“Implementation of Mo soft core in FPGA.”

Author
Muazzam Shahzad
Fall -MS2015 (CE) 00000117611

Supervisor

Dr. Farhan Hussain

COMPUTER ENGINEERING DEPARTMENT
COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY
ISLAMABAD
SEPTEMEBR 2019

“Implementation of Mo soft core in FPGA.”

Author

Muazzam Shehzad
Fall 2015-MS (CE) 00000117611

In partial fulfillment of the requirements for the degree of

MS Computer Engineering

Thesis Supervisor

Dr. Farhan Hussain

Thesis Supervisor’s Signature:

DEPARTMENT OF COMPUTER ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD
AUGUST, 2019

Declaration

I solemnly certify that this research work titled “Implementation of Mo core in FPGA” is my

own work. I haven’t presented that work anywhere for assessment; neither I have taken material

from other resources.

The contents that | have referenced from other resources is properly acknowledged / referred.

Signature of Student
Muazzam shehzad

Fall 2016-MS (CE) 00000117611

Language Correctness Certificate

This thesis has been thoroughly read by an English expert and is free of typing, syntax, semantic,
grammatical and spelling mistakes. The thesis is as per format provided by the university.

Student Signature

Muazzam Shehzad

Fall 2015-MS (CE) 00000117611

Signature of Supervisor

Dr. Farhan Hussain

Copyright Statement

e The copyright on the text of this thesis belongs to the student author. Copies (by any
means), in whole or in part, may only be made in accordance with the instructions given
by the author and filed with the NUST College of E & ME Library. Details can be
obtained by the librarian. This page must be part of all copies made. Other copies (by
any means) cannot be made without the written permission of the author.

e The ownership of all intellectual property rights that may be described in this thesis
belongs to NUST College of E & ME, subject to any prior agreement, and may not be
made available to third parties without the written consent of the owner. College of E &
ME, which will prescribe the terms and conditions of said agreement.

e Additional information on the conditions under which disclosures and exploitation may
take place is available at the NUST College Library of E & ME, Rawalpindi.

Acknowledgements

All praise and glory to the Almighty God (the most glorified, the highest) who gave me the
courage, patience, knowledge and ability to carry out this work and persevere and carry it out
satisfactorily.

Without a doubt, he has given me the way and without HIS blessings, | cannot achieve anything.

| wish to express my sincere thanks to my advisor, Dr. Farhan, for raising the spirit of my spirit
and for his continued support, motivation, dedication and valuable advice in my quest for
knowledge. I am lucky to have a cooperation advisor and a kind mentor for my research.

With my advisor, | would like to thank all my dissertation committee: Dr. Muhammad Usman
Akram, Dr. Arslan Shaukat of CEME and Fahad Alghazali, Dr. Nasir Mohyuddin, Dr. Asad of
NESCOM for their cooperation and cautious suggestions.

My gratitude would be incomplete without thanking the greatest source of my strength, my wife.

Finally, I would like to express my gratitude to my colleagues and to the people who have
encouraged and supported me during this period.

Dedicated to my caring and loving wife: Quratulain Ghafoor, whose
tremendous motivation, cooperation and support guided me to
accomplishment it.

Abstract

MO core developed by ARM is a widely used general purpose processor. MO core is a RISC based
processor utilizing only 12000 logic gates in its small configuration. This makes it very feasible
for low powered devices as the power ratings are really low. We can utilize MO core as a co-
processor providing communication services, crypto graphical services, malware detection
services, wireless sensor nodes etc. ARM Cortex MO core is a propriety processor and has a few
limitations of its own. As a propriety core the details of its architectures are not published. Also
interfacing of the memory (RAM, ROM) and UART needs to be done to use it for a specific
application. In our work we comprehensively study the architecture of MO core. We thoroughly
investigated the Bus (AHB Lite) of MO core in order to interface it with the RAM and ROM. We
were able to successfully interface the Bus with the memories. Four Blocks of 8x2048 Bits RAMs
are designed. We also interfaced the Peripheral bus (APB) for UART. Our experiment
demonstrated successful transmission of data. For our experiment we used the Xinlinx Spartan 3-
E kit to port Cortex MO processor on FPGA. Xinlinx FPGA XC3S1600E with 33,000 logic gates
are enough to port Cortex MO soft core. In order to visualize results Digital Clock Manager
(DCM) is used to scale down 50 MHz clock frequency to SMHz.

Table of Content:

[D]=Tol T 1 4T o TR PP R PSR UPOPROPROPRRRPI 3
Language Correctness CrtifiCatecoviiiiiiie it e et e e e ee e e s be e e e e sanee e e e areeas 4
P Yol (o AV Y] 1= F o= o Y=Y o PRSPPI 6
Y o1 1 T OO PSP PO PP PUTPPPPPPTOPOR 8
L] o] (=l o) A 0] o1 1=T 0N O PP U PSP PR PRTOPRTO 9
LIST OF TABIES ..ttt ettt et s et e bt e s bt e s bt e e s bt e e be e e sabeesabeeesabeesabeeeanreesbeeesareenn 13
Chapter 1: INTRODUCTIONciitteitteitterteete et ettt ste e st ste ettt e bt e saeesatesateebe e beesbeesbeesaeesaseenseenbeenseesanenns 14
1.1 AdVANTAEES OF FPGASeiiiiiiiie ettt ettt e sttt e e e et e e e et e e e e s bteeeesbteeeesbteeeesabeeeessaseeeeesseaeessssneensses 14

1.1.4 ARM SEIIES Of PrOCESSON ..uvviiiiiiiiie it e eeitee ettt e sttt e e et e e s ebee e e e sbee e e e s ebteeeesbeeeessbeeeessnsseeassnes 15
1.2 Problem StatemMENTc.ui ittt ettt et e s b e e are e sre e s beeesbeeeane 16
1.3 F AN (a3 T o @] o] [=Tot 41V OSSP PRPRO 16
L4 CONEIIDULIONS ..ottt et b e bt e s bt e she e s st e et e et e e beesbeesaeesaeesabeeabeenbeenes 16
15 SErUCTUIE OF THESIS 1ottt ettt ettt e st e s bt e e at e e sabe e e sabeesabeeebeeesabeeenees 17
Chapter 2: LITERATURE REVIEWooiuiiiiiiiieieeitesiee sttt ettt et sat e st sttt be e b e sbeesaeesateebeesbeesaeesanenas 18
2.1 Embedded Systems @nd FPGAS..........ccccuiiieeiieieeecieee et e e ectee e e e ete e e e ettt e e e e ataeeesansaeeesasseeeeennsseeesasreeenan 18
2.2 Architecture of MICrOCONTIOIIEI:.........oociiiiieiieeeee et s 18
2.3 FPGA and SOft COreS Of PrOCESSOISeeutiiiieitieiteeiite et et ettt et sit e st st et be e s bt e sbeesateeateebeesbeesbeesanenas 19
2.4 ARM Understanding Different TYpes Of PrOCESSOIS ...cccuuviiiiciiieieiiiieeciiree e et e e ssvre e e ssare e s e sereeessereeeeas 21
2.5 ARM COMEX IMD..c..eiiieiie ettt ettt ettt st sttt e b e e b e s s e s it e st e et e e bt e reesbeesaee st e enneebeenneesane e 25
Y (O I 1o AV T g - T3 USSR 27
B A Y o] o] [ot 4 o Yo USRS 28
Chapter 3: Hardware and SOftWare DTSc.ueiieeiiiiieciiee ettt e e e e e e sae e e e sarae e e e enareeeean 30
3.1 FPGA Spartan-3E as Proto BOArdccciiiiiiiie et e e s ettt e e e e e e st e e e e e e s e e nnbaareeaeaeeanas 30
3.2 HardWare OVEIVIEW. ...c..ei ittt ettt et s ittt s ettt b e s bt e sae e sat e st e e bt e bt e beesbeesaneeateeaseebeenneesnnenas 30

321 SIIAE SWITCNES ...ttt ettt et e sb e sreesane e 31
0 61 o Tl TP P PP PR PRTPRPTOPPRTO 33
3.4 FPGA CoNnfiguration OPLiONScccccuiiieieiiiieeecieee e ettt e eectee e e ettt e e e e ateeeeeetbseeeeeatseeesasssseeeassseeaeanssaeesasreeanan 34
R Y=L =1 I oL 3SR 36
3.6 FPGA PrOramMMING.ccccciiiiiiiiiiiiiitiiieteteteteeteeteeeeeteeeteeetetetetetetetemttetetttetttetetttetetttttettetttteeeerteteeemerererereeeseeen 36
Chapter 4: Proposed MethOOIOZYccueei it e e e e e e e e e e e e e e e e e e sanssraeeaeeeenans 40
L AV [0 I T o Yol LYo | TR 40
B.2 SIAVE ..ttt et b bbb et et e bt e bt e e bt e she e sa et et e e bt e beeaneeeaeeenreeaneen 41

e B o NV LIy =1 (=Tt TP 41

Vo o LYo 1Yol Yo I o= PSP 42
A5 APB BUS ...ttt ettt ettt ettt h e h e st et e b e bt h et e R et e a et e R e e bt e b e e ehe e saee et e e b e e beeabeesaeeenreenteen 42
L G 2(1 N 42
4.6 SRAM ...ttt h e bttt et b bt b et e bt e e e e Rt e bt e e bt e ehe e ea et et e e bt e beeabeeeaeeenreeaneen 43
4.7 ABP SIaV@ SEIECTuteiiiiie ittt ettt et et e s e e s b e e bt e e st e e s be e e sabeesbe e e neeesreeenanes 43
Y 2T N1 1= OO OO TP PPPT ORI 43
A.9 ABP UART ..ttt sttt et h e b e s bt e st et et e b e e b e e s bt e s a et e b e e bt e e b e e ehe e sae e e bt e bt e beeabeesaeeenreenteen 44
Chapter 5: EXPERIMENTS AND RESULTS.......uiiiiiiiiieeciiieeeecitee st ee e st e e e sate e e e sataeeessnsaesessnsseessnnsaeassnnsseeenan 45
5.0 SIMUIBEION 1ttt ettt e b e s b e s bt e s a e e st e et e e bt e be e sbe e saeeeat e e teenbeesheenaneeas 45
oI A 4T o] (=T 0 g T=T o] = Lo o TP 48
Chapter 5: EXPERIMENTS AND RESULTSuuiiiiiiiiieeciiiie et ee s scitee e st e e e ssatre e e sataeeessnsaeaesnnseessnnseeessnnsseeennn 52
DL RESUIES .ttt ettt b e s bt s h et et et e e bt e bt e sh e e sa bt et e e be e be e beeeheesaee et e e beenbeesaeesaneeas 52
Chapter 6: CONCLUSION & FUTURE WORKSuuiiiiiiiiieeeciiee sttt e ettt e s ssitve e e ssivaeeessnsseaessasseesennsaaessnsssesenns 53

