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Abstract

For a long time, stereo cameras have been deployed in visual simultaneous
location and mapping (SLAM) systems to obtain 3D information. Although stereo
cameras show good performance, the main drawback is the complex and
expensive hardware setup it requires, which restricts the use of the system.
Monocular cameras are a simpler and cheaper alternative. Recent work has shown
that access to depth maps in the monocular system is beneficial as they can be use
d to improve 3D reconstruction. This work proposes a deep neural network that pr
edicts dense high-resolution depth maps from monocular RGB images.

Network architecture follows an encoder-decoder structure in which multi-

scale information is captured and skip-connections are used to retrieve details.

The network is trained and evaluated on a NYU v2 dataset with results
comparable to state-of - the-art methods. The problem of depth estimation is an
important component for understanding the geometry of a scene and for
navigating through space. More understanding of the environment, such

as recognition activities, contributes to changes in other fields.

In many applications, accurate measurement of depth from images is a crucial task
involving interpretation and restoration of the scene. Existing methods for
calculating depth often yield fuzzy approximations with low resolution. This
thesis describes a convolution neural network to use transfer learning to

compute a high resolution map of depth with one single RGB image. Using a
typical encoder-decoder model, when initializing our encoder, we exploit features
derived using high performance pre-trained networks along with extension and
testing techniques that result in more accurate results.

xiii



We demonstrate how our approach can achieve accurate, high-resolution

depth maps, even for a very simple decoder. We train dataset on three models i.e.
densenet 169, 201 and Resnet50. Our network conducts results with state of the art
on two datasets with less parameters and training iterations, and also offers
qualitatively better tests that reflect human boundaries more accurately. Our
algorithm gives state of the art results and it gives rms value of 0.4611

Keywords: depth estimation, stereo, monocular, cameras, convolutional neural networks,
NYU Depth v2.
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Chapter 1: Introduction

In many applications, including scene recognition and reconstruction[[1], [2], [3]],
depth estimation from 2D images is a fundamental task. In applications such as
navigation and scene recognition, virtual reality[1], image refocusing[2], and seg
mentation[3], providing a complex depth map of the real-

world can be very useful. Recent depth estimation advances concentrate on the u
se of convolutional neural networks (CNNSs) to perform 2D to 3D reconstruction.
While the performance of these methods has steadily increased, the quality and r
esolution of these estimated depth maps still present major problems. Recent imp
lementations in augmented reality, virtual depth-of-

tield, and other image effects [[4], [5], [6]] allow a quick calculation of high-
resolution 3D reconstructions to be effective. It is important for such applications
to faithfully recreate discontinuity in depth maps and avoid large disturbances th

at are often present in depth estimates calculated using current CNNs.

It is important for such applications to faithfully recreate discontinuity in depth
m aps and avoid.Large disturbances that are often present in depth estimates calc

ulat ed using current CNNs.

Estimating depth using monocular images is important in many practical scenari
os such as images on social media, and also challenging as no image corresponde
nces available. Some detail clues, such as perspective and object size, can be used

from monocular images, and CNN is the ideal tool to use this information.

So, how does the predicted scene measure distance and understand our 3D envir

onment? The mechanism at work here is that our brain begins to reason
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about the incoming visual signals by identifying patterns such as the scale, shape,
and motion of the Depth Cues scene. The image does not contain distance infor
mation, but in some way we could easily interpret and recover depth data. We se
e the near and farther distance of the scene. Such indications also allow us to vie

w objects and surfaces supposedly in 3D shape on flat images [7].

1.1 Why is it so difficult to measure depth?

Finally, let's try to grasp some of the basic difficulties of estimating depth. The
key culprit is to project 3D views into 2D images. Another question is rooted dee
p when there are objects moving and in motion. Depth Estimation is ill-posed
problem. Sometimes, when performing work in monocular depth estimation,
several authors point out that the problem of estimating depth from a single RGB
image is an ill-posed inverse problem. What this implies is that many of the 3D

scenes seen in the world will actually refer to the same 2D plane (figs 1.1).

Figure 1.1 Vision has to solve an ill posed problem

1.2. Motivation

23



The overwhelming performance of computer vision's deep neural networks has
prompted researchers to look into the issue of estimating depth from an image.
Due to the increasing level of automation and artificial intelligence, precise
computer vision and image representation is also required. The most important
element in computer vision is depth estimation.. Being able to predict the depth
maps of monocular images in a systematic manner would make these systems
more reliable, easier and cheaper. In addition, this study provides an hint of the
possibility of replacing monocular cameras with cheaper, lighter and lower-
power cameras. In other applications, such as robotic navigation, 3D-modeling

[8] and virtual reality systems, accurate depth estimation is also a key function.

1.3. Problem Statement

To explore the performance of single image based depth estimation with three
network architectures i.e. Resnet50, densenet169 and densenet201 by giving singl
e RGB image as an input which gives depth map as output and evaluate the perf

ormances on different evaluation metrics.

1.6. Aim

This master thesis work focuses on the implementation, training and evaluation
of a deep convolutional neural network that predicts depth from RGB monocular
images. This work explores the possibility of modifying a state-of - the-art
network in order to improve its performance. The system implemented is
measured quantitatively by acceptable error parameters, but also qualitatively by
visual inspection. The system is trained and tested in a public NYU Depth v2 and
KITTI depth data set.

1.5. Objectives

Major objectives of the research are as follow:
24



1. To accurately estimate depth information.
2. Precision for the boundaries of closer objects.
3. To create an accurate algorithm of the depth estimation.

4. To set a milestone for Future’s Specific Applications.

1.6. Structure of Thesis

This work is structured as follows:

Chapter2 covers the basics of depth estimation and gives review of the literature
and the significant work done by researchers in past few years.

Chapter3.Explains dataset.
Chapter4 consists of the proposed methodology in detail.
Chapte5 includes all the experimental results accompanied by relevant figures.

Chapter6 Discuss potential directions for future work, and concludes the thesis.
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Chapter 2: Literature Review
2.1 Depth Estimation

Depth estimation is a vision task for the computer to determine 2D image depth.
The function requires an RGB image input and outputs an image of depth. The
deep image contains details on the distance from the perspective of the objects
that are normally the camera capturing the image. The following two photos clear

ly illustrate the depth evaluation in practice.

Figure 2.1 Input image and depth estimation at output

2.2 Depth Is Important For 3D Vision

Knowing how much objects are connected to a camera remains challenging but
completely necessary for exciting applications like robots, autonomous driving,
3D reconstruction of the scene and AR. Depth is a crucial prerequisite in robotics
for performing multiple tasks such as perception, navigation, and planning. If
we want to create a 3D diagram, the computing depth enables us to back up

project
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images taken in 3D from multiple views. Then all points can be completely

reorganized the scenne by registration and matching.

2.3 Depth Estimation Methods

Depth is derived from 2 common methodologies in computer vision. Namely, the
depth of the monocular images (static or sequential) or the depth of the stereo

images by using epipolar geometry.

2.4 Depth Estimation in Computer Vision

The aim of depth estimation is to obtain a representation of the spatial structure of
the scene, to restore the 3D shape and position of the objects in the image also
known as the inverse problem [9], where we are trying to retrieve certain unknow
ns , due to the lack of knowledge required to completely determine the solution. A

dding that mapping between the 2D view and the 3D view is not special (Fig. 1.1)

And how do computers really feel the depth? Could we somehow pass any of the
ideas mentioned above? The early algorithm with an impressive result starts with
an estimate of depth using stereo vision back in the 1990s. Much progress has
been made on complex stereo correspondence algorithms [10-12]. Scientists have
been able to use geometry to constrain and reproduce the concept of stereopsis

both mathematically and in real-time.

