

A Scalable Group Key Agreement protocol

for multiparty conferencing over P2P
Networks

Author

Alamzeb khan
 MS-07 (Software Engineering)

Supervisor

Dr.Ghalib AsadUllah Shah
Assistant Professor

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND ECHNOLOGY

ISLAMABAD.

July, 2009

 1

A Scalable Group Key Agreement protocol for multiparty
conferencing over P2P Networks.

Author

Alamzeb khan

MS-07 (Software Engineering)

A thesis submitted in partial fulfillment of the requirements for the degree of

MS (Computer Software Engineering)

Thesis Supervisor:

Dr. Ghalib AsadUllah Shah

Assistant Professor,

Department of Computer Engineering.

Thesis Supervisor Signature: ___

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
JULY, 2009

 2

ABSTRACT

A Scalable Group key Agreement protocol for multiparty conferencing over

P2P Networks.

Alamzeb Khan

Thesis Supervisor: Dr.Ghalib AsadUllah Shah

 Assistant Professor,

Department of Computer Engineering.

Up to now most of the group key agreement protocols (often tree-based) involve

unnecessary delays because members with low-performance computer systems can join

group key computation. These delays are caused by the computations needed to balance a

key tree after membership changes. This work presents an efficient stack-based and tree-

based group key agreement protocol (STGDH) and the results of its performance are

better than other approaches used by researchers. The proposed approach to filtering of

low performance members in group key generation is scalable and it requires less

computational overhead than other conventional group key agreement protocols. STGDH

protocol uses two approaches for efficient group key generation and distribution. STGDH

Protocol uses tree-based DIffie-Hellman to manage the group members in the network

and secondly it keeps the information of highest performance member in a stack data

structure. The highest performance is called the ‘group controller’. So the proposed

approach implements tree-based and stack-based technique. STGDH Protocol provides

efficient computation for group key generation by filtering low performance members

from this process. It also maintain a stack for all group controllers in the tree so that to

make the network reliable incase, any group controller leaves the network or is lost due to

network fault. The main advantage of this approach is efficient group key generation and

distribution in minimum possible time and keep information of all the preceding group

controller that is the highest performance members. The experimental results of this

approach are better than conventional group key agreement protocols.

Keywords: Group key agreement, group key generation and distribution, group controller

 3

 4

UNDERTAKING

I certify that research work titled “A Scalable Group Key Agreement Protocol for

multiparty conferencing over P2P networks” is my own work. The work has not been

presented elsewhere for assessment. Where material has been used from other sources it

has been properly acknowledged / referred.

Alamzeb Khan,

 REG NO: 2007-NUST-MS PhD-CSE (E)-07

 5

ACKNOWLEDGEMENTS

When my course work gets completed, I was confused in selection of my thesis topic. It is

an important stage in which any body needs help and guidance. For this purpose, I went

to Dr.Ghalib AsadUllah Shah and discussed some topics in the field of computer

networks. After selecting my thesis topic and supervisor, Dr.Ghalib guided me

throughout my thesis work by properly guiding me, and giving me technical assistance in

this area. I enjoyed my thesis work very much because of the friendly nature of supervisor.

I would like to say thanks to my supervisor for his so nice, friendly supervision.

After my theoretical work, when I was doing simulation of my work. I got stuck in some

technical problems in visual studio.NET 2005. I was in search of someone who helps me

in some technical problems. I discussed some technical problems with one of my class

fellow who helped me in it thoroughly. I would to like to say thanks to Mr. Sheraz for

helping me in technical problems. Finally I am grateful to all those who helped me

during my thesis work.

 6

 7

TABLE OF CONTENTS

Abstract ... ………...ii

Acknowledgement .. iii

List of Figures ... vi

List of Tables .. vii

Abbreviations ..viii

Chapter I: Introduction ... 11

1.1 Statement of the Problem .. 11

1.2 Introduction to P2P Networks……………………………………….12

 1.2.1 P2P Security Issues & Risks ... 12

 1.2.2 Solutions to P2P Security Issues ... 12

1.3 Objectives .. 13

1.4 Organization of the Thesis .. 14-15

Chapter II: Literature Survey……………………………………... 16

 2.1 Introduction to Group Communication………………………………17

 2.2 Group Key Management ... 17

 2.3 Group Key Secrecy ... 18

 2.4 Group Key Agreement Protocols .. 18

 2.4.1 BD .. 19

 2.4.2 STR .. 20

 2.4.3 GDH ... 21

 2.4.4 TGDH ... …21

 2.4.5 ETGDH .. 22

 2.5 Summary .. 23

 8

Chapter III: Proposed Approach .. 24

 3.1 Introduction to Proposed Approach .. 24-25

 3.2 STGDH (Stack and Tree-based Group Diffie-Hellmen) 26-30

 3.2.1 Membership Operations .. 31

 3.2.1.1 Join Protocol ... 31-33

 3.2.1.2 Leave Protocol ... 34-35

 3.2.1.3 Partition Protocol .. 35-36

 3.2.1.4 Merge Protocol ... 37

 3.3 Summary .. 38

Chapter IV: Experimental Results ... 40

 4.1 Introduction .. 40

 4.2 Performance Evaluation .. 41

 4.3 Comparison .. 41

 4.3.1 Join Protocol .. 41

 4.3.2 Leave Protocol ... 42

 4.3.3 Partition Protocol ... 43

 4.3.4 Merge Protocol .. 44

 4.4 Conclusion & Future Work ... 45

Chapter V: Simulation Tutorial ... 46

 5.1 Introduction .. 46

 5.2 Join Operation .. 46-48

 5.3 Leave Operation ... 49-50

 5.4 Partition Operation ... 51

 9

 5.5 Merge Operation .. 52-53

 10

LIST OF FIGURES

Number Page

Fig 01 Stack of group controller ..14

Fig 02 Key generation process ...17

Fig 03 Clusters of group members ...18

Fig 04 Shows stack-based binary tree ..19

Fig 05 Overview of Secure Group communication20

Fig 06 New member selected as group controller…………………………..22

Fig 07 New member selected as group member ..22

Fig 08 A key tree (T*) after a group member leaves the group…………….24

Fig 09 A key tree (T*) after a group controller leaves the group24

Fig 10 Shows partition operation ..26

Fig 11 Merge Operation……………………………………………………. 27

Fig 12 Join Protocol ...32

Fig 13 Leave Protocol ..33

Fig 14 Case 1: Partition Protocol ...33

Fig 14 Case 2: Partition Protocol……………………………………………34

Fig 15 Merge Protocol………………………………………………………34

Fig 16 General overview of Simulation GUI ...36

Fig 17 Join Operation...37

Fig 18 Group Key Generation………………………………………………38

Fig 19 Join operation results ..39

Fig 20 Leave Operation ...40

Fig 21 Partition Operation ...40

 11

Fig 22 Partition Operation Results ..41

Fig 23 Partition Operation Results ...41

Fig 24 Merge Operation ...42

Fig 25 Merge Operation Results ..43

 12

 13

CHAPTER 1

Introduction

1.1 Statement of the Problem

Peer-to-peer (P2P) networking is a method of delivering computer network services in

which the participants share a portion of their own resources, such as processing power,

disk storage, network bandwidth, printing facilities. Such resources are provided directly

to other participants without intermediary network hosts or servers. Peer-to-peer network

participants are providers and consumers of network services simultaneously, which

contrasts with other service models, such as traditional client-server computing where the

clients only consume the server's resources. P2P networks has a lot of advantages due to

which the world is turning towards P2P communication instead of client-server

architecture, but P2P networks are also facing some problems and the most important is

security. P2P networks are used for many applications but here we will discuss P2P

networks from security point of view for multiparty conferencing.

