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Abstract 

Dynamic Partial reconfiguration is extensively used for applications which requires the adaptive 

behavior of a system at run time. Almost all SRAM-based field programmable gate arrays 

(FPGAs) introduced in the last decade, supports partial re-configuration (PR). Resource 

utilization in the FPGAs can optimized using partial reconfiguration. Most of the resource 

hungry algorithms comprises of multiple steps which are implemented as separate modules in 

FPGAs. these modules are usually not used concurrently. Therefor all those modules are never 

required to be present in the FPGA at the same time. Partial reconfiguration allows to utilize the 

hardware resource of one module by the other. 

Partial reconfiguration is ideal for applications which require huge number of computations and 

can afford a reasonable time to achieve this with a smaller/cheaper FPGA device. These 

techniques have been studied in detail but their use is yet not very famous in the industry. The 

goal this research is to design a framework which will allow to take advantage of the hardware 

architecture and integrate as much logic as possible without using extra hardware resource. A 

design example of jpeg compression is used to demonstrate the procedure involved in the 

utilization of technique and to show the advantages that can be achieved with the help of 

dynamic and partial reconfiguration-based framework. In addition, the effectiveness of the 

proposed methodology is quantified by comparing the FPGA resource utilization of the original 

JPEG compression design and that of the partial reconfigurable prototype.  
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CHAPTER 1: INTRODUCTION 

Field programmable gate arrays (FPGAs) were initially limited to be used for implementing 

glue-logic to platforms for implementing advanced mixed software-hardware systems-on-chip 

(SOCs). As their abilities and sizes have increased, FPGAs are being used in a wide range of 

domains, where their ability to reprogram offers a diverse advantage over fixed application 

specific integrated circuit (ASIC) implementations. This ability allows hardware designs to be 

re-purposed or reprogrammed even after deployment. An even more differentiating feature of 

FPGAs is their advanced feature of dynamic programmability, whereby their functionality is 

changed at runtime in response to application requirements. SRAM-based FPGAs in their 

conventional use are the hardware devices that require to be programmed once they are powered 

on. This type of programming the FPGAs is called static reprogramming. In most of the FPGA 

based products, the FPGAs are programmed via non volatile storage media. This storage media 

contains the configuration file for the whole FPGA. Once that configuration is copied onto the 

SRAM of FPGA, it starts functioning and keeps performing the same functionality until it is 

powered off. It does not change the configuration at run time even though most of these devices 

has the capability to do so. FPGAs can reprogram themselves at runtime and perform a totally 

different function. In order to do so it completely rewrites its SRAM configuration memory. An 

external storage media is required which contains the multiple configurations these 

configurations can also be updated or added remotely. 

In the recent years a more advanced option of dynamic reconfiguration has been introduced by 

the FPGA manufacturers where FPGAs can configure portions of their configuration memory 

which in other terms means that the portion of the FPGAs hardware will change its functionality 

while the rest of the hardware keeps performing according to initial configuration. The flexibility 

of on-site programming of an FPGA reduced the requirement of refabricating for a modified 

design. Partial Reconfiguration (PR) takes this flexibility even further as it allows the 

amendment of an operational FPGA design by loading a partial configuration file, usually a 

partial BIT file. Hence Partial Reconfiguration is the process of modification of a functional 

FPGA by loading a partial bit file. To avail this option full BIT file is first required to configure 

the FPGA, later partial configuration files can be loaded to alter reconfigurable regions in the 
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FPGA without compromising the integrity of the applications that was currently running on 

those parts of the FPGA that are not part of the reconfigurable region. Figure below shows a 

placement of reconfigurable module within the FPGA. 

 

Figure 1: Reconfigurable Block Within an FPGA 

 

This thesis presents a framework that helps in utilizing the dynamic partial reconfiguration 

ability of the FPGAs/SOCs in order to implement resource hungry algorithms/application on a 

relatively small FPGA device.   

Basic structure of all the Field Programmable Gate Array devices is composed of two separate 

layers: the configuration memory layer and the hardware layer [1] where the logic mapped on, as 

shown in Figure 2. FPGAs devices achieve this flexible ability to reprogram themselves because 

of this composition. The hardware layer contains the computational hardware resources, 

including flip-flops, lookup tables (LUTs), memory blocks, digital signal processing (DSP) 

blocks, transceivers, and others. Hardware layer is also responsible in the formation of a 

complete logic circuit using the routing resources along with other components such as muxes 

and gates. Some dedicated hardware resources such as Digital Clock Manager (DCM), 

configuration ports such as ICAP and PCAP are also part of the hardware layer. 
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Figure 2: FPGA Architecture based on configuration memory layer and hardware resource layer 

Configuration memory of these FPGA devices is SRAM based therefore the on-chip 

configuration data is lost when the device is powered off as SRAMs are volatile memories. So on 

each power up the FPGA’s static configuration file is downloaded externally either from a 

nonvolatile configuration flash memory, or via JTAG programmer. 

1.1 Motivation 

Even though the effectiveness of FPGA’s ability to dynamically reconfigure and partially 

reconfigure its hardware resources has been demonstrated widely in research community, these 

techniques are not commonly used in industrial products because of the implementation 

challenges, architecture and design. And relatively lesser available support makes it an even 

harder decision to go for. Whereas the benefits of utilizing these features of FPGAs are far more 

significant and surpasses all the complexity involved in the procedure. Therefore, the main 

objective of this thesis is to demonstrate the effectiveness of partial reconfiguration in 

implementing resource hungry algorithms on smaller and cheaper circuits. An example of JPEG 

compression is used to demonstrate the results and resource utilization on Xilinx Zynq device.  
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The procedure followed in this example will help to overcome the challenges faced in procedure 

of dynamic partial reconfiguration.      

1.2 Research Question 

How can Dynamic Partial Reconfiguration help in implementation of hardware hungry 

algorithms on smaller/cheaper FPGA/SOC devices? 

The latest Xilinx 7 series FPGAs supports the dynamic partial reconfiguration feature. It can help 

solving many problems concerned with the resource utilization in FPGAs and reduce the cost of 

redesigning a hardware in many products. 

1.3 Hypothesis 

We are conducting this research on a Xilinx Zynq SOC. Xilinx offers the advance feature of 

dynamic partial reconfiguration it Zynq family devices. We will use the PCAP interface provided 

by the Xilinx and design a frame work for the efficient implementation of complex and hardware 

extensive algorithms on low end devices. Or target device in this research is Xilinx Zynq-7000 

AP SoC XC7Z020-CLG484 which available on ZedBoard [11]. 

1.4 Objective and scope of Thesis 

The objective of this investigational undertaking are as follows: 

• To develop understanding of the complex architecture of FPGA bitstream, how it is 

translated on to the FPGA fabric which includes the hardware layer of LUTs. 

• Explore the available options to perform dynamic partial reconfiguration such as PCAP 

and ICAP and examine the complexity involved in process, study the advantages and 

disadvantages of using these methods. 

• Compare the complexity and efficiency of ICAP and PCAP resource of Xilinx 

FPGA/SOC 

• Devise a framework to make use of these features to enhance the efficiency of any 

hardware accelerator.   

• Demonstrate the designed framework with a particle example and perform all the steps of 

dynamic partial reconfiguration design either by using the Internal configuration port or 

by using the more advanced Processor Configuration Access port. 

• Prepare a demo of dynamic partial reconfiguration on ZedBoard. 
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1.5 Challenges 

Dynamic partial reconfiguration is complex technique which is not usually preferred because of 

the complexities involved in the methodology. Therefore, there is very little practical information 

available on the internet regarding this topic. In order to implement a dynamic partial 

reconfiguration design on a hardware there are lot of details required such as structure of FPGA 

bitstreams which is kept confidential by the vendors. Since these methods are mostly practiced 

by the military products development so the FPGA vendors do not provide the related software 

data in Pakistan. We will have to rely on the data gathered by the third-party sources.  

Furthermore, the Bitstream structures of the latest FPGAs/SOCs are far more complex and data 

related these devices about dynamic partial reconfiguration is even more scarce. For example, if 

in case of Xilinx FPGAs, Xilinx provide some basic level details on how to start with the 

dynamic partial reconfiguration design, but any attempt to access the application notes is 

nullified by Xilinx with error:” We cannot fulfill your request as your account has failed 

export compliance verification”. 

Another major challenge involved in this field is that there is no proper way to simulate the 

dynamic partial reconfiguration-based design. All FPGA vendors provide the simulation 

software mainly for the timing verification of the implemented design.  But the dynamic partial 

reconfiguration is low level device operation that cannot be simulated like other designs. 

Vendors do suggest some workarounds such as visually observing the effects of reconfiguration 

or partial reconfiguration on the hardware by switching in multiple bit file or partial files. 

However, these methods do not represent the actual behavior of dynamic partial reconfiguration 

process. 
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1.6 Structure of Thesis Report 

The report is organized as follows: 

• Chapter 2 contains the detailed overview of dynamic partial reconfiguration process. It 

discusses the different available popular vendors of FPGA and their support for partial 

reconfiguration. 

• Chapter 3 is about the related work already done regarding dynamic partial 

reconfiguration process. 

• Chapter 4 is about the technique and algorithm used for the design of dynamic partial 

reconfiguration framework in this thesis. It explains all the details of methodology used. 

• Chapter 5 explain the technique with help of a case study i.e. JPEG compression 

algorithm implementation on ZedBoard with the help of partial reconfiguration 

• Chapter 6 concludes the results and comparisons of conventional techniques vs the 

implementation performed with dynamic partial reconfiguration. 

