
Regression Test Suites Optimization Using

TLBO Based Adaptive Neuro-Fuzzy Inference

System

Author

Ayesha Kiran

FALL 2017-MS-17(CSE)00000205519

Supervisor

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

February, 2020

 Regression Test Suites Optimization Using TLBO Based

Adaptive Neuro-Fuzzy Inference System

Author

Ayesha Kiran

FALL 2017-MS-17(CSE)00000205519

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Software Engineering

Thesis Supervisor:

Dr. Wasi Haider Butt

 Thesis Supervisor’s Signature: ____________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES & TECHNOLOGY ISLAMABAD

 February, 2020

Declaration

The substance of this thesis is the original work of the author and due references and

acknowledgements have been made, where necessary, to the work of others. No part of this thesis

has been submitted in candidature of any degree.

 Signature of Student

 Ayesha Kiran

FALL 2017-MS-17(CSE)00000205519

Signature of Supervisor

 Dr. Wasi Haider Butt

Language Correctness Certificate

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also

according to the format given by the University for MS thesis work.

 Signature of Student

 Ayesha Kiran

FALL 2017-MS-17(CSE)00000205519

Signature of Supervisor

 Dr. Wasi Haider Butt

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST College of Electrical & Mechanical Engineering

(CEME). Details may be obtained by the Librarian. This page must form part of any such

copies made. Further copies (by any process) may not be made without the permission (in

writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of Electrical & Mechanical Engineering, subject to any prior

agreement to the contrary, and may not be made available for use by third parties without

the written permission of the CEME, which will prescribe the terms and conditions of any

such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of Electrical & Mechanical

Engineering, Rawalpindi.

Acknowledgements

I thank Almighty Allah (SWT) my Creator Allah for his ultimate guidance throughout my

research. Nothing would have been possible without his profound blessing. For all praise is due to

God, the Sustainer of all the worlds. Also my admirations be upon Prophet Muhammad (PBUH)

and his Holy Household for being source of guidance for people.

I would like to my show gratitude to my supervisor Dr. Wasi Haider Butt for his tremendous

support and cooperation whose constant motivation, persistent efforts and uninvolved words of

wisdom ever proved a lighthouse for me. Despite his never ending commitments, he did never

mind giving his maximum whenever I requested for his time and support. I could not have

imagined having a better advisor and mentor for my MS study.

I would also like to thank my Guidance Committee Members Dr. Arslan Shaukat and Dr. Urooj

Fatima for being on my thesis guidance and evaluation committee. Their recommendations are

very valued for improvement of the work. I appreciate their guidance throughout the whole thesis.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study. But I alone bear the responsibility of any error or omission that left between

the covers.

“Dedicated to my Grandfather (Late), Parents, family and friends

For their love and endless prayers

&

My Teacher

Dr. Wasi Haider Butt

Who has provided me the guidance, encouragement and advice

throughout my time as his student””

Abstract

Regression testing is among the major activities in Software Engineering that is done whenever

modifications are made in a software. New test cases are required to be added in current test suite

for checking the enhanced functionalities. But, the size of test suite increase as new test cases are

added and it becomes un-efficient because of the occurrence of redundant, broken and obsolete

test cases. For that reason, it results in additional time and budget to run all these test cases.

Therefore, in order to overcome the problem of time as well as budget constraint, it is required to

optimize the entire test suite. Many researchers have proposed computational intelligence and

conventional based approaches for dealing with this problem and they have achieved optimized

test suite by selecting, minimizing or reducing, and prioritizing test cases. Currently, most of the

approaches dealing with optimization are static in nature and they do not dynamically modify the

test cases. But, it is mandatory to use dynamic approaches for optimization due to the

advancements in information technology and associated market challenges. Therefore, we have

proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) that is tuned with Teaching

Learning Based Optimization (TLBO) algorithm, for optimizing the regression test suites. Neuro-

Fuzzy Modeling (NFM) is a dynamic approach that is used for describing the system through if-

then else rules and network structure is utilized for its representation. For dealing with uncertain

values of input, these neuro-fuzzy based models provide effective methods along with improved

consistency. They also exhibit good property of generalization and their interpretation is done by

experts. In this dissertation, two benchmark case studies have been used and controlled

experimentation have been performed for optimization of test cases. The validation and

comparison of our approach has been done with GA-ANFIS, PSO-ANFIS, FA-ANFIS and HS-

ANFIS. From our results, it has been concluded that proposed TLBO-ANFIS performs better than

all of these approaches

Key Words: Testing, Regression testing, Optimization, Test suite, ANFIS, Neuro Fuzzy System,

Harmony Search, Firefly, Teaching Learning based Optimization

 i

TABLE OF CONTENTS

Declaration ... iii

Copyright Statement ... v

Abstract .. viii

List of Tables ... iv

List of Figures ... vi

CHAPTER 1: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Objective ... 1

1.3 Scope of Proposed Work ... 1

1.4 Title of Research .. 2

1.5 Motivation behind the Research .. 2

1.6 Significance of Research ... 2

1.7 Key Questions of the Research .. 3

1.7.1 Research Question # 1 .. 3

1.7.2 Research Question # 2 .. 3

1.7.3 Research Question # 3 .. 3

1.8 Methodology of Research .. 4

1.8.1 Research Process .. 4

1.8.2 Sources for Collection of Data .. 7

1.8.3 Methods for Collecting Data ... 7

1.8.3.1 Generation of Test Cases ... 7

1.8.4 Methods for Analysis of Collected Data ... 7

1.8.5 Taxonomy ... 7

1.8.6 Shortcomings of Proposed Research ... 7

CHAPTER 2: LITERATURE REVIEW .. 9

2.1 Basic Concept Behind Regression Testing .. 9

2.1.1 Categorization of Regression Testing ... 9

2.1.2 Regression Testing Approaches .. 9

2.2 Regression Test Suite Optimization ... 10

2.2.1 Approaches .. 10

2.2.2 Different Methods .. 10

2.2.3 Greedy Algorithm based Optimization Methods.. 10

2.3 Computational Intelligence .. 11

2.3.1 Optimization Methods based on ... 12

2.3.2 Neuro-Fuzzy System .. 13

Description of ANFIS Layers ... 14

2.3.2.1 Learning Algorithm of ANFIS .. 15

2.3.3 Software Engineering and .. 16

CHAPTER 3: COMPUTATIONAL INTELLIGENCE & REGRESSION TEST SUITE OPTIMIZATION 17

3.1 .. 17

 ii

3.1.1 Genetic Algorithm and RTO ... 17

3.1.2 Swarm Algorithms and RTO .. 19

3.1.2.1 RTO and ACO ... 19

3.1.2.2 Other Swarm Algorithms and RTO... 19

3.1.2.3 Hybrid Algorithms and RTO .. 21

3.1.3 Neural Networks and RTO ... 22

3.1.4 Fuzzy Logic and RTO... 22

CHAPTER 4: NEURO-FUZZY MODLEING & REGRESSION TEST SUITE OPTIMIZATION 24

4.1 Weaknesses in Current Methods.. 24

4.2 Ability of NFM to Tackle Stated Weaknesses ... 24

4.3 Disadvantages of Fuzzy Logic based Methods .. 25

4.4 Addressing the Flaws of Fuzzy Logic using Neuro Fuzzy System .. 25

4.5 Application of NFM on Regression Test Optimization ... 25

4.5.1 White Box Testing and Neuro Fuzzy System ... 25

4.5.2 Black Box Testing and Neuro Fuzzy System.. 26

4.6 Formulation of Problem ... 27

4.7 Problem Transformation into ANFIS .. 29

4.7.1 Input Variables.. 29

4.7.2 Output Variable .. 29

4.7.3 Fuzzy Sets ... 30

4.7.4 Membership Function Graphs ... 30

4.7.5 Fuzzy Rules .. 31

4.7.6 Mathematical Calculations on ANFIS Layers .. 31

4.7.7 Principles for Designing Network ... 33

4.7.8 Diagram of Model ... 33

4.8 System Diagram .. 34

4.8.1 Module for Management of Test .. 34

4.8.2 Optimization Module .. 35

4.8.3 ANFIS Module ... 35

4.9 RTO Algorithm ... 36

CHAPTER 5: EXPERIMENTATION .. 37

5.1 Experimental Environment .. 37

5.2 Case Study 1: Previous Date Problem ... 38

5.2.1 Experiment 1: Solution of RTO using Sugeno .. 39

5.2.2 Experiment 2: Solution of RTO using ANFIS-GA ... 43

5.2.3 Experiment 3: Solution of RTO using ANFIS-PSO ... 49

5.2.4 Experiment 4: Solution of RTO using ANFIS-TLBO .. 55

5.2.5 Experiment 5: Solution of RTO using ANFIS-HS .. 61

5.2.6 Experiment 6: Solution of RTO using ANFIS-FA .. 67

5.3 Case Study 2: Print Tokens.. 73

5.3.1 Experiment 1: Solution of RTO using Sugeno .. 73

5.3.2 Experiment 2: Solution of RTO using ANFIS-GA ... 75

 iii

5.3.3 Experiment 3: Solution of RTO using ANFIS-PSO ... 76

5.3.4 Experiment 4: Solution of RTO using ANFIS-TLBO .. 76

5.3.5 Experiment 5: Solution of RTO using ANFIS-HS .. 77

5.3.6 Experiment 6: Solution of RTO using ANFIS-FA .. 78

CHAPTER 6: ANALYSIS AND VALIDATION... 79

6.1 Analysis Introduction .. 79

6.2 Results of Case Study 1 ... 79

6.2.1 Percentage Reduction in Size of Test Suite .. 79

6.2.2 Percentage Loss in Detection of Faults ... 80

6.2.3 Percentage of Requirement Covered ... 80

6.2.4 Percentage Reduction in Time of Execution ... 81

6.3 Results of Case Study 2 ... 81

6.3.1 Percentage Reduction in Size of Test Suite .. 81

6.3.2 Percentage Loss in Detection of Faults ... 82

6.3.3 Percentage of Requirement Covered ... 83

6.3.4 Reduction in Execution Time for Case Study 2 .. 83

CHAPTER 7: DISCUSSION AND CONCLUSION .. 84

7.1 Proposed Technique .. 84

7.2 Advantages .. 84

7.3 Disadvantages .. 85

7.4 Recommendations ... 85

7.5 Conclusion ... 86

7.6 Future Work .. 86

7.7 Contributions ... 87

References .. 88

 iv

List of Tables

Table 4.1. Notations ………………………………………………………………………………………28

Table 5.1. Seeded faults ……………………………………………………………………………….….38

Table 5.2. Rate of fault detection ..………………………...……………………………………………...39

Table 5.3. Sugeno results ………………………………………………………………………………....42

Table 5.4. Control parameters of GA for PDP ….………………………….………………………….….43

Table 5.5. ANFIS-GA: Results of first iteration……………………...…………………………………...44

Table 5.6. ANFIS-GA: Results of second iteration……………………...………………………………...45

Table 5.7. ANFIS-GA: Results of third iteration ……………………...………………………………….46

Table 5.8. ANFIS-GA: Results of fourth iteration……………………...………………………….……...47

Table 5.9. ANFIS-GA: Results of fifth iteration..……………….…....…………………………………...48

Table 5.10. ANFIS-GA prediction error results for PDP.……………..…………………………………...49

Table 5.11. Control parameters of PSO for PDP ….…………………………...……………………….…49

Table 5.12. ANFIS-GA: Results of first iteration……………………...…………………………………...50

Table 5.13. ANFIS-PSO: Results of second iteration……………………...……………………………….51

Table 5.14. ANFIS-PSO: Results of third iteration ……………………...………………………………...52

Table 5.15. ANFIS-PSO: Results of fourth iteration……………………...………………………….…….53

Table 5.16. ANFIS-PSO: Results of fifth iteration …………..….….....…………………………………...54

Table 5.17. ANFIS-PSO prediction error results for PDP ……………..…………………………………...55

Table 5.18. Control parameters of TLBO for PDP ….…………………………...………………………...55

Table 5.19. ANFIS- TLBO: Results of first iteration……………………...……………………………….56

Table 5.20. ANFIS- TLBO: Results of second iteration……………………...……………………………57

Table 5.21. ANFIS- TLBO: Results of third iteration ……………………...……………………………...58

Table 5.22. ANFIS- TLBO: Results of fourth iteration……………………...………………………….….59

Table 5.23. ANFIS- TLBO: Results of fifth iteration ……………….….....………………………………...60

Table 5.24. ANFIS- TLBO prediction error results for PDP ……………..………………………………...61

Table 5.25. Control parameters of HS for PDP ….……………….……………...………………………...61

Table 5.26. ANFIS- HS: Results of first iteration……………….………...……………………………….62

Table 5.27. ANFIS- HS: Results of second iteration…………….…………...……………………………63

Table 5.28. ANFIS- HS: Results of third iteration ……………….………...……………………………...64

Table 5.29. ANFIS- HS: Results of fourth iteration………………………...………………………….….65

Table 5.30. ANFIS- HS: Results of fifth iteration ……………….……...………………………………...66

Table 5.31. ANFIS- HS prediction error results for PDP ………...…..…………………………………...67

Table 5.32. Control parameters of FA for PDP ….……………….……………...………………………..67

Table 5.33. ANFIS- FA: Results of first iteration……………….………...……………………………….68

Table 5.34. ANFIS- FA: Results of second iteration…………….…………...……………………………69

Table 5.35. ANFIS- FA: Results of third iteration ……………….………...……………………………...70

Table 5.36. ANFIS- FA: Results of fourth iteration………………………...………………………….….71

Table 5.37. ANFIS- FA: Results of fifth iteration ……………….…….....……………………………….72

Table 5.38. ANFIS- FA prediction error results for PDP ……………..…………………………………..73

Table 5.39. Control parameters of GA for SPT ….……………….……………...………………………..76

Table 5.40. ANFIS- GA prediction error results for SPT ……………..…………………………………..76

Table 5.41. Control parameters of PSO for SPT ….……………….……………...……………………….77

Table 5.42. ANFIS- PSO prediction error results for SPT ……………..………………………………….77

Table 5.43. Control parameters of TLBO for SPT ….……………….……………...……………………..78

Table 5.44. ANFIS- TLBO prediction error results for SPT ……………..………………………………..78

Table 5.45. Control parameters of HS for SPT ….……………..….……………...……………………….79

Table 5.46. ANFIS- HS prediction error results for SPT ……..………..………………………………….79

Table 5.47. Control parameters of FA for SPT ….………..……….……………...……………………….80

Table 5.48. ANFIS- FA prediction error results for SPT ……………..……..…………………………….80

 v

Table 6.1. % Reduction in size of test suite for PDP ………………………….………………………... 81

Table 6.2. % Loss in Faults Detection for PDP ………………………………….……………………... 82

Table 6.3. % Loss in Requirement Coverage for PDP ……………………………………………..……83

Table 6.4. % Loss in Execution time for PDP……………………………………………………………83

Table 6.5. % Reduction in size of test suite for SPT ………………………….………………………... 84

Table 6.6. % Loss in Faults Detection for SPT ………………………………….……………………... 84

Table 6.7. % Loss in Requirement Coverage for SPT ……………………………………………..……85

Table 6.8. % Loss in Execution time for SPT……………………………………………………………85

 vi

List of Figures

Figure 1.1: Research Process ……………………………………………………………………………....6

Figure 2.1: CI Approaches ………………………………………………………………………………...12

Figure 2.2: Block diagram of ANFIS ……………………………………………………………………...13

Figure 2.3: Basic Architecture of ANFIS ………………………………………………………………….14

Figure 4.1: Graphs …………………………………………………………………………………………31

Figure 4.2: Rule viewer ……………………………………………………………………………………31

Figure 4.3: Principles ……………………………………………………………………………………...34

Figure 4.4: Sugeno model …………………………………………………………………………………34

Figure 4.5: ANFIS ………………………………………………………………………………………...34

Figure 4.6: RTO System ………………………………………………………………………………......35

Figure 5.1: Experimental flow ………………………………………………………………………….....37

Figure 5.2: Model architecture …………………………………………………………………………....40

Figure 5.3: Membership functions ………………………………………………………………………..40

Figure 5.4: Surface plots ………………………………………………………………………………….41

Figure 5.5: Rule viewer …………………………………………………………………………………...43

Figure 5.6: MFs …………………………………………………………………………………………...74

Figure 5.7: Rules viewer ……………………………………………………………………………….....74

Figure 5.8: Surface plots ………………………………………………………………………………….75

 1

CHAPTER 1: INTRODUCTION

1.1 Background

During the development of software systems, regression testing is done whenever changes

are made in software because of adding or deleting some features, requirement changes,

fixing of bugs and modifications in off-the-shelf components. It is necessary to write and

add new test case whenever a change is made in software. But, it also results in addition

of several test cases that are of no use to the optimized test suite. Hence, it makes it difficult

to run all test cases as it demands additional cost and time as well. This problem requires

a solution to optimize the test cases in minimum time and budget constraint. Several

researchers have proposed different methods e.g. meta-heuristic, hybrid and CI, for

optimizing or prioritizing test cases. But, they may not be able to properly optimize the

test suite as these approaches are mostly static and single-objective. In view of all these

factors, a multi-objective dynamic method based on expert system is needed for

optimizing test suite in order to cope with rapid advancements in technology and

competition in market.

1.2 Objective

Test suite optimization is one of the most challenging activities in software development

life cycle. There are two approaches for optimization i.e. Single objective, Multi

Objective. Only one objective is considered at a time in case of Single Objective

approaches while Multi Objective approaches simultaneously consider several

objectives. These approaches incorporate Genetic Algorithm based on multiple

optimization objective, Fuzzy Logic and Neural Networks etc. In short, for improving

the quality of testing process in constrained time and budget, optimizing the test cases

is a mandatory task. The basis objective of our research is performing optimization of

regression test cases using Computational Intelligence based system i.e., Adaptive

Neuro Fuzzy Inference System (ANFIS) that is tuned with meta-heuristic algorithm.

1.3 Scope of Proposed Work

Scope of our proposed research work includes the study of methods for performing

regression testing and different meta-heuristic, hybrid and CI based methods that have

been employed to optimize test cases. We will develop an adaptive neuro fuzzy

inference system tuned with teaching learning based optimization algorithm for

 2

optimizing the regression test suite dynamically. Benchmark case studies will be used

for validation and comparison with different metaheuristic algorithms.

1.4 Title of Research

“Regression Test Suites Optimization Using TLBO based Adaptive Neuro Fuzzy

Inference System”

1.5 Motivation behind the Research

The method of optimization as well as generation of test cases is static in nature and it

requires the involvement of human experts. With the passage of time, the size of test

cases increases and plenty of time as well as effort is necessary for their execution which

increases the testing cost. If a person attempts to manually optimize the test cases by

using his judgement, it is likely that several important test cases might skip out which

will also cause a decrease in the software quality. For addressing the above-mentioned

problems, an adaptive approach is required that is also based on expert judgment. All

the requirements can be fulfilled by Neuro-Fuzzy Modeling (NFM). Currently, NFM

has been employed in various activities related to Software Engineering E.g. Estimation

of Effort [1-6], Estimation of cost [7-9], Estimation of Development Time [10], and

Component Based Development [11].

1.6 Significance of Research

In this research, the area of optimization related to regression test cases has been

explored and it initiates a new area of research. Following are the key considerations of

this dissertation:

• Exploration and analysis of weaknesses in different state-of-the-art meta-

heuristics as well as soft computing approaches for optimization of regression

test cases

• Exploration of applicability of Adaptive neuro fuzzy inference system in the

field of regression testing

• Development of a tool that is self-optimizable for optimization of test cases for

regression testing

• Evaluation of our proposed optimization approach with existing ones

 3

1.7 Key Questions of the Research

1.7.1 Research Question # 1

It is required to have proper knowledge and elaboration of subject matter beforehand,

hence a review of literature has been conducted. Subsequently, our first research

question is: RQ1: Why test suite optimization is required for regression testing?

In order to clearly answer RQ1, it has been divided into sub-parts that also need to be

answered:

RQ.1.1 Why it is important to optimize the test cases for performing regression testing?

RQ.1.2 What are the different methods used by researchers for optimizing the test cases

for performing regression testing?

RQ.1.3 Which factors are required to be considered during optimization of test suite for

regression testing?

RQ.1.4 What is the meaning of evolutionary based multi-objective optimization of test

cases for performing regression testing?

RQ.1.5 What are the important factors that must be considered to optimize the test cases

for performing regression testing?

Solution Methodology: Systematic review of current literature.

1.7.2 Research Question # 2

In Question 2, the state-of-the-art computational intelligence based methods that have

been used in literature for optimizing the test cases for regression testing, are discussed.

RQ2 How CI based methods can be utilized for optimizing the test cases for regression

testing?

For properly understanding and elaborating RQ2, it has been divided into following sub-

parts:

RQ.2.1 What is the basis idea behind “Computational Intelligence”?

