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Abstract 

Experimentation and analysis in brain-computer interface (BCI) has increasingly been 

receiving quite some consideration as a substitute communication possibility for patients who are 

severely paralyzed in the last few years. To measure brain activities using optical signals a fairly 

new and non-invasive brain imaging tool can be put to test know as Functional near-infrared 

spectroscopy (fNIRS). Comparability low cost, safety, portability and wear ability are some of the 

main advantages of imaging of brain using this non-invasive modality. We have applied this 

relatively new non-invasive fNIRS technique to make an image of brain activities during four 

different mental tasks. These tasks include Mental Arithmetic (MA), Motor Imagery (i.e. Left-

Hand and Right-Hand Motor Imagery) and Rest. fNIRS data used is an open access dataset of 29 

individuals which was collected by Continuous-wave imaging system (NIR Scout NIRx GmbH, 

Berlin, Germany) with the sampling frequency of 10 Hz. In this research Data synchronization is 

performed before the data is preprocessed. Usual preprocessing is done using Butterworth filter of 

4th order to minimize or eliminate any unwanted signal distortion. After that an extensive signal 

analysis is done in which Six different statistical features (Signal Mean (SM), Skewness (SK), 

Kurtosis (KR), Standard Deviation (SD), Signal Peak (SP), and Signal Variance (SV)) are obtained 

in the time domain and 13 MFCC (Mel Frequency Cepstral Coefficients) features are obtained 

from the frequency domain. After the preprocessing and signal analysis of data our results shows 

hemodynamic behavior of multiple patterns during the tasks performed. These unique patterns of 

hemodynamic behavior can be used to differentiate and distinguish different task. Separate 

Classification analysis is performed on each domain features. We were able to compare, 

differentiate and distinguish the brain signal activities captured while performing 4 different tasks 

using 3 different classifiers i.e. Linear Discriminant Analysis (LDA), Support Vector Machine 

(SVM) and K Nearest Neighbor (KNN). The average classification accuracy of above 90% is 

achieved from K Nearest Neighbors (KNN) using the time domain features and same accuracy is 

achieved from Support Vector Machine (SVM) using the frequency domain features. 

 

Key Words: Multiclass Brain–computer interface (BCI), fNIRS based Brain-Computer 

Interface, Functional Near-Infrared Spectroscopy, Mel Frequency Cepstral Coefficient (MFCC) 

Mental Arithmetic, Motor Imagery, Four Class
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1. INTRODUCTION 

 

To develop a brain-computer interface (BCI) system you need to have an introductory 

knowledge and some motivation. This chapter consist of some basic knowledge of BCI, its 

requirements and some real-world applications, moving towards end with problem statement, 

research objective and research justification. At the end a planned outline of this thesis report is 

given. 

1.1 Motivation 

Brain computer interface (BCI) systems enable people with limited motor functions to 

activate an external device (e.g., a neuro-prosthesis or a wheel chair etc.) by sending command 

through brain signals rather than muscular signals. This can affectively improve quality of their 

lives by reducing dependence on others [1], [2], [3] and [4]. The hemodynamic behavior of the 

brain, is measured by optical signals using Functional Near Infrared Spectroscopy technique in 

diverse environments and require an easy to handle simple, inexpensive and portable equipment 

[1]. BCIs are built on the principle that motor movement or cognitive information is represented 

by hemodynamic response generated due to neuronal activity inside the brain. This response can 

be recorded and then can be used to control an external device [5]. BCI systems are attracting a 

wide range of applications as rehabilitation measure for physically impaired people [6], [7] and 

[8]. Modern day challenge demands to improve the usefulness of BCI systems by increasing the 

classification accuracy of brain signals for different intended motor movements. This can be 

achieved by experimenting with selection of frequency band, feature extraction techniques, 

selection of FNIRS recorded channels with maximum intention information and finally a robust 

classification algorithm. Keeping in view the modern technology and specially the humane aspect 

BCI has emerged as an important research area for two decades. 

The real-world applications for BCI are cursor control of a desktop computer [9], control 

of a car driving virtual simulator [10], web browsing and multimedia control application [11], 



 

2 

 

 

 

control of a wheelchair [12], gaming [13] etc. These applications however, demand high accuracy 

and high computational power and gaining the attraction of researchers. 

Communication interface development with brain signals has proved to be very 

challenging. These challenges are related to usability of the system and are technical in nature [14]. 

One of the major limitations of user acceptance is the laborious training that is an essential part of 

class discrimination [15]. This can be overcome with the help of single trial training instead of 

multi-trial training, and put the burden on subsequent components on BCI system using adaptive 

zero training classifiers. Towards technical aspect non-linearity, non-stationarity and noisy nature 

of data is the main challenge [16], [17]. In BCI systems multiple channels are used for recording 

data, to achieve high spatial resolution, but this leads to a high dimensionality curse. Presence of 

noise (artifacts) in brain signals affect the quality of signals with low signal to noise ratio (SNR). 

To achieve better results from BCI systems increase in SNR can be achieved by applying artifact 

removal techniques [18]. Frequency band filtering helps in reduction of line noise (artifact) and 

also provides a selection of task related frequency range. 

Interpretation of user’s intent correctly warrants the separation of signals into multiple 

classes. A valid choice of separation of brain signals into multiple classes is the machine learning 

techniques. The filtered data is presented to machine learning algorithms for training, validation 

and testing. The researcher’s intent and spirit are to achieve the separation of multiple classes with 

highest percentage accuracy.  

1.1.1 Brain Computer Interface (BCI) 

 BCI technology is a powerful tool to communicate between the brain and computer. The 

complementing process between the brain and computer leads the system to drive any actuator or 

external device [1]. BCI does not involve any muscular movement of the body for accomplishing 

any movement of external device, thus creating a channel of understanding between the user and 

its surroundings. This communication channel is activated with the help of user’s mental activity 

and does not involve neuromuscular system of human body [19]. Brain signals are considered to 

provide distinct information about the brain activity. Moreover, these distinctive brain patterns 

help in identifying human intention of performing any task. Identification of these intentions is 
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performed by a computer using signal features and classification techniques and subsequently 

generate signals to activate an external device. Figure 1. shows an overview of a BCI system [20]. 

 

Figure 1. A typical BCI System [20] 

1.1.2 Brain Anatomy 

 All mammals have brains but human is gifted with a brain that has the best developed and 

largest cortex as compared to other mammals. Cortex is the part of brain in which neural activity 

related to abilities like complex reasoning, speech and language etc., is executed. This activity and 

processing distinguish humans from other mammals. Moreover, the cortex consists of two 

hemispheres called right and left hemispheres. Humans can be right hand or left hand dominant 

and depending upon the dominance each hemisphere possesses specific abilities. For example, a 

right-handed person will use the right hemisphere during recognition of geometric patterns, spatial 

orientation, use nonverbal memory and recognition of non-verbal noises [22]. For the same person, 

the left hemisphere will be more active during recognition of letters and words, use verbal memory 

and auditory perception of words and language. Each hemisphere is further divided into five 

regions which are called lobes. These lobes perform different processing related to human activity 

through neuron firing to carry out certain task. Human brain consists of five well defined lobes 
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called frontal lobe, central lobe, parietal lobe, occipital lobe and temporal lobe. Frontal and central 

lobes plan and execute motor movements, parietal lobe is responsible for sense of touch, occipital 

lobe processes information related to vision and temporal lobe deals with auditory information and 

processing. Figure 2. shows the anatomical distribution of lobes and cortex of the human brain 

[21]. 

 

Figure 2. Brain partition with regions [21] 
 

1.1.3 Components of a BCI System 

 Primarily, BCI system aims at recording of signals from brain and interpret these signals 

with highest classification accuracies into a command of activating an actuator over a 

communication channel. Four basic components of a BCI system are enumerated as under: - 

• Sensors for signal recording/acquisition from brain. 

• Signal processing unit for preprocessing of acquired signals by selecting the desired 

frequency band and removal of artifacts. 

• Feature extraction unit generates the specific characteristic of the signal and also helps in 

reduction of data size. 
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• The classifiers which translate the produced features into device commands. 

BCI can be classified into three types according to sensor placement for recording brain signals 

i.e. (i) Invasive BCI, (ii) Partially Invasive BCI and (iii) Non-Invasive BCI. The first two involve 

surgical procedure for placement of electrodes (sensors) for signal recording and the third one 

requires placement of sensors at the scalp for recording. The third one is the most used procedure 

for signal recording due to the obvious reason of avoiding surgical procedure. The quality of 

signals in the first two types is far superior to the third as it is less contaminated with any kind of 

electrical interference and any other organ artifacts. 

Performance of a BCI system will be affected and depends upon signal to noise ratio (SNR) of the 

digitized signal. Present day BCI features represent brain events, which can be identified according 

to the firing of specific cortical neurons in the sensorimotor cortex area. For classification of user 

intent, the processing of signals can be done online or offline. In an online system the processing 

is done in real time and user intent is transformed in real time. While in an offline system the data 

is recorded and then its processing and classification is done offline after extracting features and 

decreasing the dimensions. Online BCI is a bigger challenge as compared to offline system as 

more computational power is required to first process the signals and then classify in accordance 

with user intent. The offline processing approach is a post processing approach in which maximum 

precision and accuracy is achieved. 

1.1.4 Application of BCI System 

 Over a period of time, BCI systems have contributed in various fields of research and its 

application. These systems have been applied and sought out their way inside medical applications, 

neuro-ergonomics and smart environment [23], neuro-marketing and advertisement [24], 

education and self-regulation [25], games and entertainment [26] and security and authentication 

[27]. The application areas are shown in Figure 3. 



 

6 

 

 

 

 

Figure 3. Applications of BCI 

1.1.4.1 Medical Applications 

 Health care has always been an area of research for the scientists and researchers. The 

ingress of engineers into the biomedical engineering field has increased the pace of research 

manifolds. BCI is one of the well-known areas of interest for collaborative research in field of 

biomedical engineering. A few of the researches and its application in this area are discussed 

below: - 

• Prevention of Accidents 

The main cause of death and serious injuries are attributed to traffic accidents [28]. 

Analyzing the cause and prevention has been a key area of research for safety of mankind. 

Generally, the concentration level of driver is affected due to long hours of monotonous drives 

over the highways and can cause motion sickness which may lead to any unfortunate incident. 

The motion sickness phenomenon has been studied with the help of brain signals and measured 

with the help of auditory evoked potentials BCI based system [29]. Monitoring of conscious 

level via brain waves is not limited to drivers only, rather a study for monitoring has been done 

on sick people staying alone for long periods of time [30]. 