Multi-Party Conferencing is a fully distributed multi-party video conferencing system.

No central server is needed. Instead Multi-Party Conferencing participants are directly

connected with each other. Multi-Party Conferencing has a mechanism to avoid security

attacks. The mechanism is based on the philosophy that real world computer security is

not only a matter of providing locks, but is also related to the comparison of value and

costs. The main purpose of this work is to design multiparty conferencing softwares that

provide efficient security mechanism. So far many multiparty conferencing tools have

been designed like Skype, Digiparty, and Digimetro etc but they still lack in efficient

security mechanism. The main emphasis of this work is to design efficient security

protocol for multiparty conferencing. If the required security is achieved it could be used

for many government, private sector organizations and especially for military use.

 14

1.2 Introduction to P2P Networks

Nowadays P2P networks are evolving throughout the world in many areas such as audio-

video conferencing, online chatting programs, games, file sharing etc but the main threat

to peer-to-peer communication is security. Secure group communication is very

important factors in peer-to-peer communication. Many researchers are trying to design

efficient and secure group communication protocols. So far the work done in this area is

appraised but most of the researchers ignored the performance factor.

A P2P network is a special type of computer network that exhibits self-organization,

symmetric communication, and distributed control. The network is self-organizing in that

there is typically no centralization of resources. As a result, link capacity is typically

distributed throughout peers in the network, and as a result control is distributed, as well.

Peer-to-peer systems have two dominant features that distinguish them from a more

standard client-server model of information distribution: they are overlay networks that

have unique namespaces. P2P systems link different, possibly heterogeneous systems as

‘peers,’ and allow them to interact on top of existing network configurations. It does this

by defining relationships unique to that system, usually in the form of a topology by

which systems are linked. The research on P2P system can be divided into four groups-

search, storage, security and applications. Here in this work we have discussed security in

detail and other groups are beyond the scope of this work.

1.2.1 P2P Security Issues and Risks

Since P2P systems inherently rely on the dependence of peers with each other, security

implications arise from abusing the trust between peers. The security risks can be divided

into three categories: security, legal and infrastructure risks. Here in this work we have

focused on security risks. P2P protocols have been designed with a lot of features but it

does not focus on security measurements. They take advantage of:

1. Decentralized data storage.

2. Unauthenticated access to data storage.

3. Operate in an environment of unstable connections.

4. Provide connection to temporary or unpredictable IP addresses.

 15

5. Possess significant or total autonomy from central servers; And avoiding filtering

and security policy control.

These objectives stand in a sharp contrast to network security requirements. Most P2P

applications, both file sharing and instant messaging, have weak or easily cracked

measures to protect user identities. There is no encryption of any communication sent or

received via most P2P protocols. A malicious hacker who identifies a security flaw in one

or more poorly written P2P clients could then launch a DoS attack against the P2P peer or

use it as a part of Distributed Denial of Service (DDoS) against a third target. In a P2P

network, attackers can make use of the querying nature of P2P networks to overload the

network. In the case of the query flooding P2P network, the attack is straightforward:

simply send a massive number of queries to peers, and the resulting broadcast storm will

render portions of the network inoperable.

Most P2P applications are bundled with spyware, software that automatically installs

with the P2P application being installed. Spyware is now considered even more

dangerous than viruses because a virus can only damage data on victim’s computer.

Spyware on the other hand, not only can result in data corruption, but also identity theft.

P2P networks are a new and efficient way to spread worms and viruses. P2P based

viruses and worms attach themselves to or disguise themselves as movie, music or

software files that appeal to the entire P2P community and wait for the users to “pull” it

from an infected node. The number of participating nodes in P2P networks and the

number of files being exchanged every day guarantee an effective way of malware

distribution.

Injecting a useless data (poison) in P2P network, since P2P networks implements a

lookup service in some way. An attacker can inject large amounts of useless lookup key-

value pairs into the index. Bogus items in the index could slow down query times or,

worse, yield invalid queries results. Poisoning can also be used as fodder for DDoS

attacks.

P2P networks also present privacy and identity issues. In respect to privacy, a peer's data

stream may be compromised by fellow peers who assist in transmitting the data. A direct

example is that of VoIP applications, such as Skype, which route traffic in a P2P fashion.

 16

In P2P networks which distribute resources of dubious legality, the issue of lack of

anonymity becomes apparent. For example, the Bit Torrent file sharing system directly

exposes the IP address of peers to each other in a swarm. This would allow peers in the

swarm to know the identity of other peers who are downloading certain resources.

An important issue that looms over P2P networks is blocking and throttling of P2P traffic.

In next section we have discussed solutions to the security issues and risks faced by P2P

networks.

1.2.2 Solution to P2P Security Issues

There are two straightforward approaches to securing P2P networks: encrypting P2P

traffic and anonymizing the peers. By encrypting P2P traffic, the hope is that not only

will the data be safely encrypted, but more importantly, the P2P data stream is encrypted

and not easily detectable. With the actual connection stream completely encrypted, it

becomes much harder for the P2P traffic to be detected, and, thus, attacked, blocked, or

throttled. The first step in addressing the P2P application problem is to accurately

recognize P2P traffic within the corporate network flow. Modern network monitoring

tools with application layer classification capabilities are available to satisfy these

requirements. Traffic analysis is an important first step to identify hosts running P2P

applications. By anonymizing peers, the P2P network can protect the identity of nodes

and users on the network, something that encryption only cannot ensure

1.3 Objectives

• To provide efficient group communication via P2P networks.

• To provide secure group communication via P2P networks.

1.4 Thesis Organization

This thesis is organized as follow:

• Chapter I: discusses problem statement, brief introduction to P2P networks, P2P

security issues and risks, solution to P2P security issues and then objectives that

needs to be achieved.

 17

• Chapter II: introduction to group communication, group management, group key

secrecy and then group key agreement protocols are discussed in detail.

• Chapter III: this chapter is about proposed approach, introduction to STGDH,

membership operations (join, leave, partition and merge) and summary of the

proposed approach.

• Chapter IV: discusses the experimental results of the proposed approach and

comparison with other group key agreement protocols, then conclusion and future

work in this area.

