
Efficient Processing of Metadata in Java

SIG API for HL7

 By

Yasir Mehmood

(2007-NUST-MS PhD-CSE (E)-13)

Submitted to the Department of Computer Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Software Engineering

Advisor

Dr. Muhammad Younus Javed

College of Electrical & Mechanical Engineering

National University of Sciences and Technology

2009

i

APPROVAL

It is certified that the contents and form of thesis entitled “Efficient Processing of

Metadata in Java SIG API for HL7” submitted by Yasir Mehmood, have been

found satisfactory for the requirement of degree.

Advisor: __________________

(Dr. Muhammad Younus Javed)

 Committee Member: _________________

(Dr. Hafiz Farooq Ahmad)

Committee Member: _________________

(Dr. Aasia Khanum)

 Committee Member: _________________

(Dr. Farooque Azam)

Committee Member: _________________

(Dr. Ghalib Assadullah Shah)

ii

IN THE NAME OF ALMIGHTY ALLAH

THE MOST BENEFICENT AND THE MOST

MERCIFUL

TO MY PARENTS, TECHERS

AND SISTERS

iii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another person,

nor material which to a substantial extent has been accepted for the award of any

degree or diploma at NUST CEME or at any other educational institute, except where

due acknowledgement has been made in the thesis. Any contribution made to the

research by others, with whom I have worked at NUST CEME or elsewhere, is

explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project‟s design and conception or in

style, presentation and linguistics which has been acknowledged.

Author Name: Yasir Mehmood

Signature: ______________

iv

ACKNOWLEDGEMENTS

First of all I am extremely thankful to Almighty Allah for giving me courage and

strength to complete this challenging task and to compete with international research

community. I am also grateful to my family, especially my parents who have

supported and encouraged me through their prayers that have always been with me.

I am highly thankful to Dr. Muhammad Younus Javed, Dr. Hafiz Farooq Ahmad

and members of SEECS HLH Team Leads (Muhammad Afzal & Maqbool Hussain)

for their valuable suggestions and continuous guidance throughout my research work.

I am highly grateful to Dr Aasia Khanum and Dr. Farooque Azam for their help and

guidance throughout the research work. I am also thankful to all of my teachers who

have been guiding me throughout my course work and have contributed to my

knowledge. Their knowledge, guidance and training helped me a lot to carry out this

research work.

I am also thankful to Ms Sidra Aftab and Mr. Hasan Ali Khattak for their keen

interest, guidance and feedback in this research work. I would like to offer my

gratitude to all the members of the research group (HLH Team) and my close

colleagues who have been encouraging me throughout my research work especially

Mr. Muhammad Afzal and Mr. Maqbool Hussain.

Yasir Mehmood

v

ABSTRACT

Information technology has started focusing on the healthcare enterprises, for

providing better medical care. There exist different healthcare enterprise standards that

are used for the communication of medical information across health enterprises

providing swift and reliable results. HL7 is one of those standards that are used for the

exchange of medical information between healthcare systems. The new standard of

HL7 named as version 3.0 (v3) is an emerging standard claims at achieving semantic

interoperability with its well defined information models like Reference Information

Model (RIM), Domain Message Information Model (D-MIM), and Refined Message

Information Model (R-MIM). These models are converted to some technology specific

format for implementation such as Model Interchange Format (MIF). This format

includes metadata information in the form of XML. MIFs are required to be loaded in

memory for generation and parsing of messages. Core API developed by Sun with

approval of HL7 known as Java SIG API utilizes these files in a non-efficient manner.

It loads all associations (no matter these are required or not) present in a particular

MIF file. This creates not only the performance issue but also the memory wastage. In

this work, an algorithm is proposed to improve the process of message generation and

parsing by avoiding unnecessary associations during MIF loading. This technique is

based on proxy design pattern. The proposed technique removes the performance

bottleneck of the API and makes it space and time efficient.

