
AUTOMATIC GENERATION OF CLASS DIAGRAM FROM

NATURAL LANGUAGE REQUIREMENTS USING NATURAL

LANGUAGE PROCESSING

Author

Mishal Muneer

00000319899

MS-19 (CSE)

Supervisor

Dr. Usman Qamar

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

FEBRUARY, 2022

AUTOMATIC GENERATION OF CLASS DIAGRAM FROM

NATURAL LANGUAGE REQUIREMENTS USING NATURAL

LANGUAGE PROCESSING

Author

Mishal Muneer

00000319899

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Software Engineering

Thesis Supervisor:

Dr. Usman Qamar

Thesis Supervisor’s Signature: ___________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

FEBRUARY, 2022

In the name of Allah most beneficent most merciful

iv

Declaration

I certify that this research work, titled “Automatic Generation of Class Diagram from Natural

Language Requirements using Natural Language Processing” is my own work. This work is not

presented elsewhere for assessment. The material used from other sources are properly

acknowledged/ referred.

Signature of Student

Mishal Muneer

 2022-NUST-MS-Soft-19

v

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. The thesis is also according to the format given by the

university.

Signature of Student

Mishal Muneer

 Registration Number

00000319899

Signature of Supervisor

Dr. Usman Qamar

vi

Copyright Statement

• Copyright in text of this thesis rests with the student author. Copies (by any process) either in

full, or of extracts, may be made only in accordance with instructions given by the author and

lodged in the Library of NUST College of E&ME. Details may be obtained by the Librarian.

This page must form part of any such copies made. Further copies (by any process) may not

be made without the permission (in writing) of the author.

• The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may

not be made available for use by third parties without the written permission of the EME,

which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

vii

Acknowledgements

I am thankful to Allah Almighty for giving me countless blessings and guidance in this research

work. I want to thank my supervisor Dr. Usman Qamar for encouraging and supporting me

throughout my research. He is a source of great knowledge and his expertise helped a lot in

achieving my goals. I also want to thank Dr. Summair Raza and my GEC members Dr. Wasi

Haider Butt and Mr. Jhan Zeb for their unlimited guidance and support. I want to thanks my

parents, siblings, and friends for encouraging me throughout my degree program and motivating

me to overcome obstacles and difficulties. I would like to express my gratitude to the

Department of Computer and Software Engineering and the management of College of Electrical

and Mechanical Engineering for assisting me throughout my journey.

viii

Dedicated

to my exceptional parents,

Who always picked me up on time and

encouraged me to go on every

adventure, especially

this one.

ix

ABSTRACT

Software Development Life Cycle (SDLC) is a systematic approach that consists of software

requirement engineering, software design, development, implementation, and deployment.

Software design is an important phase that helps realize the requirements into working code.

Recently, Unified Modelling Language (UML) has become an important tool to develop

software design. It provides various modeling structures to depict both static and dynamic

behaviors of system. For static structure, class diagram is an important model that shows

different classes and their relationship. It is significant to develop tools to automatically generate

class diagram from natural language requirements.

Various techniques have been proposed in literature to automatically generate class diagram

from natural language requirements, but these techniques fail to deal with redundant information

present in the form of synonyms. Requirements written in compound and complex sentences are

also problem for these techniques. Furthermore, the generated class diagram may not be

optimized in terms of coupling relationship between classes. These factors make automation of

class diagram generation from natural language requirements a highly challenging task.

Natural Language Processing (NLP) is a well-known approach of computational linguistics used

to extract structured information by processing unstructured text automatically. The technique

has been applied to a number of fields in this regard like sentiment analysis, newspapers

analysis, and bio medical and so on. With advancement in computing, improvement in software

development methodology has also gained vital importance from researchers in order to speedup

software development to fulfill market needs.

In this research study, we comprehensively investigate the application of NLP for the generation

of class diagram. In this research a Systematic Literature Review (SLR) is carried out to select

29 articles published during 2014-2021. After quality Evaluation, only 17 articles consider that

fully fulfills the objective of our research. Subsequently, 14 combinations of main NLP activities

(i.e., Tokenization, POS tagging, Chunking, and Parsing) and 12 NLP algorithms are identified.

Furthermore, 23 existing tools are identified that are further divided into two categories tools

utilized by the researchers are 11 and purposed by researchers are 12. Finally, a comprehensive

analysis is performed to investigate the automation level of NLP applications for the generation

of the class diagrams and test cases from early plain text requirements.

Moreover, this research proposes a model to automatically generate a more accurate and

optimized class diagram from natural language requirements using natural language processing.

A tool named SD-LINGO is developed in this research. The effectiveness of the proposed model

will be analyzed by comparing the generated design with other state of the art approaches. The

validation is performed through six benchmark case studies and six different set of requirements.

The experimental results proved that the proposed NLP approach is fully automated and

considerably improved as compared to the other state-of-the-art app.