As far as monocular depth estimation is concerned, it has recently begun to gain p
opularity by using neural networks to learn a representation that explicitly distils
depth [13]. In addition, great progress has been made in self-

monitored depth estimation [14-16].

27



2.5 Convolutional Neural Network (CNNs)

Neural network convolution (CNNs) run in one or more layers of a convolutional
network. The three key components of CNN are convolutions, activation function
and pooling [17], and the CNN typically includes several layers involving these
operations. CNNs are also especially well suited for solving image issues [18]. In s
ection 2.2.1-2.2.3, the main components are described. CNNs also require two
otherforms of batch normalization and drop-out operations, see section 2.3.3.
These perations allow the network to acquire the important features needed to

overcome the task during the training process [19].

2.5.1 Convolutional Layers

The input, which is often an image, is converted into a filter sliding over the full
photo in the convolutional layer. This connects each neuron in the hidden layer to
the various neuron regions in the previous layer. The region is defined by the
tilter size and is referred to as the receptive field [19]. Stride [18] is the number of
pixels that the filter moves during each new step. Figure 2.3 provides an example
of a normal convolution. As it captures the image features or patterns, the product
of the convolution is called an image map. For example, a feature may be a
horizontal edge or line but a more complex structure as well. The weights and
biases of the filters are learned during training and determine the type of features

to be extracted.

All neurons in the network, which is called parameter sharing, are associated with
the same weights and biases. This allows the same filter to detect the same feature
at the same position throughout the entire image. This is because features useful

in one area are likely to be useful in other areas of the picture [18].
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Figure 2.2 Use stride 1 and no zero-padding to convolve a 3x3 kernel over a 4x4
input. The output is smaller than the input if zero-padding is used but an output

of the same size as the input can be generated.

2.5.2 Activation Function

There are different kinds of activation functions and ReLU [18] is a popular option
the most widely used in CNNs today. Such functions are mentioned in Figure 2.3

and outlined in the following sections.

flx)=0 X

Figure 2.3 Activation function ReLU. Here,x is the input and the factor a is a

learnable parameter that is modified during the training cycle

2.5.3 Pooling Layers

Usually a pooling layer is added after the feature map is sent through the
activation function to reduce its spatial size. This reduces the amount of

parameters that the
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network requires to know and thus increases network computational efficiency

[17]. It also improves the receptive field and makes the network invariant to
limited input translations. There are no learnable parameters for the pooling layers
but rather a fixed function is implemented separately on each of the feature maps
[19]. A small filter, typically 2x2 or 3x3, slides over the feature map during this
operation, and returns a summary statistics of the nearby values. The most

popular choices are max-pooling and average pooling as shown in figure 2.4.

6 |8
1 1 (4 2 s 3
4 |6 (8 |6
9 5]|]01|0
1212 |1 (3 S 5
. 1

Figure 2.4: Top-and average pooling using a 2x2 size filter over a 4x4 feature map

with stride 2 and no zero-padding. The effect is an output of 2x2 in size.

Max-pooling requires taking maximum values within the area of the filter.

Since the same feature is identified in the entire feature map, returning the
maximum value in a given region provides an indication of whether or not the
feature is present in that area. In this way the network is invariant to small input
image translations, since the maximum value is always extracted within a small
area. That also means that the feature's exact spatial position is lost, however. Ave
rage-pooling is similar to max-pooling, but returns the sum of all values within
the filter area instead.

Because only one value is returned for a area containing multiple values, the
spatial size of the function map is reduced. How much is that, i.e. the down
sampling
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factor, is calculated by the size of the filter and the stride. You can use zero

padding to get the desired down sampling factor.

The below section presents current solutions to the challenge of estimating depth

using neural networks in convolution.

2.6 Related Work

A number of researchers have already work on depth estimation. We look at some
of the works from RGB reference images that relate to depth estimation and 3D
reconstruction problem. We are looking, in particular, at recent approaches that

depend on deep neural networks.

Laina et al. [20] proposes a completely convolutional architecture to address the
problem of estimating the depth map of a scene given an RGB picture. Residual
learning models the ambiguous mapping between monocular images and depth
maps. For optimization, the reverse Huber loss is used. The model works on

images or videos in real time.

||||||
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Figure.2.5. Laina et al. Network Architecture. [20]

Laina et al. [20] compare various network architectures: AlexNet, VGG-

16, and ResNet-50. Due to its limited area of reception at the
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last convolutional layer, AlexNet is outperformed by all other networks and does
not collect enough global details. With theVGG-16, the receptive field is greater,
the depth prediction is better, while ResNet-50 gives the highest output for all

error measurements.

The results of this work illustrate how well up-projections are used in the
decoder to get high resolution complex output predictions. It also demonstrates

how ResNet can be used as the extractor for features rather than VGG or AlexNet

RGB Image AlexNet - proposed ground truth Eigen et al. [5]

Figure 2.6 depth prediction on NYU dataset by Laina et al. [20]

Godard et al. [16] suggested an unsupervised monocular depth measurement
method without annotated ground truth accuracy and allowed the network to
train with left-

right consistency checks on calibrated stereo images. They discussed different net
work configurations in their other work [21], and exchanged weights between net

work depth and pose estimation.

Godard et al. [16] uses a loss of reconstruction with a left - right consistency.

They show that only taking into account the loss of reconstruction can
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provide a good image of reconstruction, but result in poor depth predictions.
Using epipolar geometry constrains, their network can simultaneously generate
disparity maps for both images (left to right and right to left) using only the left i
mage. The predictions of depth become more reliable and precise by applying

consistency between the disparity maps during training.

This research demonstrates how a network can be equipped for depth estimation

using only pairs of stereo images in an unsupervised manner

Figure 2.7. Depth estimation by Godard. [16]
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Figure2.8. Godard et al. [16] Architecture.

Lee [22] presented a method on unsupervised depth estimation. They utilize a

dual CNN based model to produce the corresponding disparity
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map. The models proposed are tested through KITTI driving and urban software
Cityscapes. They evaluated their model on measurement criteria these include
Absolute Relative Differences (Abs Rel), Squared Relative Differences (Sq Rel),
RMSE log and d1-all.

They suggest a novel monocular depth estimation algorithm using relative depth
maps. Next, they estimate relative depths between pairs of regions, as well as
ordinary depths, at different scales using a convolutional neural network.
Secondly, they restore relative depth maps based on the rank-1 property of
pairwise comparison matrices from selectively estimated results. Third, they
break down ordinary and relative maps of depth into components, and optimally

recombine them to recreate a final map of depth.

Figure.2.9. Lee [22] predicted depth & error maps
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Figure 2.10. Lee [22] proposed depth network

Xu, D,, et al. [23] introduced a new approach for the monocular depth
measurement. Their approach utilizes a continuous CRF to combine multi-scale
information from different layers of a Convolutionary Neural Network (CNN)
front-end. On the KITTI benchmark and NYU Depth V2 dataset, they tested their
methods. We measure relative mean error (rel), root mean squared error (rms),

mean error log10 (log10), and precision.

They are proposing a new deep learning model for calculating depth maps from
still images that seamlessly combine front-end CNN and multi-scale CRF, our
architecture does not only consider prediction maps as inputs but operates directly
at feature level. Our approach benefits from a new attention process that allows
multi-scale features to be robustly fused and organized information incorporated.
Our approach demonstrates state-of - the-art results on the NYU Depth V2 dataset

[24] and is among the top performers on the KITTI benchmark's more demanding

outdoor scenes [25].
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Input RGB

Figure 2.12 Xu, D et al [23] proposed network for monocular depth estimation

Liu et al. [26] presented a profoundly convolutional neural field model for depth
estimation of a single image, testing their algorithm on two popular online

datasets: the NYU v2 dataset and the Make3D dataset. Standard metrics used for
quantitative assessments are average relative error (rel), root mean squared error

(rms), average log10 error (log), and accuracy.

