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Abstract 
 

The aviation industry has expanded enormously during last few decades. The advent of new 

technologies has made the aircraft design process more complicated. There are certain 

modeling techniques that can help circumvent the existing design process and yet yield fair 

approximates. One such approach that helps us to arrive at the outcome with reasonably good 

approximation is known as surrogate modeling. Surrogate models help circumventing 

complicated analytical methods, time-consuming simulations and expensive experimental 

techniques typically used during the design process.  

For the said purpose, a database of aircraft including military jets, commercial airliners and 

unmanned air vehicles was developed from commercially available data. Data collected was 

scrutinized into dependent and independent variables.  Aircraft performance parameters 

needed to be estimated so they were dependent variables and aircraft geometric parameters 

being predictors were independent variables. Scalability trends using power laws were 

developed between dependent and independent variables. The scalability study provided the 

initial design bounds and developed the foundations for further developing of surrogate 

models. As aircraft design is a complex process and a single variable might not be sufficient 

approximations for all scenarios, therefore, surrogate models using multiple linear regression 

technique were developed. The developed models estimated the dependent variables with 

high confidence. Moreover these models were validated using a three step process which 

included verification of each model using quantitative criteria, comparing the models with 

analytical equations and checking the prediction accuracy of each model. It is thus validated 

that a multiple linear regression models are best fitted for modeling surrogate models for 

aircraft performance parameters.  The approach proposed in this thesis holds a strong 

utilization potential among the aircraft design community and aero modelers during 

preliminary design phase.   
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CHAPTER 1 

INTRODUCTION 
 

Scalability trends can be observed in every living organism. Insects, birds and animals all 

have a scalable relationship among their ages, metabolic rates, speeds and so on [1]. Similarly 

the life at cities follows scalability laws [2]. Inspired by these relationships, scalability studies 

have been conducted in the past for advancement in technology. Semiconductor devices and 

electronics have demonstrated scalable growth. Gordon E. Moore [3] predicted that the 

number of transistors in dense electronic circuits will double approximately every two years. 

The prediction remained accurate for several decades. The traditional approaches to model 

complex systems are usually costly, resource exhaustive and time intensive. Another 

interesting application of predictive analysis was seen in fuel consumption modeling of an 

aircraft using flight operations quality assurance data [4]. These analyses have proved that 

certain models can be developed which will circumvent the existing design process and yet 

yield results acceptable to the designers. Such models that help us to arrive at the outcome 

with good approximation are known as surrogate models. 

The primary focus of this research is to develop an alternate procedure than existing 

analytical / experimental techniques in estimating aircraft performance during design phase. 

The conventional design process include defining detailed geometric descriptions, estimating 

aerodynamic data from rigorous computational / analytical / experimental techniques, 

followed by aircraft performance modeling using point mass models. The whole process 

sometimes gets tedious especially when the design activity is undergoing several iterations. 

The process is cumbersome most of the times and the results achieved in the end are still 

approximates. The designers over decades have come up with different designs following 

same fundamental abstract principles. We have now sufficient amount of data for different 

aircraft for which we can generate approximate / surrogate models from earlier designs. The 



- 14 - 
 

initial design process is always an iterative process and requires validation from analytical / 

computational methods, before the design can go into the experimental phase. The solution 

needs to be well optimized before the sketch goes into prototyping, as the financial blows 

from a failed prototype are enough to shelf the whole project. The aviation history is witness 

to the fact that flaws which were overlooked in the design phase and ended up in prototyping, 

were failed thus jeopardizing the project. The solution to this problem lies in optimizing the 

initial design in an efficient manner so that later details can be studied and looked with 

utmost care. Surrogate models are a solution to such problems and can act as predictors for 

futuristic designs. Although the results of using such models might be crude but the time 

saving outstrip this limitation.  Moreover, these models can help novice designers to generate 

different estimates without fundamental knowledge. 

1.1 MOTIVATION 

 

The statistical techniques have been used in almost every  field and have produced useful 

results. The estimates deduced from statistical approach are very much comparable with 

analytical solutions and thus can be a benefiting tool to build surrogate models. The uses of 

these techniques are seen from predicting human behavior to estimating machine 

performance. Thus these diverse studies conducted using statistical approach has been the 

source of motivation to conduct a statistical based study in the field of aircraft performance 

estimates.   

1.2 INTRODUCTION TO CURRENT RESEARCH 

 

Surrogate models will be used to predict aircraft performance parameters using regression 

techniques. The results from these surrogate models will then be compared with the existing 

analytical solutions. It is to be highlighted that aircraft performance parameters calculation 

require certain data that can only be calculated using expensive experimental technique such 

as wind tunnel testing. Surrogate models will provide a crisp and effective solution for the 
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design engineers in initial design process where using basic geometric data, one can calculate 

the aircraft performance and use it as a starting point. 

1.2.1 RESEARCH OBJECTIVES 

 

The scope of research is to estimate aircraft performance parameters (range, maximum 

velocity, endurance and rate of climb) using aircraft geometric and general parameters. The 

aircraft data will include different platforms so as to make the models more inclusive.  

Following are the objectives of current research: 

(a) To build surrogate models for aircraft performance parameters which include 

ceiling, range, maximum velocity, endurance and rate of climb 

(b)  To assess the suitability of the proposed models using statistical and 

experimental analysis 

In order to achieve the above mentioned objectives following sequence will be followed 

a) Data collection 

i. Collection of different type of aircraft‟s parameters  

ii. Data include different aircraft categories 

b) Application of statistical technique 

i. Use of power law‟s to study scalability trends 

ii. Using regression technique to develop models 

iii. Validation of both techniques to develop surrogate models  

c) Comparison of results 

i. Comparison of Statistical results with Analytical equations of aircraft 

parameters and evaluate the prediction accuracy of surrogate models 
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1.3 POTENTIAL CONTRIBUTION 

 

The valuable potential contributions made through this scholarly work will be: 

i. Assessment of surrogate modeling application in an aviation design field 

ii. Identification of exact technique as to how these surrogate models will be 

developed 

iii. Validation of mentioned technique using certain validation methods 

1.4 THESIS ORGANIZATION 

 

This thesis is organized as follows.  

Chapter 1- Introduction  

This chapter gives a background on fundamental challenges in aircraft design process and 

why there is a need to build such models that can help the designers in initial design phase.  

Chapter 2-Literature review 

This chapter gives a detail review of use of surrogate modeling as an instrumental tool for 

designers. The relevant work in the field has also been discussed in detail. 

Chapter 3- Methodology and Problem formulation 

The chapter explains the detailed methodology employed to circumvent the existing tedious 

design process. 

Chapter 4- Single variable surrogate modeling 

Single variable models were developed using power laws  

Chapter 5- Multiple variable surrogate modeling 

Multiple variable models are developed using multiple linear regression (MLR) 

Chapter 6- Model accuracy and validation 



- 17 - 
 

Both models are then compared for accuracy and further validation for the selection of fitted 

model was conducted. 

