCompany.service’;
import { AuditComponent } from './Audits/Audit/Audit.component’;
import { AuditlistComponent } from './Audits/Audit/Audit-list.component’;
import { AuditService } from './shared/Audit.service’;
import { AuditCompanyComponent } from './AuditCompanys/AuditCompany/AuditCompany.comp
import { AuditCompanylListComponent } from './AuditCompanys/AuditCompany/AuditCompany-
import { AuditCompanyService } from './shared/AuditCompany.service’;
@NgModule ({
declarations: [

AppComponent,

MainNavComponent,

EmployeeComponent,

EmployeelListComponent,
ClientCompanyComponent,
ClientCompanyListComponent,
AuditComponent,
AuditlistComponent,
AuditCompanyComponent,
AuditCompanylistComponent,

:

imports: [
BrowserModule,
FormsModule,
HttpClientModule,

Figure - 5.8: Generated Code for app.module.ts

64

1= A Case Study - Auditing System
V‘;_‘-? org.eclipse.accelen.module.ClassDiagramTransformer
=\ JRE System Library [JavaSE-11]
=\ Plug-in Dependencies
R src
o= META-INF
v [= src-gen
w [Angular
v = App
= AuditCompanys
= Audits
(= ClientCompanys
= Employees
= routing
(= shared
< » app.component.html
TS5 app.component.ts
TS app.modulets
= Api
= lonic
(= tasks
¢ build.properties

import { Component } from ‘@angular/core’;

2 import { RouterModule } from '@angular/router’;
3

4 [BComponent({

5 selector: 'app-root’,

6 templateUrl: './app.component.html’

7 //styleUrls: ['./app.component.css']

CR S

9 export class AppComponent {

1@ title = 'angularg’;

}

o
a k

Figure - 5.9: Generated Code for Angular’s app.component.ts

=% A Case Study - Auditing System
w 19‘ org.eclipse.accelec.module.ClassDiagramTransformer
B\ JRE System Library [JavaSE-11]
B\ Plug-in Dependencies
(= src
= META-INF
w (= src-gen
w [= Angular
v (= App
(= AuditCompanys
= Audits
= ClientCompanys
= Employees
= routing
= shared
< app.component.html

R |

TS app.component.ts
TS app.modulets
= Api
(= lonic
(= tasks
|y build.properties

T I S

<mat-toolbar color="

<mat-toolbar-row

<a mat-button

<a mat-button

<a mat-button

<a mat-button

</mat-toolbar-row>
</mat-toolbar>

<router-outlet></router-outlet>

primary™>

[routerLink]=
[routerLink]=
[routerLink]=

[routerLink]=""/employee-list"

Jauditcompany-list"”

» 'Lr_ﬂ;org.eclipsa‘a:celeo.module.C\assDiagramTransformer b [src-gen » [Angular » [App » < app.componenthtml »

"> Employee

st' "> ClientCompany
list'">» Audit</a»
> AuditCompany

Figure - 5.10: Generated Code for Angular’s app.component.html

65

(3 A Case Studly - Auditing System
w12 orgeeclipse.accel dule.ClassDi
£-11]

B\ JRE System Library [Jo
=, Plug-in Dependencies
v (@ sre
org eclipse.acceleo.module. ClassDiagramTransformer
~ B2 org.eclipse.accelea.module.ClassDiagram Angular
& AngularMainModulemtl
[AngularTypeScriptModule.mtl

|| AngularViewModule.mt!
B org.eclipseacceleo.module.ClassDiagramTransformer Common
ClassD I

rg.eclipse.accel
~ 3 orgeeclipse.acceles.module.ClassDi
1] Mainjava
) main.mtl
rg eclipse.acceles.module.ClassDi Reactls
ﬂ rg.eclipse.accel dule.ClassDi ReactNative
rg.eclipse.acceleo.module.ClassDi RESTService
5 META-INF
v & sre-gen
v (= Angular
v & App
(= AuditCompanys
(= Audits

(= ClientCompanys
~ (5 Employees
v (= Employee
<> Employee-list.compenent html
TS Employee-list.component.ts
<> Employee.componenthtml
TS Employee.component.ts
(5 routing
(= shared
<> app.compenenthtml
TS app.compenent.ts
TS app.modulets
= Api
(= lonic
(& tasks
i build.properties

(5 A Case Study - Auditing System

rg.eclipse.acceleo.module ClassDi
B JRE System Library [JavaSE-11]
B\ Plug-in Dependencies

v @ sre
H# org.cclipse.acceleo.module.ClassDiagram Transformer
v 83 org.eclipse.acceleo.module.ClassD ngular

1A AngularMainModulemtt
) AngularTypeScriptModule mtl
1 AngularViewhodule.mtl

£ org.eclipse.acceleo.module.ClassD Commen
£ org.eclipse.acceleo.module.ClassD I
v 8 org.eclipse.acceleo.module.ClassD
(1) Mainjava
|| main.mtl
rg.eclipse acceleo.module.ClassD Reactls
£ org.eclipse.acceleo.module.ClassD ReactNative
rg.eclipse.accel dule.ClassDi RESTService
= META-INF
v (& sre-gen
~ (= Angular
v = App
(= AuditCompanys
& Audits

(= ClientCompanys
v (= Employees
~ [Employee
< Employee-list.component.html
TS Employee-list.component.ts
<> Employee.component.html
TS Employee.component.ts
(= routing
(= shared
< app.component html
TS app.compenentts
TS app.modulets
= Api
& lonic
(= tasks
i build.properties

W N BN RN

<form [formGroup]

<div class="row">

<div class="col-md-5" style="margin: 10px" >
mployeeForm” autocomplete="off" (ngSubmit)="onSubmit()">
Employee <button class="btn btn-basic btn-lg" (click)="navigateToEmployeelist()"><i class="fas fa-arrow-alt-circle-left"></i> Back</button>
<input type="hidden” name="employeeId" [value]="service.fornData.employeeld"™>
<div class="ferm-group"s
<div class="input-group">
<div class="input-group-prepend”>

<div class="input-group-text bg-white">
<i class="fas fa-user-circle” [ngclass]="{ 'green-icon': employeeForm.controls['firstiame'].valid, 'red-icon’: employeeForm.
</divs
</div>
<input name="firstiame" fornControlName="Ffirstlame" type="text” class="form-control” placeholder = "First Name” type="text">
</div>
</dive

<div class="form-group"s
<div class="input-group">
<div class="input-group-prepend”>
<div class="input-group-text bg-white">

<i class="fas fa-user-circle” [ngClass]="{ 'green-icon': employeeForm.controls[‘lastName'].valid, ‘red-icon’: employesForm.c
</div>
</div>
<input name="lastName” formControlName="lastName” type="text” class="form-control” placeholder = "Last Name" type="text">
</div>
</div>

<div class="form-group">
<div class="input-group">
<div class="input-group-prepend"s

