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Abstract 

Dynamic Classifier Selection (DCS) techniques classifies the test sample only by the most 

competent classifiers. Hence, the major problem in DCS is to find the measures by which 

competence of classifiers in a pool can be calculated to find out the most competent classifiers. To 

tackle these issues, we suggest a Framework for Dynamic Ensemble Selection (DES) that uses 

more than one criterion to calculate the base classifier’s competence level. The framework has 

three major steps. In first step, training data is used to create a pool consisting of different 

classifiers. In second step meta-classifier training is performed by extracting meta-features from 

training data. In third step meta-classifier uses meta-features extracted from test sample to perform 

an ensemble selection and to predict the final output. We have suggested some improvements in 

second step (training) and last step (generalization) of the framework. In training phase, four 

different models are used as meta-classifiers. While in generalization phase, dynamic weighting 

scheme is used where meta-classifiers will dynamically assign weights to selected competent 

classifiers based on their competence level and final decision will be aggregated using a weighting 

voting scheme. The modifications proposed in this paper altogether enhance performance and 

accuracy of the framework in contrast with other dynamic selection techniques in literature. 
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CHAPTER 1: INTRODUCTION 

This thesis is about dynamic ensemble selection framework that dynamically selects 

classifiers for an ensemble formation. Different techniques and approaches regarding to dynamic 

selection of classifiers are also discussed for accurate predictions. 

1.1 Dynamic Ensemble Selection 

Multiple Classifier System (MCS) is a combination of classifiers functioning in parallel to 

form an ensemble that gives an accumulated output. In past years, many different techniques for 

designing and integrating multiple classifiers have been proposed. Although results showed that 

multiple classifiers have good performance as compared to single classifier where outputs from 

multiple classifiers are combined to give an aggregated result. Hence, Multiple classifier system 

(MCS) aims to integrate classifiers to improve accuracy, resilience, robustness and performance 

in pattern Reorganization systems [1]. MCS has three stages [2]: (i) Generation (ii) Selection (iii) 

Integration as illustrate in Figure 1.1-1. Firstly, a pool of different classifiers is created; then a 

single or group of best classifiers from the pool is selected. This group of classifiers is called 

Ensemble of Classifiers. In last stage, final prediction is obtained by aggregating the outputs of the 

selected classifiers. Recent work in literature had illustrated that the Dynamic Classifier Selection 

(DCS) methods in MCS accomplish higher accuracy than static ones [3]. This is also valid for the 

problems having small size of training data that is not enough for the training of classifiers [4][5]. 

 

 

For Selection phase, two types of selection techniques can be used i-e dynamic and static. In static 

technique, classifiers are selected during the training phase and then unseen test samples are 

classified by using these selected classifiers or Ensemble of Classifiers (EoC). In contradistinction, 

dynamic ensemble selection technique (DES) for each new test sample different ensemble of 

classifiers is used for classification. DES techniques assume that only a single classifier is expert 

in certain feature space of local region. So, when a new test sample arrives, most competent 

Generation Selection Integration 

Figure 1.1-1: The Stages of Multiple Classifier System 
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classifiers from the pool are selected to form an EoC depending upon the local region of feature 

space of test sample. Classifiers that have some competence level according to selection criteria 

are selected. Recent studies in dynamic ensemble selection framework show that dynamic 

selection techniques are effective for ill-defined classification problems i-e where the training data 

length is inadequate for the accurate selection of classifiers.” 

 

The main problem in DES is to define a method for the measurement for the competence of the 

classifiers. Different DES techniques use different selection criterion like local accuracy of the 

classifier in feature space, posterior probability, output profile and confidence of the classifier. 

However, from the previous studies, we collaborated that local accuracy itself is not enough to 

achieve good results that are near to oracle performance. Oracle is a conceptual model that always 

selects the best classifier that had correctly identified the label of test sample. Hence, it is regarded 

as an ultimate classification scheme. But oracle is very complex as compared to other classification 

schemes. 

 

Other methods of DES like overproduce-and-choose strategy encounter problems when a fixed 

subset of classifiers is defined using training/optimization data and is not adapted for the 

classification of test data. This problem is similar as finding a universal best classifier that can 

classify each test sample accurately.” No Free Lunch” theorem states that no algorithm is best over 

all the classification class problems. Using just a single technique for the measuring the 

competence of classifier is fallible. Thus, combining different methods can result in achieving 

good result from dynamic ensemble selection methods. 

 

To tackle these limitations, we suggest a Dynamic Ensemble Selection (DES) 

Framework, that uses more than one criterion to calculate the base classifier’s 

competence level. The framework has two main environments: (a) Classification 

Environment that map features of the input to class label, (b) Meta-Classification 

Environment that extracts certain properties of classifier such as accuracy from training 

data and encode them as meta-features. When a new test sample arrives, the meta classifier uses 

meta-features extracted from test sample as an input. The meta-classifier 

then decides which classifier is competent for the test sample classification. The 
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framework has three major steps: (a) Overproduction, in which a pool consisting of 

different classifiers is created; (b) Meta-Training, in which meta-classifier training is 

performed by extracting meta-features from training data; (c) Generalization, in which 

meta-classifier uses meta-features of the test sample to construct an ensemble model. 

In this paper, we suggest improvements of DES framework. First, we will improve 

training method of meta-classifier. The improvement suggested is inspired by the fact 

that there exists a solid relationship between the performance of meta-classifier for the 

choice of competent classifiers, i.e., classifiers that anticipate the right label for a given 

test sample and the accuracy of the DES framework. Thus, we believe that the proposed 

framework will help us to achieve a good performance by improving the meta classification level. 

Four models i-e Support Vector Machine (SVM), Random Forest, 

Naïve Bayes and Neural Network (NN) are considered for the meta-classifier. Second, 

we propose a dynamic weighting scheme for generalization phase where meta classifiers will 

dynamically assign weights to selected competent classifiers base on 

their competence level and final decision will be aggregated using a weighting voting 

scheme. Thus, the classifier having higher competence level will have greater effect on 

the final decision. The proposed framework is unique from other techniques as it is 

based on the dynamic selection of ensemble rather than the static selection. The 

modifications proposed altogether enhance performance and accuracy of 

the framework in contrast with other dynamic selection techniques in literature. 

1.2 Competence of Classifier for Dynamic Selection 

            Classifier competence is defined as the tendency of classifier to perform a classification 

assignment. The term competence is extensively used in machine learning as the method of 

selecting a classifier or an ensemble of classifier that can accurately solve the problem. Let C = 

{c1, c2, ………cN} having size N and ci is the base classifier of this pool. The aim of dynamic 

selection technique is to select a subset of classifiers to form an ensemble that can best classify the 

test sample xi. It is different from static selection technique in which classifier or an ensemble of 

classifier is selected in training phase and remains the same for every test sample, whereas in 

dynamic selection technique selection is performed in testing phase and varies according to the 

test sample. 
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The main problem in dynamic selection is that for a test sample how to calculate the competence 

of the base classifier. In previous work, we have seen that different criteria’s have been used for 

the selection for the calculation of classifier’s competence local accuracy of the classifier in feature 

space i-e the region in feature space around the test sample, decision templates i-e methods that’s 

are used in decision space and confidence. These techniques have been described in following sub-

sections. 

1.2.1    Local Accuracy of a Classifier 

Local accuracy of a classifier in feature space is the mostly commonly used technique for 

the calculation of classifier competence. A small region in the feature space around the test sample 

is defined in this technique. This region can be calculated either by using supervised learning 

technique i-e KNN algorithm in which k nearest neighbors are included in this region by using 

Euclidean distance or by using unsupervised learning technique i-e K-Means clustering algorithm 

in which local accuracy of a classifier is calculated over a cluster. Based on the number of samples 

included in local region, classifier competence is computed. However, using local accuracy alone 

is not enough. Other techniques can be combined with local accuracy to achieve good results. 

1.2.2    Decision Templates 

In this technique, samples that are very close to test sample are selected. However, to 

calculate similarity decision space around a classifier is used. Output profiles of both training set 

and test sample are formed that shows the decision of classifier ci for that sample. Based on the 

information from decision space, nearest output profiles to the test sample are selected to form an 

output profile best. The base classifier that achieves good accuracy in output profile set is selected. 

The advantage of this technique is that it is not restricted by the quality of region of competence 

in feature space, as similarity is computed from decision space. But the disadvantage is that global 

information is considered, so local competence of the classifier is neglected.” 

1.2.3     Confidence of the Classifier 

In this technique, rather than generating a pool of classifiers, pool of EoC i-e C ={C1, 

C2,………CN} having size N has been populated by using greedy search or genetic algorithm. 