Chapter 7- Conclusion and future work 

 The thesis concludes in where recommendations are suggested for future work. 
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CHAPTER 2 

LITERATURE REVIEW  
 

Surrogate modeling has seen much application in diverse fields. Their contribution in 

engineering fields is worth appreciating. The models have helped engineers to tailor the 

existing procedures and come up with efficient designs and prototype thereby saving time 

and resources. Literature review can be divided onto two main areas, scalability study and 

complex system modeling using different techniques. Surrogate models can be broadly used 

in two ways to benefit the existing systems: 

i. Design estimations:  Estimating the outcome by building certain models that 

can act as a quick alternative to existing methods. This estimation helps in cutting the 

modeling and simulation computational time and cost. 

ii. Design optimization:  Improving the design efficiency by finding the global or 

local optima rather than employing the time exhaustive conventional optimization 

techniques.  

2.1 Scalability research literature 

 

Most recent and noticeable scalability studies are conducted by Geoffrey West [1, 2]. These 

studies contain relationships in almost every field of life ranging from animals 

metabolic rates to the life in big cities of the world. These studies span around the 

simple power law relationships i.e.  XY *  with the exponents that are simple 

multiples of ¼ (e.g. ¼, ¾ etc.). The graph plotted among the masses and 

metabolic rates follows a linear relationship as shown in Figure 1. It explains that as the body 

masses are increased, metabolic rates needs to be increased for the body to perform its 

intended tasks. If the metabolic rate is not inconsistent with body mass, it means that body is 

under certain disease attack. Scaling features taken from data analysis for animals (mammals) 
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include,  volume of blood scales with the mass (M), Vb ∝ M
1.02 

,  size of heart scales with the 

mass, Mh ∝ M
0.98

,  frequency of heartbeat scales as: fh ∝ M
−1/4

and volume of lungs scales 

with mass: Vl ∝ M
1.04 

and The tidal volume of lungs scales as: Vt ∝ M
1.04

. 

 

Figure 1: Relationship among Mass and observed Metabolic Rates[1] 

 

 

 

 

 

 

 



- 20 - 
 

Nature is scalable. Inspired by this phenomenon, a number of scalability studies 

have been conducted by the researchers all over the world to find the 

relationships among different parameters. One of the most prominent among 

them is Moore‟s law [3]. Moore‟s Law is a scalability study which established a 

relationship among the number of years and the growth in number of transistors 

per electronic chip. The law indicated that number of transistor in a dense 

electronic circuit will double approximately every two years as shown in Figure 

2. 

 

Figure 2: Moore‟s  law deductions on increase of transistor counts [3] 

Another study explains the basics of flight and establishes the scalability among different 

flying creatures and machines. In great flying diagram (Figure 3), we can see that smaller 
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flying animal/machine have scalable relation with bigger animals and machines. The diagram 

is constructed using the weight and wing loading against cruising speeds. The deductions are 

unique and an eye opener as it opens the door for unique aviation designs which are yet to be 

absorbed by humans but have existence in nature. He further mentions that there are certain 

convergence and divergence to the scalability; however there diversity can be explained, but 

good designs are those that are close to the line. The designs that are away from the line need 

either more muscle strength or power to remain in air, thus they either have low endurance or 

are muscle exhaustive/maintenance intensive, His report further explains each flying animal‟s 

categories, in order to jog up the readers mind to look for nature inspired designs which will 

induce more confidence in future aviation designs [5].  
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Figure 3: The Great flying diagram[5] 
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2.2  Surrogate modeling in complex systems 

 

The above mentioned studies were all related to scalability relations among nature and 

technologies. The scalability relations are studied among two parameters. These scalability 

studies depict the interdependency of different parameters. However there are cases in which 

many parameters are predicting the response of certain variables. For such cases different 

studies are performed using regression techniques. The use of surrogate models in high 

fidelity systems has improved the overall performance of these systems. These models are 

also regarded as a system engineering tool to help funnel complex systems towards 

optimization [6]. In estimation studies, surrogate models have been developed for predicting 

floods [7], evaporation rate estimation in metrological field [8], analyzing customer 

satisfaction for airlines [9] , predicting airline delays [10] and indirect costs [11].  

2.2.1 Application of surrogate modeling in Aviation Industry 

 

A study was conducted at School of Aeronautics, Northwestern Polytechnical University 

China, where surrogate models were studied [12]. It‟s a detail study in which different 

surrogate techniques are discussed. Surrogate models are used to find global or local 

optimization. They intend to optimize the process with the use of models whereas the 

conventional process includes time exhaustive analysis codes. However it is to be noted that 

surrogate base optimization is only approximation to true optimum that is why these 

surrogate models need to be updated on regular interval with the inclusion of new sample 

points. A comparison of conventional and surrogate based optimization is mentioned in 

figure 4. 



- 24 - 
 

 

 

Figure 4: Comparison of frameworks of conventional optimization and surrogate based 

optimization [12] 

The researcher has discussed response surface method (RSM), krigging and radial base 

function (RBF). RSM is a polynomial approximation model in which the sampled data is 

fitted by a least-square regression technique whereas krigging is an interpolation of observed 

data. RBF is an alternative interpolating technique whose value depends on the distance from 

the origin. These models are explained in detail along with their applicability. The author in 

section of application of these models has estimated airfoil and wing designs. Similar study 

was carried out in estimating aerodynamic coefficient and drag polar for airfoil RAE 2822. In 

this study, two krigging approaches were combined to improve the overall accuracy of 

existing Variable Fidelity Model (VFM) approach [13]. 

Another study on surrogate modeling has highlighted the use of surrogate modeling in 

estimating the performance of an inverted wing with counter-rotating vortex generators in 

ground effect. Technique involve to build such models is co-krigging which utilizes the 

experimental (wind tunnel data) and computational (computational fluid dynamic software‟s) 

data to interpolate vortex generation. In addition to that it was analyzed that how much a low 

fidelity data contributes in improving surrogate models than using limited high fidelity data. 

The results have shown that use of such multi fidelity data has improved the model 

performance [14]. 
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The use of multiple linear regression approach has also been seen in an unclassified report by 

Aviation research laboratory of university of Illinois in 1978. The predictor display used for 

aircraft simulators was discussed. This predictor display system shows the human input to 

aircraft flight path and its results in future. The existing techniques to calculate the six degree 

of freedom of equations of motion in fast time are fairly inaccurate. The use of statistical 

approach to calculate predictor information has found out to be fast, low cost and reliable. 

The researcher presents least-squares, regression approach for determining first-order, and 

linear approximations of accurate fast-time models used in predictor displays. Such a 

procedure would eliminate the need for an operational fast-time model while still providing a 

great deal of predictive accuracy. However further research will be needed to able to 

implement it safely and effectively [15]. 

An interesting study was carried out using statistical methods to evaluate aircraft trajectory 

and then comparing it with existing air traffic management techniques. The research includes 

standard in use software results compared with estimation techniques. Multiple linear 

regression along with other statistical methods was applied over existing data set. On-board 

management systems predict the aircraft trajectory using a point mass model of the forces 

applied to the center of gravity. The point-mass model requires knowledge of the aircraft 

state (mass or thrust), atmospheric conditions (wind or temperature), and aircraft intent 

(target speed or climb rate). Many of this information is not known to the ground based 

systems and the available information is known with certain accuracy. Both linear and 

nonlinear frameworks of regression analysis are used in this research. The methods employed 

are multiple linear regressions along with principal component analysis (PCA), regression 

using neural networks (NN) and Loess method. These applied methods are then compared 

along with the existing BADA model results and are shown in figure 1. The Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE) can be seen in above table against each 

method (smaller the value better fitted is the model). The values for regression techniques are 

significantly less than the existing BADA model [16]. 
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Table 1: Comparision of different models 

Alan J Stolzer [4] conducted a study on calculation of fuel consumption of commercial 

aircraft using regression analysis. He emphasized on the fact that 10% of commercial aircraft 

operational budgets is consumed by fuel and if the fuel management is overlooked the 

percentage can be much higher and can contribute to financial losses. The fuel consumption 

reading taken at different check points during the flight path was used to build statistical 

models using regression analysis. This technique can help operators to plan their route with 

more efficiently and effectively. 