• Chapter 7 includes the Future work. 
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CHAPTER 2: DYNAMIC PARTIAL RECONFIGURATION 

Dynamic partial reconfiguration is the ability of the Field Programable Gate Arrays (FPGAs) or 

latest System on Chips (SOCs) to reconfigure/reprogram a portion of their hardware themselves 

on the fly. It means once a system with an FPGA or SOC based design has been deployed in the 

field or made available in the market, it can be reconfigured partially. By partially here means 

that a part of the FPGA/SOC will keep working normally (static region), where as a portion 

(reconfigurable region) of its hardware will be reprogrammed. The logic implemented in the 

static portion can grab new configuration file for the reconfigurable region over ethernet or any 

other communication medium. Its will than store the partial configuration file (known as partial 

bi file) on a nonvolatile storage device. Reconfiguration controller embedded in the static part of 

the FPGA can than reconfigure the reconfigurable region any time. 

This ability of the FPGAs to reconfigure themselves makes them stand out and a preferred 

choice while designing an embedded system. The basic hardware architecture of FPGAs is the 

reason behind the availability of this unique feature. Basic structure of all the Field 

Programmable Gate Array devices is composed of two separate layers: the configuration 

memory layer and the hardware layer [1] where the logic mapped on, as shown in Figure 2. 

FPGAs are reprogrammed via writing the bits into the configuration memory. This configuration 

memory is arranged in small blocks called frames. A frame is the smallest addressable unit in 

configuration memory of the FPGA. Multiple frames are required to program a single tile of 

FPGA, Size of the configuration frame can vary for different device family. Currently there are 

two major vendors supporting partial reconfiguration in their FPGAs. Those are Xilinx and 

Altera (now owned by intel). 

1.1 Xilinx 

Out of all the FPGA vendors, Xilinx’s FPGAs devices are the most popular ones and have 

supported PR for two decades, Dynamic partial reconfiguration was first supported in Xilinx 

XC6200 series FPGAs [6]. This device’s architecture composed of a single configurable memory 

plane. It had a tiled architecture and each tile was separated into a number of cells holding 
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functional cells as shown in Figure 3. The composition of functional cells consisted of following 

elements: 

a) 2:1 multiplexer for combinational logic 

b) A flip-flop 

c) Routing resources 

With the configuration SRAM mapped to an external processor address space, any functional 

cell could be accessed by the processor using a special interface and modify its configuration. 

Due to a consistent routing scheme and regular structure with every cell, reconfiguration was 

easier with these devices than for current ones. Circuit relocation in run-time was also possible 

with these devices. 

 

 

Figure 3: Xilinx XC6200 architecture 

 

 Dynamic partial reconfiguration gained more popularity when Xilinx introduced Virtex-II and 

Virtex-II pro series FPGAs [7]. A columnar architecture was introduced in these devices in 

which all the FPGA primitives were arranged in a columnar fashion. These primitives include: 

a) Configurable Logic Blocks (CLBs) 
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b) Block RAMs 

c) Multipliers 

 

Configurable Logic Blocks (CLBs) are the basic logic elements in Xilinx FPGAs, CLBs consists 

LUTs and flip-flops in two slices. The number of flip-flops and LUTs in a slice is dependent on 

the device family. Figure 4 shows Xilinx device architecture with independent resources blocks 

highlighted in hierarchy  

 

 

Figure 4: Xilinx device architecture hierarchy 

 

A configuration binary file (known as bitstream or partial bitstream in Xilinx terminology) can 

be downloaded externally using the JTAG interface. Xilinx introduced a new configuration 

interface called the Internal Configuration Access Port (ICAP). With the help of ICAP is was 

possible to download bitstreams from within the fabric of FPGA thus eliminating the 
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requirement of an external processor for reconfiguration purpose. A built in soft-processor or   

even a custom designed state machine could get the configuration data from external memory 

and transfer it to the configuration memory of FPGA through the ICAP, thereby letting a circuit 

instigated on the FPGA to amend itself without external interference. In vertix device series the 

configuration memory is divided in smaller segments called frames, these frames are 1 bit wide 

and their length is equal to the height of the device therefore a frame’s length may vary in case of 

a different device. All the resources that lies in a single narrow vertical column of the device 

would be configured by the single frame. Furthermore, the frames are grouped in 6 different 

types for different configuration columns on the basis of the corresponding hardware mapping. 

Configuration columns 6 types are: 

a) IOB: These columns configure the voltage standard, internal pull-up, and other options 

for the I/O interfaces. 

b) IOI: All other IOB logic such as capture and send FFs 

c) CLB: These columns program the configurable logic blocks, routing, and most 

interconnect 

d) GCLK: Global clock routing resource (not supported in 7 series) 

e) BlockRAM: These columns program the small internal memory blocks 

f) BlockRAM Interconnect: Provide interconnection between multiple BRAM blocks 

 

In order to configure a portion for partial reconfiguration in Xilinx devices, it is required to select 

the specific region that will undergo PR. These portions of FPGA are called partially 

reconfigurable regions (PRRs) and usually consists several frames. This region can be selected 

from the device view of Floorplanning tool. There are some limitations on the size and shape of 

Partially Reconfigurable Regions (PRRs). In case of Virtex-II PRRs must be of full height of the 

device and horizontally they should also align with a multiple of four slices. These restrictions 

make the architecture simple but they can cause hurdle in efficient system design in terms of 

hardware utilization.  Because PRRs spread to the height of device, floorplanning is only 
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concerned with the thickness of partial reconfigurable regions and therefore these regions are 

shaped as vertical slots as shown in Figure 5.  

 

Figure 5: PRR in Xilinx Virtex-II Device using Floorplanning 

 

Xilinx Virtex family devices that were launched after Virtex-II incorporated improvements in 

their architecture. The earlier device family used tri-state buffers in order to manage connectivity 

of partially reconfigurable regions. The number of these tri state buffers were also limited due to 

fixed position causing more restriction in size and positions of PRRs. This problem was solved in 

Virtex-4 where bus macros are used instead of tri state buffers as shown in Figure 6. In this 

figure the CLB slices on the right side are implemented in the static region and the ones on the 

left side of the module boundary lies in the reconfigurable region. This modification permitted 

for a more flexible planning of connectivity.  

Another major improvement on Virtex-4 was change in frame size [8]. Unlike the variable size 

frame of Virtex-II on the basis of device, the frame size is constant in Virtex-4. All the frames 

are 1 bit wide and 16 CLB high. This modification allowed more flexible design options in the 

floorplanning because now the frame height is not required to be equal of the device height. It 

also increased the complexity of design process because the PRR is now a two-dimensional task 

in floorplanning tool. Another considerable change in architecture regarding the partial 

reconfiguration was increase in the bus width of ICAP from 8 to 32 to achieve better throughput 

during reconfiguration. 
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Figure 6:  Bus macro connectivity between static and reconfigurable region 

 

Xilinx made further architectural modifications in Virtex-5, the device is separated into multiple 

rows and columns as shown in Figure 7. A row basically denotes a clock region and device size 

controls how many clock regions are there. The columns also known as blocks, extent the entire 

device height. Each column consists of a sole type of FPGA primitive organized in a columnar 

fashion. 

 

Figure 7: Xilinx Virtex-6 and above FPGA architecture 
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There are several tiles in FPGAs where intersections of rows and columns occurs e.g. CLB tiles, 

DSP tiles, and BRAM tiles. Xilinx denote these tiles with the term reconfigurable frame. These 

reconfigurable frames are the smallest unit for PR. Xilinx Virtex-6 and Xilinx 7-series FPGAs 

(Artix, Kintex and Virtex-7) have the similar basic architecture as Virtex-5. Number of CLBs, 

DSP slices and Block RAMs in CLB tile, DSP tile and BRAM tile are shown in Table 1. 

Xilinx Device CLBs DSP Slices Block RAMs 

Virtex-5 20 8 4 

Virtex-6 40 8 8 

7-series FPGAs 50 10 10 

 

Table 1: Number of CLBs, DSP slices and Block RAMs in Xilinx FPGA’s Tiles 

Figure 8 show the CLBs, IOBs, DSP48 slices BRAMs and DCM allocation in the Vivado device 

view for a Xilinx 7 series FPGA. 

 

 
 

Figure 8: Vivado device view of 7 series FPGA 
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These complex architectures introduced complexity in design phase. It also makes some tasks 

like run-time circuit relocation almost impossible, but with help of these enhanced architectural 

modification in field programmable gate arrays users are able to implement complex logic 

problems and reduce the resource wastage. In terms of partial reconfiguration more PRRs can be 

defined of variable sizes with all sort of resources. 

1.1.1 7-Series Configuration Logic Block Overview 

7 series FPGA provide advance, High performance CLB Architecture; which contain real 6 input 

LUT technology. That can also be used as dual 5-input LUT option. There are two type of slices 

in each CLB, SliceL and SliceM; SliceL is used for logic and carry only while SliceM has the 

capability to form distributed RAM and shift register. Single LUT in Slice M can be a 32-bit 

shift register 64×1 RAM. Approximately two-third of the Slices are SLICEL logic cell and rest 

are SLICEM (Xilinx, 7 Series FPGAs Configuration Logic Block, 2016).  

 

Figure 9: Arrangement of Slices with CLBs 

 

7 series CLB Architecture has columnar architecture which was not present in previous FPGA 

architecture Virtex 6 and Spartan 6 that allow scalability to higher densities and allow more 

routing between CLBs. Routing resources are also increased in size with respect to Virtex 6 
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family that improves the quality of automatic place and route. So each slice in CLB contain four 

Look up Table (LUT) and each LUT has two FlipFlop so four 6 input LUT, 8 Flip-Flops as well 

as multiplexer and carry-logic form a Slice. Two Flip-Flop per 6-LUT is excellent for heavy 

Pipelined Design. 