Then for each test sample, competence level of EoC Ci is equal to its consequences among base 
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classifiers. Ambiguity among the base classifiers of an ensemble is computed. Ambiguity is the 

ratio among the base classifiers that agrees with decision to the base classifiers that disagrees. The 

advantage of this technique is that it is not dependent on the information from region of 

competence of feature space or decision space. However, the disadvantage of this technique is that 

search is unable to find an acceptable EoC with good confidence level. 

1.3 META-DES Framework 

META-DES is a framework for dynamic ensemble selection. The framework has three major 

steps:  

1. Overproduction  

2. Meta-Training 

3. Generalization 

1.3.1    Overproduction 

The first phase of META-DES is overproduction phase in which a pool of classifiers is 

created by using different techniques. The pool can be created by using bagging, boosting, choose 

and overproduce strategy, random subspaces and genetic algorithm. The size of pool can be 

defined by the user. An appropriate pool size depends upon the number of base classifiers chosen. 

Best pool size for the datasets can be obtained by using brute force approach. However, it is an 

expensive approach that can affect the efficiency of the DES framework. Other techniques like 

intrinsic classification complexity of the problem can be used to predict accurate pool size. 

1.3.2    Meta-Training Phase 

The second phase of META-DES is meta-training phase in which meta-classifier is trained 

by computing the meta-features. Different approaches are used for selecting the meta-classifier. 

There can be a single meta-classifier or more than one meta-classifier depending upon the approach 

used. Meta- Training phase is further divided into three phases: 

 Sample Selection  

 Meta-Feature Extraction 

 Training 
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Sample Selection 

In this phase of meta-training, samples that are used for the training of meta-classifier are selected. 

These samples can be selected by using different techniques i-e by calculating the consensus of 

the pool or by setting the threshold. One of the key issues of DES arises when consensus in the 

pool is low i-e winning class votes are very close to the votes of other class. To deal with this issue 

meta-classifier is trained in such a way that it can handle such cases. This is done by setting 

threshold t called consensus threshold. For all training sample xj,train the degree of consensus for 

pool is calculated as H(C , xj,train). If it is less than t i-e H(C , 

xj,train)<t, then the training sample xj,train is passed to next phase. 

 

Meta Feature Extraction 

In this phase of meta-training, meta-features are extracted for each training sample. Different sets 

of meta-features can be extracted. Each feature set is used to calculate the competence level of the 

base classifier. Different property about the behavior of the base classifier is measured by each 

feature set. For the measurement of the meta-features, region of competence is defined for each 

training sample. Region of competence can by defined by using supervised learning techniques 

like KNN where k nearest neighbors of each samples are considered to be in the region of 

competence or by using unsupervised technique like K-Means in which the all the samples in the 

cluster in which the sample lies is considered to be in its region of competence. Euclidian distance 

can be used for the measurement in the case of KNN. A set of meta-features is obtained at the end 

of this phase. For each training sample, number of meta-features vectors obtained is equal to the 

size of pool of classifiers each vector corresponds to the single classifier in pool. After this phase, 

meta-features dataset is obtained. 

 

Training 

In this phase of meta-training, meta-classifier is trained over meta-features dataset. If there are 

more than one meta-classifiers, each of them is trained over the meta-features dataset by splitting 

it into testing and training data. 
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1.3.3    Generalization Phase 

The third phase of META-DES is generalization phase, in which when a test sample arrive, 

it region of competence is computed and samples in its region of competence are selected. After 

that, for base classifier in pool meta-feature extraction process is called for the test sample. The 

meta-feature vectors dataset obtained after this process is then fed to meta-classifier to compute 

the competence level of the base classifier. Threshold value can be set for the competence level, 

that if the competence level of classifier is above the threshold then it should be selected for the 

ensemble model. After the formation of an ensemble model, majority voting rule or weighted 

voting approach can be used for the prediction of final output. 

1.4 Problem Statement 

Dynamic Ensemble Selection is required to 

 

1. Select most competent classifiers from the pool of classifiers to classify the test sample. 

2. Automatically construct an ensemble of competent classifiers. 

This method is proposed to dynamically form an ensemble such that the overall system “accuracy 

is higher than individual classifiers accuracies.” 

1.5 Scope 

“In this research work we will focus on: 

 

1. Formulation of a novel dynamic ensemble selection framework that can achieve a higher overall 

accuracy then the accuracies separately recorded by single classifiers. 

2. Evaluation of the proposed framework on datasets from different repositories.” 

1.6 Relevance to National Needs 

            This algorithm will facilitate the computerized storage of data in various fields like in” 

health, business, education and government sectors by performing an automatic classification thus 

helps in more accurate predictions.” 
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1.7 Advantages 

 The framework helps to choose classifiers with high competence level to have greater 

impact on the final prediction and to deal with the case of noisy samples where all 

classifiers from pool will be considered as competent for an ensemble and incompetent 

classifiers will be having equal impact on final output as that of competent ones.  

 Thus, framework suggested will enhance performance and accuracy of the framework in 

contrast with other dynamic selection techniques in literature. 

1.8 Areas of Applications 

 Health 

 Government 

 Education 

 Business 
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 Chapter 2 

  

  Literature Review 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Publishers 

This part of document briefly describes the previous state of arts techniques that are used 

for dynamic ensemble selection of classifiers. Methodology and results of previous studies in 

literature are discussed here. 

“Research process is carried out in a systematic manner. Data is collected by a search process 

that includes finding researches relevant to the work and selecting the most relevant among them. 

These selected researches are analyzed for quality and data is extracted from them. 

Following research publishers are considered for this research. 

 IEEE  

 Springer 

 Elsevier” 

Figure 2.1-1 represents the papers selected from different databases. 

 

 

Figure 2.1-1: Papers Selected from Scientific Databases 
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2.2 Quality Assessment 

There were certain quality factors that were used for carrying out the research for the 

research papers selected from above databases. These quality factors are described below: 

 

2.2.1 Effective Technique Proposed 

 

          “It is most important factor about the selected paper was that it should propose some 

technique, method or model regarding dynamic classifier selection. All remaining papers were 

eliminated from the search results. 

 

2.2.2 Results Validation 
 

            All those papers that do not give any assessment of the results supported by the validation 

of some dataset are excluded from the search results. 

 

2.2.3 Repetition 
 

           Only those papers that contain some new and unique researches are considered. Those 

representing same new methodology or models are included. 

 

2.2.4 Recent Researches 
 

            Most of the papers from the recent 5 years i-e 2015-2018 and the current year (2019) 

researches are collected for analysis as they are the most updated ones. Figure 2.2-1 represents the 

papers selected per year. 
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Figure 2.2-1: Papers Selected Per Year 2015-2019 

 

2.3 Related Work 

 

Multiple Classifier Systems (MCS) uses either Static Classifier Selection (SCS) 

methods in which classifiers are defined during training phase and are used to predict 

test samples labels in the generalization phase, or Dynamic Classifier Selection (DCS) 

methods that selects the single or subset of competent classifiers as an ensemble from 

the pool of classifiers based on test sample. This property had made DCS technique a 

robust approach. Classical DCS had mainly three phases, as shown in Figure 2.3-1. First is 

Classifier Generation Phase in which training data (T) is used to produce a pool of 

classifiers, second is Region of Competence Generation Phase in which T is used to 

produce the competence region (Ry) and third is Dynamic Selection Phase that selects 

the classifiers that are competent based on (Ry). The selection phase is dynamic in DCS 

as it is based on the test sample. However, in literature many DCS methods are 

described for selection of the most competent classifiers. The difference between DCS 

methods described in literature is based on the technique used for the selection of 

competent classifiers that can classify the test sample more accurately. 
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2.3.1 Dynamic Classifier Selection 

In 2015, Rafael M. O. Cruz et al. [6] proposed a technique for the dynamic selection of 

classifier by using meta-learning. Five different sets of meta-features were proposed where each 

feature correspond to some criteria that is used to find out the competence of the classifier. These 

meta-features are extracted from training data and are used to train the meta-classifier. 

Experiments were conducted on different datasets and results were compared with other state-of-

art of techniques. Highest accuracy achieved by using technique was 96.21%. Results showed that 

this technique outperforms from other state-of-art techniques. Tomasz Woloszynski et al. [7] 

proposed a random classification selection strategy based on competence measure used majority 

voting rule that dynamically selects a set of classifiers that can perform better than a randomly 

selected classifier for every test sample and eliminates the weak (incompetent) classifiers. The 

strategy developed above achieved the highest classification accuracy 87.04%. 