B.1 CONCIUSTON ..ttt sttt et b e bbb a et et e e bt e bt nbense b e 53

8.2 FULUIE WOTK ...ttt s b bttt be b e e 53
REFEIEINCES ...ttt ettt s e st et e bt e bt e b e e s bt e s et e e st e et e e b e e sb e e saeesanesare e r e e neenes 54

10

List of figures

Figure 1-1 ARM Microcontroller COreS.ouiiuiiriitit ittt 15
Figure 2. 1 Basic microcontrollers Architecture..............ovviriiiiiiiiiiiii e 17
Figure 2. 2 Trade-off in processor deSi@NS.vvuiiritit ittt eee e, 20
Figure 2. 3 ARM processor families OVerVIEW..........ovuiiuiiiiiiiiiiiii e, 21
Figure 2.4 Instruction table of M family.............. e, 23
Figure 2.5 Cortex M series processor compatibility.................ocooiiiiii i, 23
Figure 2.6 Cortex MO simplified block diagram..............cooiiiiiiiiiii e, 24
Figure 2.7 Cortex MO SImple SYStemMS.uiti e 25
Figure 3.1: Xilinx Spartan FPGA BOAIdooviuiniiiii e 29
Figure 3.2: FOUr SHIde SWILCNES. ... e 30
Figure 3.3: UCF for SHide SWILChES. ..o e 30
Figure 3-4: Rotary push buttons and four push buttons. ... 30
Figure 3.5: Push buttons must have internal pull down resistor in FPGA......................... 31
Figure 3.6: UCF for Push-Button SWItChes. ... 31
Figure 3.7: Pull up resistor for push button switch in FPGA............coooiiiiiii . 31
Figure 3.8: UCF file for Rotary Push-Button SWitch................oooiiiiiiiiiiieen, 31
Figure 3.9: Eight surface mouNt LEDS.ot e 32
Figure 3.10: UCFs for Eight Discrete LEDS..........c.ouiiiiriiii e 32
Figure 3.11: Available CIOCK...........oiiri e 33
Figure 3.12: UCF for CloCK SOUICES.uuitittit et 33
Figure 3.13: Configuration settings of Spartan-3E Starter Kit forFPGA............................ 34
Figure 3.14: Detailed Configuration Options............couvvuiiiiiitiiiiiiiii i, 34
Figure 3.15: RS-232 Serial POItS.ouiititiiit ittt e eeaes 35
Figure 3.16: UCF for DCE RS-232 Serial POrtoiieiiiiie e 35
Figure 3.17: iIMPACT OPen UP OPtION. . ..vutittinttitt ettt et et et e e et ate e eae e e 36
Figure 3.18: New configuration file for FPGA........ ..., 36
Figure 3.19: iMPACT Programming Succeededooviiiiiiiiiiiiiiiiiiiieeeeee e, 36
Figure 3.20: Set Properties for Bit stream Generator..............oooevuiuiiineiinieiiiinienee i 37
Figure 3.21: PROM, ACE, or JTAG File generation.............c.couiiuiiiiiiniiniaiianiiieanneannnns 37
Figure 3.22: Click PROM File Formatter..........ooooiiiniiii e, 38
Figure 3.23: Selection of XCF04S Platform Flash PROM.............c..cooiiiiiiiiii 38
Figure 3.24: PROM File Formatter Succeeded.............oooiiiiiiiiiii e 38

Figure 4.1 Block diagram of MO....... ..o e e 39

Figure 4.2: >cmsdk ahb default slave.v’ model................coooiiiiiiii 40
Figure 4.3: >cmsdk _ahb slave mux.v model ... 40
Figure 4.4 cmsdk _ahb rom model...........c.ooiiiiiii e 41
Figure 4.5 cmsdk ahb to sram.vmodel...............oooiiiiiii 42
Figure 4.6 cmsdk apb slave mux.vmodule................oooiiiiiii e, 42
Figure 4.7 block diagram of tImer..........o.oiiniiniii e 43
Figure 4.8 block diagram of ABP UARTcuiuiiiiiii e 44
Figure 5.1 Keil Program.....o e 45
Figure 5.2 FPGA SEHINES. . ..ottt e e e 46
Figure 5.3: Path for image.hex file in cmsdk _ahb rom.v ..., 46
Figure 5.4: Path for image.hex file in cmsdk_fpga_rom.v. ..., 47
Figure 5.5: Path for BRAM files in cmsdk fpga rom.v.............ooiiiiiiiiiiiiiin, 47
Figure 5.6: Simulation 0f MO COTE PrOCESSOT.. .. .uuuiutintitiit it 48
Figure 5.7: Path for image.hex file in cmsdk_ahb_rom.v..............oooi 48
Figure 5.8: BRAM SEINGS.ottt e 49
Figure 5.9: 8X2048 SIZE BRAM ...t 49
Figure 5.10: BRAM file path..... ..., 49
Figure 5.11: DCM clock frequencCy SEttingS........c.oueiriiritie i 50
Figure 5.12: UCF 0f MO COTE ...ttt e, 50
Figure 5.13: top level MO core implementation..............ovuiieiinineiiiiiiiiie e, 51
Figure 5.14: MO core implementation on FPGA.............coiiiii 51
Figure 5.1: Result data ... 52

12

List of Tables

Table 2.1: Typical components in microcontrollers

Table 3.1 Clocks, Global buffers and DCM..........cccuiiiiiiiii e e .33

13

Chapter 1: INTRODUCTION

In the age of technology, to be competitive, the product must have dynamic and unexpected
changes. In this work, field programmable gate matrices (FPGA), in the age of technology, are
enough to show the dynamic and unexpected changes of the product adapted to meet these
requirements. They are economical, adaptable, powerful and economical and can be configured

in a hardware using HDL language.

Traditionally, the designer can perform has following three options to perform hardware control

platforms:

¢ Digital signal processors (DSP)
e Application specific integrated circuits (ASIC)
e Field programmable Gate arrays (FPGA).

ASICs provide optimal performance because they are designed to meet the requirements of the
application. However, the budgets for ASIC-based solutions are maximized, since the number of
production machines is usually relatively small due to the small number of units compared to the
products it produces. On the other hand, DSP-based solutions are economical, but their

processing speed is not sufficient due to software execution.

1.1 Advantages of FPGAs

The development of FPGA technology has grown in recent years in terms of usable resources,
processing speed, number of access points, retail prices and energy consumption. Advanced
FPGAs are therefore a reliable alternative to common microcontrollers and ASICs for
applications. Recent FPGA-based systems also include many advantages of DSP and ASIC. That
is, high flexibility, reuse capacity, rapid development cycles, moderate costs and easy updating
(due to the use of the abstract hardware description language (HDL)), and feature expansion
(provided FPGA resources are not depleted) in addition, current FPGAs can be integrated as
software processors. Therefore, an FPGA can have typical processor capabilities.

1.1.1 FPGAs as ARM microprocessors:

Primary use of an FPGA is for computationally intensive, parallel processing tasks and high-
speed, however the ARM microprocessor is used mainly due to its versatility many manufacturer
used it as the core of their applications i.e ZYNQ family of devices. ARM because of their wide

use as a processor variations of operating systems are available.

14

1.1.2 Embedded processors on FPGA soft-core vs hardcore

In integrated systems, field programmable gate array (FPGA) is a very effective solution due to
their ability to reconfigure, scale and be low cost. Due to the configurable logical capability of the
FPGA, designers have been forced to integrate software processors into the FPGA for use in
various peripherals. To this end, many software and hardware cores have been developed for
different software and hardware.

1.1.3 Linux soft cores

The cores of the arm processor are called cortex. The Cortex-M FPGA solutions provided by
Altera (soft cores of M1 is provided) also Actel provide the same package, while the Cortex-M3 is
in available as IC package. Xilinx has provides no paratical solution to date. ARM has released a
low-cost and low-cost solution of the MO processor that can be programmed in an FPGA or used
as ASIC applications. XILINX does not provide a soft MB core.

1.1.4 ARM series of processor

The Cortex series of processors as shown in Figure 1, includes cores of economical
microcontroller solutions and state-of-the-art processors, capable of handling huge tasks and
advanced operating systems. Other processors of the same family are ARM7 series, ARM9 series
and ARM11 series. The specialized SecurCore ™ series is also primarily intended for security as

well as cryptography applications.

‘fﬁ\ Embedded: Application’
I ARM Processors Gortex Processors. GOFLEX Processors
GOTTEX=A15}

% COTTEX-AY.

g (SOTLEX-AS

% (SOTTEX-AS!

: CortexR4

§ Cortex-14

Cortext?s
Cortex M1

Art7 I Gortexc0

Figure 1-1 ARM Microcontroller Cores
1.1.5 Advantages of ARM processor family:

ARM cortex processors mainly used for high performance applications with real time and

embedded operating systems. These processors are low cost, low power, fixed latency interrupt

15

handling processors. Cortex Mo is alternative for 8 bit microcontrollers as they have high
processing capacity.
1.1.6 Motivation

In the field of embedded systems, a hardware which can be configured and changed even
after installation and deployment is much needed to cope with the ever increasing and changing
demand of market. The motivation behind this thesis is to develop indigenous hardware platform
for various industrial and military configurable systems and devices with low power, high

interrupt latency, good efficiency and low cost.

This design or platform can be used as IOT, Encryption controller, intrusion detection

controller and as communication control (for implementing various communication protocols).

The most attractive feature of this platform is its speed, low cost and run time

configuration feature.
1.2 Problem Statement

To develop an indigenous FPGA based hardware configurable solution for various
industrial and military applications with all features of ARM processor in form of soft-
core of ARM family.

1.3 Aims and Objectives

The main goals of the investigation are the following:
« It can be used as indigenous 10Ts (Internet of Things)®.
« Itcan also be used as parallel intrusion detection processor like PHANTOM?.
« Can be used as platform for computer vision applications®.

« FPGA based multiprocessor systems*
1.4 Contributions

* Comparison of working of soft-core and hardcore ARM processors
implementations.
» Selection of FPGA instead of ASIC and DSP processors.

* FPGA Spartan 3 board all functionalities and features.

16

1.5 Structure of Thesis

This work is structured are the following:

Chapter 2: States the literature review of related work.

Chapter 3: Give details about the Hardware used in this thesis.

Chapter 4: Consists of the proposed methodology in detail. It includes: coding, system
configuration, simulations, results and analysis.

Chapter 5: Experiments and results are discussed in detail with all desired figures and
tables.