Similar study was conducted at University of Toronto, where a multi-mission fuel-burn 

minimization was performed. The aerodynamic and aero structure design optimization was 

studied for different flight paths and missions. It is said that a design needs to be optimized 

for a set of flight profiles only then that design is an effective design. A long-range aircraft 

configuration similar to the Boeing 777-200ER with the objective of minimizing the 

weighted average fuel burn of a large set of missions was selected. The resulting aero 

structural optimization had 311 design variables and 152 constraints, and it solved for a total 

of 28 flight conditions at each optimization iteration[17]. 

Surrogate models have also been developed to aid decision making processes. The models 

have been applied to predict aircraft emissions that are being developed to support aviation 

Method MAE RMSE 

BADA 1140(79) 1824(95) 

Least Square 744(55) 962(72) 

Neural network 841(47) 1080(55) 

Loess Method 699(54) 908(72) 
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environment policy making. The interesting deduction were how confidence intervals can be 

helpful in tradeoff between computation time and uncertainty in the estimation of the 

statistical outputs of interest[18]. Similar research has been carried for a case study of space 

propulsion: a response surface-based multi-objective optimization of a radial turbine for an 

expander cycle-type liquid rocket engine. The model is combined with a genetic based 

algorithm and is found effective in supporting global evaluations. The study however lacked 

the established experiences in adopting radial turbines for space propulsion, so designer 

intuitive ideas were employed to build surrogate models for conduct of optimization 

framework which helped in construction of genetic algorithms [19]. 

The latest research of use of scalability relation and regression is seen by Adnan Ashraf, a 

graduate student of National University of Sciences and Technology (NUST) in 2016. His 

research was centered on Unmanned Aerial Vehicles (UAV), in which he presented 

scalability relations and certain regression models. A detail study was carried out of his 

research before starting the current research and certain shortcomings were noted in his 

research and are mentioned below [20]. 

i. The data collected was missing certain parameters that are necessary for estimation 

such as element of power / thrust was missing during model building. 

ii. The researcher could not establish the link between power law models and regression 

models, as to which models should be selected and what are the merits of selection. 

iii. The regression and scalability tools can only be applied in line with the subject 

knowledge; we cannot predict a variable using those predictor variables which are 

contrary to the fundamentals of aviation.  

These issues have been duly catered during this research 
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2.3  Existing analytical equations for aircraft performance estimation 

 

Surrogate models are developed for aircraft performance parameters that are maximum 

velocity, range, service ceiling, rate of climb and endurance. There brief description along 

with analytical equations are available in Anderson [21]. The surrogate based study has been 

classified into two broad categories of turbojets/turbofan and propeller driven aircraft. The 

propeller driven aircraft also include battery driven propeller aircrafts.  

2.3.1  Maximum Velocity (Vmax) 

 

It‟s the maximum attainable velocity by an aircraft under certain conditions (such as altitude 

and propulsive property).  

Vmax for a jet aircraft in steady straight flight can be determined using  

                       

2/1

4/)()/()/(/)(
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where TA is thrust available, W is total weight, S is wing surface area,  s density, CD0 is 

coefficient of drag at zero lift and k is constant for coefficient of drag due to lift. In above 

equation (TA)max/W increases, W/S increases and CD0 and/ or K decreases 

 

For propeller aircraft the maximum velocity is determined graphically using general equation of  

 VTP AA      (2) 
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2.3.2 Rate of Climb (RoC) 

 

In aviation, rate of climb (RoC) is vertical speed – the rate of positive altitude change with 

respect to time or distance. The analytical equations are 

For Jet propelled aircraft 
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where T is thrust of aircraft, W is total weight of aircraft, S is wing surface area, P is density, 

CD0 is coefficient of drag at zero lift and k is constant for coefficient of drag due to lift. 

For Propeller driven aircraft 
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where PA is power available,  W is total weight of aircraft, S is wing surface area,  is 

density, CD0 is coefficient of drag at zero lift and (L/D)max is the maximum lift to drag ratio. 

2.3.3 Service Ceiling 

 

The maximum height at which a particular aircraft rate of climb drops to zero is called 

absolute ceiling whereas usable height at which the aircraft can sustain a steady rate of climb 

is called service ceiling (this is normally at (R/C)max=100 ft/min). 

Procedure to obtain ceilings is to first calculate (R/C)max at various different altitudes then plot 

height vs (R/C)max and finally extrapolate the curve to (R/C)max =0 and (R/C)max=100ft/min  to 

get the absolute and service ceilings respectively. 
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Figure 5: Absolute and service ceilings 

 

2.3.4 Range 

 

It is the maximum distance an aircraft can fly between takeoff and landing. 

For Jet propelled aircraft 
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where V∞ is free stream velocity, L/D is lift to drag ratio, W0 is gross weight of aircraft and 

W1 is the aircraft without fuel weight and ct is thrust specific fuel consumption. In above 

equation range is influenced by fuel capacity, L/D, V∞ and engine efficiency or thrust specific 

fuel consumption (TSFC) ct , higher range can be achieved by higher fuel capacity (W0/W1). 

Higher L/D , higher V∞, and lower ct, V∞ and L/D are not independent and to maximize 

range, aircraft needs to fly at condition where V∞ (L/D) is at maximum. 

For propeller driven aircraft 
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In above equation aircraft needs to fly at maximum L/D with maximum propeller efficiency 

(ŋpr), minimize Specific fuel consumption(SFC) c and maximum fuel capacity (maximize 

W0/W1) in order to get maximum range. 

The expression for electric powered propeller planes is different from the engine driven 

propeller, as the Breguet equation doesn‟t cater for the battery behavior and its effective 

capacity (Peukert effect). The equation for range for a battery driven propeller is 

6.3
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where Rt is battery hour rating in hours, ŋtotal is total efficiency, V is voltage , C is 

capacitance of battery, S is surface area of wing ,   is density, W is total weight , CD0 is 

coefficient of drag at zero lift and k is constant for coefficient of drag due to lift.  

2.3.5 Endurance 

 

It‟s the maximum time the aircraft can spend in cruising flight. Endurance is also affected by 

engine performance through specific fuel consumption (SFC) or thrust specific fuel 

consumption (TSFC). 

For Jet propelled aircraft 
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To attain maximum endurance aircraft needs to fly at maximum L/D with minimum TSFC 

(ct) with maximum fuel capacity (maximize W0/W1) 

For Propeller driven aircraft 
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To achieve maximum endurance aircraft needs to fly at maximum CL
3/2

/CD, fly at sea level 

(maximum  ) with maximum propeller efficiency (ŋpr ), minimize SFC (c) and maximize 

fuel capacity (maximize (W1
-1/2

-W0
-1/2

)). 

The endurance calculation for a battery driven propeller aircraft is different than.. (what) . 