• Chapter V: Simulation tutorial

• References

 18

CHAPTER 2

Literature Survey

2.1 Introduction to Group Communication

The proliferation of applications, protocols and services that rely on group

communication prompts the need for group-oriented security mechanisms (in addition to

the traditional requirements of fault tolerance, scalability, and reliability). Current group-

oriented applications include IP telephony, video conferencing, collaborative workspaces,

interactive chats and multi-user games. The security requirements of these applications

are fairly typical, e.g., confidentiality, data integrity, authentication and access control.

These are achieved through some form of group key management. The peer nature of

many group applications results in certain unique properties and requirements. First,

every member in a peer group is both a sender and a receiver. Second, peer groups tend

to be small, with fewer than a hundred members. Also, peer groups have no hierarchy and

all members enjoy the same status. Therefore, solutions that assign greater importance to

some group members are undesirable, since privileged members might behave

maliciously; they are also attractive targets of attacks. This essentially rules out the

traditional key distribution paradigm as it calls for higher trust in the group member who

generates and distributes keys. Finally, since all networks are prone to faults and

congestion, any subset of group members must be prepared to function as a group in its

own right. In other words, if a network partition splits the members into multiple

subgroups, each subgroup must quickly recover and continue to function independently.

There are two kinds of group communications, one-to-many and peer-to-peer.

One-to-many is client server based communication, for example, TV or radio

broadcasting, Geographic Position System (GPS), and so forth. In peer-to-peer

communication the group size is relatively small, less than 100 and there is no centralized

controller. In this work, the term group refers to peer-to-peer group communication.

Membership in a dynamic peer-to-peer group communication tends to change frequently.

Networks are generally regarded as insecure because they are connected to each other

 19

and there is no central controller. A secure communication channel must be established in

group communications to protect messages over an insecure network environment.

Currently, a group key management protocol is being used for establishing a secure

communication channel.

2.2 Group Key Management

Group communication arises in many different settings: from low-level network

multicasting to conferencing and other groupware applications. In particular, group

communication is often crucial in the battlefield. Regardless of the environment, security

services are necessary to provide communication privacy and integrity. For secure

communication, group members need a common group key to protect their messages

while they are communicating to others. In this context, group key management is

responsible for generating a group key and distributing it to each member securely over

an insecure network environment, making key management the building block in group

key management. Unless the communication channel is secure, the delivery of messages

over the network to the right destination cannot be guaranteed. Group key management is

used for establishing a secure channel.

Group key management can be classified in two categories; group key distribution

and group key agreement. In group key distribution one member is designated as the key

distribution center. He/she computes the group key and distributes it to each member in

the group. This scheme is suitable for client-server environments like multicast.

However, peer-to-peer group communication needs a different key generation and key

distribution method due to the characteristics of peer-to-peer group communication such

as dynamic, relatively small number of group size, network partition, and merging.

2.3 Group Key Secrecy

Group key management focuses on how to generate a secure group key efficiently. In

doing that, the group key must be secure in order to build a secure communication;

therefore, four security requirements are required: 1) group key secrecy, 2) backward

secrecy, 3) forward secrecy, and 4) key independence.

 20

Definition 1: Assume that a group key is changed m times and the sequence of successive

group keys is K = {K0, K1… Km-1, Km}.

1. Group Key Secrecy guarantees that it is computationally infeasible for a passive

adversary to discover any group key Ki € K for all i.

2. Forward Secrecy guarantees that a passive adversary who knows a contiguous

subset of old group keys (say {K0,K1,…,Ki}) cannot discover any subsequent

group key Kj for all i and j where j > i..

3. Backward Secrecy guarantees that a passive adversary who knows a contiguous

subset of group keys (say {Ki, Ki+1,…, Kj}) cannot discover preceding group key

Kl for all l, j, k where l < i < j.

4. Key Independence guarantees that a passive adversary who knows a proper subset

of group keys Ksubset € K cannot discover any other group key Ki € (K – Ksubset).

Before examining group key secrecy, possible security attacks must be defined. A

group key is a common secret key which means one key can encrypt and decrypt the

messages during communication, so it is a symmetric cipher. In a symmetric cipher, the

most well known attack is a brute-force attack which is the process of enumerating

through all of the possible keys until the proper key is found that decrypts a given cipher

text into correct plain text. All symmetric encryption algorithms will eventually fall to

brute-force attacks given enough time. It can be helpful for group key secrecy to see if

the vulnerability of the algorithm for generating a group key is revealed through the

usage of brute-force. If there are enough possible keys to slow down such an attack, then

the algorithm can be considered secure. In a brute-force attack, the expected number of

trials before the correct key is found is equal to half the size of the key space because it is

the average of the best and worst trial cases to find the right key. Symmetric ciphers with

keys 64 bits or less are vulnerable to brute force attacks. Therefore, a key size must be

long enough to prevent an attack on symmetric ciphers.

The size of a group key in secure group communication is a 1,024 bit-long

number which is known to be secure in the current technology, so a brute-force attack

must try an average of 21,024 / 2 times to find the group key, which is computationally

infeasible. Furthermore, one of the most important security requirements of group key

 21

agreement is called key freshness. A group key is changed regularly and irregularly.

There is a certain time period to change a group key. In addition, whenever membership

changes, a group key will be collaboratively regenerated. A group key is always

refreshed after a membership change or after a certain period of time, so an adversary

does not have a chance to use an old key. In addition, a group key in a group

communication will not last long and it is generally used for only a few hours because

group members have a short life cycle. Therefore, group key secrecy is secure enough for

an outside attack.

2.4 Group Key Agreement Protocols

A key agreement protocol is a key establishment technique whereby a shared secret key

is derived by two or more specified parties as a function of information contributed by, or

associated with, each of these, such that no party can predetermine the resulting value.

The idea of group key agreement stems from the earlier work of two-party key

management. In 1976, Diffie and Hellman introduced a two-party key exchange protocol,

DH that allowed two participants to create a private key through the use of publicly

exchanged messages. This protocol allowed two participants, without any prior shared

secrets, to securely establish a shared session key. DH is now at the heart of many two-

party secure communication protocols. With the prevalence of the Internet and networked

technologies, there are applications that would benefit from a group key agreement

protocol that provides the same protection as DH, but for groups of more than two

participants. This list includes conference calls, distributed computation, whiteboards,

distributed databases, Unmanned Aerial Vehicles, and battlefield communications,

among many others. To ensure secure and reliable communication in these applications,

there have been several attempts to create efficient group key agreement protocols for

large and dynamic groups based on the DH algorithm. Currently, a group key

management protocol is being used for establishing a secure communication channel. So

far different group key agreement protocols have been designed by researchers but they

are lacking in some aspects. Some of the protocols that we will discuss are: BD, STR,

GDH, TGDH and ETGDH. Group Key Structures (GKS) in current group key

agreements are briefly explained as follows, where Ki, i = 1, 2,…, n, 1< n < 100.