Ours (fine-tune) Ground-truth ~ Test image

Figure 2.13 Liu et al [26] prediction on NYU v2 dataset
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Interpretation of model by liu et al. [26] The input image is first over-segmented
into superpixels, then crop the picture patch based around its centroid for a
superpixel p, then resize and feed it to a CNN (5 convolution layers and 4
completely linked layers). Consider K types of similarities, fed into a fully-
connected layer for a pair of neighboring superpixels (p, q). The outputs are then
fed to the loss layer structured by CRF, which minimizes the probability of

negative logs.

Shared network

__ Predicted depthmapy

paramcters @ (unary)

- . “p
—.-| Sconv +4 fc -

i a
- Negative log-likelihood
Int log Pr(y|x)

g I where E(y.x

Shared network

parameters/3 (pairwise) CREF loss layer

Figure.2.14. Liu et al. [26] model for depth estimation.

Zhou et al. [15] Using single depth view and multiview pose networks, their
method evaluates their model on Make3D and KITTI image datasets. We compare
their estimate of ego-motion with two versions of monocular ORB-SLAM 1) ORB-
SLAM (full) which recovers odometry using all frames of the driving series , and 2

) ORB-SLAM (short)
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Input Ground-truth

Figure 2.15 Zhou et al [15] prediction on Make3D dataset

The core principle of our architecture is to use different types of data comparison t
o improve the depth plus ego-motion and flow-prediction network. The proposed
architecture trains the network without a paired dataset by using sequential stereo
scenes to estimate depth, optical flow, and ego-motion. We train each network
under coupled consistency conditions, thus sharing the parameters. The block of f
low consistency produces a flow using depth plus ego-motion and a network of
stand-alone flow estimation, called FlowNet. To penalize the photometrically

dissimilar regions, the induced optical flow from the depth plus ego-motion

is compared with the network-based predicted optical flow.

Illl-r--llII|||‘

-
S Input
Elce~ | |
B peconv o
~———= Concat e R
~ Upsample + Concat . .
- Prediction

(a) Single-view depth network (b) Pose/explainability network

Figure 2.16. Zhou et al. [15] network Architecture.
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S.# | Author Year Technique Dataset RMS
1 D. Eigen, C.] 2014 Depth map prediction from a NYU v2, KITTI 0.907
Puhrsch, and R single image using a multi-scale
Fergus. deep network.
2 H. Fu, M. Gong, C. | 2018 | Deep ordinal regression network | KITTI,Make3D and | 0.509
Wang, N. for monocular depth estimation. NYU v2
Batmanghelich, and
D. Tao. [2]
3 I. Laina, C. 2016 Deeper depth prediction with| Make3D and NYU | 0.573
Rupprecht, V. fully  convolutional residual | v2
Belagiannis, F. networks.
Tombari, and N.
Navab. [20]
4 Z.Hao, Y. Lj, S. 2018 Detail preserving depth | NYU v2 0.555
You, and F. Lu. estimation from a single image
using attention guided networks.
5 P. Wang, X. Shen, | 2015 Towards unified depth and| NYU v2 0.745
Z. Lin, S. Cohen, B. semantic prediction from a single
Price, and A. L. image.
Yuille.
6 B. Li, C. Shen, Y. 2015 Depth and surface normal | Make3D, 0.821
Dai, A. V. den estimation from monocular | NYU v2
Hengel, and M. He. images using regression on deep
features and hierarchical CRFs.
7 Zhao, S., Fu, H. | 2019 Geometry-Aware Symmetric | KITTI 3.846
Gong, M., & Tao, D. Domain Adaptation for
Monocular Depth Estimation.
8 Clement Godard 1 | 2019 Digging Into Self-Supervised KITTI 4.863
Oisin Mac Aodha2 Monocular Depth Estimation Eigen
Michael Firman3
Gabriel Brostow3
9 C. Godard, O. M. 2017 Unsupervised monocular depth| KITTI and | 4.935
Aodha, and G. ] estimation with left-right | Cityscapes
Brostow.[16] consistency.
10 | Lee, J.-H. and C.-S. | 2019 Monocular depth | NYU v2 0.538
Kim. [22] estimation using relative depth
maps.
11 Godard, C.,, et al.| 2019 Digging intoself-supervised KITTI 0.4863
[21] monocular depth estimation. Make3D
12 Xu, D, et al. [23] 2018 Structured  attention guided [ NYU v2 4.677
convolutional neural fields for| KITTI
monocular depth estimation.
13 Liu, F., C. Shen, and | 2015 Deep convolutional neural fields NYU v2 0.824
39
G. Lin. [26] for depth estimation from a single KITTI




image.

14

Zhou, T., et al. [15] 2017 | Unsupervised learning of depth | KITTL 10.47
and ego-motion from video. Make3D

Table 2.1. Overview of different techniques of depth estimation

Zhou, T, et al. [15] current system does not directly quantify the dynamics and
occlusions of scenes, all of which are crucial factors in 3D perception of scenes. 2)
Our system assumes that the object is intrinsic, which prevents the use of random
Internet videos of unknown object types / calibration. In C. Godard, O. M. Aodha, and G.
J. Brostow.[16] both left - right consistency test and post-processing enhance the
quality of the results, certain artifacts are still apparent at occlusion boundaries
due to the fact that the pixels in the occlusion area are not apparent in both images
. Our system needs rectified and temporarily synchronized stereo pairs during
testing, which means that it is not currently possible to use existing single-volume
sets. The fully convolutional model proposed by Laina et al. [20] significantly
enhances the accuracy of the edge and the description of the structure in the
predicted depth maps. The network proposed is completely convolutional,
containing up-projection layers that allow much deeper configurations to be
trained, while significantly reducing the number of parameters to be learned and
the number of training samples required. The algorithm proposed by Lee [22]
provides the output and an ablation analysis showed that relative depth maps are
more efficient than ordinary maps in maintaining the depth of a scene. Fu et al.
[27] , on the other hand, formulated depth estimation as a classification problem.
The depth range is first discretized into intervals. The network then learn to
classify each image pixel into one of the depth intervals. However, instead of

using uniform discretization, Fu et al. [27] used a spacing increasing discretization.
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Chapter 3: Datasets

High demand for multiple scene understanding technologies such as autonomous
driving, robot navigation, or virtual reality devices. Convolutional neural network
(CNN) architectures have been most widely used to substitute or improve
conventional approaches and have been shown effectively to infer geometric

details only from the monocular RGB or intensity images provided.

Developing and evaluating depth estimation algorithms requires a large amount
of representative data, particularly for learned estimation methods. Scharstein and
Szeliski [28] provided the Middlebury dataset as an early test environment for
quantitative assessment of stereo algorithms, where the ground truth was
obtained by structured light. Facilitated by consumer depth cameras such as
Microsoft Kinect [29], a number of indoor depth data sets have been proposed [30]
. In particular, the NYUdepthv2 data set [24] is a widely used data set with
approximately 1500 samples. However, due to the limitations of consumer depth
cameras in severe ambient light and modulation frequency limitations, these data
sets only cover indoor scenarios with limited ranges. The KITTI Stereo 2015
benchmark [31] has introduced 400 images of street scenes with ground-level

truth acquired by the lidar system.