1.1.2 CLB/SLICE Configuration 

Following table summarize the Logic resources in one CLB. And SliceM LUT can be configured 

as a Look up Table, distributed RAM and shift register. 

Slices LUTS Flip-FLOPS Arithmetic and 

Carry chain 

Distributed 

RAM 

Shift 

Registers 

2 8 16 2 256bits 128bits 

 

Table 2: 7-Series SLICE Configuration 

 

1.1.3 Look Up Table (LUT) 

Look up table in 7 series FPGA architecture is used to implement any 6 input or 5 input arbitrary 

Boolean function. It can be used individually by adding primitive in the design but its location 

must be identified in constraint file. Each LUT location in configuration memory is determined 

by the frame address register which is determined by translating slice location to frame address 

register. Slices in FPGA device is places in X, Y coordinate where X is row and Y is Column of 

SLICE 

Xilinx has introduced a new family of devices with hybrid architecture [9] which includes a core 

of ARM Cortex-A9 processor known as Processor System (PS) along with a 7 series FPGA 

device known as Programmable Logic (PL) on a single chip. This family of devices is known as 

Zynq SOC. Block level architecture of Zynq device is shown in Figure 10. The ARM processor 

in Zynq can communicate with the rest of the resources using Advanced eXtensible Interface 

(AXI).   
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Figure 10: Xilinx Zynq SOC Architecture 

There are multiple AXI interfaces are present on Zynq devices in order to facilitate the 

communication between ARM processor and Programmable Logic (PL). AXI interconnect offers 

high bandwidth for the 2 major components of Zynq device i.e. PS and PL. Zynq family devices 

also supports the dynamic partial reconfiguration. In Zynq architecture Xilinx added a new 

option to reconfigure the programmable logic portion via processor configuration access port 

(PCAP) port.  It is controlled by the ARM cortex processor for complete or partial 

reconfiguration of PL. The programmable logic in Zynq is based on the Xilinx 7-series 

architecture. Therefore, the reconfiguration using the ICAP is also available in the Zynq.  
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1.1.4 Reconfiguration Modes from Xilinx 

The reconfiguration time is dependent on the size of the bitstream/partial bitstream being 

programmed. Table 3 summarize the different modes available for loading the bitstream on an 

FPGA.  

 

Configuration Mode Max Clock Rate Data Width Max Bandwidth 

ICAP 100MHz 32 bit 3.2Gbps 

PCAP 100MHz 32 bit 145MBps 

SelectMap 100MHz 32 bit 3.2Gbps 

Serial Mode 100MHz 1 bit 100Mbps 

JTAG 66MHz 1 bit 66Mbps 

 

Table 3: Attributes of Configuration modes 

In case of the Xilinx Zynq family devices PCAP is a preferred choice as it can be controlled from 

the PS and offers advanced security features as compared to ICAP and other configuration 

modes. Still the ICAP offers more speed in comparison with the PCAP. There are hybrid models 

proposed by researchers where ICAP is accessed from the PS using an AXI interface and some 

logic is implemented on the programmable logic in order to translate the PS generated 

commands for execution on ICAP. [10] represented a similar hybrid reconfiguration controller 

ZyCAP, it befits from the high bandwidth of ICAP and provides a software based accessed from 

the PS. Details of these reconfiguration modes is further discussed in chapter 3. 
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1.2 Altera 

Altera which is now owned by intel also provides the features of partial reconfiguration in their 

and Arria-10 series, Cyclone-V and Stratix-V FPGAs. In altera FPGAs Adaptive Logic Modules 

(ALMs) are the basic building blocks just like the CLBs in Xilinx. ALMs contain 8 input LUTs, 

4 flip flops along with the auxiliary circuit of multiplexers and adders.  Logic Array Blocks 

(LABs) are formed with the combinations of multiple ALMs. LABs are arranged in a columnar 

fashion in the device. In Altera devices partial reconfiguration is supported for routing resources, 

DSP slices, logic elements and memory blocks. 

Altera’s Stratix-V compose of the similar architecture as that of Xilinx Virtex series FPGAs. 

Programming frame is smallest reconfigurable portion of Stratix-V FPGAs [12]. These devices 

are divided into multiple columns but arranged in a single row only which causes more 

restrictions and PR based designs e.g. a PR region can not be extended to the complete height of 

device and also contains memory blocks within the region as shown in Figure 11. 

 

 

Figure 11: A reconfigurable region in a Stratix-V FPGA 
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Because of these restrictions when a PR region is being reprogrammed it also over writes the 

memory contents that even lies outside the PR region but the same column. Only way to avoid 

such issues is to avoid using the resources of a column in static logic, that has a PR region in it. 

This can lead to extensive waste of resources in some cases. 

The newly introduced Arria 10 FPGA and SOCs from Altera also supports partial 

reconfiguration. These devices contain ARM processor along with the programmable logic fabric 

similar to Xilinx Zynq devices. The reconfiguration process is yet similar to that of Stratix-V 

FPGAs. Altera has provided the IP-block in order to load the partial bit stream data on to the 

configuration memory either from external hosts or from the integrated PR controller [13].  

These IP-blocks support the data width of 1-32. Altera has also provided the ability to 

reconfigure PR region via PCIe hard macro [14]. 

Altera has announced Altera Stratix 10 devices which has some advancements in their structure 

regarding partial reconfiguration. The new design architecture of these devices has multiple 

sectors and each sector has its own reprogrammable infrastructure along with separate 

configuration memory [15]. There are small processors to accommodate the reconfiguration in 

all the sectors. These small processors are called Secure Digital Managers (SDMs).  The partial 

bit streams of these sectors are identical so it offers an amazing feature of relocation bitstreams 

within an FPGA resulting in higher reconfiguration bandwidth. These devices are not 

commercially available yet. 
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CHAPTER 3: LITERATURE REVIEW 

FPGA’s were designed to remove the limitations of ASIC’s by providing the 

flexibility to reprogram and reconfigure in run-time; as per user needs. With the 

emergence of cloud computing and IoT’s FPGA’s are now widely used as hardware 

accelerators to off-load intensive computational tasks to FPGA’s reducing time and 

saving resources. 

BBC; one of the radio channel pioneers is also utilizing Zynq SoC to leverage FMC for audio 

codec replacement, switching 32-years old rack-mount audio codec with commercial of the shelf 

component. Example of such applications is Enyx, a company which provide users with an 

online FPGA hardware acceleration services by providing them with software/hardware 

experience of their own choosing. User can just drag and drop the type of service desired and it 

will be provided in shape of Intellectual property (IP’s) tailored specific to their needs.  

2.1 FPGA Configuration Architecture 

FPGA design is implemented and then mapped by the configuration memory as configuration 

memory hold the functionality of the design. Configuration memory architecture details are 

discussed later in this chapter. FPGAs are categorized in term of type of memory technology 

used for configuration memory which are; SRAM, flash and antifuse. Majority of the FPGAs in 

market are SRAM based, Xilinx also provide SRAM based FPGA. As the SRAM memory is 

volatile so FPGA’s are required to be reprogrammed every time when device is powered up and 

external memory is used for application storage.  

A digital design is implemented in FPGA using logical resources, memory elements and 

interconnects provided by the FPGA. When synthesized bitstream is generated and loaded to 

configuration memory to program the device. So configuration memory contain the 

configuration information that is mapped to FPGA device. There are certain ways to load 

external full-reconfiguration data or partial reconfiguration data ranging from serial to parallel. 

To control the resources like LUT and Flip-Flop configuration memory is accessed from outside 

or inside the FPGA. In view of above discussion, we can say that the FPGA architecture is 

divided into three configuration layer; Functional layer, Configuration Layer and Clock layer. As 



30 

 

the details are described below but we can see in the following figure that the layers are 

connected to each other through interconnect Clock layer is connected to functional layer 

through programmable interconnect point (PIP) and the logic on functional layer is mapped to 

configuration memory through configuration port. 

2.1.1 Functional Layer  

Functional Layer comprises the user resource Logic like CLB, BRAM and DSP etc. Which are 

connected through switch box and connection box. Connection Box is used to directly connect 

the programmable resources to Input/output. While switch box is used to connect the connection 

box, vertically and horizontally allowing wide routing network. Circuit designed on FPGA is 

made by the logic implemented using resource block and then configured by loading bit stream 

to configuration memory. In some architecture like Zynq and ultrascale series functional layer 

also include processor like CPUs or GPUs, these are the hard cores. But sometime if hardcore is 

not provided processing functionality can be achieved using CLBs, BRAM and DSPs as in 

microblaze processing system. 

 

Figure 12: Xilinx 7-Series FPGA Layes 
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2.1.2 Configuration Layer 

Configuration layer determine the functionality of Logic implemented on FPGA circuit. It 

consists of Configuration memory, Configuration Port and Control logic to load bit stream into 

configuration memory through configuration Port. Configuration memory is composed of 

configuration frame that specify each bit of the design from top to bottom of a clock region. Each 

frame contains (101×32) 3232 bits which are stored in SRAM cell. The configuration frame is 

the smallest unit of configuration memory so to make changes in configuration memory the 

whole frame is required. So multiple frames are required to reconfigure the amount of resources 

in a design. 