x

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 17

1.1 Software Development Life Cycle (SDLC) ... 17

1.1.1 Phases of SDLC Model ... 18

1.1.2 Motivation for Selecting Software Design in SDLC .. 20

1.2 Level of Research Carried Out on This Problem ... 20

1.2.1 Unified Modeling Language (UML) .. 20

1.2.2 Natural Language Processing (NLP) .. 23

1.3 Thesis Objectives ... 24

1.4 Thesis Contribution .. 25

1.5 Relevance to National Needs ... 26

1.6 Advantages of this Research .. 26

CHAPTER 2 LITERATURE REVIEW ... 27

2.1 Research Questions .. 28

2.2 Search Strategy ... 28

2.2.1 Data Sources ... 28

2.2.2 Search Query ... 28

2.3 Selection Strategy ... 29

2.3.1 Inclusion Criteria .. 29

2.3.2 Exclusion Criteria ... 29

2.4 Quality Evaluation.. 29

2.5 Search Process .. 31

2.6 Distribution of Articles... 31

2.7 Data Extraction and Data Synthesis ... 32

2.8 Findings .. 33

2.9 Overview of Research Articles .. 34

2.10 Answers to Research Questions ... 40

2.10.1 Natural Language Processing Techniques .. 40

2.10.2 Natural Language Processing Tools ... 41

2.10.3 Automation Level of Design Phase .. 42

2.11 Limitations ... 44

xi

2.12 Conclusion .. 45

CHAPTER 3 METHODOLOGY .. 46

3.1 Introduction ... 46

3.2 Strategy and Design of the Proposed Tool ... 49

3.3 Proposed Methodology and Implementation ... 49

3.3.1 Natural Language Software Requirements ... 49

3.3.2 Pre-Processing... 49

3.3.3 Comprehension of input using Natural Language Toolkit NLTK [66] 50

3.3.4 Rules Used by SD-LINGO Tool ... 52

3.3.5 SD-LINGO Design Tool ... 58

CHAPTER 4 EXPERIMENTAL VALIDATION .. 59

4.1 Local Hospital Problem Case Study... 59

4.1.1 Problem Statement .. 59

4.1.2 After Pre-Processing ... 59

4.1.3 Manual Object diagram of the LHP .. 59

4.1.4 SD-LINGO Screen Shot ... 60

4.1.5 Class Diagram ... 60

4.1.6 Comparison of Generated Classes from Actual Model and SD-LINGO 61

4.2 Bank Accounts Management System Case Study.. 62

4.2.1 Problem Statement .. 62

4.2.2 After Pre-Processing ... 62

4.2.3 Manual Object Diagram of BAMS ... 62

4.2.4 SD-LINGO Screen Shot ... 63

4.2.5 Class Diagram ... 64

4.2.6 Comparison of Generated Classes from Actual Model and SD-LINGO 65

4.3 Automatic Teller Machine (ATM) Case study .. 65

4.3.1 The Problem Statement ... 66

4.3.2 After Pre-Processing ... 66

4.3.3 Object Model of Rumbaugh et al [69] .. 66

4.3.4 SD-LINGO Screenshot ... 67

4.3.5 Analysis by SD-LINGO .. 67

xii

4.3.6 Comparison of Generated Classes by SD-LINGO and Actual Model 68

4.4 Library Management System ... 69

4.4.1 The Problem Statements ... 69

4.4.2 After Pre-Processing ... 70

4.4.3 Object Diagram of Library Management System ... 70

4.4.4 SD-LINGO Screen Shot ... 71

4.4.5 Class Diagram ... 71

4.4.6 Comparison of Generated Classes from Actual Model and SD-LINGO 72

4.5 Journal Registration Problem Case study... 73

4.5.1 The Problem Statement ... 73

4.5.2 After Pre-Processing ... 74

4.5.3 Object Model of Journal Registration Problem .. 74

4.5.4 SD-LINGO Screen Shot ... 74

4.5.5 Class Diagram ... 75

4.5.6 Comparison of Generated Classes from Actual Model and SD-LINGO 76

4.6 Course Registration Case Study ... 77

4.6.1 The problem Statement ... 77

4.6.2 After Pre-Processing ... 78

4.6.3 Manual Object Diagram of Course Registration Case study 78

4.6.4 SD-LINGO Screen Shot ... 79

4.6.5 Class Diagram ... 79

4.6.6 Comparison of Generated Classes from Actual Model and SD-LINGO 80

4.7 Relationships of Single Line Requirements ... 81

4.7.1 Inheritance/Generalization .. 81

4.7.2 Realization .. 86

4.7.3 Direct Association ... 88

4.7.4 Multiplicity ... 90

CHAPTER 5 RESULTS AND EVALUATION ... 94

5.1 Adequacy Evaluation ... 94

5.2 Diagnostics Evaluation ... 94

5.3 Performance Evaluation ... 94

xiii

5.4 Comparative Analysis .. 96

5.4.1 Performance Measurement of SD-LINGO on Benchmark Case Studies 96

CHAPTER 6 CONCLUSION AND FUTURE RECOMMENDATION ... 99

REFERENCES ... 100

xiv

LIST OF FIGURES

Figure 1 Software Development Life Cycle ... 19

Figure 2 UML Diagrams ... 21

Figure 3 POS Tagging Process ... 24

Figure 4 Overview of NLP Techniques .. 27

Figure 5 Primary Article Selection Process .. 33

Figure 6 Overview of research study .. 48

Figure 7 Example of POS tagged sentence ... 51

Figure 8 Duffy et al [68] LHP Problem Statement ... 59

Figure 9 Object Model of Local Hospital Problem .. 59

Figure 10 Screenshot of SD-LINGO for LHP Case Study ... 60

Figure 11 Class Diagram of LHP case study generated by SD-LINGO....................................... 60

Figure 12 BAMS problem statement .. 62

Figure 13 Object Model of Bank Accounts Management System ... 63

Figure 14 Screenshot of SD-LINGO for BAMS Case Study ... 63

Figure 15 A Class Diagram of BAMS case study generated by SD-LINGO 64

Figure 16 ATM Problem Statement .. 66

Figure 17 Object Model of ATM .. 67

Figure 18 Screenshot of SD-LINGO for ATM Case Study .. 67

Figure 19 A Class Diagram of ATM case study generated by SD-LINGO 68

Figure 20 Library Management System Problem Statements .. 69

Figure 21 Object diagram of library management system .. 70

Figure 22 Screenshot of SD-LINGO for Library management system case study....................... 71

Figure 23 Class diagram of library management system .. 72

Figure 24 Journal Registration Problem (JRP) Case Study .. 73

Figure 25 Object model of JRP case study ... 74

Figure 26 Screenshot of SD-LINGO for JRP ... 75

Figure 27 Class diagram of JRP case study .. 75

Figure 28 Course Registration Problem Statements ... 77

Figure 29 Object diagram of course registration case study ... 78

Figure 30 Screenshot of SD-LINGO for course registration .. 79

Figure 31 Class diagram of course registration case study ... 80

Figure 32 UML classes and inheritance .. 82

Figure 33 SD-LINGO tool screenshot req#01 for inheritance/Generalization 82

Figure 34 Class diagram of req#01 for inheritance/generalization ... 83

Figure 35 UML classes and generalization ... 84

Figure 36 SD-Lingo tool screenshot of req#02 for generalization/inheritance 84

Figure 37 Class diagram of req#02 for generalization/inheritance ... 85

Figure 38 UML classes and realization .. 86

Figure 39 SD-Lingo tool screenshot for realization ... 86

xv

Figure 40 Classes show the realization ... 87

Figure 41 UML classes and direct association ... 88

Figure 42 SD-Lingo screenshot for direct association .. 88

Figure 43 Classes show the direct association .. 89

Figure 44 UML classes and Multiplicity for req#05 .. 90

Figure 45 SD-Lingo tool screenshot for Req#05 multiplicity .. 90

Figure 46 Classes show Req#05 multiplicity.. 91

Figure 47 UML classes, Association, and multiplicity for req#06 ... 92

Figure 48 SD-Lingo tool screenshot for Req#06 multiplicity .. 92

Figure 49 Classes show Req#06 multiplicity.. 93

xvi

LIST OF TABLES

Table 1 Quality Evaluation Criteria .. 30

Table 2 Distribution of selected researches with respect to scientific databases 32

Table 3 Year wise distribution of selected researches .. 32

Table 4 Conference / Journal wise distribution of our selected researches 32

Table 5 Quality Evaluation of Selected Articles... 34

Table 6 Natural Language Processing (NLP) techniques utilized in different articles 40

Table 7 NLP tools utilized by researchers .. 41

Table 8 NLP algorithm used by researchers in purposed tool .. 42

Table 9 Level of Automation of Class Diagram using NLP ... 44

Table 10 NLTK POS tag list. .. 57

Table 11 Comparison of GC/AM for LHP Case Study .. 61

Table 12 Comparison of GC/AM for BAMS Case Study .. 65

Table 13 Comparison of GC/AM for ATM Case Study ... 69

Table 14 Comparison of GC/AM for Library Management system Case Study 73

Table 15 Comparison of GC/AM for JRP Case Study ... 76

Table 16 Comparison of GC/AM for course registration case study.. 81

Table 17 Comparison of GC/AM for Requirement#01 .. 83

Table 18 Comparison of GC/AM for Requirement#02 .. 85

Table 19 Comparison of GC/AM for Requirement#03 .. 87

Table 20 Comparison of GC/AM for Requirement#04 .. 89

Table 21 Comparison of GC/AM for Requirement#05 .. 91

Table 22 Comparison of GC/AM for Requirement#06 .. 93

Table 23 Evaluation summary of results from all case studies ... 96

Table 24 Evaluation summary of results from Mosa Elbendak et al [24] 97

Table 25 Evaluation summary of results from Vidhu Bhala et al [30] ... 97

Table 26 Evaluation summary of results from AR2DT [43] .. 98

17

CHAPTER 1

INTRODUCTION

Without software, we would be unable to function in today's world. Writing efficient codes for

the development of high quality and successful programs is one of the procedures covered by

software engineering [1].