<div class="input-group-text bg-white">
<i class="fas fa-home” [ngClass]="{ "green-icon': employeeForm.controls[’streetAddress’].valid, "red-icon': employeeForm.con
</div>
</diy>
<input name="streetAddress” formContrellame="streetAddress" type="text" class="form-contrel” placeholder = "" type="text">
</div>
</div>,

<div class="form-group">
<div class="input-group">

<div class="input-group-prepend"s

<div class="i

<input name="phone" formControllame="phone” type="text” class="form-control” placeholder = "Phone” type="text">
</div>

</div>

import { Compenent, OnInit } from ‘@angular/core’;
import { FormBuilder, NgForm, Forméroup, Validaters } from "@angular/forms’;
import { ToastrService } from 'ngx-toastr';

inport { Router } from '@angular/router’;

import { Employeeservice } from 'src/app/shared/employee.service’;

import { AuditCompanyService } from 'src/app/shared/AuditCompany.service’;
import { AuditCompany } from 'src/app/shared/AuditCompany.model’;

(iComponent ({
selector: "app-Employee’,

templateurl: *./employee.component.htnl’,
styles: []

)

export class EmployesComponent implements OnInit {

employeeForm: FormGroup;
constructor(private service:EmployeeService, private toastr:ToastrService, private router:Router,private formBuilder: FormBuilder
, private AuditCompanyService:AuditCompanyService

Y it

ngonInit() {
this.createFormBuilder();
this.employeeForm. valueChanges. subscribe(value=>{
this.service. formDatasvalue;

b

this.AuditCompanyService. refreshList();

¥

createFornBuilder() {
if (this.service. formData==null)
this.setDefaultFormvalues();
this.employecForm=this. fornBuilder.group({

firstiame:[this.service. fornData. firstiame, [Validators.pattern(*"),Validators.required,Validators. minLength(1),Validators. .maxLength(28)]1,
lasthame: [this.service. fornData. lasthame, [Validators.pattern(""),Validators. required,validators.minLength(1),Validators.naxLength(48)]],
streetAddress: [this.service. fornData.streetaddress, [,Validators.minLength(1),Validators . maxLength(150) 11,

phone: [this.service. fornData. phone, [,Validators. minLength(11),Validators.maxLength(11) 1],

auditCompany: [null,
[validators.required]

1.
e

Figure - 5.12: Generated Code for Code for Angular’s Components — Employee

66

[A Case Study - Auditing System <button class="btn btn-basic" (click)="navigateToNewEmployee()"><i class="fas fa-plus"></i> New</button>

v 12 org.eclipse.acceleo.module ClassDiagramTransformer 2 <table class="table table-hover”>
\ i JavaSE- 3 <tr>
EL J;E S’f“;"‘ L'T'y[_" asE-11] a <th>Employeeld</th>
B\ Flug-in Uependencies 5 <th>FirstName</th>
~ (# src 3 <thzLastName</th>
org.eclipse.accelec.medule.ClassDiagramTransformer 7 <th>StreetAddress</th>
w H2 org.eclipse.acceleo.module.ClassDiagramTransformer. Angular i <th>Phone</th>
[AngularMainModule.mt! 9 :;::‘:“””“"“
ul AngularTypeScriptModule.ml 1 <tr *ngfor="let record of service.list™>
& AngularViewMeodule.mil 12 <td>{{record.employeeId}}</td>
£ org.eclipse.acceles.module.ClassDiagramTransformer.Common 13 <td>{{record.firstName}}</td>
& org.eclipse.acceleo.medule.ClassDiagramTransformer.lonic 14 <td>{{record.lastName}}</td>
B org.eclipseacceleo.module ClassDiagramTransformer.main L <td>{{record.streetiddress}c/td>
@ Maing 16 <td>{{record.phone}}</td>
ain.java 17
[main.mtl 18 <td>
2 org.eclipse.acceleo.module.ClassDiagramTransformer.ReactS 19 <i class="fas fa-edit fa-lg text-secondary” (click)="populateForm(record)"></i>
B, org.eclipse.accelea.module ClossDiagramTransformer ReactNative 20 <i class="far fa-trash-alt fa-lg text-danger” (click)="onDelete(record.employeeld)”></is
3 org.eclipse.acceles.module ClassDiagramTransformerRESTService 21 </td>
7= META-INF 4]
v [sre-gen 24
~ = Angular 25
v & App EE ey
. 27 r
& AuditCompanys e toples
(= Audits -

(= ClientCompanys
v [= Employees
v = Employee
<> Employee-list.compenent.html
TS Employee-list.component.ts
<> Employee.compenent.html
TS Employee.component.ts
(= reuting
(7= shared
< app.compenenthtml
TS app.componentts
TS app.modulets
= Api
= lonic
(= tasks
6ty build.properties

Figure - 5.13: Generated Code for Angular’s View of Components-List — Employee

import { Component, OnInit } from ‘@angular/core’;

1= A Case Study - Auditing System

w12 org.eclipse.acceles.module.ClassDiagramTransformer 2 import { Router } from '@angular/router’; .
- =, JRE System Library [15 3 import { EmployeeService } from 'src/app/shared/Employee.service’;
- y e 4 import { Employee } from 'src/app/shared/Employee.model’;
=\ Plug-in Dependencies - ;
~ (3 src 5 @Component({
£ org.eclipse.acceleo.module.ClassDiagramTransformer 7 selector: 'app-Employee-list’,
v {2 org.eclipse.acceleo. module ClassDiagramTransformer.Angular 8 templateUrl: './Employee-list.component.html’,
5 .
[AngularMainModule.mtl - styles: []
& AngularTypeScriptModule.mtl 11 export class EmployeelistComponent implements OnInit {
=1 AngularViewhodule.mtl 12
2 org.eclipse.acceleo.medule.ClassDiagramTransformer.Common 13 constructor(private service:EmployeeService, private router:Router) { }
org.eclipse.accelen.module. ClassDiagramTransformer.lonic 14
B org P 9 15 ngonInit() {

w # org.eclipse.accelec.module ClassDiagramTransformer.main
Main.java

=1 main.mtl
2 org.eclipse.acceles.medule.ClassDiagramTransformer.ReactlS
H org.eclipse.acceles.module.ClassDiagramTransfarmer.ReactMative
2 org.eclipse.acceleo.module.ClassDiagramTransformer,RESTService

o

this.service.refreshList();

¥

populateForm(intance:Employee){
this.service.formData= Object.assign({}.intance);
this.router.navigate(['/employee']);