RQ.2.2 Which techniques have been offered by these methods for solving different

problems related to optimization?

RQ.2.3 What are the benefits of utilizing optimization approaches that are based on

“Computational Intelligence”?

RQ.2.4 How the regression test cases can be optimized by utilizing CI based method?

Solution Methodology: Systematic review of current literature.

1.7.3 Research Question # 3

RQ3: In what way “Neuro-Fuzzy Modeling” can optimize the test cases for regression

testing?

 4

To clearly elaborate and answer RRQ 3, it has been divided into sub-parts that also need

to be answered:

RQ.3.1 What is the basis idea behind “Neuro-Fuzzy Modeling”?

RQ.3.2 In what way we can apply “Neuro-Fuzzy Modeling” to the problems related to

the field of “Software Engineering”?

RQ.3.3 Why researchers have not properly explored the concept of Neuro-Fuzzy

Modeling for optimizing the test cases for regression testing?

RQ.3.4 In what way can we apply “Neuro-Fuzzy Modeling” to the problem of

optimizing the test cases for regression testing?

RQ.3.5 What are the benefits of using the optimization method proposed in this

research?

RQ.3.6 Comparing the proposed optimization method?

RQ.3.6.1 Comparing with conventional optimization method?

 RQ.3.6.2 Comparing with other optimization methods that are based on

Computational Intelligence?

RQ.3.7 How a software can be designed on the basis of “Neuro-Fuzzy Modeling”?

RQ.3.8 How an optimization software can be designed on the basis of “Neuro-Fuzzy

Modeling” for regression test cases?

Solution Methodology: Systematic evaluation of literature, experimentation on

benchmark case studies, and simulation.

1.8 Methodology of Research

There are three key research questions for this study. In order to answer first two

questions, we conducted a systematic review of state-of-the-art approaches used for

regression testing. During the review process, it has been observed that existing

approaches do not adequately deal with regression testing. So, it is required to develop

an expert system that is capable of performing self-optimization. Therefore, we selected

ANFIS for performing the optimization of test cases along with the Teaching Learning

based Optimization approach. For answering the third questions, the results of

experimentation performed on selected case studies.

1.8.1 Research Process

In figure 1, we have elaborated the research process followed for this study. As an initial

idea, test suite optimization for regression testing was chosen. Then, we studied

different approaches for optimization of test cases and after a careful analysis we

 5

selected Computational Intelligence based method as a goal of this research. We

analyzed implementation of different approaches based on CI and found that Neuro

Fuzzy System have not been used for the purpose of optimization although they have

great potential for solving complex optimization problems. We narrowed our scope on

the basis of these results and finally selected ANFIS with TLBO algorithm for achieving

our desired results. We refined our goals and designed the initial draft of our research.

On the basis of our finalized goals, we conducted a review of current literature and

analyzed the implementation details of several state-of-the-art studies. It was noticed

that most of these techniques deal with single-objective and optimization of test suite

for regression testing needs to be solved as multi-objective one. Selection of a sample

application was done and its test cases were created. Traditional methods of regression

testing were used to test this application and the results of several runs were recorded

as the history of these test cases. Then, we defined our objective functions and

formulation of our research problem was done as Neuro-Fuzzy problem. Finally, the

results of optimization were generated and their analysis was done in both quantitative

and statistical manner and we proposed our findings.

 6

Figure 1.1: Process followed for proposed research

 7

1.8.2 Sources for Collection of Data

The key source of this study is regression test suite.

1.8.3 Methods for Collecting Data

Different journal as well as conference papers are studied thoroughly for understanding

the process of collection of data and test dataset used by author of [61] has been employed

in our work. The main source of this dataset is SIR (Software-artifact Infrastructure

Repository).

1.8.3.1 Generation of Test Cases

For case study 1, test cases are generated with the help of Equivalent Class Partitioning

as well as analysis of Boundary Values.

1.8.4 Methods for Analysis of Collected Data

The way adopted for analysis of data is experimentation. The optimized test suite for

regression testing is generated using TLBO based ANFIS. Resultant test suite is

compared with non-optimized as well as optimized generated using different technique.

Their comparison is done on the basis of size reduction, execution time reduction, FDR

loss and requirement coverage reduction.

1.8.5 Taxonomy

The nature of this dissertation is investigative, experimental, observational,

experiential, pragmatic and action research.

1.8.6 Shortcomings of Proposed Research

The limitations of our work are given below:

• The application of this our proposed technique can be done on specification as

well as structural based regression testing. But, the focus of our work is only on

specification based regression testing that is based on the black-box approach.

It can be applied on different testing levels i.e. component, integration, system

and acceptance. For the creation of test cases, we have employed portioning of

Equivalence classes and analysis of Boundary Values.

• Only two case studies are utilized for implementation and validation of our

proposed approach

 8

• The selection of objective functions differs for each industry and we cannot cater

for all of the objectives in this research study. Therefore, we selected only four

objectives after a comprehensive research of existing literature.

• This system can be used by different persons but we only considered the people

related to Test Management, Software Testers, and Software Developers as its

potential users

• The values of requirement coverage for second case study is based on estimation

because their exact requirements are unavailable

• Requirements are un-available for Siemens programs so we used

approximation for calculation of coverage based on Requirement for Siemens

Print Token (SPT).

 9

CHAPTER 2: LITERATURE REVIEW

2.1 Basic Concept Behind Regression Testing

In Software Engineering, Regression testing is done after the changes are made in

previously tested program in order to validate it and make sure that defects have not been

introduced due to these modifications. In test driven development, it is usually done in

the phase of software maintenance. It is also important in the case of component driven

development when the software needs to be retested after the changes are made in

different components. The most recognized standard for regression testing is ISTQB and

it illustrates this term as “Testing of a previously tested program after making

modification in order to ensure that defects are not introduced in unchanged areas of the

software. It is performed when the software or its environment changes” [12].

2.1.1 Categorization of Regression Testing

There are two main categories for regression testing i.e. Corrective and Progressive. In

case of Progressive Regression Testing, the testing of program is done after making

modifications in it. While in case of Corrective Regression Testing, the program that

has been modified is checked only for correctness and it is ensured that the present test

suite is able to be utilized devoid of making any alteration to it [13].

2.1.2 Regression Testing Approaches

Various approaches for regression testing have been introduced by researchers. Four

techniques for regression testing are defined by G Duggal and B Suri [14] i.e. Selection

of Regression Test, Retest All, Prioritization of Test Cases and Hybrid approaches. T

L. Graves et al [15] described 5 regression testing methods i.e. Minimization

approaches, Safe approaches, Data Flow approaches, Adhoc/ Random approaches and

Retest All approaches.

The oldest and simplest one is Retest All approach but it is also expensive. The whole

test suite is executed in this technique. In Selection approach, those test cases are

selected that are written for the modified part and that aid in achieving some

optimization objective. The obsolete and redundant test cases are removed in reduction

techniques. Lastly, test cases are ranked or reordered in ranking technique in order to

attain some defined objective like maximum coverage, reduced cost etc.

 10

2.2 Regression Test Suite Optimization

New test cases are added to existing test suite whenever features are added or removed

or fixation of bugs in done in software. But, these changes may also cause a decrease

in efficiency of older test cases. There are five main classes of test cases. For the

unchanged parts of program, Reusable test cases can be utilized but they are not

necessary to be added in test suite and can be employed in upcoming releases of

software. For the modified part of programs that are mandatory to be retested,

Retestable test cases are used. There are some test cases in the test suite that don’t play

a role in testing of modified program due to change in structure, or input/output of

program etc. Structural test cases are added for testing the changed structure while

specification test cases are added for testing the modified program due to new

specifications [13]. The regression test suite increases in size and becomes ineffective

due to addition of so many new test cases [16] and it needs to be optimized for saving

the resources. Therefore, Regression Test Suite Optimization is done to solve this

problem because it is not possible to test the complete test suite for a simple

modification [17, 18]

2.2.1 Approaches for Optimization of Regression Test Cases

The optimization of test cases for regression testing can be employed on three

regression testing methods i.e. Minimization of Test Cases, Prioritization of Test Cases

and Selection of Test Cases. In Test Suite Minimization, algorithms are used for

reducing the number of test cases on the basis of some parameters. In Test Suite

Prioritization, test cases are prioritized on the basis of predefined parameters and in

Regression Test Selection the selection of those test cases is done which covers the

changed piece of code [16]. These optimization approaches have been utilized in

literature according to their requirements i.e. hybrid of these three approaches or

combination of different criteria etc.

2.2.2 Different Methods for Optimization of Regression Test Cases

Various optimization approaches are proposed for regression testing by researchers.

They can be divided into heuristic or CI based methods. A brief description of different

techniques is given below:

2.2.3 Greedy Algorithm based Optimization Methods

S Singh and R Shree [19] employed three techniques for achieving an optimized test suite

i.e. identification of test cases, minimization of test cases and prioritization. According to

 11

their results, the proposed approach does not degrade the coverage value and it produce

an effective optimized test suite. Wang et al [20] argued that the efficiency of fault

localization can be improved with the help of multi-objective approach for test case

selection. They proposed the criteria to prioritize and select the test cases and used greedy

algorithm for solving the problem of multi-objective optimization. Their approach

achieved significant results in fault localization and reduction of test cases. R Jabbarvand

et al [21] presented an approach for minimization of test cases based on energy-aware

coverage criterion. This coverage criterion depicts the extent to which energy-greedy parts

of a software code are being verified. According to their results, the proposed greedy based

approach revealed most of the energy bugs and achieved significant reduction in terms of

size.

CT Lin et al [22] focused on Greedy-based method for reduction of test suites according

to different viewpoints i.e. cost, execution time, capability of fault detection and

effectiveness of fault detection. This paper presented the advantages and disadvantages of

the cost-aware techniques and gave insights into how the effectiveness of cost-aware

techniques varies as the complexity of test suite increases. B Miranda et al [23] proposed

a scope-aided approach for testing that focus on fault detection. According to their

empirical evaluation, the average rate of faults detection can be improved in prioritization

of test suite if we only consider only those faults that are in the scope. Similarly, the size

of test suite can be reduced in selection and minimization of test suite without impacting

the effectiveness of fault detection.

A Shi et al [24] presented a study that evaluates cost of test suite reduction by employing

test failures. According to their analysis, FBDL can be 52.2% higher as compared to loss

of mutant detection. They also emphasized on evaluating the quality of reduction

approaches using FBDL. X Wang et al [25] proposed an approach for test suite reduction

based on distance (DTSR). In this approach, the reduction process has been done with the

help of distances between the test cases. Results of this approach show that it has the

capability of reducing the test suite size.

2.3 Computational Intelligence

Computational Intelligence (CI) is an emerging field in the domain of applied research

which employs the algorithms1 that are inspired by nature, for solving different problems.

1Algorithms that are based on behavior of animals

 12

It comprises of Genetic algorithm, Fuzzy systems, Neural Networks, Programming and

Hybrid Intelligent systems. It does not include Probabilistic reasoning as it is linguistic

inspired not biologically inspired [26]. According to S. Sumathi and S Paneerselvam [27],

CI is inheritor of AI and it solves those problems that do not have any computational

solution and gets the inspiration from biological processes. The categorization of CI can

be done into Primary, Hybrid and Other approaches. Different CI based methods can be

used for solving five major type of problems i.e. Optimization, Classification, Control,

Regression and NP-Complete problems. Figure 2.1 shows the basis classification of CI

based approaches.

Figure 2.1: CI Approaches

2.3.1 Optimization Methods based on Computational Intelligence

Optimization is a quite difficult task and several methods cannot properly solve the

problem of optimization. Consequently, advanced methods are needed for solving this

issue. Following are some challenges that occur during the process of optimization:

 Problems that are dynamic in nature

 Evaluation of objective function is expensive

 13

 Objective functions that are multimodal or discontinuous

For addressing the above-mentioned challenges, methods based on CI are employed for

the purpose of optimization. Some benefits of these methods are mentioned below:

 Self-Adaptability

 Resourcefulness

 Robustness

 Analogous nature

In literature, these methods have been used for dealing with scheduling, classification,

continuous optimization and implantation of hardware. Their details are provided in

survey paper of Y Tenne and C-K Goh [28].

2.3.2 Neuro-Fuzzy System

Finding a solution to complex problems is a complicated task. The solution to these

problems require different methods and various sources to gather knowledge for forming

an intelligent system. Neuro-Fuzzy Modeling is one form of these intelligent systems and

it is also known as Neuro-Fuzzy based System. It is a technique of optimization that is

free of derivative and it is a combination of fuzzy inference system and neural networks

[29]. There are different types of Neuro-Fuzzy System but we have chosen ANFIS in this

research because it has less error in terms of Root Mean Square in comparison to other

systems. Figure 2.2 shows the basis diagram of ANFIS.

Figure 2.2: Block diagram of ANFIS

There are five basic layers in ANFIS [30, 31] and each of them has their own

responsibility. Two types of nodes are present in ANFIS i.e. Adaptive and Fixed. Fixed

nodes are represented by circles while adaptive nodes are depicted by square. The basic

architecture of ANFIS is shown in figure 2.3.

 14

Figure 2.3: Basic Architecture of ANFIS

There are two inputs and one output associated with the architecture of ANFIS. The classic

set of rules for the model of first order of Sugeno are characterized as given below:

Rule 1: IF A is X1 AND B is Y1 THEN w1 = p1a+q1b+r1

Rule 2: IF A is X2 AND B is Y2 THEN w2 = p2a+q2b+r2

There are two inputs in above-mentioned rules i.e. X and Y. The node function has two

associated linguistic variable Ai and Bi.

Description of ANFIS Layers

Layer 1: This layer has adaptive nodes and premise parameters and it consists of

membership functions. It is also known as input layer. Node functions of this layer can be

determined by:

M1, k = Xk (a) for k=1,2

M1, k = Yk =2 (b) for k=3,4

The input to node k is a and the variable for linguistic is Xk. The membership function of

X is Mk and it indicates the degree to which Xk is satisfied by a. If the membership function

is bell shaped, then following equation can be used for determining Mk:

μ𝑋(a) = 1
1

1 + |
a − 𝑠𝑖

𝑞𝑖 | 2𝑟𝑖

 15

Where the set of parameter is represented by qi, ri, si. Change in the value of these

parameters cause change in bell-shaped function.

Layer 2: This layer is associated with rules and it consists of circular nodes. The rule

firing strength is generated as the output of it. The strength of firing is generated through

multiplication of all signals coming to this layer. For the node function of this layer, the

operator of T-norm is used.

M2, k = f k = Xk (a) Yk (b) for k=1,2

M = nj=1 (aj)

Layer 3: In this layer, nodes are denoted by N and are circular in shape. The summation

of firing strength of all rules in done in it, for calculating the ratio of firing strength

associated with kth rule. The output of produced by it is known as normalized strength of

firing.

M3, k =fk̅ =
fk

f1+f2

Layer 4: It has square nodes which represent the input signal function. It is commonly

known as the consequent layer.

M4, k = fk̅wk = fk̅ (pka + qkb + rk)

This layer has consequent parameters and their set consists of {pi, qi, ri} and its output is

denoted by fk.

Layer 5: It is the layer that deals with the output of ANFIS. It consists of one circular

node and ∑. All the incoming signals are summed up and the complete output of this

ANFIS is computed by ∑.

M5, k = Σkfk̅wk =
∑ fkwkk

Σkfk

2.3.2.1 Learning Algorithm of ANFIS

In ANFIS, a hybrid of back propagation and regression algorithm is used for the estimation

of consequent and premise parameters. This hybrid algorithm has two passes i.e. forward

 16

and backward. Fixed premise parameters are used in forward pass while in backward pass

they are estimated. Similarly, fixed consequent parameters are used in backward pass

while in forward pass they are estimated. Propagation of input is done in forward pass and

calculation of least square error is also done in it. The back-propagation of error is done

in case of forward pass and the gradient descent technique is applied for updating premise

parameters. A complete detail of this hybrid algorithm is given in [30, 31].

2.3.3 Software Engineering and Neuro-Fuzzy Modeling

In the context of Software, NFM helps in performing different tasks such as estimation of

effort [1-6], estimation of cost [7-9], estimation of development time [10], classification

of components in CBD [11], for improving the time of black-box testing and for

developing the growth model of software reliability [32].

 17

CHAPTER 3: COMPUTATIONAL INTELLIGENCE &

REGRESSION TEST SUITE OPTIMIZATION

3.1 Optimization of Regression Test Suite Using CI Methods

In the field of Software Engineering, different CI techniques have been used by

researchers for solving the problems of optimization [33]. The CI based approaches used

for optimization of regression test suite in literature are summarized below:

3.1.1 Genetic Algorithm and RTO

R Khan et al [34] solved the problem of automatic generation of test cases and their

optimization by employing GA. The proposed genetic based optimization method verifies

the path coverage by accepting a set of inputs and it has the ability of achieving 100%

path coverage. S Kothari and A Rajavat et al [35] presented a model for automation of

testing that is capable of generating test cases and optimization along the evaluation of

code. The presented model consumes less resources and it can analyze small as well as

large-scale projects. A Schuler [36] proposed a methodology for assuring the quality of

mobile applications by automating the testing and optimization of test suites. This study

focuses on finding the minimized test suite along the reduction in cost of execution. V

Garousi et al [37] introduced a genetic algorithm based approach known as multi-

objective regression-test selection by considering the objective of cost as well as benefit.

A custom built genetic algorithm has been used for formulation and solution of this

problem and it consists of four benefit and five cost objectives. According to the results

of empirical evaluation, it has obtained better results in terms of requirement coverage and

cost effectiveness as compared to traditional approaches of test-selection.

RZ Qi et al [38] emphasized that genetic algorithm is difficult to use for solving the large-

scale problems due to its time consuming nature. The enhancements in computational

performance can be done by using the effective approach of parallelism. Therefore, for

parallelization of GA, Spark i.e. a platform for parallel computation, has been used in this

study. The proposed algorithm has two-phases as it includes parallelization for fitness

evaluation and genetic operation. It has performed better than sequential approaches in

terms of test suite size and computation. AJ Turner et al [39] analyzed the trade-off among

coverage of code and time of execution for test-suite of Mockito framework which has

been used for creation of mock objects for unit testing. Their results show that it takes less

execution time for regression testing by slightly reducing the code coverage.

 18

A Yamuç et al [40] proposed a GA based approach for producing fully covered free of

defect software that has high quality for safety critical and real time software. The

experimental results show that GA overtakes greedy algorithm in reducing the cost but it

has larger execution time that greedy approach. The over-head involved with processing

time could be ignored because the major point is improvement in the performance of test

cases. A. Panichella et al [41] proposed a dynamic algorithm for Many-Objective Sorting

for addressing the problem of test case generation in terms of coverage testing. The

empirical evaluation for the assessment of performance has been done by using three

criteria i.e. statement coverage, mutation coverage and branch coverage. According to the

results, the proposed approach outperforms the selected approaches for comparison, in all

of the three coverage criteria. M. Zachariaova et al [42] presented a GA based technique

for generating optimized test suites for regression testing of ASIPs. The results of

experimentation revealed that significant reduction in original test cases since the first

phase of verification and the newly optimized regression test suite exhibit the strong

capability of checking of key functionalities of ASIP with considerable reduction in

execution tie of verification process.

A. Sabbaghi and M. R. Keyvanpour [43] considered the process of performing

combinatorial testing as a multi-objective problem of optimization. They employed

genetic algorithm for proposing an approach for generating combinatorial test cases. The

results of experiment depicted that proposed technique generated high-priority test cases

first and helped ineffectively reducing the size of test suite. A. Marchetto et al [44]

presented a multi-objective approach for reduction of test cases that considered source

code coverage and requirement coverage of application along the execution cost of test

cases. NSGA-II has been used for determining the reduction in test suite size. Seven

approaches have been used as baseline for measuring the effectiveness of proposed

approach. According to results, it is not effective in reduction of test suite in comparison

of selected baseline approaches but achieves significant results in terms of cost-

effectiveness. D P Mishra et al [45] introduced a real-coded genetic algorithm for the

coverage of paths. A set of inputs have been generated by it for testing of a software. It

covers the critical paths faster than the classic GA approach and reduces the count of

generated test data needed for the path testing of software under test. It also covers 100%

paths for some specific SUT.

 19

3.1.2 Swarm Algorithms and RTO

3.1.2.1 RTO and ACO

Y-n. Zhang et al [46] employed quantum ant colony algorithm for solving the problem of

multi-objective test suite optimization. The classic ACO traps in local optimum and it

exhibit slow rate of convergence as well. The proposed algorithm also covers these issues

as well in an effective way. According to the results of experiment, it provides good

stability along with reduced cost and the sum of this cost is almost equivalent to any other

good method. S. Kumar et al [47] introduced a modified version of ACO for solving the

test cases in large search space because the traditional ACO do not cover every test case.