 22

2.4.1 BD (Burmester-Desmedt) Protocol

BD is a protocol based on Burmester-Desmedt variation of group Diffie-Hellman (DH).

BD supports dynamic group operations. It has a relatively low computational overhead

due to two modular exponentiations. However, it needs more message exchanges to

generate group key. Furthermore, BD is completely decentralized and has no sponsors,

controllers, or any other members charged with any special duties. The main idea in BD

is to distribute the computation among members, such that each member performs only

three exponentiations. The cost of BD roughly doubles as the group size grows in

increment of the total number of machines. Its GKS can be determined as:

2.4.3 STR (Skinny Tree) Protocol

STR is a version of TGDH with the underlying key tree completely unbalanced or

stretched out. In other words, the height of the key tree is always (n - 1), as opposed to

log (n) in TGDH. All other features of the key tree are the same as in TGDH. After a

partition, the sponsor is defined as the member corresponding to the leaf node just below

the lowest leaving member. After deleting all leaving nodes, the sponsor refreshes its key

share, computes all (key, blinded key) Group Key Agreement Protocols for Dynamic

Peer Groups pairs up to the level just below the root node. Finally, the sponsor broadcasts

the updated key tree thus allowing each member to compute the new group key. STR

merge runs in two rounds. In the first round, each sponsor (topmost leaf node in each of

the two merging tree) first refreshes its key share and computes the new root key and root

blinded key. Then, the sponsors exchange their respective key tree views containing all

blinded keys. The topmost leaf of the larger tree becomes the sole sponsor in the second

round in the protocol. Using the blinded keys from the key tree it received in the first

round, the sponsor computes every (key, blinded key) pair up to the level just below the

root node. It then broadcasts the new key tree to the entire group. All members now have

the complete set of blinded keys which allows them to compute the new group key.

 23

STR protocol is modified to provide dynamic group operations. It has a relatively

low communication overhead and is well suited for adding new group members.

Robustness is easily provided. However, it is relatively difficult for member exclusion (O

(n) modular exponentiations). Its GKS is:

2.4.3 GDH (Group Diffie-Hellman) Protocol

GDH is fairly computation-intensive requiring O (n) cryptographic operations upon each

key change. Here the shared key is never transmitted over the network. Here the group

shared key is generated by each member by using the partial keys of all other members.

One member, who is the group controller, distributes this list. The protocol runs as

follows. When a merge event occurs (new member/group joins), the current controller

generates a new key token by refreshing its contribution to the group key and passes the

token to one of the new members. When the new member receives the token, it adds its

own contribution and passes the token to the next new member. Eventually, the token

reaches the last new member.

When some of the members leave the group, the controller (who, at all times, is the most

recent remaining group member) removes their corresponding partial keys from the list of

partial keys, refreshes each partial key in the list and broadcasts the list to the group. Each

remaining member can then compute the shared key. Note that if the current controller

leaves, the last remaining member becomes the controller of the group. Its GKS is:

2.4.4 TGDH (Tree-based Group Diffie-Hellman) Protocol

It is a tree-based group Diffie-Hellman. The key tree is organized as follows: each node is

associated with a key Kv and a corresponding blinded key BKv derived from the key. The

root key represents the group key shared by all members, and a leaf key represents the

random contribution by of a group member. Each internal node has an associated secret

 24

key and a public blinded key. The secret key is the result of a Diffie–Hellman key

agreement between the node’s two children. Every member knows all keys on the path

from its leaf node to the root as well as all blinded keys of the entire key tree. The

protocol relies on the fact that every member can compute a group key if it knows all

blinded keys in the key tree.

Following every group membership change, each member independently and

unambiguously modifies its view of the key tree. Depending on the type of the event, it

adds or removes tree nodes related to the event, and invalidates all keys and blinded keys

related with the affected nodes (always including the root node). As a result, some nodes

may not be able to compute the root key by themselves. However, the protocol

guarantees that at least one member can compute at least one new key corresponding to

either an internal node or to the root. Every such member (called a sponsor) computes all

keys and blinded keys as far up the tree as possible and then broadcasts its key tree (only

blinded keys) to the group. If a sponsor cannot compute the root key, the protocol

guarantees the existence of at least one member which can proceed further up the tree,

and so on. After at most two rounds (in case of a merge) or log (n) rounds (in case of a

worst-case partition), the protocol terminates with all members computing the same new

group (root) key. After a partition, the protocol operates as follows. First, each remaining

member updates its view of the tree by deleting all leaf nodes associated with the

partitioned members and (recursively) their respective parent nodes. To prevent reuse of

old group keys, one of the remaining members (the shallowest rightmost sponsor)

changes its key share. Each sponsor computes all keys and a blinded key as far up the tree

as possible and then broadcasts its view of the key tree with the new blinded keys. Upon

receiving the broadcast, each member checks whether the message contains a new

blinded key. This procedure iterates until all members obtain the new group key.

In addition, TGDH provides robustness, and its GKS is as follow:

 25

2.4.5 ETGDH (Efficient Tree-based Group Diffie-Hellman) Protocol

An Enhanced Tree-based Group Diffie-Hellman (ETGDH) protocol is proposed that

improves the existing TGDH, a tree-based group key agreement protocol. To generate a

group key efficiently, there must be a group controller. The group controller is the last

member to join the group in the Enhanced Tree-based Group Diffie-Hellman (ETGDH)

protocol. The newest member always plays the role of the group controller. The group

controller is responsible for managing group key generation. He/she initiates group key

generation for all members by sending them his/her blind key. All members participate in

group key generation. When the group key has been computed, the highest performance

member computes the final group key and distributes it to all members, and then group

communication begins. Whenever membership changes, the group key must be

regenerated. The final group key G is calculated as follows:

It still requires more computational cost for group key generation. Each new member

whether it is low performance or high performance becomes the group controller and

decides which group members will participate in group key generation so if new member

is low performance machine then it takes more time in computation. Also there is no idea

that who will decide a set of group members for group key generation in case of leave

operation.

2.5 Summary
Group key agreement is a fundamental building block for secure peer group

communication systems. Several group key management techniques were proposed in the

last decade, all assuming the existence of an underlying group communication

infrastructure to provide reliable and ordered message delivery as well as group

membership information. Despite analysis, implementation and deployment of some of

these techniques, the actual costs associated with group key management have been

poorly understood so far. This resulted in an undesirable tendency: on the one hand,

 26

adopting sub-optimal security for reliable group communication, while, on the other

hand, constructing excessively costly group key management protocols. Our work is

closely related to two distinct areas: group key management and reliable group

communication. Research in securing group communication is relatively new.