The equation of endurance is then transformed into 
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                                 (11) 

where Rt is battery hour rating in hours, ŋtotal is total efficiency, V is voltage , C is 

capacitance of battery, S is surface area of wing ,  is density, W is total weight , CD0 is 

coefficient of drag at zero lift and is constant for coefficient of drag due to lift. 

2.3.6 Analytical equations calculation - An intricate process 

 

A detailed overview of the aircraft performance parameters are presented in above equation 

from (1) to (11) along with different propulsion systems. Following are some of the 

observations on this analytical approach: 

a) Each propulsion system needs to be catered separately during analytical calculations. 

The equations are different for turbojets, propeller and battery powered aircrafts. 

b) As evident from each equation, one needs detailed data of aircraft which include data 

from geometric, propulsion (battery specification for battery driven aircrafts), wing 

design, wind tunnel data for wing / aircraft and atmospheric properties. 

c) Data needed for performance parameters calculation is calculated via time and cost 

exhaustive process such as wind tunnel testing or propulsive properties including 

specific fuel consumption or thrust / power available calculations. 

d) Moreover these analytical equations are still approximations as these equations are 

simplified using many assumptions such as neglecting different environmental effects 
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or other thermal and structural phenomenon. Even wind tunnel test are not as what 

aircraft experience in real world environment. These assumptions are necessary so as 

to simplify the initial calculation process along with design refinement / optimization 

at each step. 

2.4 Missing link in Literature 

 

Statistical studies have been conducted in almost every complex field of life and 

technology and it yielded significant results. Surrogate models developed using statistical 

techniques are also applied in aviation field. However the application use has been limited to 

maintenance and operational aspect of aviation industry as explained in above literature 

review. The use of surrogate modeling to benefit the designer group has been very limited; in 

fact the recent research by graduate of National University of Sciences and Technology 

(NUST), had its own gray areas that needed to be addressed in order to build fitted surrogate 

models to ease the designer current methodologies. The gray areas of his study have already 

been mentioned above.  

Moreover till date no comprehensive study has been conducted to give conclusive findings 

which can be helpful for design engineers. We have studied use of surrogate modeling in 

different aviation fields but no contributions have been made in estimating aircraft 

performance parameters. If aircraft performance parameters can be estimated using validated 

surrogate models, it will help the designers to create initial design bounds for their projects. 
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CHAPTER 3 

METHODOLOGY AND PROBLEM FORMULATION 
 

3.1 Introduction 

 

The designers over decades have come up with different aircraft designs following some 

fundamental principles. We have now sufficient amount of data for different aircraft for 

which we can generate approximate / surrogate models from earlier designs. These surrogate 

models can act as predictors of futuristic design. Although the results of using such models 

might be crude but the time saving outstrip this limitation.  Moreover, these models can help 

novice designers to generate different estimates without going into intricate details. It is 

proposed that if statistics based simple power laws and regression techniques are developed 

based on primitive information, several performance parameters can be approximated with 

higher confidence. This approach will help to circumnavigate the tedious processes of 

detailed geometric modeling and extensive involvement of aerodynamic and propulsion 

information. The comparison of traditional and proposed approach is depicted in Figure 6. 

The advantage of using proposed approach is evident from Figure 6. The detailed geometric 

modeling, followed by aerodynamic, propulsive and flight performance equation formation 

can be replaced by using statistical approach and estimate flight performance parameters in 

an efficient and effective manner. 
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Figure 6: Conventional design methodology  vs Surrogate model based methodology 

The adopted methodology for the conduct of this thesis is shown in Figure 7, where the 

process is initiated with the need analysis phase. After defining the need which is to build 

surrogate models for aircraft performance parameters approximation, a data set was collected 

upon which further statistical tools will be applied. The models developed will then be 

validated using different criteria‟s and finally the validated model will be called surrogate 

model for aircraft performance estimation. The software utilized in models building is 

Matlab® for single variable models using power laws and Minitab® V16 for regression 

analysis in order to form multiple variable models. There are different techniques to build 

surrogate models, however after careful scrutiny and studying the parameters behaviors, 

scalable relationship were developed using power laws and multiple linear regression (MLR). 

The use of these techniques in high fidelity engineering solution is highly effective as it helps 

to reduce the design cycle time and cost by enabling rapid analysis of alternative designs.   

 

 

Contribution: Surrogate 

modeling to complement 

estimation 
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3.2 Data collection and interpretation 

 

For the analysis purposes a data collection study was conducted to collect different types of 

aircrafts ranging from different eras. During data collection, Janes All the world aircraft     

2007-2008 volumes were very helpful along with other aircraft encyclopedias [22-24]. The 

following table gives an overall summary of the data collected. The aircrafts were broadly 

categorized as unmanned air vehicle (UAV), jet fighter and airliner aircrafts. Further for 

UAV the data set includes all types as high altitude long endurance (HALE), medium altitude 

long endurance (MALE), tactical UAV (TUAV), mini aerial vehicle (MUAV), micro aerial 

vehicle (MAV) and unmanned combat air vehicle(UCAV). On the same lines Jet fighter 

aircrafts is segregated into generations which depend on aircraft design, avionics, and weapon 

system. It is to note that generation shift in jet fighter aircraft occurs when a technological 

revolution cannot be incorporated into an existing aircraft through upgrades or retrofits. In the 

airliners category all in-service airliners were included which encompasses different designs. 

The overall data set summary is in Table 2. 

No. Aircraft Category Count Remarks 

1 Unmanned air vehicle 148 Includes MALE,HALE,MAV & UCAVs 

2 Fighter Aircrafts 82 Includes all generations of aircrafts 

3 Airliners 67 Includes all current used airliners 

Total 297  

 

Table 2: Summary of data collected 

 

For each aircraft certain parameters were collected, the collected parameters have been 

classified into geometric/design parameters and performance parameters. The consistency of 

units was carefully maintained while data collection. The estimated models can only be 

developed with high confidence if the units are consistent across the data set. The parameters 

collected are shown in Table 3. The idea is to predict aircraft performance parameters using 
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geometric parameters. The geometric parameters include basic dimensional parameters and 

other basic design parameters, these parameters are easily available over internet sources as 

mentioned. Aircraft performance parameters do require certain parameters for calculation, 

which requires exhaustive experimental analysis and wind tunnel testing. As mentioned 

earlier, if the calculations are circumvented using basic parameters, it will open new horizons 

for design engineers. It is to be noted that for certain parameters were collected only for 

certain type of aircraft due to non-availability of information by OEM. Endurance data was 

collected only for propeller based UAV‟s and Rate of climb (ROC) data for propeller based 

UAV‟s was fewer.   

 

Table 3: Parameters collected 

 

3.3 Single variable model using Power laws 

 

The power law is used to find one to one relationship among parameters. Using “Y” as 

dependent variable and “X” as independent variable, the power law scaling is 

 XY *                                                  (12) 

where α is normalization constant and β is power of independent variable. The power law 

equation gives two important insights that need to be kept in mind while exploring the 

relation among parameters. 