Chapter 6: Closes the thesis and reveals the future prospect of this study.

17

Chapter 2: LITERATURE REVIEW

2.1 Embedded Systems and FPGAs

In embedded system industry FPGAs use is very crucial and vital. FPGA offers possibility

of a wide range of electronic gates and IC to be incorporated.

Processors main use in electronic like cell phones, computers, television, machines used
for washing purposes and in various cards. And even in simple devices contain processor
in them like remote control of your radio, which is actually fabricated in an IC called
microcontroller .In modern microcontrollers, memory system and other peripherals are

also incorporated.

2.2 Architecture of Microcontroller:

Typical elements of a microcontroller are as under mentioned

L Qysta RTC ":— \]
Oscillator(s) = 1T
Processor — L w c::)
Voltage Manufacturing Power
3 |_regulator Test support Management ‘
B iy T
% Main System Bus infrastructure [J System ‘T -
< ,L { P = ;— 4 = Control “{
Flash e
i [.]
el SRAM BootROM | | Bridge | ['Watchdog Vj || o ()
Timer | /
System analog
components
| Peripheral Bus Infrastructure |
«] /L < L i B \[L < <. ,L Digital Peripherals
UART 6Pl0 P e s DAC o
Signal Peripherals
ﬂ @ II J:I II II Digital logic
/0 Pads
ﬁ ﬁ 3 ﬁ ﬁ ﬁ Memories
Figure 2. 1 Basic microcontrollers Architecture
Items Descriptions

Read Only memory (ROM) [It is a nonvolatile memory used for storage of program.

18

Flash

Flash is special type of ROM that can be reprogrammed several

times, typically used for storing program codes.

Static Random Access
memory (SRAM)

Used for data storage.it is a form of volatile memory.

Phase Lock Loop (PLL)

Its primary used for generation of variable clock frequency from a

reference clock.

Real Time Clock (RTC)

It is simply a low power timer to calculate seconds and works with

a low power oscillator.

General purpose
Input/output (GPIO)

It is a sub module with parallel data interfacing and used for

controlling external modules and to read back external signal status.

Universal Asynchronous
Receiver and Transmitter
(UART)

It’s a sub module used to cater serial transfer of data to external

interface.

Inter Integrated Circuit
(IC)

It is an interface used for serial data transfer; its data transfer rate is

higher than serial.

Serial Peripheral Interface
(SPI)

It’s commonly used for serial communication with other off chip

deices.

Inter IC sound (1°S)

It’s commonly used for serial communication for audio signal.

Pulse Width Modulator
(PWM)

It is a module to output configurable square signal of flexible time

duration.

Analog to Digital
Convertor (ADC)

Its primary purpose is to transform analog signal to digital format.

Digital to analog convertor
(DAC)

Its primary function is to convert digital signal form to analog

signals.

Watch Dog Timer

It’s a programmable time device to ensure that processor is running
as program. In enable state, the timer should be updated by the
programmer after certain time interval. When the program is
crashed that timer gets expired and on the basis of this critical

system interrupt or system reset is triggered.

Table 2.1: Typical components in microcontrollers

2.3 FPGA and soft cores of Processors

FPGA facilitated the incorporation of soft processor cores. Processors as soft core can be

considered equivalent to "computer on a chip™ or microcontroller. Core conglomerates a

19

Central processing Unit, memory and peripherals on a single chip. Custom interfaces can

also be accessed beyond the real standard integrated FPGA of integrated chip.

Many types of microcontrollers are available with many types of processors, peripherals
and memory sizes in them which can be marketed in various packages in market.
Processors are used in various applications so that using software system can be

controlled and various features can be developed.

The ARM cortex MO and cortex MO+ processors mainly used as SOCs, microcontrollers,
ASIC and ASSPs. And sometimes used in many subsystems.

Available reduced instructions set computer (RISC) architectures in market are:

1. ALTERA launched CPUs like NIOS and NIOS II.

2. Gaisler Research launched CPU like LEON2 and LEONS.

Microcontroller systems are now becoming increasingly advanced and demanded and can
achieve greater performance to fulfill the requirements of more suitable functions and operations.
Sometimes, they are costly; therefore, microcontroller systems are determined as designs of a
chip only detected in high-performance 32-bit processors, which dominate the current market.
Variety of peripheral are evolved after requirement rose from software development and pressure

of costly standardization.

Industry designed ARM M series of processors to meet above challenges, now over 200
companies are producing these chips from standard core to meet all applications like sensor

nodes to radio communication for 10Ts.

With the access of microcontrollers to more and more people, the software will be available for
you to see. real-time operating systems (RTOS) has quickly become a recommended industry
exercise and their use gaining importance for software engineering. The combination of these
components in the industry presented a problem for those who were developers, who were in
charge of the industry to reduce system costs and marketing success. Therefore, the architectures
of Cortex-M processors coupled with CMSIS standard is basis of hardware and software

standard.

2.3.1 Applications of soft-core processors:

Soft-core processors have many applications:

20

1. As Embedded machine learning processor for intrusion detection [5].

2. As a secure processor called PHANTOM in which practical oblivious computation is
performed [6].

3. Design and development of a security coprocessor based on a chip system (SOC) and a

program protection mechanism for wireless sensor nodes (WSN).[7]

2.4 ARM Understanding Different Types of Processors

Industry has designed many processors for various applications. ARM also designed different
processor series for different applications. For server, a processor with high data rate is required.
For battery applications, performance can be compromised in order to achieve low power. For
high performance, processor needs to have more transistors as this is rule of physics. As
frequency increases so as the power dissipation by the processor.

Cost
Features
Compirting
Servers

Performance

Smart

Phones

icrocontrollers

Power

Figure 2. 2 Trade-off in processor designs

Increasing the size of silicon results in increases in production cost (Figure 2.2). Hence different
processor have been designed for different applications. Also, chip designer’s needs to select
suitable processor for their application. Luckily, many vendors provide different processors for
different applications. ARM also provides processors as per designer need.

2.4.1 Overview of the ARM Processor Families

ARM has designed many processors for several applications as shown in the Figure 2.3. Lets see
what ARM has to offer for designers.

ARM designed the processor since long. Over 20 years of their experience ARM has provided 32
Bits processors but recently they have designed processor for mixed architecture of 32 Bits and
64 Bits.

ARMT processor is the first series of processors marketed for the designers. It is high efficiency

and high code density allows the designers to use state of the art operating system. They are use

21

frequently in next generation mobile phones. ARM after great response from designers continue

design new series like ARM9/9E and ARM11 family of processor.

Cortex-A72
High-end
ARM Cortex Application
Performance, processors Cortex-A57 processors
functionality
Cortex-A17
Cortex-A15 Cortex-A12
Cortex-A9
Cortex-A53
Cortex-A8 Cortex-A7
Cortex-A5
3 High performance
Corax-R7 Real-time systems
ARM11 Cortex-R5
series
Cortex-R4
0 Cortex-M7
ARMSE 0Cortex-M4
series Cortex-M3 .
O OCortex o Microcontroller
ARM7TDMI 3 applications
O OCortex-MO
Cortex-M1
2003 2005 2009 2012 Future g

Figure 2. 3 ARM processor families Overview

2.4.1.1 Cortex-A series processors:

Some application requires high performance so that they support advance operating system. Such
processors have longer processing channels and can operate at high clock frequency.(1 GHz or
greater). For functionality MMU (Memory management unit) supports virtual memory
addressing. These are used in cell phones, mobile computing and energy efficient processor. For

fast response ARM has designed R series of processor.

2.4.1.2 Cortex-R series processors:
For fast response Cortex-R series is launched. Their clock frequency is less than A series
(between 500 MHz to 1GHz). They have tightly coupled memories to improve response time.

Some are provided with additional features like ECC (Error correction code) for reliability.

Their application includes disk drive controllers, wireless controllers/ modems, automotive
controllers and in industrial controllers. They consume a lot of power and have complex

architecture. For integrated products ARM launched another M series of processor.

22

2.4.1.2 Cortex-M series Processors:

M series is used for application where less processing is required at the cost of low power. Their
pipeline is short (2 stage for MO and 3 stage for M3, M4), however, M7 has pipeline of 6 steps
because of greater performance requirements; however, it is much smaller than pipeline of high
end application processors. Due to tube optimization and power consumption in the application,
the maximum clock rates of them are slower than those of the R and A series processors.

However, for low processing application this is not a issue.

Cortex-M series processors can handle very fast interrupts response. To achieve this goal they are
equipped with special module called nested vector interrupt controller (NVIC). This module has
very handy features of interrupt handling. They are easy to use and can be programmed in C
language. Because of features like low power, high performance and user friendly Cortex-M
series processors are used in sensors, chips used for mixed-signal ASIC / ASSP, and are even

used as a controller in some of the complex use processor / SOC product subsystems.

Instruction set is compared in figure 2.4, MO, MO+and M1 support small instruction set (56
instructions). Most are 16 Bits as they provide good code density. MO and MO+ instructions are
simple in nature and can perform complex task easily. For state of the art operating system M3
processor is used as it has 32 bit of instruction support and can support following:

e More addressing modes of memory

e Inthe 32-bit instructions Larger immediate data

e Longer branch and conditional branch ranges

e Additional branch instructions

e Hardware divide instructions

e Multiply accumulate (MAC) instructions

e Bit field processing instructions

e Saturation adjustment instructions
M3 can handle complex data quickly. With same code size as MO and MO+ because it uses same
instructions for same task. 32 bit instructions can do same task efficiency then 16 bit instructions.
For DSP applications that involves filtering and signal transformation. M3 also equipped with
SIMD (Single Instruction multiple data). Data path of processor is also reduce to accommodate
that.