• Movement of Wheelchair 

People with disability have different levels of severity. They may be paralyzed or aged and 

cannot perform motions of a wheelchair at their own. Research to help out such people and 

increasing the comfort level of their lives the concept of automated electrical wheelchair was 

introduced. To further enhance the comfort level the concept to use BCI system which can 

translate the user intention from their brain signals into motion of wheelchair. The basic 
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commands which can be executed are move forward, left, right and stop [31]. Controlling a 

wheelchair with the help of brain signals need training in real time and can compromise the 

safety of patient. To help patient’s training, experiments have been carried out to use virtual 

reality platform for safe patient training [32]. 

1.2 Research Objectives 

1.2.1 Problem Statement 

The challenge in non-invasive BCI research is to identify/classify the motor imagery (EEG signals) 

with high accuracy. Since these signals are person specific and diverse in nature due to his mental 

state, achieving high classification accuracy remains a challenge for the researcher. 

“An efficient method is required for improvement in multivariate classification accuracy of non-

invasive brain EEG signals for an external device.” 

1.2.2 Research Objectives 

Goal of this study is to develop a method to correctly classify the non-invasive motor imagery 

(EEG signals) with highest classification accuracy. The main objectives of the research are: 

• Carry out study of existing methods for classification of non-invasive brain EEG signal 

• Use of intelligent techniques to develop an improved method of EEG signal classification. 

• Develop an intelligent classification algorithm, capable of classifying multivariate EEG 

signals. 

• Evaluate performance of proposed intelligent classification algorithm in comparison to the 

benchmark techniques. 

1.2.3 Thesis Organization 

This thesis has been organized in six chapters; outline of the organization is as under: 

• Literature review has been included in second chapter with background studies related to 

classification methods. Detailed literature review of relevant classification methodologies 
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is presented. This chapter also includes the type of BCI systems and types of brain signals 

and their acquisition. 

• Third chapter of the thesis describes the concept and principles of Biological Immune 

System (BIS) theory followed by bio inspired Artificial Immune System (AIS). AIS is 

further explained in detail with the help of framework to understand and correlate AIS with 

BIS. 

• Fourth chapter comprises of the developmental stages of proposed methodology. The 

signal preprocessing, feature extraction, dimensionality reduction techniques and genetic 

algorithm (GA) based optimized negative selection classification algorithm (NSCA) are 

presented in this chapter. Finally, classification of multivariate EEG signals using NSCA 

is explained in detail. 

• Fifth chapter presents the results of proposed methodology in comparison with benchmark 

research. Classification accuracy analysis are carried out on the same dataset as of 

benchmark research and analysis on one more dataset (BCI competition dataset) was also 

carried out for validation of results. 

• Main contribution of research, recommendations and future work have been included in 

the last chapter of the thesis. 
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2. BACKGROUND 

2.1 BCI System Types 

BCI system by-passes the normal brain’s output channels (muscles and peripheral nerves) 

and use direct brain signals for communication and control. The BCI user produces brain signals 

for mental state (preforming an imagined mental task), the neuronal activity in brain generates 

electrical potential that is recorded for processing by the system. Depending upon the 

communication of brain signals and system, the BCI systems are divided into four categories, 

namely: 1) Dependent and Independent BCI, 2) Invasive and Non-Invasive BCI, 3) Synchronous 

and Asynchronous BCI and 4) Active-reactive versus Passive BCI. The fourth category is another 

form of dependent and independent BCI; however, it will be explained exclusively in preceding 

sub-sections. 

2.1.1 Dependent versus Independent BCI 

BCIs can be termed as dependent or independent BCI, a dependent BCI is defined as a 

system in which input from some muscle is existent to produce neuronal activity for 

communication. Contrary to dependent BCI, independent BCI do not require any muscle control 

and also called as pure BCI [33]. An example of dependent BCI can be a steady state visual evoked 

potential (SSVEP) BCI system, that is dependent upon the muscle activity in terms of gaze control. 

In comparison, P300 based sensorimotor cortex rhythm based BCI does not require any muscular 

activity for generation of neural activity. So, an independent BCI system should be used for a 

person who is severely disabled and lost motor control of his muscles. However, at the same time, 

for healthy persons playing computer games being controlled with brain signals and motor 

movement, a dependent BCI system will be required [34]. 

2.1.2 Invasive versus Non-Invasive BCI 

BCI systems are named as: invasive or non-invasive, according to the method of recording 

brain activity [7]. The system is said to be invasive if the sensors for recording brain activity are 
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placed under the skull on surface of brain through an invasive surgical procedure. Contrarily, a 

convenient method for recording brain activity is achieved by placing electrode on the scalp. This 

method is termed as non-invasive BCI system and does not require any surgical procedure. The 

action potentials in case of invasive BCI has higher amplitude as compared to non-invasive system, 

therefore, these are less prone to noise and artifacts. But at the same time, it involves a surgical 

procedure to place the electrodes. An electrocorticogram (ECoG) is recorded by placing electrodes 

under the scalp and an electroencephalogram (EEG) is recorded by placing electrodes on the surface 

of scalp [5]. 

2.1.3 Synchronous versus Asynchronous (Self-paced) BCI 

In a synchronous BCI system, the user will be allowed to interact with system only during 

specific time period as imposed by the system. A dedicated stimulus (visual or auditory) is 

provided by the system to user as an indication or cue for him to start interacting with the system 

as desired. As soon as the indication finishes the system stops communicating with user and his 

intents are not processed by the system. It is mandatory for the user to perform the mental task 

only during that interval as the system will only react at that particular time otherwise mental tasks 

outside that interval with result in nothing [35]. With an asynchronous system (self-paced) the user 

has the liberty to communicate at his will with the system, in that he may not perform any mental 

task and the application will not respond. Self-paced BCI systems are close to natural systems and 

provide user with the flexibility to interact with system at his will, however, designing such system 

is very challenging as compared to synchronous system. Ideally all system should be asynchronous 

(self-paced) but in this case the system has to analyze the input (brain signal) continuously and 

determine that when the user wants to interact with application and also system has to identify as 

to what action user wants to perform. Due to this challenge most of the BCI systems are 

synchronous [36]. 

2.1.4 Active-reactive versus Passive BCI 

In an active BCI system, the brain signals are generated by the user intentionally which 

are independent of the external events. These brain signals fall under category of motion intentions, 
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mental tasks and motor imageries. Contrary to active BCI, the brain signals generated in reaction 

to an external stimulus is called reactive BCI. All video, audio or pain stimuli cause generation of 

reactive signal in brain which can be utilized for a reactive BCI application. In a passive BCI 

system, any arbitrary brain activity which is neither intentional nor generated because of external 

stimuli is used for any object control. For example, fatigue estimation of a human being or 

estimation of drowsiness of a driver falls under the category of passive BCI [37]. 

2.2 Types of Brain Signals and Acquisition 

BCI systems operate on brain signals recorded from the brain activity of subject. Many 

types of suitable brain activities (subject’s intent) have been tried and identified for recording to 

activate a BCI system. As discussed above these signals (activity) can be recorded by means of 

electrode which can be invasive or non-invasive, moreover, these signals can be electrical 

potentials or other signals. 

2.2.1 Neurophysiological Signals for BCI 

Classification of brain activity patterns (neurophysiological signals) of a subject for one or several 

distinct movements with highest accuracy is the ultimate goal of BCI systems. These patterns are 

associated by BCI systems with respective movements and command signals are generated to 

perform the task with the help of external world actuators. The signals which are identifiable 

relatively with ease and prove to be easy for the user to control the actuator are divided into two 

main categories [38]. These brain activity patterns (neurophysiological signals) are also called and 

referred to as a mental state. 

• Evoked signals: These signals are generated when a subject notice a stimulus generated 

externally and perform any mental task. Due to their nature of generation, these are called 

evoked potentials (EP). 

• Spontaneous signals: These signals are generated at the will of the user voluntarily 

without the influence of any external stimulus. Generation of these signals is an internal 

cognitive process. 
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2.2.2 Neuroimaging 

Brain physiological activity measured directly by the electrophysiological. To view structure and 

operation of the brain some neuroimaging techniques can be used which are functional near-

infrared spectroscopy (fNIRS), electroencephalography (EEG), magnetoencephalography (MEG), 

electrogastrography (EGG), electrocardiography (ECG), electrogastrography (EGG), electro 

optography (EOG). Neuroscientists generally uses two main classes of brain imaging techniques 

to measure the brain activity. These are: [39]. 

• Structural Imaging 

Treats brain conditions such as tumor and injury diagnosis. A structural image illustrated in figure 

4. [40]. 

 

Figure 4. Structural imaging of brain [40] 
 

• Functional imaging 

The functional imaging is a method of detection or measurement for the effects of certain activity 

or event on blood flow, metabolism, absorption and local chemical composition. A functioning 

picture shown in Figure 5. [41]. 
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Figure 5. Functional Imaging of Brain [41] 

2.2.3 Brain Signal Acquisition and Imaging 

Methods for acquiring brain signals are non-invasive or invasive. Non-invasive methods, the brain 

signals are recorded by electrodes on the scalp. In an invasive process, electrodes are implanted 

directly into the gray substance which allows the acquisition of fine brain signals and poses 

surgical risks. Magnetoencephalography (MEG); imagery by magnetic resonance imaging (MRI), 

electroencephalography (EEG), tomography with positron emission (PET); computerized axial 

tomography (CAT); near-infrared (fNIRS) functional spectroscopy; and imagery with functional 

magnetic resonance imaging (fMRI). Each of us has its own advantages and disadvantages in the 

BCI context [26]. A brief portrayal for every method is provided below: 

2.2.3.1 Magnetencephalography (MEG) 

Magnetencephalography means brain pictures use magnetism. MEG (Figure 6[43]), 

detects brain signals through detection by electricity in the brain of magnetic fields. MEG calls for 

an intensive Low Noise Verstärker and expensive superconducting Quantium Interference 
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(SQUID) device. Ferro-Magnetic Screen Protection Room (MSR) readings should therefore 

isolate MEG equipment inside where SQUID is isolated by MSR. SQUID will be isolated from 

all magnetic externals by MSR. MEG benefits provide very high time and space resolution, which 

can be useful for observing events in fewer than 10 milliseconds. 