There are still numerous reports of unsuccessful software projects and software failures.

Software engineering is regarded as insufficient for the production of modern software.

However, most of these so-called software failures, in my opinion, are the result of two causes:

• Increasing demands: The demands vary as latest software engineering approaches enable

us to design larger and more sophisticated systems. Systems must be designed and

delivered very speedily; bigger, even more, complicated systems are needed; and systems

must possess previously unimaginable capabilities. Current software engineering

approaches are unable to fulfill these new expectations so new software engineering

approaches must be invented [1].

• Low expectations: Without using software engineering principles and techniques, writing

computer software is very simple. Many organizations have veered into software

development as their products and services have grown. In their daily activities, they do

not apply software engineering techniques. As a result, their software is usually costly

and less trustworthy than it should be. To resolve this concern, we require enhanced

software engineering training and education [1].

Object Oriented Technology (OOT) is a very famous approach to building software systems. A

little while back OOT is extended from the implementation stage of the SDLC to cover the

SDLC initial stage like analysis and design. A lot of object-oriented methods have been

suggested for the initial stages of SDLC e.g., OMT, Booch, and OOSE. In the development

process, definition of the concept vary from one OO method to another. While CASE tools

provide help in generating the software design i.e., use case diagram generation and class

diagram generation in many cases. As programming became more complicated, additional

framework was required for the development effort to serve as a foundation for project

management, as well as to assist planning and communication because now teams were required

to build software instead of individuals [2]. This eventually evolved to the SDLCM described

below. The Software Development Life Cycle (SDLC) model is used to create high-quality

software.

1.1 Software Development Life Cycle (SDLC)

The Software Development Life Cycle (SDLC) is an important aspect of software development.

It explains the steps associated in transforming codes into final products, which are commonly

18

referred to as software. It includes a number of stages, starting with requirements analysis and

ending with maintenance [3].

SDLCMs were created with the primary goal of providing a structure for software development,

as well as a framework for software development methods and tasks [4]. SDLCM facilitates in

the splitting of this highly complicated task into smaller subtasks, which helps in the planning

and monitoring of work, as well as the support of cooperation and communication among the

various individuals and groups involved, and the quality of the end product [2].

Today, two of the most essential responsibilities for software development companies are

software development and delivery. The SDLC, sometimes known as the application life cycle,

describes how the development process is organized within a project or a company. The SDLC

refers to the process of planning, developing, testing, controlling, and distributing software.

When SDLC is implemented, it is trivial to identify which stage the team is on in any software

project, which assets are required, and what stage will be the next [3].

1.1.1 Phases of SDLC Model

Every software development life cycle consists of several phases. The major six phases involved

in software development life cycle model (See Figure 1).

1.1.1.1 Requirement Analysis

This is the first step of the SDLC, during which all essential information is gathered and

reviewed [3]. Requirement management is both the most essential and the most ignored aspect of

Software Engineering and Project Management. Poor requirement collection and tracking

follow-ups cause 80% of projects to fail [5]. This phase determines the development team's

performance, customer satisfaction, project success, and several other factors. The fundamental

goal of this stage is to identify the requirement and construct an SRS (software requirement

specification). We specify user and system requirements throughout this step. We describe an

issue and create a document in this step, which is called the problem domain phase [4]. The more

time and effort you put into obtaining requirements, analyzing them, and documenting them

properly, the smoother and more result-oriented the subsequent phases will be.

1.1.1.2 Design

This is the second step of the SDLC, and it focuses on the overall structure of the upcoming

project [3]. It is also the very crucial and essential part of the SDLC. The process of converting

requirements into a thorough design representation of a software system is known as software

design. It is believed that the key to reliable and intelligible software is good software design.

[6]. We produce a Software Design Document (SDD) in this stage, and we gather requirements

in the requirement analysis stage. As a result, we design an SDD, this step takes an input from

the previous step and outputs to the next step [4].

19

1.1.1.3 Implementation

The implementation phase of the SDLC, also known as deployment, is the third step of the

SDLC. It is the coding phase of the SDLC. All aspects are incorporated into the developed

software, which generates source code [3]. In this step, we implement a design phase and create

a system that produces output, but we don't know whether the result is correct or incorrect [4].

1.1.1.4 Testing

The testing process is highly crucial since it allows us to determine whether our system is

working properly or not. Whether our system satisfies the customer's requirements or not. Unit

testing and system testing are the two main types of testing. We test smallest element of the

system in unit testing, but we test the entire system in system testing, which does not require the

underlying design logic [4]. The verification and rectification of any code bugs are part of the

testing process. Everything is rigorously tested and retested as needed until all issues are rectified

[3].

1.1.1.5 Deployment

After analyzing the application and completing all required iterations, the code is ready for

implementation. After that, end users will be able to access the project [3].

1.1.1.6 Maintenance

The software life cycle is followed by maintenance [3]. Error detection, rectification, and

enhancement of product features are all part of software maintenance. Every piece of software

must be maintainable since customers will want to update and add new features over time [4]. If

there are issues with software, they may be rectified or corrected in the following version,

depending on how serious the issues are [3].

Figure 1 Software Development Life Cycle

Software
Development

Life Cycle

Requirement
Analysis

Design

Implementation

Testing

Deployment

Maintenance

20

1.1.2 Motivation for Selecting Software Design in SDLC

Software Design is very essential and crucial part of the SDLC. It plays the central role in the

software development [7]. Software design helps realize the requirements into working code.

The requirements are used as input during the software design phase. However, when designing,

it is possible to find ways to offer greater functionality without incurring a significant additional

expense, or perhaps without incurring any additional economic burden. We may need to change

some of the requirements to accommodate new technology. We must keep in mind that end users

are not exposed to all of the computer's features or capabilities. They wouldn't be able to specify

things in such a way that the computers and software development platforms' capabilities are

fully utilized. As a result, we should search for ways to improve functionality that will benefit

end users or management during the design phase. Modifications requests from consumers or

any other stakeholder are another part of requirement management that we must handle

throughout the design process. We need to accommodate all of the modification requests

received so far into the design phase of the software so that the developers team is not delayed by

design changes throughout development [8].

1.2 Level of Research Carried Out on This Problem

1.2.1 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a modeling and design language for software

systems. Its origins can be traced back to the object-oriented approach, but it is now employed in

a wide range of software development projects. The OMG (Object Management Group) is the

organization that invented and maintains UML. One thing to keep in mind is that UML is a

modeling tool, not a software development approach. It's more of a lingo for describing the

system.

When you utilize the UML to create a design, you'll usually create two types of models:

1. Structural models, which use object classes and relationships to explain the system's

static structure. Composition, uses/used-by and generalization (inheritance) relationships

are all significant relationships to document at this level. Structural models can be static

(showing the system's design structure) or dynamic (showing the system's organization

while it's running) [1].