23

[we [wom][womn J[vore][weenw][wmeamen][wninnm] Cortex-M7 FPU
[weerm][wawra][wveemw) [wewre][wenmm] [wanmx) [wenm] pre[cisiilnﬂD:t:g::inﬁ

Cortex-WE FFUT

(s JC v J [vew [vowe J[ver J[vom [we J [wew][_wee) FREEREEEE
T T | ST | S | S | T | G | ST | ST | ST
| G | | S | G | S | = | S | S |
[aoeoo | [osse | [eeoms [aeeoos | [seooas | [sapce | [wepois | [wasoe] [umascae) [wkeoos |
[oosue [wsws][esuese J[asues | [sswmis | [sswse | uswsis | [wsues] [umsusas][uwsues |
C= = Il=)= I = L I =)|)
R | G | S | e . e | F—e e
E0[Eo] i | S | e | o o e | e e
Coomn) Covme) o) (o) [vomar) (e] (_omee] —

R | i | | o | S | G | S [:%%[—]EmTi
. . e L e e | e
[wov][moww][mowr J[mwe][mew][s [] (ot) (e] (s)
L ror J[row J[_ror JC o J(e J[mow J(_mv]| oo\ e) ([owa
e)l e) revs J[s) mm) o [me) [)
o)==) e C = JC = L = I = | s ([wew] (e)
" | ———" " e e by e e
T —— —— T T e
BHEE EEECE I =)))| o e o
[(me] [ome] [] (=] (mov] [(wor) stme] [smoe] [wewe) [swmw] T e LT
(=) [me] (o] (o] (o) (Comn]| (smmer J [smme [J [=m] [woes [swee | [swwawm |
() (2 (=) G| o) o) o) o) |) o o)
sac B m@-(st | [steer [wem) [=m] [wmesis [swmmis] [s
(o) (o] [sem] [wm] (Gor J(mea]|(wee][ven][wnm 1w] [wmee [e] [wens)
GG e | () Come)) |) e (e
15-bit instructions 2-bit instructions Cortex-M3 [ARNwWT-M) Cortex-M4 (ARMyTE-M)

Figure 2.4 Instruction table of M family

2.4.1.3 Software Portability of Cortex®-M Processors:
MO, MO+ and M1 series processor are based on ARMv6. M3, M4 and M7 are based on ARMv7

architecture as shown in the figure 2.5 for instruction set support.

FPGA optimized
Cortex-M1 Upward Upward
\ compatible compatible
FPGA ASIC Upward
protolyping migration compatible Cortex-M3 Cortex-M4 Cortex-M7
Eas}r EESY
software software
CGI’[EJ(-MU* pgrtmg DEII'tII'}g
Cortex-M0
High performance, feature High performance, low power Excellent pedformance, ful
rich and ultra low power microcontrollers with DSP feature microcontrollers with
Ultra low power and microcontrollers capability and single DSP capability and single/
low cost precision floating paint double precision floating point
microcontroliers,
mixed signal SoC
ARMvE-M ARMT-M ARMTE-M ARMyTE-M
Architecture Architecture Architecture Architecture

Figure 2.5 Cortex M series processor compatibility

24

2.5 ARM Cortex MO

It is 32 Bit processor; it means that internal registers banks, data path and bus interfaced are all 32
Bits. It has single bus interface means its architecture is Von Neumann type. It has three stage
pipeline (Fetch, decode and execute). Most of the instructions are 16 bit, however only few are 32
bits. It can support optional 32x32 bit multiplier. Address supports 4GB of memory interfacing.
MO bus interface is based on AHB-Lite protocol that can support 8, 16 and 32 bit data transfer.
Protocol is pipelined and can support high operating frequency and peripheral can be connecting
AHB-Lite with APB Bus Bridge. MO supports 32 interrupts trough Nested Vector interrupt
controller (NVIC). It supports Two sleep modes (normal sleep and deep sleep) are used for power

saving.

2.5.1 Block Diagram:

Block diagram of MO is shown as figure 2.6

MO contains register for data storage, ALU and control logic. Three stages of pipeline for fetch
decode and execute stage. Banks are of 32 bits. Some are special usage like PC while others are

used as general purpose.

NVIC can handle upto 32 interrupts with functionality to compare priority between interrupts
request and current interrupt priority level. In case of a interrupt, NVIC communicate with the

processor to execute interrupt correctly.

There are 32 bits AHB-Lite bus interface, processor core, internal bus system, and data path.
AHB-Lite bus

Power maragement interace

Nested

Interrupt
P Vector

raquests and
NM

Interrupt
Controller
(NVIC)

T o ol

Internal Bus System

core subsystem

1
|
Processor Debug I
|

1 Wakeup JTAG /
- Interrupt Serial-Wire Connection
o Controller Debug ‘ to debugger
(WIC) Interface
— -
e P
>
>
—
>

I I
Pracessor AHB LITE
Sysiem bus nterfaca
[Im‘.edg;ai;mn Corlex-M0 unit
¥ Processor } Bus Interfece
L

Memory and
Per pherals

Figure 2.6 Cortex MO simplified block diagram
25

2.5.2 System overview:

MO processor inherently does not have any memory and peripherals. However, designers needs

them for their design, so MO processors based IC have different addressing range, interrupts and

memories. Normally MO have following peripherals:

e Program code storage use ROM (Read only memory) . e.g flash memory
e SRAM (Static RAM) for data read write.

e Bus interfacing for various memories and processor joining.

MO processor can be look like as shown in the Figure 2.7

Interrupts
JM]—P Processor »)
Digital logic
I System bus (AHB Lite) Memories
High Speed Bus Digital Peripherals
Boot ROM Pl SRAM Peripherals Bridge .
Memory (e.g. GPIO) Analogue / Mixed
Y Signal Peripherals
IRQs Peripheral bus (APB)
| | | | |
UART SPI Timers DAC ADC Other
peripherals
PP— A A T
IRQs y 1] L] y 1]
[I/0 pads)

Figure 2.7 Cortex MO simple systems

MO based design might have bus partition into two parts:

¢ RAM, ROM, Flash memory, SRAM, few other peripherals connected by the bus and a
bus bridge.

e Peripherals attached by the help of peripheral bus, might have different operation

frequency.
APB is connected with AHB-L.ite bus through Bus Bridge. APB bus use is as follows:

e Low cost solution as APB bus is non-pipelined and is simpler to implement than
AHB-Lite bus.

26

e Makes possible to interface others sub modules at different frequency of operations
than main bus.
e Where large combinational blocks are required for logic implementation, they are

attached with APB bus to avoid bottle neck for high operating frequency.

Also, interrupts, GP1O (General Purpose Input/Output) modules can be handled easily
through APB bus.

2.5.3 ARMV6-M Architecture
MO cores are based on ARMv6-M Architecture. This refers to following two areas:

* ISA Model also called programmers model (software point of watching) and debug
methodology (what debugger sees).
* Microarchitecture: An implementation detail like signal interfacing, execution sequence,

pipelines etc. it is design specific. Like MO has three stage of pipeline.

2.6 MO0 advantages:

2.6.1 Low Power and Energy Efficiency
MO is very energy efficient and consumes 12.5 uW/MHz with size of 90 nm. This is low power
for 32 bit processor. ARM achieves it with less gate count, High efficiency and Low power and

through logical cell enhancement.

2.6.1.1 Low gate count

Low gate count is achieved through careful design techniques at each stage. Every part was
developed very carefully and helps in minimizing gate count to 12000 only. This is lower than
even 16 bit processor keeping the performance almost double.

2.6.1.2 High efficiency

MO has many low power features to use in battery powered applications. Two modes sleep and
deep sleep are available. Sleep mode is invoked using instructions like WFE and WFI or sleep on
exit. To save further power debug system can be turned off.

2.6.1.3 Logic Cell Enhancements

Ultra Low Leakage logical cell library developed by ARM support special state retention cells

that holds information in case of system power failure.

27

2.6.1.4 High density of code

For 16 bit instructions MO has very high density of code. Hence application can be
accommodated into small memory.

2.6.1.5 Low interrupt latency

MO can handle interrupt in 16 clock cycles. This involves stacking of registers in stack, so that

ISR can work without any software overhead.

NVIC can handle interrupt prioritization and ISR starting address so that exact IRQ can be
serviced. Interrupt response is much lower than 8 or 16 bit system when supported by good

programing practices.

2.6.1.6 User friendly
MO is very user friendly as most of the software is in C language. This helps in shorter code

development and easy portability.

2.7 Applications:

Mo offer high performance, low power and user friendly. Cortex-M series processors are

carefully chosen from most of the microprocessors products. They are widely used in:

e Sensor nodes.

e Wireless communication chipset.

e Mixed signal application-specific standard product (ASSPs) and ASICs.

e In complex application systems as controller in subsystems.

e Security sensitive products as secure core processors e.g., SC000.which are used in SIM

cards, electronic ID cards and banking/payment systems.

2.7.1 Advantages

Cortex Mo processors has number of key advantages

e Flexible interrupt management is provided using NVIC (Network Interrupt Controller).
e OS support features.

e Low power support like sleep modes.

e High code density.

e Integrated debugging.

e User friendly.

28

High energy efficiency because of small size and better performance.
For power management and boot sequence cortex ARM processor can be used as System
Control Processor (SCP).

29

Chapter 3: Hardware and Software Details

In order to implement our task we need FPGA with over 12k gates. After investigation and

comparison with others options Spartan 3E board is selected.

3.1 FPGA Spartan-3E as proto Board

Spartan 3E starter FPGA development board is a digital platform for various embedded
implementation. It support 16M bytes of SDRAM and 16M bytes of ROM. It has 50MHz crystal
oscillator and base for secondary oscillator. USB2 power socket empowers all circuits,
programming and data transfer modules. Also some other sub modules such as LCD screen, LEDs
and switches, etc. LEDs can be used as event indicators. You can take advantage of Xilinx impact
software such as Chipscope Pro, xmd, etc. In our case, this has helped to program and see the
status of it easily.

The Spartan 3E starter kit is compatible with Xilinx FPGA S3E500-4. In total, 500 logic gates, 20
hardware multipliers, 10,500 logic cells, 73 Kbits of DRAM, 360Kbits of RAM, having 4 clock
sources and clock frequency of 300MHz are maintained.

i

_Alullllllldllll.

Flgure 3.1: Xilinx Spartan FPGA Board

3.2 Hardware overview

In order to support design Xilinx board provides many interfaces. Some are as under:

30

3.2.1 Slide switches

There are four slides switches as shown in the figure 3.2. Located on lower right corner are
designated as SW3, SW2, SW1 and SWO0. When moved to up position a switch is connected to
FPGA pin to high logic (3.3V). However, in down position will ground the switch. Switch does

not have any active de bouncing circuit so it should be added by the programmer.

HIGH

LOW

SW3 SW2 SW1 SWO
(N17) (H18) (L14) (L13)

Figure 3.2: Four Slide Switches

UCF for slide switches is shown in the figure 3.3

NET "SW<0>" LOC = "L13" | IOSTANDARD = LVTTL | PULLUF ;
NET "SW<1l>" LOC = "L14" | IOSTANDARD = LVTTL | PULLUF ;
NET "SW<2>" LOC = "H18" | IOSTANDARD = LVTTL | PULLUF ;
NET "SW<3>" LOC = "N17" | IOSTANDARD = LVTTL | PULLUP ;

Figure 3.3: UCF for Slide Switches
3.2.2 Push Buttons
Four push buttons are shown in figure 3.4. Located in the lower left corner and labeled as Btn
North, Btn East , Btn south and Btn west.