 

In 2016, Rafael M. O. Cruz et al. [8] proposed a prototype selection technique that 

reduced the amount of overlap between the classes in validation data and produced 

Figure 2.3-1: The Classical DCS Process 
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smooth decision borders. A nearby versatile K-Nearest Neighbor calculation was 

utilized to limit the impact of noisy sample in the region of competence. DES 

techniques over 30 classification problems were used for experimentation. The results 

showed this technique improves accuracy of dynamic selection method and it 

achieves the best accuracy of 85%. Dhouha Mejri et al. [9] employs aggregation of 

different classifiers to improve the performance of single classifier by using batch 

learning process and reducing the chance of selecting non-competent classifier by 

monitoring shifts in data samples. Accuracy achieved by using this method was up to 

89%. 

 

In 2017, Andrel Brun et al. [10] described a technique for Dynamic Classifier 

Selection (DCS) by using certain features that address the classification difficulty in 

terms of pool creation and selection of classifier. This difficulty of classification was 

described by using complexity measures of meta-features calculated from problem 

data. Experimentation was performed on 30 datasets. Results showed that the proposed 

technique using complexity measures achieved better classification accuracy of 63.3% 

when compared to other similar methods in the literature. Rui Ye et al. [11] combined path - 

relinking, variable neighborhood search and random adaptive search algorithms for dynamic 

selection of an ensemble to increase the accuracy of DES.Bartosz et al. [12] conducted a survey 

on different techniques of static and dynamic selection of ensemble and concluded that DES are 

techniques are not only better in terms of accuracy but also in terms of computational 

requirements i-e memory and time. 

 

In 2018, techniques were proposed for imbalance datasets. Pablo Perez-Gallego et 

al. [13] proposed a selection criterion for problems in quantification, where two of them 

were for dynamic ensemble selection while one was for static ensemble selection. The 

experiments showed that using above criteria achieves the performance of 70% as 

compared to the other ensembles where all the models are averaged. Salvador Garcia et al. [14] 

proposed a novel Dynamic Ensemble Selection (DES) technique to deal with imbalanced datasets 

which consists of two components i-e balancing of training dataset with some data pre-processing 

method, and the selection of competent classifiers, in which the classifiers competence level is 



 

18 
 

compared through region of competence weightage. The proposed method aims to improve the 

classification performance in case of imbalance datasets. Experiments were performed using 

different imbalanced datasets. Results showed that of the proposed technique is effective for multi-

class imbalanced datasets at a level of 5% significance. Cheriguene et al. [15] suggested the use of 

diversity and accuracy measures with greedy 

search algorithm for determining the optimal set of classifiers. Q-statistic and 

Disagreement measures are used to calculate the diversity among members. The 

experiments were performed on 24 different datasets showed that the proposed method 

had higher performance as compared to the other ensembles selection methods and it  

has achieved the high diagnosis sensitivity of 79.27%, specificity of 94.03%, and F - 

measure of 82.73%. as compared to other methods of selections. Paulo R.L. Almeida et al. [16] 

demonstrate that with drift phenomenon DCS approach can be more powerful, especially in cases 

where some areas do not change. In such cases area/local dependency measure is not enough, thus 

a time dependency measure must also be used. The experimental results showed that this approach 

achieves an accuracy of 92.2% with no parameter tuning. Xiaodong Feng 

et al. [17] employed classification ability and relative cost of classifier in validation set  

for the selection of classifiers. After selection, classifiers were combined for samples 

by using the probability. Experiments conducted on real datasets revealed that the 

proposed method achieved and accuracy of 95%. Rafael M.O. Cruz et al. [18] proposed FIRE-

DES++, an enhanced version of FIRE-DES in which equal number of classes sample are used to 

define region of competence by which noise and overlapping between classes can be reduced. 

Experiments were performed on 64 datasets. Results showed that FIRE-DES++ outperforms on 7 

out of 8 datasets as compared to other state of art techniques. Highest accuracy achieved by using 

this technique was 85.17%. One of drawback of this technique was that it does not handle multi-

class classification problem. Rafael M. O. Cruz et al. [19] proposed an improvement in 

generalization phase of DES technique by reducing the overlap between classes through prototype 

technique and smother decision borders are produced. Noisy samples are reduced by using KNN 

algorithm. Experiments were conducted on 30 datasets and results were compared with 10 state of 

art techniques. Hence, it was proved that using this technique improves the accuracy. Highest 

accuracy achieved was 96.52%. 
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2.3.2 Supervised Clustering Technique 

In 2016, Hongshan et al. [20] proposed supervised clustering technique in which original 

dataset is partitioned into subsets such that each subset has same class members. 

Different class subsets are then combined to form training data and base classifier is 

selected in each subset. Weighted voting approach is used for combining the outputs of 

different classifiers. Accuracy of 90% was achieved by using this method. However, 

small-sized and heavily imbalanced datasets don’t give significant results by using 

these techniques. 

2.3.3 Pool Generation 

In 2017, Yufei Xia et al. [21] integrated the stacking method with bagging algorithm. The 

proposed method differs from the other ensemble in terms of pool generation, base learner’s 

selection, and trainable fuser. The Bstacking model uses XGBoost, SVM, RF and GPC classifiers 

as base learners and use bagging approach to train these models. Area Under the Curve (AUC), 

Accuracy, AUC-H and Brier score measures were using to calculate the 

performance. Bstacking showed good performance over other models and achieved 

best accuracy of 74%. Dayvid et al. [22] employs a method to detect the location of classifier in 

indecision region and prunes the pool of classifiers accordingly. Experiments conducted on 

different datasets showed that proposed method had same performance as compared to other 

methods in literature. 

 

In 2018, Mariana A. Souza et al. [23] proposed an online learning generation approach for dynamic 

classifier selection. This technique generates local pool based on different regions of feature space 

for test data and help the DCS to select best classifier from the local pool that will have less chances 

to misclassify the data. Experimental results showed that more competent classifier can be selected 

from local pool than from global generated pool and give more accurate results as compared to 

other state of art techniques. 

2.3.4 Ensemble Construction Techniques 

In 2015, Saba Bashir et al. [24] presents a framework for ensemble selection by using 

weighted voting scheme with bagging approach for the prediction of heart diseases. Five 
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Classifiers Naïve Bayes, quadratic discriminant analysis, linear regression, support vector machine 

and instance-based learner are used as based classifiers. Experiments were performed on fived 

datasets and results were accessed using 10- fold validation. Highest accuracy of 84.16% was 

achieved by using this framework. 

 

In 2016, Saba Bashir et al. [25] proposed a framework that employs an ensemble of seven i-e Naïve 

Bayes (NB), Linear Regression (LR), Quadratic Discriminant Analysis (QDA), 

K Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision tree using Information 

Gain (DT-IG) and Decision tree using Gini Index (DT-GI). The framework consists of three 

modules. The first module collects data from different resources and pre-process them. Then the 

second module performs classifiers training on the pre-processed data. The third module predicts 

the labels for test instances. The framework is tested upon different datasets from public 

repositories. Results shows that the framework has achieved highest accuracy in prediction of 

diseases on all medical datasets. 

 

In 2017, Xiaoqian Liu et al. [26] gave the query analysis statistics for 

constructing decision trees and proposed algorithm that use multiple private decision 

trees built by using bootstrapped samples to construct the ensemble model and showed 

that the proposed ensemble improves accuracy and stability on real datasets. The most 

effective accuracy achieved the proposed ensemble is of 82%. Jan N. van  Rijn et al.  [27] proposed 

a strategy that dynamically assigns weights to the classifiers of ensemble by using an internal 

evaluation criterion on training data, that measures the performance of an ensemble on this and 

dynamically update weights of classifiers. Experiments had showed that the accuracy achieved is 

86% as compared to other ensemble techniques like Online Bagging and Leveraging Bagging. 

 

In 2018, Anandarup Roy et. al [28] suggested that the dynamic ensemble of classifiers gives 

promising results in the case of imbalance datasets. These ensembles were designed with aim to 

apply under-sampling and/or oversampling for balancing class proportions. 

Experiments were performed using various multi-class datasets. Results showed that 

by combining pre-processing technique with dynamic selection achieves higher 
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performance as it increases the F-measure and the G-mean up to 2.58 and 2.38 

respectively. 

 

In 2019, Zhong-Liang Zhang et al. [29] improved dynamic weighting scheme for the classification 

ability of dynamic ensemble selection systems by using neighborhood of every class instance that 

assigns weights to dynamically adjust the decision boundary for correct class label. Results were 

observed on many real-world applications. Highest accuracy achieved by using this technique was 

96.59% that outperforms other state-of-art techniques. 