The Kitti dataset [32] includes scenes from streets captured from a moving vehicle,
see Figure 3.0. The dataset includes RGB images from a Velodyne laser scanner
along with the depth maps. Depth maps are provided, however, only in a very
low resolution which also suffers from irregularly and sparsely spaced points. The

most
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frequently used dataset is the NYU depth v2 dataset [24] which contains 464
indoor scenes with aligned RGB and video sequence depth images obtained from
a Microsoft Kinect v1 sensor. A subset of this dataset is mainly used for deep

network testing, while a further 654 image and depth pairs are used for evaluation

sterco camera lidar

Fig 3.0 Test vehicle equipped with a RGB stereocamera (Aptina AR0230,
1920x1024, 12bit) and a lidar(Velodyne HDL64-53, 905nm)

3.1 Data Augmentation

The use of data increases relevant to the task is essential for the network to
benefit from the increase. It is necessary to feed the images on the network which
it will actually find in the real world. Some popular and helpful increases are for
the depth estimation task; small random rotations, gaussian noise, random

horizontal flips, color increases and translations.

Applying a procedure named data augmentation is one of their considerations
for avoiding overfitting. This technique is primarily used for the purpose of
increasing image data by transforming input images, such as cropping, flipping
and/or rotating [33]. Other methods, like transferring the style of your image, are

available from night to day, winter to summer, sunny to cloudy and vice versa.
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This technique increases the amount and variety of data that an algorithm for
machine learning needs to improve its efficiency and evaluation. The only valid
data augmentation transformation is the horizontal flip of images, because of the
existence of the task in DenseDepth. Other transformations which alter the
scene's geometry are counterproductive. For example, a vertical flip will put the
road and cars at the top of the frame, while the sky would be at the bottom, a
scenario that does not suit any future inference input picture, nor any real world
scenario. The following table provides explanations for explanation of some of

those transformations.

Method

Deep Style Transfer
(seasons)

Deep Style Transfer
(time of day)

Horizontal flipping

Vertical flipping

Table 3.1. lllustration of Data Augmentation techniques [34]

3.2 NYU Depth v2
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Nathan Silberman and Fergus submitted the NYU Depth V2 dataset at ECCV 201
2 Video sequences of 464 indoor scenes captured with Microsoft Kinect

[24]. compose NYU Depth v2. v2 [24]. The collection of data includes two
components: the labeled 1449 (795 in a training set, 654 in a test set) RGB
matched and the 640x480 resolution depth pictures with textual marking for each
object. For each object. The second component contains raw camera data and Mi
crosoft Kinect output. This results in a total of 407,024 unlabeled videos. The data
set also contains MATLAB scripts for the analysis of the raw data, and for the
synchronization, alignment and full depth maps. The data set includes the

profundity values are 0-10 meters for both components.

Figure.3.1. NYU v2 Sample Images
3.3 KITTI

The dataset consists of about 93,000 images from outdoor scenes, divided into
five categories; area, residential, path, campus, and person. The data was
collected using a high-resolution stereo camera rig in color and a Velodyne 3D
Laser Scanner (LiDAR), which captured the scene depth. A total of 151 sequences
have been registered, and the raw data from the left and right camera are given
for each frame. A rectified version of the RGB images is available for download
along with the raw LiDAR scans.

Depending on the calibration parameters, the resolution of the rectified RGB

images varies slightly but is around 1242x375.
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The raw LiDAR scans are sparse, indicating that not all pixels contain values.
However, Uhrig et al. [35] provided denser depth maps, deriving a large-scale
dataset of depth-annotated RGB images from the sparse scan results. Their
research was inspired by showing that conventional convolutional neural
networks typically perform poorly when trained on sparse data. The raw LiDAR

scans are sparse, i.e. They contain as many pixels as four times [35].

KITTI [36] includes video clips from a LIDAR range moving vehicle. In case of
RGB images of 1392x512 resolution, LIDAR point cloud data must be taken from
depth maps. These are only given for the lower part of the picture. Dataset

consists of 56 scenes and has a total of approximately 20,000 pictures. In 2013, the

[37] KITTI dataset was submitted at IJRR. Instead of using the entire KITTI
dataset, the Eigen division is generally pursued. This divide includes 23,488
photographs from 32 preparation scenes and 697 photographs from 29 test

rooms.Figure 3.2 an example of an input images from the KITTI datasets.

Figure.3.2. KITTI Sample images

34 Make3D

Make3D [38] is an outdoor collection of 534 images of open air, 400 pictures are

used to test, 134 for testing. The depth information is collected using Laser and
the
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resulting RGB pictures have a resolution of 2272x1704. To decrease

the preparation time, it is additionally usual to down-example these images.

Figure 3.3. Make3D Sample Images

Data record Figures Notation Available Scene
NYUD-V2 [1] 1449 + 407K RAW Depth + Segmentation Indoor
KITTI [3] 94K Frames gjtzth aligned with  RAW | g, ot
Make3D [4] 500 Frames Depth Outdoor

Table 3.1: Data record for Depth Estimation [8]

3.5
Metrics for evaluating performance of depth estimati
on on datasets

To benchmark output and compare existing solutions, it is important to evaluate
results quantitatively. In Table 3.2, we present the specific metrics used to assess
the performance of systems performing depth estimation. This is the estimated
depth of the pixel and the target depth of the pixel. At the end of this chapter,

Table 2.2 compares the performance of current solutions using these metrics.

Relative error (rel) 1 Z di—d;]
m ZEN d:‘

Square relative error (sqr rel) 1 |di—d;[*
1 1 IN] 2ieN — @
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Root mean squared error (rms) \/ ﬁ Z N |di —d* |2
(AP 1

Root mean squared error log \/ﬁ Zie]\" | log(d;) — log(d’;)l‘l
(rms-log)

Logl0 error (log10) ]ﬁ > ien 10819(di) — logy(d;)|

Threshold of accuracies (Ai) for A % of d; s.t. 1nax(%. (fi—") < thr, where
< thr thr € {1.25,1.25%,1.25%}

Table 3.2: Metrics used for evaluating performance in depth estimation

Higher values mean better results for each metric except for the threshold metric.

Higher values mean lower error for metric thresholds.
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Chapter 4: Proposed Methodology

We define our method of estimating a depth map from a single RGB image in this
section. We first define the architecture of the encoder-decoder used. Next we
explore our findings on both the encoder and decoder complexity and its output
relationship. First, we suggest a fitting loss function for the task in question.
Finally, we identify effective policies for expansion that significantly help the

training process.

41 Depth information:

Depth can be stored in meters for every pixel in the image frame as distance from
the camera. The following figure shows depth map for a single RGB image. The
depth map is to the right where the actual depth was converted to relative depth

using this room's maximum depth.

Figure 4. RGB Image and its corresponding depth map
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The most widely used approach for real application is a combination of a so-called
pre-trained network operating on powerful computer hardware. The general

structure for using the pre-trained NN is illustrated in the figure below.

Load pretrained network Replace final layers Train network Predict and Deploy results
assess network accuracy
o Oy . Tee W g iraces
ST e | i’f. L
e B ke ?::J‘;:.. -at ,L‘» : .. al-arn;mcm . Test meges Fi =
Py, —~— —~— ‘ ‘ l e
“ II “.. ‘ “ g i
1 ™ or images Fevoe lassee 1205 or images
€0D2¢ 22ses Le= 7 faster 05 of c230es

Figure.4.1 General classification of pre-trained network

We propose an architecture that connect all layers (with corresponding feature
map sizes) directly to each other to ensure maximum information flow between
layers in the network. To preserve the feed-forward nature, each layer gets
additional feedback from all preceding layers and passes to all subsequent layers

on its own feature-maps as shown below.

