Machine vision based Facial Recognition system with Database Management System for Gate Access Control and Attendance System

Author A/O IMRAN QAYYUM MUNDIAL 00000281288

Supervisor DR. MOHSIN ISLAM TIWANA

DEPARTMENT OF MECHATRONICS ENGINEERING COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY ISLAMABAD AUGUST 2020

Machine vision based Facial Recognition system with Database Management System for Gate Access Control and Attendance System

Author A/O IMRAN QAYYUM MUNDIAL 00000281288

A thesis submitted in partial fulfillment of the requirements for the degree of MS Mechatronics Engineering

Thesis Supervisor: DR. MOHSIN ISLAM TIWANA

Thesis Supervisor's Signature:_____

DEPARTMENT OF MECHATRONICS ENGINEERING COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY, ISLAMABAD AUGUST 2020

Declaration

I certify that this research work titled "*Machine vision based Facial Recognition system with Database Management System for Gate Access Control and Attendance System*." is my own work. The work has not been presented elsewhere for assessment. The material that has been used from other sources it has been properly acknowledged / referred.

Signature of Student IMRAN QAYYUM MUNDIAL 00000281288

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also according to the format given by the university.

Signature of Student IMRAN QAYYUM MUNDIAL 00000281288

Signature of Supervisor

Copyright Statement

- Copyright in text of this thesis rests with the student author. Copies (by any process) either in full, or of extracts, may be made only in accordance with instructions given by the author and lodged in the Library of NUST College of E&ME. Details may be obtained by the Librarian. This page must form part of any such copies made. Further copies (by any process) may not be made without the permission (in writing) of the author.
- The ownership of any intellectual property rights which may be described in this thesis is vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may not be made available for use by third parties without the written permission of the College of E&ME, which will prescribe the terms and conditions of any such agreement.
- Further information on the conditions under which disclosures and exploitation may take place is available from the Library of NUST College of E&ME, Rawalpindi.

Acknowledgements

I am thankful to my Creator **ALLAH SUBHANA-WATALA** to have guided me throughout this work at every step and for every new thought which **YOU** setup in my mind to improve it. Indeed, I could have done nothing without **YOUR** priceless help and guidance. Whosoever helped me throughout the course of my thesis, whether my parents or any other individual was **YOUR** will, so indeed none be worthy of praise but **YOU**.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Mohsin Islam Tiwana for his help throughout my thesis. I can safely say that I haven't learned any other engineering subject in such depth than the ones which he has taught.

I would also like to pay special thanks to Dr. Umar Shahbaz Khan and Mr. M. Sohaib Ul Hassan for their tremendous support and cooperation. Each time I got stuck in something, they came up with the solution. Without their help I wouldn't have been able to complete my thesis. I appreciate their patience and guidance throughout the whole thesis.

I would also like to thank Dr. Amir Hamza and Dr. Waqar Shahid Qureshi for being on my thesis guidance and evaluation committee and their kind guidance through every step of my thesis and degree.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable assistance to my study.

Dedicated to my exceptional parents, beloved spouse and sweet daughter, Emaan. Whose tremendous support and cooperation led me to this wonderful accomplishment

Abstract

During the last two decades' security of men and materials remains a vital concern in the whole world. In particular, Pakistan being a victim of multiple terrorist attacks on military and civil setups suffered massive damage. To encounter a security threat, a lot of efforts have been done to improve the organization's security and various enhanced safety checks were incorporated. Moreover, with the emergence of novel coronavirus pandemic, face masks have become an important part of daily routine life. Nearly every organization in the world has adopted face masks as a primary precautionary measure to secure their workplaces. Masked faces have made existing technology ineffective in several scenarios, such as facial recognition access control and facial security checks at public places This presents a new challenge to any organization's security. Since timely identification of masked faces is vital for an organization. For any setup to ensure right entry at the gate with an automated system for human face recognition (even with mask) in a real-time background is the latest requirement. A face recognition system is an application of computer vision that can perform two tasks identifying and verifying a person from a given database, intending to reduce the manual efforts of the management and security staff. This research thus focuses on implementing a face recognition system (even with a face mask) by using a machine vision-based approach. A dataset of masked faces was collected to train the Support Vector Machine classifier on state-of-the-art Facial Recognition Feature Extractor Convolution Neural Network. Proposed Methodology gives recognition accuracy of 98% with masked faces, and results in an effective gate access control and attendance system.