2.3.5 Meta-Features Selection 

In 2017, Rafael M. O. Cruz et al. [30] proposed a scheme for meta-feature selection that 

uses discrete decision to improve meta classifier performance. The results of meta-classifier were 

supposed to be like the Oracle. 30 classification problems were used for experimentation. The 

proposed framework obtained an accuracy of 97%, which is closer to the oracle results. 

 

In 2018, Mahardhika et al. [31] proposed a technique called pENsemble in which classifiers are 

evolved from data streams by using pruning and online feature selection strategies. 10 % 

improvement was observed as compared to single selection classifiers techniques and other 

dynamic selection techniques i-e up to 80%. Khamar et al. [32] proposed an algorithm in which 

original data is projected into new space, to preserve its locality and different rotation 

matrix was constructed. Results showed that the proposed algorithm was better in 

terms of performance and complexity as compared to other algorithms. Best accuracy 

achieved by it was 91%. Carine A. Dantas et al. [33] proposed a technique that uses Dynamic 

Feature Selection in Dynamic Ensemble Selection (DES) methods. Analysis was performed on 

DES methods i-e KNORA-U and META-DES. Initial classifier pool contains 90 classifiers i-e 30 

SVMs, 30 MLPs and 30 k-NNs. Experiments were conducted on 10 datasets from different 

repositories. Results revealed that the use Dynamic Feature Selection with DES methods improves 

performance and accuracy. 
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2.3.6 Unsupervised Clustering Technique 

In 2018, Sarfaraz Hussein et al. [34] compared supervised and unsupervised approaches 

for the detection of pancreatic and lungs tumor. In supervised learning deep learning algorithms 

convolutional neural network and transfer learning were used. While in unsupervised learning 

proportion SVM was used. The proposed algorithms were evaluated on 1018 CT and MRI scans 

of lungs and pancreases tumor. Results showed that the proposed approach of unsupervised 

learning showed more good results than supervised learning. The best accuracy achieved in case 

was 78%. Wenming Cao et al. [35] proposed multi-task unsupervised learning method with 

hierarchal data structure. The benefit of this approach was that it increases the similarity between 

the instances of same cluster and diversities between different clusters. Both feature space and 

sample space capabilities of clusters are used concurrently. Experiments were performed against 

state-of-art clustering techniques. Results revealed that the proposed method outperforms in 

efficiency and accuracy. Peijie Lin et al. [36] proposed a hybrid model by combining K-means 

clustering, grey relational analysis (GRA) and Elman neural network (Hybrid improved K-means-

GRA-Elman, HKGE). Model was trained my using historical power datasets and multivariate 

meteorological factors. Improved K-means was used the clustering of historical power datasets. 

GRA was used for the finding the similarities between days. Elman neural network was used for 

finding the non-linear relationship between meteorological factors. Results compared with 

previous prediction models revealed that the proposed model outperforms in terms of accuracy. 

Highest accuracy achieved by using this model was 77.81%. Hui Gu et al. [37] proposed a new 

clustering technique by combing K-means and fuzzy C-means. This technique is superior to fuzzy 

C-means clustering as it helps to find out the number of clusters without using prior knowledge. 

Results revealed that the proposed method outperforms in efficiency and accuracy. Minghu Wu et 

al. [38] proposed K-means clustering algorithm for global motion estimation by which motion 

vectors due to unstable and shaking environment can be removed. Feature points were matched 

using SURF algorithm. Proposed algorithm was applied on three videos and results were compared 

with other techniques in literature that showed the superiority of algorithm based on effectiveness 

and accuracy. Christian Lopez et al. [39] proposed an unsupervised machine learning technique 

that cluster patients based on their genomic features. Internal validity metrics are used to identify 

the number of clusters. Relationships between clusters are identified by using gene pathway. The 

technique was tested on other genomic datasets in literature. Results revealed that the technique 
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has highest performance in comparison of other state-of-art techniques. Highest accuracy achieved 

was 78.57%. 

 

In 2019, Sherrir et al. [40] used random forest with unsupervised clustering model along with 

aggregated statistics of crops by preventing the models from labels. Experiments were performed 

on crop data from US Department of Agriculture's Cropland. It was found that crop labels can be 

separated more accurately by harmonic coefficient using unsupervised clustering model and 

random forest when neighbor geographies and crop conditions are same. Results showed that the 

proposed algorithm exceeds the accuracy by 80%. Neo Christopher Chung et al. [41] used deep 

learning approaches long-short term memory and deep convolutional embedded clustering for 

unsupervised classification of metabolites and proteins during cardiac remodelling in mice. 

Moreover, K-Means clustering and hierarchical clustering were also performed. Dataset used for 

training and testing used temporal trends images. Results showed that deep convolutional 

embedded clustering give more accurate results than conventional convolutional clustering and 

achieved highest average ranking of 1.72. Haidong Zhong et al. [42] proposed an improved 

Reversible Image Transformation (RIT) that minimizes the additional information. Target images 

were divided into non-overlapping blocks and used K-means to classify them into K classes. 

Patching blocks were used to hide the secret segment. Results showed that proposed technique 

improved the quality of images effectively. 

2.3.7 Machine Learning Classification Techniques 

In 2015, Zahra Nematzadeh et al. [43] presents the effect of using K-fold cross validation 

on accuracy by applying different algorithms of machine learning. Neural Network, Decision Tree, 

Naïve Bayes and Support Vector Machine algorithms were used with different kernel values to 

classify Wisconsin Diagnostic Breast Cancer (WDBC). Different datasets from UCI were used for 

comparison. Results were tested on different values of K for K-fold cross validation. Study 

revealed that by increasing value K, computational cost increases as more folds are required for 

training and it does not have a significant impact on accuracy i-e by using higher value K does not 

mean that accuracy will be increased. 
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In 2017, R. Ani et al. [44] investigated that better accuracy can be provided for predicting diseases 

by using machine learning algorithms and proposed a model that uses random forest as base 

classifier and for feature projection Linear Discriminant Analysis was used. Results showed that 

Linear Discriminant Analysis gives better results than Principle Component Analysis. Highest 

accuracy achieved by using this model was 95% that outperforms other techniques in state-of-art. 

 

In 2018, David A. Omondiagbe et al. [45] investigated machine learning techniques with other 

feature reduction methods and proposed a method that uses Linear Discriminant Analysis to reduce 

features dimensionality. This reduced feature dataset was fed to Support Vector Machine for 

classification. Wisconsin Diagnostic Breast Cancer (WDBC) Dataset was used training and 

validation. An accuracy of 98.82% was achieved by using this technique. 

 

In 2019, Quinlan D. Buchlak et al. [46] presented a systematic review on different machine 

algorithms and their usage in machine learning applications. Systematic study provided 6866 

results by using accuracy, specificity and sensitivity as performance statistics. Results showed that 

mostly Neural Network, Support Vector Machine and Linear Regression are used. Out of which 

Neural Network have sufficiently higher accuracy then Support Vector Machine and Support 

Vector Machine have sufficiently higher accuracy then Linear Regression. Neural Network 

outperformed other supervised learning techniques. 

 

The comparison between these techniques is shown in Table 2.3-1. 

 

Table 2.3-1. Comparison Between State-Art Techniques 

Author Year Technique Accuracy 

Rafael et al. [6] 2015 Meta-Learning 96.21% 

Tomasz  et al. [7] 2015 Majority Voting Rule 87.04% 

Rafael et al. [8] 2016 KNN 85% 



 

25 
 

Dhouha et al. [9] 2016 Batch Learning Process 89% 

Andrel et al. [10] 2017 Complexity Measures 63.3% 

Pablo et. al. [13] 2018 
Both Dynamic and Static 

Methods 
70% 

Soraya et al. [15] 2018 Greedy Search Algorithm 79.27% 

Paulo et al. [16] 2018 Drift Phenomenon 92.2% 

Xiaodong et al. [17] 2018 
classification ability and 

relative cost 
95% 

Rafael et al. [19] 2019 

Prototype and Smoother 

Decision Boundary 

Technique 

96.52% 

Hongshan et al. [20] 2016 Supervised Clustering 90% 

Yufei et al. [21] 2017 
Stacking Method with 

Bagging Algorithm 
74% 

Xiaoqian et al. [26] 2017 Multiple Decision Tree 82% 

Jan et al. [27] 2017 
Internal Evaluation 

Criterion 
86% 

Rafael et al. [30] 2017 BPSO 97% 

Mahardhika et al. [31] 2018 pENsemble 80% 

Khamar et al. [32] 2018 
Rotation Matrix 

Construction  
91% 

 

 



 

26 
 

This research study evaluates different models available in literature for dynamic classifier 

selection. The major problem in DCS is to find the measures by which competence of classifiers 

in a pool can be calculated to find out the most competent classifiers. Another issue discovered 

was to find out the measures to create combined output by aggregating different classifiers results.  