The proposed modified approach selects only those test cases that help in finding

maximum number of faults in smallest time. X.-C. Han et al [48] introduced a new

algorithm based on niching strategy of ant colonies for solving multi-modal optimization.

In NACS, division of ant colony has been done into groups and diversity of population

has been maintained by the assistance of niches. It employs multiple metrics of pheromone

and a dynamic relationship between ant colony and the surrounding environment has been

built with the help of new rules for updating pheromone. According to the experimental

results, the proposed approach demonstrated higher ability of solving multimodal

travelling salesman problem as compared to ant colony strategy. A. Ansari et al [49]

presented an automated approach for optimizing the test cases for regression testing based

on prioritization by using ACO. The proposed technique has been used for reduction in

execution time, cost and effort associated with performing regression testing.

Prioritization of test cases help to reveal maximum number of faults by selecting the high

priority test cases.

3.1.2.2 Other Swarm Algorithms and RTO

A. S. Metwally et al [50] presented a method based on Moth Flame Optimization to

automatically generate optimized test suite in one run only. It also incorporates an

objective function that is generic in nature and helps in evaluation of fitness of every single

solution without depending on other ones. This technique eliminates the test cases that do

not play any part in overall coverage and helps to find reduced test suite. P Gopi et al [41]

used multi-objective PSO for optimization of test data. They used two objective functions

i.e. maximum coverage of branches and minimum reduction in test data. Already defined

fitness function has been used for branch coverage whereas for the reduction objective a

new fitness function has been introduced in this study. For the extraction of coverage and

 20

convergence performance, a tool named MOTestGen has also been developed. According

to results, as the size of population increases the coverage grows into maximum. K Zamli

et al [52] proposed a new version of teaching learning based optimization centered on

Mamdani fuzzy inference system. It allows to select both type of operations in an adaptive

way i.e. Local as well as Global. The proposed approach provides better results as

compared to other optimization methods. S. R Sugave et al [53] proposed a diversity based

Dragonfly Algorithm for improving the quality as well as cost of test suite. For achieving

diversification, it used three bitwise operators. The determination of best test cases that

satisfy maximum requirements has been done in proposed algorithm on the basis of

hunting method of dragonflies. It has been observed that it reduces the cost of test suite

and ensures selection of higher-quality test cases.

S. R Sugave et al [54] employed two different methods for reduction of test suite based on

DIV-TBAT algorithm and measure of ATAP respectively. The method based on ATAP

reduce the test suite by using greedy algorithm. Consequently, a combination of BAT

algorithm with the mechanism of preserving diversity developed for reduction by the

authors is used in second method. It has been proved from the results that diversity based

BAT methods beats the classis methods in reduction of test suite. A Choudhary et al [55]

introduced Harmony Search based multi-objective approach for selecting regression test

suite. Different measures of performance i.e. coverage of faults, reduction in execution

time and coverage of unique faults, have been used for achieving optimization target. Two

algorithms namely Bat and Cuckoo search have also been utlized for evaluating the

performance and it has been concluded that proposed approach performs better than other

two methods. W Zheng et al [56] adapted an evolutionary algorithm that is multi-objective

in nature and based on decomposition. It has been evaluated against four algorithms i.e.

NSGA-II, Greedy algorithm, multi-objective evolutionary algorithm that has a fixed value

of parameter c and the one that use tuned value of parameter c. According to the

experimental results, Multi-objective evolutionary algorithm that use tuning of parameter

outperformed all other approaches.

W Zheng et al [57] also introduced a multi-objective approach that is based on mutation

testing for minimizing the test suite. The mutation score obtained as a result of performing

mutation testing has been used for measuring the efficacy of test cases with respect to their

ability of fault detection. The experimental results show that test suite generated by

applying proposed approach has the capability of achieving significant reduction in cost

 21

of testing without degrading their ability of fault detection. A K Agrwal et al [58]

presented a novel method for optimization of test suite for regression testing based on fault

coverage. Proposed method is an extension of Harrolds–Gupta–Soffa (HGS) approach

followed by the phenomenon of “learning from mistakes”. Traditional reduction methods

of test suite are used for measuring the performance of proposed technique by using

following measures: coverage of faults, time of execution and reduction in size. Results

depict that proposed approach performs better than other approaches in terms of reduction

in execution time.

3.1.2.3 Hybrid Algorithms and RTO

A.B Nasser et al [59] introduced a hybrid approach based on strategy of cuckoo search

learning and student phase of Teaching Learning based Optimization (TLBO). As a case

study for evaluation of proposed hybrid algorithm, the problem of generating t-way test is

considered. Results demonstrate that the proposed approach compete original CS in terms

of performance. S Singhal et al [60] developed a hybrid of GA and bee colony

optimization technique known as MHBG_TCS. Time Constraint (TC) which is one of the

difficult task in performing regression testing has been focused in this paper. The effect

of variations in value of TC has been calculated in this study. According to the results of

empirical evaluation, maximum size reduction is attained beyond few TC values. Z Anwar

et al [61] used GA and PSO for tuning ANFIS in order to perform optimization of

regression test suite. R. Khan et al [62] argued that genetic algorithm can be used to

automate the generation of test cases but it does not guarantee accurate optimization of

test cases. Therefore, GA has been combined with CS optimization in this study and the

customization of time and cost for testing task has also done in this study. In comparison

to single approach, the proposed hybrid approach exhibit better result. P Saraswat et al

[63] proposed a hybrid of GA and PSO algorithm that has been executed in two different

phases. Initial population is randomly generated with the help of GA and then application

of genetic operator is done on it. The output of GA has been used as an input to PSO and

calculation of velocity has been done for updating population. Since the velocity has been

updated at each iteration, the most optimal test cases have been achieved at the end of

these two phases. D Pradhan et al [64] introduced a variant of GA based on clustering with

elitist strategy for addressing the problem of multi-objective optimization. Four

algorithms have been selected for empirical evaluation of proposed approach in terms of

 22

selection of test suite along their minimization and prioritization. In selected optimization

problems, the proposed approach outperformed all of the selected algorithms.

3.1.3 Neural Networks and RTO

A.D.S Simão and L.J Senger [65] used Adaptive Resonance Theory for self-organizing

Neural Networks in order to reduce the test suite for regression testing. For every test case,

they created a feature vector and the monitoring of software behavior was also done. These

vectors have been classified into clusters using ART NN. The test case assigned the

significance to a curve and then counted it. Similarly, the significance of a curve to cluster

has also been described. Classification and labelling of clusters has also been done and for

testing future releases, this information has been utilized. Test cases that are owned by

changed clusters have been carefully chosen. For the evaluation metrics, recall and

precision have been used and for performing experimentation, a UNIX-based tool named

Comm have been utilized. For comparison of proposed method with random choice, 16

experiments have been conducted. In comparison to random choice, the proposed method

obtained 20% better results in recall and 34% in precision. In addition to this, it reduced

the test suite in effective way. But, it needs to be compared with other approaches of CI.

3.1.4 Fuzzy Logic and RTO

Z Xu et al [66] employed Fuzzy logic based System for selecting test cases aimed at

regression testing. Authors performed a survey of techniques that have been employed for

selecting the test cases and analyzed that majority of optimization methods have been

based on code and testing of code is not always feasible because of security reasons.

Therefore, BBT of system is preferred. The factor of scheduling, coverage and impact of

defect are significant for performing regression testing and the formation of rules require

to be done with respect to these factors. C language has been used for creating fuzzy expert

system and data has been gathered from a GSM project released in four versions. For

tuning of the system, three releases have been utilized and the 9768 test cases belonging

to fourth release have been used for optimization. Test plan that contained the hierarchy

in which test suite need to be implemented, has been created by fuzzy expert system. If a

test case has one value, it means that it has the highest priority and if a test case has zero

value it means that it has least importance. After performing different experimentations,

it has been analyzed that proposed fuzzy logic based system has the ability of reducing

execution time and cost associated with regression testing and it helps to find defects

earlier.

 23

Ali M. Alakeel [67] solved the problem of prioritization of regression test suite by using

fuzzy logic. The foundation of this method has been laid on prioritization of regression

test suite using assertion. For measuring the test case effectiveness towards violation of

assertion, fuzzy logic has been used. The value of membership functions has been assigned

on the basis of test suite history recorded by executing original program. Researchers

believe that proposed method has the capability of performing prioritization of test cases

for regression testing using assertion and it may also be employed for both BBT and WBT.

But, this research needs to be refined further because it has not been validated yet with the

help of experiments. A. A. Haider et al [68] introduced an approach for optimization of

regression test suite by considering multiple objectives i.e. throughput, coverage and

Performance. Researchers have proposed different CI based methods for solving multi-

objective optimization but they are not feasible for regression testing because they are

discrete in nature. Fuzzy logic is a good candidate for multi-objective optimization

because it is continuous. An algorithm has been proposed in this study but implementation

has not been done for checking its validity.

 24

CHAPTER 4: NEURO-FUZZY MODLEING &

REGRESSION TEST SUITE OPTIMIZATION

4.1 Weaknesses in Current Methods

Optimization of the test suite for regression testing has mostly been done on the basis of

single objective. But, using a single-objective approach may discard several important test

cases which is not safe. Therefore, it is necessary to make use of multi-objectives for

making the optimization process safe. For catering this problem, many researchers have

introduced Multi-Objective Evolutionary Algorithms (MOEA). But, these methods are

created on the basis of discrete values and it means that a fixed value is used for selecting

or rejecting a test case. As these approaches have discrete nature, many test cases may

again be ignored from becoming the part of optimized test suite. The results of our survey

[69] also suggest that most of the researchers have employed the approach of single-

objective optimization for dealing with optimization of regression test suite. But, it needs

to be dealt with multiple objectives because it is an NP-Complete problem and using a

single objective results in unsafe optimization. Therefore, for solving this problem CI

bases approaches must be utilized.

4.2 Ability of NFM to Tackle Stated Weaknesses

In the process of testing a software, few test cases are critical that must be included in the

optimized test suite but search-based approaches might result in omission of them.

Consequently, it is required to have an expert judgement just like human experts for

selecting the test cases. But, as the test suite size grows, it becomes impossible for humans

to manually check each test case and make decision about its criticality to the system.

Hence, incorporation of expert judgement system that includes human knowledge must

be done in selecting test cases. Fuzzy logic is multi-objective and it is a good choice for

designing expert systems. It has a continuous nature and provides flexibility in selecting

optimized set of test cases. Haider et al [68] stated that existing approaches for

optimization works in discrete domain and use a fixed value for selecting or rejecting a

test case. They solved an optimization problem with three objectives and 27 possibilities

were identified for selecting the optimal test suite. Their results demonstrated that only 2

or 3 possibilities can be addressed by existing methods for selecting optimal test suite but

complete range of possibilities can be covered by the help of fuzzy logic. On the basis of

their claim, a fuzzy logic based algorithm has been introduced for optimizing the test

 25

cases. Comparison of proposed approach has been done with PSO and two variants of GA

and results demonstrate that fuzzy logic provides best results.

4.3 Disadvantages of Fuzzy Logic based Methods

Fuzzy logic based test case optimization approach for regression testing has been proposed

in [39] and [40]. But, some shortcomings are associated with this method i.e. selecting the

appropriate fuzzy rules and parameter values. A significant role has been played by

parameters in distributing the values of MFs and applying the rules. The parameters

generated in FIS cannot be changed even if the system has been modified. On the basis

of value of input/output, the parameters as well as rules used for optimization of test cases

needs to be adjusted because changes continuously occur in software. Furthermore, if

some error occurs in selection of rule or parameter then it also reflects in the optimized

test cases because they only do what is specified for them. So, there are only two options

for their selection i.e. either an expert is hired for it or hit and trail method is used for

selecting those values that give better performance. Expert judgement is required

repeatedly for changing the parameters after every new release and it shows that the

system is not completely automatic. This aspect is not incorporated in these researches

[68, 69].

4.4 Addressing the Flaws of Fuzzy Logic using Neuro Fuzzy System

The above-mentioned shortcomings of fuzzy logic can be addressed by the use of NFM

after the introduction of learning abilities of NN for tuning of parameter and rules in Fuzzy

System. In order to reach an optimal set, parameters are constantly adjusted. By the

introduction of transparency in NN, these drawbacks can be lowered and Fuzzy System

develops into self-adapting one [70].

4.5 Application of NFM on Regression Test Optimization

There are two methods for performing software testing i.e. static and dynamic. The

dynamic approaches of testing include BBT and WBT [12]. It is possible to use NFM for

optimization of regression test suite for both types of method with various objectives. The

details of employing NFM for these two methods is provided below:

4.5.1 White Box Testing and Neuro Fuzzy System

Structural testing commonly called White Box Testing is used for testing of software code.

For getting effective results of WBT based optimization of regression test cases, few

objective or constraints are required to be achieved. These optimization objectives are

essential to be on capability of defect detection and its rate, time and cost. There are some

 26

other factors as well that have an impact on efficiency of regression testing i.e. test oracle

and design2. Several important factors have been introduced by researchers for regression

testing. These factors are listed below [71, 72, 73, 68, 74]:

▪ Increase in rate of defect detection

▪ Increased ability of defect detection

▪ Rate of fault detection

▪ Effectiveness of cost

▪ Coverage of code

▪ Coverage of functions

▪ Coverage of statements

▪ Time taken for execution

▪ Complexity of implementation

▪ Budget

▪ Modifications in class diagrams

▪ Decision trees

4.5.2 Black Box Testing and Neuro Fuzzy System

The functional testing of a system is commonly known as Black Box Testing. The output

of system is evaluated by taking the system as black box and testing of functions is done

by giving the input data. Following are the optimization objectives that have been

designed by researchers for performing black box testing of regression test cases [75, 76,

77, 71, 72, 78, 74, 79]:

▪ Change in requirements

▪ Behavior of test case in former release

▪ Change in architecture

▪ Rate of failure

▪ Time taken for execution of tests

▪ Complexity of implementation

▪ Rate of defect detection

▪ Change in files related to configuration

▪ Change in files related to databases

2 A database of test suite that includes the values of inputs, outputs and the history of execution

 27

▪ Sessions of user

▪ Budget

▪ Priority of customer

▪ Traceability of requirements

▪ Impact of faults on requirements

▪ Cost of data access

▪ Constraint of dependability

▪ Constraint of conjunction

▪ Constraint of exclusiveness

▪ Priority of requirements by customer

▪ Cost related to technical resources

▪ Cost of setup

▪ Cost of performing simulations

▪ Sensitivity of fault models

▪ Sensitivity of history of faults

4.6 Formulation of Problem

 RTO is an NP-Complete problem which means that different methods like selecting,

prioritizing and reducing can be used for solving it. Reduction of test suite has been used

in this research for saving the time related to regression testing. The testing method used

in our study is black box based and creation of test cases is done with the help of boundary

value method and equivalent class portioning. For BBT based RTO, we identified 27

objectives from literature. Selecting these objectives depends on scenarios and expert

opinion. We have selected four objectives and their values will be recorded during testing

phase. The recorded value is termed as test case history and it contains rate of fault

detection, time of execution, coverage of requirements and impact of requirement failure.

After a comprehensive literature view and discussion with testing experts, we selected

these four objective. The recorded history of test case will be utilized for optimizing test

suite in future. Following variables are defined for representing this problem as a

mathematical model:

 28

Table 4.1. Notations

Sr. No Explanation Representation

1. Test Case TC

2. Test Suite O

3. Modified Test Cases MT

4. Optimized Test Cases OT

5. Coverage of Requirements CR

6. Impact of Requirement Failure IRF

7. Rate of Detected Faults RDF

8. Time of Execution ET

9. Test Case Suitability P

10. Best Suitability SB

11. Medium Suitability SM

12. Normal Suitability SN

 Total count of test cases for regression testing that are present in a test suite are defined

by n and n test cases are collectively represented as test suite O.

O = ∑𝑘=0
𝑛 Okx

Three classes have been defined i.e. Normal, Medium and Best for classifying the fitness

of each test case that can be chosen in the list of optimized ones. At a time, test suite may

belong to a single class only.

P= SB SM SN

It is required to optimize test suite OT in such a way that:

OT O and Sizeof(OT) < O

For finding the test suite OT, we considered the reduction in execution time of test suite as

our objective function and it has multiple objective functions as given below:

Max RDF (O)

Max CR (O)

Max IRF (O)

Min ET (O)

The final objective function considered by us is the selection of OT which have maximum

rate of fault detection, minimum time of execution, covers the maximum requirements

and have minimum impact of requirement failure. This function can de depicted as:

 29

Fitness Function = nk=1 Max (RDFj)+ Max (CRj) + Max (IRFj) + Min (ETj)

4.7 Problem Transformation into ANFIS

There are number of ways to transform test suite optimization problem of regression

testing into ANFIS. ANFIS can be used for prioritizing, selecting and reducing the

regression test suite and we have considered reduction of regression test suite for our

research. By changing the parameters of input, our approach can be utilized for BBT as

well as WBT based RTO and. Currently, we have considered black box based regression

test cases by utilizing four optimization objectives.

4.7.1 Input Variables

The objectives selected for optimization in this research have been presented in the form

of variables. After a comprehensive literature view and discussion with testing experts,

we selected these four objective. Calculation has been done for the input variables and

they are given as input to the ANFIS. The description of all these variables is given below:

Fault Detection Rate defines that how many faults have been detected by each test case.

The formula given below is used for calculating it:

Rate of Detection of Faults = No. of faults that are detected / Sum of all Faults

Execution Time represents the time a test case takes for execution. The execution time of

different test cases has been measured with the help of timer function.

Requirement Coverage depicts a count of requirements that have been covered by a test

case. We used the formula given below for measuring it:

Coverage of Requirements = No. of Req. that are Covered / Sum of all Req.

Requirement Failure Impact (RFI) is a parameter of reliability and according to the

fault revealing ability it is assigned to each requirement. During the phase of requirement

gathering, it could be allocated to requirements that are critical as they are necessary to be

thoroughly checked in every test suite. The range of the value for Requirement Failure

Impact lies in 0-1.

4.7.2 Output Variable

There is only one output variable and it represents the fitness of each test case to be

included or discarded from the list of optimized ones.

 30

4.7.3 Fuzzy Sets

The Fuzzy sets have been given as input ANFIS and they include variables of semantic

type e.g. High, Medium and Low. Following are the fuzzy based sets that have been

chosen for optimization of test cases for regression testing:

IRF = {H, M, L}

ET = {H, M, L}

CR = {H, M, L}

Where High, Medium and Low are represented by H, M and L respectively.

IRF = {C, M, N}

Where Critical, Medium and Normal, are represented by C, M and N respectively.

OT = P = {B, M, N}

Where Best, Moderate and Normal are represented by B, M and N respectively.

4.7.4 Membership Function Graphs

As an evaluation extension, the degree of truth is represented by Membership functions

for modeling our input, bell membership functions are used by us as they show more

flexibility in comparison to other membership functions [80]. In figure 4.1, the initial

Membership Functions graphs generated by our ANFIS model for RTO are shown. These

membership functions include rate of fault detection, coverage of requirements, time taken

for execution and impact of requirement failure. Initial values have been assigned to their

parameters by the help of expert judgement. During the phase of ANFIS training, these

membership functions are computed with the help of hybrid approach i.e. combination of

least square and back propagation, on the basis of training data.

 31

Figure 4.1: Graphs

4.7.5 Fuzzy Rules

Our model contains the fuzzy rules in the form of IF-then. For our fuzzy dataset, 81 rules

have been formed. 3 linguistic labels are associated with each of the 4 inputs. Only one

membership function is formed as the output of each rule and it represents the suitability

of test case selection. In figure 4.2, rules editor for regression test suite optimization is

shown.

Figure 4.2: Rule viewer

4.7.6 Mathematical Calculations on ANFIS Layers

 A sample is given below according to which calculations are performed at each ANFIS

layer for RTO by the help of two optimization objectives i.e. time of execution and rate

of fault detection:

 32

Layer 1: This layer has adaptive nodes and premise parameters and it consists of

membership functions. It is also known as input layer. Node functions of this layer can be

determined by:

M1, k = Xk (RDF) for k=1,2

M1, k = Xk =2 (TE) for k=3,4

The input to node k is a and the variable for linguistic is Xk. The membership function of

X is Mk and it indicates the degree to which Xk is satisfied by a. If the membership function

is bell shaped, then following equation can be used for determining Mk:

μ𝑋(a) = 1
1

1 + |
RFD − 𝑠𝑖

𝑞𝑖 | 2𝑟𝑖

Where the set of parameter has been represented by qi, ri, si. Change in the value of these

parameters cause change in bell-shaped function.

Layer 2: This layer is associated with rules and it consists of circular nodes. The rule

firing strength is generated as the output of it. The strength of firing is generated through

multiplication of all signals coming to this layer. For the node function of this layer, the

operator of T-norm is used.