 

Figure 6. Magnetencephalography [43] 

2.2.3.2 Computerized Axial Tomography (CAT) 

Computerized axial tomography is a structural technique of neuroimaging commonly 

known by computerized tomography. It's also referred to as the CT scan. An CT scan consists of 

a series of x-ray images around the head from several places. These combined images build a brain 

image. CT scans are not high-quality resolution, but any significant anatomical problems in the 

brain, such as tumors may be visualized. 

2.2.3.3 Magnetic Resonance Imaging (MRI) 

The use of magnetic fields and power waves with radiofrequency to the brain requires 

magnetic resonance imaging, or MRI. Atomic hydrogen reacts to radiation pulses by emitting 

energy to the magnet fields. The MRI machine receives this energy and can tell from which part 
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of the brain it originated. A computer can retrieve a high-space depiction of the brain through this 

knowledge. 

2.2.3.4 functional Magnetic Resonance Imaging (fMRI) 

Functional MRI or fMRI works in a similar manner to MRI but tends to focus on different 

approaches to oxygenized and deoxidized blood magnetic fields and radiofrequency energy. 

Blood-oxygen-based contrast (BOLD) is used by the FMRI (Figure 7[44]) to detect changes in 

brain blood flow and thus to identify brain areas which are the most active [44]. The fMRI can be 

imaged without something manipulating the brain activity and provides high-resolution MRI 

pictures concurrently with functional photographs. 

 

Figure 7. functional Magnetic Resonance Imaging [44] 

2.2.3.5 Positron Emission Tomography (PET) 

Tomography with Positron emission is a type of imagery in the brain, or a PET scan. A patient is 

injected with a radioactive positron-emitting substance for a PET scan and gamma rays will be 

emitted when the electrons in the brain tissue collide. These gamma rays are identified by the PET 

scanner (Figure 8[45]). The PET scanner tracks blood flow across the entire brain, because the 

toxic material was pumped into the blood stream. The PET scanning process produces a picture 
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that shows the most common areas of the brain while the person is in the scanner. when this area 

is active the blood flux in the brain increases. 

 

Figure 8. Positron Emission Tomography (PET) [45] 

2.2.3.6 Electroencephalography (EEG) 

EEG refers to electrical activity recording in the brain. If the brain information changes, 

the electrical flow interneurons will cause an electric field to be measured on the head surface [46]. 

Multiple electrodes are used in various areas of the head surface to monitor brain activity. 

Energetic electrical activity (Figure 9[46]) can record milliseconds and it is a powerful means of 

investigate different aspects of cognition, like immediate memory and perception. Low-space 

resolution is the biggest drawback of EEG. 

 

Figure 9. Electroencephalography (EEG) 
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2.2.3.7 functional Near-Infrared Spectroscopy (fNIRS) 

FNIRS is fairly new and functional in reflecting Near-Infrared (NI) light on the scalp 's 

surface into its brain as the light is reflected backwards [29] by quantifying optical answers of 

wavelengths varied (normally 650~1000 nm). The functional maps of brain activity may be created 

using FNIRS. This produces pictures similar to the fMRI pictures. The spatial resolution of photos 

is related to fMRI and is quite high. Its main benefits are low noise, low cost, security, portability, 

and user-friendly compared to fMRI. Unlike EEG and MEG, his information is not sensitive to 

electric noise, as it represents a method of optical imaging. FNIRS measures the blood flow-

alteration (hemodynamic response) caused by neuron activation [6]. Because the oxygen carrier is 

also hemoglobin, changes in the level of HbO and HbR might be associated with the relevant 

neuronal firings after neuronal activation. FNIRS uses pairs of NI lamps, NI photons fly over the 

head floor, disperse across brain tissues, causing multiple photon scattering. Some of these photons 

are removed after they pass the cortical part of the brain, which is changing chromophores (i.e. 

HbO and HbR). Then these stimulated photons are observed with detectors. During the application 

of the modified Beer-Lambert Act (23) the relationships entre the photon intensity of an incident 

and the photon intensity of an output can be used to measure changes in concentrations of HbO 

and HbR along the path of photons because there are different absorption coefficients for different 

wavelengths of NI light. These excited photons are then spotted by using detectors. Since HbO 

and HbR have different absorption coefficients for various wavelengths of NI light, the 

relationship between the incident photon intensity and the exiting photon intensity can be used to 

compute the changes of the concentrations of HbO and HbR along the path of the photons by 

applying the modified Beer-Lamberts law [49]. 

 

The Near Infrared Spectroscopy Concept was first developed in 1977[50] Jobsis requires 

the use of 3~4 cm of emitting and detecting systems. The distance is important because the only 

contribution to a small distance (1 cm) is from the skin, while a large distance of (5 cm) may send 

poor quality and unnecessary signals. Table 1 summarizes the non-invasive methods of brain 

signal acquisition. 
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Table 1. Summary of some BCIs w.r.t Data Acquisition 

Data 

Acquisition 

Signals Pros Cons 

EEG Electrical Activity • Portable 

equipment 

• Easy to use 

Low Topographical Resolution 

MEG Magnetic Activity Excellent spatial and 

temporal resolution 

• Costly and Heavy 

equipment 

• Impractical for clinics 

PET Metabolic Activity 

using Nuclear Meds 

 • Expensive equipment 

• Usage of Nuclear Meds 

FMRI Hemodynamic 

Response 

Good Spatial Resolution • Heavy Equipment 

• Poor temporal 

Resolution 

FNIRS Hemodynamic 

Response 

• Good spatial 

resolution 

• Good temporal 

resolution 

• Portable 

Equipment 

• Costly equipment 

 

2.3 Data Extraction 

Hemodynamic changes to blood flow can be detected by neuroactivation fNIRS. The U.S. 

test company defines a wavelength range for the NI from 780 nm to 2526 nm. For the NIRS as a 

whole NI wavelength spectrum, the range of 650-1000 nm is not possible. Figure 10 illustrates 

different wavelength spectrum ranges. 
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Figure 10. Wavelength Spectrum 
 

Light absorption occurs because of oxyhemoglobin, deoxyhemoglobin, bulk lipids and 

water in this electromagnetic spectrum region. Water absorption is very small during this range. It 

does not have precious details. In order to identify increases in oxyhemoglobin and deoxy-

hemoglobin concentrations, lipids and water are typically less absorbed. The sum of brain activity 

in the field can be measured. When an operation takes place, the nerves are shot. Glucose or oxygen 

are required in the neurons and oxyhemoglobin (HbO) gives off. When oxyhemoglobin increases 

and deoxyhemoglobin decreases, the supply of blood oxygen to the region increases as shown in 

Figure 11. The total hemoglobin (oxyhemoglobin and deoxyhemoglobin) remains constant. Some 

chromophores still occur in the cortex, i.e. The absorption coefficient of these chromophores is 

negligible for myoglobin, cytochrome and meth-hemoglobin, etc. (~650nm-100 nm) [51]. 

 

Figure 11. Absorption Coefficients of HbO & HbR 
 

A radiation strike on the brain scatters 3 cm in the membranes of the human brain and, 

unlike the photons, penetrates. The ideal direction for detecting cortical activity of the mind is 

around 3 cm from the source to the detector distance. A banana form is used to contain 80% of the 
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photons observed (Figure 12). With the distance from the source detector the depth decreases, and 

the optical properties of the tissue depend on it. This could affect the tissue [51] if the light intensity 

is high. 

 

Figure 12. Path of the Photons 
 

If light penetrates in the human brain, hemodynamic reactions, i.e. changes in the 

oxygenated hemoglobin and deoxygenated hemoglobin blood, are sensed. The neuron needs 

energy to build space for action (neuron fires). The blood vessels in the brain contain oxygenated 

hemoglobin. During the neuron firings leave deoxygenated hemoglobin, oxygen is withdrawn 

from those vessels. Blood flow increases with brain activity, thereby increasing the level of 

oxygenated hemoglobin. At first, the dip is happening as the HbO falls first at the onset of the 

cycle and then the blood flow rises. When an impulse is given to a body, neuron is set on fire 

before it stabilizes and this is about to happen. 21 secs. 21 secs. Figure 12[53] showed the response 

for hemodynamics. The pitch onset is roughly 2 seconds. The oxygenated hemoglobin 

concentration increases after a 2 sec delay and reaches its peak in approximately 5 to 7 seconds 

[52]. 
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Figure 13. Hemodynamic Response of the Activity [53] 
 

Detector distance shall be at least 2.5 ~ 3.0 cm for the access to the cortical area. When it 

is less than 2.5 cm from source to detector, the distance in the cortical areas is not far enough to 

be quantified. The detector reached could become too low if the source and detector was too far. 

2.3.1 Beer Lambert Law 

The Beer-Lambert Law defines the relationship between the light absorbed by the 

substance, concentration of the substance in the solvent and path of the light (Figure 14) [49]. 

 𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛𝑒
−𝜇𝑎(𝑡)×𝑙 (1) 

Where 

𝐼𝑜𝑢𝑡:  Intensity of light detected 

𝐼𝑖𝑛:    Intensity of incident lights 

μ𝑎(𝑡): Mediums absorption coefficient 

𝑙:       Distance between the source to the sensor 
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Figure 14. Beer Lambert Law Absorption 
 

A [unit less], which is based on the wavelength β [nm] of the incident light, is the absorbance or 

the optical density defined as 

 𝐴(𝑡: 𝜆) = −𝑙𝑛
𝐼𝑜𝑢𝑡(𝑡: 𝜆)

𝐼𝑖𝑛(𝜆)
= 𝜇𝑎(𝑡: 𝜆) × 𝑙 (2) 

To the brain the path of the light incident is not clear. Differential length factor should be 

added in order to calculate the relative concentration based on a photon path's total length. The 

amended law is referred to as the Modified Beer Lambert Law (MBLL). 

2.3.2 Modified Beer Lambert Law 

The modified law of Beer-Lambert (MBLL) forms the basis of ongoing near-infrared 

spectroscopy of tissue [54]. The scattering loss is regarded as constant and the tissue absorption 

changes evenly. 

 𝐴(𝑡: 𝜆) = 𝜇𝑎(𝑡: 𝜆) × 𝑙 × 𝑑(𝜆) × 𝜂 (3) 

Where 

𝑑(𝜆): Factor of disparity direction  

𝜂: Intensity lost due to dispersion (Unknown geometry dependent factor) 

 

Since HbO and HbR have different absorption coeffects for different NI light 

wavelengths, it is possible to calculate the connection between the existing photon intensity and 
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the photon intensity incidents Δ𝑐HbO(𝑡) and Δ𝑐HbR(𝑡) can be measured along the path of 

photons for the measurement of HbO and HbR. 