vi

TABLE OF CONTENTS

ABSTRACT .. V

TABLE OF CONTENTS .. VI

LIST OF FIGURES ... X

LIST OF TABLES ... XII

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 MOTIVATION ... 1

1.2 BACKGROUND ... 1

1.3 PROBLEM STATEMENT ... 2

1.3.1 METADATA LOADING ... 2

1.3.2 MESSAGE COMMUNICATION ... 2

1.4 PROBLEM SOLUTION ... 3

1.4.1 EFFICIENT METADATA LOADING .. 3

1.4.2 RELIABLE MESSAGE COMMUNICATION .. 3

1.5 OUTLINES OF THESIS ... 3

CHAPTER 2 .. 4

LITERATURE REVIEW .. 4

2.1 HEALTHCARE STANDARDS .. 6

2.1.1 DIGITAL IMAGING AND COMMUNICATION IN MEDICINE DICOM ... 6

2.1.2 AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) .. 7

2.1.3 STANDARD GENERALIZED MARKUP LANGUAGE SGML ... 7

2.1.4 LOGICAL OBSERVATION IDENTIFIERS NAMES AND CODES (LOINC) 7

2.1.5 STUDY DATA TABULATION MODEL (SDTM) ... 8

2.1.6 INTRODUCTION OF HL7 .. 8

2.1.6.1 HL7 v 2 ... 9

2.1.6.2 HL7 v 3 ... 10

2.2 HEALTH LIFE HORIZON PROJECT ... 12

2.2.1 HL7 CORE ENGINE ... 12

vii

2.2.2 HL7 DATABASE MAPPER .. 12

2.2.3 HL7 TRANSPORTATION COMPONENT .. 13

CHAPTER 3 .. 14

HEALTH LEVEL 7 VERSION 3.0 .. 14

3.1 INTRODUCTION ... 14

3.2 HL7 BASIC MODELING CONCEPTS/HL7 FOUNDATION COMPONENTS 14

3.2.1 INFORMATION MODEL .. 14

3.2.1.1 Reference Information Model ... 16

3.2.1.2 Domain Message Information Model ... 18

3.2.1.3 Refined Message Information Model (R-MIM) .. 20

3.2.2 STATIC STRUCTURES .. 20

3.2.2.1 Class ... 20

3.2.2.2 Relationships .. 21

3.2.3 ATTRIBUTES .. 21

3.2.4 CONSTRAINTS ... 22

3.3 VOCABULARY ... 22

3.4 DATA TYPES ... 22

3.5 COMMON MESSAGE ELEMENT TYPE ... 23

CHAPTER 4 .. 24

JAVA SPECIAL INTEREST GROUP API .. 24

4.1 JAVA SIG API COMPONENT OVERVIEW .. 25

4.1.1 MESSAGE TYPE LOADER ... 25

4.1.2 RIM OBJECTS ... 26

4.1.3 DATA TYPES .. 26

4.1.4 MESSAGE PARSER ... 26

4.1.5 MESSAGE BUILDER ... 27

CHAPTER 5 .. 28

SYSTEM ARCHITECTURE .. 28

5.1 PROPOSED ARCHITECTURE ... 28

5.1.1 PROPOSED ARCHITECTURE OF METADATA CONTROLLER ... 28

viii

5.1.1.1 Message Generator .. 30

5.1.1.2 Message Parser .. 30

5.1.1.3 MIF Handler .. 30

5.1.1.4 MIF Loader .. 30

5.1.1.5 MIF Reader .. 31

5.1.1.6 Association Finder ... 31

5.1.1.7 MIF Splitter .. 31

5.1.1.8 MIF Assembler ... 31

5.1.2 PROPOSED ARCHITECTURE FOR COMMUNICATION CONTROLLER ... 32

5.1.3 DATABASE MAPPER .. 33

CHAPTER 6 .. 35

METHODOLOGY .. 35

6.1 PROBLEM .. 35

6.2 METHODOLOGIES ... 36

6.2.1 LOADING OF ASSOCIATIONS FOR MESSAGE GENERATION .. 37

6.2.1.1 Algorithm for Generation of Message .. 38

6.2.2 Loading of Associations for Message Parsing .. 38

6.2.2.1 Algorithm for Parsing of Message ... 40

6.2.3 MESSAGE COMMUNICATION ... 41

CHAPTER 7 .. 43

DESIGN AND IMPLEMENTATION .. 43

7.1 ANALYSIS TO DESIGN & IMPLEMENTATION DETAILS ... 43

7.1.1 LOAD METADATA ... 44

7.1.1.1 Sequence Diagram & Collaboration Diagram .. 44

7.1.2 LOAD DATA FOR MESSAGE USE CASE... 45

7.1.2.1 Sequence Diagram & Collaboration Diagram .. 46

7.1.2.2 Partial Class Diagram ... 47

7.1.3 MAP DATABASE TO HL7 ... 47

7.1.3.1 Sequence Diagram and Collaboration Diagram .. 48

7.1.3.2 Partial Class Diagram ... 49

7.1.4 GENERATE MESSAGE .. 49

7.1.4.1 Sequence Diagram and Collaboration Diagram .. 50

7.1.4.2 Partial Class Diagram ... 51

ix

7.1.5 PARSE MESSAGE ... 51

7.1.5.1 Sequence Diagram and Collaboration Diagram .. 51

7.1.5.2 Partial Class Diagram ... 52

7.1.6 MAP HL7 TO DATABASE ... 53

7.1.6.1 Sequence Diagram and Collaboration Diagram .. 53

7.1.6.2 Partial Class Diagram of Map HL7 to Database Use Case .. 54

7.1.7 SEND MESSAGE... 54

7.1.7.1 Sequence Diagram & Collaboration Diagram .. 55

7.1.8 RECEIVE MESSAGE ... 56

7.1.8.1 Sequence Diagram & Collaboration Diagram .. 56

7.1.8.2 Partial Class Diagram of Send Message & Receive Message 58

7.2 SCREEN SHOTS .. 58

7.2.1 COMMUNICATION SETUP .. 58

7.2.2 ADD LINK ... 58

7.2.3 TEST ORDER INTERFACE ... 59

7.2.4 SEND MESSAGE... 59

CHAPTER 8 .. 62

RESULTS AND EVALUATION ... 62

8.1 SYSTEM REQUIREMENTS.. 62

8.2 EVALUATION CRITERIA .. 63

8.2.1 TIME USAGE ... 63

8.2.2 MEMORY USAGE ... 65

8.3 MESSAGE COMMUNICATION ... 66

8.4 SIGNIFICANCE ... 66

CHAPTER 9 .. 67

CONCLUSION AND FUTURE WORK .. 67

9.1 CONCLUSION ... 67

9.2 FUTURE WORK .. 67

x

LIST OF FIGURES

Figure 1: Health Information by Time ... 5

Figure 2: Usage of Different standards among healthcare providers 9

Figure 3: HL7 Version 2.x and 3.x .. 10

Figure 4: Difference between HL7 version 2 and 3 ... 11

Figure 5: HL7 Foundation Components .. 15

Figure 6: Reference Information Model .. 17

Figure 7: D-MIM Entry point .. 18

Figure 8: D-MIM Classes & Colors ... 19

Figure 9: Relationship Types ... 20

Figure 10: HLH Project Architecture ... 24

Figure 11: HL7 Java SIG API Components Overview .. 25

Figure 12: Overall Architecture ... 29

Figure 13: Proposed Architecture Diagram of Database Controller 32

Figure 14: HL7 Communication Environment .. 33

Figure 15: Flow of activities during generation of message 39

Figure 16: Flow diagram of loading of one association for parsing 41

Figure 17: HL7 Communication Environment .. 42

Figure 18: Use case Diagram ... 43

Figure 19: Sequence Diagram of Load Metadata Use Case 44

Figure 20: Collaboration Diagram of Load Metadata Use Case 45

Figure 21: Sequence Diagram of Load Data Use Case .. 46

Figure 22: Collaboration Diagram of Load Data Use Case 46

Figure 23: Partial Class Diagram of Load Data ... 47

Figure 24: Sequence Diagram of Map Database to HL7 ... 48

Figure 25: Collaboration Diagram ... 48

Figure 26: Partial Class Diagram of Map Database to HL7 49

Figure 27: Sequence Diagram of Generate Message Use Case 50

Figure 28: Collaboration Diagram of Generate Message Use Case......................... 50

xi

Figure 29: Partial Class Diagram of Generate Message Use Case 51

Figure 30: Sequence Diagram of Parse Message ... 51

Figure 31: Collaboration Diagram for Parse Message Use Case 52

Figure 32: Partial Class Diagram of Parse Message .. 52

Figure 33: Sequence Diagram of Map HL7 to Database Use Case 53

Figure 34: Collaboration Diagram of Map HL7 to Database Use Case................... 54

Figure 35: Partial Class Diagram of Map HL7 to Database Use Case 54

Figure 36: Sequence Diagram of Send Message Use Case 55

Figure 37: Collaboration Diagram for Send Message Use case 56

Figure 38: Sequence Diagram of Receive Message Use Case 57

Figure 39: Collaboration diagram for Receive Message Use Case 57

Figure 40: Partial Class Diagram of Send Message & Receive Message Use Case 58

Figure 41: Communication Setup .. 59

Figure 42: Add Link Interface .. 60

Figure 43: Screen shot for test orders .. 60

Figure 44: Screen shot for Sending Message ... 61

Figure 45: Comparison of approaches message generation 64

Figure 46: Comparison of approaches in message parsing 64

Figure 47: Graphical views of results on different systems 66

xii

LIST OF TABLES

Table 1: Data type Categories From Normative 2006 ... 23

Table 2: Ideal System Requirements .. 62

Table 3: Details of results as a result of dynamic message parameters 63

Table 4: Details of results on different systems ... 65

1

CHAPTER 1

INTRODUCTION

This chapter introduces the research work that has been taken in this thesis. It

includes motivation and definition of the problem. Moreover the objectives and goals

are also discussed.

1.1 Motivation

Health industry plays a pivotal role in the progress of nations by adding revenue to

a nation‟s economy. This progress is due to its efficiency that has been indulged in it

by the use of Information Technology. Healthcare is becoming even more progressive

field these days and in near future will be considering as economy reviving industry.

Healthcare stakeholders are ready to invest but reluctant because of no assured

interoperability. So interoperability is the main cause of concern in developing

healthcare systems. To achieve interoperability, healthcare standards are needed to use

in developing healthcare messaging systems.

HL7 is one of several ANSI accredited Standards Developing Organizations

(SDOs) operating in the healthcare arena [1]. HL7 has developed several standards in

healthcare domain like conceptual standards in the form of HL7 RIM, document

standards in form of Clinical Document Architecture (CDA), application standards like

HL7 Clinical Context Object Workgroup (CCOW), messaging standards like HL7

version 2.x (v2.x) and HL7 v3. Messaging standards are of high importance because

they define how the information can be packaged and communicated from one party to

the other [2].

1.2 Background

Metadata includes information about structure of the message being generated,

format on which messages are based and constraints applied on different associations,

attributes etc. All the messages of HL7 v3 are based on MIF and hierarchical message

2

definition (HMD). Both of these formats are XML based [3] and supported by Java

SIG API but proposed methodology is based on MIF not on HMD. For correct

generation and parsing of HL7 v3 messages, proper loading of these metadata files is

necessary otherwise there will be no assurance of correct message generation.

Metadata loading has lot of problems to be handled for the successful generation of

messages. The existing loading strategy requires lot of memory for complete loading

of metadata which may include cross references to each other that result into not only

performance bottleneck rather generates sometimes memory errors like stack overflow.

Message Communication is also very necessary beside message generation and

parsing. Currently Java SIG API does not provide classes for communication of HL7

v3 messages.

1.3 Problem Statement

Problem statement consists of two parts. One part is related to the loading of

metadata while generation and parsing of messages which is the main focus of this

research work while other is related to the communication of the messages because

health information represented in HL7 v3 messages is useless without communication.

1.3.1 Metadata Loading

Metadata loading is an important step in generation and parsing of HL7 V3

messages. Technique currently used by Java SIG API has lot of issues related to

performance in terms of memory and time. This not only results in performance

degradation but sometimes results in system crashes due to some errors like stack

overflow.

1.3.2 Message Communication

Message communication is also an important step but Java SIG API has no

provision for that. This work added required classes for the communication of HL7

messages as well.

3

1.4 Problem Solution

The goal of this research is to provide a mechanism for efficient generation and

parsing of HL7 V3 messages.

1.4.1 Efficient Metadata Loading

In this thesis remedies of the above mentioned problems are taken. For handling the

issues of metadata loading, an improved technique based on the existing one is

proposed. Using this technique metadata is loaded efficiently and problems related to

memory and time wastage are removed.

1.4.2 Reliable Message Communication

Java SIG API does not provide any mean for communication of messages. Some of

the implementations are available for communication like Minimal Low Layer

Protocol (MLLP) implementation for HL7 v2.x by HAPI, MIRTH etc. In this work

implementation of MLLP by HAPI is integrated in Java SIG API for adding reliable

communication infrastructure.

1.5 Outlines of thesis

The rest of the document is organized as follows.

Chapter 2 provides literature review. In this chapter different concepts related to

healthcare industry are discussed, in chapter 3 some details about HL7, its components

are discussed, chapter 4 discusses information about Java SIG API. In chapter 5,

proposed system architecture is discussed while in chapter 6 research methodologies

are discussed. Chapter 7 discusses details about design and implementation, in chapter

8 evaluation and results of the implemented system are discussed, and in chapter 9

thesis work is concluded and some future directions for research are discussed.

4

CHAPTER 2

LITERATURE REVIEW

Healthcare issues are among the most critical one faced by our society today. There

have been repeated efforts over the years to apply all fields of science and technology

to improve healthcare. The initiative all along has been to focus on providing

healthcare by dealing with day-to-day tasks involved in doing so [4]. Healthcare has

number of domains like laboratory, pathology, radiology etc where the involvement of

information technology is emerging everyday thereby improving the patient care and

thus saving the cost.

 The healthcare data needs to be shared among various hospitals, clinics,

doctors, physicians etc for variety of purposes like test order, result, patient record etc.

The sharing of information among the healthcare systems and functional organization

has been categorized four levels according to the conceptual framework. These levels

are shown in Figure 1.

Level 1: Non electronic data: In 1950s a system was developed in America in

which most of the medical transactions are carried out by means of paper. This system

is still in use in most of the hospitals around the world. In this system there is no use of

IT, instead most of the work is done through telephone and postal system. The basic

drawback of this approach is the cost of handling paper and phone calls associated

with the test, redundancy of data and the delays in case of paper based ordering and

reporting of results [5]. If the transactions are carried out electronically then America

could save $11 billion annually [6].

Level 2 Machine Transportable data: In 1970s hospital computing has been

primarily about billing, with little attention paid to the needs of the clinician. By the

mid- 1980s, programs were developed which were no longer limited to accounts and

billing, rather provide access to laboratory results, medication-dispensing information,

on-line text of is charge summaries, and more[7]. Only 10% of American hospitals

started to use Health information technology in 1999 [5]. In this the transmission of

5

non standardized information is done via basic IT for example fax, pdf files,

documents etc. the main drawback of this approach was that it only transmit the data

electronically but it was unable to work or manipulate the information in that data.

Figure 1: Health Information by Time
1

Level 3 Machine Organizable data: transmission of structured messages

containing non-standardized data. At level 3, the system could combine the

information from various remote sources but this form of transmission requires the

translation of sender's information at receiver‟s end. The translation often results in

misinterpretation due to incompatibility of vocabularies at both ends. Hence the

resulting system were more error prone and generate redundant information, they limit

the efficiency of Clinical Decision Support System and cause overload for clinicians.