M2, k = f k = Xk (RFD) Xk (TE) for k=1,2

M = nj=1 (RFDj)

Layer 3: In this layer, nodes are denoted by N and are circular in shape. The summation

of firing strength of all rules in done in it, for calculating the ratio of firing strength

associated with kth rule. The output produced by it is known as normalized strength of

firing.

M3, k =fk̅ =
fk

f1+f2

Layer 4: It has square nodes which represent the input signal function. It is commonly

known as the consequent layer.

 33

M4, k = fk̅wk = fk̅ (pkRFD + qkET+ rk)

This layer has consequent parameters and their set consists of {pi, qi, ri} and its output is

denoted by fk.

Layer 5: It is the layer that deals with the output of ANFIS. It consists of one circular

node and ∑. All the incoming signals are summed up and the complete output of this

ANFIS is computed by ∑.

M5, k = Σkfk̅wk =
∑ fkwkk

Σkfk

4.7.7 Principles for Designing Network

In figure 4.3, the basic notations that are used for designing network of ANFIS are

presented. It has a fuzzy system of type Sugeno including four inputs and one output. For

fuzzification, Prod operator is employed and Wtaver method is used for defuzzifcation of

output.

Figure 4.3: Principles

4.7.8 Diagram of Model

In figure 4.4, the model based on Sugeno [81] for optimization of test cases for regression

testing is presented and we have also shown the corresponding ANFIS Model in Figure

 34

4.5. There are five layers in ANFIS and each of them has their own specified functionality

as discussed in Unit 2.

Figure 4.4: Sugeno model

Figure 4.5: Adaptive Neuro Fuzzy Inference System

4.8 System Diagram

In figure 4.6, system diagram of proposed software developed for optimizing the test cases

is shown. It has three basic modules i.e. module for test management, ANFIS module, and

module for optimization. A brief summary of each module has been given below:

4.8.1 Module for Management of Test

It is developed for managing test cases. Test cases created by Testers and test managers

have been placed in it and database has been used for saving them. This module is used

 35

for saving, modifying and deleting test cases and generating reports. It is also used for

recording the execution history of test cases.

4.8.2 Optimization Module

Execution history of test cases retrieved from database is read by this module and the

generation of data for training of ANFIS is based on this history. Implementation of

optimization algorithm and Sugeno model is also done in it and database is used for

storing the training data.

Figure 4.6: RTO System

4.8.3 ANFIS Module

The key module of our software is ANFIS module. It is used for reading the training data,

generating the ANFIS module, tuning of membership functions’ parameters on the basis

of trained data, generation of rules. Calculation of rules’ firing strength, training of

network and generation of optimized output. Division of this modules’ function is done

into two portions i.e. training and inference/ optimization. Model and parameters are

 36

adjusted using training portion in order to help the model in adapting to the trained data

and generating the optimized output.

4.9 RTO Algorithm

There are eight key steps in RTO algorithm which are listed below:

Step 1: Creation of test cases and saving them in database

Step 2: Reading and execution of test cases by Tester

Step 3: Recording of execution history of each test case into the database by Tester

Step 4: The module specifically developed for generation of population is used for reading

the test oracle and it helps in generation of primary population.

Step 5: After reading the initially generated population, ANFIS module performs network

training.

Step 6: ANFIS optimize the test cases after reading them

Step 7: Optimized Test Suite is saved by ANFIS

Step 8: Execution of test suite is done by tester

 37

CHAPTER 5: EXPERIMENTATION

5.1 Experimental Environment

For implementing our proposed approach and comparing it with selected CI bases method,

we have performed different experiments. Two case studies have been selected for

performing our experiments and the focus of all these experiments is on reduction of

regression test cases. Implementation of ANFIS using five different meta-heuristic

algorithms has been done on each case study. The discussion about experimentation and

their results has been done in this chapter. In figure 5.1, we have shown the basis flow of

experiments for both case studies.

Figure 5.1: Experimental flow

 38

5.2 Case Study 1: Previous Date Problem

For evaluating and performing comparison of our approach with other approaches that

have already been implemented, we have selected Previous Date Problem. as our first case

study. This specific problem has been selected because it is not difficult for readers to

understand the its results and for teaching testing of software it has been used widely [82].

The date needs to be entered and as an output pervious date is returned by the program. In

[82], a comprehensive explanation of program and its testing related information can be

found. C language has been used for implementation of Previous Date Problem and

creation of test cases has been done with the help of Boundary Value Analysis3 and

Equivalent Class Partitioning4. There are 33 test cases developed for this program. Faults

Seeding5 has been used for insertion of faults in original program. Interchanging of

increment / decrement and relational operators have been used for seeding faults and their

description is provided in table below:

Table 5.1. Seeded faults

Original LOC LOC After Seeding Faults Explanation

M 1==1 || M == 3 M 1==1 && M == 3 && operator is used instead of

|| operator

Validate=0 Validate=1 0 is used instead of 1

If((Y%100)==0 &&

((Y%400)!=0))

If((Y%100)==0||

((Y%400)!=0))

|| operator is used instead of

&& operator

Y--; Y++; ++ operator is used instead of

-- operator

If((M<=12&& M>=1) &&

((D<=30&&D>=1))

If((M<=12||M>=1) &&

((D<=30||D>=1))

|| operator is used instead of

&& operator

if(M == 2||| M == 4| M ==

6|| M == 9|| M == 11)

if(M == 2 && M == 4 && M

== 6&& M == 9&&M == 11)

|| operator is used instead of

&& operator

6 faults have been seeded in program. For checking the effectiveness of test suite and

collection of metrics, the developed test suite has been executed. The rate of fault

detection, time of execution, coverage of requirements and impact of requirement failure

has been recorded against each test case. There are manual as well as automated method

for recording these metrics. It is commonly believed that more reduction in test case can

be achieved if automated execution is done.

3 Input / Output value that is on the edge of equivalent classes.
4 Process of dividing input domain of program into equivalent classes.
5 Inserting faults in program to check efficiency of test cases.

 39

 Table 5.2. Rate of fault detection

Detection of Faults By Test Cases

Test Case

ID

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Rate of Faults

Detected

1. No Yes Yes No No Yes 0.5

2. Yes Yes Yes Yes Yes Yes 0

3. Yes Yes Yes Yes Yes Yes 0

4. Yes Yes Yes Yes Yes Yes 0

5. Yes Yes Yes Yes Yes Yes 0

6. Yes Yes Yes Yes Yes Yes 0

7. Yes Yes Yes Yes Yes Yes 0

8. Yes Yes Yes Yes Yes Yes 0

9. Yes Yes Yes Yes Yes Yes 0

10. Yes Yes Yes Yes Yes Yes 0

11. Yes Yes Yes Yes Yes Yes 0

12. Yes Yes Yes Yes Yes Yes 0

13. Yes Yes Yes Yes Yes Yes 0

14. Yes Yes Yes Yes Yes Yes 0

15. Yes Yes Yes Yes Yes Yes 0

16. Yes Yes Yes Yes Yes Yes 0

17. No Yes Yes No Yes Yes 0.33

18. No Yes Yes No Yes Yes 0.33

19. Yes Yes Yes Yes Yes Yes 0

20. No Yes Yes Yes Yes Yes 0.33

21. Yes Yes Yes Yes Yes Yes 0

22. Yes Yes Yes Yes Yes Yes 0

23. Yes Yes Yes Yes Yes Yes 0

24. Yes Yes Yes Yes Yes Yes 0

25. No Yes No Yes Yes Yes 0.33

26. Yes Yes Yes Yes Yes Yes 0

27. Yes Yes Yes Yes Yes Yes 0

28. Yes Yes Yes Yes Yes Yes 0

29. No Yes Yes No Yes Yes 0.33

30. No Yes Yes No Yes Yes 0.33

31. Yes Yes Yes Yes Yes Yes 0

32. Yes Yes Yes Yes Yes Yes 0

33. Yes Yes Yes Yes Yes Yes 0

Our approach is suitable for both type of test suite execution methods i.e. manual and

automated. In table 5.2, the rate of fault detection calculated against each test case is listed.

The formulas given is section 4.7.1 are used for calculation of these values and a database

is used for storing these values.

5.2.1 Experiment 1: Solution of RTO using Sugeno

In our first experimentation, fuzzy logic based approach has been used for optimizing test

suite for regression testing with the help of Matlab Tool Box for Fuzzy Logic. It has two

available options i.e. Sugeno [81] and Mamdani [83]. Sugeno model has been selected by

 40

us because it has some benefits over Mamdani model. Rate of fault detection, minimum

time of execution, coverage of requirements and impact of requirement failure are given

as input to the Sugeno model. On the basis of input, 81 rules are created and they help in

calculation of suitability of test cases. In figure 5.2, the architecture of model is shown.

Figure 5.2: Model architecture

In figure 5.3 we have shown the input membership functions of Sugeno Model that are

classified into High, Medium and low. The parameter selection for membership functions

is done with the help of data. The range of parameters is divided into two bounds of data

i.e. lower and higher. Each of the point on input MF shows the mapping of input to values

of memberships.

Figure 5.3: Membership functions

 41

We have shown the surface plot of different inputs and outputs in figure 5.4. For showing

the relationship of several inputs along with their effect on output, we have also used the

3D surface plots. Visualization of more than 3 dimensions is impossible at once, therefore

2 inputs and 1 output are depicted in surface plot. It is concluded from the figure that if

time of execution is low and rate of detection of faults is high, then the given test case has

high suitability. Similarly, rate of detection of faults is high and coverage of requirement

is high then the particular test case has high suitability and if rate of detection of faults is

high and impact of requirement failure is high then the given test case has also higher rate

of suitability.

Figure 5.4: Surface plots

 42

Our model contains the fuzzy rules in the form of IF-then. On the basis of inputs, these

rules calculate the output. The rules for Sugeno FIS have been shown in figure 5.5.

For generation of optimized test cases and performing comparison and validation of our

technique with state-of-the-art approaches, these results are used.

Table 5.3. Sugeno results

Test

Case ID

Rate of

Faults

Detected

Req.

Fault

Impact

Execution

Time

Req.

Coverage

Results of

Sugeno

1. 0.5 1 0.009 0.413 0.99

2. 0 1 0.007 0.33 0.98

3. 0 1 0.006 0.33 0.98

4. 0 1 0.004 0.083 0.97

5. 0 1 0.004 0.083 0.97

6. 0 1 0.004 0.083 0.97

7. 0 1 0.003 0.083 0.98

8. 0 1 0.004 0.083 0.97

9. 0 1 0.002 0.083 0.98

10. 0 1 0.002 0.083 0.98

11. 0 1 0.002 0.083 0.98

12. 0 1 0.004 0.083 0.97

13. 0 1 0.004 0.083 0.97

14. 0 1 0.006 0.083 0.97

15. 0 1 0.006 0.083 0.97

16. 0 0.6 0.004 0.167 0.44

17. 0.33 0.6 0.006 0.167 0.73

18. 0.33 0.6 0.004 0.167 0.76

19. 0 0.6 0.005 0.167 0.32

20. 0.33 0.6 0.007 0.167 0.62

21. 0 0.6 0.006 0.167 0.30

22. 0 0.2 0.005 0.33 0.27

23. 0 0.2 0.004 0.33 0.34

24. 0 0.2 0.005 0.33 0.27

25. 0.33 0.2 0.003 0.33 0.51

26. 0 0.2 0.005 0.33 0.27

27. 0 0.2 0.004 0.33 0.34

28. 0 0.7 0.004 0.33 0.70

29. 0.33 0.7 0.004 0.33 0.99

30. 0.33 0.7 0.004 0.33 0.99

31. 0 0.7 0.005 0.33 0.59

32. 0 0.7 0.006 0.33 0.58

33. 0 0.7 0.004 0.33 0.70

 43

Figure 5.5: Rule viewer

5.2.2 Experiment 2: Solution of RTO using ANFIS-GA

The proposed ANFIS model tuned with GA is used for optimization of ANFIS structure.

GA is an evolutionary approach is developed on the idea of population of chromosome

and their recombination [84]. GA is free of derivation and solves complex problems quite

easily. The value of target and system output, root-mean square error (RMSE) and standard

deviation calculated from training and testing data have been used for regression test suite

optimization. The difference between the target and output value is the error of system

and the square root of Mean Square Error (MSE) is known as RMSE. The variation from

the ideal value is commonly used for measuring the Standard Deviation (SD). In Table

5.4, the control parameters of GA have been shown, results of each iteration in Table 5.5-

5.9 and the calculated values of MSE, RMSE and SD for case study are provided in Table

5.10.

Table 5.4. Control parameters of GA for PDP

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Size of population 25

3. Gamma 00.7

4. Rate of mutation 00.15

5. Percentage of crossover 00.4

6. Percentage of Mutation 00.7

7. Beta 8

 44

Table 5.5. Results of Iteration 1: ANFIS-GA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-GA

1. 0 0.005 0.33 0.2 0.28708114

2. 0.5 0.009 0.413 1 1.05064336

3. 0 0.005 0.33 0.2 0.28708114

4. 0 0.004 0.083 1 0.94494569

5. 0.3333 0.004 0.33 0.7 0.8966217

6. 0 0.002 0.083 1 1.02513222

7. 0 0.002 0.083 1 1.02513222

8. 0 0.004 0.33 0.7 0.70645273

9. 0 0.004 0.083 1 0.94494569

10. 0 0.005 0.33 0.2 0.28708114

11. 0 0.004 0.33 0.2 0.32498448

12. 0 0.002 0.083 1 1.02513222

13. 0 0.004 0.083 1 0.94494569

14. 0 0.003 0.083 1 0.98505767

15. 0.3333 0.004 0.167 0.6 0.79585779

16. 0 0.004 0.167 0.6 0.44056631

17. 0 0.004 0.083 1 0.94494569

18. 0 0.005 0.33 0.7 0.58870901

19. 0 0.006 0.083 1 0.97137254

20. 0 0.006 0.167 0.6 0.33245809

21. 0.3333 0.006 0.167 0.6 0.73004853

22. 0 0.006 0.083 1 0.97137254

23. 0 0.004 0.33 0.2 0.32498448

24. 0 0.004 0.083 1 0.94494569

25. 0 0.007 0.33 1 0.88862304

26. 0.3333 0.004 0.33 0.7 0.8966217

27. 0 0.005 0.167 0.6 0.3750925

28. 0 0.006 0.33 0.7 0.51914442

29. 0 0.004 0.083 1 0.94494569

30. 0.3333 0.007 0.167 0.6 0.67530658

31. 0 0.006 0.33 1 1.35262839

32. 0 0.004 0.33 0.7 0.70645273

33. 0.3333 0.003 0.33 0.2 0.51324887

 45

Table 5.6. Results of Iteration 2: ANFIS-GA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-GA

1. 0 0.004 0.33 0.2 0.321203

2. 0 0.003 0.083 1 1.00685

3. 0 0.004 0.083 1 0.98102

4. 0 0.005 0.167 0.6 0.292952

5. 0 0.006 0.33 0.7 0.623131

6. 0.3333 0.004 0.167 0.6 0.778544

7. 0 0.004 0.083 1 0.98102

8. 0 0.004 0.33 0.2 0.321203

9. 0 0.004 0.083 1 0.98102

10. 0 0.004 0.083 1 0.98102

11. 0.3333 0.007 0.167 0.6 0.60363

12. 0.5 0.009 0.413 1 1.024552

13. 0 0.002 0.083 1 0.993028

14. 0 0.005 0.33 0.2 0.275966

15. 0.3333 0.003 0.33 0.2 0.518989

16. 0.3333 0.004 0.33 0.7 0.945645

17. 0 0.005 0.33 0.2 0.275966

18. 0 0.006 0.167 0.6 0.354751

19. 0 0.004 0.33 0.7 0.658161

20. 0 0.007 0.33 1 0.980217

21. 0 0.004 0.083 1 0.98102

22. 0.3333 0.006 0.167 0.6 0.661992

23. 0 0.006 0.083 1 0.952163

24. 0 0.002 0.083 1 0.993028

25. 0 0.004 0.33 0.7 0.658161

26. 0 0.005 0.33 0.7 0.657398

27. 0 0.004 0.083 1 0.98102

28. 0 0.006 0.083 1 0.952163

29. 0.3333 0.004 0.33 0.7 0.945645

30. 0 0.002 0.083 1 0.993028

31. 0 0.005 0.33 0.2 0.275966

32. 0 0.006 0.33 1 0.985025

33. 0 0.004 0.167 0.6 0.100598

 46

Table 5.7. Results of Iteration 3: ANFIS-GA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-GA

1. 0 0.004 0.33 0.7 0.711745

2. 0 0.005 0.33 0.2 0.245821

3. 0.3333 0.004 0.33 0.7 0.987646

4. 0 0.004 0.083 1 0.939671

5. 0.3333 0.007 0.167 0.6 0.641878

6. 0 0.005 0.33 0.2 0.245821

7. 0.3333 0.006 0.167 0.6 0.713014

8. 0.3333 0.003 0.33 0.2 0.591195

9. 0.3333 0.004 0.167 0.6 0.762265

10. 0.5 0.009 0.413 1 0.999119

11. 0 0.006 0.33 1 0.991076

12. 0 0.005 0.167 0.6 0.355598

13. 0 0.005 0.33 0.2 0.245821

14. 0 0.004 0.083 1 0.939671

15. 0 0.006 0.167 0.6 0.277174

16. 0 0.004 0.33 0.2 0.317138

17. 0 0.003 0.083 1 1.010941

18. 0 0.004 0.083 1 0.939671

19. 0 0.002 0.083 1 1.082212

20. 0 0.004 0.33 0.2 0.317138

21. 0.3333 0.004 0.33 0.7 0.987646

22. 0 0.006 0.33 0.7 0.574794

23. 0 0.004 0.083 1 0.939671

24. 0 0.002 0.083 1 1.082212

25. 0 0.006 0.083 1 0.79713

26. 0 0.004 0.083 1 0.939671

27. 0 0.005 0.33 0.7 0.643447

28. 0 0.004 0.33 0.7 0.711745

29. 0 0.007 0.33 1 0.919898

30. 0 0.004 0.083 1 0.939671

31. 0 0.002 0.083 1 1.082212

32. 0 0.006 0.083 1 0.79713

33. 0 0.004 0.167 0.6 0.434023

 47

Table 5.8. Results of Iteration 4: ANFIS-GA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-GA

1. 0 0.004 0.083 1 0.972678

2. 0 0.006 0.083 1 0.972039

3. 0 0.002 0.083 1 0.981131

4. 0.3333 0.007 0.167 0.6 0.653343

5. 0 0.005 0.33 0.2 0.292132

6. 0 0.005 0.33 0.2 0.292132

7. 0.3333 0.004 0.33 0.7 0.96667

8. 0 0.006 0.167 0.6 0.30238

9. 0 0.005 0.167 0.6 0.359194

10. 0.3333 0.004 0.167 0.6 0.765154

11. 0 0.004 0.33 0.2 0.324078

12. 0.3333 0.004 0.33 0.7 0.96667

13. 0 0.004 0.083 1 0.972678

14. 0.3333 0.003 0.33 0.2 0.53054

15. 0 0.004 0.167 0.6 0.416879

16. 0 0.002 0.083 1 0.981131

17. 0 0.004 0.33 0.7 0.782187

18. 0 0.004 0.083 1 0.972678

19. 0 0.007 0.33 1 0.977989

20. 0 0.004 0.083 1 0.972678

21. 0 0.002 0.083 1 0.981131

22. 0.3333 0.006 0.167 0.6 0.690802

23. 0 0.004 0.33 0.2 0.324078

24. 0 0.005 0.33 0.2 0.292132

25. 0.5 0.009 0.413 1 1.231737

26. 0 0.004 0.083 1 0.972678

27. 0 0.004 0.083 1 0.972678

28. 0 0.006 0.083 1 0.972039

29. 0 0.006 0.33 1 1.029046

30. 0 0.005 0.33 0.7 0.739871

31. 0 0.004 0.33 0.7 0.782187

32. 0 0.003 0.083 1 0.944595

33. 0 0.006 0.33 0.7 0.697562

 48

Table 5.9. Results of Iteration 5: ANFIS-GA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-GA

1. 0 0.005 0.33 0.2 0.275937

2. 0 0.006 0.083 1 0.971686

3. 0 0.002 0.083 1 1.015584

4. 0 0.004 0.083 1 0.975401

5. 0 0.007 0.33 1 0.977561

6. 0.3333 0.004 0.33 0.7 0.990077

7. 0 0.004 0.083 1 0.975401

8. 0.3333 0.003 0.33 0.2 0.521556

9. 0 0.004 0.083 1 0.975401

10. 0 0.005 0.33 0.2 0.275937

11. 0 0.006 0.33 0.7 0.570491

12. 0 0.004 0.083 1 0.975401

13. 0 0.005 0.33 0.7 0.600744

14. 0.5 0.009 0.413 1 0.986673

15. 0.3333 0.004 0.33 0.7 0.990077

16. 0 0.004 0.083 1 0.975401

17. 0 0.004 0.33 0.2 0.324637

18. 0 0.006 0.33 1 0.996776

19. 0 0.004 0.083 1 0.975401

20. 0 0.002 0.083 1 1.015584

21. 0.3333 0.004 0.167 0.6 0.815235

22. 0 0.005 0.33 0.2 0.275937

23. 0 0.006 0.083 1 0.971686

24. 0 0.004 0.33 0.7 0.637101

25. 0 0.004 0.167 0.6 0.630434

26. 0.3333 0.007 0.167 0.6 0.78356

27. 0 0.002 0.083 1 1.015584

28. 0 0.005 0.167 0.6 0.597517

29. 0.3333 0.006 0.167 0.6 0.755282

30. 0 0.003 0.083 1 0.999329

31. 0 0.004 0.33 0.7 0.637101

32. 0 0.004 0.33 0.2 0.324637

33. 0 0.006 0.167 0.6 0.564596

 49

Table 5.10. ANFIS-GA prediction error results for PDP

CS1: Previous Date Problem

Error GA-ANFIS

 Training Testing

Mean Square error 0.0006 0.011

Root Mean Square Error 0.02 0.108

Standard Deviation 0.02 0.104

5.2.3 Experiment 3: Solution of RTO using ANFIS-PSO

The proposed ANFIS model tuned with PSO is used for optimization of ANFIS structure.