Figure 4.2 Each layer takes all of the previous features-maps as input.
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Unlike ResNets, we never combine features by summing them up before they pass
into a layer; instead, we combine features by concatenating them. Due to its dense
connectivity pattern, DenseConvolutional Network (DenseNet) was approached.
The result of this dense communication pattern is that it needs fewer parameters
than traditional convolution networks, because redundant feature maps need not
be relearned. Traditional feed-forward architectures can be seen as state
algorithms which are transferred from layer to layer. Every layer reads the state
from its previous layer, and writes to the layer that follows. It changes the state
but it also transmits information that must be protected. We evaluate DenseNets
on two highly competitive datasets for comparisons (NYU Scope v2, and KITTI).

Our models tend to allow far fewer parameters.

4.2 Proposed Network Architecture

DenseDepth relies on transfer learning, a method that makes more effective use of
previous information derived from a learning problem — image classification in
this case — to help solve another — depth estimation —[39]. Transfer learning
has helped this approach to produce similar or even better results to a simpler and
modular architecture than other methods. However, it is a strictly supervised form
of learning that requires ground-truth-depth data like those from 3D laser scans or

other costly hardware.

Our network architecture follows a framework of encoder decoders. The encoder
is where the transfer learning takes place, specifically using DenseNet-169 pre-
trained on ImageNet [40], an image database for classifying images and
recognizing objects. Having some pretrained section allowed this method to

reduce validation
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loss compared to an initialization of totally random weights. The decoder segment

consists of core convolutional layers.

[~
-l

Input Encoder Decoder Output

Figure.4.3.(a) An architectural overview of our network.
4.3 Modifying network architecture

The encoder presented is a pretrained DenseNet 169.The encoder consists of 4
dense blocks that occur before the fully connected layers in the DenseNet 169
model. It is different from other depth models in that it uses a very simple
decoder. Each decoder block consists of a single bi-linear upsampling layer
followed by 2 convolution layers. Following another standard practice in encoder
decoder architecture, the up sampling layers are concatenated with the
corresponding layers in the encoder. Figure below, explains the architecture in

more detail.
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__ Encoder | [ Decoder |

| I 2x bilinear upsampling followed
] by 2 standard convolutional layers

Leaky Relu

gl Feature vector fapg

Estimated depth

Input image =N

DenseNeL160 network
pretrained on ImageNet .
Feature 1 —TT—
Extracted from | m
encoder T

Denseet169/121 or resnet50 pretrained on imagenet

Figure 4.3.(b) Densenet architectural summary [41]

In DenseDepth the mirrored images (horizontal flipping) are used with its
horizontally flipped version to average the depth values of the original image.
Fig.4.3 (a) displays an overview of the depth estimate of our encoder network. The
tirst part of the decoder consists of four learnable upsampling blocks, which
returns an output about half the size of the input image. A drop-out layer is then
added with a 50 percent probability, convolution, and a ReLU activation. The
output is eventually upsampled by bilinear interpolation, resulting in a final

estimate of the same spatial scale as the data.

Using the DenseNet-169[7] network pre-trained on ImageNet [8], the input RGB
image is encoded into a function vector for our encoder. This vector is then fed
into a successive sequence of up-sampling layers [9] to create the final depth map
at half of the input resolution. Our decoder is created by these up sampling layers

and their related skip connections. Our decoder includes no suggested batch
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normalization [10] or other advanced layers in recent state-of - the-art methods [11,

121].
LAYER OUTPUT FUNCTION
INPUT 480 x640x3
CONV1 240 x320x64 DenseNet CONV1
POOL1 120 x160x64 DenseNet POOL1
POOL2 60 x80x128 DenseNet POOL2
POOL3 30 x40x256 DenseNet POOL3

Convolution 1 x 1

CONV2 15720 1664 of DenseNet BLOCK4
UP1 30 x 40 x 1664 Upsample 2 x 2
CONCAT1 30 x 40 x 1920 Concatenate POOL3
UP1-CONVA 30 x40x832 Convolution 3 x 3
UP1-CONVB 30 x40x832 Convolution 3 x 3
UpP2 60 x80x832 Upsample 2 x 2
CONCAT2 60 x80x960 Concatenate POOL2
UP2-CONVA 60 x80x416 Convolution 3 x 3
UP2-CONVB 60 x80x416 Convolution 3 x 3
UP3 120 x 160 x 416 Upsample 2 x 2
CONCAT3 120 x 160 x 480 Concatenate POOL1
UP3-CONVA 120 x 160 x 208 Convolution 3 x 3
UP3-CONVB 120 x 160 x 208 Convolution 3 x 3
UP4 240 x 320 x 208 Upsample 2 x 2
CONCAT3 240 x 320 x 272 Concatenate CONV1
UP2-CONVA 240 x 320 x 104 Convolution 3 x 3
UP2-CONVB 240 x 320 x 104 Convolution 3 x 3
CONV3 240 x320x1 Convolution 3 x 3

Table 4.1 Network architecture.

Tab.4.1 shows the structure of encoder-decoder with skip connections network.

Encoder is based on the DenseNet-169 [13] network where the top layers removed

that are related to the original ImageNet [42] classification task. For decoder, start

with a 1 x 1 convolutional layer with the same number of output channels as the
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output of truncated encoder. Then successively add up sampling blocks each
composed of a 2x bilinear up sampling followed by two 3 x 3 convolutional layers
with output filters set to half the number of inputs filters, and were the first
convolutional layer of the two is applied on the concatenation of the output of the
previous layer and the pooling layer from the encoder having the same spatial
dimension. Each up sampling block, except for the last one, is followed by a leaky
ReLU activation function [26] with parameter a = 0:2. The input images are
represented by their original colors in the range [0; 1] without any input data
normalization. Target depth maps are clipped to the range [0:4; 10] in meters.
Layers up to CONV2 are exactly those of DenseNet-169 [13]. Up sampling is
bilinear up sampling. We follow each CONVB convolutional layer by a leaky
ReLU activation function [26] with parameter o = 0:2. Note that in this table we
use the output shapes corresponding to the spatial resolution of the dataset NYU

Depth v2 (heightx widthx channels).
4.4 Changing feature extractor to DenseNet 169/121 or Resnet 50

ResNet-50 [20] is used as an encoder to extract features from the input image.
ResNet has shown great potential by applying skip connections that make it
possible to skip steps that facilitate deep network training [43]. In some of the
works [20, 27, 44], different architectures were evaluated against each other, with
ResNet outperforming all the others. According to Cao et al. [44] and Eigen et al.
[45], deeper architectures also seem to perform slightly better than shallow ones

when predicting depth.

While ResNet has shown great results, there are a range of other networks that
can be used to extract features and that may function better for this particular task.

DenseNet, proposed by Huang et al. [42], is a very large yet narrow network in
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which all layers are directly connected to each other. In DenseNet, each layer
receives input from all previous layers and transfers its own function maps to all
future layers. It ensures the full flow of knowledge between layers and encourages
preparation. In comparison to ResNet, where the functions are summed together,

DenseNet functions maps are concatenated.

More info on the DenselNet architecture can be found in [42]. Dense
Convolutionarl Network (DenseNet),L_(%ﬂ_). which connects each layer in a feed-
forward fashion with each other. Whereas conventional convolutional L

layer networks have L connections one between each layer and its subsequent
layer — our network has direct co direct connections. The feature maps of all
preceding layers are used as inputs for each layer, and their own feature maps are
used in all subsequent layers as inputs. A possible counter-intuitive effect of this
dense pattern of connectivity is that it requires fewer parameters than traditional
convolutional networks, as there is no need to re-learn redundant feature maps.
Traditional feed-forward architectures can be seen as state algorithms,

which are moved from layer to layer. Every layer reads the state from its previous
layer, and writes to the layer that follows it. It changes the state but also transmits
information that requires preservation. DenseNet layers are very narrow (e.g., 12
filters per layer), add only a small set of features-maps to the "collective
knowledge" of the network and keep the remaining features-maps unchanged —
and the final classifier makes a decision based on all the features-maps in the
network. In addition to improved parameter efficiency, DenseNets' improved flow
of information and gradients across the network make it easy for them to train.
Each layer has direct access to the gradients of the loss function and the original

input signal, resulting in implicit deep supervision [46]. This helps to train deeper
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network architecture. Furthermore, we also observe that dense connections have a

regularizing effect, which reduces over-fitting for tasks with smaller training sizes.