Also this level requires large amount of investment in interfaces in order to translate

the heterogeneous vocabularies.

Level 4 Machine Interpretable data:

This is the most idealized level as it focuses on the exchange of structured messages

containing standardized and coded data. Like Level 3, it can also get data from various

remote locations and merge that but all of the systems would exchange the data in

1 Health Life Horizon Project, “http://hl7.seecs.edu.pk/index.php?id=2”

6

same format and same vocabulary so there is no need of translating the information at

sender and receiver‟s end and therefore it there is no chance of misinterpretation,

ambiguity and incompatibility of vocabularies at the end systems. So the resulting

systems are more efficient, accurate and time saving. At level 3 there were so many

interfaces required for the translation of multiple vocabularies resulting in great

investment. At Level 4, the use of same vocabulary eliminates the need for many

interfaces. It only requires one interface to all the external systems. So in case of level

4 almost $31.8 billions cost is saved annually.

Interoperability between the systems becomes more effective due to the elimination of

redundant tests and the saving of cost and time [8].

 2.1 Healthcare Standards

According to the research and observations in developed countries like America,

England etc most of the patients died or injured due to medical errors. The situation is

worst in countries like Pakistan. The healthcare community provides solution to this

problem by introducing standards in exchanging clinical information. There are

different standards that are available for healthcare environment. A brief description of

some important standards is given below:

2.1.1 Digital Imaging and Communication in Medicine DICOM

DICOM is a medical standard for storing; printing and transmitting the information

related to medical images [9, 10]. DICOM enables the integration of scanners, servers,

workstations, printers, and network hardware from multiple manufacturers into a

picture archiving and communication system (PACS) [10]. DICOM has been widely

used in hospitals and is and now it is also used for small level like dentists' and

doctors' offices [9, 10]. The DICOM standard claims the conformance tests and it

mentions the classes it support but in real situation DICOM fails to provide

conformance issue as it lacks the details of implementation of different features of

standard [10]. It also doesn‟t provide a way to test or check the implementation‟s

conformance to standard.

7

2.1.2 American Society for Testing and Materials (ASTM)

ASTM is a Standard Guide for Properties of a Universal Healthcare Identifier

(UHID). This standard was created by the Association for Information and Image

Management and ASTM International. This standard is meant to provide the patient

confidentiality and access security based on UHID. The sample UHID is used solely

for the healthcare. It is able to link the health care records in both manual and

automated environments and it can be easily mapped to currently used healthcare

identifiers [6]. However it doesn‟t identify or addresses the implementation issues and

infrastructure requirements.

2.1.3 Standard Generalized Markup Language SGML

The Standard Generalized Markup Language (ISO 8879:1986 SGML) is an ISO

Standard Mata language that provides the user a way to define markup languages for

documents. SGML only provides an abstract syntax for concrete implementation. ISO

SGML shrinks a document to a regular expression in a known grammar so that it can

be parsed easily. As such, it makes possible computer processing of information

recorded in all the various forms that a narrative can take. SGML can be applied in

almost all the areas of medical science and it can contribute more than to just encode

the separate text blocks.

 2.1.4 Logical Observation Identifiers Names and Codes (LOINC)

Logical Observation Identifiers Names and Codes (LOINC) are a database and

universal standard to distinguish the medical laboratory observations. It is available for

free and was created due to the demand of electronic database for clinical purpose. It

applies universal names and codes for medical terminologies related to Electronic

Health Record. With the time the data base do not remain restricted to just medical

laboratory code names but rather it is expanded to include nursing diagnosis, nursing

interventions, outcomes classification, and patient care data set. The database currently

8

includes over 41,000 observation terms that can be accessed and understood

universally [6].

2.1.5 Study Data Tabulation Model (SDTM)

SDTM (Study Data Tabulation Model) defines a standard structure for human

clinical trial (study) data tabulations that are to be submitted as part of a product

application to a regulatory authority such as the United States Food and Drug

Administration (FDA). The Submission Data Standards team of Clinical Data

Interchange Standards Consortium (CDISC) defines SDTM [6].

SDTM is based on observations collected about subjects participated in a clinical

study. Each observation can be expressed by a series of variables, corresponding to a

row in a dataset or table. Each variable can be classified according to its Role. A Role

determines the type of information conveyed by the variable about each distinct

observation and how it can be used.

2.1.6 Introduction of HL7

HL7 is an international standard, developed in 1987 for electric exchange of clinical

data in healthcare domains. Initially it aimed to provide point –to-point transmission or

patient‟s data related to admission, discharge, orders and test result. But today HL7

provides different formats for information exchange related to all areas of healthcare

including billing, care guidelines, doctor and support staff‟s information and so on.

The “seven” in HL7 represents its position at the 7
th

 layer of Open System

Interconnection (OSI) series of protocols from International Organization for

Standardization (ISO). HL7 focuses on the information that is carried in the messages

despite of the formatting of messages or configuration of end point systems [8].

HL7 is the most widely used standard amongst all the other healthcare standards.

The popularity and usage of HL7 is shown in the Figure 2.

9

Figure 2: Usage of Different standards among healthcare providers
2

HL7 standard is used for exchanging information between the clinical information

systems and between the systems dedicated for specific clinical task such as

Laboratory, Radiology etc. The information is exchanged by the use of HL7 messages.

The HL7 messages consist of various fields containing the data. The HL7 messages

were first introduced in its v 2.x series which was a market success .but later on HL7

version 3 was introduced with new entirely different concept.

2.1.6.1 HL7 v 2

HL7 standard was initially introduced in series of version 2.x such as version 2.1,

2.3, 2.4, 2.5. At that time version 2 was very successful that it was used in more than

93% of US hospitals, that is the main reason that the concepts and terminologies used

in version 2 just focuses the US paradigm.

The methodology and the development process of version 2 are not clear and

properly planned. Hence its members do not have straight directions to follow and

construct the messages. The version 2 is compatible with only limited data types. The

prior knowledge of data types, message type and structure is required in version 2. The

segments and message definitions are reused so many times and to cater this reuse,

most of the data fields are declared optional. The metadata is not available in

2 “Usage if Different standards among healthcare provides,” [Online]. Available:

 http://hl7.seecs.edu.pk/index.php?id=2

10

structured form, instead it is extracted from the word processing documents and the

messages were created by making changes in these documents.

2.0

(1988)

2.1

(1990)

2.2

(1996)

2.3

(1997)

2.4

(2001)

2.5

(2003)

2.6

(2005)

3.0

(2002)

V
e

rs
io

n
 2

.x

V
e

rs
io

n
 3

.x

Figure 3: HL7 Version 2.x and 3.x

The version 2 basically provides an easy way to exchange healthcare message

between the clinical systems and its transmission instead of focusing on healthcare

data.

Hence there was a need to improve this version to address the major issues of

healthcare. HL7 version 3 was developed to solve the problems faced by the

developers of version 2.

2.1.6.2 HL7 v 3

HL7 v 3 standard was introduced to address the issues that were remained unsolved

by version 2. The development of version 3 was the major challenge for HL7

members. After 4 years of continuous efforts and work, a methodology was designed

to support all the healthcare workflows through a series of electronic messages. These

version 3 messages are based on XML syntax.

Most of the countries around the world were using version 2 so it would be very

difficult for these countries to use an entirely different version and spend money. Also

11

HL7 v3 is not compatible with the older 2.x series. So the major challenge was to

provide a converter or translator from version 2 to version 3. Also version 3 is very

complex

The Version 3 is not just limited to US hospitals; instead it can be widely used

across the world in any healthcare environment. The version 3 messages focuses on

the healthcare data instead of providing ways to transmit the data.

In HL7 version 3, the specifications become more detailed, clear and accurate by

using the Object Oriented Approach. The Object Oriented is based on Unified

Modeling Language UML design principles leading to the creation of more refined,

unambiguous and structured messages. No prior knowledge is required for creating the

version 3 messages. HL7 version 3 uses XML syntax instead of ASCII coding used in

version 2. The difference between version 2 and 3 is shown in Figure 4.

HL Version 2.x

ASCII-Based

US-Based

HL Version 3.x

XML-Based

Localization Concept

Figure 4: Difference between HL7 version 2 and 3
3

Reducing the optionality in data field is considered as the major issues by version 3

developers as optionality makes it harder to claim conformance for message. The

conformance of HL7 v3 will be testable by introducing the concept of Application

Roles. Application Roles are used to define the behavior of messaging between the

healthcare systems in an abstract way. The conformance to HL7 v3 is tested by

3 “HL7 V2&V3 Comparison,” [Online]. Available: http://hl7.seecs.edu.pk/index.php?id=2

12

assuring that the applications supports all the messages, trigger events and data

elements linked with one or more application roles.

2.2 Health Life Horizon Project

Health Life Horizon (HLH) project is an ongoing project at School of Electrical

Engineering and Computer Science (SEECS). Main aim of HLH is to develop HL7 v3

framework in order to provide better healthcare services to different communities of

world. Main focus will be the development of HL7 middleware for the healthcare

information systems in use today. Work on this project will be carried out in different

phases.
4
 There are three main phases of this project i.e.

1. HL7 Core Engine

2. HL7 Database Mapper

3. HL7 Transportation Component

2.2.1 HL7 Core Engine

HL7 Core Engine is related to message management. Main component of this

module is HL7 message management tool which comprises of HL7 v2 to HL7 v3

Mapping tool, and HL7 v3 message generator and message parser. For message

generation and message parsing HL7 java SIG API is used so Java SIG API is also

considered as part of this component. Working of this API is main focus of this thesis.

Beside these there are components related to HL7 Ontology core engine and

application role deployment tools.