 Parameters Collected 

No. Geometric / Design Variables Performance variables 

1 Length Maximum velocity 

2 Wingspan Range 

3 Wing Area Ceiling 

4 MTOW Endurance 

5 Empty Weight Rate of climb 

6 Thrust/Power  
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i. The dependent variable „Y‟ is normalization constant „α‟ times the dependent 

variable „X‟ with raise to the power of „β‟ 

ii. Secondly and very important deduction is the dependence of β value for 

estimation of dependent variable (β>1, it means the relation is super linear, β=1 means 

linear and β<1 means sub linear). This means β value will determine whether the 

dependent variable increase radically or normally. 

3.4 Multiple variable models using Regression technique 

 

Regression Analysis is a statistical process for estimating the relationship among variables. It 

includes many techniques for modeling and analyzing several variables, when focus is on the 

relationship between a dependent variable and one or more independent variables. Regression 

Analysis helps in understanding how dependent variable changes when one of the 

independent variable is varied. The simplest regression model is the simple linear regression 

model, which is written as: 

       iiji xy   0                                   (13) 

where “y” is dependent (response) variable, β0 is intercept (mean of dependent variable when 

x is zero), βj is slope (change in y  w.r.t  x) or regression coefficients and εi (Random part) 

explains variability of response about the mean. This regression analysis is a set of 

procedures based on a sample of “n” order pairs (xi, yi), i= 1, 2, 3,…., n, for estimating and 

making inferences on the regression coefficients, j=1,2,3,….,n for multiple independent 

variables regression coefficient. These estimates can then be used to estimate mean values of 

dependent variables for specified value of x. Various diagnostics checks have been used to 

assess the quality of the developed model(s) and its resultant estimates such as Anderson 

Darling test, R-squared, Adjusted R-Squared, t-test and f-test. 
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3.3.1  R-Squared 

 

R
2
 designates the proportion of variance in the dependent variable which is predictable from 

independent variable. It is a statistical test, used in the perspective of statistical models with 

the purpose of either the prediction of future consequences or the testing of hypotheses based 

on the related information. It provides the measure of accuracy of observed outcomes as 

replicated by the model. The R
2
 value ranges from 0 to 1. If the data set have n values 

identified as [9] each associated with a predicted value {f1 <…. < fn}. The R
2
 value is 

calculated by 

tot
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SS
R 12     (14) 

where sum of Square of residuals (SSres) is given by 

    
i

iires fySS 2)(      (15) 
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3.3.2 Adjusted R-Squared 

 

To measure how successful the fit is in terms of explaining variation of data. Adjusted R
2
 is 

just a change of R
2
 that adjusts the amount of terms in a statistical model. Adjusted R

2
 

calculates the proportion of the variation in the dependent variable caused by the predicting 

variables. The adjusted R
2
 is calculated by 
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where “R
2
” is the sample R squared value, “p” is number of predictors and “N” is total 

sample size. 
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3.3.3 t-test 

 

t-test is a statistical hypothesis test, in which test statistics follow a t distribution under the 

null hypothesis. It is used to conclude if two sets of given data are considerably different 

from each other. It is most frequently applied when the test statistics follow normal 

distribution and the value of scaling term is known. If the scaling term is not known then its 

substituted by an estimate based on the given data. So it is used to assess significance of the 

individual regression coefficients. The t value is calculated by  
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where “M” is mean, “n” is number of score per group and “x” is individual score. 

3.3.4 F-test 

 

It is a statistical test where the test statistics have an F-distribution under the null hypothesis. 

It is most frequently used is the comparison of statistical models, fitted to given data set, for 

identifying the model that best fits the population from which the data is sampled. Precise f-

tests results when the models have been fitted to the data using least squares. It is used to 

assess the overall adequacy of the model. F value is stated as the ratio of variances of two 

observations. The association between the variance of two data sets can lead to many 

estimates. The formula for F test is 
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where 2  is the variance and given by 
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where “x” is the given value, “x¯” is the mean value and “n” is total number of terms. 
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CHAPTER 4 

SINGLE VARIABLE SURROGATE MODELING 
 

4.1 Background 

 

After the data collection process, the collected parameters behavior needed to be studied. 

Individual parameters behavior among each other will give us the insight as to how the 

models can be developed. In this preview, single variable models were developed so as to 

find out scalability trends among aircraft parameters. 

4.2 Scalability relations 

 

All aircraft look alike in terms of wings and fuselage and other notable features but they all 

vary in sizes. Now if we compare two aircrafts with one having twice the weight of other, 

then we will notice that it is not only the weight that has increased, the aircraft needs bigger 

wing size and other geometric alterations, to be able to make it fly worthy. A scalable relation 

among the two aircraft can be deduced that if the weight is increased by one unit then 

correspondingly wing loading and other geometric / performance parameters needs alteration 

to be able to fly and performs the given set of tasks. Scalable relations were studied among 

above stated parameters. This scalability study will form the foundation for further building 

of surrogate models of aircraft performance parameters as it will give a clear picture of one to 

one behavior among parameters.  

In order to form scalable relations, the one to one graphs were plotted among different 

parameters. A curvilinear trend was observed among parameters as shown in Figure 2 graphs. 

To better study such curvilinear pattern, different equations (Fourier, polynomial, 

exponential, Gaussian and power law) were implemented on a given set of data. It was found 

out that only power law equation best fits the aircraft geometric and performance data set. 
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The power law is used to find one to one relationship among parameters. Using “Y” as 

dependent variable and “X” as independent variable, the power law scaling is 

 
 XY      (22) 

MATLAB® curve fitting tool was used to perform power law analysis. The obtained results 

reveal that scaling trends exist among aircraft variables. Robust and proportionate scaling 

exponents have been found for different geometric and performance parameters. If one unit 

of predictor (X) is increased then alpha units times value will be the Response (Y). This gives 

us a very unique insight into the scalable relationships of aircraft parameters. For example if 

we take the case of weight of aircraft versus the wing loading (W/S), by applying the power 

law on weight vs wing loading data set, the scalable relation is 25.0*35.29/ WSW  . This 

means that if weight is 1 unit then wing loading is 29.35 time 1 unit to power units. Similar 

scalable relations have been found among different parameters and are shown in the 

following table. The 95% confidence bounds give the tolerance for value. Notice the value 

for, super linear exponents will have an increase effect on dependent variable as compared to 

linear and sub linear exponents. This means that for cases such as range vs wing span , power 

vs weight and wing area vs wing span the range , power and wing area has a super linear 

relation with wing span, weight and wing span respectively however rest relationships are 

linear or sublinear in Table 4. Another interesting fact is that super linear relationship tend to 

have greater adjusted R
2 

which means that the data set is best fitted for super linear cases, this 

is can also be seen in cases mentioned in Table 4. Further if the analytical equation study 

mentioned in Chapter 2 is compared with    Table 4, interesting analogies are developed as 

the scalable relations are in line with the analytical equations. Range has a strong scalable 

relation with weight this is also evident from equation (6), (7) and (8). Similarly for other 

performance parameters, scalable relations can be compared with analytical equations for 

comparison. Power is dependent on weight of the aircraft, which means more weight requires 
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more power to lift it. Likewise the heavier the aircraft , wing span and wing area are 

consequently greater in order to make it flight worthy and perform the intended tasks.  