 ∆𝐴(𝑡: 𝜆) = 𝐴(𝑡2: 𝜆) − 𝐴(𝑡1: 𝜆) = −𝑙𝑛
𝐼𝑜𝑢𝑡(𝑡2: 𝜆)

𝐼𝑜𝑢𝑡(𝑡1: 𝜆)
= ∆𝜇𝑎(𝑡: 𝜆) × 𝑙 × 𝑑(𝜆) (4) 

 

𝐴(𝑡2: 𝜆), 𝐴(𝑡1: 𝜆) : Measured absorbance at two time points 

𝐼𝑜𝑢𝑡(𝑡2: 𝜆), 𝐼𝑜𝑢𝑡(𝑡2: 𝜆): Intensities two time points 

 

The chromophores of the tissue consist primarily of HbO and HbR 

 ∆𝜇𝑎(𝑡: 𝜆) = [𝛼𝐻𝑏𝑂(𝜆)∆𝐶𝐻𝑏𝑂(𝑡) + 𝛼𝐻𝑏𝑅(𝜆)∆𝐶𝐻𝑏𝑅(𝑡)] (5) 

Where 

𝛼𝐻𝑏𝑂(𝜆), 𝛼𝐻𝑏𝑅(𝜆): HbO and HbR extinguishing coefficient, each [μM-1cm-1] 

∆𝐶𝐻𝑏𝑂(𝑡), ∆𝐶𝐻𝑏𝑅(𝑡): HbO and HbR change respectively in concentration [μM] 

 

Replacement of equation (absorption coefficient value) 

 ∆𝐴(𝑡: 𝜆) = [𝛼𝐻𝑏𝑂(𝜆)∆𝐶𝐻𝑏𝑂(𝑡) + 𝛼𝐻𝑏𝑅(𝜆)∆𝐶𝐻𝑏𝑅(𝑡)] × 𝑙 × 𝑑(𝜆) (6) 

By measuring the absorbance at two wavelengths, 𝜆1 and 𝜆2 (assume that 𝑑 is constant) 

 

 ∆𝐴(𝑡: 𝜆1) = [𝛼𝐻𝑏𝑂(𝜆1)∆𝐶𝐻𝑏𝑂(𝑡) + 𝛼𝐻𝑏𝑅(𝜆1)∆𝐶𝐻𝑏𝑅(𝑡)] × 𝑙 × 𝑑 (7) 

 ∆𝐴(𝑡: 𝜆2) = [𝛼𝐻𝑏𝑂(𝜆2)∆𝐶𝐻𝑏𝑂(𝑡) + 𝛼𝐻𝑏𝑅(𝜆2)∆𝐶𝐻𝑏𝑅(𝑡)] × 𝑙 × 𝑑 (8) 

 

After simplification the final term become: 

 [
∆𝐶𝐻𝑏𝑂(𝑡)

∆𝐶𝐻𝑏𝑂(𝑡)
] =

1

𝑙 × 𝑑
[
𝛼𝐻𝑏𝑂(𝜆1) 𝛼𝐻𝑏𝑅(𝜆1)

𝛼𝐻𝑏𝑂(𝜆2) 𝛼𝐻𝑏𝑅(𝜆2)
]
−1

[
∆𝐴(𝑡: 𝜆1)

∆𝐴(𝑡: 𝜆2)
] (9) 

 

 

 



 

24 

 

 

 

2.4 Pre-Processing 

When the fNIRS data has been extracted, artifact removal (de-noising) is the first step of 

preprocessing. This leads to enhance the SNR of the signal resulting in improvement of relevant 

information present and embedded in these signals. EEG signals are prone to be affected by 

artifacts (noise) which are associated with the electrical activity of movement/blinking of eyes 

(EOG: ocular artifacts), muscles (EMG: muscular artifacts) and rhythmic activity of heart beat 

(ECG: cardiac artifacts [61]). Moreover, the background brain activity is also required to be 

removed which is not related to signal of interest. Largely, in preprocessing the set of signals is 

transformed into a new set which is less affected by the influence of noise (de-noised signal). 

Alternatively, we may say that preprocessing is performed with an aim to increase SNR of signal. 

In BCI system applications, increase in SNR of EEG signal can be achieved by applying simple 

temporal and spatial filtering techniques. 

2.4.1 Temporal Filtering 

Simple temporal filters are used to extract a frequency band of interest form the signal, 

such as low-pass or band-pass filters. The application of these filters allows us to extract the 

frequency range according to the brain rhythm of interest. This filtering technique can remove the 

undesired band of frequencies such as variation in EEG signal due to electrode polarization (slow 

variations) and powerline interference (50 Hz). In other words, temporal filtering reduces the influence 

of frequencies lying outside the region of interest. Most common filtering techniques used for temporal 

filtering are, 1) Discrete Fourier Transform (DFT), 2) Finite Impulse Response (FIR) or 3) Infinite 

Impulse Response (IIR) filters. 

2.4.2 Spatial Filtering 

Spatial filters isolate and spatial information present in the signal by virtue of placement of 

electrode over the scalp. This can be achieved by assigning larger weights to signal acquired by 

electrodes placed on area of interest and smaller weights to signals acquired by electrodes placed 

elsewhere [55]. A simple most type of spatial filter can be formulated by considering only those 
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electrodes which are placed over region of interest on the scalp. We can ignore all other electrode 

signals as these are only contributing towards adding noise in the form of background activity to the 

signal not relevant to targeted BCI. 

2.5 Feature Extraction 

2.5.1 Statistical Features 

In order to attain high classification accuracy through a selected classifier, features play an 

important part in a given BCI system. As a researcher, the decision to use a particular feature for 

classification will depend upon the knowledge about the properties of the feature for optimum 

performance of classifier. Since fNIRS signal is time variant so feature extraction and selection 

becomes vital for performance of a BCI system. Researchers have used a variety of statistical 

features for increased classification accuracy of a BCI system. Some of the statistical features being 

used are listed under: 

• Signal Mean 

• Signal Peak 

• Skewness 

• Kurtosis 

• Variance 

• Standard Deviation 

2.5.1.1 Signal Mean 

(SM) Signal Mean, the derivation was: 

 𝑆𝑀 =
1

𝑁
∑𝑍𝑖

𝑁

𝑖=1

 (10) 

where N is the total data points and Zi = ∆𝑐𝐻𝑏𝑂(𝑡), across every data point. 
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2.5.1.2 Skewness 

(SK) Signal Skewness was derived from the dissymmetry of signal mean corresponding to its 

normal distribution: 

 𝑆𝑘𝑒𝑤(𝑍) = 𝐸 [(
𝑍 − 𝜇

𝜎
)
3

] (11) 

where E is predicted value of Z and standard deviation of Z is defined by σ. 

2.5.1.3 Kurtosis 

(KR) Kurtosis is a measure of whether the data is heavily outliers or lightly outliers relative to a 

normal distribution. That is, data sets with high kurtosis tend to have outliers. Data sets with low 

kurtosis tend to lack of outliers. Kurtosis is computed by: 

 𝐾𝑢𝑟𝑡(𝑍) = 𝐸 [(
𝑍 − 𝜇

𝜎
)
4

] (12) 

where E is predicted value of Z and standard deviation of Z is defined by σ. 

2.5.2 MFCC Features 

The mel frequency cepstral coefficients (MFCCs) is a frequency domain function used for 

this analysis. MFCCs are commonly used in the transmission of voice signal due to their 

robustness. Their features of handling non-linear frequency (by translating to mel frequency scale) 

and their unrelated characteristics are also very common. Take into account the non-stationarity of 

the fNIRS signals, sound and fNIRS are identical. This relation has been found by us and MFCCs 

have been used for the extraction of fNIRS signals. By following actions MFCCs can be obtained. 

• Calculate the fast Fourier transform (FFT) of a windowed signal. 

• Convert the powers of spectrum into mel scale using mel filter bank. 

• Calculate the log power of mel frequencies. 

• Calculate the discrete cosine transform (DCT) of mel log powers. 

• Calculate MFCCs as the amplitudes of the resulting spectrum. 

Figure 15 shows the process flow of extraction of MFCCs from EEG signals. 
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Figure 15. MFCC Extraction Flow Process 

2.6 Classification 

Classification consists of predicting the certain outcome based on given input. It is a systematic 

approach to building classification models from input data [35]. The process involves two phases: 

• Learning phase 

• Classification phase 

In the learning phase, training data analyzed by classification algorithm is used to produce the 

unknown results. Test data is used to estimate the accuracy of classification. This algorithm 

analyzes the input to produce the prediction. 

In the brain-computer interface, different brain patterns (signals) which are generated by the 

person can be identified using classification techniques. These identified signals are then used as 

a control commands for different applications purposes. In fNIRS-BCIs, such identification is 

performed by using classification methods to separate different mental tasks (brain signals). Some 

classification methods used in fNIRS-BCIs are:  

2.6.1 Linear Discriminant Analysis (LDA) 

LDA, also called as Fisher’s LDA (FLDA) after the name of its founder, uses hyperplanes 

to separate the classes of data being represented in more than one dimension [58], [59]. Figure 15 

shows the hyperplane distinguishing two classes of data vectors with LDA.  
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Figure 16. Hyperplane Separating Two Classes [59] 
 

LDA assumes that data is normally distributed and both classes have equal covariance. The 

hyperplane separating the classes, is obtained as such that the projection of data onto the plane 

minimizes the within class variance and maximizes the between class variance. If the number of 

classes are more than two, (𝑁>2) more than one hyperplane will be used for separating the classes. 

For this approach “one verses rest” strategy is used for multiclass problem by separating one class 

from all others. LDA is a stable classifier with very low computational complexity and this quality 

leads to its suitability for BCI applications. LDA has been used for BCI systems working on motor 

imagery with success, however, the main disadvantage of LDA is its linearity while being used for 

a complex non-linear data that results in low accuracy results. To improve classification accuracy 

and reduction of error, a regularized Fisher’s LDA (RFLDA) has been suggested by Blankertz et. 

al. This model includes a regularization parameter 𝐶 that allows or penalize the classification error 

on training dataset. The regularized trained classifier shows better performance if outliers are 

present in the data and exhibits better generalization capabilities [60]. 

 

2.6.2 Support Vector Machine (SVM)   

Linear-SVM also construct a discriminant plane to identify the classes, however, the 

hyperplane is selected such that it maximizes the margin with nearest data point. This 
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maximization of margin increases the generalization capability of classifier [59]. Figure 16 shows 

the hyperplane distinguishing two classes of data vectors with SVM. 