 27

CHAPTER 3

Proposed Approach

3.1 Introduction to Proposed Approach

STGDH (Stack and Tree-based Group Diffie-Hellman) protocol is a new group key

agreement protocol; it solves all those problems that were faced by researcher before this

work. Up to now there were two main problems faced by researchers: computational

complexity of generating the group key in terms of computational cost and

communication cast; another problem was tree maintenance whenever membership

operation was performed because after membership operation, each group member

updates its tree structure along the path. In this protocol both of these issues have been

resolved very efficiently and the results are impressive. To solve first problem, this

protocol always chooses the best performance group member as a group controller

whenever membership operation is performed and for this purpose our new designed

algorithm called GC Algorithm is executed to choose the highest performance member.

To keep track of group controllers we push each group controller on to the stack, so that

it can be used for final group key (G) generation. In STGDH, the group key is always

generated by group controllers so group key generation process is achieved in minimum

possible time due to their performance. For example we have a network of 25 machines

in which 4 machines are selected as the group controller then group key is calculated like

below:

 G = GC1 + GC2 + GC3 + GC4

Where GC1 = g K<l, v> mod p

 28

The top of the stack always contain the highest performance group controller of all for

example:

Figure No.01: Shows an example of group controllers based on their response time.

The number of group controllers in a network of group members increases the efficiency.

The performance of group key (G) calculation depends on:

• Number of group controllers; the number of group controllers are directly

proportional to efficient key generation process. if the number of group

controllers is large the key generation process is evenly distributed among group

controllers.

• Computational power of each group controllers; that is response time of each

group controller.

In our approach, each group controller maintains two types of information. First, it

maintains a stack of group controllers. Each group controller contains reference of each

group member registered with that group controller. Second, it maintains a tree structure

for all group members and group controllers. Now we come towards the second problem

that is solved by our approach that is tree structure maintenance. The tree structure is

generated by each group controller with the help of stack maintained by group controller

and the updated tree structure (T*) is broadcast by the group controller. Group member is

not required to updates its tree this work is done by each group controller. The detailed

discussion of tree structure is given in section. STGDH protocol is the most efficient

protocol as compared to other group key agreement protocols. Due to efficient group

controllers each join operation results in O (log n) computations and as the number of

group controller increases the performance of join operation becomes more efficient. In

 29

case of leave operation, there are two cases: 1 if leaving member is a normal group

member, the results of join and leave operation are same and in case 2: if leaving member

is a group controller the computation complexity begins to decrease from maximum

value and generates a result graph like parabola. In our approach, partition and merge

operations are very simple because every group controller has a set of registered group

members and on the basis of these group controllers we can easily partition a group in to

subgroups and merge subgroups into one group. The result of partition operation remains

almost constant and does not decrease so much with the number of partitioned members.

In section we will discuss the working of this proposed approach in detail.

3.2 STGDH Protocol

A Stack and Tree-based Group Diffie-Hellman (STGDH) protocol is a tree-based group

key agreement protocol that provides maximum efficiency by always choosing the

highest performance member as a group controller for group key generation and

distribution. Under STGDH approach more efficiency is obtained because in this

approach only group controller performs all the tasks and each time when a group

member joins the group its response time is compared with the group controller if its

response time is lesser than the group controller, the group controller is replaced by the

new joined members. The newly joining member starts group key generation by sending

his/her blind key to existing group controller. Each member Mi selects a random private

number ri, calculates Mi = g ri mod p and response time Tc (Mi). The newly joined

member forwards his blind key and response time to the group controller. The group

controller also computes blind key and response time Tc (GC). Then GC algorithm

decides the group controller based on response time. After GC algorithm, group

controller broadcasts blind key to all group members to calculate their group key. The

final group key is computed by all group controllers as discussed above and is distributed

to all group members, and then group communication begins. Whenever membership

changes the group key must be regenerated. The pseudo code of GC algorithms is given

in subsequent section. The basic definitions that are used throughout the paper are given

below in the Table No.01.

 30

Symbol Definition
n The number of group members
G A set of current group members
T A key tree
T* A modified tree after membership operations

GCi An ith group controller; i € [1,n]
MSGC A subgroup controller
MD A leaving member
Mi An ith group member; i € [1,n]
p,g A large prime number;

<l,v> vth node at level l in a tree where 0≤v≤2l-1
K<l,v> <l,v>th node’s random private key
F(x) gx mod p

BK<l,v> <l,v>th node’s blind (public key)
Tc (Mi) ith group member’s response time

SGC Represents stack of group controllers

Whenever a new group controller is selected based on their performance it is pushed to

the top of the stack SGC and all those group members Mi who were compared with that

group controller gets registration with that group controller. Every group controller has a

set of group members registered with it; it may contain IP address or MAC Address of

registered group members as shown in figure no.02. The procedure for generating the tree

or updating tree is simple. For tree construction, the group controllers are choose from

stack SGC in a popping manner and are placed in the tree from left to right. For balancing

the tree an intermediate node is created and all the registered group members for each

group controllers are placed under intermediate node from left to right as shown in figure

no.02. This approach is very efficient because stack of group controller provides ease in

binary tree construction, and this approach is very simple to implement. Let us see how

group key is generated, by ignoring group members in group key generation process. The

table below shows that only high performance group controllers generate group key (G)

and the group members are included in it. However each member Mi computes a secret

key K<l,v> as well as blind key BK<l,v> and also response time. The key exchange process

using Diffie-Hellman is only performed by group controllers GCi in order to generate

 31

subgroup key. The final group key G is generated by the highest performance group

controller that resides on the top of the stack and is distributed to all group members.

Figure No.02: shows Key Generation Process

The set of group controllers makes clusters of group members, and each cluster is

controlled and managed by one group controller. The Figure No. 03 below shows clusters

of group members controlled by group controllers.

 32

Figure No. 03 Clusters of group members

 33

Figure No.04: Shows a stack-based binary key tree.

Figure no.05 shows the general overview of the secure group communication. Here

whenever a membership changes, the highest performance member is selected as a group

controller. The following flow chart in is identifying the numbers of steps involved in

group key generation process and distribution. When a new member joins the group it is

checked for whether it qualifies the criteria for to be a group controller. For this reason if

it qualifies it takes part in group key generation and distribution process otherwise the

existing group controllers does this process.

 34

Group Key
Generation

Membership
changed?

Group Key
Distribution

Secure
communication with

Group key

Generate New
Group controller

Group Key Agreement Protocol

Yes

No

Figure No.05: Overview of secure group communication

In this paper we have designed an efficient algorithm for deciding which member must be

the group controller based on their performance. The pseudo code for this algorithm is

given below:

A Stack Based Group Controller (GC) Algorithm:

While limit of maximum group members in not reached that is up to 100 members do

If a new member (Mi) joins the group then:

 Calculate: Its blind key, private key and its Response time Tc (Mi) of newly

joined member and Response time of Group Controller Tc (GC)

If response time of group controller Tc (GC) is less than newly joined member Tc

(Mi)Tc (GC) < Tc (Mi) then:

1. Calculate Key using group key agreement protocol

2. Distribute the Key using group key agreement protocol to all members.

 Else

 35

1. New member (Mi) becomes the group controller (GC).

2. Calculate Key using group key agreement protocol including the new

joined member.