Following research gaps have been deduced from above research study. 

 Most of the approaches discussed in literature uses single meta-classifier. 

 No aggregation function has been used in Generalization Phase. 

 Multi-Class datasets are not handled. 

Hence, to overcome these shortcomings a dynamic ensemble model has been proposed in this 

thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 
 

 Chapter 3 

  

 Proposed Methodology 
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CHAPTER 3: PROPOSED METHODOLGY 

An abstract level diagram of the proposed methodology is shown in Figure 3.1-1.  

 

 

 

 
 

 
 

 

 

 

 

 

Figure 3.1-1: Overview of the Proposed Framework 
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1. Input training and test sets are first passed through an initial pre-processing step that removes 

the duplicate records and finds the relationships between attributes. 

2. Training set is then used to train all the classifiers in the pool. 

3. K-Means is used to make clusters of training instances and these clusters are used to find out 

the region of competence of each instance. 

4. Output profile of each training instances is formed and stored in a vector that contains the 

decision of each classifier in pool for that instance.  

5. After that meta-features are calculated for each instance in training set and a meta-features 

dataset is formed. 

6. Meta-Features dataset is then used to train the meta-classifiers. 

7. Then for each instance of test set steps from step 3 are repeated. 

8. Meta-Features vector for each test instance is passed to the meta-classifiers that will compute 

the compete level for each classifier and weights are dynamically assigned to the competent 

classifiers. 

9. After that using weighting voting approach, final class label for that instance is computed. 

 

The dynamic classifier selection is a classification dilemma that uses various techniques to 

calculate the competence level of each classifier in the pool and determine whether the classifier 

is competent for the test sample or not. There are two basic environments for this framework: (i) 

Classification Environment that maps class label to the input features, (ii) Meta-Classification 

Environment that extracts meta-features from the training dataset. The proposed framework is 

defined as: 

 

 For each test sample, classifiers can be regarded as “competent” or “incompetent”. 

 To calculate the competence level of base classifiers different meta-features are computed. 

 Vectors are formed from these meta-features. 

 These vectors are then used for the training of meta-classifiers that predicts whether classify 

is competent and depicts its label. 
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The framework is divided into three main steps i-e Overproduction Phase, Meta-Training Phase 

and Generalization Phase that are explained as follows: 

 

3.1 Overproduction Phase 

The first phase of META-DES is overproduction phase in which a pool of classifiers is 

created by using different techniques. The pool can be created by using bagging, boosting, choose 

and overproduce strategy, random subspaces and genetic algorithm. The size of pool can be 

defined by the user. An appropriate pool size depends upon the number of base classifiers chosen. 

Best pool size for the datasets can be obtained by using brute force approach. However, it is an 

expensive approach that can affect the efficiency of the DES framework. Other techniques like 

intrinsic classification complexity of the problem can be used to predict accurate pool size. In 

proposed methodology different classifiers are included in the pool. The pool contains Decision 

Tree Classifier, Gaussian NB, K Nearest Neighbors Classifier, SVM, Logistic Regression and 

Neural Network. The attributes of classifiers are defined in Table 3.1-1. 

Table 3.1-1. Attributes of the classifiers in the pool 

Sr. No. Classifier Name Attributes 

1. Decision Tree 

Random State = 80 

criterion = "entropy" 

Max Depth=200 

Min Samples Leaf=22 

2. Gaussian NB 
Priors=None 

Var Smoothing=1e-09 

 

3. K Nearest Neighbors 
Neighbors=5 

Weights='uniform' 

4. SVM 

Gamma='auto' 

Probability = True 

Random State = none 
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5. Logistic Regression 

Max Iterations = 100 

N Jobs = none 

Random State = none 

6. Neural Network 

Solver='lbfgs' 

Alpha=1e-5 

Hidden Layer Sizes=(10, 10) 

Random State=10 

 

3.2 Meta-Training Phase 

        The second phase of META-DES is meta-training phase in which meta-classifier is trained 

by computing the meta-features. Different approaches are used for selecting the meta-classifier. 

More than one meta-classifier used in this approach. Meta-Training phase is further divided into 

three phases: 

1. Sample Selection  

2. Meta-Feature Extraction 

3. Training 

3.2.1 Sample Selection 

In this phase of meta-training, samples that are used for the training of meta-classifier are 

selected. These samples can be selected by using different techniques i-e by calculating the 

consensus of the pool or by setting the threshold. One of the key issues of DES arises when 

consensus in the pool is low i-e winning class votes are very close to the votes of other class. To 

deal with this issue meta-classifier is trained in such a way that it can handle such cases. This is 

done by setting threshold t called consensus threshold. For all training sample xj, train the degree of 

consensus for pool is calculated as H(C , xj,train). If it is less than t i-e H(C , 

xj,train)<t, then the training sample xj,train is passed to next step. 

3.2.2 Meta-Feature Extraction 

In this phase of meta-training, meta-features are extracted for each training sample. 

Different sets of meta-features can be extracted. Each feature set is used to calculate the 

competence level of the base classifier. Different property about the behavior of the base 
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classifier is measured by each feature set. For the measurement of the meta-features, region of 

competence is defined for each training sample. Region of competence is defined by using K-

Means in which the all the samples in the cluster in which the sample lies is in its region of 

competence. For each training sample xj,train region of competence represented by θj= {x1, x2, …. 

xk} is calculated and defined in T by using K-Means algorithm. Then the output profile, 𝑥̃j,train is 

formed from xj, train , that shows  the decision of  classifier ci  for xj,train.The closest output profiles 

are chosen for each xj,train and each output profile has a label wi,k. After that for each ci ∈ C, 

following meta-features are calculated. 

 Neighbors’ Classification - f1: First, a vector of zeroes having size k is created. After that for 

each xk, having region of competence 𝜃j, if ci accurately identifies xk then kth position of above 

created vector is set to 1. 

 Posterior Probability - f2: First, a vector of zeroes having size k is created. After that for each 

xk, the posterior probability of ci is calculated and inserted into kth position. 

  Accuracy - f3: The accuracy of ci on the region of competence 𝜃𝑗 is calculated. 

Criterion and paradigm for meta-features is represented in Table 3.2-1. In the end of the process a 

meta-vector of meta-features i-e Vi= {f1, f2, f3} is obtained.  If ci correctly predicts the label of xk, 

then the class label of Vi is set to 1 else to 0. Meta-features dataset T* is used to store Vi that will 

be used training the meta-classifier M. Meta-Feature vector is represented in Figure 3.2-1. 

Table 3.2-1. Criterion and Paradigm for Meta-Features 

Meta-Feature Criterion Paradigm 

f1 

Local accuracy of a classifier 

in competence region. 

Accuracy of a classifier over 

local region 

f2 
Consensus extent in 

competence region 

Consensus of a classifier 

f3 

Overall accuracy of the 

classifier in competence 

region 

Local region accuracy 
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Figure 3.2-1: Meta-Feature Vector that Predicts Base Classifier Behavior 
 

3.2.3 Training 

The last step is to train M. The dataset T* is divided into partitions i-e 75% 

as training data and 25% as testing data. The training phase of META-DES is improved 

by considering four models i-e SVM, Random Forest, Naïve Bayes and NN for the 

meta-classifier M. These models are selected because they are ranked as best models 

according to the study [47]. The attributes of meta-classifiers are defined in Table 3.2-2. 

Table 3.2-2.  Attributes of the Meta-Classifiers 

Sr. No. Classifier Name Attributes 

1. SVM Gamma='auto' 

2. Random Forest 

N Estimators=100 

Maximum Depth =10 

Random State=0 

3. Logistic Regression 

Max Iterations = 100 

c = 1.0 

Solver = ‘warn’ 

4. MLP Classifier 

Solver='lbfgs' 

Alpha=1e-5 

Hidden Layer Sizes=(100, 100) 

Random State=0 
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3.3 Generalization Phase 

         When a test sample xj,Test arrives, its output profile 𝑥̃j,Test and region of competence are 

computed by using selection dataset DSEL and the closest output profiles for xj,Test are 

selected. After that for each ci meta-feature extraction process is called that will return 

a vector Vi of meta-features. The Vi is used as an input for each M model, that will 

compute support si as the competence level for each ci. 