9

5 @

- 2 }
= META-INF 3
~ [src-gen a onDelete(id) {
~ [Angular 5 if({confirm('Are you sure to delete this record 2'))
w = App & this.service.deleteEmployee(id)
= AuditCompanys 7 '}S“h“”hE(”ES =1
3 B
= Audits 5 err=3{
= ClientCompanys console.logierr);
~ (= Employees 1

w = Employee }
< » Employee-list.component.html
TS Employee-list.component.ts
< » Employee.component.html
TS Employee.component.its
= routing
= shared
<> app.componenthtml
TS app.component.ts
TS app.modulets
= Api
= lonic
(= tasks
loi¢ build.properties

navigateToNewEmployee(){
this.service.resetFormData();
this.router.navigate(['/employee']);

}

R =

LWL LW WL LW LW R BRI R R P MR MR
b o

o o

Figure - 5.14: Generated Code for Code of Components-List — Employee

67

5 Project Bxplorer 22

= META-INF ~
~ [sre-gen
~ (= Angular
v = App
~ (= Audits
v (= Audit
@ Audit-list.component.ht
Audit-list.component.ts
& Audit.component.html
= Audit.component.ts
(= Clients
(= Companys
(= Employees
(£ routing
(= shared
@ app.compenenthtml

app.component.ts

app.module.ts
(= AuditingSystemApi
[tasks
4 build.properties
& PropertiesProfile
v (& QuickUseProfile
~% QuickUseProfile.profile
& tutorial_Papyrus v
< >

;. Model Explorer 52

T

Mo Model Available

Figure - 5.15: Generated Code for Angular’s Code Components-List — Employee

5 Project Bxplorer 22

= META-INF ~
~ [sre-gen
~ (= Angular
v = App
~ (= Audits
v (= Audit
@ Audit-list.component.ht
Audit-list.component.ts
& Audit.component.html
Audit.component.ts
(= Clients
(= Companys
(= Employees
(£ routing
(= shared
@ app.compenenthtml

app.component.ts

app.module.ts
(= AuditingSystemApi
[tasks
4 build.properties
& PropertiesProfile
v (& QuickUseProfile
~% QuickUseProfile.profile
& tutorial_Papyrus v
< >

;. Model Explorer 52

= B i 1%

Mo Model Available

Figure -

udit.componentts £ udit html

1import { Component, OnInit } from '@angular/core’;
2import { Formsuilder, NgForm, FormGroup, Validators } from ‘@angular/forms’;
3import { Toastrservice } from "ngx-toastr';

4 import { Router } from '@angular/router’;

S import { AuditService } from 'src/app/shared/Audit.service';

6

7 impert { ClientService } from 'src/spp/shared/Client.service’;
8import { Client } from 'scc/app/shared/Client.model’;

9

10 import { EmployeeService } from 'src/app/shared/Employee.service’;
import { Employee } from 'src/app/shared/Employee.model’;

13 @component ({

selector: 'app-Audit’,
15 templateUrl: './Audit.component.html’,
16 styles: []

bl

export class AuditComponent implements OnInit {

556

auditForm: FormGroup;
constructor(private service:AuditService, private toastr:ToastrService, private router:Router,private formuilder: FormBuilder
, private clientService:Clientservice

, private employeeService:EmployeeService

-

ARREUR

1

ngonInit() {
this.createFormBuilder();
this.auditForm.valueChanges. subscribe (value=>{
this.service.formbata=value;

B &

£

N

this.clientService.refreshlist();

R

this.employesService.refreshlist();

H

createFormBuilder() {
if (this.service. formData==null)

L W W LW R N N N R N R N N E
&] &

B

B Console 2

html

udit component.ts 2 v

1import { Component, OnInit } from '@angular/core’;
2import { Formsuilder, NgForm, FormGroup, Validators } from ‘@angular/forms’;
3import { Toastrservice } from "ngx-toastr';

4 import { Router } from '@angular/router’;

S import { AuditService } from 'src/app/shared/Audit.service';

6

7 impert { ClientService } from 'src/spp/shared/Client.service’;
8import { Client } from 'scc/app/shared/Client.model’;

9

1e import { Employeeservice } from 'src/app/shared/Employee.service’;
11 import { Employee } from 'src/app/shared/Employes.medel’;

13 @component ({

selector: 'app-Audit’,
templateUrl: './Audit.component.html’,
styles: []

18 export class AuditComponent implements onInit {

5

auditForm: FormGroup;
constructor(private service:AuditService, private toastr:ToastrService, private router:Router,private formuilder: FormBuilder
, private clientService:Clientservice

, private employeeService:EmployeeService

-

ARREUR

1

ngonInit() {
this.createFormBuilder();
this.auditForm.valueChanges. subscribe (value=>{
this.service.formbata=value;

B &

£

N

this.clientService.refreshlist();

2R

this.employesService.refreshlist();

H

createFormBuilder() {
if (this.service. formData==null)

N P T

B

B Console 2

5.16: Generated Code for Angular’s Model Classes — Employee

68

1= A Case Study - Auditing System import { Injectable } from '@angular/core’;

v i org.eclipseacceleo.module.ClassDiagramTransformer 2 import { Employee } from './Employee.model’;
- B\ JRE System Library [JavsSE-11] 3 import { HttpClient } from '@angular/common/http’
=\ Plug-in Dependencies h @Injectable({
v (2 src [3 providedIn: 'root’
i org.eclipse.acceleo.module ClassDiagramTransformer 7 N
2 org.eclipse.acceleo.module.ClassDiagramTransformer. Angular B export class EmployeeService {
a formData:Employee;

£ org.eclipse.accelen.module.ClassDiagramTransformer.Common

readonly rootURL="https://localhost:44397/api/’
2 org.eclipse.accelea.module.ClassDiagramTransformer.lanic - i P

list:Employee[];
H# org.eclipse.acceles.medule.ClassDiagramTransformer.main constructer(private http:HttpClient) { }
£ org.eclipse.acceles.module.ClassDiagramTransformer.React)S

2 org.eclipse.acceles.module.ClassDiagramTransformer.ReactNative
& org.eclipse.acceleo.module.ClassDiagramTransformer. RESTService

= META-INF

postEmplayes(){
return this.http.post(this.rootURL+ Employee’,this.formData);

~ [= src-gen 18 putEmployee(){
~ [= Angular g return this.http.put(this.roctURL+ Employee/ +this.formData.employeeld,this.formbata);
v = App .2 ¥
[_:’ AuditCompanys 2 deleteEmployee(id){
= Audits 3 return this.http.delete(this.rootURL+ Employee/ +id);
(= ClientCompanys 4 }
(= Employees 5

refreshList(){
this.http.get(this.rootURL+' Employee’)
.toPromise()
.then(res => this.list = res as Employee[]);

(= routing
w = shared
TS Audit.model.ts

36

0o

[T O N N NN S S
g 1

TS Audit.servicets @ }

TS AuditCompany.model.ts

TS AuditCompany.servicets 2 resetFormbata(){

TS ClientCompany.modelts E this. formData={

. 34 employeel

TS ClientCompany.service.ts 3 firstiame

TS Employee.model.ts 3 lastlame:' ",

TS Employeeservicets 3 streetAddress: "',
<> app.component.html 38 phone:"",
TS app.componentts 39