2. Dynamic models, which reflect the relationships between system components and

describe the system's dynamic structure. The sequence of service requests performed by

objects, as well as the state changes generated by these object interactions, are examples

of interactions that could be documented.

As demonstrated in Figure 2, structural diagrams include object diagrams, packages diagrams,

deployment diagrams, class diagrams and composite structure diagrams, all of which depict the

system's static structure in terms of the components that make it up and their interactions. Our

main focus in this research to automate class diagram because for static structure class diagram is

21

an important model that shows different classes and their relationships. It is significant to

develop tools to automatically generate class diagram from natural language requirements.

Figure 2 UML Diagrams

1.2.1.1 Component Diagram

The structural relation between components in a software system is depicted using a component

diagram. These are typically employed while working with large, complex systems. Interfaces

allow components to communicate with one another. Connectors are used to connect the

interfaces [9].

1.2.1.2 Deployment Diagram

A deployment diagram depicts your system's hardware as well as the software that runs on it.

When your software solution is deployed over numerous machines, each with its own

configuration, deployment diagrams come in handy [10].

1.2.1.3 Object Diagram

Object diagrams, also known as Instance diagrams, are similar to class diagrams in appearance.

They explain the link between objects in the same way as class diagrams do, but they do so use

real-world examples. They depict how a system will appear at a certain point in the future. The

objects are utilized to demonstrate complex relationships between objects since they contain data

[11].

22

1.2.1.4 Package Diagram

A package diagram, as the name implies, depicts the interdependencies between distinct

packages in a system [12].

1.2.1.5 Profile Diagram

In UML 2, a new diagram type called a profile diagram was added. This is a diagram that is only

used in very few specifications [13].

1.2.1.6 Composite Structure Diagram

The internal structure of a class is depicted using composite structure diagrams [14].

1.2.1.7 Use Case Diagram

Use case diagrams are the most well-known type of the behavioral UML types, providing a

graphic representation of the actors involved in a system, the various functions required by those

actors, and how these functions interact. It's a wonderful place to start when talking about a

project since you can quickly identify the important processes and actors of the system [15].

1.2.1.8 Activity Diagram

Activity diagrams are graphical representations of workflows. They can be utilized to explain the

business and operational workflows of any system component. Activity diagrams are sometimes

used instead of state machine diagrams [16].

1.2.1.9 State Machine Diagram

State machine diagrams are comparable to activity diagrams, although the notations and usage

differ slightly. They're sometimes referred to as state diagrams or state chart diagrams. These are

highly handy for describing the behavior of objects that behave differently depending on their

current state [17].

1.2.1.10 Sequence Diagram

In UML, sequence diagrams depict how objects interact with one another and in what order they

interact. It's important to keep in mind that they only reveal interactions for a specific scenario.

Interactions are illustrated as arrows and processes are depicted vertically [18].

1.2.1.11 Communication Diagram

They were known as collaboration diagrams in UML 1. Communication diagrams are identical

to sequence diagrams, but they focus on the messages that are sent between objects. A sequence

diagram and other objects can be used to express the same information [19].

1.2.1.12 Interaction Overview Diagram

Activity diagrams and interaction overview diagrams are extremely similar. Interaction overview

diagrams display a sequence of interaction diagrams, whereas activity diagrams depict a

23

sequence of processes. They're a set of interaction diagrams in the order in which they occur. As

previously stated, there are seven different types of interaction diagrams, each of which can be

used as a node in an interaction overview diagram [20].

1.2.1.13 Timing Diagram

Sequence diagrams and timing diagrams are extremely similar. They depict the activity of

objects over a period of time. If there is only one object, the diagram is simple. However, if

several objects are involved, a timing diagram is utilized to demonstrate how the objects interact

over that time period.

1.2.1.14 Class Diagram

The important element of every object-oriented solution is the class diagram. The classes in a

model are represented using class diagrams. To model high-level design, class diagrams are

utilized (roughly equivalent to SRS). Customer requirements are examined, classes are

abstracted, and class diagrams are used to model them. A class in most modeling software is

made up of three components. The first component has the class name, the middle has the class

attributes, and the bottom has the class operations or methods. Classes are put together to build

class diagrams in a complex system with numerous related classes. Various kinds of arrows

represent various types of relation between classes [8].

1.2.1.14.1 Cohesion and Coupling

Stevens et al. was the first to use the term "coupling" in software engineering [1], during the

times when structured programming was the standard. It was defined as a metric for determining

the strength of an association established by a link between two modules. Coupling is defined in

the context of object-oriented design as how one class is linked to another. The term coupling

refers to a class's dependency on another class [21]. Excessive dependence may reduce the class's

reusability and enhance maintenance work. The presence of an increasing number of

dependencies indicates that changes to other classes are more likely to break the functionality of

the class. It's possible that modifications in one class will have an impact on others. Furthermore,

strong coupling will necessitate additional testing effort and time [22]. Testing efforts,

comprehension activities, maintenance tasks and reuse are made easier with minimum coupling

and strong cohesion.

1.2.2 Natural Language Processing (NLP)

Data scientists are primarily concerned with three things: gathering data, analyzing data and

inferring information from the data. All of these tasks need specialized personnel, requires

time and money. The next and most difficult step is to convert data into products. As a result,

several academic and industrial research groups are interested in this topic. Data-driven

techniques have grown in popularity in recent decades, owing to the fact that they require far less

24

human labor. Surprisingly, Natural Language Processing (NLP) is one of the fields that is

affected by data.

Natural language processing (NLP) is a technique for processing natural language material and

providing the researchers with the appropriate results. Natural language processing, in simple

terms, is the act of converting natural language text into desired outcomes such as requirements

templates, design creation or test cases. As said initially that desired useful information collected

from the user requirements is such a difficult and tedious task to be done. Here we can use the

natural language processing. There are many approaches to handle this specific issue, but we

adopt the most famous approach that is object-oriented approach. Natural language processing is

the branch of artificial intelligence which is basically focuses on automatic analysis of plain

natural language user requirements. There are several techniques in the natural language

processing e.g., tokenization, POS tagging, chunking, and parsing. These techniques are used by

different researchers in different scenarios with different combinations but here we used POS

tagging as NLP approach.

1.2.2.1 Parts-of-Speech/ (POS) Tagging

POS tagging is a helpful technique for tagging words of a sentence. The POS method gives a lot

of information related to the words. Semantics, translation and syntax are only a few of the NLP

tasks that are taken into account when processing a language. Corpus linguistics and POS

tagging research are intrinsically tied. There are two types of tagging techniques: supervised and

unsupervised. In the supervised technique, a previously trained corpus is used, and the output is

generated based on it. It's simple to tag a sentence in the supervised technique. The first step in

the unsupervised technique is training of the whole corpus, after which the input sentence is

tagged. In comparison to the supervised tagging technique, this technique is more complicated.

Verbs, nouns, adjectives, adverbs, determiners and other grammatical groups are included in the

POS [23]. Based on its perspective and definition, POS tagging is as well-known as grammatical

text tagging. Figure 3 depicts the POS tagging process. The input sentence is first read, and then

it is tokenized into words in the following phase. To assign tags to these tokens, the POS tagging

technique is employed. After that, the tagged output is generated.