A support µ will be set as a threshold for the selection of the ci. If support si of 

classifier ci is greater than µ i-e si > µ, then classifier ci will be selected as “competent” 

by M. An Ensemble E is formed by selecting classifiers that are considered as 

“competent” by all models of M. If a model produces output “competent” for ci, it will 

earn one vote. 

 

After the formation of Ensemble E, weights will be assigned to the selected 

classifiers based on their competence level such that classifier having higher level of 

competence will get more weight and have more effect on the final prediction of output. 

Weight of the ci is the number of votes ci earned. Final output will be then obtained by 

using weighted voting scheme. 

 

Hence, the performance and accuracy is increased by using proposed framework as we 

have used four different models for meta-classifier and only those classifiers are selected 

for ensemble that are considered as “competent” by all models of meta-classifier. After 

the ensemble is formed weights are assigned to classifiers based on their competence 

level i-e number of votes a classifier earned. Classifier having more competence level 

will have more weight and higher impact on output prediction. This will increase the 

both accuracy and performance of the system. 
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 Chapter 4 

  

  Implementation and Experiments 
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CHAPTER 4: IMPLEMENTATION AND EXPERIMENTS 

4.1 Proposed Framework 

The proposed framework is written in python language and IDE Anaconda 2018 is used. 

Following steps define the working of algorithm. 

1. A pool of classifier was defined that contains all weak classifiers. These classifiers are used 

as base classifiers. 

 

 

Figure 4.1-1: Defining Pool of Classifiers 

 

2. Principle Component Analysis (PCA) was applied on dataset after data cleaning for pre-

processing. 

 

 

Figure 4.1-2: Pre-Processing of Dataset using PCA 
 

3. All the classifiers in the pool were trained on the training data. 

 

 

Figure 4.1-3: Training of Decision Tree 
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Figure 4.1-4: Training of Naïve Bayes 

 

 

 

Figure 4.1-5: Training of K-Nearest Neighbor 

 

 

 

Figure 4.1-6: Training of Support Vector Machine 

 

 

 

Figure 4.1-7: Training of Logistic Regression 
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Figure 4.1-8: Training of Neural Network 
 

 

4. K-Means is used to make clusters of training instances and these clusters are used to find out 

the region of competence of each instance. 

 

 

Figure 4.1-9:  Making Clusters by Using K-Means 

 

 

5. Output profile of each training instances is formed and stored in a vector that contains the 

decision of each classifier in pool for that instance.  
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Figure 4.1-10: Method for Forming Output Profile of Instances 
 

 

 

6. After that meta-features are calculated for each instance in training set and a meta-features 

dataset is formed. 
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Figure 4.1-11: Method for Calculating Meta-Features 
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7. Meta-Features dataset is then used to train the meta-classifiers. 

 

 

Figure 4.1-12: Training of Meta-Classifier: Random Forest 

 

 

 

Figure 4.1-13: Training of Meta-Classifier: Support Vector Machine 

 

 

 

Figure 4.1-14: Training of Meta-Classifier: Multilayer Perceptron 

 

 

 

Figure 4.1-15: Training of Meta-Classifier: Logistic Regression 

 

 

8. Then for each instance of test set steps from step 3 are repeated. 

 

9. Meta-Features vector for each test instance is passed to the meta-classifiers that will compute 

the compete level for each classifier and weights are dynamically assigned to the competent 

classifiers. 
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Figure 4.1-16: Method for Dynamically Calculating Weights for Classifiers 
 

10. After that using weighting voting approach, final class label for that instance is computed. 

 

 

Figure 4.1-17: Method for Predicting Class Labels 
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4.2 Datasets 

        The proposed method is tested on 10 datasets coming from the UCI machine learning 

repository, Knowledge Extraction based on Evolutionary Learning (KEEL) repository and Kaggle. 

Both ill-defined problems, such as, Heart, Blood Transfusion and Breast Cancer as well as larger 

databases, such as, Phoneme, Thyroid, Sonar, Diabetes and cardiotocography are considered. 

4.2.1 Heart Dataset 

            Heart dataset is the most commonly used dataset for experimentation. The dataset is 

collected from Kaggle [48]. It contains 76 attributes, but experiment is conducted on the subset of 

14 of them. Experiments have revealed the presence of heart disease by predicting values 0 or 1 

where 0 shows the absence of disease. Meta-Data of heart dataset is described in Table 4.2-1. 

Table 4.2-1.  Description of Heart Dataset 

 

 

 

  

 

 

 

 

 

 

4.2.2 Diabetes Dataset 

            Diabetes dataset is collected from Kaggle [49]. It contains 9 attributes out of which 8 are 

independent medical variables while 1 is dependent variable that predict the outcome. The 

Data Set Characteristics:   Multivariate 

Attribute Characteristics: Categorical, Integer, Real 

Associated Tasks: Classification 

Number of Instances: 303 

Number of Attributes: 15 

Missing Values? Yes 

Area: Life 

No. of Classes 2 



 

44 
 

predicted outcome is either 0 or 1. Total Instances are 768 out of which 268 are 1 and other are 0. 

Meta-Data of diabetes dataset is described in Table 4.2-2. 

Table 4.2-2.  Description of Diabetes Dataset 

Data Set Characteristics: Multivariate 

Attribute Characteristics: Categorical, Integer, Real 

Associated Tasks: Classification 

Number of Instances: 768 

Number of Attributes: 9 

Missing Values? No 

Area: Life 

No. of Classes 2 

 

4.2.3 Blood Transfusion Dataset 

Blood Transfusion dataset is collected from UCI [50]. It contains 5 attributes out which 1 

is dependent variable that predict the outcome.Dataset contains the data of 748 donors, each one 

included R (Recency - months since last donation), F (Frequency - total number of donation), M 

(Monetary - total blood donated in c.c.), T (Time - months since first donation). The predicted 

outcome is either 1 or 0 where 1 stands for donating blood and 0 stands for not donating blood. 

Meta-Data of blood transfusion dataset is described in Table 4.2-3. 

Table 4.2-3.  Description of Blood Transfusion Dataset 

Data Set Characteristics:   Multivariate 

Attribute Characteristics: Real 

Associated Tasks: Classification 
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Number of Instances: 748 

Number of Attributes: 5 

Missing Values? No 

Area: Business 

No. of Classes 2 

 

4.2.4 Sonar Dataset 

            Sonar dataset is collected from Kaggle [51]. It contains 61 attributes out which 1 is 

dependent variable that predict the outcome. Dataset contains the data of 208 instances. The 

predicted outcome is either 1 or 2. Meta-Data of sonar dataset is described in Table 4.2-4. 

Table 4.2-4. Description of Sonar Dataset 

Data Set Characteristics:   Multivariate 

Attribute Characteristics: Real 

Associated Tasks: Classification 

Number of Instances: 208 

Number of Attributes: 61 

Missing Values? No 

Area: Physical 

No. of Classes 2 

 

4.2.5 Cardiotocography (CTG) Dataset 

            Cardiotocography dataset is collected from UCI [52] that contains the measurement of 

heart rate and uterine contractions from cardiotocograms. It contains 23 attributes out which 1 is 
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dependent variable that predict the outcome. Dataset contains the data of2126 instances. The 

predicted outcome is either 1, 2 or 3. Meta-Data of cardiotocography dataset is described in      

Table 4.2-5. 

Table 4.2-5.  Description of Cardiotocography Dataset 

Data Set Characteristics:   Multivariate 

Attribute Characteristics: Real 

Associated Tasks: Classification 

Number of Instances: 2126 

Number of Attributes: 23 

Missing Values? No 

Area: Life 

No. of Classes 3 

 

4.2.6 Phoneme Dataset 

            Phoneme dataset is collected from KEEL [53]. The dataset helps to distinguish between 

nasal and oral sounds by assigning class 0 and 1 respectively. It contains 5 attributes out which 1 

is dependent variable that predict the outcome. Dataset contains the data of 5404 instances. The 

predicted outcome is either 0 or 1. Meta-Data of phoneme dataset is described in Table 4.2-6. 

Table 4.2-6.  Description of Phoneme Dataset 

Data Set Characteristics:   Multivariate 

Attribute Characteristics: Real 

Associated Tasks: Classification 

Number of Instances: 5404 
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Number of Attributes: 5 

Missing Values? No 

Area: Life 

No. of Classes 2 

 

4.2.7 Breast Cancer Dataset 

            Breast cancer dataset is collected from UCI [54] The dataset helps to distinguish between 

malignant and benign by assigning class M and B respectively. It contains 32 attributes out which 

1 is dependent variable that predict the outcome. Dataset contains the data of 569 instances. Meta-

Data of breast cancer dataset is described in Table 4.2-7. 