8

TS app.modulets

auditcompany:null,

& Api 10
(= lonic 43 }
[tasks 44 }

izt build.properties

Figure - 5.17: Generated Code for Angular’s Services — Employee

[A Case Study - Auditing System 1 <ion-headers
1 A Case Study - Lexpert 2 <ion-toolbar> . .
v 12 org.eclipse.scceles.module. ClassDiagrsmTrsnsformer 3 <ton-buttens slot-"start”
- - 4 <ion-menu-button></icn-menu-butten>
= JRE System Library [JavaSE-11] o </ion-buttons>
=i Plug-in Dependencies 6 <ion-title>
£ src 7 Employes
= META-INF 8 </ion-title>
vE srcgen 9 </ien-toolbars
N 18 </ion-header>
(= Angular L4
= Api 12 <ion-content>
v (2 lonic 13 <form [formGroup]="employeeForn” autocomplete="off">
v B App 14 <ion-button color="primary” (click)="navigateToEmployeeList()">Back</ion-button>
5

(7= audit

. ' <ion-item class="input-item">
= auditcompany

17 ¢ion-label position="floating">First Name</ion-label>

(= clientcompany 18 <ion-input type="text” formControlName="firstName” clearInput required></ien-input>
v (= employee 19 </ion-item>
TS employee-listmodule.ts 28 <iun—it?m class; inp\:lt‘fitem"> . .
<> employee-list.page.html 21 <ion-label position="floating">Last Name</ion-label>
- 22 <ion-input type="text" formControlName="lastName" clearInput required></ion-input>
& employee-listpagescss - </ion-items
TS employee-list.page.ts 24 <ion-item class="input-item">
TS employee.modulets 25 <ion-label position="floating">Street Address</ion-labels
<5 employee.page html 26 _ <lon-input type="text” formControlllame="streetAddress” clearTnput requireds</ion-input>
& employee pagescss 27 </ion-item>»
28 <ion-item class="input-item">
TS employee pagespects 29 ¢ion-label position="floating">Phone¢/ion-labels
TS employee.pagets 38 <ion-input type="text" formControlName="phone" clearInput required»</ion-input>
= Medel 31 </ion-item>»
(= Services 52 .
33 <ion-items

TS app-routing.modulets
<> app.compenent.html
' app.component.scss
TS app.componentits

TS app.modulets

<icn-label position="floating"></icn-label>
<ion-select formControlName="auditCompany">
<ion-select-option value="undefined” checked="true">Choose AuditCompany</ion-select-option>
<ion-select-option *ngFor="let comp of AuditCompanyService.list" [value]="comn">{{ comp.name }}</ion-select-opt
</ion-select>
</ion-item>

Figure - 5.18: Generated Code for lonic’s View — Employee

69

= A Case Study - Auditing System import { NgModule } from '@angular/core’;

& A Case Study - Lexpert 2 import { CommenModule } from '@angular/common’;
F] . 3 import { Routes, Routertodule } from 'fangular/router’;
~ 2 org.eclipseaccelea.module.ClassDiagramTransformer . . . ey R
& N 4 import { IonicModule } from '@ionic/angular’;
=\ JRE System Library [JavaSE-11] 5
=i, Plug-in Dependencies 6 import { FormsModule, FormGroup, FormBuilder, Validators, ReactiveFormsModule } from "@angular/forms';
[src 7 import { EmployeePage } from './employee.page’;
= META-INF 3
W [src-gen o @Ngﬁodule({
N 1@ imports: [
D_:’ Ansular 11 CommonModule,
(= Api 12 FormsModule,
w = lonic 13 ReactiveFormsModule,
v (= App 14 IonicModule,
& audit 15 RouterModule. forChild([

[= suditcompany path: '’

(= clientcompany 18 component: EmployeePage
~ = employee 19 }
TS employee-list.modulets 28 D1 .
<5 employee-listpage.htm 5: declarations: [EmployeePage]
& employee-list,page.scss 23 export class EmployeePageModule {}
TS employee-list.pagets 24

employeemodulets

employee page.html
¢ employeepagescss
TS employee pagespecits
TS employeepagets

(= Model

[Services

TS app-routing.medulets
< app.component.htrml
¢ app.component.scss
TS spp.component.ts

TS app.modulets

Figure - 5.19: Generated Code for lonic’s Module — Employee

{5 A Case Study - Auditing System import { Component, OnInit } from 'Bangular/core’;

5 A Case Study - Levpert 2 import { FormGroup, FormBuilder, Validators, FormCentrol, ReactiveFormstodule } from ‘@angular/forms';
3 3 import { Router } from 'flangular/router’;
v 4 org.eclipse.accelen.module.ClassDiagram Transformer . X \ . c
v ; | 4 import { EmployeeService } from 'src/app/Services/Employee.service’;
=\, JRE System Library [/ -11] 5
B\ Plug-in Dependencies 6 import { AuditCompanyService } from 'src/app/Services/AuditCompany.service';
[st 7 import { AuditCompany } from 'src/app/Model/AuditCompany.model’;
{5 META-INF 8
o El
vb_mfen | 10 (@Component ({
P—" ngular 1 selector: "employee’,
(= Api 12 templatelrl: 'employee.page.html’,
v [lenic 13 styleUrls: ['employee.page.scss'],
v [App X ‘ .
& audt 15 export class EmployesPage implements OnInit {
16
_L" at{d\tcumpany 17 employesForm: FormGroup;
[clientcompany 18 constructor(public service: EmployeeService, private formBuilder: FormBuilder, private router: Router
w [employee 9 » public AuditCompanyService: AuditCompanyService
a

15 employee-list modulets
< employee-listpage.htm
¢ employee-list page.scss
TS employee-list.pagets
|2 employee.modulets
< employee.page html
employee page.scss
TS employee.pagespects

)

ngonInit() {
this.createFornBuilder();

DN

this.AuditCompanyService.refreshlist();

IR R

s B8

|= employee.pagets }
(= Model
[Services createFormBuilder() {

if (this.service.formData == null) {
this.setDefaultFormValues();

RO

TS app-routing.modulets
¢ app.componenthtml

? app.component.scss

TS app.componentits

this.employeeForm = this.formBuilder.group({

B

Figure - 5.20: Generated Code for Ionic’s Typescript of page — Employee

70

5.1.4 Verification

For verification of generated code, its compilation and execution are necessary. Therefore, we
deploy this code in angular application. We created an angular application and pasted our

generated code accordingly. The code and generated output are shown in Figures 5.21 — 5.28.