2.2.2 HL7 Database Mapper

HL7 database mapper is also an important component of HLH project. Currently

HL7 specification does not provide any guidelines for direct mapping of database

contents to the HL7 messages. It is related to the mapping of HL7 message contents to

the database contents so that HL7 v3 messages may be generated efficiently in lesser

time.

4 “System Architecture,” [Online]. Available: http://hl7.seecs.edu.pk/index.php?id=2

13

2.2.3 HL7 Transportation Component

Without transportation HL7 messages are of no good use. For providing full

advantages of HL7 v3 there is a strong need of communication of messages among

different stakeholders as described in Chapter 1. HLH defines three mechanisms for

communication of HL7 v3 messages: MLLP, ebXML, and webservices. HLH

architecture is shown in Figure 10 (Chapter 4).

14

CHAPTER 3

HEALTH LEVEL 7 VERSION 3.0

3.1 Introduction

HL7 is a standard organization. It was established in 1987 in order to standardize

healthcare information systems [11]. It was accredited by American National Standard

Institute (ANSI) in 1994. HL7 is one of several ANSI -accredited Standards

Developing Organizations (SDOs) operating in the healthcare arena. Almost all of the

SDOs operate in their domain or specific to their domain e.g. some are specific to

pharmacy domain, some are specific to medical devices, and some are specific to

medical imaging etc. Similarly HL7 also covers some domains. HL7‟s domain is

clinical and administrative data.

3.2 HL7 Basic Modeling Concepts/HL7 Foundation Components

The HL7 Version 3 specifications consist of several documents. Some contain the

HL7 version 3 specification and some contain information which is necessary or

crucial for the development and transport of the messages of HL7. HL7 foundation

document falls in the category which is necessary for the development and transport of

messages. Figure 5 shows the pictorial view of the composition of foundation

document [12].

Foundation components include Information Model, Vocabulary, Implementation

technology specification, data types, common message element types and examples

[12].

3.2.1 Information Model

Information model describes the information within specific domain of interest. It

shows the required classes of the domain, there properties in terms of their attributes,

relationships with other classes in the domain, constraints which applies on those

15

classes and there states etc. Different types of information models are defined in HL7,

these information models are designed in such a way that they can be used to express

or represent the information of different contexts.

Figure 5: HL7 Foundation Components

An information model consists of different components like classes, their attributes,

and relationship between classes, data types for all domain attributes, and state

transition models for some of the classes. HL7 information model is based upon UML

16

and can be presented graphically using the standard UML notations. UML stands for

unified modeling language and it is used for object oriented modeling. There are three

types of information models named as:

1. Reference Information Model

2. Domain Message Information Model

3. Refined Message Information Model

3.2.1.1 Reference Information Model

Reference Information Model (RIM) of HL7 is a static model of healthcare [13] as

it (RIM) is viewed from within the scope of HL7 standards development activities.

HL7 RIM is the ultimate source from which all HL7 Version 3 (HL7 V3) protocol

specifications are defined and all HL7 V3 standards draw their contents related to

information. The HL7 RIM is one of the significant components of version 3

development process. RIM is the root of all information models because all

information models which are used in HL7 are based on it i.e. R-MIM, D-MIM etc.

This model provides the static view of the information needs of the HL7 V3

standards [13]. It is represented in diagrammatic form as shown in Figure above. It is

comprised of six back bone classes act, participation, entity, role, actrelationship,

rolelink details about these is given below:

Act

Act class represents the actions that are executed and must be documented as

healthcare is managed and provided.

Entity

Entity class represents the physical things and beings that are of interest to, and take

part in health care.

Role

Role class establishes the roles that entities play as they participate in health care

acts.

17

Figure 6: Reference Information Model

Participation

Participation class expresses the context for an act in terms such as who performed

it, for which it was done, where it was done, etc. These are used for linking one role

class with an act class.

ActRelationship

ActRelationship class represents the binding of one act to another, such as the

relationship between an order for an observation and the observation event as it occurs.

These are used for linking two act classes.

RoleLink

RoleLink class represents relationships between individual roles. These are used for

linking two role classes.

These classes are the building blocks of RIM. All of the RIM structure is totally

based on these classes. First three are called back-bone classes of RIM because all of

other classes are based on these classes.

18

3.2.1.2 Domain Message Information Model

RIM demonstrates the abstract picture of the healthcare and is unable to represent

the details about a specific domain but it provides necessary information that can be

used for representing a particular domain. Domain Message Information Model (D-

MIM) derived from RIM is used to capture information about a particular domain [14].

It is a subset of RIM that includes a fully expanded set of class clones, attributes, and

relationships that are used for the generation of a message in a particular domain. For

example set of class, attributes, and class clones that are used in the generation of

messages of laboratory domain can be totally different from those that are used in the

generation of messages of patient administration domain.

Like RIM it is represented in the form of a diagram. Its diagrammatic model is also

very complex; it has its own conventions and notations that are developed by HL7 in

order to represent some semantic meaning of the message. Complete understanding of

these conventions and notations is very important in order to understand a D-MIM.

These conventions and notations are given below in detail.

Entry Point

Each D-MIM model will have at least one entry point. It is the point from which the

message for a particular domain begins [15]. In D-MIM it is represented by a rectangle

with a black arrow originates from it and points to some class in D-MIM, that pointed

class is called focal class or root class. Figure 7 shows the pictorial form of entry point.

Entry point box contains following information

 Name of entry point mentioned in bold fold at the top left corner

 RMIM-Artifact ID mentioned below the name,

 Description of entry point.

Figure 7: D-MIM Entry point

Classes and Colors

19

Like RIM, basic building blocks of D-MIM models are also RIM classes. The main

difference is that in D-MIM each class can appear multiple times (but that is not the

case in RIM). These multiple instances of a class in a model are called clones of that

class. Each class has its own significance and color which distinguishes it from others.

In D-MIM these classes are represented by different colored boxes [16]. The act

related classes appear in boxes of red color, entity related classes appear in green and

role related classes appear in yellow boxes while non-core RIM classes (classes which

are not based on RIM) appear in dark blue colors as shown in Figure 8.

Figure 8: D-MIM Classes & Colors

Relationship Classes

Relationship classes are used for linking back-bone classes (act, entity, and role).

These are shown by arrowed boxes in D-MIM and are of three types actrelationship

which are used in linking two link classes, participation classes used for linking act

with role class and rolelink classes used for link two role classes. These are shown in

pictorial form in Figure 9.

20

Figure 9: Relationship Types

3.2.1.3 Refined Message Information Model (R-MIM)

R-MIM is a subset of D-MIM [17]. It contains only those classes, attributes and

associations required to compose the set of messages defined for a particular area in a

domain. In D-MIM different entry points describes information about different

possible R-MIMs in them. Same diagrammatic convention is used for expressing R-

MIM as that is used for D-MIM. The main visible difference is that R-MIM contains

only one entry point as compared to those of D-MIM which contains multiple entry

points.

3.2.2 Static Structures

Static structure is same as that in unified modeling language (UML). It consists of

classes and relationship between these classes.

3.2.2.1 Class

A class is an abstraction of things or concepts that are subjects of interest in a given

application domain. Classes are the people, places, roles, things and events about

which information is kept. Classes normally have a name (anonymous classes are

exception), properties in the form of attributes, relationship between classes and states

[18].

21

3.2.2.2 Relationships

Relationships define how the classes in a particular information model can be

related to each other. We can categorize relationship between classes in two forms,

generalization and association [18].

Generalization is the relationship between classes not between objects. It is

association or relationship between two classes, i.e. super class and sub class. In

generalization all properties of super class are inherited in subclass [18].

Associations are the relationships at the object level. These are used to relation two

objects. Objects may be instances of two different classes or of same class [18].

3.2.3 Attributes

Class attributes are the core components of any information model. These are the

sources for all of the information content in HL7 message [18]. Most of the attributes

in information models are descriptive attributes. Descriptive attributes are used to

describe aspects of classes that are important for communication between health care

systems. In addition to descriptive attributes there are three more kinds of attributes

which are used in information model named as identifier attributes, classifier attributes

and state attributes. Identifier attributes can be used to identify an instance of a class.

Sometimes only one attribute is enough to represent an object and sometimes there is

need of using more than one attributed for identifying object. Value of identifier

attribute is unique among all instances of a class. The classifier attributes form the

backbone of the RIM (Entity, Role, and Act). These attributes are named "classCode".

These attributes can be used to provide a great amount of flexibility and extensibility

in the information model. State attributes are used in subject classes, these contains

values which regularly changes. These attributed are used to indicate the current state

of the class. A subject class must have only one state attribute. The state attribute must

be assigned the data type "set of code value" that allows multiple state flags to be

specified. State attributes are named status_cd and are associated with vocabulary

domains defined by HL7 that correspond to the state machine defined for the subject

class [18].

22

3.2.4 Constraints

Constraints are used to put some restrictions on the attributes. Constraints narrow

down the set of possible values that an attribute can take on. Constraints may be

specified in the RIM, D-MIM, R-MIM or hierarchical message description (HMD)

[18]. In RIM the constraint is relevant for an attribute in all messages containing the

attribute, in other two models the constraint is specific to all of the messages derived

from that particular model (D-MIM or R-MIM). Constraints specified in a higher level

(e.g., the RIM) may be further constrained in a lower level (e.g., D-MIM or HMD).

However, the subordinate constraint must conform to the constraint on the higher level

[18].

3.3 Vocabulary

Within HL7, a vocabulary domain is the set of all concepts that can be taken as

valid values in an instance of a coded field or attribute [18]. Vocabulary domain

consists of set of concepts, in different implementations of an interface the same

concept can be represented using different coding systems. Thus, each concept in a

vocabulary domain has a one-to-many relationship to codes that might be used as

representations for the concept in a message instance [18].