As DenseNet improves the flow of information, enhances the propagation of
features across the network, and uses a method of skip-connections similar to
those that have been shown to be useful in ResNet, DenseNet was presumed to
have potential as a good feature extractor. At the same time, using DenseNet

instead of ResNet would reduce the number of parameters available.

4.5 Network Training

The segment explains how network training has been carried out. Implementation,
training and evaluation were carried out in Python using the Anaconda. The
Networks have been equipped on NVIDIA GeForce RTX 1080 GPU. Our encoder
is a DenseNet-169[17] preformed on ImageNet[5]. The decoder weights are
initialized at random after [11]. In all tests, the ADAM][20] optimizer was used
with a learning rate of 0:0001 and a parameter value of 1 = 0:9, 32 = 0:999. The
batch size is set to 2. The total number of training parameters for the entire
network is approximately 21M. Training is done for 20 epochs on NYU Depth v2,

taking 2 hours and 40 minutes per epoch to finish.

4.6 Training details

Training on NVIDIA GeForce GTX 1080 took 2 hours per epoch for the NYU
Depth v2[54] data collection . The performance in the NYU Depth v2 dataset is
impressive, reaching the highest accuracy in most of the metrics (89.5-99.6%),
making it state-of-the-art. All networks are trained by stochastic gradient descent
(SGD). We train models for 50 epochs with a batch size of 2 on Densenet169. The
learning rate is initially set to 0.1 and is reduced by 10 times in epochs

30 and 50. It took 2 hours 40 minutes per epochs to complete the training.
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4.7 Training a neural network

In this section the general training principles of supervised neural networks are
described.

4,71 Loss Function

The loss function is used to calculate the difference between the value of the
ground truth, Y, and the value of the expected value, y*. The difference is also
referred to as the error of prediction and provides a numerical measure to how
well the network is able to perform its function. When predictions are made
pixelwise, the error of prediction is also measured pixelwise. During the training
cycle, weights and biases are modified with the goal of reducing the role of
loss[20]. Therefore, the option of an appropriate loss function is important for the
network to properly learn its task. Our approach is to define a loss function that
balances the reconstruction of depth images by reducing the difference in depth
values while also penalizing distortions of high-frequency information in the
depth map image domain. Usually, these details correspond to the boundaries of

the objects in the scene.

Loss L:
For the training of our network, we define the loss L between y and y*

as the weighted sum of three loss functions:

L(ya g) - )‘Ldepth(ya g) + Lg?‘ad(ya Q) + LSSI]\I (ya Q) (1)
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L1 loss

The first loss Ldepth term depth is the point-wise L1 loss described by the depth

values:
1 n
Ldepth(yv g) = ; E :lyp - Qp' (2)
p
The second loss term Lgrad is the loss of L1 defined by the image gradient g of the
depth map:
L2 loss

Second Lgrd loss is the L1 loss defined by the gradient g for the image depth:

o Lo i i
Loraa(y:9) = — D _|0x(Up: 9p)| + 19y Wp: )| B)
p

where the difference between x and y components for depth gradients of y and

y” is determined by gx and gy.
Structural Similarity (SSIM) Loss

Lssmv uses the term "Structural Similarity" (SSIM)[47] which is a commonly used

metric for image reconstruction tasks.

Lssim(y,9) = 5 : 4)

Note that we only define a weight parameter A for the loss term Ldepth. In
empirical terms, we have identified and established A = 0:1 as a reasonable

weight for this term.
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Chapter 5: Experimental Results
5.1. Environment

Next a description of the area in which the experiment was performed is provided
for reference and reproducibility purposes. Models were tested on an NVIDIA
GeForce GTX 1080 graphics card (8 GB of Memory) on the same desktop
computer. Monodepth as run using TensorFlow [55], a Google-developed software

library for machine learning and neural network research.

Hardware environment
GPU | GeForce GTX 1080
Software Environment
Programming language Python 3.6 + Anaconda(Spyder 4.0)
Framework Tensorflow 1.9.0

Table 5.1 Summary of operational environment

5.2. Pre-Trained Models

Monodepth implementation provide open source pre-trained models for those
attempting to replicate their experiments. That is, the authors have already done
training on large data sets, and a model has been selected as the best performer
for a given dataset. The best weights can be applied to the network with a pre-
trained model such that the depth inference can be determined without the need
for network retraining, a very challenging method due to the high complexity of

convolutional neural network architecture.

Only two pretrained models are available: one trained on the NYU Depth V2
dataset and the other trained on the KITTI dataset. A description of the pretrained

models available is given in the table below:
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Name Dataset Description Fine-tuned
NYU NYU Depth V2 Interior, Rooms NO

KITTI KITTI Exterior, city road NO

Table 5.2 Summary of available pre-trained models

Pretrained models are expected to do better to extract depth from images taken in
similar environments as the dataset used to train the models. For example, using

the models trained with KITTI or Cityscapes would be better for the task of depth
perception in an autonomous vehicle driving through a city. However, EIGEN or

NYU Depth V2 are more suitable for 3D reconstruction or navigation of interiors.

5.3. Results

In this section, a quantitative and qualitative analysis using dataset images has
been done. Color-coded maps of the depth / disparity of this model are presented

with the plasma color map as shown below in figure 5.1.

More disparity Less disparity
Less depth More depth

Figure 5.1 Plasma color map

Available in two pre-trained models, one using KITTI dataset and the other using
NYU v2 data collection. The best results were obtained by using the NYU pre-
trained model to extract depth maps from roads and cities. The best results from
this experiment can be seen in the following figure with the monocular input
image that was fed to the algorithm. The following figure displays the best depth
maps, along with the corresponding monocular inputs, from the random collection

of indoor images.
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Figure 5.2 Results from Dense Depth using NYU pre-trained model

Dense Depth is capable of extracting depth information from these high-detailed,
monocular indoor images that can be seen in many features such as the boundary

of the object and the many levels of the depth of the real world that it displays.

5.3.1. Training and testing Results on depth estimation
models

Our architecture is capable of extracting depth information from these high-
detailed, monocular indoor images, which can be seen in many features such as

the boundary of the object and the many levels of the depth of the real world.

Dense Depth was trained in a 50 K sample of NYU-v2 data set. The input was a
640x480 resolution RGB image and the output was a 320 x 240 resolution depth

map. The model was trained in Keras using the Adam optimiser.

Even though ResNet has shown great results, a number of other networks exist
that can be used to extract features and may function better for this specific task.
DenseNet, proposed by Huang et al. [42], is a very large but narrow network to
which all layers are directly connected. -- layer receives inputs from all previous
layers in DenseNet, and transfers its own feature maps to all future layers. It

ensures optimal flow of knowledge between layers, and ease training. The
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feature maps in DenseNet are concatenated in comparison to ResNet, in which the

features are summed together.