Employee.cs® & X

21 AuditingSystemApi - | #3 AuditingSysterApi.Models.Employee ~| M LastMame - AE- -5 @ |w- A
1 Slusing System; + =N "~
2 using System.Collections.Generic; a] 522rch Solution Explorer (Ctrl+:)
3 using System.ComponentModel.Datafnnotations; R Solution 'AuditingSystemApi' (1 project)
4 System.ComponentModel.Datafnnotations.Schema; 4 3] AuditingSystemApi
5 g System.Ling; . & Connected Services
5 g System.Threading.Tasks; b 5% Dependencies
8 —Inamespace AuditingSystemapi.Models b/ Properties
g & wwwroot
16 - public class Employee 4 Controllers
11 { b AuditCompanyController.cs
12 — b o AuditController.cs
13 = public Employee() b c# ClientCompanyController.cs
1 { b c# EmployeeController.cs
- b 3 Migrations
" Model
4
17 [Kkey] oo
18 b o Audites
19 public int EmployeeId { get; set; } b o AuditCompany.cs
28 b c# AuditingSystemContext.cs
21 [Column(TypeName = "wvarchar(4e)”)] b c# ClientCompany.cs
22 public string FirstName { get; set; } b c* Employescs

%
i}
-

ar appsettings.json
24 [Column(TypeName = "wvarchar(4e)")] E

- bl = P ©* Program.cs
;; public string LastName { get; set; } b Startup.cs
27 [Column{TypeName = "varchar(15@)")]

28 public string StreetAddress { get; set; }
29
38 [Column{TypeName = "varchar(11)")]
31 public string Phene { get; set; }
32
33
34 -
100% - @ Mo issues found P g Solution Explorer [EEIRE=GIRICENSE

Figure - 5.21: Code Deployed for Auditing System’s Web API (C#)

oPEN EDITORS
Employee.componenthtm
ANGULARS - COPY

app-routing

e-list. component htmi
st.component.ts
&.component htmi
e.component.ts
main-nav

routing

e” formControlName Vi ol placeholder -

* favicon.ico

indexhtm|
raControlN; "ty ol" placeholder

Figure - 5.22: Code Deployed for Auditing System’s Angular code

71

employee.page.hitml X
“+ OPEN EDITORS
empl age.html s
v IONIC4-ANGULAR-NEWS
> ede

» node modules

v app
> audit

Employee

> auditcompany

» clientc

[formGroup]

clearInput required

clearInput required

app-routing.moduleits ; .
- ~ONEro-f earInput required
onenthtml
mponent.scs
onentts

arInput required

e"»Choose AuditCompany

{{ comp.name }}

Figure - 5.23: Code Deployed for Auditing System’s Aionic code

is Powershell
Copyright (C) Microsoft Corporation. All rights reserved.
PS E:\MS Research\Project\angularg - Copy> ng serve
Date: 2019-89-83T19:48:56.1197
Hash: 3e1@lecO0e63f1478c813
Time: 19688ms
chunk {main} mai main. js. .8 kB [initial] [rendered]
chunk {polyfills} yfil y (polyfills) 248 kB [initial] [r
chunk {runtime} r runtime) 6.88 kB [entry] [rend]

chunk {styles} {5tﬁles} 202 kB [initial] [
chunk {vendor} v (vendor) 6.88 MB [initial] [

* Angular Live D Uelobment Server is listening on localhost:

8@, open your browser on http://loc
: Compiled successfully.

Figure - 5.24: Compiling Angular app

72

] : Project is running at hitty alhost:8100/webpack-dev-ser
1 : webpack output is s
1 : 484s will fallback to //index.htwl
[ng] chunk {audit-audit-list-module audit-audit-list-module) 6.83 kB
chunk {audit-audit-module} aud j d audit-module) 11 kB
{auditcompany-auditcompany-1ist-module}
{auditcompany-auditcompany-module}
[ng] chunk {clientcompany-clientcompany-1ist-modul
nk {c
hunk {common}
{core-js-js}
{css-shim-3ea8
hunk {css-shim-js}
nk {dom-53298348-

]
1
1
]
1
1
1
]
1
1
]
1
1 {employee-employee-module} [

1 {focus-visible-70161a56-js} § 61a58-js) 2.15 kB [e

] {hardware-back-button-88f2835 3 0) (hardware-back-button- js) 2.06 kB
] .

1

]

1

1

1

]

1

1

]

1

1

1

]

1

{index-f98adfdd-js} i
[ng] chunk
ios-transition-
main}
{md-transition-e@e9dd21
{polyfills}
chunk {runtime} r
nk
chunk
nk {
nk
chunk
nk {
chunk { » vendo dor) 4.89 MB [initial] [re
Date: 2 5 9fcBd432cb681da7abfa - Time: 18125ms

[INFO] Development server running!
Local: http://localhost:8168
Use Ctrl4C to quit this process
[INFO] Browser window opened to http://localhost:8108!

[INFO] ... and 78 additional chunks
[ne] : Compiled successfully.
i

Figure - 5.25: Compiling lonic app

Employee ClientCompany Audit AuditCompany

Employee &) Back

© First Name

© Last Name

»

Street Address ‘

o) | Phone ‘

)
<

Figure - 5.26: Component View of Angular’s Web App

73

Employee ClientCompany Audit AuditCompany

+ New

Employeeld FirstName LastName StreetAddress Phone Action
1 as as as 12345678909 2
2 werw wer wer 12345678909 A}

Figure - 5.27: Component List View of Angular’s Web App

= Employee

First Name
Last Name
Street Address

Phone

Figure - 5.28: Page View of Ionic’s Hybrid App

74

5.1.2 Conventional VS Proposed methodology

The conventional development is taking more time than developing through model driven
methodology that we have proposed. This reduce the initial development time, improve the level
of abstraction and improve the quality of application. The development of same domain
application on mobile and web need minimum three skills, experience in hybrid app development
(ionic), experience in web app development (angular) and experience in web service development
(ASP.NET Web API).

For comparison of the proposed methodology with conventional method we have chosen 12
developers and divide with four groups. Each group had three developer with different skills. On
developer of lonic, one of angular and one of asp.net Web API are chosen in each group. The
developers have develop the hybrid app, web app and RESTful service by conventional and model
driven methodology. The comparison of development time is shown in the table 1. We found that

model driven methodology is more than 5 times more time saving.

5.2 LEXPERT (Lab Expert)

LEXPERT (Lab Expert) is a pathology Lab Management System that is developed in WPF
with WCEF service and already available in market. We select LEXPERT as our case study in our
proposed methodology for generating scaffolding CRUD code for web and mobile applications.
The case study is divided into four sections. Firstly, the requirements of LEXPERT application are
discussed in Section 5.2.1. Secondly, Section 5.2.2 contains the UML class diagram with applied
profile to present the system architecture of the required system. Furthermore, Section 5.2.3 shows

the transformation results in the form of generated code.