Rotary Push Button Switch

ROT_A: (K18) Requires an internal pull-up
BTN_NORTH ROT_B: (G18) Requires an internal pull-up
(V4) ROT_CENTER: (V16) Requires an internal pull-down

BTN_WEST |8
(D18)

BTN_EAST
(H13)

BTN_SOUTH
(K17)

Figure 3-4: Rotary push buttons and four push buttons
In order to connected FPGA pin to high logic, push button needs to be pressed. The circuit with

pull down resistor is shown in the figure 3.5.

31

Push Button FPGA 1/0 Pin

3.3V =
L’ >—|X€I>— BTN_* Signal

Figure 3.5: Push buttons must have internal pull down resistor in FPGA

In UCF user must define the pull down settings along with 1/0 pin and I/O standards as sown the

figure 3.6
NET "BTN EAST" LOC = "H13" | IOSTANDARD = LVTITL | PULLDOWN ;
NET "BTN NORTH" LOC = "V4" | IQSTANDARD = LVITTL | PULLDOWN ;
NET "BTN SOUTH" LOC = "K17" | IOSTANDARD = LVTTL | PULLDOWN ;
NET "BTN WEST" LOC = "D18" | IQSTANDARD = LVITL | PULLDOWN ;

Figure 3.6: UCF for Push-Button Switches
3.2.3 Rotary Push Button

It is located in the middle of push buttons switches with three outputs. These are Rot_A, Rot B

and Rot_ center. Rotary switches can acts as dual functions, when shaft turns output values

changes and when pressed acts as a push button switch as sown in the figure 3.7.

Rotary / Push Button

&

FPGA I/0 Pin
3.3V

L‘ O—g—J—D— ROT_CENTER Signal

3

Figure 3.7: Pull up resistor for push button switch in FPGA
It acts like two push buttons connected by central shaft. These can acts as make before break.
When shaft is stationary in these positions both switches are closed. UCF constraints for four

push buttons is sown in figure 3.8

NET "ROT A" LOC = "K18" | IOSTANDARD = LVTTL | PULLUP H
NET "ROT B" LOC = "G18" | IOSTANDARD = LVTTL | PULLUP ;
NET "ROT CENTER" LOC = "V1&" | TIOSTANDARD = LVTTL | PULLDOWN ;

Figure 3.8: UCF file for Rotary Push-Button Switch

32

3.24 LEDs

Demo board is equipped with eight surface mount LEDs as shown in the figure 3.9. LEDs are
labeled form LEDO to LED?.

— S e o e S e

N~ ©
oo
w w
- d

. LEDS5:
~ LED4:
= LEDS3:
- LED2:
~ LED1
* LEDO:

Figure 3.9: Eight surface mount LEDs
LEDs are grounded from one side via current limiting resistors of 390Q. To drive LED, FPGA pin
must be high. UCF of LEDs is shown in the figure 3.10

NET "LED<7>" LOC = "F9" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<6=" LOC = "ES" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<G5=" LOC = "D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<4>=" LOC = "C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<3=" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<2=" LOC = "E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<1=" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<O>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
Figure 3.10: UCFs for Eight Discrete LEDs
3.3 Clock

Board supports three clocks as a source to FPGA as shown in the figure 3.11.
* Clock oscillator of 50 MHz.
* SMA connector for external clock input. It is high speed connector.
» 8 pin socket for oscillator
Clocks are connected to Bank 0 of FPGA. Each pin is also connected to DCM. The settings are

as shown in table 3.1

Clock Input FPGA Pin Global Buffer Associated DCM

CLK_50MHZ (9 GCLK10 DCM_X0Y1
CLK_AUX B8 GCLK3 DCM_X0Y1
CLK SMA Al0 GCLKY DCM_X1Y1

Table 3.1 Clocks, Global buffers and DCM

33

Bank 0, Oscillator Voltage 8-Pin DIP Oscillator Socket
Controlled by Jumper JP9 CLK_AUX: (B8)

www . xilinx.ar

$XILINX|

o

R

On-Board 50 MHz Oscillator SMA Connector
CLK_50MHz: (C9) CLK_SMA: (A10)

Figure 3.11: Available Clock
3.3.1 50 MHz oscillator
Onboard oscillator frequency is about 50 MHz with 40% to 50% duty cycle.it is accurate to +
2500 Hz.

3.3.2 Oscillator socket
There is a eight pin socket for oscillator. It is normally used when operating frequency is greater

than 50MHz. Also we can use DCM for other frequency generation.

3.3.3 SMA clock
SMA connector is used for external clock provision. For external device it is single ended clock.

UCF files for clock generation is sown in figure 3.12

NET "CLK 50MHZ" LOC = "Cg" | IOSTANDARD = LVCMOS33 ;
NET "CLK SMA" LOC = "Al0" | IOSTANDARD = LVCMOS33 ;
NET "CLK AUX" LOC = "B8" | IOSTANDARD = LVCMOS33 ;

Figure 3.12: UCF for Clock Sources
3.4 FPGA Configuration Options

Board support many configuration options
» Code downloading via JTAG or on USB. This combination also program board Flash
PROM and XC2C64A CPLD .
» Code downloading to 4M bit platform PROM, FPGA can be programmed from image

stored in it using master serial

34

* Code downloading to 16M bit PROM; FPGA can be programmed from image stored in it

using SPI.
* Code downloading to 128M bit flash, FPGA can be programmed from image stored in it

using BP1 UP or BPI down.
Figure 3.13 shows above described options in detail

16 Mbit ST Micro SPI Serial Flash
Serial Peripheral Interface (SPI) mode

Configuration Options
USB-based Download/Debug Port 3
Uses standard USB cable 9 PROG_B button, Platform Flash PROM, mode pins

LA 128 Mbit Intel StrataFlash
¥ Parallel NOR Flash memory
SPARTAN-3E 4 4 Byte Peripheral Interface (BPI) mode

Figure 3.13: Configuration settings of Spartan-3E Starter Kit for FPGA

3.4.1 Programming push button
This button is shown in figure 3.14 that force FPGA to reconfigure from selected configuration

memory source. This can be done by using press and release of button.

Configuration Mode Jumper Settings (Header J30)
Select between three on-board configuration sources

DONE Pin LED) PROG_B Push Button Switch
Lights up when FPGA successfully configured Press and release to restart configuration

hiioeatdl bl il ‘L."-\'«ﬁ e
: Jmper Berilngs s . _ j Y.
EEoSET b B
(o fmm V& [ic22:

e —Twthe I8 (3

e e R o 19%
3 . .

le.z.)-'e. 3

64 Macrocell Xilinx XC2C64A CoolRunner CPLD

4 Mtf“ Xil_inx Platform Flash PROM Controller upper address lines in BPlI mode and
Configuration storage for Master Serial mode Platform Flash chip select (User programmable)

Figure 3.14: Detailed Configuration Options

35

3.5 Serial ports

There are two serial ports, DB9 female connector and DTE male connector. DCE connects
directly to PC via standard serial cable. DTE connector connects madams, printers etc. Both

connectors are shown in figure 3.15

= Standard Standard
9-pin serial cable 9-pin serial cable

JooDDoa .
C"DBGD =

Pin 9 T ™~pPins

DBY Serial Port Connactor

{front view
DCE DOTE
Femals DBS Male DBS
5 4 3 1i b, 4 3 2 1
a a T -1] 2] T -1
Ja J7 L LJ ‘)L LJ J10
. GHND

RS-232 Voltage Translator {IC2)

RS232_DCE_AXD
Ay
RS232_DCE_TXD
RSe32_CTE_TXD
RS232_DTE_AXD

(RT) (M14) (M13) (U8)
Spartan-3E FPGA

Figure 3.15: RS-232 Serial Ports
FPGA connects between two DB9 connectors. Its output data on LVTTL or LVCMOS levels
which converts the RS-232 voltage level. Figure 3.16 shows UCF for DTE and DCE ports.

NET "RS232_DTE_RXD" LOC = "U&" | IOSTAWDARD = LVTTL ;
NET "RE232 DTE TXD" LOC = "M13" | TOSTANDRRD = LVTTL | TRIVE = & | ELEW = SLOW

UCF Location Constraints for DTE RS-232 Serial Port

WET "RE2232_DCE RXD" LOC = "R7" | IOESTANDARD = LVTTL ;
NET "RE232 DCE TXD" LOC = "M14" | IOSTANDRRD = LVTTL | DRIVE = & | ELEW = SLOW ;

Figure 3.16: UCF for DCE RS-232 Serial Port
3.6 FPGA programming

FPGA can be programmed using USB provided with kit. Attach USB and iMPACT programming
software can be used directly to program FPGA. Programming options for parallel or serial
PROM is not supported. As USB is connected a green LED turns on shows good connection.

IMPACT can be directly launched from ISE project navigator as sown in the figure 3.17

36

Proceszes: ;I
T U DO STOrSe T CoTe
EI E}@Generate Programming File

: @@F"mgrammmg File Generation F

: Generate PROM, ACE, or JTA,
£+ Configure D [itPACTL
E IJpdate Bitztreamn with Processo

| |
E'—t Processes

Figure 3.17: iIMPACT open up option
As board is connected software recognizes three devices in the chain. To select FPGA, right click

on it and assign new configuration file to it. Select file to program the device as shown in the
figure 3.18

“UIMPACT - C:/data/my_designs/s3e_starter_kit/s3e_starter_kit.ipf - [Boundary Scan]
EL File Edit View Operations Options Output Debug ‘Window Help

1P| % DB X|88 X%

.l
- 28Bounday Scan 4
i~ ol SlaveSerial
E---::]SelectMAP . 101 | i‘_“_wﬁ g‘_“ |
::] Desktop Configu.. Program... E
(=] SystemACE ' .
@ 5LE =] Verify
; xc355 Gda
IMPACT Modes I topleve Get Device ID .
x| L — Get Device SignaturefUsercode
[Available Operations are: & Assign New Caonfiguration File. ..
=) Program

Figure 3.18: New configuration file for FPGA
When programming successful, FPGA application starts execution and DONE pin LED glows.
The screen appears as shown in the figure 3.19

“iMPALT - C:/data/my_designs/s3e_starter_kit/s3e_starter_kit.ipf - [Boundary Scan]
ZL File Edit View Operations Options Qutput Debuq window Help

A B % DB X/ 8exies
x|
#- galBoundary Scan &
-~ aalSlaveSeial
SaiSekecthaP DI a £ 0
- BaDesktop Configu...
i [] SystemACE - “““
L= — . T
= DO
Available Operations are: &
=P Program
=pVerify
=P Get Device ID :
b Get Device Signatur.. Program Succeeded
=P Check ldcode !