2.1.3 Clock Layer  

FPGA device has dedicated Clock network for synchronization of CLBs and BRAM etc., This 

Layer can be considered as part of functional Layer. In 7 series FPGA architecture each clock 

regions is made up of specific no. of CLBs, BRAM and other Logic resource which are routed 

by the number of clock buffer and net. So, to cater the diverse need of clocking resources multi-

region clock buffer, Horizontal clock buffer, Global clock buffer and regional clock buffers are 

also provided. These clock buffers are using dedicated physical interconnect resources so we can 

consider the clock interconnect network as Clock layer. 

 

Figure 13: Clock Buffer Layer in Clock distribution region 
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2.2 Reconfiguration 

Reconfiguration of FPGA is arguably “The Selling point”. The flexibility provided by 

FPGA is what attracts the vast number of users towards it. Reconfiguration has 

enabled FPGA to gain a massive acceptance among big data analytics, parallel and 

distributed computational systems. FPGA now-a-days hold multi-tenants in cloud 

computing as their general-purpose computation machine. PR is one of the leading 

name in the cloud computing. PR allows user to time multiplex FPGA resources 

enabling effective use of chip logic density. The reconfiguration time has thus 

reduced as the partial bit stream size is fairly smaller than the whole bit stream [22]. 

PR allows designed to be portioned in Static and Dynamic parts. 

The Partial Reconfiguration in FPGAs was initially introduced by Xilinx in 1995. Xilinx secured 

a patent in which an FPGA was able to store multiple configuration at a time. In the initial 

designs there were two configuration memory arrays in the FPGA device in order to store 

different configuration data. In this architecture the configuration data was chosen from either of 

the configuration memory on every alternative half of the clock cycle through a switch. FPGA 

would output the result on end of every other clock cycle. In 1997 the idea of partial 

reconfiguration from Xilinx was further extended. This time Xilinx introduced a time 

multiplexed FPGA in XC4000E series. In this concept user was able to time multiplex the 

combinational logic but out put of each stage needed to be stored as well. For this purpose, micro 

registers were used to store the previous stage output of LUTs and flip-flops. XC4000E devices 

were able to store eight configurations and to switch between the configurations it only took 1 

clock cycle i.e. as low as 5ns reconfiguration time. In order to update any of the eight 

configurations it needed to be in active while updating the configuration contents. This can be 

done with copying the contents from any external storage in to one the eight configuration 

spaces. In order to update the configuration space a special “RAM” mode is provided, hence 

allowing the ability of self-modifying hardware. 

 The major drawback of these devices was their power consumption. These devices consumed 

tens of watts because of the high switching activity. Another limitation was the full device 

granularity.  



33 

 

Xilinx has made progress through the years and the latest 7 series devices from Xilinx support 

partial reconfiguration where user is able to reprogram any frame of the device. Xilinx has 

introduced a new family of devices with hybrid architecture [9] which includes a core of ARM 

Cortex-A9 processor known as Processor System (PS) along with a 7 series FPGA device known 

as Programmable Logic (PL) on a single chip. This family of devices is known as Zynq SOC. 

Block level architecture of Zynq device is shown in Figure 10. The ARM processor in Zynq can 

communicate with the rest of the resources using Advanced eXtensible Interface (AXI). These 

Zynq devices have the similar architecture of programmable logic as of the other 7-series devices 

from Xilinx.  

On the software side Xilinx initially introduced a difference-based technique for partial 

reconfiguration flow [2]. User was able to make smaller changes by using the FPGA Editor tool 

and making amendments on an already routed design. Partial bitstreams were generated by the 

implementation tool of Xilinx ISE. The generated partial bitstreams contained only the 

differences between the actual configuration and secondary partial bitstream.  Xilinx later 

introduced PlanAhead [3] toll which supported modular design of partial reconfiguration. Figure 

14 shows the steps involved in the procedure followed by the PlanAhead tool. Every PR design 

can have number of modules. All the modules can be written in hardware description language 

such as Verilog or VHDL. 
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Figure 14: Partial Reconfiguration Flow using Xilinx PlanAhead 

  

On the hardware side there are two main portions i.e. static and reconfigurable. There is only one 

static portion where as a device can have multiple reconfigurable regions. These partially 

reconfigurable [region can have resources like DSP slices, BRAMs and LUTs. They cannot have 

clock buffers and PLLs. They only reside in static part of the device. The static portion of device 

remains fix during operation and performs the pre-configured functionality. Reconfiguration 

management is also performed in the static part. One reconfigurable region can have multiple 

modules multiplexed into it.  

The dynamic or partial reconfigurable module can be arranged on chip in various 

configurations (As shown in Figure 15). 
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Figure 15: Reconfiguration styles 

 

[23] Each style has its own pro’s and con’s. Island style is the simplest to implement but suffers 

from internal fragmentation resulting in high percentage of resource wastage. Slot style 

configuration does not have fragmentation problems where module can occupy resources as per 

its need. Tiling of RM region is a very complex task in which one has to keep in mind the 

placement of routes and their cross-over from static to dynamic regions. The optimal PR style to 

use depends on the user requirement and may vary or consist of a model that is hybrid of two or 

more styles. 

2.3 Configuration detail 

2.3.1 Configuration memory Architecture 

Configuration memory has the same internal structure as the physical arrangement of FPGA 

resource in a Clock region column. As for one CLB Column, 36 frames are required which 

contain specific LUT, Flip-Flop and routing information. Besides that, most significant bit of the 

frame is associated with the upper resource of column and the least significant bits are for lower 

resources. As CLB Column require 36 frames for reconfiguration similarly 128 frames are 

required for BRAM and 28 frames are required for DSP slices. Depending on the amount and 

type of resources to be configured, number of frames have to be written to FPGA. For e.g. four 

frames are required to configure one LUT and 6 frames are for BRAM. Configuration related to 

regional clock wire that cross through the center of the region is mapped to 51st word of each 

frame. Each Configuration frame is protected through Error Correction code (ECC) which is also 
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written in 51st frame word. This Error correcting code is used to detect and correct error in single 

bit but not able to correct dual bit.  

The smallest entity of configuration memory is the frame and each frame consist of 101 words in 

7 series FPGA Architecture. In Zynq architecture whole device is covered with 71×149 CLB so 

the size of configuration file required to program whole device is 3.7 MB. That include 272 

words for header and control information and rest of the information include configuration frame 

corresponding programmable logic. 

 

 

Figure 16: CLB Height of Different Resources 

 

2.3.2 Configuration Registers 

Configuration Registers are used in configuration process. Bit stream is composed of 

configuration commands and data sent to configuration register. Some configuration register has 

read/write capability while some have only read/write access. Each register write takes 2 word, 

one is for the command and the other is for register value. Some of the important configuration 

register and their functionality is described in  

Table 4. 
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Name  R/W Address  Description  Functionality 

CMD  R/W 00100  Command 

register 
Instruct configuration module to perform 

specific function, important CMD commands 

are WCFG (write configuration data), RCFG 

(read configuration data) 

CTL0  R/W 00101  Control 

Register 0 
Specify certain options for configuration, 

most important bits of CTL0 is the Global 

LUT mask (GLUTMASK). When enabled, 

the GLUTMASK bit causes any changeable 

memory cell read back values such as 

distributed RAM, SRLs, and DRP memories 

to be read back as all zeros or all ones. 

FAR  R/W 00001  Frame address 

register 
FAR contain FRAD of the frame. Any 

read/write in configuration memory is 

accessed by frame address register. 

FDRO  R 00011  Frame data 

register output 
Used to Read configuration data from 

configuration memory from address in FAR. 

FDRI  W 00010  Frame data 

register input 
Used to write data into configuration memory 

from location addressed in FAR. 

Stat  R 00111  Status register  
Used for debugging and status checking, 

useful in determining certain errors such as 

decryption, Device ID, and CRC check errors. 

IDCODE  R/W 01100  Device ID 

register 

Each unique FPGA has its own IDCODE, 

IDCODE is necessary in writing 

configuration memory 

CRC  R/W 00000  CRC register  
Used in the device-wide CRC check and 

control the behavior of the CRCERROR 

signal 

 

Table 4: Configuration Registers 
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Frame Address register 

Configuration frame is addresses by the frame address register (FAR). FAR is a 32bit word 

containing information of a frame that correspond to FPGA resource in which data is to be 

read/write. Frame address register is composed of Block type, HCLK, CLB Column address and 

minor frame address. Block type determine the type of logic resource like CLB, DSP, Block 

RAM etc., HCLK is the address of horizontal clock region row whereas Column address is the 

column of the CLB in clock region, and minor address is the address of the frame within 

configuration frames. Configuration memory is loaded with start frame address which is 

incremented depending on the no. of word to read/write. Following table represent no. of bits 

assigned to each Field.  

Field  Bits assigned  Description 

Block Type  [25:23]  Block types are; CLB, I/O, CLK, BRAM and CFG_CLB 

Top/Bottom bit  [22]  Select between top-half (0) row and bottom half (1) row 

Row Address  [21:17]  Select the current row, row address decrement from top 

to center and increment from center to bottom 

Column Address  [16:7]  Column Address is the CLB column start from 0 and 

increment to right 

Minor Address  [6:0]  Minor address the frame address among other frames in 

configuration memory 

 

Table 5: Frame Address Register Details 

2.3.3 Configuration commands  

Configuration commands are sent to configuration port to access configuration memory. 

Synchronization command play a significant role to sync data being loaded to configuration port. 

After receiving synch word (0xAA559966) processing of subsequent data words begin and 

similarly after desynch command no new data is accepted by the configuration module. The 

Xilinx universal configuration word is the bus width sync word (0x000000BB) which align 

configuration module to 32bit data boundary. Following the dummy word synch word 
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(0xAA559966) is sent after which configuration module start accepting data. DESYNC 

command (0x000000DD), processed by CMD register releases the configuration module 

allowing low priority interfaces to access it. DESYNC command ignores any subsequent data 

coming to configuration port unless a new sync word is detected. Table 6 shows multiple 

configuration commands details.   