 

 

Figure 17. SVM using optimal Hyperplane [59] 
 

2.6.3 K- Nearest Neighbors (KNN) 

K-NN classifier uses the technique of assigning the feature vector (unseen data point) to a 

dominant class among its ‘k’ nearest neighbors within the training set. For BCI applications, the 

technique of calculating metric distance is used for determining the nearest neighbors. A higher 

value of ‘k’ with sufficient training samples k-NN is capable of producing a non-linear decision 

boundary for classification. k-NN classifiers are not very popular in BCI classification as these are 

very sensitive to curse of dimensionality and lead to low performance in BCI experiments. Use of 

k-NN in BCI applications with low-dimensional feature vectors has better performance as 

compared to high dimensional space. 
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3. Literature Review 

This chapter presents a brief review of earlier methods used to increase the classification 

of fNIRS based BCIs. Moreover, a benchmark paper and its comparison with this study is also 

explained in this chapter. 

 

Abibulaev and An. [61] proposed that by selecting single channel base on wavelet 

coefficient than classify it with svm can increase the accuracy up to 90% of a 2-class system in 

which 4 commands can be used. 

 

Thanh Hai et al 2013 [62] proposed a way by using the Savitzky–Golay filter to smooth 

the signal of right and left finger tapping experiment and then classifying using two classifiers i.e. 

SVM and ANN in which ANN give the best classification accuracy. 

 

The feasibility of a three-class fNIRS — BCI which comprises the fNIRS hierarchy, 

corresponding to three separate cognitive tasks deliberately created, was demonstrated by Hong et 

al 2015[63]. At the same time, fNIRS signals were acquired from prefrontal and primary motor 

cortex, which correspond to mental arithmetic, right-hand motor imagery and left-hand motor 

imagery. A signal slope and signal average were measured at 2–7 s time window for a classification 

accuracy of 75.6 percent. 

 

Naseer et al 2013[64] submitted the findings of right-handed and left-handed wrist imagery 

classification based on fNIRS, using the LDA as classification. Participants were instructed to 

imagine the movements of the right or left hand, as shown on a computer monitor, kinesthetically. 

In the 10 s task period and across the different windows of time within the task period, two distinct 

features, the signal mean (SM) and the signal slope (SS), were used to classify right and left-wrist 

imagery. During the entire 10-s task period, the average classification accuracies were 73.35% and 

83.0% respectively and SS. Nonetheless, these accuracies increased by increasing the time interval 
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in the working age to 2-7 s to 77.56 percent and 87.28 percent respectively. The time frame of 2 

to 7 s is the best time window size in terms of rating analysis from 6 different timeframes. 

 

Naseer et al 2015[65] demonstrated that a practical four-class brain-computer interface for 

NIR spectroscopy could be implemented in a decoding manner, reacting to questions of four 

choices. The RMI, LMI, MA and MC functional NIR signals were "synchronously" acquired from 

the primary motor and the prefrontal cortices. The four cognitive tasks were classified to an 

average accuracy of 73.3% with SM and SS in a 2~7 s segment of the 10 s task period. 

 

Naseer et al. 2016[66] reviewed the effects of a two-class near-infrared functional 

spectroscopy (fNIRS) brain / computer interface (BCI) classification using different classification 

methods, according to an experimental mental arithmetic job and rest. It was shown that for both 

2 and 3-d dimensioned feature sets derived from Δ𝑐HbO(𝑡) signaling in 7 subjects, ANN has the 

highest classification precision in the classification modes used in this study. The results of this 

study represent a major step forward in the continuous improvement of fNIRS-based BCI systems' 

classification accuracies. 

 

The two classifiers were used to extract classification exactness of a functional, non-

infrared (fNIRS) brain computer interface system (BCI) system (mentality arithmetic and rest task) 

classification for two classes [67]. Qureshi et al 2016 The research concludes that the classification 

accuracies of the classification of Artificial Neural Networks (ANN) using 2-feather combinations 

were higher than the nearest neighbor (KNN) classification. These classified signals can also be 

used to generate fNIRS control commands for BCI applications. 

 

Naseer et al. [68] examined the effects on mental arithmetic and repository duties based on 

the use of different combinations of a six common functions for classifying a two-class near-

infrared functional BCI (fNIRS). Combining peak to mean values of changes in oxygenated 

hemoglobin (HbO) and deoxygenated hemoglobin (HbR) concentrations was demonstrated to 

achieve the best average LDA grading findings for 2 and 3-feature sets in seven topics. These 
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findings represent an advance in ongoing efforts to improve the fNIRS-based BCI system 

classification accuracy. 

 

A scheme was investigated for Hong et al [69] to detect initial dips in the fNIRS signals. 

The proposed scheme to combine the analysis of the vector-based phase, the establishment of a 

threshold value, and the prediction method have proved to be very effective in dealing with 

hemodynamics' latency. The results show that initial dips can be successfully detected and also 

that detection delays can be reduced using a q-step-away algorithm based on the ARMAX model. 

Initial dips can not only be detected but can also be classified as different phases to generate 

different BCI control commands. In fact, initial dips are identified promising new ways of 

understanding neurovascular connectivity and spatially more spatial imaging for the brain. 

 

Qureshi et al [70] developed and evaluated a novel methodology based on an adaptive 

evaluation of GLM coefficients and extraction of MI vs. resting, MR vs. resting classification 

performance. The findings showed improved classification performance compared to the 

conventional fNIRS-BCI-based hemodynamic response. In addition, if a user cannot produce 

different brain signals for a particular mental task, the proposed methodology can enhance the 

classification performance. 

 

Noori et al [71] proposed a new approach to evaluating the optimal combinations of 

practical near-infrared spectroscopy (fNIRS)-based brain and computer (BCI) interface with 

hybrid genetic algorithm (GA)-support-vector machine (SVM). The introduction of GAAM 

effectively resolves problems in the selection of high-dimensional data by conventional methods 

of genetic algorithm with aggressive mutation. In this report, four different time windows (0-10 s, 

11-20 s, 6-15 s and 0-20 s) extracted features. We concluded that hybrid GA-SVM allows for 

efficient function selection with classification accuracies above 91% for the 11-20s time window. 

 

In order to implement a gait control for a lower limb, Khan et al [72] aim to use an optimal 

filter and classifier to achieve maximum precision in some details. Six filters were implemented 
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with the five classification systems of QDA, LDA, SVM, KNN and NB to exclude physiological 

and instrumental noises (e.g., Kalman, Wiener, Gaussian, hemodynamic response (hrf), Band-

pass, Finite Impulse response (FIR). Six-functional (i.e. SS, SP, SM, KR, SV, SK) combinations 

have been used for brain signal classification. The SVM classifier with hrf filter has a mean 

accuracy of 75 percent. 
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4. Material and Methods 

4.1 Subjects 

Five right-handed healthy male subjects participated in this study with an average age of 

28 years. All of the five subjects are free from any sort of brain related diseases. All subjects have 

previous record of performing fNIRS based experimentation. They have given the written consent 

and the experiments were performed according to latest Declaration of Helsinki. The data of 

above-mentioned subjects are taken from Open Access Dataset for EEG+NIRS Single-Trial 

Classification and then rearranged it to use as a multiclass fNIRS-BCI [75]. 

4.2 Data Acquisition 

Near-infrared light of wavelength ranging from 660~1000nm is used that passes through 

the skull to detect the oxy hemoglobin (HbO) and deoxy hemoglobin (HbR) present in the cortical 

areas of brains by the optical imaging modality i.e. fNIRS. Oxy and Deoxy hemoglobin has a 

certain absorption coefficient to absorb certain amount and intensity of light. Some of the photons 

of the near infrared light are absorb and some are reflected back and are detected by the detector 

placed on the skull. The detectors measure the intensity of photons reflected back. Modified Beer-

Lambert Law is applied to measure the concentration changes in HbO and HbR. 

Dataset used is collected by Continuous-wave imaging system (NIR Scout NIRx GmbH, 

Berlin, Germany), to collect the brain signals at 10 Hz sampling rate. Two wavelengths i.e. 760 

and 830nm are used by this system. An emitter-detector separation of around 3cm is suggested in 

the literature to measure hemodynamic response signals from the Cortical areas. 1cm or less 

separation might result in the contribution of skin layer only whereas greater than 5cm will result 

in weak or unusable signal. To get the signal from each subject’s prefrontal cortex and motor 

cortex during MA and MI task total of thirty-three physiological channels are used consisting of 

11 sources and 15 detectors. The placement of electrode is shown in Fig. 3 in which Black squares 

are the near infrared light source and Gray square is a detector and black lines constitute a single 

channel. 
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4.3 Experimental Paradigm 

A large screen is present in front of subjects sat on a comfortable chair on which instruction 

was given before every task. The experiment is divided into three sessions of each of the 4 tasks 

left hand MI, right hand MI, MA and baseline tasks. Each session consists of a 60 sec pre 

experiment rest and the post experiment rest. Each session consists of 20 trails which comprise of 

2 sec visual instruction of the task to perform and the sequence in which it is performed. The task 

period was10 sec for each task and each task is followed by 15 to 17 sec of rest period. The 

experiment did not include the pre-rest and post-rest after a trail is completed. Fig.  shows the 

schematic diagram of the experimental paradigm. 

 

Figure 18. Experimental Paradigm 
 

4.4 Channel Configuration and Optodes Placement 

In the NIR experiment, the placement of optode is essential to ensure that photons travel 

through the activated area. It is very important to distance an emitter and a detector because it 

affects signal quality and penetration depth. At the midpoint between the emission and the detector, 

the maximum penetration depth is considered. In the prefrontal cortex and cortex, a total of 12 
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emissions and 18 detectors was used to detect mental and motor imaging signals, which included 

33 channels in their configuration. Prefrontal cortex is the brain region most used in fNIRS based 

BCI systems because it involves less movement artifacts and signal attenuation as a result of the 

hair slippage. In order to obtain the highest quality signal and maximum information from it, the 

distance between the transmitter and the detector plays an important role. The distance between 

emitter and detector is usually 3~4 cm in fNIRS based BCI systems, as shown in Figure 

 

Figure 19. Optodes Placement Map 

4.5 Signal Preprocessing 

For the fNIRS signal processing, the first evaluations were carried out using Modified Beer 

Lambert law to evaluate the deoxidation and oxyhemoglobin concentration changes (HbR and 

HbO). The HbO and HbR data was filtered using the Butterworth filter with the 0.01–0.3 Hz 

passband with a sixth-order zero-phase filter. Until the filtered signals were standardized, they 

were separated by means of the medium and baseline correction. 
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4.6 Data Synchronization 

As the open access dataset, we used, is collected in 6 different set in which every set contain 

two class data 1, 3 and 5 contain data for Motor Imagery while 2, 4 and 6 contain data for Mental 

Arithmetic. Every set has data of 20 trails or repetitions. Before the raw data is preprocessed and 

further use, we need to convert it into purely four class datasets. As the experimental paradigm is 

same, subjects are same and the data is collected with same machine at same sampling frequency 

at the same time with same electrode placement, we can combine the data channel wise such that 

set 1(MI) and set 2(MA) constitute into 1 set as the trails remain same. Now the final data we 

obtained contain 4 classes (i.e. RHMI, LHMI, MA and Rest) in each set with 10 repetition. Fig. 5 

show the data before data synchronization and Fig. 6 shows after the synchronization. Every 

column with the same color shows the 1 repetition and every row with same pair of color show 1 

set of data. 