3.4 Data Types

Data types are the basic building blocks of attributes. They defined the structural

format of the data carried in attribute [18]. Some data types have very little intrinsic

semantic content and the semantic context for that data type is carried by its

corresponding attribute. However HL7 also defines quite extensive data types such as

PNMP, person Name Part, which provides all the structure and semantics to support a

person name. Every attribute in the RIM is associated with one and only one data type,

and each data type is associated with zero or many attributes [18].

23

Table 1: Data type Categories from Normative 2006

3.5 Common Message Element Type

Common message element types (CMET) are a work product produced by a

particular committee for expressing a common, useful and reusable concept [18]. They

are intended for common use across messages produced by all committees that are way

they are proposed to, reviewed by, and maintained by the CMET task force of the

MnM committee [18]. A CMET is derived from a single D-MIM, defined by the

producing committee. Its content is a direct subset of the class clones and attributes

defined in that D-MIM, and does not include content from other D-MIMs.

24

CHAPTER 4

JAVA SPECIAL INTEREST GROUP API

Java Special Interest Group (Java SIG) for HL7 has designed an API for HL7

messaging named as Java SIG API for HL7. This API is used for generation and

parsing of HL7 V3 messages. It plays a key role in HLH project. Architecture of HLH

project is as follow:

Figure 10: HLH Project Architecture
5

It is the basic need of HL7 core engine to properly work. Role of HL7 core

engine is mostly related to HL7 message management. HL7 message generator, HL7

message parser, HL7 V2 to V3 mapping and other messaging related functions fall

under its roles. Here message generator and parsers use HL7 Java SIG API for

generation and parsing of messages.

5 “System Architecture,” [Online]. Available: http://hl7.seecs.edu.pk/index.php?id=2

25

4.1 Java SIG API Component Overview

HL7 Java SIG API can be divided into different components named as:

1. Message Type Loaded

2. Message Content Handler

3. Data types

4. RIM Objects

5. Builder

In pictorial form it is shown in Figure 11:

Figure 11: HL7 Java SIG API Components Overview

4.1.1 Message Type Loader

It is also called metadata loader. For generation and parsing of every message it

is necessary to load the correct metadata of message types therefore it is called

metadata loader. Work presented in this thesis is also related to this component of HL7

Java SIG API. For every message there is a message type or metadata present in the

form of metadata interchange format (MIF) files and is distributed with each ballot and

26

normative edition. These files have the extension “.mif”. Earlier it was present in the

form of hierarchical message description (HMD) files but now in V3 these are

provided in the form of XML. For metadata loading HL7 Java SIG API provides

interfaces in “org.hl7.meta” package and their respective implementation classes are

present in “org.hl7.meta.impl” package.

4.1.2 RIM Objects

RIM objects are discussed in chapter 3. These objects are important for

generation of messages. These classes are based on high level abstraction such as

patients, observations, procedures, roles, acts, etc [1]. Interfaces for these objects are

found in “org.hl7.rim” package and implementations for these interfaces are given in

“org.hl7.rim.impl” package.

4.1.3 Data types

HL7 V3 has defined its own data types. Each attribute in RIM has an HL7

specific data type. For each data type HL7 Java SIG API has defined some interfaces

and classes for their proper usage. These classes contain many specialized methods [1].

Interfaces for datatypes are provide in “org.hl7.types” package and implementations

of these interfaces are provided in “org.hl7.types.impl” package.

4.1.4 Message Parser

 Message parser component is used for parsing of already generated messages.

It makes use of rim objects, datatypes, and metadata loader component for correct

parsing of message. Message parsing classes are also called message content handler

classes. These classes are present in “org.hl7.xml.parser” package of Java SIG API.

 Message parser makes use of SAX parser during parsing of messages. As SAX

event fires, data present in the SAX event is used to query the metadata classes for

loading metadata. The specific metadata allows the parser to instantiate a node as a

RIM object of HL7 data type object [1]. Because of many flavors of objects like RIM

classes, data types, CMETs (common message element types) there is a need of

27

specialized content handlers. The specialized content handlers can be dynamically

"switched out" during message parsing.

4.1.5 Message Builder

Message builder or message transformer component is basically used for

building or generation of HL7 V3 message using above mentioned components. It is

very much similar to message parser i.e. in case of message parser it fully relies on

small message content handlers while message builder relies on small builder

components in fact content handler in parser are called builder during message

building or generation. It makes use of rim objects, data types, and metadata loader.

The message builder uses the “Identity transform” feature of XSLT transforms

to print the XML output of message. “The “Identity transform” is a special case where

the incoming XML message is sent through the XSLT transform machinery, but no

actual transform is done. The newly generated output is exactly the same as the XML

input: but the output isn't simply copied. The input generated SAX events and these

events were used to create the XML output. Since no transform is performed, the

resulting message is the same as the input message” [19]. Class for message builders

are mostly found in “org.hl7.xml.builder” package of HL7 Java SIG API.

28

CHAPTER 5

SYSTEM ARCHITECTURE

In this chapter proposed system architecture is discussed. System architecture is the

conceptual design of the system. It describes the structure and/or behavior of the

system in certain circumstances. The main focus of this chapter is to describe different

parts/components of the architecture and design of the system. Initially all of the

components of the architecture are mentioned after that their details i.e. their purpose

and their working is discussed. Then proposed system architecture is shown in

pictorial form.

5.1 Proposed Architecture

Proposed architecture of the system is divided into three sub-architectures named

as:

1. Metadata Controller

2. Database Mapper

3. Communication Controller

Metadata controller is responsible for handling metadata related issues. It loads the

data after processing of metadata interchange format (MIF) file. Database mapper is

used for mapping the message contents with the database contents while

communication controller is used for sending and receiving messages. It is shown in

Figure 12.

5.1.1 Proposed Architecture of Metadata Controller

Metadata controller is responsible for the metadata handling which is the main work

of this report. It is shown in the Figure 13. It is divided into 3 main levels named as:

 User Interface Level

 Messaging Level

MIF (RMIM) Controller Level

29

Metadata

Controller

Communication

Controller

Database Mapper

User

Interface

Database

Figure 12: Overall Architecture

User interface level represents different users‟ querying the system for generation

and parsing of messages. When user issues command for generation or parsing of

message, the control is transferred to the messaging level. On Messaging level or layer

there are two major components named as:

 Message Generator

 Message Parser

From messaging level control is transferred to the MIF (RMIM) controller level for

loading and processing of metadata files or MIF files. This level has five components

all of them related to metadata handling. These components are named as:

 MIF Handler

 MIF Loader

30

 MIF Reader

 Association Finder

 MIF Splitter

 MIF Assembler

Details of different important components of the system architecture are discussed

below.

5.1.1.1 Message Generator

This component is related to the messaging level. It is used for generation of HL7

V3 messages of a specific format. For correct generation of message it is necessary to

load a metadata file called Message Interchange Format (MIF). So for loading of it

message generator transfers the control to the MIF loader.

5.1.1.2 Message Parser

This component is used for parsing of HL7 V3 message. Before parsing it validates

the message. For both validation and parsing it requires loading of MIF files which is

loaded by transferring the control of MIF loader.

5.1.1.3 MIF Handler

It is the first component of MIF controller. There are two main functions of the

component first is to load the MIF file by calling MIF loader when the MIF file is

loaded MIF loader transfer the control to someone else for processing, second function

of MIF Handler is that it takes assembled MIF file from MIF assembler and then it

transfers control to the messaging level for generation and parsing of messages.

5.1.1.4 MIF Loader

MIF loader has two main functions. First of all it reads the information about the

MIF file from the project properties file named as “cmet-files.properties”. After getting

this information it loads the MIF file into memory for processing. After processing it

transfers the control to the MIF reader that will read the MIF file and in case some

31

other MIF files are referenced into that particular MIF file than control is transferred

back to the MIF loader for loading of that referenced MIF file.

5.1.1.5 MIF Reader

This component takes loaded MIF file from the MIF loader and starts traversing of

it. It has a sub component named as MIF association finder. This component looks for

all of the associations present in a MIF file.

5.1.1.6 Association Finder

MIF file is composed of multiple associations. Identification of all of these

associations is necessary because some of the associations may be needed in a

particular scenario but some of may not be. This component is the sub-component of

MIF Reader. It will finds out all of the associations from the MIF file. After

identification of all of the associations it will transfer control to the MIF splitter.

5.1.1.7 MIF Splitter

Once all of the associations are identified it is the responsibility of the MIF splitter

to split each of the MIF file into different associations so that they can be processed

easily. By splitting a MIF file into different associations it is very easy to identify

associations that are mandatory, associations that are optional, associations that are

required to be loaded in a particular scenario etc. If in an association another MIF file

is referenced control is transferred all the way back to MIF loader that loads that

association and passes that to the MIF reader and cycle goes on. After identification of

associations which are required to be loaded in a particular scenario control is

transferred to the MIF assembler so that these can be assembled and loaded in

memory.

5.1.1.8 MIF Assembler

MIF Assembler is also an important component of the architecture. It takes the

associations from the MIF splitter and finds out the associations which are required in

32

the scenario. After identification of those associations it assembles them into one MIF

file and passes it to the MIF handler which loads them in the memory for usage.

5.1.2 Proposed Architecture for Communication Controller

Communication controller is developed by another resource working on this

project. Currently communication environment is developed using minimal low layer

protocol (MLLP) built on top of TCP. Architecture for MLLP is shown in the Figure

14. More details about it can be found from [20].

Figure 13: Proposed Architecture Diagram of Database Controller

33

Figure 14: HL7 Communication Environment

The goal of the MLLP Message Transport protocol is to provide an interface

between HL7 Applications and the transport protocol that uses minimal overhead.

MLLP is based on a minimalist OSI-session layer framing protocol. It is assumed that

MLLP will be used only in a network environment. Most of the details of error

detection and correction are handled by the lower levels of any reasonable transport

protocol (e.g. TCP/IP, SNA) and do not require any supplementation.