PSO is an evolutionary algorithm that is based on the social behavior. It repeatedly

attempts for improving the candidate solution in correspondence to a specific measure of

quality. Random velocity is assigned to each particle and every particle is drawn to the

fitness value that is attained by that particular candidate particle. For optimizing the

performance and finding the best solution, tuning of parameters has been used [85]. But,

there are some deficiencies in PSO as well, for example, for solving the scattered problems

in which search space is refined, PSO is not a good choice [86].

In Table 5.11, the control parameters of PSO are shown, the results of each iteration are

given in Table 5.12-5.16 and the calculated values of MSE, RMSE and SD for case study

are provided in Table 5.17.

Table 5.11. Control parameters of PSO for PDP

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Size of population 25

3. Weight of inertia 1

4. Damping ratio of inertia weight 0.99

5. Co-efficient of personal learning 1

6. Co-efficient of global learning 2

7. VelocityMax (VarMax – VarMin) * 0.1

8. VelocityMin VelMin - VelMax

 50

Table 5.12. Results of Iteration 1: ANFIS-PSO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-PSO

1. 0 0.004 0.083 1 0.976114

2. 0 0.002 0.083 1 0.984724

3. 0.3333 0.004 0.167 0.6 0.764489

4. 0 0.005 0.33 0.2 0.276116

5. 0 0.007 0.33 1 0.985798

6. 0 0.004 0.083 1 0.976114

7. 0 0.004 0.33 0.7 0.705593

8. 0 0.006 0.083 1 0.967504

9. 0 0.004 0.33 0.2 0.344406

10. 0 0.004 0.33 0.7 0.705593

11. 0.3333 0.006 0.167 0.6 0.730341

12. 0 0.002 0.083 1 0.984724

13. 0 0.004 0.167 0.6 0.444775

14. 0 0.004 0.083 1 0.976114

15. 0 0.005 0.33 0.2 0.276116

16. 0 0.004 0.33 0.2 0.344406

17. 0 0.005 0.167 0.6 0.320811

18. 0 0.006 0.33 0.7 0.580385

19. 0 0.004 0.083 1 0.976114

20. 0.3333 0.004 0.33 0.7 0.989803

21. 0 0.003 0.083 1 0.980419

22. 0.5 0.009 0.413 1 0.999095

23. 0 0.006 0.33 1 0.990103

24. 0 0.006 0.083 1 0.967504

25. 0.3333 0.007 0.167 0.6 0.713266

26. 0 0.002 0.083 1 0.984724

27. 0 0.004 0.083 1 0.976114

28. 0.3333 0.004 0.33 0.7 0.989803

29. 0.3333 0.003 0.33 0.2 0.436839

30. 0 0.006 0.167 0.6 0.196848

31. 0 0.005 0.33 0.2 0.276116

32. 0 0.005 0.33 0.7 0.621236

33. 0 0.004 0.083 1 0.976114

 51

Table 5.13. Results of Iteration 2: ANFIS-PSO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-PSO

1. 0 0.006 0.083 1 0.96993718

2. 0 0.002 0.083 1 0.98333458

3. 0 0.006 0.33 0.7 0.58038477

4. 0.5 0.009 0.413 1 0.99910633

5. 0 0.007 0.33 1 0.98723665

6. 0 0.004 0.083 1 0.97663588

7. 0 0.004 0.083 1 0.97663588

8. 0 0.004 0.33 0.2 0.34440645

9. 0.3333 0.004 0.33 0.7 0.99003909

10. 0 0.005 0.33 0.2 0.27611646

11. 0 0.004 0.083 1 0.97663588

12. 0 0.002 0.083 1 0.98333458

13. 0 0.006 0.083 1 0.96993718

14. 0.3333 0.006 0.167 0.6 0.73063266

15. 0 0.005 0.33 0.7 0.59062269

16. 0 0.004 0.33 0.7 0.7055928

17. 0 0.004 0.33 0.7 0.7055928

18. 0.3333 0.003 0.33 0.2 0.51778951

19. 0 0.002 0.083 1 0.98333458

20. 0 0.004 0.083 1 0.97663588

21. 0 0.004 0.33 0.2 0.34440645

22. 0.3333 0.004 0.167 0.6 0.76460301

23. 0 0.004 0.083 1 0.97663588

24. 0 0.005 0.33 0.2 0.27611646

25. 0 0.004 0.083 1 0.97663588

26. 0.3333 0.004 0.33 0.7 0.99003909

27. 0 0.006 0.167 0.6 0.51867875

28. 0 0.006 0.33 1 0.99953078

29. 0.3333 0.007 0.167 0.6 0.71359665

30. 0 0.003 0.083 1 0.97998523

31. 0 0.005 0.33 0.2 0.27611646

32. 0 0.005 0.167 0.6 0.54126153

33. 0 0.004 0.167 0.6 0.56387399

 52

Table 5.14. Results of Iteration 3: ANFIS-PSO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-PSO

1. 0 0.002 0.083 1 0.983836

2. 0 0.002 0.083 1 0.983836

3. 0.3333 0.004 0.33 0.7 0.991783

4. 0 0.007 0.33 1 0.989636

5. 0 0.006 0.083 1 0.969881

6. 0 0.005 0.167 0.6 0.337015

7. 0 0.005 0.33 0.7 0.60772

8. 0 0.004 0.083 1 0.976858

9. 0 0.004 0.33 0.7 0.698428

10. 0.3333 0.004 0.33 0.7 0.991783

11. 0 0.005 0.33 0.2 0.275848

12. 0 0.004 0.33 0.2 0.344775

13. 0 0.004 0.083 1 0.976858

14. 0 0.006 0.083 1 0.969881

15. 0 0.004 0.083 1 0.976858

16. 0 0.006 0.33 1 0.982511

17. 0.3333 0.006 0.167 0.6 0.721439

18. 0 0.006 0.167 0.6 0.292947

19. 0 0.006 0.33 0.7 0.574247

20. 0.3333 0.003 0.33 0.2 0.518853

21. 0 0.004 0.33 0.2 0.344775

22. 0.3333 0.007 0.167 0.6 0.625079

23. 0 0.004 0.167 0.6 0.444592

24. 0 0.003 0.083 1 0.980347

25. 0 0.004 0.083 1 0.976858

26. 0 0.004 0.083 1 0.976858

27. 0 0.004 0.083 1 0.976858

28. 0 0.002 0.083 1 0.983836

29. 0.3333 0.004 0.167 0.6 0.83159

30. 0.5 0.009 0.413 1 1.765956

31. 0 0.005 0.33 0.2 0.275848

32. 0 0.004 0.33 0.7 0.698428

33. 0 0.005 0.33 0.2 0.275848

 53

Table 5.15. Results of Iteration 4: ANFIS-PSO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-PSO

1. 0 0.004 0.083 1 0.977031

2. 0 0.007 0.33 1 0.986966

3. 0 0.004 0.083 1 0.977031

4. 0 0.002 0.083 1 0.988708

5. 0 0.004 0.33 0.7 0.704618

6. 0 0.004 0.33 0.2 0.34322

7. 0 0.005 0.167 0.6 0.338242

8. 0 0.005 0.33 0.2 0.278012

9. 0 0.006 0.33 1 0.985846

10. 0.3333 0.003 0.33 0.2 0.517789

11. 0 0.004 0.083 1 0.977031

12. 0.3333 0.004 0.33 0.7 0.990048

13. 0.3333 0.006 0.167 0.6 0.693034

14. 0 0.006 0.083 1 0.965354

15. 0 0.004 0.083 1 0.977031

16. 0 0.006 0.167 0.6 0.291972

17. 0.3333 0.004 0.167 0.6 0.776397

18. 0 0.002 0.083 1 0.988708

19. 0.3333 0.007 0.167 0.6 0.651353

20. 0 0.004 0.33 0.2 0.34322

21. 0 0.006 0.083 1 0.965354

22. 0 0.004 0.167 0.6 0.444588

23. 0 0.006 0.33 0.7 0.580601

24. 0 0.004 0.083 1 0.977031

25. 0.5 0.009 0.413 1 1.306387

26. 0 0.005 0.33 0.2 0.278012

27. 0 0.005 0.33 0.7 0.620126

28. 0 0.002 0.083 1 0.988708

29. 0.3333 0.004 0.33 0.7 0.990048

30. 0 0.005 0.33 0.2 0.278012

31. 0 0.004 0.33 0.7 0.704618

32. 0 0.004 0.083 1 0.977031

33. 0 0.003 0.083 1 0.982869

 54

Table 5.16. Results of Iteration 5: ANFIS-PSO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-PSO

1. 0 0.004 0.083 1 0.977952

2. 0.3333 0.004 0.33 0.7 0.970939

3. 0 0.005 0.33 0.2 0.268115

4. 0.3333 0.004 0.33 0.7 0.970939

5. 0 0.004 0.083 1 0.977952

6. 0 0.005 0.33 0.2 0.268115

7. 0 0.006 0.083 1 0.96934

8. 0 0.004 0.33 0.7 0.695181

9. 0 0.005 0.33 0.2 0.268115

10. 0 0.004 0.083 1 0.977952

11. 0 0.006 0.33 1 0.939161

12. 0.3333 0.003 0.33 0.2 0.553303

13. 0 0.006 0.083 1 0.96934

14. 0 0.002 0.083 1 0.98327

15. 0 0.004 0.33 0.2 0.27283

16. 0 0.002 0.083 1 0.98327

17. 0 0.006 0.33 0.7 0.685751

18. 0 0.005 0.33 0.7 0.690466

19. 0 0.006 0.167 0.6 0.290431

20. 0 0.005 0.167 0.6 0.358349

21. 0 0.007 0.33 1 0.934446

22. 0 0.004 0.167 0.6 0.426267

23. 0.3333 0.004 0.167 0.6 0.767289

24. 0 0.004 0.33 0.2 0.27283

25. 0.3333 0.006 0.167 0.6 0.757858

26. 0.3333 0.007 0.167 0.6 0.753143

27. 0 0.003 0.083 1 0.96196

28. 0 0.004 0.33 0.7 0.695181

29. 0.5 0.009 0.413 1 1.39934

30. 0 0.004 0.083 1 0.977952

31. 0 0.002 0.083 1 0.98327

32. 0 0.004 0.083 1 0.977952

33. 0 0.004 0.083 1 0.977952

 55

Table 5.17. ANFIS-PSO prediction error results for PDP

CS1: Previous Date Problem

Error PSO-ANFIS

 Training Testing

Mean Square error 0.03 0.008

Root Mean Square Error 0.01 0.10

Standard Deviation 0.008 0.09

5.2.4 Experiment 4: Solution of RTO using ANFIS-TLBO

The proposed ANFIS model tuned with TLBO is used for optimization of ANFIS

structure. A recently introduced population-based optimization algorithm that is inspired

by teaching and learning philosophy, is Teaching-Learning-Based Optimization (TLBO)

[87] [88]. At first, a population is randomly generated that represents a combination of

candidate solutions. For achieving optimal solution, classic school learning process is

simulated for modifying the feasible solution. There are two phases in it; teaching and

student phase. The simulation of student learning from teacher is done by teaching phase.

The best solution is assigned the responsibility of teacher in this phase. By considering

the present mean value of the possible solutions, the positions of other candidates’

solutions are modified towards the teachers’ position. In student phase, simulation of

students learning is done by their mutual interaction. A random selection of two solutions

is done during this phase. If the first randomly selected solution is better than second one,

then the first one moves in the direction of second one. Otherwise, it moves away from

the second one. The key advantage of TLBO over other optimization algorithms is that it

does not require algorithm-specific parameters rather it only needs common controlling

parameters [89].

In Table 5.18, the basic parameters of TLBO are shown, the results of each iteration are

given in Table 5.19-5.23 and the calculated values of MSE, RMSE and SD for case study

are provided in Table 5.24.

Table 5.18. TLBO parameters for PDP

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Size of population 50

 56

Table 5.19. Results of Iteration 1: ANFIS-TLBO

Test

Case

ID

Rate of Faults

Detected

Execution

Time

Req. Coverage Req. Fault

Impact

Results of

ANFIS-

TLBO

1. 0 0.004 0.083 1 0.952334

2. 0 0.006 0.083 1 0.876754

3. 0 0.004 0.083 1 0.952334

4. 0 0.006 0.33 1 0.985844

5. 0 0.006 0.167 0.6 0.336242

6. 0.3333 0.006 0.167 0.6 0.697417

7. 0.3333 0.004 0.33 0.7 0.955976

8. 0 0.006 0.083 1 0.876754

9. 0 0.005 0.33 0.7 0.671999

10. 0 0.004 0.33 0.2 0.384837

11. 0.3333 0.004 0.167 0.6 0.789439

12. 0.3333 0.004 0.33 0.7 0.955976

13. 0.5 0.009 0.413 1 1.595720

14. 0 0.004 0.083 1 0.952334

15. 0 0.005 0.33 0.2 0.302930

16. 0 0.005 0.167 0.6 0.316390

17. 0 0.007 0.33 1 0.941311

18. 0 0.002 0.083 1 1.642533

19. 0 0.004 0.33 0.2 0.384837

20. 0 0.004 0.33 0.7 0.698093

21. 0 0.004 0.33 0.7 0.698093

22. 0 0.002 0.083 1 1.642533

23. 0.3333 0.007 0.167 0.6 0.651406

24. 0 0.004 0.083 1 0.952334

25. 0 0.005 0.33 0.2 0.302933

26. 0 0.004 0.083 1 0.952334

27. 0.3333 0.003 0.33 0.2 0.485323

28. 0 0.004 0.083 1 0.952334

29. 0 0.004 0.167 0.6 0.277012

30. 0 0.006 0.33 0.7 0.641114

31. 0 0.002 0.083 1 1.642533

32. 0 0.003 0.083 1 0.98613

33. 0 0.005 0.33 0.2 0.30293

 57

Table 5.20. Results of Iteration 2: ANFIS-TLBO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-TLBO

1. 0 0.002 0.083 1 0.938927

2. 0 0.003 0.083 1 0.936809

3. 0 0.005 0.167 0.6 0.423839

4. 0 0.005 0.33 0.2 0.239657

5. 0 0.004 0.083 1 0.945372

6. 0 0.004 0.33 0.7 0.740468

7. 0 0.004 0.33 0.2 0.288315

8. 0 0.004 0.167 0.6 0.469575

9. 0 0.007 0.33 1 0.919688

10. 0.3333 0.007 0.167 0.6 0.588407

11. 0 0.004 0.083 1 0.945372

12. 0 0.002 0.083 1 0.938927

13. 0 0.004 0.083 1 0.945372

14. 0 0.002 0.083 1 0.938927

15. 0 0.006 0.33 1 0.95535

16. 0.3333 0.004 0.33 0.7 1.010537

17. 0 0.005 0.33 0.2 0.239657

18. 0 0.004 0.33 0.7 0.740468

19. 0 0.004 0.083 1 0.945372

20. 0 0.006 0.083 1 0.989917

21. 0 0.004 0.083 1 0.945372

22. 0 0.006 0.167 0.6 0.378436

23. 0 0.006 0.33 0.7 0.646941

24. 0 0.004 0.33 0.2 0.288315

25. 0 0.006 0.083 1 0.989917

26. 0.3333 0.004 0.33 0.7 1.010537

27. 0 0.005 0.33 0.7 0.693543

28. 0.3333 0.006 0.167 0.6 0.637237

29. 0.5 0.009 0.413 1 1.267334

30. 0.3333 0.004 0.167 0.6 0.734897

31. 0.3333 0.003 0.33 0.2 0.612432

32. 0 0.004 0.083 1 0.945372

33. 0 0.005 0.33 0.2 0.239657

 58

Table 5.21. Results of Iteration 3: ANFIS-TLBO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-TLBO

1. 0 0.004 0.083 1 0.941609

2. 0 0.002 0.083 1 1.017673

3. 0 0.004 0.083 1 0.941609

4. 0 0.004 0.33 0.2 0.253161

5. 0 0.002 0.083 1 1.017673

6. 0 0.003 0.083 1 0.973594

7. 0 0.006 0.33 0.7 0.564895

8. 0.3333 0.003 0.33 0.2 0.510589

9. 0 0.002 0.083 1 1.017673

10. 0 0.004 0.33 0.2 0.253161

11. 0 0.006 0.167 0.6 0.454698

12. 0 0.006 0.083 1 0.986891

13. 0.3333 0.004 0.167 0.6 0.772446

14. 0.3333 0.007 0.167 0.6 0.650678

15. 0 0.004 0.083 1 0.941609

16. 0 0.004 0.083 1 0.941609

17. 0.5 0.009 0.413 1 0.966457

18. 0 0.005 0.33 0.2 0.196996

19. 0 0.005 0.33 0.2 0.196996

20. 0 0.005 0.167 0.6 0.510059

21. 0 0.005 0.33 0.7 0.621059

22. 0 0.004 0.083 1 0.941609

23. 0.3333 0.006 0.167 0.6 0.678452

24. 0 0.004 0.167 0.6 0.565856

25. 0 0.006 0.083 1 0.986891

26. 0 0.007 0.33 1 0.763171

27. 0 0.004 0.33 0.7 0.677224

28. 0 0.004 0.083 1 0.941609

29. 0.3333 0.004 0.33 0.7 0.87849

30. 0 0.006 0.33 1 0.819334

31. 0.3333 0.004 0.33 0.7 0.87849

32. 0 0.004 0.33 0.7 0.677224

33. 0 0.005 0.33 0.2 0.196996

 59

Table 5.22. Results of Iteration 4: ANFIS-TLBO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-TLBO

1. 0 0.004 0.083 1 0.95669

2. 0.3333 0.006 0.167 0.6 0.682842

3. 0 0.005 0.167 0.6 0.358321

4. 0 0.002 0.083 1 1.059983

5. 0 0.004 0.083 1 0.95669

6. 0 0.004 0.167 0.6 0.429836

7. 0 0.004 0.33 0.7 0.76877

8. 0.3333 0.003 0.33 0.2 0.548506

9. 0.3333 0.004 0.167 0.6 0.792905

10. 0 0.006 0.167 0.6 0.291162

11. 0 0.005 0.33 0.2 0.290189

12. 0 0.007 0.33 1 0.907914

13. 0 0.004 0.33 0.2 0.364078

14. 0 0.004 0.33 0.2 0.364078

15. 0 0.004 0.083 1 0.95669

16. 0 0.004 0.083 1 0.95669

17. 0 0.006 0.33 0.7 0.656336

18. 0 0.005 0.33 0.2 0.290189

19. 0.3333 0.007 0.167 0.6 0.626967

20. 0 0.002 0.083 1 1.059983

21. 0 0.005 0.33 0.7 0.712545

22. 0 0.004 0.083 1 0.95669

23. 0 0.006 0.33 1 0.964088

24. 0.3333 0.004 0.33 0.7 1.004153

25. 0 0.004 0.083 1 0.95669

26. 0 0.005 0.33 0.2 0.290189

27. 0.5 0.009 0.413 1 1.204498

28. 0 0.006 0.083 1 0.831151

29. 0 0.006 0.083 1 0.831151

30. 0 0.003 0.083 1 1.013447

31. 0 0.002 0.083 1 1.059983

32. 0.3333 0.004 0.33 0.7 1.004153

33. 0 0.004 0.33 0.7 0.76877

 60

Table 5.23. Results of Iteration 5: ANFIS-TLBO

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-TLBO

1. 0 0.006 0.33 0.7 0.610527

2. 0 0.005 0.33 0.2 0.24855

3. 0 0.004 0.083 1 0.968208

4. 0 0.006 0.33 1 0.907147

5. 0 0.004 0.167 0.6 0.394267

6. 0 0.002 0.083 1 1.064502

7. 0.3333 0.004 0.33 0.7 0.977462

8. 0 0.004 0.33 0.7 0.682214

9. 0 0.003 0.083 1 1.016352

10. 0 0.004 0.33 0.7 0.682214

11. 0.3333 0.006 0.167 0.6 0.76955

12. 0 0.006 0.083 1 0.871918

13. 0 0.004 0.083 1 0.968208

14. 0 0.004 0.083 1 0.968208

15. 0.3333 0.004 0.33 0.7 0.977462

16. 0 0.006 0.167 0.6 0.398835

17. 0.3333 0.003 0.33 0.2 0.583945

18. 0 0.005 0.33 0.7 0.646762

19. 0 0.004 0.33 0.2 0.296713

20. 0 0.005 0.33 0.2 0.24855

21. 0 0.005 0.167 0.6 0.39791

22. 0 0.006 0.083 1 0.871918

23. 0.5 0.009 0.413 1 1.128983

24. 0 0.004 0.33 0.2 0.296713

25. 0 0.007 0.33 1 0.858971

26. 0 0.004 0.083 1 0.968208

27. 0.3333 0.004 0.167 0.6 0.865918

28. 0 0.005 0.33 0.2 0.24855

29. 0 0.004 0.083 1 0.968208

30. 0 0.002 0.083 1 1.064502

31. 0.3333 0.007 0.167 0.6 0.721366

32. 0 0.002 0.083 1 1.064502

33. 0 0.004 0.083 1 0.968208

 61

Table 5.24. ANFIS-TLBO prediction error results for PDP

CS1: Previous Date Problem

Error TLBO-ANFIS

 Training Testing

Mean Square error 0.002 0.005

Root Mean Square Error 0.05 0.08

Standard Deviation 0.05 0.08

5.2.5 Experiment 5: Solution of RTO using ANFIS-HS

The proposed ANFIS model tuned with HS is used for optimization of ANFIS structure.