 

Figure 20. Before Data Syn    Figure 21. After Data Syn 
 
 

4.7 Feature Extraction 

Six different features were extracted in the time domain by spatial averaging all of 33 

physiological channels. Besides that, 13 MFCC features were also extracted in frequency domain.  
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Statistical features that are extracted and used are Signal Mean (SM), Skewness (SK), 

Kurtosis (KR), Standard Deviation (SD), Signal Peak (SP), and Signal Variance (SV) are 

computed for the 4 tasks. 

 

(SM) Signal Mean, the derivation was:  

 𝑆𝑀 =
1

𝑁
∑𝑍𝑖

𝑁

𝑖=1

 (13) 

where N is the total data points and Zi = ∆𝑐𝐻𝑏𝑂(𝑡), across every data point.  

(SK) Signal Skewness was derived from the dissymmetry of signal mean corresponding to its 

normal distribution: 

 𝑆𝑘𝑒𝑤(𝑍) = 𝐸 [(
𝑍 − 𝜇

𝜎
)
3

] (14) 

where E is predicted value of Z and standard deviation of Z is defined by σ.  

(KR) Kurtosis was computed as: 

 𝐾𝑢𝑟𝑡(𝑍) = 𝐸 [(
𝑍 − 𝜇

𝜎
)
4

] (15) 

where E is predicted value of Z and standard deviation of Z is defined by σ 

(SD) Standard Deviation computed by applying Polyfit function in which data points are fitted 

with a line in MATLAB®. 

SP Signal Peak is determined by applying the max function in MATLAB®.  

These above features are normalized using: 

 𝑥′ =
𝑥 −min(𝑥)

max(𝑥) − min(𝑥)
 (16) 

where 𝑥′is the output value rescaled, 𝑥𝜖𝑅𝑁denotes feature values, the smallest value is 

denoted by min(𝑥), and the highest value is max(𝑥). Fig. 7 shows the plot of subject one for all 

six features before the normalization. 
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Figure 22. Plot of Six Statistical Feature 
 

4.7.1 Mel Frequency Cepstral Coefficient (MFCC) 

Mel frequency cepstral coefficients (MFCCs) are commonly used for the identification of 

automatic speakers. Davis and Mermelstein launched them in the 1980's and have been cutting-

edge ever since [73]. 

In order to explain it in simple words, we presume that the fNIRS signal which is also a 

time domain signal like audio signal does not change significantly on short time scales (if we say 

it doesn't change, statistically, this means statistically stable, obviously, the samples change 

continuously in even very short time scales). Therefore, we windowed the signal into short frames 

from 20 to 40ms. When the frame is much shorter, we do not get the enough measurements, to get 

accurate spectral approximation. 

The next move is to determine each frame's power spectrum. This is triggered by the human 

cochlea (an ear organ), which vibrates at various points in accordance with the frequency of the 

incoming sounds. Dept nerve fire reminding the brain that other frequencies are present based on 

the location in the vibratory cochlea (which wobbles small hair). Our periodogram estimation does 

a related function for us, which defines the frequencies in the picture. 

The cochlea cannot differentiate between two frequencies which are closely spaced. This 

influence improves with elevated frequencies. That is why we use clumps of periodogram 
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containers to get an insight into how much energy occurs in specific frequency regions. The first 

filter is very small and shows how much energy is around 0 hertz. That will be achieved by our 

Mel filter-bank. When frequencies increase, our filters become wider when differences become 

less significant. We just want to know about the amount of energy that occurs in any location 

We take the logarithm of the filter bank energies. That is guided by our ears, too: on a 

linear scale we do not detect loudness. In fact, we have to apply eight times as much energy to 

double the perceived amplitude of a signal. It means the major energy variations cannot sound so 

distinctive when the sound starts loud. This encoding process makes our features more in line with 

what people say. The logarithm permits one to use cepstral mean subtraction, a technique used to 

normalize the signal. 

The last step is to evaluate the DCT of the energy from the log filter stack. It's done for two 

primary reasons. Owing to the similarity of our filter banks, the filter bank energies are well 

correlated. The DCT decorates the energy that allows diagonal covariance matrices to be used for 

modeling the characteristics of a classifier, for example. Note that out of the 26 DCT coefficients, 

only 12 are preserved. The explanation would be that the larger DCT coefficients reflect rapidly 

changing energy in a filter bank, and it turns out how these fast changes are actually degrading 

speech recognition efficiency. 

 

MFCCs of fNIRS signal can be extracted by using following steps. 

• Divide the signal into windows of 25ms frames. If you cannot split the signal into an even 

number of windows, pad it with zeros. 

• Calculate the Discrete Fourier Transform (DCT) of a windowed signal using the following 

equation. 

 𝑆𝑖(𝑘) = ∑ 𝑠𝑖(𝑛)ℎ(𝑛)𝑒
−
𝑗2𝜋𝑘𝑛

𝑁

𝑁

𝑛=1

1 ≤ 𝑘 ≥ 𝐾 (17) 

Where 

𝑠𝑖(𝑛) is a time domain signal frame 𝑖 

𝑠𝑖(𝑘) is a DFT of frame 𝑖 

ℎ(𝑛) is an analysis window of the signal 
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𝐾is the length of DFT 

The power spectral estimate for the signal frame is given by: 

 𝑃𝑖(𝑘) = 
1

𝑁
|𝑠𝑖(𝑘)|

2 (18) 

We perform the 512-point FFT and keep only 257 coefficients. 

• Convert the powers of spectrum into Mel scale using Mel filter bank. A range of 20–40 

triangular filters in which 26 are standard for power spectral approximation of power. The 

26 vectors with length of 257 as selected in FFT settings in above step are available in our 

filter bank. We multiply each bank with the power spectrum and then sum up the 

coefficients to determine filter bank energies. Once that is completed, we have 26 numbers 

that remind us how much energy each filter bank has. Figure 23 shows hopefully clear the 

basic concept of this how this step is done. 

 

Figure 23. Plot to calculate the Mel filter Bank [74] 
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• Calculate the log power of each of 26 Mel frequencies which leaves us with 26 energies 

from the previous step. 

• Calculate the discrete cosine transform (DCT) of 26 log filter bank energies to give us the 

26 cepstral coefficients. 

• We keep 12-13 coefficients and rest are discarded due to the reason explained above. These 

12-13 features are called frequency Cepstral Coefficients.  

 

4.8 Classification  

Three classifier LDA, SVM and KNN are used for the classification in which the statistical 

features and MFCC features are used separately. K fold cross validation is implemented to acquire 

the perfect classification accuracy with 10 different settings of test and train datasets.  
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5. Results and Discussion 

5.1 Results 

The classification performance was evaluated by 10-fold cross-validation followed by each 

classifier over the course of 10 runs. In 10-fold cross-validation, the original sample is randomly 

partitioned into 10 equal sized subsamples. Of the 10 subsamples, a single subsample is retained 

as the validation data for testing the performance or accuracy, and the remaining k-1 subsamples 

are used as training data.  

5.1.1 Using Statistical Feature 

The classification accuracy of using the statistical features in time domain are shown in 

confusion matrix representation in which classifications accuracy of each subject with each 

classifier is shown. 

Classification of each subject using KNN classifier is shown below. 
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Classification of each subject using LDA classifier is shown below 

 

Classification of each subject using SVM classifier is shown below: 
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The results of four class classification is shown in the Table shows that the maximum 

accuracy we have achieved using six statistical features simultaneously is by using a nonlinear 

classifier KNN which is greater than 90%. 

Table 2. Accuracy using Six Statistical Features 

Subjects LDA % KSVM % KNN % 

S01 72.67 75.6 91.5 

S02 73.51 75.4 89.4 

S03 73.51 76.4 90.9 

S04 70.59 74.2 93.5 

S05 70.59 75.5 87.4 

Average 72.15 75.42 90.54 

5.1.2 Using MFCC 

We use two techniques as mentioned earlier to find the MFCC than the optimal 

classification accuracy of four class BCI system. The result is obtained using the first technique 

which is calculating MFCC features after vector averaging is shown in table below. 

 

Table 3. Accuracy Using MFCC Features with Vectors Averaging 

Subjects LDA % KSVM % KNN % 

S01 96.25 92.5 52.5 

S02 96.25 91.25 35 

S03 95 91.25 50 

S04 95 93.25 45 

S05 96.25 93.25 25 

Average 95.75 92.30 41.25 

 

The results using second technique which is obtaining the MFCC features of each class after 

channel averaging is shown in table below. 
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Table 4. Accuracy Using MFCC with Channel Averaging 

Subjects LDA % KSVM % KNN % 

S01 73.75 91.25 45 

S02 75 93.75 50 

S03 76.25 85 50 

S04 67.5 87.5 32.5 

S05 77.5 90 47.5 

Average 74 89.5 45 

 

5.2 Discussion 

In this fact-finding analysis we are successfully able to analyze and enhance the 

classification accuracy by utilizing the fNIRS data of 5 subjects from open access dataset [75]. As 

the overall data is of 4 class i.e. LHMI, RHMI, MA and Rest but taken separately in pairs. Per pair 

of data consist of 2 class so data is converted into 4 class by joining the 2 separated pair of data 

i.e. LHMI vs RHMI, MA vs Rest to LHMI vs RHMI vs MA vs Rest. In the literature using this 

dataset no such type of study is performed but separately i.e. MI vs Rest and MA vs Rest. The 

maximum classification accuracies they achieved in MA vs Rest task using the Hilton transform 

and sum derivative as a feature with KNN are 82.87% and 84.94% respectively which are pretty 

low as compare to this study [76]. In another study of MI vs Rest NIRS with Common Spatial 

Pattern (CSP) shows the classification accuracy of as high as 71.4% with (LSVM) linear support 

vector machine  classifier and for the NIRS with Time Domain Parameters (TDP) and only NIRS 

features they get the mean accuracies of 50.5% and 53.1% by using Kernel SVM (KSVM) which 

is also for less than the accuracies we get with KSVM [77]. 