Figure 3 POS Tagging Process

1.3 Thesis Objectives

Natural Language Processing (NLP) is the study of the automatic processing of written natural

languages like English. Natural languages can be processed at a number of different levels. From

Read Input
Sentence

Tokenize
sentence

into words

Use POS
Tagging
Method

Tagged
Output

25

word analysis to sentence processing to whole discourse analysis, these levels are available.

Recent advancements in this field point to interesting ways that could aid software developers in

the early stages of software development analysis. The main goal is to device a methodology that

uses natural language processing to analyze and process software user requirements written in

plain natural language, as well as to investigate how natural language processing can be used to

generate a class diagram, which is an important component of software design.

As we have done state of the art systematic literature review, we found the field of NLP so crisp

and saw some recent advances in this field. So, this research thesis is concerned with

investigating of how natural language processing techniques can be utilized to enable object-

oriented user requirements analysis, which is basically a plain text.

To address all these tasks, objectives are shown as follow:

• Investigate previous AI-based work that has been used to assist with the SDLC's early

stages.

• Analyzing previous object-oriented Analysis methodologies and identifying common

concepts among them.

• Analyzing and identifying NLP tools and techniques.

• Define a practical approach that supports the object-oriented analysis process by utilizing

natural language processing tools.

• Execution of the above-mentioned technique.

• Implementation of proposed methodology on various case studies.

• Evaluation of the proposed approach against the human performance and a fair

comparison with other past work in the research area.

1.4 Thesis Contribution

This research study will contribute a lot in the Natural Language Processing field. Our

contributions are marked as follow:

From state-of-the-art systematic literature review by us, we identified various NLP techniques

combinations Table 6 relevant to the respected research studies discussed in the Chapter 2. We

also identified different NLP tools utilized by researchers to generate the respected UML

diagrams as seen in Table 7. We also identified the NLP algorithms and the purposed tools by

researchers as seen in Table 8. We also check the automation level of each tool that is identify

through the literature.

From all these identified things, our research study will beneficial for the future researchers and

practitioners of this domain to overview the identified material and go through this study to

investigate the complexity nature of tools, techniques and algorithms.

26

On the other hand, a methodology is proposed to generate an automated software design i.e.,

class diagram. For validation purpose of our proposed methodology, we developed a CASE tool.

We evaluated our proposed methodology over several case studies.

1.5 Relevance to National Needs

Software industry has grown rapidly in Pakistan in past decade. Manual process for creating a

class diagram is very time consuming and a lot of effort is required which may increase the cost

and time of developing the software. This tool overcome these types of problems and provide

ease to software industry.

1.6 Advantages of this Research

• Speed up the time of analyst for creating a class diagram.

• Class names, operations and relationships, such as associations and more advanced

relationship kinds such as dependency, aggregation and generalization are all derived

from UML class elements.

• Generated classes are highly cohesive and loose coupling.

• Our proposed solution will be an automated system that has ability to directly interact

with the users as user is the main stakeholder. This is the main advantage of our research

which will single out every other research on this field to the best of my knowledge.

27

CHAPTER 2

LITERATURE REVIEW

Natural Language Processing (NLP) is a well-known artificial intelligence and computational

linguistics approach that is commonly used to automatically extract components of concerns

from preliminary information provided in simple natural language by humans. This leads to

attaining certain business aims like high productivity and low cost/time to-market barriers.

Therefore, the applications of NLP are very common in the area of text mining to classify

relevant facts from the bulky raw plain text information. The NLP approach comprises different

activities [24, 25] (i.e., tokenization, Parts of Speech tagging, chunking and parsing e.tc) as

shown in Figure 4.

Generally, the preliminary information of concern is available in raw plain text. It takes a long

time and resources for extracting relevant information from the given text document to meet

business objectives. To overcome this problem, major NLP steps are performed to automate the

extraction of relevant information. Tokenization is the first step to split given plain text file into

tokens such as separating words and punctuation and so on.

Figure 4 Overview of NLP Techniques

Subsequently, POS tagging is used to assign a part of speech to each word such as a noun or a

verb. After that, chunking is performed to detect the boundaries between the phrases. This leads

to automatically extracting the relevant features from the given plain text as shown in Figure 4.

28

Software Development Life Cycle (SDLC), usually involves six phases[26] i.e., Requirement,

design, implementation, testing, deployment, and maintenance. The requirement and design are

two primary phases that provide the input to the other phases. Furthermore, testing is another

important phase to perform verification/validation of the developed software applications. There

are certain labor-intensive/time-consuming operations involved in this two software development

phases (i.e., Requirement analysis, and design) that severely effect productivity, cost, and time-to

market goals. Such manual and time-wasting operations of software development phases can be

automated by exploiting the features of NLP. However, to the best of our knowledge, no

significant research is performed yet to explore, highlight and summarize the utilization of NLP

techniques/tools regarding software development phases within a single research work. As a

result, in this article, we look into using natural language processing (NLP) to automate the

requirement and design phases of software development. The following research questions are

the ones we're looking for answers to:

2.1 Research Questions

RQ1: What are the major NLP activities, tools, techniques, and algorithms for the generation of

class diagram from natural language requirements?

RQ2: What level of automation is achieved through the NLP for the generation of class

diagrams?

A review protocol is developed for this research study on the basis of systematic literature

review (SLR) standards [27] . In addition to this, our review protocol defines the relevant

research questions, quality assessment, inclusion/exclusion criteria, search strategy and data

extraction and synthesis of explored research data. The other details of review, the protocol is as

follow:

2.2 Search Strategy

2.2.1 Data Sources

This study was conducted using five famous e-repositories:

1. IEEE Xplore (https://ieeexplore.ieee.org/)

2. Elsevier (https://www.sciencedirect.com/)

3. ACM Digital Library (https://dl.acm.org/)

4. Springer (https://link.springer.com/)

5. Microsoft Academia (https://academic.microsoft.com)

2.2.2 Search Query

The search query used was constructed keeping the following points in mind:

https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://dl.acm.org/
https://link.springer.com/
https://academic.microsoft.com/

29

• The main keyword used in the query was (“Natural Language Processing” AND “Class

Diagram”) because the study was focusing, specifically, on the all-natural language

processing tool, techniques, and algorithms that are used for extracting the class diagram.

• The study was focused on the automation level of class diagrams through natural

language processing so the keyword(“automa*”) was added to the search.

Hence, the complete query used was:

((“NLP” OR “Natural Language Processing”) AND” Class Diagram”) AND Automat*

2.3 Selection Strategy

In SLR, criteria are defined to filter down the results acquired against the search query. The

study only considered the articles matching the inclusion criteria mentioned below and the

remaining articles (or those falling in the exclusion criteria) were dropped from the analysis.

2.3.1 Inclusion Criteria

• IC1: Articles having the main keywords ‘Natural Language Processing or NLP and Class

Diagram’ in their title.

• IC2: Articles published between January 2014 and December 2021.

• IC3: Articles published only in journals, conferences, and conference proceedings.

• IC4: Articles having English as the primary language.

• IC5: Articles with an abstract matching the research objective of the study.

2.3.2 Exclusion Criteria

• EC1: Articles not having the main keyword in their title.