 

Command  Code  Description  Use 

NOOP  00000  No Operation No Operation 

WCFG  00001  Write Configuration 

Data 

Used prior to writing 

configuration data to FDRI 

RCFG  00100  Read Configuration 

data 

Used prior to reading 

configuration data from FDRO 

START  00101  Begin startup 

sequence  

Startup sequence begin after successful 

CRC check and Desynch command 

RCRC  00111  Reset CRC  Reset CRC register 

DESYNC  01101  Reset DEALIGN 

Signal 

Used at the end of configuration to 

desynchronize the device. 

Synch  00010  Set DEALIGN 

Signal  

Used to synchronize incoming 

configuration data 

 

Table 6: Configuration commands 

2.3.4 Bitstream Composition 

Bitstream is comprised of a common pattern for each device of Xilinx FPGA. Bitstream is 

organized as; Header, Footer and configuration data. 
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Table 7: Bit Stream Composition 

 

Header 

Header of the bitstream contain readable ASCII character which includes time stamp information 

and initial configuration command. These commands are series of 32bit data words that are 

written to configuration registers to read configuration memory. These commands include 

initialization the CRC check, setting the configuration and control option, setting the frame 

address register to starting address and issuing the write configuration command. 

Footer 

After writing configuration data, footer section is included which runs the command, wide CRC 

check, begin start up sequence and desynchronize the FPGA configuration sequence. Device 

with more logic resources have more frames and size of bitstream depends on the logic resources 

utilized in a design. 

Configuration frame data 

Configuration data is organized into frames which is to be written into configuration memory. 

This is done by the FDRO/FDRI register. Size of bitstream depends upon the no. of frames being 

loaded to configuration memory. Configuration data is further subdivided into Type 0 (CLB 

frame) and Type 1 (BRAM frame) Configuration frames. On-chip resources are configured by 

sending data to configuration registers. Configuration registers are accessed using command 

packets which has the minimum size of 64 bit, first 32 bits are for command and the next 32 bits 

are for data. As the width of configuration port is 32bit so a configuration register is accessed in 
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two clock cycle. Configuration command has two type of packet header, one is Type 1 header 

which define the type of register, register address and no. of words to read/write. The other is 

Type 2 header which is defined with Type 1 header if data words are greater than 2048. During 

write operation command packet are used with variable length frame words. So with FDRI 

register multiple of 101 frame words are defined which need to be written. Tables below define 

the composition of command register with Header of Type 1 and Type 2 also the Type 1 and 

Type 2 packet format composition and Opcode defined for different configuration commands 

 

Field  Header  Body 

Content of 

command register 
Type1  Type2  Data words 

Data width  32  32  
Depending on frame data to be 

read/write 

Description  Always used 

Used when data 

words are greater 

than 2048 

Only required when data words need to 

be written to configuration memory 

 

Table 8: Packet Format of Command Register 

 

Header Type  Opcode  Register Address  Word count 

[31:29]  [28:27]  [26:13]  [10:0] 

001  xx  xxxxxxxxxxxxxx  Xxxxxxxxxxx 

 

Table 9: Type 1 Packet Format 

 

Header Type  Opcode  Word count 

[31:29]  [28:27]  [26:0] 

010  xx  xxxxxxxxxxxxxxxxxxxxxxxxxxx 
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Table 10: Type 2 Packet Format 

 

Function  Opcode 

NOP  00 

Read  01 

Write  10 

Reserved  11 

 

Table 11: Opcode for Different Configuration Commands 

2.3.5 Configuration Operation 

Two main operation can be performed on configuration memory 

a) Read back 

b) Writing 

Readback operation is performed by reading FDRO register from the location addressed in 

Frame address register. While writing is performed by writing to FDRI register followed by 

writing the CRC register which authenticate the valid data to be written in configuration 

memory. 

Readback 

Readback Operation is composed of set of command sequence which perform reading/writing to 

configuration registers and read configuration data from configuration memory. Configuration 

commands sequence are divided into three steps. First step is to write header which contain 

synch command, Reset CFG command, write Frame address register and set of NOOP 

commands. After that number of frame word to be read from configuration memory are defined 

and data is read through FDRO register. In readback one dummy frame is also read before the 

actual frames as if four actual frames are to be read 505 words are defined including the dummy 

frame. In third step Footer is written which contain START, reset CRC and Desynch command. 

Readback operation is further categorized as; Readback Verifier and readback Capture. 
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Read back verifier is a comparison which confirm that the configuration logic is programmed 

and results are modified according to user requirement. Read back capture is used to determine 

the content of user state elements, which by design change during operation. Readback command 

sequence for readback capture is the same as for readback verifier. 

Writing 

Writing command sequence is similar to readback command sequence except header include 

command to write IDCODE register which is necessary to specify device ID. FDRI register is 

used to write data into configuration memory and dummy frame is also written in the end to clear 

configuration register. To verify configuration data integrity pre-computed CRC checksum is 

written to CRC register which then compared to CRC value generated by the bitstream and then 

allow for reconfiguration. Other registers for device setup and status are also used like CTL0, 

STAT and COR0 registers. 

2.4 Reconfiguration in Zynq-7000 Architecture 

The Zynq-7000 APSOC consists of a dual-core ARM cortex-A9 based Processing system and 

Programmable logic in a single device. Standard communication infrastructure and integrated 

reconfigurable fabric is also coupled with powerful ARM cortex A-9 processor. AXI bus is used 

for communication between on-chip memory, memory controller and peripheral blocks. PS is 

attached with PL through AXI port offering high bandwidth between two components of 

architecture. The reconfigurable fabric of Zynq is based on 7-series FPGA Architecture which 

can be reconfigured using PCAP and ICAP. 
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Figure 17: Zynq configuration modes 

Generally, there are four ways to Configure PL region of a Zynq SOC from PS as shown in 

figure below 

a) JTAG 

b) ICAP 

c) PCAP 

d) Select-MAP 

2.4.1 JTAG 

The Joint-Test Action Group interface is among the most commonly used serial interface for 

programming and debugging of embedded processors, microcontrollers and FPGAs. It supports 

IEEE 1149.1 standard for boundary scan and Test Access Port architecture. JTAG was originally 

intended to debug and check serviceability of high pin packages of integrated circuits. 
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Figure 18: JTAG state machine 

JTAG is also the highest priority configuration interface, and will always be able to access the 

configuration module regardless of the configuration mode pins. This interface can program 

multiple devices, but must do so in a serial chain, (not in parallel like Select-MAP). This 

interface is typically accessed from an external source, with clock rates up to 66 MHz [16]. The 

problem with this interface is that only some of its structure is defined in IEEE and rest of the 

protocol is vendor-specific and its detail are not available for general public usage. However, 
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there are commercial-off-the shelf solutions that claim to provide generic JTAG manipulation 

tool which anybody can use to inject fault in the system. One of the examples is JTAGulator 

[17]. 

2.4.2 ICAP 

Another option for performing configuration operations is to program the device from 

within the FPGA itself. Internal configuration Access Port or ICAP can only be 

accessed from a user design via primitive instantiation. The ICAP allows a user 

design to reconfigure the device (either partially or fully), after the initial 

configuration has been completed. However, It is not able to perform the initial 

configuration. 

 

Figure 19: ICAP primitive for 7-series FPGA devices 

 

The ICAP is primarily used for partial reconfiguration. However, ICAP is an 

important consideration that can also help in development of tamper resistant systems 

[19]. ICAP can be used to issue IPROG command that can help reset the FPGA to its 

initial stage in an event of breach. IPROG is a specialized FPGA command that can 

be sent through the ICAP interface which results in clearing of the entire FPGA 

configuration memory such as contents of flip-flop, and key expansion memory. It 

should be noted here that IPROG commands does not the clear the decryption key 

itself as bit-stream decryption key is stored in BBRAM or E-Fuse. Its functionality is 

almost equivalent to the insertion/applying of the external PROGRAM_B pin. This 

effectively clears FPGA’s configuration memory (flip-flop state, block-RAMs, and 

configuration data) and can be joined with the KEYCLEARB signal as a reaction to 
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tampering event [19]. However, it is to be noted here that to IPROG command can 

only be sent to the configuration engine, if the ICAP primitive is present in the user 

design and the proper order of commands are followed to write to it. 

Like Select MAP, one of ICAP primary advantages is its configuration speed, an 

operating frequency of 100 MHz [20]. The ICAP is the interface of choice for several 

internal scrubbers in academia and industry. 

2.4.3 PCAP 

The Processor Configuration Access Port or PCAP is a unique interface that enables 

access from a hard processor to the configuration module. The PCAP is only found 

on the Zynq-7000 family. It is the bridge between the Zynq's dual-core ARM 

processing system and the FPGA configuration memory. One of its most important 

features is that it allows software programs running on the processors to access the 

configuration module at runtime via configuration commands written in software. 

The PCAP clock can run at frequencies as high as 500 MHz, though it usually runs at 

no higher than 100 MHz for most applications. PCAP clock is also used to clock the 

bit stream data-path to the PL configuration module. This clock is basically a divided 

clock; typically, PCAP_2x clock. (The supportable clock frequency range for the 

PCAP clock is can be seen from Zynq TRM [21]). Hence if the user wishes to get a 

100 MHz PCAP clock in is design, he must set the PCAP_2X clock bit to 200 

megahertz. 