Harmony Search (HS) is a newly introduced evolutionary algorithm that is inspired by the

music composition process of a musician. There are several possible combinations of

music pitches that together makes a harmony and are kept in memory. On the basis of

memory regarding rate and adjustment pitch rate, randomly generated solutions are placed

directly in memory of harmony. Consequently, the calculation of pitch adjustment

distance among several randomly selected solution is done. Worst solution is then

discarded and the best one is stored in harmony memory [90].

In Table 5.25, the control parameters of HS are presented, results of each iteration are

provided in Table 5.26-5.30 and the calculated values of MSE, RMSE and SD for case

study are provided in Table 5.31.

Table 5.25. Control parameters of HS for PDP

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Harmony Memory Size 25

3. Number of New Harmonies 20

4. Harmony Memory Consideration Rate 0.9

5. Pitch Adjustment Rate 0.1

6. Fret Width (Bandwidth) 0.02*(VarMax-VarMin)

7. Fret Width Damp Ratio 0.995

 62

Table 5.26. Results of Iteration 1: ANFIS-HS

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-HS

1. 0 0.006 0.33 1 1.023232114

2. 0 0.004 0.33 0.7 0.655083374

3. 0 0.004 0.083 1 0.978793208

4. 0.3333 0.007 0.167 0.6 0.641857133

5. 0 0.005 0.33 0.2 0.258671024

6. 0.3333 0.004 0.167 0.6 0.795448453

7. 0 0.005 0.33 0.7 0.625243969

8. 0 0.004 0.083 1 0.978793208

9. 0 0.006 0.083 1 0.959522082

10. 0 0.004 0.083 1 0.978793208

11. 0 0.002 0.083 1 1.04066478

12. 0 0.002 0.083 1 1.04066478

13. 0 0.005 0.33 0.2 0.258671024

14. 0 0.005 0.33 0.2 0.258671024

15. 0 0.004 0.33 0.2 0.335588171

16. 0 0.005 0.167 0.6 0.42915344

17. 0 0.004 0.083 1 0.978793208

18. 0 0.006 0.167 0.6 0.38516136

19. 0 0.007 0.33 1 0.99977579

20. 0.3333 0.004 0.33 0.7 1.037746985

21. 0 0.004 0.083 1 0.978793208

22. 0 0.004 0.167 0.6 0.474341911

23. 0 0.004 0.33 0.2 0.335588171

24. 0.3333 0.006 0.167 0.6 0.690841997

25. 0 0.002 0.083 1 1.04066478

26. 0 0.004 0.083 1 0.978793208

27. 0.3333 0.004 0.33 0.7 1.037746985

28. 0 0.006 0.083 1 0.959522082

29. 0 0.003 0.083 1 1.006323455

30. 0 0.004 0.33 0.7 0.655083374

31. 0.5 0.009 0.413 1 1.385600549

32. 0 0.006 0.33 0.7 0.590430216

33. 0.3333 0.003 0.33 0.2 5.469624741

 63

Table 5.27. Results of Iteration 2: ANFIS-HS

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-HS

1. 0.3333 0.006 0.167 0.6 0.696376222

2. 0 0.004 0.083 1 0.958261953

3. 0.3333 0.004 0.33 0.7 0.99852075

4. 0 0.004 0.33 0.7 0.680512725

5. 0 0.002 0.083 1 1.022858257

6. 0 0.004 0.083 1 0.958261953

7. 0 0.005 0.33 0.2 0.282156941

8. 0 0.004 0.083 1 0.958261953

9. 0 0.004 0.33 0.2 0.337953821

10. 0.3333 0.003 0.33 0.2 0.526223787

11. 0 0.004 0.33 0.2 0.337953821

12. 0 0.004 0.083 1 0.958261953

13. 0 0.006 0.33 1 1.040030967

14. 0 0.005 0.33 0.2 0.282156941

15. 0 0.006 0.083 1 0.883314871

16. 0 0.004 0.167 0.6 0.400650735

17. 0 0.005 0.33 0.2 0.282156941

18. 0 0.005 0.167 0.6 0.38568989

19. 0.3333 0.007 0.167 0.6 0.654337594

20. 0.3333 0.004 0.33 0.7 0.99852075

21. 0 0.003 0.083 1 0.99242439

22. 0 0.002 0.083 1 1.022858257

23. 0 0.004 0.083 1 0.958261953

24. 0 0.004 0.083 1 0.958261953

25. 0 0.006 0.083 1 0.883314871

26. 0.5 0.009 0.413 1 0.53133279

27. 0 0.006 0.167 0.6 0.359072834

28. 0 0.005 0.33 0.7 0.657891171

29. 0 0.002 0.083 1 1.022858257

30. 0 0.006 0.33 0.7 0.627052856

31. 0.3333 0.004 0.167 0.6 0.77591729

32. 0 0.004 0.33 0.7 0.680512725

33. 0 0.007 0.33 1 1.000377433

 64

Table 5.28. Results of Iteration 3: ANFIS-HS

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-HS

1. 0 0.006 0.33 1 1.033823265

2. 0 0.005 0.167 0.6 0.403935127

3. 0.3333 0.003 0.33 0.2 0.516499653

4. 0 0.004 0.083 1 0.930086678

5. 0 0.006 0.083 1 1.005341789

6. 0 0.004 0.33 0.2 0.322539341

7. 0 0.006 0.083 1 1.005341789

8. 0 0.005 0.33 0.7 0.677457288

9. 0 0.003 0.083 1 0.959093724

10. 0.3333 0.006 0.167 0.6 0.709799561

11. 0 0.004 0.33 0.7 0.720197239

12. 0 0.004 0.083 1 0.930086678

13. 0 0.004 0.083 1 0.930086678

14. 0 0.002 0.083 1 0.99760361

15. 0 0.004 0.33 0.2 0.322539341

16. 0 0.004 0.083 1 0.930086678

17. 0 0.004 0.167 0.6 0.446759932

18. 0 0.002 0.083 1 0.99760361

19. 0 0.007 0.33 1 0.997094716

20. 0 0.005 0.33 0.2 0.295242336

21. 0 0.006 0.33 0.7 0.634761812

22. 0 0.004 0.083 1 0.930086678

23. 0 0.004 0.33 0.7 0.720197239

24. 0 0.006 0.167 0.6 0.361286262

25. 0.5 0.009 0.413 1 2.458029462

26. 0 0.004 0.083 1 0.930086678

27. 0 0.005 0.33 0.2 0.295242336

28. 0 0.002 0.083 1 0.99760361

29. 0.3333 0.004 0.33 0.7 1.064253066

30. 0.3333 0.007 0.167 0.6 0.670638547

31. 0.3333 0.004 0.167 0.6 0.793753923

32. 0.3333 0.004 0.33 0.7 1.064253066

33. 0 0.005 0.33 0.2 0.295242336

 65

Table 5.29. Results of Iteration 4: ANFIS-HS

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-HS

1. 0 0.005 0.33 0.2 0.283582527

2. 0 0.004 0.083 1 0.922484608

3. 0.3333 0.004 0.167 0.6 0.799198093

4. 0 0.004 0.083 1 0.922484608

5. 0 0.004 0.083 1 0.922484608

6. 0 0.002 0.083 1 0.959789752

7. 0 0.006 0.33 0.7 0.675762774

8. 0 0.004 0.33 0.7 0.713169581

9. 0 0.005 0.33 0.2 0.283582527

10. 0 0.004 0.33 0.2 0.331967836

11. 0 0.004 0.167 0.6 0.567790988

12. 0 0.005 0.167 0.6 0.548991362

13. 0 0.004 0.083 1 0.922484608

14. 0 0.006 0.083 1 0.885177986

15. 0 0.004 0.33 0.2 0.331967836

16. 0 0.005 0.33 0.7 0.694458436

17. 0 0.003 0.083 1 0.941137832

18. 0.3333 0.003 0.33 0.2 0.520233409

19. 0 0.005 0.33 0.2 0.283582527

20. 0 0.002 0.083 1 0.959789752

21. 0.3333 0.004 0.33 0.7 0.944995652

22. 0 0.006 0.33 1 0.961689674

23. 0 0.007 0.33 1 0.943036319

24. 0 0.004 0.083 1 0.922484608

25. 0 0.004 0.33 0.7 0.713169581

26. 0.3333 0.006 0.167 0.6 0.761849198

27. 0 0.006 0.083 1 0.885177986

28. 0 0.006 0.167 0.6 0.530229685

29. 0 0.002 0.083 1 0.959789752

30. 0.3333 0.007 0.167 0.6 0.743183052

31. 0 0.004 0.083 1 0.922484608

32. 0.3333 0.004 0.33 0.7 0.944995652

33. 0.5 0.009 0.413 1 1.279664242

 66

Table 5.30. Results of Iteration 5: ANFIS-HS

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-HS

1. 0 0.004 0.33 0.7 0.689456041

2. 0 0.004 0.083 1 0.947755964

3. 0 0.005 0.167 0.6 0.428260415

4. 0 0.004 0.33 0.2 0.347435338

5. 0 0.004 0.33 0.7 0.689456041

6. 0 0.006 0.083 1 0.860860021

7. 0.5 0.009 0.413 1 1.13771049

8. 0 0.004 0.083 1 0.947755964

9. 0 0.006 0.33 0.7 0.620130033

10. 0 0.005 0.33 0.2 0.298832968

11. 0 0.004 0.33 0.2 0.347435338

12. 0 0.002 0.083 1 1.034234126

13. 0 0.006 0.33 1 0.946985794

14. 0 0.005 0.33 0.2 0.298832968

15. 0 0.006 0.167 0.6 0.403524324

16. 0.333 0.004 0.33 0.7 0.952135363

17. 0 0.004 0.083 1 0.947755964

18. 0.333 0.003 0.33 0.2 0.531008358

19. 0.333 0.006 0.167 0.6 0.714481837

20. 0 0.004 0.083 1 0.947755964

21. 0 0.002 0.083 1 1.034234126

22. 0 0.004 0.167 0.6 0.449058551

23. 0.333 0.004 0.33 0.7 0.952135363

24. 0.333 0.007 0.167 0.6 0.670603953

25. 0 0.007 0.33 1 0.903442191

26. 0 0.006 0.083 1 0.860860021

27. 0 0.004 0.083 1 0.947755964

28. 0 0.005 0.33 0.7 0.655671223

29. 0 0.002 0.083 1 1.034234126

30. 0 0.004 0.083 1 0.947755964

31. 0 0.003 0.083 1 0.991059426

32. 0 0.005 0.33 0.2 0.298832968

33. 0.333 0.004 0.167 0.6 0.802237604

 67

Table 5.31. ANFIS-HS prediction error results for PDP

CS1: Previous Date Problem

Error HS-ANFIS

 Training Testing

Mean Square error 0.002 0.007

Root Mean Square Error 0.05 0.09

Standard Deviation 0.05 0.09

5.2.6 Experiment 6: Solution of RTO using ANFIS-FA

The proposed ANFIS model tuned with FA is used for optimization of ANFIS structure.

Firefly is among the latest nature-inspired algorithms that is based on specific behavior of

fireflies. The fireflies’ population exhibit luminary flashing activities for performing

different functions like communication, warning of predator risk etc. This algorithm is

developed by getting inspiration for these activities and under the assumption that fireflies

are unisexual and their brightness level is proportional to attractiveness. Consequently,

the less bright fireflies move towards the brighter ones, except in the case that there is no

firefly that is brighter than other ones, at that moment it starts moving randomly [91].

In Table 5.32, the control parameters of FA are presented, results of each iteration are

provided in Table 5.33-5.37 and the calculated values of MSE, RMSE and SD for case

study are provided in Table 5.38.

Table 5.32. Control parameters of FA for PDP

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Swarm Size 25

3. Light Absorption Coefficient (Gamma) 1

4. Attraction Coefficient Base Value 2

5. Coefficient of Mutation 0.2

6. Damping Ratio of Mutation Coefficient 0.98

7. Uniform Mutation Range (VarMax-VarMin)* 0.05

 68

Table 5.33. Results of Iteration 1: ANFIS-FA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-FA

1. 0 0.004 0.083 1 0.976401

2. 0 0.005 0.33 0.2 0.257036

3. 0 0.004 0.083 1 0.976401

4. 0.3333 0.004 0.167 0.6 0.757036

5. 0.3333 0.004 0.33 0.7 0.940749

6. 0 0.004 0.167 0.6 0.44716

7. 0 0.006 0.083 1 0.968868

8. 0 0.002 0.083 1 0.993849

9. 0.3333 0.003 0.33 0.2 0.589369

10. 0 0.002 0.083 1 0.993849

11. 0 0.004 0.083 1 0.976401

12. 0 0.004 0.083 1 0.976401

13. 0 0.004 0.33 0.2 0.325531

14. 0 0.003 0.083 1 0.978747

15. 0.3333 0.007 0.167 0.6 0.632245

16. 0 0.006 0.083 1 0.968868

17. 0 0.006 0.33 0.7 0.547007

18. 0 0.004 0.33 0.7 0.720489

19. 0 0.005 0.167 0.6 0.319121

20. 0.3333 0.004 0.33 0.7 0.940749

21. 0.5 0.009 0.413 1 1.024536

22. 0 0.002 0.083 1 0.993849

23. 0 0.005 0.33 0.7 0.638992

24. 0 0.007 0.33 1 0.772412

25. 0 0.004 0.083 1 0.976401

26. 0 0.005 0.33 0.2 0.257036

27. 0 0.006 0.33 1 0.844953

28. 0 0.004 0.33 0.2 0.325531

29. 0 0.004 0.33 0.7 0.720489

30. 0 0.006 0.167 0.6 0.148011

31. 0 0.005 0.33 0.2 0.257036

32. 0.3333 0.006 0.167 0.6 0.673009

33. 0 0.004 0.083 1 0.976401

 69

Table 5.34. Results of Iteration 2: ANFIS-FA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-FA

1. 0 0.004 0.33 0.2 0.275867

2. 0 0.002 0.083 1 0.985665

3. 0 0.004 0.083 1 0.975872

4. 0 0.006 0.083 1 0.971314

5. 0 0.004 0.33 0.7 0.690443

6. 0 0.004 0.083 1 0.975872

7. 0 0.005 0.33 0.7 0.697653

8. 0 0.004 0.33 0.2 0.275867

9. 0 0.004 0.083 1 0.975872

10. 0.3333 0.003 0.33 0.2 0.601432

11. 0 0.005 0.33 0.2 0.283077

12. 0 0.006 0.33 1 0.953608

13. 0.3333 0.006 0.167 0.6 0.712291

14. 0 0.005 0.33 0.2 0.283077

15. 0 0.005 0.33 0.2 0.283077

16. 0 0.004 0.083 1 0.975872

17. 0 0.005 0.167 0.6 0.352811

18. 0 0.004 0.083 1 0.975872

19. 0 0.006 0.167 0.6 0.359517

20. 0 0.007 0.33 1 0.960818

21. 0 0.002 0.083 1 0.985665

22. 0.3333 0.004 0.167 0.6 0.699718

23. 0 0.004 0.083 1 0.975872

24. 0 0.002 0.083 1 0.985665

25. 0 0.004 0.33 0.7 0.690443

26. 0 0.006 0.33 0.7 0.704863

27. 0.5 0.009 0.413 1 1.613722

28. 0 0.004 0.167 0.6 0.34613

29. 0.3333 0.007 0.167 0.6 0.718688

30. 0.3333 0.004 0.33 0.7 1.023216

31. 0 0.006 0.083 1 0.971314

32. 0 0.003 0.083 1 0.980052

33. 0.3333 0.004 0.33 0.7 1.023216

 70

Table 5.35. Results of Iteration 3: ANFIS-FA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-FA

1. 0 0.004 0.33 0.2 0.358612

2. 0 0.006 0.083 1 0.957067

3. 0 0.002 0.083 1 0.988785

4. 0 0.004 0.083 1 0.976726

5. 0 0.004 0.33 0.7 0.658298

6. 0 0.005 0.167 0.6 0.386248

7. 0 0.005 0.33 0.2 0.266083

8. 0.3333 0.003 0.33 0.2 0.514291

9. 0.3333 0.004 0.33 0.7 1.002691

10. 0.5 0.009 0.413 1 1.000624

11. 0 0.007 0.33 1 0.985869

12. 0.3333 0.004 0.167 0.6 0.77297

13. 0 0.004 0.167 0.6 0.412238

14. 0 0.004 0.083 1 0.976726

15. 0 0.006 0.083 1 0.957067

16. 0 0.003 0.083 1 0.983603

17. 0.3333 0.006 0.167 0.6 0.694271

18. 0.3333 0.007 0.167 0.6 0.641233

19. 0 0.006 0.33 1 1.008371

20. 0 0.004 0.33 0.2 0.358612

21. 0 0.002 0.083 1 0.988785

22. 0 0.004 0.083 1 0.976726

23. 0 0.005 0.33 0.2 0.266083

24. 0 0.005 0.33 0.7 0.625459

25. 0 0.005 0.33 0.2 0.266083

26. 0 0.004 0.33 0.7 0.658298

27. 0 0.004 0.083 1 0.976726

28. 0 0.006 0.33 0.7 0.589259

29. 0 0.004 0.083 1 0.976726

30. 0 0.002 0.083 1 0.988785

31. 0.3333 0.004 0.33 0.7 1.002691

32. 0 0.004 0.083 1 0.976726

33. 0 0.006 0.167 0.6 0.356009

 71

Table 5.36. Results of Iteration 4: ANFIS-FA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-FA

1. 0.3333 0.007 0.167 0.6 0.628215

2. 0 0.003 0.083 1 0.990055

3. 0 0.006 0.167 0.6 0.321474

4. 0 0.005 0.33 0.2 0.276411

5. 0 0.002 0.083 1 1.031417

6. 0 0.005 0.167 0.6 0.362765

7. 0 0.002 0.083 1 1.031417

8. 0 0.004 0.33 0.7 0.656948

9. 0 0.005 0.33 0.7 0.617967

10. 0.3333 0.004 0.167 0.6 0.762566

11. 0.3333 0.004 0.33 0.7 0.994008

12. 0 0.004 0.083 1 0.948727

13. 0 0.004 0.083 1 0.948727

14. 0.5 0.009 0.413 1 0.998819

15. 0.3333 0.006 0.167 0.6 0.72387

16. 0 0.005 0.33 0.2 0.276411

17. 0 0.004 0.083 1 0.948727

18. 0.3333 0.003 0.33 0.2 0.517786

19. 0 0.004 0.083 1 0.948727

20. 0 0.006 0.33 1 1.032891

21. 0 0.004 0.33 0.7 0.656948

22. 0 0.004 0.083 1 0.948727

23. 0 0.007 0.33 1 0.989533

24. 0.3333 0.004 0.33 0.7 0.994008

25. 0 0.004 0.083 1 0.948727

26. 0 0.006 0.33 0.7 0.575361

27. 0 0.005 0.33 0.2 0.276411

28. 0 0.006 0.083 1 0.865984

29. 0 0.004 0.167 0.6 0.39835

30. 0 0.004 0.33 0.2 -0.11189

31. 0 0.004 0.33 0.2 -0.11189

32. 0 0.002 0.083 1 1.031417

33. 0 0.006 0.083 1 0.865984

 72

Table 5.37. Results of Iteration 5: ANFIS-FA

Test

Case

ID

Rate of

Faults

Detected

Execution

Time

Req.