Dec	laration	iii
Lan	guage Correctness Certificate	iv
Сор	yright Statement	v
Ack	nowledgements	vi
Abs	tract	viii
Tab	le of Contents	ix
List	of Figures	xi
List	of Tables	xiii
CH	APTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	1
1.3	Objective	2
CH	APTER 2: LITERATURE REVIEW	3
2.1	Background	3
2.2	Face Detection	4
2.3	Preprocessesing	6
2.4	Challenges	7
2.5	Deep Learning and Convulutional Neural Network (CNN)	10
2.6	Feature Extraction	17
2.7	Classification	21
2.8	Databases	24
2.9	Applications of Face Recognition	30
CH	APTER 3: TOOLS AND TECHNIQUES	33
3.1	Development Platform Used	33
3.2	Facial Recognition Techniques	36
3.3	Algorithm Selection	42
CH	APTER 4: EXPERIMENTATION	43
4.1	Proposes Model Implementation	43
4.2	System Architecture	48
4.3	Experimental Setup	51
CH	APTER 5: RESULTS AND DISCUSSION	53
5.1	Classification	53
5.2	Performance of Multiple Datasets	54
5.3	Masked Faces Recognition System	57

Table of Contents

Table of Contents (cont)

62
64
66
79
6

List of Figures

Figure 2.1: General face recognition pipeline	3
Figure 2.2: Common Haar Features	4
Figure 2.3: Visualization of the HOG detector from the library	6
Figure 2.4: All 68 points of reference, which will recognize the algorithm on the face	7
Figure 2.5: Different expression variations shown between same person	8
Figure 2.6: Under different illumination conditions	8
Figure 2.7: Under different pose condition, face patch changes	9
Figure 2.8: Different types of occlusions	10
Figure 2.9: How CNN relates to AI, ML and DL	11
Figure 2.10: How Neural Network works	12
Figure 2.11: Automated Feature Leaning Capability of CNNs	14
Figure 2.12: Basic CNN Architecture	15
Figure 2.13: Model of a CNN with many convolutional layers	16
Figure 2.14: A database with 10 faces and each face patch is of 100 by 100 size	18
Figure 2.15: Block Diagram of PCA based face recognition system	19
Figure 2.16: PCA maps the samples	20
Figure 2.17: Three-layer perceptron	22
Figure 2.18: Typical framework of CNN	23
Figure 2.19: SVM Classification	23
Figure 2.20: The Feret database example with frontal pose	25
Figure 2.21: Images of the same individual in LFW	25
Figure 2.22: Five subsets of the subject in extended Yale B database	26
Figure 2.23: VGGFace2 template examples	27
Figure 2.24: CMU-PIE database sample with (a) light OFF and (b) lights ON	28
Figure 2.25: Some images from MUCT database	28
Figure 2.26: Some images from MUCT database	29
Figure 2.27: Example of a pair of a face image, with mask and without mask	29
Figure 2.28: Face recognition applications	30
Figure 2.29: Face recognition-based security system	30
Figure 2.30: Basic surveillance system structure	31
Figure 3.1: Proposed Methodology	33
Figure 3.2: Registered personals of the organization	34
Figure 3.3: Personal IN record in database	35
Figure 3.4: Database management available options	35
Figure 3.5: Database management available options	36
Figure 3.6: The triplet loss	37

Figure 3.7: Deepface pipeline diagram	39
Figure 3.8: The alignment process	39
Figure 3.9: Outline of the deepface architecture	40
Figure 4.1: Pipeline diagram of proposed face recognition system	43
Figure 4.2: Face detection and preprocessing	44
Figure 4.3: Training model for CNN feature extractor for facial recognition	45
Figure 4.4: 128 Embeddings of an input image	46
Figure 4.5: SVM classifier dataset of masked faces	47
Figure 4.6: Masked faces dataset	48
Figure 4.7: Block diagram of complete facial recognition system	48
Figure 4.8: Front end display	49
Figure 4.9: GUI of the proposed system	49
Figure 4.10: Organization's personal registration step	50
Figure 4.11: Registration steps for visitors	50
Figure 4.12: Multiple attendance rule options	51
Figure 4.13: Real time record of IN personals	51
Figure 4.14: Registered employee was granted access to setup	52
Figure 4.15: Unregistered employee declared as stranger	52
Figure 5.1: Confusion Matrix	53
Figure 5.2: Model tested on LFW dataset	54
Figure 5.3: Model tested on local dataset	55
Figure 5.4: Registered Images recognized with names	55
Figure 5.5: Unregistered Images recognized as stranger	56
Figure 5.6: Image declared as FN	56
Figure 5.7: Masked faces recognition trials	57
Figure 5.8: Model tested on masked faces without masked classifier	58
Figure 5.9: Registered Images recognized as stranger without masked classifier	58
Figure 5.10: Masked faces training set	59
Figure 5.11: Model tested on masked faces with masked classifier	60
Figure 5.12: Registered Images recognized with masked classifier	60

List of Tables

Table 3.1: Structure of Zeiler & Fergus based model with 1×1 convolutions having input and output	38
sizes described in rows × cols × #filters	
Table 3.2: Deepface network configuration	41
Table 3.3: Comparison b/w algorithms	42
Table 5.1: Performance parameters of classifiers	54
Table 5.2: Model Performance parameters on LFW dataset	54
Table 5.3: Model Performance parameters on local dataset	56
Table 5.4: Model Performance parameters without masked classifier	59
Table 5.5: Model Performance parameters with masked classifier	61