PCAP also supports configuration in non-secure mode, which was used in our 

research as security of the design was not our primary concern. It is worth mentioning 

here that data transfer rate using PCAP is limited; which is roughly 145 MB/s. 
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Figure 20: An example of PCAP usage 

 

We know that the PL configuration module although, can handle data rate of 32 bits 

per PCAP clock cycle, but the overall throughput and performance of PCAP gets 

limited due to PS AXI interconnect. This approximation is noted from Zynq TRM 

and assumes a 100 MHz PCAP clock frequency, a 133 MHz APB bus clock 

frequency, a read issuing capability of four on the PS AXI interconnect, and a DMA 

burst length of eight [21]. 

2.4.4 Select-MAP  

Select-MAP is a parallel, high-bandwidth interface with a bi-directional data bus 

supporting data widths of 8, 16, or 32 bits [18]. SMAP interface provides the ability 

to configure multiple FPGAs in parallel and can be used with high-speed clock rates 

as much as up to 100 MHz. The main disadvantage of this interface is that a number 

of I/O pins (equal to the data bus length) must be reserved during configuration by 

Select-MAP, and thus are temporarily not available to the user design. 
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Figure 21: Select-Map Interface FSM 

 

Select-MAP is an FPGA configuration mode that allows user to program as much as 

up to 3 Xilinx devices in parallel all the while providing simultaneous reading and 

writing capability through byte-wide ports. All of these devices are however 

programmed one at a time which is realized through assertion of the correct CS pin at 

specific time intervals. An external clock source which can be anything such as a 

download cable, a microprocessor or any other FPGA, is required for successful 

programming. The data is loaded one byte per CLK pulse. 

This interface was not explored as an option in this research as this mode is supported 

by obsolete devices such as Spartan and Virtex families where it is typically used as a 

primary mode of configuration especially when configuration time is a significant 

concern or aspect. Because the configuration module is the only gateway into the configuration 

memory, only one of the interfaces may actively process commands through it at any given 

time. A multiplexer function decides which interface controls the configuration 

module, so that that interface has exclusive control. The details of this multiplexer 

function is not publicly documented. A model based on experimental observations 

and the documentation is shown in Figure 22, but it does not necessarily represent the actual 

implementation 
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Figure 22: Selection of configuration mode selection in a zynq device 
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CHAPTER 4: METHODOLOGY  

In this chapter we will discuss the details of proposed framework of partial reconfiguration. As 

the objective of this research indicates that we are required to utilize the feature of partial 

reconfiguration in FPGAs in order to implement the hardware hungry algorithms with minimum 

resources. In order to do so we will need to break down the algorithm in to multiple modules. 

The break down needs to be organized in such a manner that we can divide the resource 

utilization as uniform as possible. After breaking down the main algorithm in multiple modules, 

we will define a flow of algorithm in which inter-module dependencies are defined. 

After defining module dependencies, we will group the modules which can be fixed into similar 

partially reconfigurable regions. A static portion will be designed which will organize and 

initiate all the reconfiguration related task. It will also be the responsibility of static part to latch 

the output of one module which may be required by the next module which is to be configured. 

When breaking down an algorithm into multiple modules it is to be kept in mind that there are 

three types of resources which are to be considered i.e. DSP slices, Slice LUTs and Slice 

registers. Their priority for modular break down can vary for different types of algorithms. For 

example, if an algorithm requires huge number of computational resources and has a lot of 

multiplication operations in it than it will consume more DSP slices. In this case we will try to 

keep the uniform division of DSP slices in modules. In order to explain the steps in detail we will 

suppose an algorithm with following resource requirements. 

a) Slice LUTs: 60000 

b) Slice Registers: 40000 

c) DSP Slices: 150  

d) BRAM: 20 RAMB36 

Let’s assume that the complete implementation of above-mentioned problem is divided in to five 

main modules. 1st module is the input buffer module which will receive the data using serial 

protocol and fills the input fifo. 2nd, 3rd and 4th modules perform some mathematical calculation 

on the input data in such a way that output of 2nd module is input of 3rd module and 4th module 
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takes the output of 3rd modules as input. The 5th module than assembles the output data of 4th 

module and sends data out serially. Figure 23 shows the flow of the implementation 

 

33 MHz Module 1 Module 2 Module 3 Module 4 Module 5

 

 Figure 23: Flow diagram of implementation without PR 

 

In this scenario all execution is taking place serially among the modules and each module is 

dependent on the previous module. In order to apply the partial reconfiguration, we need the 

individual resource utilization of modules which is provided in table below 

 

Modules Slice LUTs Slice Registers DSP Slices 

Top 1150 2000 0 

Module 1 2200 3000 0 

Module 2 10550 10000 100 

Module 3 11000 17000 30 

Module 4 32800 5000 10 

Module 5 2300 3000 0 

 

Table 12: Resource utilization of example problem 

The top module also uses 2 BRAMs for intermodular data buffering. Now in this case the 3 main 

modules are in the center which are performing the calculation on the data. The top module 

along with input buffering module and output module will be the part of static region as these 
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modules use the minimum of the resources. The resource utilization shows that module 2, 3 and 

4 are performing the main tasks thus utilizing most of the resources but the resource utilization 

among these modules is not uniform, module 2 is utilizing the most of the DSP slices, module 3 

is consuming the major part of slice registers and module 3 three is leading in utilization of Slice 

LUTs. Now in order to reduce the overall resource utilization via partial reconfiguration we will 

fit the three most resource hungry modules into one partially reconfigurable module. The PR 

module will be able to accommodate any of the three modules. PR module’s resource utilization 

will be considered max of all three modules for each resource i.e.  

a) Slice LUTs: Max (M2 Slice LUTs, M3 Slice LUTs, M4 Slice LUTs) 

=32800 

b) Slice Registers: Max (M2 Slice Registers, M3 Slice Registers, M4 Slice Registers) 

=17000 

c) DSP Slices: Max (M2 DSP Slices, M3 DSP Slices, M4 DSP Slices) 

=100 

Therefore, the resource allocation of partially reconfigurable region will be as follow 

Partially Reconfigurable Region Resources 

Slice LUTs Slice Registers DSP Slices 

32800 17000 100 

 

Table 13: Partially Reconfigurable Region Resources 

It is also to be made sure that number of inputs and outputs of all the modules of one partially 

reconfigurable region should be same. If the number of inputs or outputs vary for different 

modules then maximum number of inputs and outputs should be considered for the PRR. 

The static region will accommodate the PR controller which will decide when to reconfigure the 

next module in the PR region. According to the new flow of implementation the input module 

(M1) residing in the static part, will capture the data and store it in the BRAM of static region. 

On startup the PR region will be configured by the module 1’s partial bitstream. Once the data 
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has been captured by module 1, it will send a start signal to module 2. After completing its 

operation, the module 2 will refill the BRAM with new data and indicate PR controller when it’s 

done. PR controller will reconfigure the PR region with M3’s partial bitstream, on successful 

reconfiguration module 3 will receive the data from BRAM and perform the desired operation 

and indicate the PR controller on completion of its task. PR controller will reconfigure the PR 

region with M4’s partial bitstream thus shifting the control of data and address lines of BRAM to 

the M4. On completion of M4’s task PR controller will start the module 5 which can now get 

data from the BRAM and output it serially. Figure 24 shows the flow of operation with PR 

33 MHz Module 1 PR Region Module 5
B-RAM

BRAM

Static Region

PR Controller

 

Figure 24: Flow diagram of implementation with PR 

  The overall resource utilization of the any problem can be reduced using PR framework. 

Percentage of reduction may vary for different cases. The new resource utilization of our 

example problem is shown in Table 14 

 

Modules Slice LUTs Slice Registers DSP Slices 

Top 1150 2000 0 

Module 1 2200 3000 0 

PR Module 32800 17000 100 
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Module 5 2300 3000 0 

Total  38450 25000 100 

 

Table 14: Resource utilization of example problem after PR 

 

3.1 Software Flow 

In Xilinx Zynq and 7-series FPGAs onwards, PR is supported through the Vivado Design Suite 

[4]. This partial reconfiguration flow is not much different from PlanAhead, but it does not 

support all the functionalities via GUI, therefore user has to use TCL commands in some cases. 

Vivado has the same floorplanning limitations as for PlanAhead but the Xilinx 7-series FPGAs 

has some extra limitations that partition boundaries are not allowed to intersect interconnect tiles. 

These tiles are distinct resources that are responsible for managing routing between different 

resource columns. Vivado makes use of these interconnect tiles for anchor logic rather then using 

LUT based bus macros [5]. Using interconnect tiles actually improves the effectiveness of 

routing thus enhancing overall performance.  

This portion of document describes the procedure of creating of partial bitstreams of partially 

reconfigurable modules. The first thing is to divide the problem into module and decide the 

number of partially reconfigurable regions required, also decide how many modules will fit in 

each PR region. Once the number of PR regions and modules have been decided then each PR 

region is assigned the associating modules using the partial reconfiguration wizard in Vivado. It 

is to be noted that partial reconfiguration is to be manually enabled for each association module. 

All the modules need to be synthesized separately and produce the matching netlist. After 

synthesizing we need to assign rectangular areas via floorplanning for each reconfigurable 

region. One P-block is drawn for each PR region. P-block can be manually reshaped according to 

the resource requirement. P-block needs to rectangular and aligned with the boundaries of clock 

region. Figure 25 shows P-blocks of different sizes in a zynq device which can be configured 

independently.  