The network protocol and the network behavior have to be agreed upon by the

communicating parties prior to the exchange of data. MLLP Release 2 covers the

absolute minimal requirements in order for it to be a reliable Message Transport

protocol [20].

5.1.3 Database Mapper

This component is used for integrating database contents with the message contents.

It is used on both sender and receiver side. On sender side it works as Database to HL7

mapper. It takes data contents from data loader and maps them with R-MIM contents

from R-MIM controller. After mapping these mapped contents are passed to Message

Generator component. On receiver‟s side it works as HL7 to Database mapper. It takes

parsed message contents from Message Parsers and maps them with the RMIM

34

contents from RMIM controller, after mapping it passes these contents to the database

controller for storing into database.

35

CHAPTER 6

METHODOLOGY

In this chapter research & implementation methodologies are described.

Methodology explains the techniques or procedures used by the researcher [21]. This

chapter contains material about methodologies which are proposed or implemented in

this thesis. This chapter is divided into two parts in first part problem is discussed and

in second part methodologies which are used for solution of this problem and

motivation behind these methodologies is discussed.

6.1 Problem

As discussed in previous chapter some metadata files are loaded during generation

and parsing of HL7 V3 messages. Efficient processing of these metadata files called

metadata interchange format (MIF) files is necessary for generation and parsing of

messages. Metadata loader component of Java SIG API is responsible for this task.

During generation and parsing of message, name of the metadata file is provided to the

system. System loads that metadata file and transverse it. Each metadata file contains

lot of associations. It is also possibility that in some of the associations may contain

reference to some other metadata files which are also loaded with these associations.

Now problem with API is that it loads all of the associations present in the metadata

file all at once due to which lot of metadata files are loaded sometimes these metadata

files contains references to each other in which case some circular queue like situation

arises that may result in wastage of memory and ultimately into a deadlock i.e.

Metadata file “A” contains reference to metadata file “B”, metadata file “B” contains

reference of metadata file “C” and metadata file “C” contains reference back to

metadata file “A” in this case all metadata files “A”, “B”, and “C” contains reference

of one another and this process will go on until program crashes or some halt condition

is applied.

36

It is possibility that in a certain application scenario there may be no need of

loading all of the associations e.g. consider a scenario in which a metadata file is

loaded which contains 18 associations. Out of these 18 associations in 4 associations

some more metadata files are referenced, these referenced metadata files contains

almost same structure i.e. lot of associations and referenced metadata files. If a rough

estimate of these associations is taken then there would be more than 70 associations

which Java SIG API has load for accurate generation or parsing of message. Out of

these associations in one scenario there may be required only 10 to 15 associations rest

may not be of any use in a particular scenario for efficient processing there is a

requirement of loading only these associations.

Beside message generation and parsing there are also some problems related to

message communication. HL7 Java SIG API does not provide any mechanism for

message communication. It is also a big challenge to provide communication

environment so system not only generate and parse messages but also communicate it

with other systems. Some communication specification is described in HL7 Normative

edition but at implementation level no work is carried out earlier.

6.2 Methodologies

Problems mentioned in the above section are resolved in the approach describes in

this thesis. In proposed methodology a temporary MIF file based on the requirements

of the application is created and loaded in the memory. Using this approach only those

associations (of the metadata files are loaded) which are required in a certain scenario.

Due to this processing time and resources can be reduced by many times. This

approach is useful for both message generation as well as message parsing.

To make the message generation and message parsing processes time as well as

space efficient; API is optimized to load only those associations which are required in

a particular scenario. In each MIF file there are two kinds of associations which are

necessary associations as well as optional associations. Necessary or required

associations are those which are mandatory to be loaded no matter whether there is any

need of them or not, on the other hand optional associations are those which are not

37

required to be loaded and only few out of them that are required in a particular

scenario are loaded.

6.2.1 Loading of Associations for Message Generation

For generation of message initially all of the necessary associations associated with

the entry point of the metadata file are identified. It can be done by reading and

understanding MIF files. Some time different MIF files are referenced in different

associations within the metadata file, and these metadata files have similar structure

and sometimes result in the cross referencing. Necessary metadata files can be

identified by checking the value of minimum multiplicity attribute of

“targetconnection” tag which is nested inside the association tag. For necessary

association value of minimum multiplicity attribute should be greater than „0‟. After

identification of necessary associations, system identifies the metadata files referenced

in these associations and asks the application developer to load these metadata files.

When all of the necessary associations attached with the entry point are identified, then

system takes classes referenced in these associations as entry point turn by turn and

identify necessary associations further attached with these entry points, and load

metadata files if they are referenced in associations and so on.

When finished with necessary or required association, now it‟s the turn of optional

associations. First of all identify all of the optional associations (associations with

minimum multiplicity value equal to „0‟). After identification of these associations,

system asks application developer if she/he is interested in loading these associations.

If application developer is interested, the association is loaded (along with MIF file

referenced in that association if any); otherwise system removes that association from

the metadata file. When done with first level optional associations, then it is the turn of

second level associations. System takes the first level associations as entry point and

repeats the above mentioned step for both mandatory and optional associations and so

on.

After finishing with all of the associations, it is required to load them in the memory

as a new temporary metadata file. For this purpose a temporary metadata file is

38

created, all of the identified associations are written down in this new MIF file. After

that all of the MIF files referenced from these identified associations are traversed,

similar steps are performed and identified associations from these referenced MIF files

replaces the association (which contain reference to other MIF file) of temporary MIF

file and this process goes on until all of the associations and MIF files referenced from

these associations are handled. At the end the new temporary MIF file is ready. System

is given the path of this temporary MIF file and all of the associations of this MIF file

are loaded.

6.2.1.1 Algorithm for Generation of Message

1. Identify entry point of the given MIF file.

2. Identify all of the associations associated with the entry point of the given MIF

file

3. Identify mandatory associations (out of the associations found in step one) by

checking “minimumMulitiplicity” attribute whose value is greater than 0 in tag

“mif:targetConnection” nested in “mif:association” tag.

4. Load the associations of step 2 in temporary MIF file in memory.

5. Identify optional associations by checking “minimumMultiplicity” attribute

whose value is „0‟.

a. Identify those associations which are according to requirements and

induct them to the MIF file.

6. Identify the classes referenced in associations identified in step 3 & 5,

7. Take these classes as entry point turn by turn and repeat steps from 2 to 6

8. If another metadata file is referenced in associations identified in step 3 & 5

a. Then repeat steps from 1 to 7 with referenced metadata file and so on.

6.2.2 Loading of Associations for Message Parsing

For parsing of message similar approach is used. Here idea is to parse both message

file as well as MIF file. On the basis of content of the message file associations from

the metadata files are loaded in the memory. This is done first by parsing the message

39

file, and after parsing identify the names of each starting tag and values of those tags

are compared with the name attribute of “targetconnection” tag in metadata file and in

case of choice boxes, it is compared with the “traversalName” attribute of the

“participantClassSpecialization” which is nested in the “targetconnection” tag. On the

basis of these comparisons, associations and referenced metadata files are loaded in the

memory. It results in the easy parsing of message.

Find Entry Point

Check Associations

Associated with Entry

Point

Mandatory

Association

Load in

temporary mif

file in memroy

Identify Classes

in Associations

Another MIF file

referenced

Is it required for

Application Scenario

Take Classes in

other

associations as

entry point

No

Y
e

s Y

e

s

End

Yes

Start

Figure 15: Flow of activities during generation of message

40

6.2.2.1 Algorithm for Parsing of Message

1. Read value of starting tags of message file

2. Compare these values with the values in metadata file there are two

possibilities

a. If the association is simple then compare value with name attribute of

“targetConnection” tag nested inside association tag

b. If the association is of choice type, then transverse to the participant

class specialization tag written as “participantClassSpecialization” and

compare the value of tag of message file with value of its name

attribute.

3. Load those associations for which values are compared in the memory

4. Leave rest of the associations

5. If other MIF files are referenced, then load them and repeat steps from 1 to 4

6. Parse the message with the new temporary MIF files

These steps can be repeated until all of the associations which are used in the

message file are identified and loaded. After loading of these associations it is easy to

parse the message.

In worst case scenario, the results of both existing and new techniques for loading

of associations in message generation as well as message parsing are same. In the best

case scenario, one may be asked to load just one metadata file depending upon the

requirements of the message. This technique reduces the time required for the

processing of metadata files largely and also improves the space utilization.

41

Start

Take Value of Starting

Tag of Message File

Identify Type of

Association From MIF

Simple

association

Take values of all

name attributed of

targetConnection

Move to participant

Class Specialization

tag and take value of

its traversal name

attribute

Ignore

Ignore

Load them in

memory

Yes

N
o

No

Y
e

s

Yes

N
o

Compare

Equal

Compare

Equal

End

Figure 16: Flow diagram of loading of one association for parsing

6.2.3 Message Communication

HL7 Java SIG API does not provide any packages for message communication

neither there is any other messaging API which can be used for communication HL7

V3 messages, although there is one named as HAPI which can be used for

communicating HL7 V2.x messages but for V3 messages there are requirements for

some modifications. Lot of methods are proposed for transmitting HL7 V3 messages

from one point to other like ebXML, webservices, minimum low layer protocol

(MLLP) etc. Proposed used in this thesis focuses on the combination of MLLP and

42

Java message service (JMS). Its architecture is shown in Figure 17 and its details can

be found in [20].

Figure 17: HL7 Communication Environment

43

CHAPTER 7

DESIGN AND IMPLEMENTATION

This chapter covers the design and implementation details of the application

(prototype) in the form of interaction diagrams in design section and class diagrams in

the implementation section. This technique is tested in generating and parsing of

messages of laboratory domain. For this purpose CITILAB is taken as a case study.