3. Distribute the group Key to all members using group key agreement

protocol.

4. Push the newly generated group controller (GC) on to the stack.

 End.

 End.

3.2.1 Membership Operations

In STGDH group key agreement protocol, there are four membership operations:

• Join Operation: when a new member wants to join the group.

• Leave Operation: when an existing member leaves the group.

• Partition Operation: when the group is partitioned into subgroups, the subgroup is

split from group communication.

• Merge Operation: A partitioned group is merged with the current group

communication.

3.2.1.1 The Join Protocol in STGDH:

Suppose there are n numbers of group members M1, M2, M3, M4, M5, up to Mn where n <=

100.each time when a new member joins the group two main processes are performed;

one is to decide new group controller and second each group member and group

controllers updates its key tree along the path. The key tree generation process is

discussed in detail in above section.

Suppose we have key tree as show below in the figure no.04 and new member joins the

group. So after new membership the key tree structure will be one of the following on the

basis of two cases: 1 if it is selected as a group controller then key tree will be like in the

figure no.06 and 2.if it becomes a group member then it is shown in figure no.07

In this scenario of Figure No.06, when a newly joined member becomes a group

controller:

1. The top of stack always contains the highest performance group controller, so it

will become the left most node in the hierarchy that is new group controller in this

case is node <1, 0> and represents group controller GC3 .

 36

2. Remaining group members and group controller are adjusted according to stack.

<0,0>

<1,0> <1,1>

<2,1><2,0>

<3,1><3,0>

<2,2> <2,3>

<0,0>

<1,0>

<2,1>

<4,0>

<3,0><2,0>

<4,1>

GC1GC2

M1 M2M3

M4 M5

GC2

M3

M4 M5

<1,1>

<2,2> <2,3>

GC1

M1 M2

<2,1>

GC3

Figure No.06: Case 1: New member is selected as group controller

In this scenario of Figure No.07, when a new member joins the group:

1. Delete the intermediate node <2, 1>

2. Bring node <3, 0> to upper level and make it node <2, 1>

3. Member M5 becomes the left most child of node <2, 1> that is member M4

4. New group member becomes the right most member of node <2, 1> that is

member M4

Figure No.07: Case 2: New member is selected as group member

Here we have given join operation algorithm in pseudo code form below, which gives a

clear idea about the working of join protocol.

 37

While limit of maximum group members in not reached that is up to 100 members Do

Step 1: Each new member sends a request to generate the group key by sending his blind

 key.

• Newly joined member (Mi) sends his blind key to the group controller that

resides on the top of the stack.

Step 2: The group controller (GC):

• Generates a private key and a blind key and response time of calculating the

key as well that is Tc (GC).

Step 3: Execute: the Group Controller (GC) Algorithm.

Step 4: if new member (Mi) becomes the group controller then:

• Push it to the stack SGC.

• Updates the key tree (T*)

• Broadcasts blind key and key tree (T*) to all group controllers to update its

key tree and to compute his/her keys.

• Generate group key (G) and distribute it all group members and secure

communication begins.

Step 5: Else:

• New member (Mi) gets registration with the group controller by sending his

blind key.

• Group controller updates key tree (T*).

• Broadcast blind key and key tree to all group controllers to compute his/her

blind key and to update its key tree (T*).

• Group controller generate group key (G) and distribute it to all group

members.

• Secure communication begins.

End.

 38

3.2.1.2 The Leave Protocol in STGDH:

When any group member leaves the group, the group key must be re-computed for group

secrecy. The leaving member can be a group member or it can be a group controller. In

these two cases key tree (T*) is updated differently. If the leaving member is a group

member then the key tree after update is given in Figure No.08 as shown below:

 Figure No.08: A key tree (T*) after a group member leaves the group

In this scenario the following steps are performed:

1. Delete node <3, 0> and intermediate node <3, 1>

2. Rename node <4, 0> to <3, 0> and node <3, 1> to <4, 1>

3. Node <2, 1> becomes the parent of nodes <3, 0> and <3, 1>

If the leaving member is a group controller then the updated key tree (T*) is shown in

Figure No.09 below:

 39

Figure No.09: A key tree (T*) after a group controller leaves the group

The pseudo code for leave protocol is given, which can give a good idea about the

working of this protocol is given below:

While limit of maximum group members in not reached that is up to 100 members Do

 If the leaving member (MD) is Not a group controller Then:

• Sends a control message to his group controller in order to update the key tree

(T*).

• The group controller (GC) then inform all other group controllers to update

its key tree (T*).

• All members in the group update its tree and re-compute their keys.

• The group controller (GC) calculates group key (G) and distribute it to all

group members.

Else

• The leaving group controller selects group controller from top of the stack

(SGC) and sends a control message.

• The selected group controller update its key tree (T*) using stack (SGC) while

ignoring the leaving group controller.

• All the group members registered with leaving group controller are now

registered with the selected group controller.

• All group controllers update key tree (T*) and stack.

 40

• All group members update key tree (T*) and computes keys.

• The final group key is generated by group controllers and is distributed to all

group members.

End

3.2.1.3 The Partition Protocol in STGDH:

The group is divided in to several subgroups when a network problem is detected. So

when there is a network problem, subgroups independently communicates by choosing a

group controller for that subgroup and generates group key for secure communication. In

this approach, if the partitioned members contain group controller then it becomes the

subgroup controller of the subgroup and generates group key for that subgroup for secure

communication. On the other hand if the subgroup doesn’t contain any group controller

then on the basis of response time for computing the group key, a new subgroup

controller is chosen. In the following Figure No.10 we have just shown the first case

when the partitioned members contain a group controller.

Suppose group controller GC1, group members M1 and M2 are partitioned from group

controller GC2, and M3, M4, M5, and M6. The group controllers for each subgroup

generates the key tree (T*) and computes group key G and distribute it to all group

members. In our approach, no group member participates in group key generation process

except when the member joins the group.

 41

Figure No.10 shows the partition operation

Step 1: Every group controller (GC) in the sub key tree:

• Updates the sub key tree (T*) by removing all leaving member nodes and their

parent nodes.

• Updates the stack if the leaving members contain the group controller.

• Calculate blind key, private key and update its key tree (T*).

Step 2:

• All group controllers generate a group key (G).

• Distribute group key (G) and updated tree (T*) to all group members and

secure group communication begins.

 42

3.2.1.4 The Merge Protocol in STGDH:

When a network recovers from fault, the subgroups can be merged into original group.

The subgroup controller communicates with the group controllers of the group by

sending his blind key. The group controllers update stack by pushing the subgroup’s

group controller on to the stack, key tree (T*) and compute a group key for the updated

group. The group controllers then broadcast group key to all group members.

Suppose we have two subgroups as shown in Figure No.11, are merged in to one group.