The scalability graph for Wing loading vs Weight is shown in Figure 8(a), Range vs Wing 

span in Figure 8(b) and Wing area vs Wing span in Figure 8(c). These all figures depict the 

existence of scalability among different aircraft parameters. The figures are labeled with 95% 

confidence bound, and maximum values are found in this region. The details of these graphs 

and other scalability relations are mentioned in Table 4, in respect of equation (1). The 

adjusted R
2
 mentioned in Table 3, is a useful tool for comparing the explanatory power of 

models with different numbers of predictors. The adjusted R
2
 will increase only if the new 

term improves the model more than would be expected by chance. The value for each 

explains the contribution of predictor for response variable (Super linear, linear and sub 

linear).   

 

(a) Wing loading vs Weight with 95% confidence bounds 
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(b)  Range vs Wing span with 95% confidence bounds 

 

 

(c) Wing area vs Wing span with 95% confidence bounds 

 

Figure 8: Scalable graphs of Aircraft parameters 
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Response (Y ) Predictor( X )    , 95% Cl Adj R
2 normalization 

constant,   
Obs 

Endurance Wing Span 0.8423 (0.7673, 0.9173) 78.58 1.9 117 

Wing Span Weight 0.451 (0.4257, 0.4762) 87.96 0.1948 278 

Wing Area Weight 0.8159 (0.7859, 0.8459) 96.14 0.014 161 

Thrust Wing Area 0.9093 (0.8485, 0.9702) 87.92 2.873 132 

Range Wing Area 0.6617 (0.5988, 0.7246) 76 193.3 155 

Wing Loading Weight 0.2542 (0.2241, 0.2844) 77 29.35 133 

Ceiling MTOW    0.1331   (0.1139, 0.1524) 55.6 3380 241 

Range Wing Span 1.186 (1.09, 1.282) 78.14 88.8 234 

Range Wing Area   0.6618   (0.5989, 0.7247) 76 193.2 155 

Range MTOW 0.5686   (0.5331, 0.604) 86.56 8.791 234 

Power Weight 1.076 (1.007, 1.144) 92.13 0.051 76 

Thrust Weight 0.822 (0.7834, 0.8607) 93.63 0.0249 172 

Wing Area Wing Span 1.669 (1.583, 1.755) 94.15 0.423 163 

Range Thrust 0.682   (0.629, 0.735) 82.28 115.9 154 

 

Table 4: Scalability relationship of Aircraft geometric and Performance parameters 

 

4.3 Concluding Remarks 

 

These scalable relations are all logical with the basics of flight, these relationships also satisfy 

the analytical equations mentions in Chapter 2 section 2.3. Single variable models show a 

high value for adjusted R
2
 and strong scalability trends have found among aircraft 

parameters. However the aircraft design process are complex and other modeling techniques 

can also be looked into for modeling of aircraft performance parameters. But these single 

variable models can be very much helpful in low fidelity design bounds.   
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CHAPTER 5 

MULTIPLE VARIABLE SURROGATE MODELING 
 

5.1 Background 

 

As discussed in the previous chapter that single variable models although are fairly accurate, 

but aircraft design process require more than one variable model to depend upon due to the 

inherent complexity of design process. Surrogate models should include all such variables 

that can affect the design process. In this regard the multiple variable model techniques need 

to be looked into. 

5.2 Multiple linear regression analysis 

 

As mentioned earlier that power law explains the scalability among two parameters. However 

aircraft design is an intricate process, thus estimation via one parameter doesn‟t appeal to be 

much conclusive when initial estimation is a goal. If a parameter is estimated using more than 

one independent variable, the result will be much more conclusive and will help in significant 

cutting down of design iterations during initial stages. For example, if we need to find range 

of an aircraft and we use the wing span relation from above table, the estimates might be 

close for many inputs but it must be noted that if two aircrafts are having the same wing span, 

they will not have same range necessarily as range depends on other factors too. So the above 

scalable relations will only determine the design bounds but to better estimate the dependent 

variable, we need to find out relations that involve multiple independent variables. The 

multiple variable modeling requires further investigation, among other techniques such as 

multiple linear regression (MLR), krigging and radial base functions; MLR has been chosen 

as after data transformation (further explain in chapter 4 section), data depicted linear 

behavior. Krigging and radial base functions are generally employed once we encounter 

highly nonlinear design problems [8]. For this we employ multiple regression technique.  
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Many possible regression lines could be fitted to the sample data, but we choose that 

particular line which best fits that data. The best regression line is obtained by estimating the 

regression parameters by the most commonly used method of least squares. The principle of 

least squares consists of determining the values of the unknown parameters that will 

minimize the sum of squares of errors where errors are defined as the differences between 

observed values and the corresponding values predicted or estimated by the fitted model 

equation. The models are developed using the backward elimination method which is a 

process that starts with all predictors in the model and then eliminating the least significant 

variable in each step till the time p-value is greater than the specified limit. A pictorial 

illustration for said approach, use to build surrogate models is shown in Figure 10. 

 

Figure 9: Multiple variable modeling methodology 

5.3 Data transformation 

 

First of all the data was transformed. In data analysis, transformation is the replacement of a 

variable by a function of that variable: for example, replacing a variable x by the square root 

of x or the logarithm of x. In a stronger sense, a transformation is a replacement that changes 

the shape of a distribution or relationship. Some variables are not normally distributed and 

therefore do not meet the assumptions of parametric statistical tests. Using parametric 

statistical tests (such as a t-test or linear regression) on such data may give misleading results. 

In some cases, transforming the data will make it fit the assumptions better. For the stated 
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reasons the data has been logarithm transformed so that the diversity of aircraft categories can 

be catered. By applying this transformation the data looks less skewed. The validation of 

transformation used can be performed through studying the correlation of different 

parameters untransformed and transformed in table 5. The improvement is correlation is 

evident after transformation for the propeller aircraft dataset. The same transformation has 

been done for the jet aircraft data sets. The improved correlation will help to build accurate 

surrogate models that will predict parameters with high confidence. The correlation matrix 

helps us to further study the dependence of response / dependent variable with predictor / 

independent variables. This matrix gives a deep insight in to how the models will be 

developed in further steps. 
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Table 5: Data transformation comparison via building correlation matrix 

5.4 Model building 

 

The least squares models were formed using MINITAB® V16. The models have been 

divided into two broad categories of propulsion i.e. propeller and turbojets/turbofans. It is 

pertinent to mention that multiple linear regression equations are verified using the diagnostic 

checks as mentioned in Chapter 3.  The values of adjusted R
2 

, total observations used in 

building model and F-test values with p-values are presented in Table 6 & 7. 