• EC2: Articles published before January 2014 or after December 2021.

• EC3: Articles published elsewhere; besides journals, conferences, and conference

proceedings.

• EC4: Articles not having English as a primary language.

• EC5: Articles with an abstract not relevant to the research objective of the study.

• EC6: Exclude all research that has a vague validation method. Which is not research-

oriented

• EC7: Reject the researchers which have exactly similar research contents and one of

them is already selected.

2.4 Quality Evaluation

The selected articles were evaluated against the following aspects, each on a pre-defined scale of

0 to 1. This was done to check an article’s importance in providing answer(s) to any or all of the

RQs identified for the study. Table 1 shows the Quality Evaluation Criteria for each article. Any

30

article having a total score of 1.5 or below was not considered valuable enough and was

excluded from the analysis.

• QE1: There are two types of tools. Tools that are used by researchers and the tools that

are purposed by the researchers. If article deals with both tools- Yes (+1), partially

(+0.5), No (0).

• QE2: Articles deals with NLP techniques-Yes (+1), NO (0).

• QE3: Articles deals with NLP Algorithms-Yes (+1), NO (0).

• QE4: There are different elements of Class diagram. Articles deal with classes- Yes (+1),

NO (0); Attributes- Yes (+1), NO (0); Operations/Functions- Yes (+1), NO (0).

• QE5: There are different types of relationship so each relationship type evaluated

separately Articles deals with relationships-Association-Yes (+1), NO (0); direct

Association-Yes (+1), NO (0); Generalization/Inheritance-Yes (+1), NO (0); Realization-

Yes (+1), NO (0); Multiplicity- Yes (+1), NO (0); composition- Yes (+1), NO (0);

aggregation- Yes (+1), NO (0).

• QE6: Articles remove the redundancy such as synonyms- Yes (+1), NO (0).

Table 1 Quality Evaluation Criteria

31

2.5 Search Process

Data sources presented in (Section 2.2.1), elaborated those five databases (i.e., ACM, Springer,

IEEE, Elsevier, and Microsoft academic) have been selected to conduct this SLR. Selected

databases include conference proceedings and high-level impact journals. To achieve search

process and get relevant results, we have used different search terms according to our search

query and defined criteria e.g., NLP, Natural Language Processing and class diagram etc. Results

of our search query in different databases are summarized in Figure 5. Different filters were used

against our search terms, according to our inclusion and exclusion criteria. Because without

filters selected databases gives a lot of irrelevant results that’s why to limit the results different

filters were used.

The summary of steps, used during our search process (Figure 5), is given below

• Search query was used in our selected database and get 504 search results as per

inclusion and exclusion criteria.

• Eliminate 442 research works on the basis of reading search query main keyword in

Abstract as per our inclusion and exclusion criteria.

• Eliminate 28 research works on the basis of time frame that is mentioned in inclusion and

exclusion criteria.

• Consider only those articles that is in English according to our inclusion and exclusion

criteria.

• After duplication removal we get 29 articles that fit the scope of the study.

• Finally, we include 69 research works which are fully fulfilling our inclusion and

exclusion Criteria.

• After quality Evaluation only 17 articles consider that is fully fulfill the objective of our

research.

2.6 Distribution of Articles

After quality evaluation distribution of articles

• The selection of five renowned data bases (i.e., ACM, IEEE, Springer and Elsevier,

Microsoft academia) is another quality assessment attribute as these databases only

published high impact research works. The summary of selected studies, in the context of

scientific databases, is given in the Table 2.

• We try to include latest studies as much as possible (Table 3) to support the outcomes of

SLR through modern developments in the target area.

• We also try to include journal publications as much as possible because these provide

detailed study of subject under consideration. However, we found only 2 journals

publications, fully agreed with inclusion and exclusion criteria, as given in (Table 4).

32

Table 2 Distribution of selected researches with respect to scientific databases

Sr. No. Database References Total

1 ACM [28] 1

2 Elsevier [29],[30], 2

3 IEEE [31],[32],[33],[34],[35],[36],[37],[38],[39],[40],[41] 11

4 Springer [42],[43] 2

5 Microsoft Academia [44] 1

Table 3 Year wise distribution of selected researches

Sr. No. Year References Total

1 2014 [30],[36] 2

2 2015 [34] 1

3 2016 [28],[37],[42],[40] 4

4 2017 [33],[43] 2

5 2018 [32] 1

6 2019 [44] 1

7 2020 [29],[35],[39],[31] 4

8 2021 [38],[41] 2

Table 4 Conference / Journal wise distribution of our selected researches

Sr. No. Publication References Total

1. Conferences [28],[29],[31],[32],[33],[35],[34],[36],[37],[38],[39],[40,

42],[43],[41]

15

2. Journals [44],[30] 2

2.7 Data Extraction and Data Synthesis

A total of 505 articles were found in the five repositories against the search query. After applying

all five inclusion criteria and removing duplicate items, 29 articles were left that fit the scope and

objective of the study. Figure 5 shows the complete selection process of the articles.

For RQ1 and RQ2, the selected articles were to be synthesized based on their coverage of one or

more point of NLP i.e., NLP techniques, NLP tools purposed or utilized by researchers, NLP

Algorithm to generate class diagram and base on the coverage of identifying different class

diagram elements. Table 6, Table 7, Table 8, and Table 9 shows the extraction and synthesis of

selected researches to get the answers of the research questions.

33

Figure 5 Primary Article Selection Process

2.8 Findings

The 29 articles considered for the study were carefully chosen based on the criteria defined in

selection strategy. Each article was then studied in light of the research questions identified for

the study. This section outlines the main findings of each article against every RQ. Table 5

shows the total quality score of the 29 selected articles against the quality evaluation (QE)

criteria defined earlier.

Duplication Removal (n=29)

IC5 (n=33)

ACM: 2 Elsevier: 2 IEEE: 21 Springer: 2 Microsoft Academia: 6

IC4 (n=34)

ACM: 2 Elsevier: 2 IEEE: 21 Springer: 2 Microsoft Academia: 7

IC3 (n=34)

ACM: 2 Elsevier: 2 IEEE: 21 Springer: 2 Microsoft Academia: 7

IC2 (n=62)

ACM: 2 Elsevier: 4 IEEE: 37 Springer: 3 Microsoft Academia: 16

IC1(n=504)