Figure 3.19: iIMPACT Programming Succeeded

37

3.6.1 Generating Bit stream file

Bit stream is used for PROM programming. FPGA provides external clock to load external
PROM. Oscillator starts from lower settings 1.5 MHz. PROM support higher frequency so this
frequency can be increased. XCFO04S flash support 25MHz.

Right click Generator programming file as shown in the figure 3.20

Processes: ;I
ﬁ' Uszer Constraints

'- P2 1 Synthesize - X5T

-- 22 1 Implement Design |
- .:-:_'-':';Z_.:ZEEr'neratE Progracoming Fi
[Z)EDFrograr o Run

Ef@- Genera Rerun

L__f@ Configl gt Rerun all
— 5. stop

Dpen YWithout Updating

T

Figure 3.20: Set Properties for Bit stream Generator

1:|

E'—f' Froceszes

In properties option increase clock to 25MHz. click on generate programming file. When file is

generated, use option as sown in the figure 3.21

Processes: ;I

? User Constraints

-- P21\ Synthesize - K5T

- P2 Implement Design

P 2D Generate Programming File

- [2)@) Programming File Generation F
'+ Generate PROM, ACE, or JTA,

@1: Processes

Figure 3.21: PROM, ACE, or JTAG File generation
As iIMPACT starts click on PROM file formatter as shown in the figure 3.22

38

iMPALCT - E:.."'d-EIII-EI.."'I'I'IH_dEs:

Eh File Edit \iew Operations

I A

& B E X

oHE
o=

x|

- oal SlaveSerial
- oal S electkdsP

~ [=] SpsternACE

- GalDesktop Configu...

é PEOM File F:::rn_'l...

IMPACT Modes

g

;I‘

|

Figure 3.22: Click PROM File Formatter
Here target is Xilinx PROM. Select from any format. MCS (Intel Hex format) is popular. Enter

path for file storage. Select XCF04S PROM from the options to program it
Kit has XCF04S Platform Flash PROM. Select XCF04s from list as sown in the figure 3.23

“iMPACT - Specify Xilinx PROM Device

I~ Auto Select PROM

I” Enable Revisioning

Humber of Revisions: IW vl

I” Enable Compression

Select a PROM: | xct x| [xci0as [524288)

|

«cflls
#cfl2s

[131072]
[262144]
(524288
#cfl8p [1048576]
wchlBp [2087152]
#cf32p [4194304]

Delete All I

< Back I Mest > I

LCancel |

Figure 3.23: Selection of XCF04S Platform Flash PROM
Next step is to format the PROM and after that select bit stream file. Presses continue. PROM file

thus created is as shown in the figure 3.24

| 3
1 ECXILINX i
3 A Exume
{ PROM 3
wcfl4s
54.13 % Full xe3s500e
myfpoabitstream..

PROM File Generation Succeeded

Figure 3.24: PROM File Formatter Succeeded

39

Chapter 4: Proposed Methodology

As already discussed in Figure 2.7 that MO processor is connected with others modules through
AHB-L.ite bus (Advanced high speed bus) and APB (Advanced Peripherals Bus). So, in order to
make MO core we need files in which settings and configuration of MO are included. Also we
need files containing information about AHB and APB bus, clock settings modules. These are
shown in figure 4.1. We are going to discuss this one by one.

MO Processor

v
Address Slave select Slave
decoding
ROM APB Bus
SRAM
APB Slave
select
ABP Timer Test Slave
UART

Figure 4.1 Block diagram of MO
4.1 MO processor

In project we have use files like ’cmsdk ahb _memory models defs.v’. This file defines memory

models that we are using for our MO core. In total MO support five memory models.

e None.

40

e Behavioral ROM model, using behavioral SRAM with write disabled.

e SRAM model with an AHB SRAM interface module, suitable for FPGA flow, and
permitting read and write operations

e Flash wrapper with simple 32-bit flash memory.

e Flash wrapper with simple 16-bit flash memory.

In project we have used ’cmsdk apb_dualtimers _defs.v’. In this files 32 bit down timers used in
MO core are initialized. In ’cmsdk_apb_watchdog defs.v’ file watchdog for MO is initialized. In

’ecmsdk mcu_defs.v file MO core main definitions are initialized.

4.2 Slave

Slave is defined in cmsdk_ahb_default_slave.v’ file. Slave responds to transfer in case master
bus tries to acess undefined address. When bus is idle a zero wait state or ok response is
generated, however, slave generates error response when sequential or non-sequential transfer
takes place. AHB default slave components are shown in figure 4.2

cmsdk_ahb_default_slave.wv

HCLK —»
HRESETh —»
HSEL —»
HTRANS[1:0] =
HREADY —¥
HREADYOUT +——
HRESP «—|

Figure 4.2: ’cmsdk_ahb_default_slave.v’ model

4.3 Slave select

Slave select module is named as cmsdk_ahb_slave_mux.v’ file. It supports upto 10 slaves that
are connected with AHB bus. Parameters that define slave port usage are also defined in it, so that
synthesis does not generate additional logic. Block is shown in the figure 4.3

cmsdk_ahb_sTave_mux.v

HCLK —» le— HREADYOUTO
HRESETn ——» [== HRDATAO[DW-1:0]
l—— HRESPO
HSELO —»|
HSEL1—»
from address decoder | [+—— HREADYOUT1
: [—HRDATA1DW-1:0] [.o
H f—
HSEL9— | i HRESP1
R |
HREADY —— HREADYOUT9
HREADYOUT +——| e HRDATAS[DW-1:0]
HRDATA[DW-1:0] <t l—— HRESP9)
HRESP «——

Figure 4.3: ’cmsdk _ahb_slave mux.v’ model

41

Address decoder determine selected slave and generates correspondence HSEL signal to AHB
slave and AHB slave multiplexer. Slave use register version of HSEL as data and signal are valid

during data phase. For more than 10 slaves more AHB slave modules can be cascaded.

4.4 Address decoding

In project ’cmsdk_mcu_addr_decode.v’ file is used in conjunction with others file. The main aim
of this file is to check the MO generated address and compare it with assigned addresses in to the
modules of MO. If valid address is matched it grants the AHB bus access to that module for data

transfer.

4.5 APB Bus

APB bus platform is provided in ‘cmsdk_apb_subsystem.v’ file. It is used to interface module
slike APB timers, APB UART, Dual input timers, AHB to ABP Bridge, Test slave and IRQ
synchronizer. It includes signals to enable all its modules. When address generated by AHB bus
matches the address allocated in APB Bus it generates corresponding enable signal. Here HCLK
(Clock for AHB) is converted into PCLKG (Gated clock for APB bus). For our code we are using
the same clock frequency for AHB to PCLKG. APB bus is used here as 16 bit Address Width
and 32 bit data bus.

4.6 ROM

In project ‘cmsdk_ahb_rom.v’ file is used with other files. ROM is of 16 Bit address bus and 32
bit data bus. The ROM model is shown as figure 4.4

cmsdk_ahb_rom. v

HCLK—» MEM_TYPE = 0
HRESETh —»
HSEL —»
HADDR[AW-1:0] ==
HTRANS[1:0] =—pp
HSIZE[2:0] -
HWRITE —»
HREADY —»
HWDATA[31:0] ==
HREADYQUT == 1'b 1
HRESP +—|1'b0
HRDATA[31:0] dml{32{1'b0}}

Figure 4.4 cmsdk_ahb_rom model

42

4.6 SRAM

It performs read write operations with zero wait state. The design only supports 32 bit memory
interfacing. Here, we have made four SRAMs of 8x2048 Bits. The data transferred in it byte

wise. The main model is shown in figure 4.5

cmsdk|_ahb_to_sram.v

HCLK —»
HRESETn — - SRAMADDR[AW-3:0]
HSEL —» - SRAMWEN[3:0]
HADDR[AW-1:0] st — SRAMCS

HTRANS[1:0] =—p
HSIZE[2:0] m=p
HWRITE —»| ki SRAMWDATA[31:0]
HREADY —»|
HWDATA[31:0] ==ps
HREADYOUT +—
HRESP «—|
HRDATA[31:0] g

[t SRAMRDATA[31:0]

Figure 4.5 cmsdk_ahb_to_sram.v model
4.7 ABP Slave select

The slave multiplexer is included in ‘cmsdk apb slave mux.v’. It supports upto 16 slaves. In
order to do this it uses four bits PADDR to generate corresponding PSEL signal. PADDR can be

configured to decode slaves. Figure 4.6 shows APB slave mux module

cmsdk_apb_sTave_mux.v

— PSELO

DECODEA4BIT[3:0] =i +——PREADY0
PSEL —» [PRDATA0[31:0]

[+——PSLVERRD

— PSEL1
[——PREADY1
[PRDATA1[31:0]
[+——PSLVERR1

|

PREADY +—
PRDATA[31:0] =t
PSLVERR «—

|

| . PSEL15

e PREADY15

| PRDATA15[31:0]
e PSLVERR15

Figure 4.6 cmsdk_apb_slave_mux.v module

4.8 ABP Timer

Timer is included in project using cmsdk_apb_timer.v file. It is a 32 bit timer with following

features:

e Interrupt can be generated using TIMERINT signal as counter reaches zero.

e EXTIN signal can be used as external input signal to enable timer.

43

e APB timer reaches zero and at the same time software clears previous interrupt status,
interrupt is status is set to one.

ABP timer block diagram is shown in figure 4.7

cmsdk_apb_timer.v

Edge .
<—>| Reload value deteciion Synchronizer

PCLK ——»| CTRL[2]
PCLKG — |
PRESETn]
PSEL | — 32-bit down .7/
PADDR[11:2] sy counter ~—
PENABLE —»
PWRITE —» « |
PWDATA[31:0] ——ip| CTRL[0]

PREADY +—— Yy

Decrement

PSLVERR «—| vl ~
PRDATA[31:0] g J Ly
ECOREVNUM[3:0] mempp CTRLZ) | 5| ‘ TIMERINT

Figure 4.7 block diagram of timer
4.9 ABP UART

cmsdk_apb_uart.v is APB UART, simple in design that supports 8 bit communication. It has no

parity and is zero as stop bit. Block diagram of UART is shown in figure 4.8

UART has two buffers one for data reception and another for data transmission. Interrupt

handling execution time is short this leaves sufficient time for processor.

You can write a new character to the write buf’ferj

\ while the shift register is sending out a character.