 

 

Turbojet/Turbofan Aircrafts: 

 
Data condition 

Wing span MTOW Power Av Vmax Range Ceiling Endurance 

Wing span 
Untransformed 1.000 0.889 0.417 0.169 0.662 0.689 0.761 

Transformed 1.000 0.897 
0.820 0.452 0.644 0.717 0.811 

MTOW 
Untransformed 0.889 1.000 0.663 0.372 0.602 0.513 0.675 

Transformed 0.897 1.000 0.966 0.682 0.647 0.770 0.730 

Power Av 
Untransformed 0.417 0.663 1.000 0.590 0.289 0.398 0.276 

Transformed 0.820 0.966 1.000 0.729 0.581 0.786 0.645 

Vmax 
Untransformed 0.169 0.372 0.590 1.000 0.032 0.107 0.112 

Transformed 0.452 0.682 0.729 1.000 0.405 0.510 0.303 

Range 
Untransformed 0.662 0.602 0.289 0.032 1.000 0.571 0.556 

Transformed 0.644 0.647 0.581 0.405 1.000 0.666 0.729 

Ceiling 
Untransformed 0.689 0.513 0.398 0.107 0.571 1.000 0.574 

Transformed 0.717 0.770 0.786 0.510 0.666 1.000 0.723 

Endurance 
Untransformed 0.761 0.675 0.276 0.112 0.556 0.574 1.000 

Transformed 0.811 0.730 0.645 0.303 0.729 0.723 1.000 
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Table 6: Surrogate models for Turbojet/Turbofan aircrafts 

 

Propeller Aircrafts: 

 

Parameters Surrogate Model Statistics Tests 

Vmax aLogPLogbLogV 258.0181.078.1max   R-Sq(adj)=42.5%,F=18.37P<5%,Obs=67 

Range aLogPLogWLogRange 313.0664.0848.0   
R-

Sq(adj)=83.2%,F=65.23P<10%,Obs=62 

Ceiling aPLogbLogCeiling log134.0469.012.3   R-Sq(adj)=54.7%,F=40.82P<5%,Obs=65 

Rate of 

Climb aLogPLogbLogROC 339.0621.049.2   R-Sq(adj) =47.6%,F=8.73P<5%,Obs=17 

Endurance aLogPLogWceLogEnduran 422.0979.0790.0   RSq(adj)=72.8%,F=74.80P<10%,Obs=72 

 

Table 7: Surrogate models for Propeller aircrafts 

 

 

 

 

Parameters Surrogate Model Statistics Tests 

Vmax LogTLogbLogV 420.0840.028.3max   
RSq(adj)=91%F=549.4 

P<5%,Obs=128 

Range LogTLogbLogRange 529.0197.013.2   
RSq(adj)=77.6% F= 217.52   

P<5%,Obs=130 

Ceiling 
LogTLogWLogSLogbLogCeiling 216.0212.0169.03.072.4 

 

RSq(adj)=82.9%F=120 

P<10%,Obs=125 

Rate of Climb LogTLogSLogbLogROC 2.1668.0797.047.3   
R-Sq(adj)=95.4%F=307.95 

P<5%,,Obs=55 
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5.5 Concluding remarks 

 

Multiple variable models have been developed using multiple linear regression technique 

using method of least squares. The data collected has been logarithm transformed so as to 

reduce the skewness and make the data usable for linear regression. Further these models 

have passed diagnostics checks such as R
2
, F test and t tests. Aircraft performance parameters 

such as range, maximum velocity, endurance, rate of climb and ceiling are predicted using 

geometric and propulsive properties. 
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CHAPTER 6 

MODEL ACCURACY AND VALIDITY 
 

6.1 Introduction 

 

The model accuracy and validation is a critical step in order to build such surrogate models 

that can be used by design engineers. The validation process employed in this research is a 

three step process. These steps are explained as 

i. The single variable models (using power law) and multiple variable models (using 

regression technique) are compared using quantitative criteria. The chosen model is 

then fed into second step. 

ii. The chosen model is then compared with analytical equations of aircraft performance. 

In this step the analytical equations of maximum velocity, Endurance, service ceiling, 

Range and Rate of climb are compared with surrogate models so as to analyze the 

validity of models. The models predictor variables must also be a function of 

analytical equation, only then can model be considered valid. 

iii. Lastly the model must also be able to predict those aircraft which are not part of the 

data set. For this step, a set of aircraft were chosen from all categories and there 

geometric parameters were fed to the models for validation. 

6.1.1  Analysis of Models accuracy 

 

Surrogate models have been developed using power laws and multiple linear regression 

models. Single variable models will be inadequate in order to predict aircraft performance 

due to inherent intricate aircraft designs. These single variable models are developed using 

power laws as data was found to be curvilinear. However after transforming data into linear 

framework multiple variable models were developed using regression technique. It is to be 
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noted that by increasing variables into the model, it is not necessary that the models accuracy 

is increased. Individual models are developed and validated using above mentioned integrity 

test.  

In this section we use quantitative criteria so as to further strength the model integrity. A 

possible one is the coefficient of determination R
2
, which explains the percentage of total 

variation.         R
2
 also increases as the number of predictor variables used in the model 

increases even if these included variables are least significant. Hence, it is preferable to use 

the adjusted R
2
 (equation mentioned in Chapter 3). In addition to coefficient of 

determination, the model performance can be evaluated using Mean Absolute Percentage 

error (MAPE), Root Mean Square Error (RMSE) and Nash-Sutcliffe (NSE). The Nash-

Sutcliffe model efficiency coefficient (E) is commonly used to assess the predictive power of 

hydrological discharge models. However, it can also be used to quantitatively describe the 

accuracy of model outputs for other things than discharge. The equations for each criterion 

are as 
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Using these equations for models developed, a comprehensive comparion of models was 

performed and is displayed in Table 8. R
2
,MAPE,RMSE and NSE  are calculated for each 

model, R
2
 is calculated in percentage and higher the percentage, model is fitted well. MAPE 

and RMSE should be closer to zero for a good fit. And NSE for a perfect fit for should be 

closer to 1. In this regard if the table 8 is studied in detail in respect of criterion values, 
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multiple variable models are much fitted and explains the response variables much better. 

However single variable models are simpler in nature and are good for estimating design 

bounds.  

 

Table 8: Models accuracy analysis 

6.1.2 Validation of Selected model via Analytical Equations 

 

The multiple variable models are then compared with the analytical equations of aircraft 

performance. The analytical functions are formulated using analytical equations of aircraft 

Models Category Response Predictors R
2

adj % MAPE RMSE NSE 

Single 

variable 

models 

Propeller Endurance b 79.13 136 7.344 0.531 

Turbojet/Propeller V max  W 40.2 171.12 603 0.377 

Propeller Range Pa 95.31 251.3 826.4 0.715 

Turbojet Range T 82.28 40 2152.2 0.62 

Turbojet/Propeller Range W 86.56 254.4 1071 0.49 

Turbojet/Propeller Ceiling W 55.6 101.4 3835 0.45 

Turbojet/Propeller Rate of climb W 55.2 68.9 4041 0.55 

Multiple 

variable 

models 

Turbojet 

Vmax b,T 91 10.2 200 0.89 

Range b,T 77.6 34.3 1238.5 0.85 

Ceiling b,S,W,T 82.9 5.35 982 0.82 

Rate of Climb b,S,T 95.4 17.30 1846.6 0.89 

Propeller 

Vmax b,Pa 42.5 11.65 14.8 0.38 

Range W,Pa 83.2 14.8 15 0.76 

Ceiling b,Pa 54.7 16.8 883 0.66 

Rate of Climb b,Pa 47.6 24.3 110.6 0.33 

Endurance W,Pa 72.8 29.15 5.34 0.70 
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performance (already mentioned in chapter 3). It is highlighted that the statistical models 

must be comparable to the analytical equations, only then can a model be declared adequate 

in predicting the performance parameters of aircraft. To compare the analytical model with 

surrogate models, Table 9 can be helpful as a discrete comparison of model functions. 

Table 9: Analytical models vs Surrogate models 

 

From comparison of model functions, the surrogate models are in line with the analytical 

equation functions. For example if maximum velocity is a function of thrust/Power available, 

maximum take of weight, wing area, coefficient of drag at zero lift, k and density then the 

surrogate model developed is a function of wing span, Wing area and propulsive property. 