Coverage

Req. Fault

Impact

Results of

ANFIS-FA

1. 0.3333 0.004 0.33 0.7 0.99018

2. 0 0.002 0.083 1 0.981326

3. 0.5 0.009 0.413 1 0.999146

4. 0 0.004 0.33 0.2 0.342318

5. 0 0.006 0.33 1 0.983635

6. 0.3333 0.004 0.167 0.6 0.76678

7. 0 0.004 0.33 0.2 0.342318

8. 0 0.007 0.33 1 0.981552

9. 0.3333 0.006 0.167 0.6 0.726641

10. 0 0.004 0.083 1 0.978217

11. 0 0.004 0.33 0.7 0.707564

12. 0 0.005 0.33 0.7 0.588845

13. 0 0.004 0.083 1 0.978217

14. 0 0.004 0.083 1 0.978217

15. 0 0.005 0.33 0.2 0.280767

16. 0 0.004 0.083 1 0.978217

17. 0.3333 0.003 0.33 0.2 0.518634

18. 0 0.003 0.083 1 0.979782

19. 0 0.004 0.083 1 0.978217

20. 0.3333 0.004 0.33 0.7 0.99018

21. 0 0.002 0.083 1 0.981326

22. 0.3333 0.007 0.167 0.6 0.626158

23. 0 0.005 0.33 0.2 0.280767

24. 0 0.006 0.083 1 0.975

25. 0 0.004 0.167 0.6 0.609919

26. 0 0.006 0.167 0.6 0.602945

27. 0 0.005 0.167 0.6 0.607753

28. 0 0.005 0.33 0.2 0.280767

29. 0 0.004 0.083 1 0.978217

30. 0 0.002 0.083 1 0.981326

31. 0 0.004 0.33 0.7 0.707564

32. 0 0.006 0.083 1 0.975

33. 0 0.006 0.33 0.7 -0.87385

 73

Table 5.38. ANFIS-FA prediction error results for PDP

CS1: Previous Date Problem

Error FA-ANFIS

 Training Testing

Mean Square error 0.0004 0.06

Root Mean Square Error 0.02 0.18

Standard Deviation 0.02 0.19

5.3 Case Study 2: Print Tokens

For performing controlled experimentation on software testing, a lexical analyzer namely

Siemens Print Tokens (SPT) is developed in C Language and this has been taken as our

Case Study 2. There are five hundred and thirty-nine LOC, eighteen functions and a sum

of seven seeded errors in SPT code. For testing the faulty versions of SPT, TSL Tool6 has

been used for creating 4130 test cases. The code, test cases and faulty versions of SPT can

be downloaded from SIR7 and their description can be found at [92]. The execution time

of all test cases has been measured with the help of timer function, universal test script

provided by SIR has been used for measuring the rate of fault detection, Siemens and SIR

have not provided the information regarding the requirements of SPT hence the exact

measure of Coverage of Requirement and Impact of Fault in Requirement have not been

measured. Therefore, requirement coverage of each test case has been measured by

considering each function of SPT as a requirement. Traversing of 4130 test cases along

the measurement of coverage is an impossible task for human, hence parser and macros

have been developed for automating it. Calculation of RFI is easier if requirement

coverage is available. If a requirement is implemented in more than one function and faults

are also associated with them, then the impact of fault is also higher.

5.3.1 Experiment 1: Solution of RTO using Sugeno

Rate of detection of faults, minimum time of executing test suite, coverage of requirements

and impact of requirement failure are given as input to the Sugeno model. On the basis of

input, 81 rules are created and they help in calculation of suitability of test cases. The

architecture of model has been shown previously i.e. in figure 1.1.

6 A complier in which we input specifications and functional characteristics of software with runtime testing

environment and it generates executable test scripts.
7 Software-artifact Infrastructure Library (http://sir.unl.edu/portal/index.php)

 74

In figure 5.6, we have shown the input membership functions of Sugeno Model that are

classified into High, Medium and low. Our model contains the fuzzy rules in the form of

IF-then. On the basis of inputs, these rules calculate the output. The rules for Sugeno FIS

are shown in figure 5.7.

 Figure 5.6: MFs

Figure 5.7: Rules viewer

We have shown the surface plot of different inputs and outputs in figure 5.8. For showing

the association among several inputs along with their consequence on the output value,

we have also plotted the 3D surface. Visualization of more than 3 dimensions is impossible

at once, therefore 3D plots of different combination of input/output values are depicted

below:

 75

Figure 5.8: Surface plots

5.3.2 Experiment 2: Solution of RTO using ANFIS-GA

In Table 5.39, the control parameters of GA are shown and the calculated values of

MSE, RMSE and SD for case study 2 are provided in Table 5.40.

Table 5.39. Control parameters of GA for SPT

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Size of population 25

3. Gamma 00.7

4. Rate of mutation 00.15

5. Percentage of crossover 00.4

6. Percentage of Mutation 00.7

7. Beta 8

 76

Table 5.40. ANFIS-GA prediction error results for SPT

CS2: Siemens Print Token

Error GA-ANFIS

 Training Testing

Mean Square error 0.0009 0.004

Root Mean Square Error 0.02 0.02

Standard Deviation 0.02 0.02

5.3.3 Experiment 3: Solution of RTO using ANFIS-PSO

In Table 5.41, the control parameters of PSO are shown and the calculated values of

MSE, RMSE and SD for case study 2 are provided in Table 5.42.

Table 5.41. Control parameters of PSO for SPT

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Size of population 25

3. Weight of inertia 1

4. Damping ratio of inertia weight 0.99

5. Co-efficient of personal learning 1

6. Co-efficient of global learning 2

7. VelocityMax (VarMax – VarMin) * 0.1

8. VelocityMin VelMin - VelMax

Table 5.42. ANFIS-PSO prediction error results for SPT

CS2: Siemens Print Token

Error PSO-ANFIS

 Training Testing

Mean Square error 0.0005 0.0003

Root Mean Square Error 0.01 0.01

Standard Deviation 0.01 0.01

5.3.4 Experiment 4: Solution of RTO using ANFIS-TLBO

In Table 5.43, the control parameters of TLBO have been shown and the calculated values

of MSE, RMSE and SD for case study 2 are provided in Table 5.44.

 77

Table 5.43. TLBO parameters for SPT

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Size of population 50

Table 5.44. ANFIS-TLBO prediction error results for SPT

CS2: Siemens Print Token

Error TLBO-ANFIS

 Training Testing

Mean Square error 0.002 0.002

Root Mean Square Error 0.04 0.04

Standard Deviation 0.04 0.04

5.3.5 Experiment 5: Solution of RTO using ANFIS-HS

In Table 5.45, the control parameters of HS are shown and the calculated values of

MSE, RMSE and SD for case study 2 are provided in Table 5.46.

Table 5.45. Control parameters of HS for SPT

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Harmony Memory Size 25

3. Number of New Harmonies 20

4. Harmony Memory Consideration Rate 0.9

5. Pitch Adjustment Rate 0.1

6. Fret Width (Bandwidth) 0.02*(VarMax-VarMin)

7. Fret Width Damp Ratio 0.995

Table 5.46. ANFIS-HS prediction error results for SPT

CS2: Siemens Print Token

Error HS-ANFIS

 Training Testing

Mean Square error 0.03 0.03

Root Mean Square Error 0.07 0.07

Standard Deviation 0.07 0.07

 78

5.3.6 Experiment 6: Solution of RTO using ANFIS-FA

In Table 5.47, the control parameters of FA are shown and the calculated values of

MSE, RMSE and SD for case study are provided in Table 5.48.

Table 5.47. Control parameters of FA for SPT

Sr. No Parameter Name Assigned Values

1. Number of iterations 1000

2. Swarm Size 25

3. Light Absorption Coefficient (Gamma) 1

4. Attraction Coefficient Base Value 2

5. Coefficient of Mutation 0.2

6. Damping Ratio of Mutation Coefficient 0.98

7. Uniform Mutation Range (VarMax-VarMin)* 0.05

Table 5.48. ANFIS-FA prediction error results for SPT

CS2: Siemens Print Token

Error FA-ANFIS

 Training Testing

Mean Square error 0.00 0.00

Root Mean Square Error 0.002 0.003

Standard Deviation 0.04 0.04

 79

CHAPTER 6: ANALYSIS AND VALIDATION

6.1 Analysis Introduction

We analyzed the results of ANFIS based approaches that are used for optimizing the

regression test cases in terms of percentage Reduction in test case size, percentage Loss

in rate of Detection of Faults, percentage reduction in Coverage of Requirement and

percentage reduction in Time of test suite execution.

6.2 Results of Case Study 1

6.2.1 Percentage Reduction in Size of Test Suite

Categorization of suitability of test case is done for achieving reduction in size of the test

suite when the ANFIS generates the output of optimization. Only those test cases are

chosen that exhibit high suitability value. Subsequently, the calculation of reduction

percentage of test suite is done by following formula:

Percentage Reduction in Size of Test Suite =
 |𝑂| − |𝑂𝑇’|

|𝑂|
 * 100

Where T represents the original test suite and T’ represents the test suite after optimization.

For Siemens Print Token, Reduction in test cases size by implementing ANFIS-GA is

42.42%, 48.48% for ANFIS-PSO, 57.57% for ANFIS-TLBO, 66.66% for ANFIS-HS, and

63.63% for ANFIS-FA.

Table 6.1. % Size Reduction for PDP

Algorithm CS1: Previous Date Problem

% Reduction in Size

GA 42.42

PSO 48.48

TLBO 57.57

HS 66.66

FA 63.63

 80

6.2.2 Percentage Loss in Detection of Faults

Test cases that are not suitable to be included in optimized test suite are eliminated hence

the size of reduces and it may also cause a decrease in Fault Detection Rate of test suite.

The following formula has been used for calculating Faults Detection Loss:

Percentage Loss in Detection of Faults=
 | RFD | − | RFD` |

| RFD |
 * 100

Where RFD represents the original test suites’ Fault Detection Rate and RFD’ represents

the Fault Detection Rate of test suite after optimization.

For Siemens Print Token, Faults Detection Loss for ANFIS-GA, ANFIS-PSO, ANFIS-

TLBO, ANFIS-FA and ANFIS-HS is zero.

Table 6.2. % Faults Detection Loss for PDP

% Loss in Detection Rate of Faults

Algorithm CS1: Previous Date Problem

Faults Detection Loss % Faults Detection Loss

GA 0 0

PSO 0 0

TLBO 0 0

HS 0 0

FA 0 0

6.2.3 Percentage of Requirement Covered

The formula given below is used for calculation of reduction in Requirement Coverage

after optimization of test cases:

Percentage Loss in Coverage of Requirements =
 | 𝐶𝑅 | − | 𝐶𝑅` |

| 𝐶𝑅 |
* 100

For Previous Date Problem, Loss in Coverage of Requirement for ANFIS-GA is 42.19%,

51.56% for ANFIS-PSO, 57.48% for ANFIS-TLBO, 64.71% for ANFIS-HS, and 61.95%

for ANFIS-FA.

 81

Table 6.3. % Requirement Coverage Loss for PDP

Algorithm CS1: Previous Date Problem

% Requirement Coverage Loss

GA 42.19

PSO 51.56

TLBO 57.48

HS 64.71

FA 61.95

6.2.4 Percentage Reduction in Time of Execution

 ANFIS-TLBO has been the most efficient in reducing the time of executing test cases for

Siemens Print Token. Reduction in the time of executing test cases for ANFIS-GA is

58.86%, 53.15% for ANFIS-PSO, 65.19% for ANFIS-TLBO, 63.52% for ANFIS-HS, and

59.84% for ANFIS-FA.

Table 6.4. % Reduction in Execution Time for PDP

Algorithm CS1: Previous Date Problem

% Reduction in Execution Time

GA 58.86

PSO 53.15

TLBO 65.19

HS 63.52

FA 59.84

6.3 Results of Case Study 2

6.3.1 Percentage Reduction in Size of Test Suite

Categorization of suitability of test case is done for achieving reduction in size of the test

suite when the ANFIS generates the output of optimization. Only those test cases are

chosen that exhibit high suitability value. Subsequently, the calculation of reduction

percentage of test suite is done by following formula:

 82

Percentage Reduction in Size of Test Suite =
 |𝑂| − |𝑂𝑇’|

|𝑂|
 * 100

Where T represents the original test suite and T’ represents the test suite after optimization.

For Siemens Print Token, Reduction in size of test suite by implementing ANFIS-GA is

45.59%, 36.35% for ANFIS-PSO, 53.63% for ANFIS-TLBO, 59.51% for ANFIS-HS, and

80.10% for ANFIS-FA.

Table 6.5. % Size Reduction for SPT

Algorithm CS2: Siemens Print Token

% Reduction in Size

GA 45.59

PSO 36.35

TLBO 53.63

HS 59.51

FA 80.10

6.3.2 Percentage Loss in Detection of Faults

For Siemens Print Token, Faults Detection Loss for ANFIS-GA, ANFIS-PSO, ANFIS-

TLBO, and ANFIS-HS is zero while for ANFIS-FA the loss in rate of faults detection is

25%.

Table 6.5. % Faults Detection Loss for SPT

Algorithm CS2: Siemens Print Token

Faults Detection % Faults Detection Loss

GA 100 0

PSO 100 0

TLBO 100 0

HS 100 0

FA 75 25

 83

6.3.3 Percentage of Requirement Covered

The formula given below is used for calculation of reduction in Requirement Coverage

after optimization of test cases:

Percentage Loss in Coverage of Requirements =
 | 𝐶𝑅 | − | 𝐶𝑅` |

| 𝐶𝑅 |
* 100

Table 6.7. % Requirement Coverage Loss for SPT

Algorithm CS2: Siemens Print Token

% Requirement Coverage Loss

GA 46.16

PSO 36.04

TLBO 48.01

HS 53.39

FA 76.43

For Siemens Print Token, Loss in Coverage of Requirement for ANFIS-GA is 46.16%,

36.04% for ANFIS-PSO, 48.01% for ANFIS-TLBO, 53.39% for ANFIS-HS, and 76.43%

for ANFIS-FA.

6.3.4 Reduction in Execution Time for Case Study 2

 ANFIS-TLBO is the most efficient in reducing the time of executing test cases for

Siemens Print Token. Reduction in the time of executing test cases for ANFIS-GA is

45.72%, 36.42% for ANFIS-PSO, 55.52% for ANFIS-TLBO, 62.47% for ANFIS-HS, and

76.81% for ANFIS-FA.

Table 6.8. % Reduction in Execution Time for SPT

Algorithm CS2: Siemens Print Token

% Reduction in Execution Time

GA 45.72

PSO 36.42

TLBO 55.52

HS 62.47

FA 78.61

 84

CHAPTER 7: DISCUSSION AND CONCLUSION

7.1 Proposed Technique

For optimization of regression test suite, an Adaptive Neuro Fuzzy Inference System tuned

with meta-heuristic algorithm has been introduced in this research. We have implemented

ANFIS-TLBO and a comparative analysis has been performed with ANFIS-GA, ANFIS-

PSO, ANFIS-HS and ANFIS-FA in terms of reduction percentages. After performing

experiments on both benchmark case studies, it has been revealed that ANFIS-TLBO

performs better in terms of size reduction, execution time reduction and faults detection

loss.

7.2 Advantages

 The advantages of using ANFIS for optimizing the regression test suite have been listed

below:

 For finding the best test cases to be added in the list of optimized ones, our approach

acts like an expert

 It can be used for automated as well as manual testing approach

 Our proposed approach can be used even when the code is unavailable

 For black-box based optimization of test cases for regression testing, not enough

approaches have been proposed in current literature. Our approach is able to deal with

black-box based regression testing

 In literature, there are not enough studies that consider multiple objectives for solving

the problem of regression test suite optimization. Therefore, we have proposed a

multi-objective approach for black-box based regression testing.

 After some modifications, our proposed approach can also be used for prioritizing the

test cases

 After changing the two objectives i.e. Requirement Coverage with Branch coverage

and RFI with Function based Coverage etcetera our proposed approach can be used

for white box testing that is based on coverage

 The requirement of Test History is not a difficult task as it is already maintained by

several testers

 In comparison to other approaches, the predictions made by ANFIS-TLBO are more

accurate because it has low RMSE

 85

 It is easy to operate ANFIS because it employs hybrid learning and it is not expensive

as well

 ANFIS is capable of automatically extracting Fuzzy Rules from data. Thus it lowers

the problem of composing Fuzzy Rules which need to be written in case of Fuzzy

Models

 It can be used for different case studies / projects / test suites without changing the

structure of model, by simply replacing the inputs. Since ANFIS is capable of

automatically searching for non-linear association among the inputs and outputs and

it suitable for extraction of mathematical models from numerical data.

7.3 Disadvantages

The dis-advantages of using ANFIS for optimizing the regression test suite have been

listed below:

 The single output generated by ANFIS cannot be divided into linguistic variables

e.g. High, medium or low and it is required to do it manually after getting output

from ANFIS.

 It is somewhat difficult for the organization to manually maintain the Test History,

hence it is required to have an automated software for maintaining the Test History

and running the test suite.

 ANFIS-TLBO exhibits larger execution time as compared to ANFIS-GA, ANFIS-

PSO, and ANFIS-HS.

7.4 Recommendations

We have implemented and compared our approach with other CI based optimization

methods. The metrics defined in chapter six have been used for comparison and we have

listed their results in chapter six and chapter seven. We have employed FDR, RC, ET and

RFI for selecting test suite. The selection of those test cases has been done that have

maximum rate of faults detection and maximum coverage of requirements.

Our proposed approach just acts like a human expert and there is no need for tester to do

analysis for selecting suitable test cases. But, proper documentation of traceability of test

suite and their requirements is needed for implementing our approach. Four objectives of

optimization are needed for this approach and they can be measured manually as well as

automatically. It would be an extra overhead for the testers to measure these parameters

manually, hence it is recommended to measure these optimization objectives with tools.

In order to get effective results, it is mandatory to have accurate measurement of these

 86

objectives. On the basis of importance or criticality of requirements, RFI can be assigned

during the engineering of test cases. The value of RFI varies according to different

opinions and experience of experts as each of them has their own domain knowledge. Our

proposed approach is completely automated and it performs automated analysis, hence the

cost is also low. The whole process of selection and measurement can also be automated

by embedding our proposed approach with a Test Management Software.

7.5 Conclusion

For optimizing the Regression Test Suite, five experiments have been performed for each

case study in this thesis. We have presented the results of empirical evaluation and it is

concluded from the results that ANFIS-TLBO performs better for both case studies as

compared to other selected approaches. Our proposed ANFIS based approach not only

reduced the test suite size and minimize the time of execution but it also caters the test

cases which have greater time of execution but higher coverage of requirements. It

indicates that it is not only a safe approach but also behaves like human experts for

optimization of regression test cases and selecting the most suitable ones amongst them.

Four objectives have been selected for optimizing test cases but it can also perform

optimization of multiple objectives. On the other hand, it is not possible to optimize more

than four objectives by implementing other multi-objective algorithms as it degrades their

performance and plotting of results cannot be done which makes the interpretation of

results difficult for human experts. By using our proposed TLBO-ANFIS approach, the

test cases size can be reduced effectively along with significant reduction in time of

execution and zero loss in rate of faults detection. Hence, it concludes that TLBO-ANFIS

is a safe approach for optimization of regression test suite.

7.6 Future Work

The training and testing errors of ANFIS can be reduced further by employing different

approaches. By changing two parameters, our proposed approach can be used for

performing white-box based regression test suite optimization. Other CI based methods

like HPSO etc. can be used for validation of our proposed approach. For comparing the

experimental and industrial results, we are planning for its application and validation on

industrial projects. For selecting effective test cases, a mechanism can be devised for

classification of output into linguistic values i.e. High, Medium and low and it also help

in eliminating one of the shortcoming of ANFIS based optimization.

 87

7.7 Contributions

Following are the contributions that have been made by us in the thesis:

 Four objectives have been used for formulation of multi-objective Regression Test

Suite Optimization problem.

 In literature, coverage based optimization techniques have been mostly employed

for optimizing test suite for regression testing, but for covering the black-box based

testing we have used the approach that is based on Requirements.

 By performing a comprehensive literature review, we found that ANFIS-TLBO

has not been used yet for optimizing test suite for regression testing

 For comparison, we used ANFIS-HS, ANFIS-FA, ANFIS-GA, ANFIS-PSO

which has not been done in the current literature

 A technique that is safe for optimization of test suite for regression testing has been

proposed by us. The RFI objective has also been used that can be employed for

different purpose e.g. Test Case Fault Impact and as a risk/ reliability parameter.