ACM: 113 Elsevier: 179 IEEE: 61 Springer: 101 Microsoft Academia: 50

34

Table 5 Quality Evaluation of Selected Articles

Sr. No. Rf. QE1 QE2 QE3 QE4 QE5 QE6 Total

1 [28] 1 1 1 2 1 0 6

2 [29] 1 1 1 3 3 1 10

3 [30] 1 1 1 3 3 0 9

4 [31] 0.5 1 0 0 0 0 1.5

5 [32] 1 1 0 1 1 0 4

6 [33] 0.5 1 1 1 0 0 3.5

7 [34] 1 1 1 2 2 0 7

8 [35] 1 1 1 3 4 0 10

9 [36] 1 1 1 1 1 0 5

10 [37] 1 1 1 3 0 0 8

11 [38] 1 1 1 3 1 0 7

12 [39] 0.5 1 0 1 0 0 2.5

13 [40] 1 1 1 3 1 0 7

14 [42] 1 1 1 0 0 0 3

15 [43] 1 1 1 1 1 1 6

16 [44] 1 1 1 3 1 0 7

17 [41] 1 1 1 0 0 0 6

18 [45] 0 1 0 0 0 0 1

19 [46] 0.5 0 0 0 0 0 0.5

20 [47] 0.5 0 0 0 0 0 0.5

21 [48] 0 0 0 0 0 0 0

22 [49] 0 1 0 0 0 0 1

23 [50] 0.5 0 0 0 0 0 0.5

24 [51] 0.5 0 0 0 0 0 0.5

25 [52] 0 0 0 0 0 0 0

26 [53] 0.5 0 0 0 0 0 0.5

27 [54] 0 0 0 1 0 0 1

28 [55] 0 0 0 0 0 0 0

29 [56] 0 0 0 0 0 0 0

2.9 Overview of Research Articles

Saimia Nasiri et al [29] purposed an approach that is based on the transition of CIM to PIM. The

transition is accomplished by the creation of a platform that creates a class diagram in an XMI

file from specifications provided in user stories expressed in Natural Language (English). The

object-oriented design elements were extracted using a natural language processing (NLP) tool

called "Stanford CoreNLP" by the author. Author uses a purposed algorithm called design

element extraction to extract the components of the diagram like (classes, attributes, relations,

and operations of classes) from numerous user stories. To process user stories, tokenization, and

35

Part of Speech, and co reference resolution were utilized. After that, the word dependencies are

applied to each sentence in a user story. To prevent extracting classes in a plural and the same

singular, the author employed a stemming technique, which is the process of reducing a word to

its root. Redundancy in classes was eliminated with the help of WordNet. Finally, using the

PyEcore API, the author created an XMI file, that is an Ecore file. In addition, the class diagram

is visualized in a PNG image using the PlantUML API. Python was used to implement the entire

system.

Vidhu Bhala R. Vidya Sagar et al [30] propose a technique for automatically generating a

conceptual model from functional specifications expressed in natural language. The first four

functional modules, text pre-processing, syntactic feature extraction, design element extraction,

and relation type classification, produce the fundamental conceptual model. NLP tool “Standford

core NLP” utilized by author to create a conceptual model diagram. Different NLP techniques

was used by author such as tokenization, stemming, POS tagging and parsing for processing the

text that is in the form of natural language processing. Author made different rules for creating

the class diagram and extract different elements of class diagram such as classes, attributes,

operations, association, inheritance, aggregation and composition. Author purposed tool didn’t

focus on the redundancy and the complex problem statement also fail to identify the cardinality

between the classes. The result of the author purposed model are fairly good.

A unique automated technique for recovering scenarios from the source code of web applications

is presented by Joanna C. S. Santos et al [31]. These scenarios are depicted with use case

diagrams, which are accompanied by sequence diagrams that explain how each use case is

implemented within the system. The author applied natural language processing (NLP)

approaches like dependency parsing and POS tagging to pull use cases out of these recognized

endpoints, and then used the computed program slices to create sequence diagrams for every use

case. The author then used Sagan, an open-source Web application, to perform an initial

evaluation of the purposed approach by identifying endpoints. Then, using sequence diagrams,

they show how the use cases were produced and how they were implemented.

Shweta et al [32] propose a modification on current rules that takes into account the keywords

inside the text. The author's main focus was on developing rules for extracting class diagram

elements using NLP tools and methodologies. The newly developed rules are based on terms like

main scenario, use case name, actor and so on. The identification of class diagram elements was

broken down into four stages by the author. The first step is to extract classes, then attributes,

methods, and finally relations. The author created the new rules in addition to the previously

created rules that are already in use. For the implementation of the defined rules, Stanford Parser

v3.5.2 was utilized. NLP techniques such as stop words removal, lemmatization, parsing is

utilized by author for the processing of natural language. Purposed tool only identifies the

classes, attributes and operations. Author do not focus the relationship. Accuracy of the purposed

tool is fairly good.

36

Mathawan Jaiwai [33] purposed a tool to analyze requirements written in Thai language and

extract class diagrams by identifying classes, attributes, relationships, and operations. Author

employ NLP tools to automatically process requirement texts and manually apply the rules to

extract classes and attributes. And in next steps they apply rules to extract relationships and

operations as well as making the process to be as automatic as possible. Heuristic rules may be

applied to help increase accuracy as well. Purposed tool can benefit Thai software developers by

reducing time in generating class diagrams from requirements written in Thai and also help

novice developers learn the relationships between requirements and class diagrams. Firstly, tool

preprocessed and reconstructed the requirement that is written in Thai in a plain text format.

Secondly, NLP techniques that is tokenization apply on that requirement that tokenize the

sentences into words. Third, NLP technique POS tagging is performed on each token. Lastly,

class diagrams are extracted using heuristic rules. Also, they used WordNet or a synonym

resource to compare nouns with similar meanings.

Richa Sharma [34] presented a method for automatically generating class diagrams from natural

language requirements specifications using syntactic dependency analysis and Grammatical

Knowledge Patterns (GKPs). The author-purposed technique does not need rewriting the

requirements specifications, nor does it impose additional input format constraints. The author

presented a system in which the textual representation of requirements is stored in an

intermediate form that can accept updates (optional) from the user. As shown by the case studies,

the author overcame the limitations of existing approaches. Yet, the correctness of the parser's

results severely limits the accuracy of their technique. Despite this, the Stanford parser produces

excellent results. They did exploratory research to get human analysts’ impression of class

diagrams for case-studies addressed in the provided work because there is no gold standard for

the actual class-diagram for such scenarios. Author established the benchmark approach to

utilize as a baseline for which they produced evaluation metrics for our solution method, based

on the received responses.

Esra A. Abdelnabi [41] reviews the literature on converting textual requirements into UML class

models and identifies their benefits and weaknesses. The study provides a thorough overview

and assessment of current methodologies and tools. The degree of automation, completeness, and

efficiency, as well as the approaches used, are all investigated and examined. The research

proved the importance of automating the process, as well as merging artificial intelligence with

engineering requirements and extracting class diagrams from natural language requirements

utilizing NLP tools. The author concludes that it appears that no significant effort has been taken

to generate UML class diagrams from NL specifications. All of the techniques are either

extremely complicated or have numerous drawbacks. A few of these systems could detect classes

and build object models; however, the resulting diagrams frequently include unnecessary classes

while omitting the necessary ones. Many current systems do not support some essential and

enriched kinds of relationships such as generalization, association, aggregation, dependency and

composition. There is no mechanism for producing entire class diagrams or other UML diagrams

37

automatically from free-text requirements. The majority of previous tools did not allow to see

UML diagrams, and some of the current technologies required human intervention in order to

build UML diagrams with related attributes and methods automatically. Just few techniques are

completely automated. Moreover, many current solutions simply accept a limited number of

requirements and needs developers' assistance in refining process and in identifying requirements

inconsistencies. Rather than NL-free texts, the current systems almost demand that requirements

to be written in a restrictive language or in a specified format.

Esra A. Abdelnabi et al [35] suggested a technique for evaluating natural language requirements

and retrieving relevant software information and concepts to aid in the creation of a UML class

diagram from unlimited natural language requirements. Applying NLP approaches, the author-

purposed technique minimizes the uncertainty and complexities of NL. Tokenization, stemming,

POS tagging, parsing, are lemmatization some of the NLP techniques employed by the author.