56 

 

 

Figure 25: Multiple Reconfigurable modules along with a static region 

User constraint file (.ucf) or Xilinx design constraint file (.xdc) contains the details of each P-

block drawn in the device i.e. its width height and starting address in the device. Basic 

knowledge of the low-level architecture of FPGA fabric is required in order to generate a correct 

combination of modules for a partially reconfigurable region. Each PR region with its 

combination of modules makes a configuration. Multiple configurations can be generated with 

different partial bitstreams loaded in the PR regions on startup. Static part of the system is only 

implemented once in the design phase thus the routing and placement of the static region stays 

same for all the configurations generated. It is to be noted that routing resources in the PR region 

can be utilized by static region logic implementation but LUTs and Flip-Flops of PR region 

cannot be used by the static part logic. Partial reconfiguration controller in the static part can 

switch/ reconfigure the PR regions using configuration ports like PCAP or ICAP. It can only 
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reconfigure on PR region at a time and only one port can be used at time. If PCAP is active then 

ICAP cannot be used to perform reconfiguration operations. 

In order to isolate inputs and outputs of PR-region from static region signals, Xilinx has provided 

a Partial Reconfiguration Decoupler IP. It can be configured with different number of signals 

with different bus width. PR Decoupler IP is controlled by the logic implemented in static 

region. When the static region is about to initiate the reconfiguration of a PR region it should 

decouple the in outs of PR 9region otherwise the PR module can end up in unknown state 

because of external interference during reconfiguration. Figure 26 shows Partial Reconfiguration 

Decoupler IP block with 3 single bit signals. 

 

 

Figure 26: Partial Reconfiguration Decoupler IP block with 3 single bit signals 

 

Once floorplanning is completed the Vivado tool then proceeds to generate a complete 

configuration file along with the partial bit files for each configuration. A different folder is 

created for all the configuration files and all of the folders contains a complete bit stream along 

with multiple partial bit streams. The complete bit stream of each configuration contains the 

similar static region logic and different startup configuration within the full bit stream for every 

corresponding configuration folder. Once the full bit file is loaded on to the device, any partial 

bitstream can be loaded into its corresponding region. A single partially reconfigurable region 

can have multiple modules and a partial bitstream for each one of them. For example, in our 

example problem we had three PR modules in a sing PR region as shown in Figure 27. 
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Figure 27: Multiple bitstreams for single PR region 

 

Once the complete and partial bitstreams have been generated these files can be loaded on to the 

device via external source like JTAG or they can be copied into a non-volatile onboard memory 

linked with zynq device and can be configured via PCAP. The ZedBoard has an option of SD 

card which can be read through the PS. Once the files have been copied to the SD card then they 

can be read from the PS using the file name. data read from the SD card is not directly loaded on 

the device, first the bitstream is copied to the DDR memory so that while reconfiguring the 

bitstream is readily available and no delay is caused. Once the bitstream is loaded into the DDR 

than it can be transferred to the PL configuration memory. Figure 28 shows the complete 

procedure of reconfiguration. It is to be noted that in case of complete reconfiguration the PL 

fabric requires to be reset prior to reconfiguration, in case of partial bitstream reset is not 

required. Partial bitstream cannot be loaded until the full configuration file has been loaded first. 
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Figure 28: PCAP Configuration Process flow chart 
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CHAPTER 5: JPEG COMPRESSION IMPLEMENTATION 

USING PARTIAL RECONFIGURATION FRAMEWORK 

In this portion we will discuss the implementation of JPEG compression which requires a lot of 

hardware resource in order to facilitate all its computations implemented concurrently on FPGA 

device. Since our scope here is to optimize the resource utilization of FPGA, not the quality of 

compression so in this example is using a lossy JPEG compression method and to keep the 

implementation simple we will take input image of size 96 x 96 pixels. So that we can process 

the image in chunks of 8x8 pixels. In order to process an image of different dimensions padding 

is required. Figure 30 shows the modular flow diagram of JPEG implementation without partial 

reconfiguration on Xilinx zynq device.  

4.1 Interface 

The top-level module encapsulates two modules, one for receiving and processing the data and 

second is the ff checker. The main input signals of top module are enable, reset, clock along with 

24 bit wide data and control lines. 8 MSBs of data i.e. data_in[23:16] represents the green value, 

data_in[15:8] corresponds to red values and 8 LSBs represents the blue values. The whole 

algorithm runs on a single clock, and all of the registers are synchronized to the rising edge of 

this clock.  The enable signal should be brought high when the data from the first pixel of the 

image is ready.  The enable signal needs to stay high while the data is being input to the core. 

Since the data is 24bit wide therefore in order one 8x8 block of an RGB image will require 64 

cycles. After the 64 pixels of data from each block has been input, the enable signal needs to stay 

high for a minimum of 33 clock cycles.  There should not be any new data during this delay of 

33 or more clock cycles. Enable signal is required to be de-asserted for one clock cycle in 

between the multiple 8x8 blocks input. This pattern needs to continue for each of the 8x8 blocks 

of data.  

When the last 8x8 block of the is being input to the module, the end_of_file_signal should go 

high with first valid 24bits of the final 8x8 bock. The output bitstream is a 32-bit bus, and 

normally between blocks, any bits that don’t fill the whole 32-bit width output bus will not be 
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output.  Instead, they will become part of the next 8x8 block of the image.  On the last 8x8 block, 

the core will output any extra bits so that there are not any missing bits from the image. 

JPEG_TOP

CLK

RST

ENABLE

DATA_IN[23:0]

EOF

JPEG_OUT[31:0]

DATA_RDY

EOF_COUNT

EOF_PARTIAL

 

Figure 29: JPEG compression Top Module In outs 

The JPEG bitstream is output on the signal JPEG_bitstream, a 32-bit bus.  The first 8 bits will be 

in positions [31:24], the next 8 bits are in [23:16], and so on.  Data ready indicates the valid data 

coming out of JPEG_bitstream. 32-bit data out of JPEG_bitstream will have 1 cycle of data 

ready high. If the last bits do not fill the 32-bit bus in the last block of data, the signal 

eof_data_partial_ready will go high for one clock cycle aligned with extra bits in the 

JPEG_bitstream.  The 5bit wide end_of_file_bitstream_count signal indicates the number of 

extra bits asserted. 

4.2 Operation 

4.2.1 Color Space Transformation 

The functionality of JPEG compression involves several major steps, first of all the input data is 

received in RGB values which is required to be converted into Y_Cb_Cr (Luminance and 

Chrominance) values. This operation is implemented in the RGB2YCBCR module based on the 

formulas below: 

Y =   .587 * Green + .299 * Red + .114 * Blue 

Cb =   -.3313 * Green + -.1687 * Red + .5 * Blue + 128 

Cr =   -.4187 * Green + .5 * Red +    -.0813 * Blue + 128 

 

In order to perform these calculations, fixed point multiplications are used.  All of the constant 

values in the above 3x3 matrix are multiplied by 2^14 (16384).   The color space conversion 
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Figure 30: Modular Flow chart of JPEG Compression Implementation
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multiplications are performed on one clock cycle, then we take sum of all the products on the 

next clock cycle.  This is done to achieve a fast clock frequency during synthesis.  Then the sums 

are divided by 2^14, which is implemented by discarding the 14 LSBs of the sum values, instead 

of actually performing a divide operation.  Rounding is performed by looking at the 13th LSB 

and adding 1 to the sum if the 13th LSB is 1. 

 

4.2.2 Discrete Cosine Transform 

The next step after calculating the Y, Cb, Cr values is to compute the Discrete Cosine Transform 

(DCT).  This is commonly referred to as a 2D DCT.  The actual formula is the following: 

 

DY = T * Y * inv(T) 
 

T is the DCT matrix.  Y represents the 8x8 block of the image which is being processed. The 

resultant matrix of the 2D DCT computation is denoted by DY.  The DCT needs to be performed 

separately on the Y, Cb, and Cr values for each block.  The DCT of the Y values is performed in 

the y_dct module.  The DCT of the Cb and Cr values occurs in the cb_dct and cr_dct modules. 

To perform the DCT, the values of Y, Cb, and Cr need to be centered around 0 and, in the range, 

–128 to 127. The DCT matrix is multiplied by the constant value 16384 or 2^14.  The rows of 

the T matrix are orthonormal (the entries in each row add up to 0), except for the first row. 

Multiplication of the T rows by the Y columns of data is performed, and the extra 128 in each of 

the Y values is cancelled out by the orthonormal T rows. After multiplying the T matrix by the Y 

matrix, the resulting matrix is multiplied by the inverse of the T matrix.  This operation is 

performed in the code with the goal of achieving the highest possible clock frequency for the 

design.  

 

4.2.3 Quantization 

After the 2D-DCT module, quantization is performed on the Y, Cb, and Cr values independently. 

The 64 matrix entries calculated after performing the 2D DCT are inputs to this quantization 

module.  This module quantizes the entire 8x8 block of values.  The outputs from this module 

are the quantized values for one 8x8 block.  
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4.2.4 Huffman Encoding 

After quantization is performed on 8x8 blocks of Y, Cb and Cr values, the results from quantizer 

are passed to the Huffman encoding module. Transposed output matrix of the quantizer are 

passed to the Huffman module. Transpose is taken so that the values in the 8x8 block can be 

written in left to right order because the computation in the DCT module generates the 

transposed results because of matrix multiplication. The Huffman table values can not be altered, 

during the execution. These values can be changed in the code and bit files are required to be 

generated again after changing the values. 

A full Huffman table is generated, even if encoding a small image file and do not expect to use 

all of the Huffman codes.  The calculations in this core may differ slightly from how you do your 

calculations, and if you use a Huffman table without all of the possible values defined, the core 

may need a Huffman code that is not stored in the RAM, and the result will be an incorrect 

bitstream output. The DC component is calculated first, then the AC components are calculated 

in zigzag order.  The output from the huffman module is a 32-bits signal containing the Huffman 

codes and amplitudes for the either of Y, Cb, or Cr values.   