5.2.1 Requirements

This part gives the detailed description of the functional and non-functional requirements proposed
by the client. The purpose of this project is to provide a friendly environment to maintain the record
of patients and their performed tests and to generate reports. The main purpose of this project is to

observe cash inflow. Requirements that we have gather are divided in the following categories.

75

Create, Read, Update and Delete Patient
The user can apply CRUD operations on patient records in user friendly mode.

Create, Read, Update Lab

Lab consist of many tests. The user can Create, Read and update Lab operations on patient
records in user friendly mode.

Create, Read, Update Lab
Lab consist of many tests. The user can Create, Read and update Lab operations on patient
records in user friendly mode.

Create, Read, Update Test
Apply CRUD operation on Test

Create, Read, Update Doctor
Apply CRUD operation on Doctor

Create, Read, Update Panel
Apply CRUD operation on panel

Create, Read, Update Employee

Apply CRUD operation on Employee
Work flow can be best understand by the following diagram

Laboratory analysis

Examination phase

Report
creation

Figure - 5.29: Display of Angular’s app

76

5.2.2 Modeling

The class diagram of the LEXPERT is designed and the developed stereotypes are
applied with the required values. The class diagram of LEXPERT is shown in Figure 5.30

= Employee

& «ldPropertyStereatypes + Employeeld: Integer [1]
& «StringPropertyStereotypes + Mame: String [1]

& «StringPropertyStereotypes + MobileNo: String [1]
& «StringPropertyStereotypes + Email: String [1]

1 +[employee

+ lab

+labl * 1

Q Test

+ test

& «ldPropertyStereotypes + Testld: Integer [1]

& «StringPropertyStereotypes + Name: String [1]

&l «NumberPropertyStereotypes + Price: Integer [1]

& «StringPropertyStereatypes + NormalRanges: String [1]

H Lab

& «ldPropertyStereotypes + Labld: Integer [1]

&l «NumberPropertyStereotype» + Discount: Integer [1]
O «DatePropertyStereotypes + PerformingDate: String [1]

& «NumberPropertyStereatypes + TotalAmoun: Integer [1]

] =
*
+lab
* +lab

+ patierft 1

Q Patient

=
=
=

«ldPropertySterectypes + Patientld: Integer (1]
«5tringPropertyStereotypes + Name: String [1]
«StringPropertyStereatypes + MobileMumber: String [1]
«StringPropertyStereotypes + Email: String [1]
sMNumberPropertyStereotype» + Age: Integer [1]
«5tringPropertyStereotypes + StreetAddess: String [1]

Q Result

& «ldPropertySterectypes + Resultld: Integer [1]
& «StringPropertyStereotypes + Result: String [1]

+ doctor

Q Doctor

& «|dPropertySterectyper + Doctorld: Integer [1]
& «StringPropertyStereotypes + Name: String [1]
& «StringPropertyStereotypes + MobileNa: String [1]
(& «StringPropertyStereotype» + Email: String [1]

Figure - 5.30: Class diagram of LEXPERT

77

5.2.3 Code Generation

As the code generated for the Auditing system, in the same way the code is generated for

RESTful server (ASP.NET Web API),

structures for web app (Angular), Hybrid app (lonic) and Web API are shown in Figures 5.31,

5.32 and 5.33.

“ = src-gen
w~ [= Angular
~ = App

Web app (Angular) and Hybrid app (lonic). The code

w = Doctors

w [= Doctor

< » Doctor-list.component.html
TS Doctor-list.component.ts

< » Doctor.component.html
TS Doctor.component.ts

= Employees
= Labs

= Patients
= Results

“ = ro
TS

uting
reuting.module.ts

w [= shared

TS
TS
TS
TS
TS
TS
TS
TS
TS
TS
TS
TS

Doctor.model.ts
Doctor.service.ts
Employee.model.ts
Employee.service.ts
Lab.model.ts
Lab.service.ts
Patient.model.ts
Patient.service.ts
Result.model.ts
Result.service.ts
Test.model.ts
Test.service.ts

= Tests
< » app.component.html

TS app.component.ts

TS app.modulets

Figure - 5.31: Structure of Generated Code for Web App (Angular)

78

w [= lonic
v = App
w [~ doctor
T5 doctor-list.modulets
< » doctor-list.page.htrmnl
" doctor-list.page.scss
TS doctor-list.pagets
TS5 doctor.modulets
< » doctor.page.html
¢ doctor.pagescss
TS doctor.pagespects
TS5 doctor.pagets
[= employee
= lab
= Model
[= patient
= result
= Services
[test
TS app-routing.modulets
< » app.component.html
¢ app.component.scss
TS app.component.ts

TS app.modulets

Figure - 5.32: Structure of Generated Code for Hybrid App (lonic)

v [= Api
w = Controllers
¢ DoctorController.cs

in

EmployeeController.cs
LabController.cs
PatientController.cs

+Ht

ResultController.cs

QD

TestController.cs
w = Model
Doctor.cs

it

+Ht

Employee.cs
Lab.cs
LexpertContext.cs
Patient.cs

it

it

4t

Result.cs

t

Q000000

+

Test.cs

Figure - 5.33: Structure of Generated Code for RESTful Service (ASP.NET Web API)

79

Chapter 6

Comparative Analysis

80

CHAPTER 6: COMPARATIVE ANALYSIS

The previous chapter deals with the implementation and validation aspects of the proposed
work. The proposed framework presents the modeling of software system into class diagram by
applying the defined profile at higher abstraction level. To model the concepts of system Unified
Modeling Language (UML) profile is proposed and transformation of model into code has been
carried out using transformation engine for implementation purpose. Our proposed approach
provided a major contribution in the field of model driven engineering. Our proposed methodology

is more efficient than conventional one.

6.1 Comparison

For comparison we selected 12 developers and divide in four group, with three developer in
each group. In each group the three developers selected with different skills (ASP.NET, lonic,
Angular). The time for conventional development and the time by our proposed methodology is
noted for comparison. After comparison we found that our proposed methodology is five times
more efficient than conventional one. This section discusses the comparison of conventional
development with our proposed solution.

The Auditing system is selected for validation of our proposed methodology. The 12
developers have developed the auditing system in four groups conventionally and the time for each
developer is noted. In each group one developer have skills of developing in .NET, Second
developer have skills of developing web app in angular and third developer have skills of
developing in mobile app in ionic. After noting the time of every single developer in each group
the total time is calculated.

In the second phase the Auditing system is developed by four groups by our proposed model
driven methodology. In this methodology the time calculation is different from that of
conventional. As the developers had no skills in model driven development, so we have trained
the developers on our proposed methodology. The time of training is also considered in calculation
of time. The post processing time is also considered in calculation of time. The time of training,
time of modeling, and time post processing is added and for each group and total time is calculated.
In final the average time of conventional and model driven development is calculated and from

that data we found that our proposed methodology is more than five time efficient than

81

conventional development. The detail of develops’ work shown in Annexures A, B, C and D.
The comparison performed is shown in Table 5.