 Four metrics i.e. % Reduction in Size, % Loss in Fault Detection, % Coverage

Loss in Requirement and % Reduction in Execution Time have been used for

measuring the effectiveness of our approach. However, there are only a few studies

in state-of-the-art literature that use several parameters to present the effectiveness

of their work.

 88

References

[1] Du, Wei Lin, Danny Ho, and Luiz Fernando Capretz. "A Neuro-fuzzy Model with

SEERSEM for software effort estimation." MESc Thesis, University of Western Ontario,

Canada (2009).

[2] Rama Sree P, Hybrid Neuro-Fuzzy Systems for Software Development Effort Estimation,

International Journal on Computer Science and Engineering (IJCSE), Vol. 4 No. 12 Dec 2012,

pp 1924-1932.

[3] Mohammad Saber Iraji and Homayun Motameni Object Oriented Software Effort Estimate

with Adaptive Neuro Fuzzy use Case Size Point (ANFUSP), I.J. Intelligent Systems and

Applications, 2012, 6, pp 14-24.

[4] Wei Lin Du, Danny Ho and Luiz Fernando Capretz, Improving Software Effort Estimation

Using Neuro-Fuzzy Model with SEER-SEM, Global Journal of Computer Science and

Technology, Vol. 10 Issue 12 (Ver. 1.0) October 2010, pp 51-63.

[5] DivyaKashyap, Ashish Tripathi and Prof. A. K. Misra, Software Development Effort and

Cost Estimation: Neuro-Fuzzy Model, OSR Journal of Computer Engineering (IOSRJCE),

Volume 2, Issue 4 (July-Aug. 2012), pp 12-14.

 [6] Parvinder S. Sandhu, Porush Bassi, and Amanpreet Singh Brar, Software Effort Estimation

Using Soft Computing Techniques, World Academy of Science, Engineering and Technology,

2008, pp 488-491.

 [7] Iman Attarzadeh and Siew Hock Ow, A Novel Algorithmic Cost Estimation Model Based

on Soft Computing Technique, Journal of Computer Science 6 (2): 2010, pp 117-125.

[8] Khan, Mr. Ihtiram Raza, Ms. Afshar Alam, and Huma Anwar. "Efficient Software Cost

Estimation using Neuro-Fuzzy Technique." Recent Developments in Computing and its

Applications (2009): 2009376.

[9] Xishi Huang, Danny Ho, Jing Ren and Luiz F. Capretz, Improving the COCOMO Model

using a Neuro Fuzzy approach, Applied Soft computing, 2007, pp 29-40.

 [10] Venus Marza, Amin Seyyedi, and Luiz Fernando Capretz, Estimating Development Time

of Software Projects Using a Neuro Fuzzy Approach, World Academy of Science, Engineering

and Technology, 2008, pp 575-579.

 89

[11] Harpreet Singh and Vishal Kumar Toora, Neuro Fuzzy Logic Model for Component Based

Software Engineering, International Journal of Engineering Sciences ISSN: 2229-6913 Issue

July 2011, Vol. 1, pp 303-314.

[12] ISTQB® Glossary of Testing Terms Version:2.2,

http://www.istqb.org/downloads/finish/20/101.html

[13] S. Yoo and M. Harman, Regression Testing Minimisation, Selection and Prioritisation: A

Survey, Softw. Test. Verif. Reliab. 2007; 00:1–7, pp 1-60.

[14] Gaurav Duggal, Mrs Bharti Suri,Understanding Regression Testing Techniques

http://www.rimtengg.com/coit2008/proceedings/SW15.pdf

[15] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter and Gregg Rothermel,

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 2, April 2001, pp

184–208.

[16] W. Eric Wong, J. R. Horgan, Saul London and Hira Agrawal, A Study of Effective

Regression Testing in Practice, 8th IEEE International Symposium on Software Reliability

Engineering (ISSRE‟97), pp 264-274, Albuquerque,NM, November 1997.

[17] Ruchika Malhotra, Arvinder Kaur and Yogesh Singh, A Regression Test Selection and

Prioritization Technique, Journal of Information Processing Systems, Vol.6, No.2, June 2010,

pp 235-252.

[18] Saran Prasad, Mona Jain and Shradha Singh, Regression Optimizer A Multi Coverage

Criteria Test Suite Minimization Technique, International Journal of Applied Information

Systems (IJAIS) – ISSN: 2249-0868, Foundation of Computer Science FCS, New York, USA

Volume 1– No.8, April 2012 – www.ijais.org, pp 5-11.

[19] S. Singh and R. J. C. t. o. I. Shree, "A combined approach to optimize the test suite size in

regression testing," vol. 4, no. 2-4, pp. 73-78, 2016.

 [20] K.-c. Wang, T.-t. Wang, and X.-h. J. C. Su, "Test case selection using multi-criteria

optimization for effective fault localization," pp. 1-22, 2018.

[21] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, "Energyaware test-suite

minimization for Android apps," in Proceedings of the 25th International Symposium on

Software Testing and Analysis, 2016, pp. 425-436: ACM

http://www.istqb.org/downloads/finish/20/101.html

 90

[22] C.-T. Lin, K.-W. Tang, J.-S. Wang, and G. M. J. S. o. C. P. Kapfhammer, "Empirically

evaluating greedy-based test suite reduction methods at different levels of test suite

complexity," vol. 150, pp. 1-25, 2017.

[23] B. Miranda, A. J. J. o. S. Bertolino, and Software, "Scope-aided test prioritization, selection

and minimization for software reuse," vol. 131, pp. 528-549, 2017.

[24] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, "Evaluating test-suite reduction

in real software evolution," in Proceedings of the 27th ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2018, pp. 84-94: ACM.

[25] X. Wang, S. Jiang, Gao, X. Ju, Wang, and Y. J. S. C. I. S. Zhang, "Cost-effective testing

based fault localization with distance based test-suite reduction," vol. 60, no. 9, p. 092112,

2017.

[26] L. Magdalena, what is Soft Computing? Revisiting Possible Answers, International Journal

of Computational Intelligence Systems, Vol.3, No. 2 (June, 2010), pp 148-159.

[27] S. Sumathi and Surekha P., Computational Intelligence Paradigms Theory and

Applications using MATLAB, CRC Press Taylor & Francis Group, Boca Raton, London,

Newyork, ISBN: 978-1-4398-0902-0, 2010.

[28] Yoel Tenne and Chi-Keong Goh (Eds.), Computational Intelligence in Optimization

Applications and Implementations, Springer-Verlag Berlin Heidelberg, ISBN 978-3-

64212774-8, 2010.

[29] Jyh-Shing Roger Jang, Chuen-Tsai Sun and Eiji Mizutani, Neuro-Fuzzy and Soft

Computing: A Computational Approach to Learning and Machine Learning, Prentice Hall

Upper Saddle River, NJ 07458, ISBN: 0-13-261066-3, 1997.

[30] Azar, Ahmad Taher, Adaptive Neuro-Fuzzy Systems, Fuzzy Systems, ISBN 978-953-

761992-3, pp. 216, February 2010, INTECH, Croatia.

[31] Jyh-Shing Roger Jang, ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE

Transactions on Systems, Man, and Cybernetics, VOL. 23, NO. 3, 1993, pp 665-685.

[32] Sultan Aljahdali, Development of Software Reliability Growth Models for Industrial

Applications Using Fuzzy Logic, Journal of Computer Science 7 (10), 2011, pp 1574-1580.

 91

[33] Harman, Mark, S. Afshin Mansouri, and Yuanyuan Zhang. "Search based software

engineering: A comprehensive analysis and review of trends techniques and applications."

Department of Computer Science, King‟s College London, Tech. Rep. TR-09-03 (2009).

[34] R. Khan, M. Amjad, and A. K. Srivastava, "Optimization of automatic generated test cases

for path testing using genetic algorithm," in Computational Intelligence & Communication

Technology (CICT), 2016 Second International Conference on, 2016, pp. 32-36: IEEE

[35] S. Kothari and A. Rajavat, "Minimizing the size of test suite using genetic algorithm for

object oriented program," in ICT in Business Industry & Government (ICTBIG), International

Conference on, 2016, pp. 1-5: IEEE.

 [36] A. Schuler, "Application of search-based software engineering methodologies for test

suite optimization and evolution in mission critical mobile application development," in

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, 2017, pp.

1034-1037: ACM.

 [37] V. Garousi, R. Özkan, A. J. I. Betin-Can, and S. Technology, "Multi-objective regression

test selection in practice: An empirical study in the defense software industry," vol. 103, pp.

40-54, 2018.

[38] R.-Z. Qi, Z.-J. Wang, S.-Y. J. J. o. C. S. Li, and Technology, "A parallel genetic algorithm

based on spark for pairwise test suite generation," vol. 31, no. 2, pp. 417-427, 2016.

[39] A. J. Turner, D. R. White, and J. H. Drake, "Multi-objective regression test suite

minimisation for mockito," in International Symposium on Search Based Software

Engineering, 2016, pp. 244-249: Springer.

[40] A. Yamuç, M. Ö. Cingiz, G. Biricik, and O. Kalıpsız, "Solving test suite reduction problem

using greedy and genetic algorithms," in Electronics, Computers and Artificial Intelligence

(ECAI), 2017 9th International Conference on, 2017, pp. 1-5: IEEE.

[41] A. Panichella, F. Kifetew, and P. J. I. T. o. S. E. Tonella, "Automated test case generation

as a many-objective optimisation problem with dynamic selection of the targets," no. 99, pp. 1-

37, 2017.

[42] M. Zachariaova, M. Kekelyova-Beleova, and Z. Kotásek, "Regression test suites

optimization for application-specific instruction-set processors and their use for dependability

 92

analysis," in 2016 Euromicro Conference on Digital System Design (DSD), 2016, pp. 380-387:

IEEE.

[43] A. Sabbaghi and M. R. Keyvanpour, "A novel approach for combinatorial test case

generation using multi objective optimization," in Computer and Knowledge Engineering

(ICCKE), 2017 7th International Conference on, 2017, pp. 411418: IEEE.

[44] A. Marchetto, G. Scanniello and A. Susi, "Combining Code and Requirements Coverage

with Execution Cost for Test Suite Reduction," in IEEE Transactions on Software Engineering,

vol. 45, no. 4, pp. 363-390, 1 April 2019.

[45] Mishra, D. B., Mishra, R., Das, K. N., & Acharya, A. A. (2019). Test Case Generation and

Optimization for Critical Path Testing Using Genetic Algorithm. In Soft Computing for

Problem Solving (pp. 67-80). Springer, Singapore.

[46] Y.-n. Zhang, H. Yang, Z.-k. Lin, Q. Dai, and Y.-f. Li, "A Test Suite Reduction Method

Based on Novel Quantum Ant Colony Algorithm," in Information Science and Control

Engineering (ICISCE), 2017 4th International Conference on, 2017, pp. 825829: IEEE.

[47] S. Kumar, P. Ranjan, and R. Rajesh, "Modified ACO to maintain diversity in regression

test optimization," in Recent Advances in Information Technology (RAIT), 2016 3rd

International Conference on, 2016, pp. 619-625: IEEE.

[48] X.-C. Han, H.-W. Ke, Y.-J. Gong, Y. Lin, W.-L. Liu, and J. Zhang, "Multimodal

optimization of traveling salesman problem: a niching ant colony system," in Proceedings of

the Genetic and Evolutionary Computation Conference Companion, 2018, pp. 8788: ACM.

[49] A. Ansari, A. Khan, A. Khan, and K. J. P. C. S. Mukadam, "Optimized regression test

using test case prioritization," vol. 79, pp. 152-160, 2016.

 [50] A. S. Metwally, E. Hosam, M. M. Hassan, and S. M. Rashad, "WAP: A Novel Automatic

Test Generation Technique Based on Moth Flame Optimization," in Software Reliability

Engineering (ISSRE), 2016 IEEE 27th International Symposium on, 2016, pp. 59-64: IEEE.

[51] P. Gopi, M. Ramalingam, and C. Arumugam, "Search Based Test Data Generation: A

Multi Objective Approach using MOPSO Evolutionary Algorithm," in Proceedings of the 9th

Annual ACM India Conference, 2016, pp. 137-140: ACM.

 93

[52] K. Z. Zamli, F. Din, S. Baharom, and B. S. J. E. A. o. A. I. Ahmed, "Fuzzy adaptive

teaching learning-based optimization strategy for the problem of generating mixed strength t-

way test suites," vol. 59, pp. 35-50, 2017.

[53] S. R. Sugave, S. H. Patil, and B. E. Reddy, "DDF: Diversity Dragonfly Algorithm for cost-

aware test suite minimization approach for software testing," in Intelligent Computing and

Control Systems (ICICCS), 2017 International Conference on, 2017, pp. 701-707: IEEE.

[54] S. R. Sugave, S. H. Patil, and B. E. J. I. S. Reddy, "DIV-TBAT algorithm for test suite

reduction in software testing," vol. 12, no. 3, pp. 271-279, 2018.

 [55] A. Choudhary, A. P. Agrawal, and A. Kaur, "An effective approach for regression test

case selection using pareto based multi-objective harmony search," in Proceedings of the 11th

International Workshop on Search-Based Software Testing, 2018, pp. 13-20: ACM.

[56] Zheng, Wei, et al. "Multi-objective optimisation for regression testing." Information

Sciences 334 (2016): 1-16.

[57] Z. Wei, W. Xiaoxue, Y. Xibing, C. Shichao, L. Wenxin, and L. Jun, "Test Suite

Minimization with Mutation Testing-Based Many-Objective Evolutionary Optimization," in

Software Analysis, Testing and Evolution (SATE), 2017 International Conference on, 2017,

pp. 30-36: IEEE.

[58] Agrawal, A. P., Choudhary, A., Kaur, A., & Pandey, H. M. (2019). Fault coverage-based

test suite optimization method for regression testing: learning from mistakes-based approach.

Neural Computing and Applications, 1-16.

[59] A. B. Nasser, A. Alsewari, and K. Z. Zamli, "Learning Cuckoo Search Strategy for t-way

Test Generation," in International Conference on Computing, Analytics and Networks, 2017,

pp. 97110: Springer.

[60] S. Singhal, B. Suri, and S. Misra, "An empirical study of regression test suite reduction

using MHBG_TCS tool," in Computing Networking and Informatics (ICCNI), 2017

International Conference on, 2017, pp. 1-5: IEEE.

[61] Z. Anwar et al., "A hybrid-adaptive neuro-fuzzy inference system for multi-objective

regression test suites optimization," pp. 1-15, 2018.

 94

 [62] R. Khan, M. Amjad, and A. K. Srivastava, "Optimization of Automatic Test Case

Generation with Cuckoo Search and Genetic Algorithm Approaches," in Advances in Computer

and Computational Sciences: Springer, 2018, pp. 413-423.

[63] P. Saraswat and A. Singhal, "A hybrid approach for test case prioritization and optimization

using meta-heuristics techniques," in Information Processing (IICIP), 2016 1st India

International Conference on, 2016, pp. 1-6: IEEE.

[64] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, "CBGA-ES: a cluster-based genetic

algorithm with elitist selection for supporting multi-objective test optimization," in Software

Testing, Verification and Validation (ICST), 2017 IEEE International Conference on, 2017, pp.

367-378: IEEE.

[65] Adenilso da Silva Simão and Luciano Jos´e Senger, A Technique to Reduce the Test Case

Suites for Regression Testing Based on a Self-Organizing Neural Network Architecture,

Proceedings of the 30th Annual International Computer Software and Application Conference

(COMPSAC‟06), 2006.

[66] Xu, Zhiwei, KehanGao, and Taghi M. Khoshgoftaar. "Application of fuzzy expert system

in test case selection for system regression test." Information Reuse and Integration, Conf,

2005. IRI-2005 IEEE International Conference on IEEE, 2005.

[67] Ali M. Alakeel, A Fuzzy Test Cases Prioritization Technique for Regression Testing

Programs with Assertions, ADVCOMP 2012: The Sixth International Conference on Advanced

Engineering Computing and Applications in Sciences, pp 78-82.

 [68] Haider, A. A., Rafiq, S., & Nadeem, A. (2012, October). Test suite optimization using

fuzzy logic. In 2012 International Conference on Emerging Technologies (pp. 1-6). IEEE.

[69] Kiran, A., Butt, W. H., Anwar, M. W., Azam, F., & Maqbool, B. (2019). A Comprehensive

Investigation of Modern Test Suite Optimization Trends, Tools and Techniques. IEEE

Access, 7, 89093-89117.

[70] Vieira, Jose, F. Morgado Dias, and Alexandre Mota. "Neuro-fuzzy systems: a survey." 5th

WSEAS NNA International Conference on Neural Networks and Applications, Udine, Italia.

2004.

[71] Mansour, Nashat, and WaelStatieh. "Regression test selection for C# programs." Advances

in Software Engineering 2009 (2009): 1.

 95

[72] Whyte,G and Mulder, D ,L. “Mitigating the Impact of Software Test Constraints on

Software Testing Effectiveness” The Electronic Journal Information Systems Evaluation

Volume 14 Issue 2 2011, pp 254-270.

[73] Xu, Zhiwei, KehanGao, and Taghi M. Khoshgoftaar. "Application of fuzzy expert system

in test case selection for system regression test." Information Reuse and Integration, Conf,

2005. IRI-2005 IEEE International Conference on IEEE, 2005.

[74] Harman, Mark. "Making the case for MORTO: Multi objective regression test

optimization." Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE

Fourth International Conference on. IEEE, 2011.

[75] Nanda, Agastya, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessandro Orso.

"Regression testing in the presence of non-code changes." In Software Testing, Verification

and Validation (ICST), 2011 IEEE Fourth International Conference on, pp. 21-30. IEEE, 2011.

[76] Qian Zhongsheng, Test Case Generation and Optimization for User Session-based Web

Application Testing, Journal of Computers, Vol. 5, NO. 11, November 2010, pp 1655-1662.

[77] Saeed Parsa and Alireza Khalilian, On the Optimization Approach towards Test Suite

Minimization, International Journal of Software Engineering and Its Applications Vol. 4, No.

1, January 2010, pp 15-28.

[78] Ashraf, E., A. Rauf, and K. Mahmood. "Value based Regression Test Case Prioritization."

Proceedings of the World Congress on Engineering and Computer Science. Vol. 1. 2012.

[79] Raju, S., and G. V. Uma. "Factors oriented test case prioritization technique in regression

testing using genetic algorithm." European Journal of Scientific Research 74.3 (2012): pp 389-

402.

[80] Cortés Pérez, Ernesto, Ignacio Algredo-Badillo, and Víctor Hugo García Rodríguez.

"Performance Analysis of ANFIS in short term Wind Speed Prediction." (2012).

[81] Takagi, Tomohiro, and Michio Sugeno. "Fuzzy identification of systems and its

applications to modeling and control." Systems, Man and Cybernetics, IEEE Transactions on 1

(1985): pp 116-132.

[82] K.K. Aggarwal, and Y. Singh, “A book on software engineering”, New Age International

(P) Ltd.; Publishers, 4835/24, Ansari Road, Daryaganj, New Delhi, 2001.

 96

[83] Mamdani E H, Assilian S, 1975. An experiment in linguistic synthesis with a fuzzy logic

controller. International Journal of Man-Machine Studies, 7(1): 1–13.

[84] Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence. MIT Press, Cambridge

[85] Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and

parameter selection. Inf Process Lett 85(6):317–325

[86] Bai Q (2010) Analysis of particle swarm optimization algorithm. Comput Inf Sci 3(1):180

[87] R.V. Rao, V.J. Savsani, D.P. Vakharia “Teaching-learning-based optimization: a novel

method for constrained mechanical design optimization problems” Computer-Aided Des, 43

(3) (2011), pp. 303-315

[88] R.V. Rao, V.J. Savsani, D.P. Vakharia “Teaching-learning-based optimization: a

optimization method for continuous non-linear large scale problems” Informat Sci, 183 (1)

(2012), pp. 1-15

[89] G. Waghmare “Comments on a note on teaching-learning-based optimization algorithm”

Informat Sci, 229 (20) (2013), pp. 159-169

[90] Sahoo, Rajesh Kumar, Deeptimanta Ojha, Durga Prasad Mohapatra, and Manas Ranjan

Patra. "Automatic generation and optimization of test data using harmony search

algorithm." Computer Science & Information Technology (2016): 23.

[91] Eren, Y., Küçükdemiral, İ.B. and Üstoğlu, İ., 2017. Introduction to Optimization.

In Optimization in Renewable Energy Systems (pp. 27-74). Butterworth-Heinemann.

[92] Hutchins, Monica, et al. "Experiments of the effectiveness of dataflow-and control

flowbased test adequacy criteria." Proceedings of the 16th international conference on Software

engineering. IEEE Computer Society Press, 1994.