Write buffer Shift register TXD
&
TX FSM
L
Baud rate
APB >
interface \—— generator .
RX FSM
h
! ,
< Read buffer |« Shift register «———RXD

character while the data in the receive

‘r The shift register can receive the next W
\bul"fer is waiting for the processor to read it

Figure 4.8 block diagram of ABP UART

44

Chapter 5: EXPERIMENTS AND RESULTS

MO core can be programmed in C language, so we need some tool to make hex file of the
project. In order to carry out our task we use Keil integrated development environment for

our project. In our program we are printing simple message as shown in the figure 5.1

_’] startup_CMSDEK_CMO.s r_’] retarget.c rj uart_stdout.c r_’] syster

lude "core cm(.h"

k3 B3 R
woe -1
-]
Rt
]
4 4
L
.
h £
L

30 [j#ifdef CORTEX MOPLUS

31 | #in ie "CMSDE CMOplus.h"
32 #in e "core cmiplus.h"
33 | #endif

34

35 de <stdio.h>

36 e "uart_stdout.h”
37

38 int main (wvoid)

39 4

40 Sf UART init

41 TarcScdCutInitc ()

42

43 printf ("Hello \n"):;

44

45 printf ("#* TEST BASSED #=#\n"):
46

47 ff End simmlation

48 UartEndSimulation () :

43

50 return 07

Figure 5.1 Keil Program
The message is simple Hello ** TEST PASSED **. The final file is saved as ‘image.hex’

5.1 Simulation

In order to simulate our C code, we now need ISE navigator. Open ISE and select the FPGA as

shown in the figure 5.2

In file ‘cmsdk_ahb_rom’ file give the path of ‘image.hex’. as shown in the figure 5.3

45

"W ISE Project Navigator (P.40xd) - D:\hex_to_coe\synth\arm_mo0_prj2\arm_m0_prj2.xise - [Design Summary]

E File Edit View Project Source Process Tools Window Layout Help
IRELEE IBERRN ™ vesior Frovertics |
L Mame: |arm_mElJ:rJ2
[7] | View: (o Il'j}[mplemenmuan + E
Location: ID:Wex_m_cne\synm'ﬁrm_mﬂjrjz
&l Behavioral
E.El [E— Working directory: |D:hex_m_cne\synm\,arm_mtljrjz
— {‘; arm_m0_prj2 Description:
o | B £ xc3s1600e-5fg320
E B3 Automatic *incudes
= i |4 cmsdk_ahb_memc Project Settings
v | cmedk_mcu_defs,
. | cmsdk_apb_dualti | Property Name Value
i cmsck_apb_watct | TopL evel Source Type HOL LI
- cmsdk_apb4_eg_slave
"' u_apb_eqg_slave_
U_apb_eg_slave_ Evaluation Development Board MNone Specified =
=] cortexm0_rst_ctl (cor: | Product Category Al Jhd
2] u_hreset req-cn | Eapily Spartan3E =
2] u_dogreset req - fip e ¥C35 1600F -
#7| u_poresetn_sync —
o [50 1) hresetn eune - | Package FE320 =
4 Speed -5 Jhad
p | €2 NoProcesses Running
% Mo single design module is selecte: Synthesis Tool XST (VHDL Neriiog) =
EP{: = g. Design Utiites Simulator 13im (VHOL fverilog) =
il Preferred Language verilog Jhad
%t Property Specification in Project File Store all values I
— Manual Compile Order I
- VHDL Source Analysis Standard VHDL-93 =l
& Start E Design I I Files [Enable Message Filtering I~
Console
GINFC:HDLCompiler:1845 OK | Cancel I Help
1 INFO:ProjectMgmt - Par i

Figure 5.2 FPGA settings

48
43

=S

B

-

2z Running

Y| u_irg_sync_5 - cmsdk_irg_sync (cmsdk_irg_sync.v)

v | u_irg_sync_6 - cmadk_irg_sync (cmsdk_irg_sync.v)

V| u_irg_sync_7 - emsdk_irg_sync {cmsdk_irg_sync.v)

V| u_irg_sync_8 - cmsdk_irg_sync {cmsdk_irg_sync.v)
=[] u_irg_sync_9 - cmadk_irg_sync (cmsdk_irg_sync.v)

v | u_irg_sync_10 - cmsdk_irg_sync {cmsdk_irq_sync.v)

V| u_irg_sync_11 - cmsdk_irq_sync {cmsdk_irq_sync.v)

V| u_irg_sync_12 - cmsdk_irg_sync {cmsdk_irq_sync.v)

v | w_irg_sync_13 - cmsdk_irg_sync (cmsdk_irg_sync.v)
u_cmsdk_mecu_stelketr] - crnsdk_mecu_stdketrl (emsdk_meu
ahb_rom - cmsdk_shb_rom (cmsdk_ahb_rom.v)

u_shb_to_sram - cmsdk_ahb_to_sram {cmsdk_ahb_to_sriJ
u_fpga_rom - cmzdk_fpga_rom (cmsdk_fpga_rom.v)
u_ghb_ram - cmsdk_shb_ram {cmsdk_ahb_ram.v)

L[0 shh tn eram - rmedle shh mI eram frmedle ahh m:l-ﬂ
3

50
51
52
23
54
S5
o6
o7
58
59
80
61
62
63
64
65
66

| ©OQ|& & FE |5

1 a7

daciuuae oS Jily e

module cmsdk_a.h.b_roni i
'

Default to

/f

parameter MEM TYPE = S Memory Tvpe

parameter AN = Lidr==zz width
parameter filename =
// parameter filename I T2 auli
parameter WS N =0, f{ First access wait =state
parameter W5 35 [// Subsequent access wait st
parameter BE =0 // Big endian
)
{
input wire HCLE, // Clock
input wire HRESETn, // Reset
input wire HSEL, // Device szelect
input wire [AW-1:0] HADDR, // Rhddress
input wire [1:0] HTBRANS, // Transfer control

Figure 5.3: Path for image.hex file in cmsdk_ahb_rom.v

Also, add file ‘image.hex’ in ‘cmsdk_fpga_rom’ file as shown in the figure 5.4

46

> u_ahb_to_sram - cmedk_shb_to_sram (cmsdk_shb_to_sram.v)
‘%] u_fpoa_rom - cmsdk_fpga_rom {cmsdk_fpga_rom.v)
- |%] u_ahb_ram - cmsdk_ahb_ram (cmsdk_ahb_ram.v)

38 input wire [AW-1:2] ADDE,
39 input wire [31:0] WDATR,

u_irq_sync_8 - cmsdk_irg_sync (cmsdk_irg_sync.v) 30 parameter AW = 14,
u_irg_sync_9 - cmsdk_irg_sync (cmsdk_irg_sync.v) 31 // parameter filename = "D:/Frocessor M
u_irq_sync_10 - emsdk_irg_sync (cmsdk_irg_sync.v) “ 32 //parameter filename = "hello.hex"
u_irg_sync_11 - cmsdk_irg_sync (cmsdk_irg_sync.v) — 33 parameter filemame =|"image.hex"
u_irq_sync_12 - cmsdk_irg_sync (cmsdk_irg_sync.v) A 34)
g u_irg_sync_13 - cmsdk_irg_sync (cmsdk_irg_sync.v) % 3L {
- 4] u_cmsdk_meou_stcketrl - cmsdk_meou_stketrl (cmsdk_mcu_stelketrl.v) 36 J/ Inputs
- %] u_ahb_rom - cmsdk_ahb_rom (cmsdk_ahb_rom.v) p 37 input wire CLE,
g
@)

40 input wire [3:0] WREN,

u_ahb_to_sram - cmsdk_ahb_to_sram {(cmsdk_ahb_to_sram.v) (;. 41 input wire Cs,
‘|| u_fpaa_sram - cmsdk_fpaa_sram (cmsdk_fpoa_sram.v) — 47
I I | H S S IO SRR .- I S,

Figure 5.4: Path for image.hex file in cmsdk_fpga_rom.v.

In order to make MO core we need four BRAMs each of 8x2048 byte. Make four files in same
project directory. Save as "BRAML1.coe", "BRAM2.coe", "BRAM3.coe" and "BRAMA4.coe". Add

files in the cmsdk_fpga_rom.v file as sown in the figure 5.5

ﬂ — | 1os ¢readmemh (filen ge) s
106 ERAHC'_fid = &F ge ™ ||-___-||:| :
ﬂ o 107 BRAMI1 fid = ol mymy ;
u_irg_sync_8 - cmsdk_irg_sync (cmsdk_irg_sync.v) 108 BRAM2 fid = &£ ce"f "W ;
; u_irg_sync_9 - cmsdk_irg_sync (cmsdk_irg_sync.v) 109 BRAM3 fid = &£ ce"f "W ;
u_irg_sync_10 - cmsdk_irg_sync (cmadk_irg_sync.v) o 110
o |v] u_irq_sync_11 - amsdk_irg_sync (cmsdk_irg_sync.v) — 111 v from zingle array to splittec
u_irg_sync_12 - cmsdk_irq_sync (cmsdk_irg_sync.v) A 112 g v (BRAMO fid, "memory initiali
E u_irg_sync_13 - cmsdk_irg_sync {cmsdk_irg_sync.v) % 113 S v({BRAM1 fid, "memory initiali
u_cmsdk_meu_stdketrl - emsdlk_meou_stdketrl (cmsdk_meou_stlked 114 g v (BRAM2 fid, v 13
E u_ahb_rom - cmsdk_ahb_rom (cmsdk_ahb_rom.v) A 115 z v (BRAM3 fid,
o |%] u_ahb_to_sram - cmsdk_ahb_to_sram {cmsdk_ahb_to_sram.v) 4 116
u_fpaa_rom - cmsdk_fpga_rom {cmsdk_fpaa_rom.v) —1 117 v (BRAMO fid,
] u_ahb_ram - cmsdk_ahb_ram {cmsdk_ahb_ram.v) ; O 118 v (BRAM1 fid,

Figure 5.5: Path for BRAM files in cmsdk_fpga_rom.v.
After that simulate the code and output is shown in the figure 5.6.

The simulation results are confirmed by matching first byte of ‘image.hex’ file with
"BRAML1.coe" file. Both bytes should be same. We can check this by modifying first byte of

‘image.hex’ file and simulate the MO core. After simulation both the bytes should be same.