We now reach at a very interesting conclusion that we can build models with fewer 

parameters and still predicts the performance parameters to a high level of accuracy. 

Moreover time exhaustive calculations of Lift to drag ratios and coefficient of lift or drag in 

the initial phase of developing specification model can be avoided as prediction via geometric 

parameters still suffice for initial stages. 

6.1.3 Prediction accuracy of Surrogate models 

 

A set of aircraft data was collected in order to validate the surrogate models earlier 

formulated. The result of validation is mentioned in Table 10. As these models will help in 

the initial design process so the percentage deviation is satisfactory. With these initial values 

Parameters Analytical equations function Surrogate model function 

Maximum Velocity ),,,,,/(max  kCdoSWPaTfV  )/,,(max PaTSbfV   

Range )1,,/,,/,( WWoDLprSFCTSFCVfRange   ),,( WTbfRange   

Ceiling ),/,,/,,( CdoDLPaTSWfCeiling    )/,,,( PaTWSbfCeiling   

Rate of Climb ),/,,/,,( CdoDLPaTSWfROC    )/,,( PaTbSfROC   

Endurance  

(for propeller only) 
),,/,1,,,( SCdClWWoprSFCfEndurance        ),( bWfEndurance   
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one can achieve the desired design with less number of iterations. Moreover the calculation 

via these models can also help build the foundations for design methods. 

 % deviation in prediction 

Sample 

Aircraft 
Vmax Range Ceiling 

Endurance 
Rate of climb 

Dassault 

Ouragan 
7 25.6 7.3 

 
16 

JH-7 10.2 5.3 0.005  - 

F/A-18 Hornet 1.3 59.5 0.06  0.033 

Airbus A300 18.3 26.4 0.08  - 

Boeing 707-320 11.2 14.7 0.03  - 

SIVA 20 24 18.7 6 17.6 

 

Table 10: Validation result 
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6.2 Unique design emerged as outliers  

 

During the scalability and regression analysis study, few unique designs of aircraft have 

emerged as potential outliers in the dataset. There can be multiple logical explanations for 

these designs being outliers, and vary from case to case. 

i. The designs were high departure from conventional models. Such unique designs 

have then witnessed either high maintenance costs or frequent downtimes. Such 

overambitious designs were prematurely retired. Example for such designs are 

Concorde and Tu-144, they were supersonic passenger aircraft. Both these aircraft 

were a frequent outlier in model building. 

ii. Then there are designs which are major technological advancements and have yet to 

see similar designs in production with subsequent service. A380 from airbus is only 

such design which is currently the biggest passenger carrier aircraft in-service. 

However other manufacturers are trying to build platforms similar to A380, after 

which it will not be a outlier anymore. 

iii. Then there are some other unique or experimental design which have yet to see 

commercial use, however, there flight testing have been done. Centurion Helios and 

theseis, both UAVs are unique designs as they are wing alone design and have 

emerged as outliers.  

The study carried out also faced fewer limitations. As it‟s a statistical study which depends on 

collected data set. If we increase the data set in terms of aircraft counts and different types, 

the statistical relations will be more refined. As aforementioned that the dataset was collected 

using Jane‟s all the world aircraft 2007-2008[22], latest editions of Jane‟s aircraft will include 

newer platforms and will also help the above mentioned outliers. In this regard it is to be 

noted that the surrogate models presented will need a constant update of data set in order to 

predict the newer and unique platforms of similar types with higher confidence 
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6.3 Unique design trends emerged during study 

 

Further to that, while doing the scalability study certain unique relations were also observed, 

for which the analytical explanation was inadequate. However scalability exists and relations 

satisfy the data set with high degree of confidence. The overall length of the aircraft has 

explained several parameters such as weight, wing span, wing area, overall height, thrust, 

power available and range of aircraft. Further into the paper, analytical models for different 

performance parameters are shown in Table 11, where there is no dependence of overall 

length with performance parameters. But scalability exists with the overall length. This 

unique trend can be used in design estimations effectively. Few scalability graphs taken from 

table 11 are presented in figure 10. 

Response (Y ) Predictor( X )    , 95% Cl Adj R
2 normalization 

constant,   
Obs 

Weight Length 2.069 (1.896, 2.242) 82.74 19.12 261 

Wing Span Length 1.026 (0.9813, 1.07) 92.49 0.7913 278 

Wing Area Length 1.709 (1.628, 1.79) 94.92 0.3025 163 

Height Length 0.9033 (0.864, 0.9425) 93.71 0.3881 196 

Thrust Length 2.082 (1.911, 2.252) 86.61 0.1284 148 

Power Length 5.533 (4.348, 6.719) 68.07 0.00079 71 

Range Length 1.241 (1.139, 1.343) 80.28 58.76 249 

 

Table 11: unique design trends 
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a. Overall length vs Thrust with 95% confidence bounds 

 

 

 

a. Overall length vs Wing area with 95% confidence bounds 

 

Figure 10: Unique design trend graphs
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CHAPTER 7 

CONCLUSIONS & FUTURE WORK 
 

7.1 Conclusion 

 

This research forms the foundation of such techniques implementation in estimation of 

aircraft performance parameters.  

i. The data for different aircraft parameters were collected using Jane journals and other 

online available data[22-24]. The collected data was scrutinized and consistency of 

units was maintained.  

ii. Geometric and propulsive parameters were declared as predictors and aircraft 

performance parameters as response variables. 

iii.  Scalable relationships were formed using power laws as the data behavior was 

curvilinear. Single variable models are developed and results shows high confidence 

iv.  Multiple linear regression was used to build multiple variable models. The surrogate 

models presented in research predict aircraft performance to an adequate confidence 

level.  

v. Single and multiple variable models are validated using a three point model accuracy 

and adequacy approach that is 

a. Analysis of model accuracy 

b. Validation of Selected model via Analytical Equations 

c. Prediction accuracy of surrogate models 
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vi. Results of three point validation shows that aircraft parameters are best fitted using 

multiple linear regression. But single variable model being the simplest provide low 

fidelity design bounds. 

Surrogate models will in turn cut down the initial iterations to reach the specification model 

of design process. Once the specification model building time is cut down, it will 

complement the designers to focus on the computational models and verification/validation 

processes. Moreover these stated techniques will also be helpful for the strategic organization 

in estimating the adversary‟s aircraft to higher confidence level for further tailoring the 

counter strategies. Similar technique can be employed in other aviation design process 

whether it is building airfoil data or other systems such as propulsive and avionics system 

designs. 

7.2 Future work 

 

The future work that can be under taken in current research context is as under 

i. The data set can be enhanced and surrogate modeling of estimated aircraft 

performance parameters can be refined. 

ii. The technique employed in this research can be applied on other aviation areas. These 

areas can be broadly categorized as designer, manufacturing, maintenance and 

operational. Surrogate models can be developed in these areas. Such as estimating 

airfoil designs, calculating consumption and stock level of maintenance items and 

estimating different operational parameters of aircrafts. 

iii. Further to multiple linear regression technique, nonlinear frame work study can be 

under taken so as to study large amount of aircraft data. 

iv. As mentioned in chapter 4 section 4.5, unique design trends study may be further 

probed and investigated. These unique trends may tailor future design methodologies. 
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