Table 4.2-7.  Description of Breast Cancer Dataset 

Data Set Characteristics:   Multivariate 

Attribute Characteristics: Real 

Associated Tasks: Classification 

Number of Instances: 569 

Number of Attributes: 23 

Missing Values? No 

Area: Life 

No. of Classes 2 

 

4.2.8 Thyroid Dataset 

             Thyroid dataset is collected from KEEL [55]. The dataset helps to distinguish between 

normal, hyperthyroidism and hypothyroidism by assigning class 1, 2 and 3 respectively. It contains 

21 attributes out which 1 is dependent variable that predict the outcome. Dataset contains the data 
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of7200 instances. The predicted outcome is either 1, 2 or 3. Meta-Data of thyroid dataset is 

described in Table 4.2-8. 

Table 4.2-8.  Description of Thyroid Dataset 

Data Set Characteristics:   Multivariate 

Attribute Characteristics: Real 

Associated Tasks: Classification 

Number of Instances: 7200 

Number of Attributes: 21 

Missing Values? No 

Area: Life 

No. of Classes 3 

 

The important features of datasets are described in Table 4.2-9.  

Table 4.2-9.  Important Features of Datasets 

Dataset 
No. of 

Instances 

No. of 

Attributes 

No. of 

Classes 
Source 

Heart 303 15 2 Kaggle 

Diabetes 768 9 2 Kaggle 

Blood Transfusion 748 5 2 UCI 

Sonar 208 61 2 Kaggle 
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Cardiotocography 2126 23 3 UCI 

Phoneme 5404 5 2 KEEL 

Breast Cancer 569 23 2 UCI 

Thyroid 7200 21 3 KEEL 

 

4.3 Training and Testing 

         For training and testing we used the method of 10-fold cross validation [56]. As shown in 

Figure 4.3-1, it consists of 10 experiments, each time taking different sets for training and testing 

from the input dataset. In this process: 

 

1. The input dataset is divided into 10 equal subsets. 

2. From these10 subsets, 9 are used for training and 1 is used for testing. 

3. Process is repeated 10 times, each time taking different subset for testing. 

4. Final performance is evaluated by taking an average of results. 

 

 

Figure 4.3-1: 10-Fold Cross Validation 
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4.4 Evaluation Measures 

         In order to evaluate the performance of proposed methodology, we have chosen some 

standard measures that includes accuracy, precision, recall and F-measure. Here are the 

mathematical formulas for these parameters. 

 

4.5 Confusion Matrix 

         The results predicted by the classifiers are presented in a tabular form that separates the 

correct prediction of class from incorrect predictions. This is called confusion matrix [57]. It tells 

the correct and incorrect predictions. Other performance measures like accuracy, precision, recall 

and F-measure can be calculated by using this matrix. Confusion matrix is represented in Table 

4.5-1. The four cells of this matrix show true positives (TP), true negatives (TN), false positives 

(FP) and false negatives (FN). 

TP = Number of predictions that are correctly classified by the classifier as positive. 

TN = Number of predictions that are correctly classified by the classifier as negative. 

FP = Number of predictions that are incorrectly classified by the classifier as positive. 

FN = Number of predictions that are incorrectly classified by the classifier as negative. 

Table 4.5-1.  The Confusion Matrix 

 

 

 

 

 

 

4.5.1 Accuracy 

         Accuracy is the percentage of instances that are correctly classified divided by the total 

number of instances [58]. It can be given as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜.𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
x100 

 

 Predicted 

Positive Negative 

Actual 
Positive TP FN 

Negative FP TN 
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Confusion matrix can be used to find accuracy by using TP and TN that defines correctly 

classified instances and sum of all cells of confusion matrix that defines the total instances. It can 

be given as: 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100 

 

4.5.2 Precision 

          Precision is the percentage of number of correct predictions by the total predictions [59]. It 

calculates the fraction of instances that are truly positive. In terms of probability, precision is the 

probability that an instance is correctly classified. In terms of confusion matrix, it can be measured 

as: 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

4.5.3 Recall 

          Recall is the measure of the fraction of positive instances that were correctly classified [60]. 

In terms of confusion matrix, it can be measured as: 

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

4.5.4 F-Measure 

          F-Measure is the harmonic mean of precision and recall [61]. It provides a balance between 

precision and recall and uses both to calculate a performance measure. Its formula is given as: 

 

F- Measure = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

For measuring the classifier performance, accuracy alone is not an appropriate measure. E.g 

consider a dataset having a total of 100 instances out of which 95 are negative and 5 are positive. 

If a classifier classifies all the instances as negative, the accuracy of the classifier will be 95%, 
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despite that no positive instance is correctly classified. Hence, other performance measures 

overcome this limitation by calculating a fraction to measure TP.  

 

4.6 Parameter Setting 

        The performance of our proposed framework is determined by two parameters i-e Number of 

clusters required by K-Means and Number of weights required by the classifier to be selected to 

select for ensemble. Experiments were performed on different parameter values and for simplicity 

those parameters values are selected in which the model performs best. 

 

1. Number of Clusters required by K-Means is set to 2. 

2. Number of weights required by the classifier to be selected to select for ensemble is set to  

 

4.7 Experiment Protocol 

         Experiments were conducted by using 10 replications. Dataset was divided into 90% training 

and 10% testing during each replication. Weak classifiers were selected for the pool of classifiers. 

Considering weak classifiers as base classifiers in DES helps to achieve good results. 
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 Chapter 5 

  

 Results and Comparisons 
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CHAPTER 5: RESULTS AND COMPARISONS 

5.1 Classification Results 

      Classification was performed by using our proposed methodology on each of the dataset. 

Results were evaluated on the bases of accuracy, precision, recall and F-measure. Experiments 

were performed on the heart dataset using 10-Fold Cross validation. During each iteration dataset 

is divided into 90% training and 10% testing data. 

5.1.1 Classification Results on Heart Dataset 

           Classification results of heart dataset is represented in Table 5.1-1. 

Table 5.1-1. Classification Results on Heart Dataset 

 

Heart Dataset 

Accuracy 86.18% 

Precision 0.97 

Recall 0.90 

F-measure 0.94 

 

 

 

5.1.2 Classification Results on Diabetes Dataset 

            Classification results of diabetes dataset is represented in Table 5.1-2. 
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Table 5.1-2. Classification Results on Diabetes Dataset 

Diabetes Dataset 

Accuracy 87.6% 

Precision 0.91 

Recall 0.89 

F-measure 0.88 

 

5.1.3 Classification Results on Blood Transfusion Dataset 

            Classification results of blood transfusion dataset is represented in Table 5.1-3. 

Table 5.1-3. Classification Results on Blood Transfusion Dataset 

Blood Transfusion Dataset 

Accuracy 90.67% 

Precision 0.93 

Recall 0.91 

F-measure 0.90 

 

 

5.1.4 Classification Results on Sonar Dataset 

            Classification results of sonar dataset is represented in Table 5.1-4. 
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Table 5.1-4. Classification Results of Sonar Dataset 

Sonar Dataset 

Accuracy 90.61% 

Precision 0.98 

Recall 0.91 

F-measure 0.94 

 

 

5.1.5 Classification Results on Cardiotocography (CTG) Dataset 

      Classification results of cardiotocography dataset is represented in Table 5.1-5. 
 

Table 5.1-5. Classification Results of Cardiotocography Dataset 

Cardiotocography (CTG) Dataset 

Accuracy 85.41% 

Precision 0.91 

Recall 0.86 

F-measure 0.84 

 

 

 

5.1.6 Classification Results on Phoneme Dataset 

            Classification results of phoneme dataset is represented in Table 5.1-6. 
 



 

57 
 

Table 5.1-6. Classification Results of Phoneme Dataset 

Phoneme Dataset 

Accuracy 87.20% 

Precision 0.89 

Recall 0.87 

F-measure 0.86 

 

5.1.7 Classification Results on Breast Cancer Dataset 

            Classification results of breast cancer dataset is represented in Table 5.1-7. 

Table 5.1-7. Classification Results of Breast Cancer Dataset 

Breast Cancer Dataset 

Accuracy 98.21% 

Precision 0.96 

Recall 0.95 

F-measure 0.96 

 

5.1.8 Classification Results on Thyroid Dataset 

            Classification results of thyroid dataset is represented in Table 5.1-8. 
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Table 5.1-8. Classification Results of Thyroid Dataset 

Thyroid Dataset 

Accuracy 99.17% 

Precision 0.99 

Recall 0.99 

F-measure 0.99 

 

Summarized classification results are shown in Table 5.1-9. 