7.1 Analysis to Design & Implementation Details

Figure 18 shows the use case model of the application.

Figure 18: Use case Diagram

In this use case model different use cases for handling of metadata, and other issues

involved in the development of the application are discussed. Details of each of these

are given below:

44

7.1.1 Load Metadata

This use case captures the scenario when system wants to load the metadata for

generation or parsing of message.

7.1.1.1 Sequence Diagram & Collaboration Diagram

Figure 19: Sequence Diagram of Load Metadata Use Case

When application user or lab personal (as citilab is taken as case study) passes the

command for generate message or parse message control is transfers to the metadata

loader. Working of metadata loader is not just to load the metadata but it first refines

the metadata according to requirements and then loads it. For this purpose it passes the

control to the MIF reader which processes the MIF, then control is transferred to the

association finder for identification of the associations present in a MIF file after

identification of associations control is transferred to the MIF splitter which splits the

MIF file in different associations and at the end MIF assembler combines the required

45

associations into a single MIF and passes the control to the Metadata Loader which

loads the metadata file. Its collaboration diagram is shown Figure 20.

Figure 20: Collaboration Diagram of Load Metadata Use Case

7.1.2 Load Data for Message Use case

Primary actor for this use case is Lab Personal. It captures the scenario for loading

of data from the database about different laboratory tests which are being conducted

for a patient.

46

7.1.2.1 Sequence Diagram & Collaboration Diagram

Figure 21: Sequence Diagram of Load Data Use Case

Lab personal loads the form using loadForm() method. After that information about

patients and tests is retrieved by using listPatient() and listTests() methods

respectively. And data for the selected patient and tests is loaded by using

loadData(patientID,testID) methods. Its collaboration diagram is given in Figure 22.

Figure 22: Collaboration Diagram of Load Data Use Case

 : Lab Personal
Test Form Patient Database

Controler

Test

loadForm()
listPatient()

listPatients()

listTests()
listTests()

chooseTest()

loadData(patientID,testID)

 : Lab Personal

Test

Form

Patient

Database

Controler
Test

1: loadForm() 2: listPatient()

4: listTests()
6: chooseTest()

7: loadData(patientID,testID)

3: listPatients()

5: listTests()

47

7.1.2.2 Partial Class Diagram

Figure 23: Partial Class Diagram of Load Data

7.1.3 Map Database to HL7

This is a very important use case it captures the scenario where retrieved data about

patient and tests is mapped to the RMIM objects. Correct mapping is necessary for the

generation of message. Primary actor in this use case is system itself, pre condition for

this is that data is successfully loaded and after one to one mapping it will be ready for

correct generation of the message.

Data about patient and test is loaded by calling the method

loadData(patientID,testID), after that information different elements of the metadata

are extracted from the RMIM by calling the extractInfoFromRMIM(msgType). After

that data objects are mapped to the RMIM objects using mapDbToHL7 () method.

48

7.1.3.1 Sequence Diagram and Collaboration Diagram

Figure 24: Sequence Diagram of Map Database to HL7

Figure 25: Collaboration Diagram

49

7.1.3.2 Partial Class Diagram

Figure 26: Partial Class Diagram of Map Database to HL7

7.1.4 Generate Message

This use case is responsible for the generation of message. Primary actor for this

use case is lab personal and for its correct working it is necessary that data is loaded

and mapped to the RMIM elements otherwise it might not work properly. Message

will be ready for communication after successful generation.

Lab personal loads patient data from test form by calling loadData(patientID,testID)

method. After that metadata of the message type for which message is going to be

generated is loaded by calling loadMetadata(msgType). Then there is a mapping

controller which maps database objects with the RMIM (metadata) objects by calling

mapDbToHL7 (). After that message is generated by calling

generateMessage(patientID,testID,msgType).

50

7.1.4.1 Sequence Diagram and Collaboration Diagram

Figure 27: Sequence Diagram of Generate Message Use Case

Figure 28: Collaboration Diagram of Generate Message Use Case

51

7.1.4.2 Partial Class Diagram

Figure 29: Partial Class Diagram of Generate Message Use Case

7.1.5 Parse Message

Primary actor in this use case is Lab Personal. It is used to parse the message at the

receiver‟s end. Precondition for this use case is that message is successfully sent and

validated at receiver‟s end. After parsing contents of the message would be ready to be

mapped to database contents and to be stored in the database.

7.1.5.1 Sequence Diagram and Collaboration Diagram

Figure 30: Sequence Diagram of Parse Message

 : Lab Personal
Message Form RMIM Controler Parser

loadMessages()

chooseMessage(msgID)
loadMetadaInfo(msgType)

parseMessage(msgID)

52

Initially all of the messages are loaded by calling loadMessages() method, after that

lab personal chooses a message to which she/he wants to parse by using method

chooseMessage(msgID), then metadata information is loaded by calling the

loadMetadataInfo(msgType) then parseMessage(msgID) is called in order to parse the

message.

Figure 31: Collaboration Diagram for Parse Message Use Case

7.1.5.2 Partial Class Diagram

Figure 32: Partial Class Diagram of Parse Message

53

7.1.6 Map HL7 to Database

This use case is for mapping HL7 objects to the database objects, so that they can

be easily stored in the database. Key actor for this use case is system itself. For

mapping it is necessary that message is successfully received and parsed at the

receiver‟s end after mapping data contents are ready to be saved in database.

7.1.6.1 Sequence Diagram and Collaboration Diagram

Figure 33: Sequence Diagram of Map HL7 to Database Use Case

Initially a list of messages is shown to the lab personal from there a message can be

chosen by calling chooseMessage(msgID), after that message is parsed by calling

parseMessage(msgID) method during parsing information is extracted from both

message (information which is transferred) and RMIM (information about message

type) and then parsed contents are mapped to the database contents. After successful

mapping data contents are saved in database by calling saveDataInDB() method.

54

Figure 34: Collaboration Diagram of Map HL7 to Database Use Case

7.1.6.2 Partial Class Diagram of Map HL7 to Database Use Case

Figure 35: Partial Class Diagram of Map HL7 to Database Use Case

7.1.7 Send Message

This use case defines the scenario of sender application role sending a message.

Primary actor for this use case is sender application role.

55

7.1.7.1 Sequence Diagram & Collaboration Diagram

Figure 36: Sequence Diagram of Send Message Use Case

Sender application role receives the message from the message generator. The

message is then sent to monitor, which will bypass the „JMS controller‟ if the given

destination is not busy and send the message to destination. If the destination is not

responding, message is handed over to JMS Controller. JMS controller is then going to

wait for monitor to tell it when the destination gets ready for message receiving. On

trigger from the Monitor, JMS Controller is going to send the message to the desired

destination. Message delivery is going to get acknowledged at the end by

“messageRecieved()” call.

56

Figure 37: Collaboration Diagram for Send Message Use case

7.1.8 Receive Message

This use case captures the scenario of receiving a message by receiver application

role. Primary actor for this use case is receiver application role.

7.1.8.1 Sequence Diagram & Collaboration Diagram

The receiver application role is listening to the communication channel for message

retrieval. The server manager, on receiving a message triggers the „onMessage()‟

function. „JMS Controller‟ will check the status of the „Receiver‟ if not ready to take

messages, the JMS controller will just en-queue the message. If the Receiver is ready

to accept and process messages, JMS is going to pass the message straight to Receiver

for further processing.

57

Figure 38: Sequence Diagram of Receive Message Use Case

Figure 39: Collaboration diagram for Receive Message Use Case

58

7.1.8.2 Partial Class Diagram of Send Message & Receive Message

Figure 40: Partial Class Diagram of Send Message & Receive Message Use Case

7.2 Screen Shots

Interfaces are necessary part of any system as these are used by the end users for

interaction with the system. Therefore the more interactive, easy and user friendly the

interfaces would be, the easier it would be for the end user to communicate use the

system. For this purpose lot of interfaces were developed for CITILAB but only few of

them are shown below.

7.2.1 Communication Setup

This interface is used by sending side in order to determine status of different

branches. It provides information about different branches, their IP address and their

status. If the status of a particular branch is “up” than it means that sender can send

data to that branch and vice versa. Its interface is shown in Figure 41.

7.2.2 Add Link

This popup is shown when user presses add link button. Here user provides the

information about branch and its IP address as a result of it information about that

branch is shown in the communication setup. Its interface is shown in Figure 42.

59

Figure 41: Communication Setup

7.2.3 Test Order Interface

This interface is used by lab personal for getting information about the patients and

tests ordered by these patients. Lab personal will has to select a patient and against that

patient a list of tests will be displayed. Its interface is shown in Figure 43.

7.2.4 Send Message

This interface shows the message which is generated (by selecting patient and its

tests shown in previous interface).When message is generated user will choose a

branch from the dropdown list (shown at right corner of interface) and will press

“Send Message” button for sending the above message to that particular branch. Its

interface is shown in Figure 44.

60

Figure 42: Add Link Interface

Figure 43: Screen shot for test orders

61

Figure 44: Screen shot for Sending Message

62

CHAPTER 8

RESULTS AND EVALUATION

In this chapter results of the developed prototype system, discussed in Chapter 5

are evaluated against the existing approach used by HL7 Java SIG API. For this

purpose some evaluation criteria is identified, different criteria for message generation

and parsing are evaluated, messages are tested on different computers of different

specifications.

8.1 System Requirements

System prototype is developed using NetBeans IDE and java development kit 6 so

for running this software prototype there is a requirement of Java Runtime

Environment 6 and database handling is done using Microsoft SQL Server 2000 which

must be installed and database should be conFigured for proper running of this

software. In tabular form ideal requirements for this prototype are given in Table 2.