The tree is generated from the stack as it contains the set of group controllers; we have

now two group controllers in stack. And each group controller has a set of group

members. Group controller GC1 has two group members M3 and M4 and GC2 has two

group members M1and M2.

Figure No.11: shows a Merge operation

The pseudo code for merge operation is given below:

Step 1: The subgroup controller (MSGC):

 43

• Generates his blind key and requests group controllers for merger by sending

his blind key to all group controllers.

Step 2: Each group Controller (GC):

• The group controllers updates stack and updates key tree (T*).

• Calculates his private key and blind key.

• Sends their blind key to the highest performance group controller (GC) that

resides on the top of the stack.

Step 3:

• Generates Group key G and distribute it to all group controllers.

• The group controllers then send the group key G to the registered group

members and secure communication begins.

3.3 Summary

Most of the group key agreement protocols lack in one of the membership operation but

STGDH provides efficient algorithms for each membership operation which are easy to

manage and implement. The two main issues that are faced by most of the group key

agreement protocols are: efficient group key computation and efficiently maintaining the

key tree after each membership operation. ETGDH is efficient in terms of computing the

group key but it stills has the problem of key tree maintenance. STGDH solves both of

these problems. For efficient group key generation only group controllers compute the

final group key, and the group controllers are the highest performance group members. In

our approach GC algorithm selects the highest performance member. For second problem

of maintaining the key tree, we use stack of group controllers and again the key tree is

managed by only group controllers. The procedure for key tree generation is very simple

and efficient. After the group key, key tree and stack is generated by the group

controllers, the group key is forwarded to group members. Each group controller has a set

of group members registered with it and it makes clusters of group members as discussed

 44

above. The experimental results of STGDH are impressive and in next chapter its

performance is evaluated.

 45

CHAPTER 4

Experimental Results

4.1 Introduction

The overall performance for each membership operation can be analyzed by the total

response time involved in computational and communication overhead for generating the

group key. This chapter addresses the complexity analysis and experimental results of

communication and computation costs to generate a group key.

4.2 Performance Evaluation

The simulation of this protocol has been done in Visual studio.NET 2005. The simulation

has the ability to test this protocol for a LAN/WAN of 100 machines at least. In this

simulation we have assumed different machines that could be PC, laptop, mobile devices

and we computed the performance of these machines based on the following factors:

• CPU Response time

• Data storage (RAM size and HDD size) for maintaining stack of group controllers

and Key tree.

• Communication cost (The number of uni-cast and multi-cast messages)

• Current traffic load.

• Number of allowable/possible group members registered with group controller.

• Maximum distance of a group member from the group controller.

In this section, we have compared our approach with other group key agreement

protocols. Communication and computation costs for each membership operations (join,

leave, merge, and partition) are analyzed in terms of Tc. The communication and

computation costs represent the response times involving Tc for generating a group key.

The communication costs are involved in the number of messages, network delays, and

managing the key generation structures. On the other hand, the computation costs depend

on the hardware capacity such as CPU type, clock pulse, main memory size, hard disk

size, etc.

 46

Other variables to be considered that would affect the performance of each machine

include number of rounds, the total number of control messages, network overhead, and

group Key Generation costs. The proposed protocols were compared to other group key

agreement protocols including STR, GDH, TGDH, and ETGDH. The number of current

groups, merging groups, leaving members, partitions and number of group controllers are

denoted by n, m, k (m ≥ k), p and t respectively. The height of the key tree constructed by

the TGDH protocol is h. Table No.02 shows the communication and computation costs of

these five protocols.

Protocol Communication Cost Computation Cost
Rounds Messages Exponentiations

STGDH

Join 2 3t Height of t
Leave 1 2t Height of t

Partition 1 2t Height of t /p
Merge 2 2t Height of t

Group Controller
 Leave 1 2t Height of t

ETGDH

Join 2 2n-2 3h/2
Leave 1 2n-2 3h/2

Partition 1 2n-2 3h
Merge 2 2n-2 3h/2

TGDH

Join 2 3 3h - 3
Leave 1 1 3h - 3

Partition min(log2 p, h) 2p 3h - 3
Merge log2k + 1 2k 3h - 3

GDH

Join 4 n + 3 n + 3
Leave 1 1 n – 1

Partition 1 1 n - p
Merge m + 1 n + 2m + 1 n + 2m + 1

STR

Join 2 3 4
Leave 1 1 3n / 2 +2

Partition 1 1 3n / 2 +2
Merge 2 k + 1 3m + 1

Table No.02 Communication and Computation Costs Summary

 47

4.3 Comparison

Now let’s see how the proposed approach is compared with other group key agreement

protocols for each membership operation.

4.3.1 Join Operation

The simulation results of our join protocol are given in two different graphs with group

members of size n =25, 50 both of the graphs provide computational complexity of O

(log2 t) where t represents the number of group controllers as shown in Figure No.12. The

best thing in our approach is that if the number of group controllers increases the

computational complexity decreases and as a result more efficient results are produced.

This is the first approach in which with the increase of group size the computational

complexity increases in a very small amount. In comparison with other approaches, GDH

IS inefficient, because the join operation presents an increasing overhead when the group

size increases. ETGDH, TGDH and STR are efficient comparatively because they use

divide and conquer algorithm to compute the group key but the most efficient protocol is

STGDH because at each join operation it chooses the highest performance member as a

group controller. The top of the stack contains the highest performance group controller

that is why group key is generated more efficiently.

Figure No.12 Join protocol: Group size vs. Response time

 48

4.3.2 Leave Protocol:

In our approach, Leave protocol has two different cases: if leaving member is a group

member (Mi) then the results of join and leave protocol are almost the same, but in case

when the leaving member is a group controller (GC), the simulation results are very well

because the leaving group controller hands over his registered group members to the

highest performance group controller on the top of the stack as shown below in Figure

No.13. The computation cost for leave event in STR depends on the location of leaving

member; therefore efficiency of leave cost is better than as compared to the join cost. The

leave cost for GDH is linear, and leave cost of GDH is highest of all others. As ETGDH

and TGDH uses divide and conquer algorithm so the efficiency of leave event is better

but the best efficiency is achieved in STGDH because only the highest performance

group controllers regenerates group key.

Figure No.13 Leave protocol: Group size vs. Response time

4.3.3 Partition Protocol:

The group is divided into subgroups whenever a network problem occurs. In our

approach the partition operation has no effect on the performance because group key is

generated by group controllers. The group key generation process for the remaining

group members is almost constant, however in TGDH and ETGDH takes some time for

 49

managing the tree structure after that it begins to decrease. On the other hand, the cost of

STR and GDH decreases linearly as show in Figure No. 14.

Figure No.14: Partition Protocol

4.3.4 Merge Protocol:

If the merging members are large the cost of STGDH increases accordingly and same is

the case in ETGH, TGDH. The cost of GDH is increasing linearly, and it provides the

worst performance for merge operation. STR takes constant time for merge operation; the

group size does not affect the performance of STR for merge operation. Figure No. 15

shows the results of all protocols for merge operation.