Table 5.1 - Comparison of conventional time and model driven time

Conventional Model Driven Method
. Method L
No. Category Experience Time Post Application
(hours) Total | Training Modeling Processing Total
RESTful Service in
» 1 | Developerl 7 15 3 05 ASP.NET Core
g 2 | Developer2 9 40 1215 3 3 3 21 Web App in Angular
3 | Developer3 4 80 35 5 m’;'d esle Agp
RESTful Service in
N 1 | Developerl 17 2 3 0.5 ASP.NET Core
3| 2 | Developer2 4 36 78 3 25 25 17 | Web App in Angular
3 | Developer3 6 40 25 3 m’;'d esls Ay
RESTful Service in
- 1 | Developerl 15 15 2 0.5 ASP.NET Core
g 2 | Developer2 3 54 105.5 3 2 3 15.5 | Web App in Angular
3 | Developer3 8 50 25 25 Esrl]?gld Mobile App in
RESTful Service in
< 1 | Developerl 9 15 2 0.5 ASP.NET Core
% 2 | Developer2 12 55 925 25 25 4 17.35 | Web App in Angular
3 | Developer3 15 36 25 35 m’;'d il e 07
Average 99.4 17.7
The Model driven methodology is 5.6 times more efficient than coneventional. 99.4/17.7 = 5.6

82

Chapter 7
Discussion along with Limitation

83

CHAPTER 7: DISCUSSION WITH LIMITATION

This section is divided into two sub sections. A detailed discussion on the proposed research

work is described in Section 7.1. Section 7.2 deals with the limitation of the research.

7.1 Discussion

Due to rapid growth in the use of mobile apps, the software owners demanding for the system
of same domain to be on both mobile and web apps. The data and presentation layers are involved
commonly in more applications. This is the reason that we have proposed and developed a
methodology which can save the development time and can generate the scaffolding code for the
data layer (RESTful Server) and presentation layer (web app and hybrid app). The profile is
designed and the designed profile is to be applied to class diagram from which the scaffolding
code is generated in C# for RESTful Server, lonic for hybrid app and angular for web app. The

key advantages of our proposed methodology are are:

1) It reduced the time of development.

2) It provides high level of abstraction

3) This is open source and reusable

4) 1t offers early stage evolutionary prototyping

5) It improve the code quality

The models proposed in our solution are at high abstraction level and are easily understandable
by various stakeholders. These models neglect the implementation details, thus simplifying the
low-level implementation complexity. Furthermore, it reduces time and cost of development. The

generated code is deployed into its respective environment for verification.

Our proposed framework has been validated on two case studies: Auditing System and Lexpert
(Lab expert which is pathology lab management system). Both case studies require data layer and
presentation layer. The first case study is chosen for comparison of conventional development with

that of model driven development.

84

7.2 Limitations

Our proposed solution provides automated code generation for data layer and presentation
layer of applications, however, there exist some limitations. Firstly, the profile designed does not
cover some scenarios like the selection of code architecture or selection of sylesheets. Secondly,
it need to generate the code for react, react native and vue. Furthermore, transformation rules for

only Root types and object types are provided as they are used across the most applications.

85

Chapter 8
Conclusion along with Future Work

86

CHAPTER 8: CONCLUSION ALONG WITH FUTURE WORK

In this research, we propose model driven scaffolding code generation for web and mobile
application to model the requirements at high abstraction level. The proposed profile comprises
several stereotypes related to frontend and backend concepts to model the data layer and
presentation layer of applications. Providing a consistent user experience across different
connection types is a difficult task. Low level implementation of such application types is a
complex process. To reduce this implementation complexity, we model the requirements at high
level of abstraction. These models generate code through the transformation engine. Verification

of the generated code is done by deploying it to their respective implementation environments.

The research work is the first step to make the applications development process simpler
and time saving. Particularly, model driven scaffolding code generation has been proposed which
adapts the concept of UML Class Diagram, to model the data layer and presentation layer of
applications. A complete transformation engine is developed to transform the source models into
target low level implementation code. We have covered the transformation of profiled class
diagram to RESTful service (C#), web app (angular) and hybrid app (ionic). The transformation
engine implementation is carried out in Acceleo through Model to Text approach. We demonstrate

the applicability of our proposed tool through two case studies.

In future, we may plan to give the option to choose the some extra feature like the code
architecture and stylesheets on Ul. Moreover, further frontend enhancement is required to fully
provide all the features. We also plan to enrich our base application with other frameworks like

Vue, react etc.

87

REFERENCES

[1]
[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

Entity Framework, https://en.wikipedia.org/wiki/Entity Framework
Model First, https://docs.microsoft.com/en-us/ef/ef6/modeling/designer/workflows/model-first

Code First to a New Database, https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/
workflows/new-database.

.NET Core, https://en.wikipedia.org/wiki/.NET_Core

W. Chansuwath, T. Senivongse; A model —driven development of web applications using
AngularJS framework; IEEE 15" International Conference on Computer and Information
Science (ACIS); (2016)

H.Benouda, M. Azizi, M. Moussaui; Automatic code generation within MDA approach
for Cross-platform mobile apps; First IEEE International Conference on Embedded &
Distributed Systems (EDIiS) (2017)

S. Roubi, M. Erramdani, S. Mbarki; A model driven approach to generate graphical user
interfaces for Rich Internet Applications using Interaction Flow Modeling Language; 15™
IEEE International Conference on Intelligent Systems Design and Applications (ISDA);
(2015)

S. Roubi, M. Erramdani, S. Mbarki; Modeling and generating graphical user interface for
MVC Rich Internet Application using a model driven approach; International Conference

on Information Technology for Organizations Development (IR40D); (2016)

R. Acerbis, A. Bongio, M. Brambilla, S. Butti; Model-Driven Development of Cross-
Platform Mobile Applications with Web Ratio and IFML; 2"¢ ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft); (2015)

K. Pongpanjanthra, Y. Limpiyakorn; Model-Based Approach to Generating Web Portals;
51 International Conference on IT Convergence and Security (ICITCS); (2015);

88

https://en.wikipedia.org/wiki/Entity_Framework
https://docs.microsoft.com/en-us/ef/ef6/modeling/designer/workflows/model-first
https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/
https://en.wikipedia.org/wiki/.NET_Core

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Luis Herrero Agustin, Model-Driven web applications; IEEE International Science and
Information Conference (SAI); (2015)

S. Azreena Mubin, A. Hazri Jantan, A. Kamaruddin, Y. Limpiyakorn; UML Stereotypes
for the Development of Process Interaction-Driven Web Applications; ACM Proceedings
of the 2" International Conference in HCI and UX Indonesia (CHIuXiD) (2016);