Table 2: Ideal System Requirements

System Processor
2.4 GHz

Hard Disk
40 GB

RAM
1 GB

Operating System
Windows 2000 Server, Windows 2003

Server, Windows XP

Runtime Environment
Java Runtime Environment 6

Database Server
Microsoft SQL Server 2000

63

8.2 Evaluation Criteria

For evaluation of system different time and space related criteria are proposed and

performance of this new technique is measured against the existing technique of HL7

Java SIG API. Details of these criteria are given below.

8.2.1 Time Usage

In this criteria time is measured in generation and parsing of messages for both

existing approach as well as the new technique discussed in this thesis. For that

purpose two different ways are used in order to access system efficiency using

technique proposed in this thesis.

In first method application or prototype is run on a single system of the

specifications mentioned in previous section. In this case only time “Test Order”

message generation and parsing is measured. In this case parameters of the message

are changed i.e. number of tests included in each message are varied and their

performance is measured and compared with the results of the existing approach.

Results measured in this method are shown in Table 3.

Table 3: Details of results as a result of dynamic message parameters

NO. OF
TESTS

MESSAGE GENERATION MESSAGE PARSING

EXISTING
APPROACH IN

MILLI SECONDS

NEW/PROPOSED
 APPROACH IN
MILLI SECONDS

EXISTING
APPROACH IN

MILLI SECONDS

NEW/PROPOSED
 APPROACH IN

MILLI SECONDS

1 2259 885 2343 913

2 2277 899 2367 922

3 2290 919 2389 935

4 2312 934 2399 941

5 2330 948 2412 957

6 2345 964 2429 965

7 2367 980 2440 976

8 2382 1004 2456 998

9 2399 1015 2462 1011

Graphical forms of the above table are given in Figure 45.

64

Figure 45: Comparison of approaches message generation

Similarly for parsing of message graph is given in Figure 46.

Figure 46: Comparison of approaches in message parsing

In second method system is used in 10 different systems of almost same

specifications using new methodology as well as existing technique and different

messages are produced. For example if a simple case of “Test Order” message of

laboratory domain is taken then this message is generated on 10 different systems and

time used for generation of this message is measured for both methodologies. In this

case parameters of the message which is generated are static while those of the

hardware on which application is running are varied. Details of this measurement are

given in table 4.

65

Table 4: Details of results on different systems

Placer Order Result Event

New/Proposed
Approach

Existing Approach
New/Proposed

Approach
Existing Approach

985 2659 1117 4025

985 3012 1045 4023

985 3025 1245 4025

985 3046 1125 4215

985 3689 1026 4136

985 3656 1045 4289

985 3689 1065 4026

985 4011 1169 4289

985 3698 1123 4726

In this table results gathered by the testing of both “Test Order” and “Test Result”

messages of laboratory domain are shown. All of these measurements are taken in

milliseconds and these measurements are only for message generation. In graphical

form results are shown in Figure 47.

8.2.2 Memory Usage

Memory measurement is taken empirically because it is very hard to measure the

performance in terms of memory of the system and it is not in the scope of this thesis.

For taking empirical measurements it is assumed that each association which may be

used in message generation or parsing is taken as one unit or they are going to

consume one unit of memory. On the basis of this principle all of the measurements

are taken and their results shows that new technique presented in this thesis is far

better than the existing one in term of memory usage.

66

Figure 47: Graphical views of results on different systems

8.3 Message Communication

Currently there Java SIG API does not provide any classes which provide the

environment for HL7 V3 messages communication. Work presented in this thesis

caters for this thing. Some of the classes of implementation of MLLP are included in

this work so that message communication may be achieved. Because without message

communication HL7 v3 messages are of no use.

8.4 Significance

In existing methodology, best, average and worst case behaviors are same. The

reason is that, in existing methodology all of the associations are loaded no matter

whether they are needed or not. This causes memory leakage and wastage of time. In

contrast, average case behavior of new (proposed) algorithm (methodology) is far

better than the currently used methodology because it loads only required associations

due to which lot of memory and time is saved. With this, the problems of cross

references and stack overflow errors are solved. Details of it can be seen in section 8.2.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9

m
il

li
 s

ec
o
n
d
s

Computers

Placer Order Proposed
Approach

Placer Order Existing
Approach

Result Event Proposed
Approach

Result Event Existing
Approach

67

CHAPTER 9

CONCLUSION AND FUTURE WORK

In this chapter research work is concluded and some future directions are described.

The chapter is of vital importance because it provides a bird‟s eye-view of the

methodology and gives future directions for new researchers.

9.1 Conclusion

Methodology used by Java SIG API for generation and parsing of messages has

some serious performance issues due to use of memory inefficiently. Proposed

methodology optimizes the existing methodology. It overcomes the efficiency

problems related to time and memory. It improves the metadata loading procedure by

loading only required objects rather loading all of the objects in memory. This work is

evaluated on different systems of different specifications and in all cases it produced

better results than the existing one as shown statistics given in chapter 8. With the

usage of this API not only memory leakage or memory wastage is removed but also

problem of cross referencing (which resulted in program crashes and stack overflow

errors) are handled efficiently. In term of time efficiency it works much faster than the

existing one. In worst case it‟s behavior is same as existing one because in that case it

has to load all of the associations in memory while in average and worst case scenarios

its performance in terms of memory utilization and time rapidness is lot better than

existing one. In short, this technique utilizes memory and time much more efficiently

than the existing methodology.

9.2 Future Work

Metadata loading process can be extended by adding machine learning support. E.g.

if a message is generated for the laboratory domain, system will keep track of the

associations which will be loaded in generation of that message. Record can be kept by

adding required associations into database against each message. This process will

68

continue for some time so that different variation may be stored in the system or

record. After that some data mining techniques can be used for retrieving patterns out

of the stored messages. It will reduce the burden from application developer to direct

system for loading associations.

Another way of bringing efficiency in the process of metadata loading is to put all

of the associations in a memory block called page. During generation and parsing of

messages each of these associations will be swapped in the memory as per

requirements. After utilization of some blocks or pages, these pages can be flushed or

cleaned so that the memory may be used by some other processes. By doing so worst

case scenario issues will be handled.

69

REFERENCES

[1] “What is HL7?” [Online]. Available: http://www.hl7.org/

[2] “Health Level 7,” [Online]. Available: http://en.wikipedia.org/wiki/HL7

[3] Meta information loader. [Online]. Available: http://aurora.regenstrief.org

/javasig/wiki/HL7 v3Overview

[4] A.Choudhri, L.Kagal, A.Joshi, T.Finin, Y.Yesha. “PatientService: Electronic

Patient Record Redaction and Delivery in Pervasive Environments,” Healthcom

2003, pp. 41-47, 6-7 June 2003. [Online]. Available: http://ieeexplore.ieee.org/xpl

/freeabs_all.jsp?arnumber=1218716. [Accessed August 11, 2009].

[5] J.Walker, E.Pan, D.Johnston, J.Alder-Milstein, D.W.Bates, B.Middleton “The

Value of Health Care Information Exchange and Interoperability”. [Online].

Available: http://content.healthaffairs.org/cgi/content/full/hlthaff.w5.10/DC1

[6] J.M.Hook, E.Pan, J.Adler-Milstein, J.Walker “The Value of Healthcare

Information Exchange and Interoperability”. [Online]. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1839305

[7] M.F.Collen “Clinical Research Databases--A Historical Review,” Journal of

medical systems (J Med Syst) 2005, pp 323-344, November 2005. [Online].

Available: http://www.find-health-articles.com/rec_pub_2132040-clinical-research-

databases-historical-review.htm

[8] M. Henderson, F.M. Behlen, PhD, C.Parisot, E.L. Siegel, D.S. Channin, “IHE a

Premier: Part 4 .The Role of existing Standards in IHE”vol 21.Dec 2001

[9] http://www.faqs.org/patents/app/20090024152

[10] “Digital Imaging and Communications in Medicine,” [Online]. Available:

http://www.ms-technology.com/resource-center/dicom.html

[11] http://en.wikipedia.org/wiki/Health_Level_7

[12] “HL7 Foundation Components,” [Online]. Available: http://

healthinfo.med.dal.ca/hl7intro/CDA_R2_NormativeWebEdition/help/v3guide

/v3guide.htm#v3fnd

[13] “Reference Information Model,” [Online]. Available: http://

healthinfo.med.dal.ca/hl7intro/CDA_R2_NormativeWebEdition/help/v3guide

70

/v3guide.htm#v3ginfomdl

[14] “Domain Message Information Models,” [Online]. Available: http://

healthinfo.med.dal.ca/hl7intro/CDA_R2_NormativeWebEdition/help/v3guide

/v3guide.htm#v3dmim

[15] “Entry points,” [Online]. Available: http://healthinfo.med.dal.ca/hl7intro

/CDA_R2_NormativeWebEdition/help/v3guide/v3guide.htm#v3dmimentrypt

[16] “Classes and Colors,” [Online]. Available: http://healthinfo.med.dal.ca

/hl7intro/CDA_R2_NormativeWebEdition/help/v3guide/v3guide.htm#v3dmimcnc

[17] “Refined Message Information Models,” [Online]. Available: http://

healthinfo.med.dal.ca/hl7intro/CDA_R2_NormativeWebEdition/help/v3guide

/v3guide.htm#v3grmim

[18] “HL7 Messaging Components,” [Online]. Available: http://

healthinfo.med.dal.ca/hl7intro/CDA_R2_NormativeWebEdition/help/v3guide/v3gu

ide.htm

[19] “HL7 V3 API Overview,” [Online]. Available: http://aurora.regenstrief.org

/javasig/wiki/HL7v3Overview

[20] N. Ilyas, “HL7 communication environment,” BIT Thesis, School of Electrical

Engineering & Computer Science, NUST, 2009

[21] “Methodology,” [Online]. Available: http://en.wikipedia.org/wiki

/Methodology