Since DenseNet improves the flow of information, strengthens the propagation of
the feature through the network, and uses a type of skip-connections similar to
those proved useful in ResNet, DenseNet was assumed to have potential as a good
extractor feature. At the same time, using DenseNet instead of ResNet will
decrease the number of necessary parameters. ResNet backbone has, therefore,
been replaced with DenseNet-201.Three different model architectures

(Densenet169,201 and resnet 50) have been trained:

Training Results using Densenet 169

1. An implementation of the DensetNet 169 encoder. This model has
been trained for 50 epochs (2 hours per epoch on NVIDIA 1080) as

shown in below figures.

Figure 5.3 Epoch 1 training result using densenet169

62



Figure 5.6 Epoch 30 training result using densenet169
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Figure 5.8 Epoch 50 training result using densenet169

Training Results using Densenet 201

2. An implementation of a DenseNet 121 encoder which has fewer parameters
than DenseNet 169. This model was trained for 20 epochs (2 hours per
epoch on GPU) as validation loss had stabilized by this point.

Figure 5.9 Epochl training result using densenet 201
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Figure 5.11 Epoch10 training result using densenet 201

Figure 5.13 Epoch 20 training result using densenet 201
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Training results using Resnet50

3. Implementing a Resnet 50 encoder with more parameters than DenseNet
169.This model was trained for 20 epochs (2 hours per epoch on GPU) and

the training was discontinued as the model had begun to be over fitted.

Figure 5.16 Epoch 10 training result using Rsnet50
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Figure 5.18 Epoch 20 training result using Rsnet50

In above figures we can see as the number of epochs are increases the fine details of
depth maps becomes more visible.

Testing Results During the test period, we calculate the complete test image depth
map prediction and Then measure by 2 to suit the ground truth resolution and
test Eigen et al. on the center crop predefined [16]. At test time, we calculate the
final performance by taking a picture's average prediction and its mirror image

prediction.

Figure 5.19. Testing Results
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5.4

Evaluation Results:

Densenet169 performance in indoor scenarios is significantly better than densenet
201 and resnet50. The following figure shows a few examples of the difference
between the outputs produced by the three methods compared to the input
images. Three performance metrics were used in these experiments to evaluate

densenet169, 201 and Resnet50 as shown below in tables 5.3,5.4 and 5.5.

Epochs | al a2 a3 Rel rms log_10
1 0.7998, |0.9589, |0.9922, |0.1459, |0.5221, | 0.0622
2 0.8154, |0.9671, |0.9935, |0.1337, |0.5083, | 0.059

3 0.8250, |0.9678, |0.9933, |0.1307, |0.4892, |0.0577
4 0.8309, |0.9697, |0.9936, | 0.1301, | 0.4899, | 0.0569
5 0.8422, |0.9718, |0.9931, |0.1268, |0.4711, | 0.0548
6 0.8389, |0.9712, |0.9930, |0.1303, | 0.4719, | 0.0551
7 0.8350, |0.9711, |0.9936, | 0.1266, | 0.4783, | 0.0555
8 0.8383, |0.9713, |0.9935, |0.1263, | 0.4736, | 0.0548
9 0.8331, ]0.9691, |0.9930, |0.1268, | 0.4868, | 0.0561
10 0.8386, |0.9709, |0.9935, |0.1272, |0.4741, | 0.055

11 0.8383, |0.9707, |0.9935, |0.1259, | 0.4801, | 0.0551
12 0.8419, |0.9710, |0.9930, |0.1259, |0.4718, | 0.0547
13 0.8411, |0.9717, ]0.9936, | 0.1252, | 0.4708, | 0.0545
14 0.8381, |0.9706, |0.9933, |0.1259, | 0.4744, | 0.0553
15 0.8425, 10.9719, |0.9934, |0.1252, | 0.4679, | 0.0545
16 0.8398, |0.9710, |0.9938, |0.1265, | 0.4708, | 0.0546
17 0.8353, |0.9703, |0.9937, |0.1264, |0.4781, | 0.056

18 0.8417, 10.9720, |0.9936, |0.1248, | 0.4691, | 0.0542
19 0.8418, |0.9722, |0.9937, |0.1259, | 0.4678, | 0.0542
20 0.8347, |0.9706, |0.9932, |0.1266, | 0.4782, | 0.0556
21 0.8369, |0.9707, ]0.9932, |0.1261, | 0.4768, | 0.0552
22 0.8383, |0.9705, |0.9935, |0.1265, | 0.4720, | 0.0547
23 0.8381, |0.9702, |0.9933, |0.1267, |0.4741, | 0.055

24 0.8398, |0.9703, |0.9933, |0.1259, | 0.4747, | 0.0548
25 0.8382, |0.9713, |0.9934, |0.1264, | 0.4724, | 0.0549
26 0.8373, 10.9702, |0.9935, |0.1268, | 0.4780, | 0.0553
27 0.8356, |0.9696, |0.9934, |0.1263, | 0.4796, | 0.0554
28 0.8405, |0.9706, |0.9934, |0.1261, | 0.4702, | 0.0546
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29 0.8368, | 0.9699, | 0.9932, | 0.1255, | 0.4785, | 0.0549
30 0.8380, [ 0.9699, | 0.9935, | 0.1262, | 0.4761, | 0.0552
31 0.8390, [ 0.9698, | 0.9931, | 0.1262, | 0.4771, | 0.0549
32 0.8372, | 0.9699, | 0.9929, | 0.1265, | 0.4775, | 0.0551
33 0.8357, [ 0.9689, | 0.9930, | 0.1264, | 0.4840, | 0.0558
34 0.8412, | 0.9704, | 0.9932, | 0.1264, | 0.4712, | 0.0545
35 0.8388, [ 0.9703, | 0.9935, | 0.1260, | 0.4740, | 0.0549
36 0.8384, [ 0.9702, | 0.9931, | 0.1265, | 0.4744, | 0.0553
37 0.8386, | 0.9702, | 0.9933, | 0.1265, | 0.4765, | 0.0551
38 0.8359, [ 0.9690, | 0.9928, | 0.1268, | 0.4818, | 0.0555
39 0.8394, [ 0.9702, | 0.9931, | 0.1265, | 0.4738, | 0.0548
40 0.8359, [ 0.9695, | 0.9933, | 0.1265, | 0.4788, | 0.0556
41 0.8363, [ 0.9690, | 0.9929, | 0.1261, | 0.4826, | 0.0555
42 0.8409, [ 0.9705, | 0.9930, | 0.1252, | 0.4724, | 0.0546
43 0.8381, | 0.9692, | 0.9933, | 0.1266, | 0.4774, | 0.0554
44 0.8392, | 0.9687, | 0.9931, | 0.1264, | 0.4784, | 0.0551
45 0.8380, | 0.9696, | 0.9935, | 0.1262, | 0.4766, | 0.0551
46 0.8393, [ 0.9700, | 0.9935, | 0.1268, | 0.4733, | 0.0548
47 0.8377, | 0.9684, | 0.9931, | 0.1261, | 0.4769, | 0.0552
48 0.8388, | 0.9695, | 0.9935, | 0.1259, | 0.4760, | 0.0551
49 0.8372, | 0.9687, | 0.9933, | 0.1264, | 0.4814, | 0.0555
50 0.8405, [ 0.9697, | 0.9933, | 0.1272, | 0.4695, | 0.0545

Table 5.3 Densenet169 Evaluation results on performance metrics
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Figure 5.20

After 50th epoch results becomes decaying. Therefore, we stop on 50th epoch.
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Epochs | al, a2, a3, rel, rms, log_10
1 0.7449, 10.9542, |0.9904, | 0.1811, | 0.5855, | 0.0717
2 0.7845, |0.9564, | 0.9911, | 0.1437, | 0.5576, | 0.065