 50

Figure No.15: Merge Protocol

4.4 Conclusion & Future Work

For efficient and secure group communication, the group key generation process must be

reduced to maximum. Up to now the group key agreement protocols have emphasis on

the computational and communication cost for all membership operations but most of

them lacks in the ability of key tree maintenance and efficient group key generation

process. STGDH protocol provides a best way to efficiently maintain a key tree, in this

approach the group members do not participate in group key generation process and they

don’t need to worry about key tree maintenance. STGDH always chooses the best

performance member as a group controller. The performance of any machine is checked

on the basis of some factors like CPU speed, data storage capacity, communication speed,

current traffic load etc. The set of group controllers resides in the stack and performs the

whole key generation process; these group controllers communicate with each other,

maintain a stack of group controllers, a key tree and computes group key for

communication. Each group controller has a set of registered group members and makes

a cluster of group controller and group members as discussed earlier. Each cluster is

monitored and controlled by one group controller. The group controller sends key tree

along with the group key to all group members within the cluster. The experimental

 51

results of this protocol are far better than other approaches so far. STGDH performs with

an efficiency of O (log2 t) which is very efficient as compared to other approaches. The

only drawback of this protocol is that that it requires more data storage capacity.

In future, we need to design an efficient and secure group key agreement protocol for

large networks because as the size of the network increases the computational complexity

increases and key tree maintenance becomes difficult. Also we need to design an efficient

group key agreement protocol to work in limited resources like mobile devices have

limited computational power and limited memory.

 52

CHAPTER 5

Simulation Tutorial

5.1 Introduction

The simulation of this protocol was performed in Visual studio.NET 2005 and a

supporting tool of SQL Server for keeping important data in a database. This simulation

can be tested for as many machines as you want. For using this simulation, it is very

simple it just follows the steps of algorithm the way we have designed. In this chapter we

have shown the number of steps involved for each membership operation. The general

GUI of this simulation of is given below:

Figure No.16 General Overview of Simulation GUI

 53

5.2 Join Operation

The general overview of this simulation shows that there are four main tabs representing

each membership protocol (join, leave, partition and merge). Let’s see the number of

steps involved in join operation.

Figure No.17 Join Operation

Whenever a member wants to join the group, the following steps are performed:

1. Click on “Join protocol” tab, it displays the GUI as shown in Figure No.16.

2. In this GUI, there are 30 machines have been shown, on clicking any machine you

first need to select member’s specifications. The required specifications have been

discussed in fourth chapter in detail

 54

3. After choosing member’s specs, the “proceed button” it brings you to next step of

join operation. Actually our GC algorithm runs behind this button, on the

member’s specs it is compared with the current group controller.

4. Figure No.17 shows that how keys (private and blind) are generated for each

member’s join operation.

Figure No.18 Group key generation

5. Figure No.17 Shows that we can generated keys for group controller. In the left

side of this GUI for group controller 5, we have calculated private key, blind key

and response time.

6. The “Generate button” done most of the operation, all group controllers calculates

their own keys and at the end group key G is generated and is forwarded to group

all group members registered with it.

 55

7. The “Simulation Results button” compares it with other group key agreement

protocols as shown in Figure No.18.

 Figure No.19 Join Results

 56

5.3 Leave Operation

Figure No.20 Leave Operation

1. There are two options for leave operation, GUI in Figure No.19 shows that we can

select a group member as a leaving member or we can select a group controller as

a leaving member.

2. The leave algorithm runs behind two buttons that is “Group controller leaves

button” and “Choose new group controller button”.

3. The “Simulation Results button” compares these results with other group key

agreement protocols as shown in Figure No.20.

 57

Figure No.21 Leave Operation Results

5.4 Partition Operation

1. In Figure No.21, we first choose the number of partitioned members and

“Calculate results button” runs the partition algorithm.

2. “Simulation Results button” shows the results of partition operation as shown in

Figure No.22.

 58

Figure No.22: Partition Operation

Figure No.23: Partition Operation Results

 59

5.5 Merge Operation

1. First enter the number of merging groups, to be merged with actual group as

shown in Figure No.23.

2. By clicking on “Calculates results button” runs merge algorithm.

3. By clicking on “Simulation Results button”, the results of merge operation are

compared with other group key agreement protocols as shown in Figure No.24.

Figure No.24: Merge Operation

 60

Figure No.25: Merge Operation Results

 61

REFERENCES

[1] S. Hong,”Secure and Efficient Tree-based Group Diffie-Hellman Protocol”, April

2009.

[2] J.Li on”A survey of Peer-to-Peer Network Security Issues” 2008.

[3] A. Friedman on “Peer-to-Peer Security”.

[4]”Peer-to-Peer Network Protocols” Position Paper VERSION 1.0 April 2007.

[5] N.Jasapara, on”Group Key Agreement Protocols for Dynamic Peer Groups”.

[6] F.Otto, D.Patrick Mirembe on”A model for data management in Peer-to-Peer

systems”.

[7] H.Harney, C. Muckenhirn, SPARTA, inc, July, 1997 on ”RFC2093 - Group Key

Management Protocol (GKMP) Specification”

[8] Y.Kim, A.Perrig, G.Tsudik on”Communication-efficient group key agreement”

[9] F.Liu and H.Koenig, Brandenburg University of Technology Cottbus, Department of

Computer Science on”A Secure P2P Video Conference System for Enterprise

Environments”

[10] B.Eun Jung IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 2, FEBRUARY

2006 on”An Efficient Group Key Agreement Protocol”

[11] M. Steiner, G. Tsudik, and M. Waidner, Key agreement in dynamic peer groups,

IEEE Trans. Parallel Distrib. Syst., vol. 11, pp. 769-780, Aug. 2000.

[12] K. Y. Choi, J. Y. Hwang, and D. H. Lee, Efficient ID-based group key agreement

with bilinear maps, PKC04, Lecture Notes in Computer Science, vol.2947, 2004.

[13] F. Zhang and X. Chen, Attack on two ID-based authenticated group key agreement

schemes from PKC 2004, In proc:Information Processing Lett., vol. 91, pp. 191-193,

Aug. 2004.

[14] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the Performance of Group Key

Agreement Protocols. IEEE ICDCS’2002, July 2002.

[15] M. Burmester and Y. Desmedt, A secure and efficient conference key distribution

system, Advances in Cryptology EUROCRYPT94, May 1994.

 62

[16] Y.Kim, A.Perrig, G.Tsudik: Group Key Agreement Efficient in Communication.

IEEE Trans. Computers 53(7): 905-921 (2004)

[17] Key distribution protocol for digital mobile communication systems by

M.Tatebayashi, N.Matsuzaki, Matsushita Electric Industrial Co Ltd Japan and D.B.

Newman, Jr, the Jeorge Washington University, Washington DC.

[18] www.wikipedia.org