47

B 15im (P.40xd) - [Defaultwefg]

] Fle Edt Veen Smiatn Window Leyout Heb _
03E [||aB0X®wa N 1 Q]E5
#O8X Gk wOEX
ﬂ»_smamnob}emfum

Wl e ﬁ @ LIy
Object Name \ P
g 11 Y
g XTALZ
9 NRST
& Poj1so]
2 P15:0]
@ NTRST
‘F oI
@ SWDIOTMS
g SWCLKTCK
4y 0O
@ POK 0
B debug conma... z
g debug_ruming 1
3 debug_er 1=
g debug_test en 0
Reepry o
B BeT310)
%% 086 [31:0)
2§ NMIRQ[31:0]
2 sMuL3L:0)
i SvsT[3L0]
Bowcie o
B wianespLo) o
:é II'JIPTB I:D] 1]

Istances 3.
ICE]

Instance and Process Nar
4§ tb_cmsdk_mcu
o

1 test
p B pof1s:0)
» B p1[15:0)

P T I

I debug_runni
1l debug_err
1 debug_test ¢
p W Be[3L:0)
p W BET3L0)

> o o

Figure 5.6: Simulation of MO core processor

5.2 Implementation

=181

In order to implement MO core, so open project ‘ARM_prj2_m0’. Add ‘image.hex’ file in

‘cmsdk_ahb_rom’ as shown in the figure 5.7

s0 INUauLs SISs Sngy oo |
- %] w_irg_sync_4 - emsdk_irg_sync {cmsdk_irg_: - 51 ' e
-~ %] u_irg_sync_5 - cmedk_irg_sync {cmedk_irg_: 53 Parameter Declarations
- |%] wu_irg_sync_6 - cmsdk_irg_sync {cmsdk_irg_: S
- %] w_irg_sync_7 - emsdk_irg_sync {cmsdk_irg_:) 54 parameter MEM TYPE =
- %] u_irg_sync_8 - cmedk_irg_sync {cmedk_irg_: . e parameter AW - =
- %] w_irg_sync_9 - cmsdk_irg_sync {cmsdk_irg_: A 5 parameter filename =
- (%] u_irg_sync_10 - cmsdk_irg_sync (cmsdk_irg. o 57 parameter WS N =
- |%] u_irg_sync_11 - cmedk_irg_sync (cmsdk_irg. ‘"‘ 5a parameter WS S =
[w_irg_sync_12 - cmsdk_irg_sync (cmsdk_irg, ! 5g parameter BE =
v | u_irg_sync_13 - cmsdk_irg_sync (cmsdk_irg, 4 60)
u_cmsdk_meu_stdketrl - cnsdk_mou_stdketrl {on : 61 [
_] u_ghb_rom - cmsdk_shb_rom {cmsdk_ahb_rom.v) O 62 input wire HCLE,
u_ahb_to_sram - crmsdk_ahb_to_sram (cmsdk_a 63 input wire HRESETn,
=1 u fpga rom_coe - cmadk_fpga_rom_coe {cmsdk o 64 input wire HSEL,
-4 u BRAMD - BRAMO (BRAMO, xco) — Frameit mriea TAW_T .01 SOARMD fAAdraoo

Figure 5.7: Path for image.hex file in cmsdk_ahb_rom.v.

48

Make all four BRAMSs using IP core generator with specifications as shown in the figure 5.8

ZEix
Documents View |
IP Symbol & x

wgic.*t Block Memory Generator

xilin.com:ip:blk_mem_gen:7.3

Component Name |BRAMU _

Interface Type
[T ’7(-“ Native
DINATT0]
Mode |Stand Alone K

Native Interface Block Memeory Generator (BMG) are the original standard BMG functions delviered by the
previous versions of the LogiCORE Black Memory Generator (prior to v6.x). They are optimized for data
storage, width canversion, and clock domain de-coupling functions..

Native Interface BMG cores can be customized to utilize Single Port RAM (SP), Simple Dual Port RAM (SDP),
True Dual Port RAM (TDP) and Single Port ROM (SP ROM) configurations. In addition, Native Interface BMG
core also support features such as SoftECC/ECC, Pipeline Stages and file based Memory

=
g P Symbol 7T Power Estimation Datasheet < Back | Page 1 of 6 Next > | Generate Cancel | Help |
o N _I
Figure 5.8: BRAM settings
[i Hemory cenerner ——— SIE
Documents View
17 Symbol & x s
(P
mg"c LI BIOCk Memory Generator xilinx.com:ip:blk_mem_gen:7.3
~Port A Option: =
- Memory Si
ADDRA[10:0] DOUTAT0] Write Width |8 Range: 1..4608 Read Width: |8 E
DINAT:0): Write Depth | 2048 Range: 2..9011200 Read Depth: 2048
perating Modh bl
& Always Enabled
& Write First
€ Use ENA Pin
© Read First
© Mo Change
I
4 1P Symbol Vo Datasheet < Back | Page 30f6 Next > | Generate Cancel | Help |
Figure 5.9: 8x2048 size BRAM
e
Documents View
1P Symbol & x i
iR
mgtC w Block Memory Generator xilirvx, com:ip:blk_mem_gen:7.3
~ Optional Output Regist =
Port
TR] I~ Register Port A Output of Memory Primitives
DINAT0] I™ Register Port A Output of Memory Core

I™ | Register Port A Inpuit of SoftECC logic

I™ Use REGCEA Pin (separate enable pin for Port A output registers)

LKA Pipeline Stages vrithin Mux [0 - Mux Size: 0x1
- Memory —
I¥ Load Init File

Coe File [0:\hex_to_cos\sim\BRAMD.coe Browse Show

I™ Fill Remaining Memory Locations

ra3 Datasheet < Back |Pa e 4 of 6 Next > | Generate Cancel | Hell |
</ 1P Symbol [| Power Estimation _I 3 L

Figure 5.10: BRAM file path
Press generate button to make BRAM.

49

For clock settings we use DCM IP core. Set Input clock frequency 50 MHz and set output clock

frequency. The settings should be as shown in the figure 5.11

E: Xilinx Clocking Wizard - General Setup

E'_Ql Xilinx Clocking Wizard - Clock Frequency Synthesizer

~Valid Ranges for Speed Grade 4

DFS Mode Fin (MHz) Fout (MHz)
Law 0.200 - 333,000 5000 - 311,000
High 0.200 - 333,000 5000 -311.000

—Inputs for Jitter Calculations
Input Clock Frequency: 50 MHz

% Use output frequency

5 & MHz ns
— Input Clock Frequency ’rPhau Shift

[so & MHz ¢ ns Type: [WOoNE =] " Use Muttiply (M)and Divide (D) values
Value: [0 = M ﬂ D H

& Exemal intemal © Edemal & Intemal © MNone
& Singls rGenerated Output

= Single

Calculate
(CLKIN Source ’—Feeanack Souee

« Differential | Differential M D Output Period Jitter (unit Pericd Jitter
Divide By Value Feedback Valus F'w (MHZ) "‘m, M{m rB)
(z] ("‘ O 2 2 5 003 654

Figure 5.11: DCM clock frequency settings
4.2.1 UART pulse counter

In order to show proper working of M0 core, we need to make a file of ‘uart_pulsecounter.v’ file.

As it is already discussed that MO core sends out data on UART. We can observe that data by

attaching serial port with our board and using any standard serial port GUI we can observe data

transmitted by MO. Here we are using LEDs for same purpose. In ‘uart_pulsecounter.v’ file we

are counting 210 pulse transitions from 1 to 0. After that we are toggling a LED D13 on demo

board. UCF for same function is as shown in the figure 5.12

18 |[# == Discrete LEDs (LED) =——=

19 # These are shared connections with the FX2 connector

2p NET "Pl<S>" LOC = "R14" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;

21 NET "uart2_txd inv" LOC = "C3" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;
22 NET "uartl_ txe LOC = "E&" | IOSTANDARD = LVITL | SLEW = 5S5LOW | DRIVE = 8 ;

23 HNET ' LOoC = "D&" | IOSTRNDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;

24 NET "ua ulse" LOC = "D13" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = & ;
35 #NET "LED<5>" LOC = "D11" | ICSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;

26 #NET "LED<6>" LOC = "ES9" | TOSTANDRRD = LVITL | SLEW = SLOW | DRIVE = & ;

37 #NET "LED<7>" LOC = "Fg" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8§

28

29

30 # ==== Slide Switches (5W) ====

31 NET "NRST" LOC = "L13" | IOSTANDARD = LVITL | BULLUP ;

32 #NET "SW<1>" LOC = "L14" | ILOSTANDARD = LVITL | PULLUE ;

Figure 5.12: UCF of MO core
Top level MO core implementation is shown in figure 5.13

50

fpga_top:1

fpga_top

Figure 5.13: top level MO core implementation
After code compilation and generation of file, we can download same file in FPGA and results

are as sown in figure 5.14

$2 XILINX'

Figure 5.14: MO core implementation on FPGA

51

Chapter 5: EXPERIMENTS AND RESULTS

In this chapter, we evaluate the experiments done and their results on ISIM, Keil as well

as on hardware. The results show that the internal memory of embedded Mo soft-core is
accessed, data is processed and output is achieved according to requirement.

5.1 Results

5.1.1 MO core implementation on FPGA

!
i\\‘

|

Wi

" SIXILNX |

e L

Figure 5.1: Result data

52

Chapter 6: CONCLUSION & FUTURE WORKS

6.1 Conclusion
The remarkable conclusion of this work is that cortex Mo customized soft core can be

implemented in a smart FPGA which can be used as customized smart ASIC (Application

Specific Integrated Circuit) for various applications.

In that work, ARM Cortex Mo soft-core is synthesized with code memory of FPGA using
Advance Microcontroller Bus Architecture (AMBA Lite).

6.2 Future Work

In future works, the implemented cortex Mo core will be used for encryption and security
purpose.

For that purpose, in order to increase the processors capacity, other peripherals will be connected
to the AMBA bus. Linux operating system can be run over this processor that will make possible

to get Linux implementation in a small footprint design.

53

References

[1]

(2]

3]

[4]

[5]

6]

[7]

8]

[9]

[10]

ARM Ltd, “ARM DDI 0419C ARMv6-M Architecture Reference Manual”, September
2010.

ARM Ltd, “ARM IHI 0033A AMBA 3 AHB-Lite Protocol V.1 Specification”, June
2006.

Calix A Recado, Sankaran Rajesh "On the feasibility of an embedded machine learning
processor for intrusion detection," IEEE international conference on Big Data, 2016.

Maas Martin, Love Eric, Stefanov Emil, Tiwari Mohit, Song Dawn “PHANTOM: Practical
Oblivious Computation in a Secure Processor”, university of California Berkeley.

Wang yi, Shilong Lu ”Design and implementation of a SOC based security coprocessor and
program protection mechanism for WSN”.

ARM Ltd, “AT510-DC-80001-r0Op0-00-rel0 ARM Cortex MO DesignStart Release
Note” August 2010.

ARM Ltd, “ARM DDI 0432C Cortex M0 Revision rOp0 Technical Reference Manual”,
November 20009.

ARM Ltd, “ARM DUI 0497A Cortex M0 Devices Generic User Guide”, October 2009.
Xilinx, “DS312 Spartan-3E FPGA Family: Datasheet”, August 2009.

Digilent, “Digilent Spartan 3E Starter Kit Reference Manual”, June 2008.

54