3 0.8133, |0.9662, |0.9928, |0.1366, |0.5028, |0.059

4 0.8168, |0.9665, |0.9932, |0.1369, | 0.4952, | 0.0587
5 0.8205, |0.9660, |0.9928, |0.1321, | 0.4952, | 0.0581
6 0.8187, |0.9673, |0.9930, |0.1342, |0.4955, |0.058

7 0.8210, | 0.9655, |0.9925, |0.1327, |0.4962, | 0.0581
8 0.8168, |0.9652, |0.9925, | 0.1328, | 0.5040, | 0.0587
9 0.8257, |0.9678, |0.9930, | 0.1310, | 0.4883, | 0.0568
10 0.8239, |0.9665, |0.9926, | 0.1336, | 0.4894, | 0.0574
11 0.8207, ]0.9651, |0.9922, |0.1313, | 0.4980, | 0.0579
12 0.8215, |0.9659, |0.9924, | 0.1312, | 0.4954, | 0.0577
13 0.8248, |0.9676, |0.9928, | 0.1308, | 0.4889, | 0.0569
14 0.8183, |0.9651, |0.9927, |0.1319, | 0.5046, | 0.0583
15 0.8217, ]0.9659, |0.9925, | 0.1310, | 0.4935, | 0.0576
16 0.8251, |0.9650, |0.9923, | 0.1343, | 0.4877, | 0.057

17 0.8232, 10.9660, |0.9922, |0.1322, | 0.4927, | 0.0579
18 0.8250, |0.9672, ]0.9928, | 0.1309, | 0.4876, | 0.0569
19 0.8300, |0.9677, ]0.9923, | 0.1310, | 0.4843, | 0.0565
20 0.8241, |0.9663, |0.9924, | 0.1306, | 0.4909, | 0.057

Table 5.4 Densenet 201 Evaluation results on performance metrics
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Epochs | al, a2, | a3, rel, rms,| log_10
1 [0.7363, | 0.9379,|0.9850, |0.1674, 0.5920, |0.0731

2 10.7501, | 0.9424, | 0.9870, |0.1673, 0.5799, |0.0710

3 10.7622, | 0.9485, | 0.9884, |0.1586, 0.5683, | 0.0685

4 10.7645, [ 0.9492,10.9887, [0.1587, 0.5607, | 0.0679

5 10.7701, [ 0.9483,]0.9874, [0.1592, 0.5589, | 0.0674

6 |0.7781, | 0.9511,]0.9891, |0.1574, 0.5417, | 0.0659
7 10.7644, | 0.9463,|0.9885, [0.1590, 0.5698, [ 0.0686

8 [0.7761, | 0.9514,|0.9896, [0.1562, 0.5427, | 0.0661
9 10.7744, [ 0.9504, ] 0.9895, |[0.1551, 0.5516, | 0.0667
10 [ 0.7689, | 0.9491, | 0.9895, |0.1549, 0.5635, | 0.0675
11 [ 0.7736, | 0.9489, | 0.9891, |0.1543, 0.5596, | 0.0670
12 [ 0.7788, | 0.9513, | 0.9893, |0.1535, 0.5463, | 0.0659
13 [ 0.7733, | 0.9487,|0.9889, |0.1543, 0.5591, |0.0672
14 [ 0.7694, | 0.9484,|0.9892, |0.1559, 0.5628, | 0.0677
15 [ 0.7773, | 0.9505, | 0.9894, |0.1563, 0.5450, | 0.0661
16 [ 0.7797, | 0.9497,|0.9890, |0.1557, 0.5470, | 0.0660
17 [ 0.7698, | 0.9485, | 0.9891, |0.1550, 0.5580, | 0.0676
18 [ 0.7817, | 0.9496, | 0.9887, |0.1542, 0.5410, | 0.0656
19 [ 0.7828, | 0.9506, | 0.9882, |0.1562, 0.5368, | 0.0653
20 |0.7731, | 0.9477,10.9884, |(0.1572, 0.5558, | 0.0670

Table 5.5 Resnet50 Evaluation results on performance metrics
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Figure 5.22

DenseNet 169 model performs better than DenseNet121 and ResNet 50 as seen in

the figure below.

Comparison of 3 models on the basis of RMS
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Figure 5.23 Comparison of 3 models on the basis of RMS
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We use three different metrics to compare three models (i.e Densenet 169 , 201 and
resnet50 ) output— average relative error (rel) in predicted and actual depth,
RMSE (rms) — root mean square error in actual and predicted depth, and average
log error (log) between the two depths and threshold of accuracies (Ai) for A <thr
(for thr = 1.25,1.252,1.253)as shown in Table 5.6. For all those metrics, lower values

imply a stronger model as shown in Figure 5.19.

Al A2 A3 Rel Rms Log_10

0.8471 [0.9731 |0.9937 |0.1234 | 0.4678 | 0.0535

Table 5.6. Accuracies], 2, 3, relative error, root mean square and logarithmic

Previous Papers Ours Model
Parameters Lee 63M 42.6M
DORN 123.4M
Laina 218 M
Training data 120kSamples(DORN) 50K Samples
RMSE Dorn 2.727 0.4678
Laina 0.573
Eigen 7.156
Threshold Accuracy DORN (0.964) 0.9937
Laina (0.967)
Depth Map Resolution | Santos 120x160 320x420
Laina  160x128
Training Iterations Dorn 3M 750K (15 Epochs)
Laina 5M

Table 5.7. Comparison of our model with previously published papers
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We compare the model performance in terms of rms with Laina, Eigen et al,
Godard et al and Fu et al. As shown in table 5.6 ours model densenet 169 give

lowest rms value which implies that densenet169 model is stronger.

Here,are the visual resuts of densenet169 model on images from CityScapes
dataset are presented.Note that our model had only been trained on NYU v2
depth dataset not on CityScape,it also gives acceptable results on cityscape dataset

that is rms=0.5224 which is nearest to our model value.

Figure 5.24 Testing results on CityScape dataset
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Previous papers RMS Al A2 A3
Godard 5.093 0.879 0.962 0.989
Dungbo Min 3.162 0.901 0.969 0.986
Ours Model 0.5224 0.7845 0.9564 0.9911

Table 5.8 Result comparison of our model with previous work done on images from
CityScapes dataset
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Chapter 6: Conclusion and Future work

In this section conclusion and future work is discussed.

6.1 Conclusion

For this thesis the question of monocular depth estimation was investigated,
which was ill posed.problem. This study presents a novel, deep convolutional
neural network, which predicts depth from monocular RGB images by deploying
an encoder-decoder framework to solve the issue. The suggested network
architecture is inspired by state-of-the-art networks estimating the depth. The
network achieves results comparable to the state-of - the-art methods on the NYU
V2 dataset by integrating dilated convolutions to capture context at different
scales, skip-connections to recover high level details, and ReLU activations to

improve model fitting.

We have presented a convolutional neural system for estimating depth
map of individual RGB images through the use of recent development
in architecture of network and high-performance pre-trained model

availability.

We have a pipeline for a strong Depth Estimation model that is
simple and easy to learn. A DenseNet encoder with fewer parameters
was introduced. We use three different metrics for compare model

performance. The lower values indicate a stronger model for all these metrics.
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To summarize, the main goal was achieved (obtaining a depth map from a single
RGB image). It was possible at the writing of this thesis thanks to the other sub-
objectives developed and completed. Some potential future lines of further
research linked to monocular depth perception are presented and addressed in the

next and final section based on the results obtained during this review.

6.2 Future Work

The computer vision area is continually developing, improving and discovering
new methods, solutions and applications for the most important tasks in the area.
The challenge of extracting 3D information from a single image is a fascinating

line of research for future related work.

We plan to finding improved data augmentation policies and their probability
values for the problem of depth estimation is an interesting topic for future

work.[48]
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