Table 5.1-9. Summarized Classification Results 

Datasets Accuracy Precision Recall F-Measure 

Heart 86.18% 0.97 0.90 0.94 

Diabetes 87.6% 0.91 0.89 0.88 

Blood 

Transfusion 
90.67% 0.89 0.91 0.90 

Sonar 90.61% 0.88 0.91 0.94 

CTG 85.41% 0.91 0.86 0.84 

Phoneme 87.20% 0.89 0.87 0.86 

Breast Cancer 98.21% 0.96 0.95 0.96 

Thyroid 99.17% 
 

0.99 0.99 0.99 
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5.2 Comparison with State of Art Techniques 

   We have evaluated our framework on the selected datasets and compared its results with state-

of-art techniques in the literature. The techniques used in this process are described below. 

5.2.1 Comparison with Dynamic Classifier Selection Techniques 

            Following dynamic classifier selection techniques were used for the evaluation of our 

proposed framework. 

 

1. META-DES 

2. META-DES.H 

3. KNORA-UNION   

4. DES-FA  

5. Local Classifier Accuracy (LCA)  

6. Overall Local Accuracy (OLA) 

7. Modified Local Accuracy (MLA)  

8. Multiple Classifier Behavior (MCB)  

9. K-Nearest Output Profiles (KNOP) 

 

Comparison of our proposed framework with dynamic classifier selection techniques is presented 

in Table 5.2-1. 
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Table 5.2-1. Comparison with State-of-Art Dynamic Classifier Selection Techniques 

 

 

 

Dataset 
Proposed 

Framework 

META-

DES 

[6] 

META-

DES.H 

[19] 

KNORA-

U  

[62] [63] 

DES-

FA 

[64] 

[65] 

LCA 

[66] 

[67] 

OLA 

[68] 

[69] 

MLA 

[70] 

MCB 

[71] 

KNOP 

[72] 

[73] 

Heart 86.18 84.80 85.62 83.82 83.82 85.29 85.29 86.76 83.82 83.82 

Diabetes 87.6 79 78.80 76.60 73.95 73.95 73.95 77.08 76.56 73.42 

Blood 

Transfusion 
90.67 79.14 79.85 77.12 73.40 75.00 75.00 76.06 73.40 77.54 

Sonar 90.61 80.55 82.06 76.69 78.52 76.51 74.52 76.91 76.56 75.72 

CTG 85.41 84.62 86.89 85.71 86.27 86.65 86.65 86.27 85.71 86.02 

Phoneme 87.20 80.35 82.68 78.92 79.06 78.84 78.84 64.94 73.37 78.92 

Breast 

Cancer 
98.21 97 97.02 97.18 97.88 97.88 97.88 95.77 97.18 95.42 

Thyroid 99.17 96.78 96.99 95.95 95.37 95.95 95.95 94.79 95.95 95.95 
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Our proposed framework has achieved good results in comparison with other dynamic classifier 

selection techniques in state-of-art. We have considered eight datasets i-e Heart, Diabetes, Blood 

Transfusion, Sonar, CTG, Phoneme, Breast Cancer and Thyroid for experimentation. On all these 

eight datasets our proposed framework outperforms in comparison with state-of-art techniques. 

 

Table 5.2-1 shows the comparison of our achieved accuracy with eight other dynamic classifier 

selection techniques evaluated on the selected datasets. Highest accuracy of 99.17% was achieved 

with thyroid dataset while other techniques like META-DES, META-DES.H, KNORA-UNION, 

DES-FA, Local Classifier Accuracy (LCA) , Overall Local Accuracy (OLA), Modified Local 

Accuracy (MLA) , Multiple Classifier Behavior (MCB) , K-Nearest Output Profiles (KNOP) has 

achieved accuracy  96.78 ,  96.99,  95.95,  95.37,  95.95,  95.95, 94.79, 95.95, 95.95 respectively. 

These results show that our proposed framework outperforms these techniques of each this dataset 

and on other selected datasets. 

5.2.2 Comparison with Static Classifier Selection Techniques 

            Following static classifier selection techniques were used for the evaluation of our 

proposed framework. 

 

1. Single-Best Classifier 

2. Bagging 

3. AdaBoost 

4. Static Selection 

 

Comparison of our proposed framework with static ensemble selection techniques is presented in 

Table 5.2-2. 
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Table 5.2-2. Comparison with State-of-Art Static Classifier Selection Techniques 

 

 

 

 

 

 

Dataset 
Proposed 

Framework 

Single 

Best  

[74] 

[75] 

Bagging  

[76] [77] 

AdaBoost 

 [77] [79] 

Static    

Selection  

[80] [81] 

Heart 86.18 80.26 82.50 81.61 82.05 

Diabetes 87.6 73.57 73.28 72.52 72.86 

Blood Transfusion 90.67 75.07 75.24 75.18 75.74 

Sonar 90.61 78.21 76.66 74.95 79.03 

CTG 85.41 84.21 84.54 83.06 83.06 

Phoneme 87.20 75.87 72.60 75.90 72.70 

Breast Cancer 98.21 97.04 96.35 98.18 96.83 

Thyroid 99.17 95.15 95.25 96.01 96.24 
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Our proposed framework has achieved good results in comparison with other static classifier 

selection techniques in state-of-art. We have considered eight datasets i-e Heart, Diabetes, Blood 

Transfusion, Sonar, CTG, Phoneme, Breast Cancer and Thyroid for experimentation. On all these 

eight datasets our proposed framework outperforms in comparison with state-of-art techniques. 

 

Table 5.2-2 shows the comparison of our achieved accuracy with four other static classifier 

selection techniques evaluated on the selected datasets. Highest accuracy of 99.17% was achieved 

with thyroid dataset while other techniques like Single Best, Bagging, AdaBoost and Static 

Selection has achieved accuracy 95.15, 95.25, 96.01, 96.24 respectively. These results show that 

our proposed framework outperforms these techniques of each this dataset and on other selected 

datasets. 

5.3 Results Evaluation 

       Results are evaluated on our datasets including Heart, Diabetes, Blood Transfusion, Sonar, 

CTG, Phoneme, Breast Cancer and Thyroid datasets. The results obtained shows that our proposed 

model outperforms existing models for dynamic classifier selection. It is also observed that use of 

multiple meta-classifier models and dynamic weighted voting approach for results aggregation has 

a positive effect on the prediction. Dynamic weights have been assigned to the base classifiers 

selected for an ensemble formation by meta-classifiers. Using dynamic weighted voting scheme 

helps us to deal with outliers and noisy samples as weights are assigned and most competent 

classifier will have higher impact in output prediction. We have used dynamic weighted voting in 

our experimentation that helps in generating better results. 

 

The results of our proposed model along with the model to be compare on same dataset as our 

model are shown in the Figure 5.3-1. Results shows that our proposed ensemble model is the most 

accurate. 
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Figure 5.3-1: Comparison of Different Models Results 

 

5.4 Discussion 

Dynamic selection of classifier is a vast field of research and different models and frameworks 

are proposed in literature for improving accuracy of correctly predicting the class label. Machine 

learning has another technique called Ensemble Formation that has being explored for the task of 

dynamic classifier selection. These approaches perform better perform better than tradition 

machine learning approaches and models exists in literature as the output of weak models are 

combined to produce a strong model. Weighed voting approach has been used to aggregate the 

results of multiple classifiers. Existing models can be improved by improving architecture of the 

models and this motivation is the main reason to conduct this research and for proposing the 

ensemble framework. 
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 Chapter 6 

  

  Conclusion and Future Work 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

In this work, we have suggested some improvements in second step (training) and last 

step (generalization) of the DES framework. In training phase, four different models 

are used as meta-classifiers. While in generalization phase, we had used dynamic 

weighting scheme in which meta-classifiers will dynamically assign weights to selected 

competent classifiers based on their competence level and final decision will be 

aggregated using a weighting voting scheme. Hence, the classifiers having high 

competence level will have greater impact on the final prediction, and this will help us 

to deal with the case of noisy samples where all classifiers from pool will be 

considered as competent for an ensemble and incompetent classifiers will be having 

equal impact on final output as that of competent ones. Thus, modifications suggested 

in this paper altogether enhance performance and accuracy of the framework in contrast 

with other dynamic selection techniques in literature. 

 

Future work on this framework involves: 

 

 New set of meta-features can be defined that can help us better to find the competence of base 

classifier. 

 Different training scenarios can be evaluated for the training of meta-classifier. 

 Evaluating different techniques for generalization phase can further improve the accuracy of 

proposed solution. 
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