T. Cerny, E. Song; UML-based enhanced rich form generation; ACM Proceedings of the
2011 Model-Driven web applications; IEEE International Science and
Information Conference (SAI); (2015)

N. Vittorazzi de Almeida, S. Louzada, V. E. Silva Souza; A Model-Driven Approach for
Code Generation for Web-based information Systems Built with Frameworks; ACM

Proceedings Symposium on Multimedia and the web. (WebMedia) (2017)

A. Cortinas, C. Bernaschina, M. R. Luaces, P. Fraternali; Enabling Agile Web
Development through In-Browser Code Generation and Evaluation; International
Conference on Model and Data Engineering; (2017)

Z. Morales, C. Magana, J. A. Aguilar, A. Zaldivar-Colado, C. Tripp-Barba, S. Misra, O.
Garcia, E. Zurita; A Baseline Domain Specific Language Proposal for Model-Driven Web
Engineering Code Generation. Springer International Conference on Computational
Science and Its Applications (ICCSA); (2016)

P. Fraternali, S. Comai, A. Bozzon, G. T. Carughi; Engineering rich internet applications
with a model-driven approach; ACM Transactions on the Web (TWEB); (2010)

R. Rodriguez-Echeverria, J. C. Preciado, J. Sierra, J. M. Conejero, F. Sahchez-Figueroa;
AutoCRUD: Automatic generation of CRUD specifications in interaction flow modelling
language; Elsevier (2018)

S. L, daCosta, V. V. G. Neto, J. L. de Oliveira; A User Interface Stereotype to Build
Web Portals; 9" Latin American Web Congress (LA-Web); (2014)

89

Annexure - A
Verification — Groupl
A Model-Driven Framework to generate data and presentation layers’
scaffolding code for Multiplatform applications
(Auditing System)

Developer 1
Name: Abdullah Saeed Email: asaeed @thepointofit.com Experience: 7 years

Conventional Coding Time: 1.5 hours
Model Driven Coding Time:
Training: 3 hours Modeling: 3 Hours _ Post Processing: 0.5 hours Total: 6.5 hours

Participation: Developing RESTful Service in ASP.NET Date: 11t July 2019
Developer 2
Name: Tanzeel ur Rahman Email: trehman@thepointofit.com _ Experience: 9 years

Conventional Coding Time: 40 hours
Model Driven Coding Time:

Training: 3 hours Modeling: 0 Hours Post Processing: 3 hours Total: 6 hours
Participation: Developing Web App in Angular Date: 20t July 2019
Developer 3

Name: Muhammad Aqgib Email: magib@thepointofit.com Experience: 4 years

Conventional Coding Time: 80 hours

Model Driven Coding Time:

Training: 3.5 hours _ Modeling: 0 Hours ___ Post Processing: 5 hours Total: 8.5 hours
Participation: Developing Hybrid Mobile App in lonic Date: 22" July 2019

Total: Conventional Time: 121.5 hours Model Driven Time: 21 hours|

90

Annexure - B
Verification — Group?2
A Model-Driven Framework to generate data and presentation layers’
scaffolding code for Multiplatform applications
(Auditing System)

Developer 1
Name: Muhammad Imran Email: ibodla@Imkr.com Experience: 17 years

Conventional Coding Time: 2 hours
Model Driven Coding Time:
Training: 3hours Modeling: 2.5 Hours Post Processing: 0.5 hours Total: 6 hours

Participation: Developing RESTful Service in ASP.NET Date: 24™ July 2019
Developer 2
Name: Faisal Ishfag Email: faisalishfag81lz@gmail.com _ Experience: 5 years

Conventional Coding Time: 36 hours
Model Driven Coding Time:
Training: 3hours Modeling: 0 Hours Post Processing: 2.5 hours Total: 5.5hours

Participation: Developing Web App in Angular Date: 30t July 2019
Developer 3
Name: Tasaddag Sultan Email: tassaddag-sultan @live.com _ Experience: 6 years

Conventional Coding Time: 40 hours

Model Driven Coding Time:

Training: 2.5 hours _ Modeling: 0 Hours ___ Post Processing: 3 hours Total: 5.5 hours
Participation: Developing Hybrid Mobile App in lonic Date: _31th July 2019

Total: Conventional Time: 78 hours Model Driven Time: 17 hours|

91

Annexure - C
Verification — Group3
A Model-Driven Framework to generate data and presentation layers’
scaffolding code for Multiplatform applications
(Auditing System)

Developer 1
Name: Haroon Waheed Email: hwaheed@thepointofit.com __ Experience: 15 years

Conventional Coding Time: 1.5 hours
Model Driven Coding Time:
Training: 2hours Modeling: 2 Hours Post Processing: 0.5 hours Total: 4.5 hours

Participation: Developing RESTful Service in ASP.NET Date: 4" August 2019
Developer 2
Name: Sadigullah Email: sadig.ullah@teo-intl.com Experience: 3 years

Conventional Coding Time: 54 hours
Model Driven Coding Time:

Training: 3 hours Modeling: 0 Hours Post Processing: 3 hours Total: 6 hours
Participation: Developing Web App in Angular Date: 8" August 2019
Developer 3

Name: Asfandyar Nasim Email: asfandyar@emumba.com Experience: 8 years

Conventional Coding Time: 50 hours

Model Driven Coding Time:

Training: 2.5 hours _ Modeling: 0 Hours __ Post Processing: 2.5 hours Total: 5 hours
Participation: Developing Hybrid Mobile App in lonic Date: 10" August 2019

Total: Conventional Time: 105.5 hours Model Driven Time: 15.5 hours|

92

Annexure - D
Verification
A Model-Driven Framework to generate data and presentation layers’
scaffolding code for Multiplatform applications
(Auditing System)

Developer 1
Name: Tanzeel ur Rahman Email: trehman@thepointofit.com _ Experience: 9 years

Conventional Coding Time: 1.5 hours
Model Driven Coding Time:
Training: 2 hours Modeling: 2.5 Hours _ Post Processing: 0.5 hours Total: 5 hours

Participation: Developing RESTful Service in ASP.NET Date: 11t July 2019
Developer 2
Name: Farhan Khan Email: fsaif@thepointofit.com Experience: 12 years

Conventional Coding Time: 55 hours
Model Driven Coding Time:

Training: 2.5 hours Modeling: 0 Hours Post Processing: 4 hours Total: 6.5hours
Participation: Developing Web App in Angular Date: 29t July 2019
Developer 3

Name: Haroon Waheed Email: hwaheed@thepointofit.com _ Experience: 15 years

Conventional Coding Time: 36 hours

Model Driven Coding Time:

Training: 2.5 hours _ Modeling: 0 Hours __ Post Processing: 3.5 hours Total: 6 hours
Participation: Developing Hybrid Mobile App in lonic Date: _31th July 2019

Total: Conventional Time: 92.5 hours Model Driven Time: 17.35 hours

93