Furthermore, previous fNIRS based BCI research have mostly used advance methods of 

signal processing and novel method of feature selection algorithm and advance classifier to 
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improve the classification accuracy and therefore enhancing the performance. This study 

emphasized on improving the classification accuracy using the set of simple time domain statistical 

feature as well as a novel technique of using MFCC features and then comparing the results of 

both the features by classifying them using 3 different classifiers from basic linear classifier LDA 

to moderate kernel SVM to advance nonlinear classifier KNN. 

Table 5 provides a summary of most studies that demonstrated accuracy of four-class fNIRS-BCI 

Table 5. Summary of Four Class fNIRS-BCI Studies 
Reference Features Classifier  Accuracy (%) 

Khan et al. (2014) Mean  LDA >80 

Hong et al. (2015) Mean, Slope Multiclass LDA 75.6 

Naseer and Hong 

(2015) 

Mean & Slope LDA 73.3 

Yin et al. (2016) Difference HbO & HbR ELM >75 

Buccino et al (2016) CSP LDA >70 

Qureshi et al. (2017) Peak, Slope SVM 87.8 

Zafer et al. (2017) Mean, Min, Skew LDA 73.2 

Erdogan et al (2019) Mean, Peak, 

Skewness, Slope, 

Kurtosis, SD 

 

ANN 

94 

This Research Statistical Feature KNN 90.54 

MFCC Features LDA 95.75 

 

The benchmark paper which is selected based on the four-class system in which motor 

imagery and mental arithmetic is performed as performed in this study is used to compare the 

improved accuracies. The finding of bench mark paper used Generalized Linear Model approach 

to enhance the classification accuracy of the system to 87.5% [70].  

 While comparing the result of this study with the bench mark paper as shown by the data 

in the above tables we can clearly see that using the statistical features with nonlinear classifier 
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such as KNN shows the classification accuracy of greater than 90 percent than the linear classifier 

LDA and SVM.  

While comparing the results of MFCC features to the bench mark paper in which LDA is 

used which is a linear classifier the result is pretty lower than the result we have obtained. 

Moreover, by comparing the overall result shows that the MFCC features calculated after vector 

averaging shows the highest improvement in accuracy of four class fNIRS BCI system. 
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6. Conclusion and Future Work 

6.1 Conclusion 

After the extensive and detailed result-oriented research following conclusion can be 

drawn. Increasing the number of physiological channels will increase the data captured by the 

electrode which is a plus point but it also captures the irrelevant data artifact and noise. Using the 

HbO signal rather than the HbR signal increases the chances of improving the classification 

accuracy of fNIRS BCIs. Data synchronization can be done if the data is collected with the same 

machine, sampling rate at the same time with the same participant but with different task at 

different intervals. Simple filters with optimal values for preprocessing can be used to enhance the 

classification accuracy rather going for the complex ones. Maximum number of statistical features 

in time domain directly increase the classification accuracy. For further enhancement frequency 

domain features like MFCC and advance feature selection techniques can be used. Classifier plays 

an important role in enhancing the classification accuracy when used with the optimal features as 

seen from the result KNN a nonlinear classifier gives the higher accuracy while using the statistical 

feature while LDA and SVM gives the highest accuracy using MFCC features. 

6.2 Future Recommendation 

Using the MFCC features gives the best promising classification accuracy so far as compare 

to the most of the research using more than two commands. However future work can be done in 

following areas of this research. 

• A hybrid approach can be developed by using statistical features as well as MFCC features 

combine and then best feature selection algorithm is applied to select the best compatible 

features to further enhance the classification accuracy. 

• Rasta, PLP and both combine features can be used to calculate the enhanced classification 

results which are used in speech recognition and are more sophisticated techniques in 

enhancing classification. 

• Artificial Neural Network (ANN) can be trained the using the MFCC features. 
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APPENDIX A 

Matlab Code: 

%%---------------------------------- Loading Data-------------------------------------------% 

 

clear all; 

load ('C:\Users\saadg\Desktop\MFCC\subject 05\cnt.mat') 

 

%% ----------------------Synchronizing Data to make 4 Classes---------------------------% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------Cnt.mat contain the data in as following---------------------------% 

% -------------------cnt: 1x6 cells, continuous NIRS light intensity data--------------------% 

%-------------------cnt{1,1}, cnt{1,3}, cnt{1,5}: DATA for motor imagery.------------------% 

%-------------------cnt{1,2}, cnt{1,4}, cnt{1,6}: DATA for mental arithmetic----------------% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%----------------------STEP 1: Saving the data Separately into Variables-------------------% 

a=cnt{1, 1}.x; 

b=cnt{1, 2}.x; 

c=cnt{1, 3}.x; 

d=cnt{1, 4}.x; 

e=cnt{1, 5}.x; 

f=cnt{1, 6}.x; 

 

%-------STEP 2a: Dividing the MI data into Trails and Saving it to separately in Cells-------% 

X1 = ones(560,72); 

MI1 = cell(1,10); 

O=10; 
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N1=224; 

for i=1:O 

    X1(:,:)= a(1+N1:560+N1,:); 

    MI1{i} = X1; 

    N1=560*i; 

end 

MI2 = cell(1,10); 

O=10; 

N1=224; 

for i=1:O 

    X1(:,:)= c(1+N1:560+N1,:); 

    MI2{i} = X1; 

    N1=560*i; 

end 

MI3 = cell(1,10); 

O=10; 

N1=224; 

for i=1:O 

    X1(:,:)= e(1+N1:560+N1,:); 

    MI3{i} = X1; 

    N1=560*i; 

end 

 

%------------STEP 2b : Combing 3 separate runs of MI data into Single Variable----------------% 

MI=[MI1,MI2,MI3]; 

 

%-------STEP 3a: Dividing the MA data into Trails and Saving it to separately in Cells-------% 

X1 = ones(560,72); 

MA1 = cell(1,10); 
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O=10; 

N1=224; 

for i=1:O 

    X1(:,:)= b(1+N1:560+N1,:); 

    MA1{i} = X1; 

    N1=560*i; 

end 

MA2 = cell(1,10); 

O=10; 

N1=224; 

for i=1:O 

    X1(:,:)= d(1+N1:560+N1,:); 

    MA2{i} = X1; 

    N1=560*i; 

end 

MA3 = cell(1,10); 

O=10; 

N1=224; 

for i=1:O 

    X1(:,:)= f(1+N1:560+N1,:); 

    MA3{i} = X1; 

    N1=560*i; 

end 

%------------STEP 3b : Combing 3 separate runs of MA data into Single Variable----------------% 

MA=[MA1,MA2,MA3]; 
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%-------------------STEP 4: Combining Both MI and MA data Channel Wise-------------------% 

MIA=[]; 

for k=1:30 

        MIA=[MIA;MI{1,k};MA{1,k}]; 

end 

 

%------------------------STEP 5: Now Saving only HBO Data in a new Variable ----------------% 

HbO=MIA(:,1:36); 

 

%% -------------------------------------Data Preprocessing---------------------------------------------%% 

 

%--------------Filter Design Data---------------------% 

Fs = 10;                             % Sampling Frequency (Hz) 

Fn = Fs/2;                          % Nyquist Frequency (Hz) 

n = 6;                                 % Order of Filter 

%--------------Design Low Pass Filter------------------% 

Fco = 0.3;              % Cutoff Frequency (Hz) 

Wn = Fco/Fn;                         % Normalised Cutoff Frequency (rad) 

[b,a] = butter(n,Wn,'low');      % Designs lowpass Filter By Default            

HbOO = filter (b,a,HbO); %Applying Low Pass Filter 

%--------------Design High Pass Filter------------------% 

Fcoh = 0.01;                         % Cutoff Frequency (Hz) 

Wp = Fcoh/Fn;                     % Normalised Cutoff Frequency (rad) 

[b,a] = butter(n,Wp,'high');   % Designs Highpass Filter By Default 

HBO= filter (b,a,HbOO); %Applying High Pass Filter 

%---------------Saving as CSV File----------------------% 

HBO=array2table(HBO); %Coverting the array data to table form 

writetable(HBO,'S05.csv'); %Saving it in CSV File  
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Python Code: 

#------------------------------------Importing Libraries----------------------------# 

import numpy as np 

import matplotlib.pyplot as plt 

plt.figure 

import pandas as pd 

import librosa 

 

#------------------------------- Importing the CSV File------------------------------# 

dataset = pd.read_csv('S05.csv') 

 

#-----------------Extracting the class 1 data points (Intervals)-----------------------# 

Trail1=dataset.loc[0:99,:] 

Trail2=dataset.loc[1120:1219,:] 

Trail3=dataset.loc[2240:2339,:] 

Trail4=dataset.loc[3360:3459,:] 

Trail5=dataset.loc[4760:4859,:] 

Trail6=dataset.loc[5600:5699,:] 

Trail7=dataset.loc[6720:6819,:] 

Trail8=dataset.loc[7840:7939,:] 

Trail9=dataset.loc[8960:9059,:] 

Trail10=dataset.loc[10360:10459,:] 

Trail11=dataset.loc[11200:11299,:] 

Trail12=dataset.loc[12320:12419,:] 

Trail13=dataset.loc[13440:13539,:] 

Trail14=dataset.loc[14840:14939,:] 

Trail15=dataset.loc[15680:15779,:] 

Trail16=dataset.loc[16800:16899,:] 

Trail17=dataset.loc[17920:18019,:] 
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Trail18=dataset.loc[19320:19419,:] 

Trail19=dataset.loc[20160:20259,:] 

Trail20=dataset.loc[21560:21659,:] 

Trail21=dataset.loc[22400:22499,:] 

Trail22=dataset.loc[23800:23899,:] 

Trail23=dataset.loc[24920:25019,:] 

Trail24=dataset.loc[25760:25859,:] 

Trail25=dataset.loc[26880:26979,:] 

Trail26=dataset.loc[28000:28099,:] 