 

4.2.5 Creating the Output JPEG Bitstream 

After performing the above calculation, the output Y, Cb and Cr values are combined in an order 

that contains the huffman output of 8x8 block of Y, then huffman output for 8x8 block of Cb 

followed by the huffman results of corresponding Cr 8x8 block. After that huffman result of next 

8x8 Y block is attached. After combining the values, FF check operation is performed on the 

output bitstream. When an FF is found on byte boundaries, an additional 00 is placed after the 

FF. 

4.3  Implementation using Dynamic Partial Reconfiguration 

In the JPEG compression implementation, there are 3 major computation modules (Discrete 

Cosine Transform, Quantization and Huffman Encoding) which consumes most of the hardware 

resource. In order to fit them in the partial reconfiguration framework we have multiple options. 

For example, we can create 3 reconfigurable regions, one for each color space so that each of 
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those reconfigurable regions will have enough resource to house all three modules (Discrete 

Cosine Transform, Quantization and Huffman Encoding).  Figure 31 shows the block diagram 

for JPEG compression implementation based on the dynamic partial reconfiguration framework. 
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Figure 31: Block Diagram for PR based JPEG implementation 
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CHAPTER 6: RESULTS AND CONCLUSION 

This chapter contains the detailed results of adopting the dynamic partial reconfiguration. We 

will discuss the results of the JPEG encoding in terms of picture quality and resource utilization. 

The Verilog implementation of the JPEG encoding is focused to achieve the maximum 

frequency from the core. This implementation has been tested via simulation. To keep the 

implementation simple, we will take input image of size 96 x 96 pixels. So that we can process 

the image in chunks of 8x8 pixels. In order to process an image of different dimensions padding 

is required. The values of red green and blue pixels is read from the image with 24 bits 

designated for each pixel value i.e. 8 bits for each red, green and blue values. These values are 

input to the core serially along with the control signals. 8 MSBs of 24 bit data i.e. data_in[23:16] 

represents the green value, data_in[15:8] corresponds to red values and 8 LSBs represents the 

blue values. The whole algorithm runs on a single clock, and all of the registers are synchronized 

to the rising edge of this clock.  The enable signal is brought high when the data from the first 

pixel of the image is ready.  The enable signal needs to stay high while the data is being input to 

the core. Since the data is 24bit wide therefore in order one 8x8 block of an RGB image will 

require 64 cycles. Simulation waveform of data and control signals is shown in Figure 32 

 

 

Figure 32: Simulation waveform of JPEG encoding 

 

Output data is received from the 32-bit parallel interface and data ready signal indicating the 

valid output data. The output data is only the scan data portion of the image. The header of the 
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JPEG image is copied from another JPEG image of same dimensions. The Quantization and 

Huffman tables used in code are also similar to the sample image because of using the 

corresponding JPEG header. Data output from the core is combined with the header and 

checksum using a simple MATLAB script. Figure 33 shows the actual and compressed image 

side by side. 

 

Figure 33: Input image and output image with file size 

 

There is clear difference in the size of the image and visually the image does not look much 

distorted either which indicates that the code is functioning correctly.  

 

5.1 Resource Utilization comparison 

The complete implementation of above JPEG encoding has been synthesized for Xilinx Zynq 

7000 AP SoC XC7Z020-CLG484 processor. Three main resources are responsible for covering 

the fabric area i.e. DSP slices, Slice LUTs and Slice Registers. Resource utilization shown in 

Table 15 are the resources utilized without applying any resource optimization technique. All 

three color spaces data is being executed in parallel in order to shorten the critical path of the 

system and achieve as much frequency as possible. The three main modules of implementation 

are discrete cosine transform, quantization and huffman encoding. All these modules executed in 

parallel for 3 different color spaces.  

Table 15 separately shows the resources utilized by these modules, combined resources utilized 

for one color space and resource utilization for complete JPEG encoding core.   
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Parameter DCT Huffman  Quantization Requirements for  

one color space 

Complete 

Requirements 

Slice LUTs 5483 1670 2 7198 47790 

Slice Registers 6149 2334 2820 11308 34955 

 F7 Muxes 0 0 0 13 39 

F8 Muxes 0 13 0 6 18 

DSPs            60 6 0 66 180 

 

Table 15: Resource utiliaztion of JPEG encoding on multiple levels 

 

 

When the same implementation is optimized using the dynamic partial reconfiguration 

framework as shown in Figure 31 the resource utilization shows reduced usage as shown in 

Table 16.  

Parameter Complete Resource 

Utilization 

Utilization After 

Partial 

Reconfiguration 

Optimized 

Percentage usage 

Slice LUTs 47790 31531 66% 

Slice Registers 34955 21448 61.3% 

DSPs            180 60 33.4% 

 

Table 16: Resource utilization after partial reconfiguration 

The results of dynamic partial reconfiguration-based implementation show significant reduction 

in hardware resource utilization as the Slice LUTs, Slice Registers and DSP are reduced by 34%, 

39% and 66% respectively. These utilizations can further be reduced if the execution for all three 
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color spaces is organized serially through a single reconfigurable region but it will induce 

massive overhead of reconfiguration time. 

5.2 Timing Comparison 

Using the dynamic partial reconfiguration method to implement resource hungry problems adds 

the additional configuration time overhead in the execution of application. This time is usually in 

few milliseconds depending on the size of partial bitstream. In our case the total time of 

execution for the JPEG compression code is in micro seconds. Therefore, in order to save the 

hardware resource, it is mandatory to make a trade of with the execution time. Figure 34 shows 

the execution time for the JPEG compression at different levels. These values have been noted 

while the code was running at 100MHz frequency. However, the code is capable of running at 

higher frequencies. 

Input collection/

RGB to YCBCR
2D-DCT Quantization

Huffman

Encoding
Combine Bitstream

730 ns for 

(8x8 Block)

40 ns for 

(8x8 Block)

180 ns for 

(8x8 Block)

112.32 us for 96x96 image

 

 

Figure 34: JPEG compression execution time without PR 

 

Once the partial reconfiguration framework is used then we will have three set of partial 

bitstreams for along with a full bitstream for each reconfigurable region. Each color space will 

have a separate reconfigurable region. Initially the full bitstream fills the reconfigurable region 

with the partial bitstream corresponding to discrete cosine transform as it is the first step after 

converting RGB data to YCbCr. All the partial bitstream files are loaded in the DDR3 memory 

on startup in order to save the redundant reading time from the external storage (SD card). Figure 

34 shows the execution time of JPEG core combined with the reconfiguration time at different 

stages. 
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Figure 35: Execution time of JPEG core combined with the reconfiguration time 

 

The bit file generated for DCT, Quantization and Huffman encoding are of same size because the 

reconfigure region is of fixed size. All partial files generated are of 267,948 bytes in size. The 

full bitstream carries 4,045,663 bytes. When running a standalone application on ZedBoard 

(without Linux running on the processor) the partial bit files take 2126.57us each for 

reconfiguration. These files are loaded in the DDR3 memory on startup which is running at 533 

MHz (1066 MHz data rate). The DDR memory uses 32-bit wide data line and its theoretical 

throughput is: 

4 Bytes x 1066 MHz = 4.264 GB/s 

Reconfiguration occurs twice during the complete procedure of compression, 1st changing the 

reconfigurable logic from DCT to quantization and then from quantization to huffman. Rest of 

the logic resides in the static are of hardware.  
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

From the above results we can clearly see that the using the dynamic partial reconfiguration 

framework significantly reduces the hardware utilization. But it also comes at a cost of 

configuration time overhead which can be tolerated in certain applications. Table 17 shows 

comparison of implementing JPEG compression with and without dynamic partial 

reconfiguration framework in terms of resources and time 

 

 Hardware Utilization Execution Time 

With DPR Framework DSPs: 60 

Slice LUTs: 31532 

Slice Registers: 21448 

4389.9 us 

Without DPR Framework DSPs: 180 

Slice LUTs: 47790 

Slice Registers: 34955 

112.32 us 

 

Table 17: Results comparison in terms of resources and time 

 

Looking at the results we can safely conclude that partial reconfiguration framework can be used 

to reduce the hardware utilization in FPGA/SOC devices. However, it is recommended for those 

applications only where the execution time requirements are not very tight. Applications with 

strict timing requirements such as video streams are not suitable to be implemented with 

dynamic partial reconfiguration. It is more suited for the applications with complex algorithms 

and calculations. It is also useful for reconfiguration of systems that are deployed in remote 

locations. 
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6.2 Future Work 

As it is mentioned above that partial reconfiguration of a reconfigurable region in device can be 

reconfigured by the PR controller which lies in the static portion of that same device and partial 

bitstreams are stored in a non-volatile storage attached to the FPGA/SOC. The static portion can 

also contain logic other than PR controller. We can make use of this feature and place a program 

that can read partial files from an external network. In this case there is no need for partial 

bitstreams to be available locally all the time and bit files can be transferred to the device 

remotely. To achieve this functionality, we will add ethernet controller in the static part of the 

device which can receive the bit files over the network and store them in DDR3 memory before 

initializing reconfiguration process. 

Network

Generate 

new 

bitstreams

Static Region 

with Network 

Interface and 

PR Controller PRR2

PRR1

 

Figure 36: Block diagram for network based partial reconfiguration 

 

This architecture is more suitable for reprogramming the device for entire new purpose rather 

than reprogramming it for the smaller chunks of a bigger implementation as more delays will be 

added while reconfiguration because of network involvement. 
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