Trail27=dataset.loc[29400:29499,:] 

Trail28=dataset.loc[30520:30619,:] 

Trail29=dataset.loc[31640:31739,:] 

Trail30=dataset.loc[32480:32579,:] 

 

#--------------Combining the Class 1 data and taking the mean-------------------------------# 

Class1=np.concatenate((Trail1,Trail2,Trail3,Trail4,Trail5,Trail6,Trail7,Trail8,Trail9,Trail10, 

                       Trail11,Trail12,Trail13,Trail14,Trail15,Trail16,Trail17,Trail18,Trail19,Trail20, 

                       Trail21,Trail22,Trail23,Trail24,Trail25,Trail26,Trail27,Trail28,Trail29,Trail30, )) 

Mean1=np.mean(Class1,axis=1) 

 

#----------------------Extracting the class 2 data points (Intervals)-------------------------# 

Trail1=dataset.loc[280:379,:] 

Trail2=dataset.loc[1400:1499,:] 

Trail3=dataset.loc[2520:2619,:] 

Trail4=dataset.loc[3640:3739,:] 

Trail5=dataset.loc[4480:4579,:] 

Trail6=dataset.loc[5880:5979,:] 

Trail7=dataset.loc[7000:7099,:] 

Trail8=dataset.loc[7840:7939,:] 



 

63 

 

 

 

Trail9=dataset.loc[9240:9339,:] 

Trail10=dataset.loc[10080:10179,:] 

Trail11=dataset.loc[11200:11299,:] 

Trail12=dataset.loc[12320:12419,:] 

Trail13=dataset.loc[13720:13819,:] 

Trail14=dataset.loc[14840:14939,:] 

Trail15=dataset.loc[15960:16059,:] 

Trail16=dataset.loc[17080:17179,:] 

Trail17=dataset.loc[17920:18019,:] 

Trail18=dataset.loc[19320:19419,:] 

Trail19=dataset.loc[20440:20539,:] 

Trail20=dataset.loc[21560:21659,:] 

Trail21=dataset.loc[22680:22779,:] 

Trail22=dataset.loc[23800:23899,:] 

Trail23=dataset.loc[24920:25019,:] 

Trail24=dataset.loc[26040:26139,:] 

Trail25=dataset.loc[26880:26979,:] 

Trail26=dataset.loc[28000:28099,:] 

Trail27=dataset.loc[29120:29219,:] 

Trail28=dataset.loc[30240:30339,:] 

Trail29=dataset.loc[31360:31459,:] 

Trail30=dataset.loc[32760:32859,:] 

 

#--------------Combining the Class 2 data and taking the mean-------------------------------# 

Class2=np.concatenate((Trail1,Trail2,Trail3,Trail4,Trail5,Trail6,Trail7,Trail8,Trail9,Trail10, 

                       Trail11,Trail12,Trail13,Trail14,Trail15,Trail16,Trail17,Trail18,Trail19,Trail20, 

                       Trail21,Trail22,Trail23,Trail24,Trail25,Trail26,Trail27,Trail28,Trail29,Trail30, )) 

Mean2=np.mean(Class2,axis=1) 
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#-----------------Extracting the class 3 data points (Intervals)-----------------------# 

Trail1=dataset.loc[840:939,:] 

Trail2=dataset.loc[1960:2059,:] 

Trail3=dataset.loc[2800:2899,:] 

Trail4=dataset.loc[3920:4019,:] 

Trail5=dataset.loc[5320:5419,:] 

Trail6=dataset.loc[6160:6259,:] 

Trail7=dataset.loc[7560:7659,:] 

Trail8=dataset.loc[8400:8499,:] 

Trail9=dataset.loc[9800:9899,:] 

Trail10=dataset.loc[10640:10739,:] 

Trail11=dataset.loc[11700:11799,:] 

Trail12=dataset.loc[13160:13259,:] 

Trail13=dataset.loc[14280:14379,:] 

Trail14=dataset.loc[15120:15219,:] 

Trail15=dataset.loc[16520:16619,:] 

Trail16=dataset.loc[17640:17739,:] 

Trail17=dataset.loc[18480:18579,:] 

Trail18=dataset.loc[19880:19979,:] 

Trail19=dataset.loc[20720:20819,:] 

Trail20=dataset.loc[22120:22219,:] 

Trail21=dataset.loc[23240:23339,:] 

Trail22=dataset.loc[24360:24459,:] 

Trail23=dataset.loc[25200:25299,:] 

Trail24=dataset.loc[26320:26419,:] 

Trail25=dataset.loc[27720:27819,:] 

Trail26=dataset.loc[28560:28659,:] 
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Trail27=dataset.loc[29960:30059,:] 

Trail28=dataset.loc[31080:31179,:] 

Trail29=dataset.loc[32200:32299,:] 

Trail30=dataset.loc[33320:33419,:] 

 

#--------------Combining the Class 3 data and taking the mean-------------------------------# 

Class3=np.concatenate((Trail1,Trail2,Trail3,Trail4,Trail5,Trail6,Trail7,Trail8,Trail9,Trail10, 

                       Trail11,Trail12,Trail13,Trail14,Trail15,Trail16,Trail17,Trail18,Trail19,Trail20, 

                       Trail21,Trail22,Trail23,Trail24,Trail25,Trail26,Trail27,Trail28,Trail29,Trail30, )) 

Mean3=np.mean(Class3,axis=1) 

 

#-----------------Extracting the class 4 data points (Intervals)-----------------------# 

Trail1=dataset.loc[560:659,:] 

Trail2=dataset.loc[1680:1779,:] 

Trail3=dataset.loc[3080:3179,:] 

Trail4=dataset.loc[4200:4299,:] 

Trail5=dataset.loc[5040:5139,:] 

Trail6=dataset.loc[6440:6539,:] 

Trail7=dataset.loc[7280:7379,:] 

Trail8=dataset.loc[8680:8779,:] 

Trail9=dataset.loc[9520:9619,:] 

Trail10=dataset.loc[10920:11019,:] 

Trail11=dataset.loc[12040:12139,:] 

Trail12=dataset.loc[12880:12979,:] 

Trail13=dataset.loc[14000:14099,:] 

Trail14=dataset.loc[15400:15499,:] 

Trail15=dataset.loc[16240:16339,:] 

Trail16=dataset.loc[17360:17459,:] 

Trail17=dataset.loc[18760:18859,:] 
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Trail18=dataset.loc[19600:19699,:] 

Trail19=dataset.loc[21000:21099,:] 

Trail20=dataset.loc[21840:21939,:] 

Trail21=dataset.loc[22960:23059,:] 

Trail22=dataset.loc[24080:24179,:] 

Trail23=dataset.loc[25480:25579,:] 

Trail24=dataset.loc[26600:26699,:] 

Trail25=dataset.loc[27440:27539,:] 

Trail26=dataset.loc[28840:28939,:] 

Trail27=dataset.loc[29680:29779,:] 

Trail28=dataset.loc[30800:30899,:] 

Trail29=dataset.loc[31920:32019,:] 

Trail30=dataset.loc[33040:33139,:] 

 

#--------------Combining the Class 4 data and taking the mean-------------------------------# 

Class4=np.concatenate((Trail1,Trail2,Trail3,Trail4,Trail5,Trail6,Trail7,Trail8,Trail9,Trail10, 

                       Trail11,Trail12,Trail13,Trail14,Trail15,Trail16,Trail17,Trail18,Trail19,Trail20, 

                       Trail21,Trail22,Trail23,Trail24,Trail25,Trail26,Trail27,Trail28,Trail29,Trail30, )) 

Mean4=np.mean(Class4,axis=1) 

 

#-------------------------- Computing MFCC features Class 1-------------------------------# 

N=13 

mfcc1 = np.array(Mean1, dtype=np.float64) 

MFCC_Class1 = librosa.feature.mfcc(y=mfcc1, sr=10, n_mfcc=N) 

 

#-------------------------- Computing MFCC features Class 2-----------------------------# 

mfcc2 = np.array(Mean2, dtype=np.float64) 

MFCC_Class2 = librosa.feature.mfcc(y=mfcc2, sr=10, n_mfcc=N) 
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# --------------------------Computing MFCC features Class 3-----------------------------# 

mfcc3 = np.array(Mean3, dtype=np.float64) 

MFCC_Class3 = librosa.feature.mfcc(y=mfcc3, sr=10, n_mfcc=N) 

 

#-------------------------- Computing MFCC features Class 4-----------------------------# 

mfcc4 = np.array(Mean4, dtype=np.float64) 

MFCC_Class4 = librosa.feature.mfcc(y=mfcc4, sr=10, n_mfcc=N) 

 

#--------------------------Combining all 4 Classes of MFCC Features------------------# 

X=np.vstack((MFCC_Class1,MFCC_Class2,MFCC_Class3,MFCC_Class4)) 

#X=X.transpose() 

 

#---------------Labelling the classes Corresponds to the MFCC features---------------# 

labelclass1=np.ones((1,N)) 

#labelclass1=np.vstack((MFCC_Class1,labelclass1)) 

labelclass2=np.ones((1,N)).dot(2) 

#labelclass2=np.vstack((MFCC_Class2,labelclass2)) 

labelclass3=np.ones((1,N)).dot(3) 

#labelclass3=np.vstack((MFCC_Class3,labelclass3)) 

labelclass4=np.ones((1,N)).dot(4) 

#labelclass4=np.vstack((MFCC_Class4,labelclass4)) 

#FinalFeatMat=np.hstack((labelclass1,labelclass2,labelclass3,labelclass4)) 

Y=np.hstack((labelclass1,labelclass2,labelclass3,labelclass4)) 

Y=Y.transpose() 

 

#----------------Classification with 10 fold Cross Validation-------------------# 

cv=10 

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

classifierLDA=LinearDiscriminantAnalysis(solver='svd') 
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from sklearn.model_selection import cross_val_score 

scoresLDA = cross_val_score(classifierLDA, X, Y, cv=cv) 

Best_accuracy_LDA=scoresLDA.mean() 

from sklearn.neighbors import KNeighborsClassifier 

classifierKNN = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2) 

scoresKNN = cross_val_score(classifierKNN, X, Y, cv=cv) 

Best_accuracy_KNN=scoresKNN.mean() 

from sklearn.svm import SVC 

classifierSVM = SVC(C=10,kernel = 'linear', random_state = 0) 

scoresSVM = cross_val_score(classifierSVM, X, Y, cv=cv) 

Best_accuracy_SVM=scoresSVM.mean() 

 