Open Information Extraction (OpenIE) is a technique used for extracting domain relation triples,

which describe subjects, relations, and their objects. To execute the transformation process, the

author presented a number of heuristics rules. The findings were encouraging, and they back up

the use of heuristic principles and NLP techniques to merge the benefits of automation and

human thinking. A test case was used to test and assess the approach, and the findings prove that

it is both satisfactory and practical.

Abinash Tripathy et al [36] describe a design activity which is utilized to create a design

document from an informal specifications found in the SRS document. The modular design

document illustrates the modular structure of a formal specification that is the class module's

external design. As a result, every class contains the information on the class module name and

function name. There are various sub-activities in the design activity. By using informal

specification, every one of these creates an intermediate product. As input, a text file containing

an SRS document is used. It has details of the software you're looking for. The file is then

tokenized, which converts it into words. The word is checked in many tables to represent the

software design process using natural language and to acquire object-oriented components, such

as the Class diagram for ATM system. The process tool comprises of "eclipse indigo" for Java

programming and for determining the class name, attribute, and function within it. Eight

different tables are developed throughout the purpose design activity. The tokenize process takes

the SRS document as input. To determine which POS the result of the tokenizer belongs to, it is

checked in various tables. Both noun and verb tagged words are saved with in NON array via

various POS. The array is then examined to produce the final result.

Jitendra et al [37] developed a method that interprets sentences using a richer language model

based on Hornby's verb patterns and recognizes domain elements by using semantic relationships

between the words within sentences acquired via type dependencies (TDs). AnModeler, a GUI-

based application, is used to support the author method. With the support of 40 subjects and 40

UCSs, the author performed a control experiment to validate the proposed method. The analysis

class diagrams generated by the suggested approach are significantly more correct, more

38

complete, and far less redundant than those produced by current automated methods, according

to the results of the experimental research performed for the assessment of the approach.

Bashir et al [38] present an approach called requirement engineering analysis & design (READ)

that uses domain ontology and natural language processing (NLP) techniques to build a unified

modeling language (UML) class diagram. The READ system was developed in Python, and it

efficiently produces a UML class diagram of textual requirements provided in English, including

class name, attributes, functions, and relationships. The READ software accepts requirements

expressed in English as text files (.txt). The very first step is to break down the requirements into

words and sentences to make them easier to understand. Applying NLTK's tokenization

approach, the author separates every sentence in the requirements and saves the results inside a

list. There is only one sentence in every element of the list. After that, use NLTK's word

tokenization approach to further break every sentence into words. Parts of speech tagging is the

most significant phase in the purposed system. Author uses NLTK's POS-tagging mechanism to

tag every word by its part of speech tag, which accepts the word like an argument and produces a

Python tuple containing the word itself and part of speech tag. The precision with which NLTK's

POS tagging mechanism tags the words determines the accuracy of the author purposed system.

The result of POS tagging segmentation module is arranged like a python list that includes a list

of sentences which are further POS tagged when it is completed. In simple words, the author

claims to have a list of uniquely labeled sentences. The READ knowledge extraction module

receives the segmentation module's output. Author developed certain heuristics principles to

assist us in extracting class names, attributes, functions, and associations in this module. Author

additionally sets up the thresholds list in this module. Such thresholds are being used to reduce

the problems that earlier technologies had with over-generation. Even though some of the earlier

studies presented the concept of thresholds, their concept is merely based on the entity's

occurrence in requirements. They evaluate both the entity's occurrence in requirements and a list

of concepts which are most frequently observed in informal requirements and, while nouns,

can't be regarded a class in the author's methodology. In their suggested technique, the author

presented Strong Threshold (STH) and Weak Threshold (WTH). Aside from the over-generation

issue, the concept of thresholds aids us in mitigating the flaws in NLTK's POS tagging

mechanism to certain level. The suggested system was assessed against publicly available

standards to determine its efficiency, and the findings reveal that it surpasses existing approaches

for object-oriented program design.

Rijul Saini et al [39] use natural language processing techniques with machine learning for

extracting domain models from problem specifications provided in natural language. The

author presented an automated and tool-supported methodology that produces more accurate

extracted domain models than other methods. Furthermore, the method creates trace linkages for

every domain model element. The trace links allow new modelers to run queries on the extracted

domain models to learn more about the modelling decisions they made and improve their

modelling abilities. Authors also suggest a new comparability metric and explain

39

their experimental methodology in order to assess their purposed technique. Finally, the authors

propose a study roadmap that outlines research goals and challenges.

Narawita et al [40] conducted study on using Natural Language Processing to automate the

creation of Unified Modeling Language (UML) diagrams from analyzed requirements. The

method has been evaluated with over twenty (20) cases by the author, and it has a 70% accuracy

level. This figure was derived based on all of the scenarios' passed test case results.

Conte et al [28] aims to use natural language processing to help in class diagram creation. For

this, an application prototype is modeled and implemented in order to validate the proposal. The

initial evaluation of the use of the tool was considered satisfactory.

Bousmaha et al [42] introduced a framework (AL2UML) for semi-formalizing specification

requirements from NL to a UML class diagram. The author proposes AL2UML for the

conceptualizing the information system specification texts, with a focus on the construction of

UML class diagrams using hybrid methodologies that combine statistical and

linguistic approaches. The reality that the specification texts are in Arabic is a unique addition of

their effort. The Arabic language is particularly difficult due to its complicated linguistic

features. They created the Alkhalil+ software to create the linguistic model as well as to proceed

with the pretreatment of the requirements texts. It performs a wide range of tasks including

tokenization, MSA, segmentation, lemmatization, morphological analysis, part-of-speech (POS)

tagging, discretization and disambiguation. The experimentation yielded a disambiguation

accuracy of more than 85%. An XML file having information required for conceptual model is

produced as the result. The chunker is designed in the second step by Author. They created a list

of chunk categories which were required for sentences classification and the extraction of

meaning. The author then conducts a sematic assessment of their work. In order to represent the

entirety of the retrieved data, a semantic network is constructed as an output. After that, they

created the UML Class diagram.

To construct the class model using software specifications, Ahmed et al [43] suggest a unique

and completely automatic NLP approach. The innovative rules of sentence splitting,

tokenization, and POS tagging provided by the author are included in the suggested NLP

technique. To produce a conceptual class model, the given rules were implemented to the initial

simple text requirement specification. The author's suggestion focuses on using matched nouns

for extracting Noun Plural (NNS), Proper Noun Singular (NNP), and Proper Noun Plural

(NNPS). To eliminate repetition among classes, the author defines a vocabulary that contains all

unnecessary glossary words such as user, software, number, and so on. The Automated

Requirement 2 Design Transformation (AR2DT) software was created as part of the study to

automatically produce class models with code using plain text specifications. AR2DT doesn’t

currently support the creation of class attributes, functions, or relationships such as inheritance,

composition or aggregation.

40

Utama et al [44] propose a method for extracting class diagrams from problem statements. The

name of the class, its attributes, and its operations are all shown in a class diagram. Natural

Language Processing can be used to generate a class diagram from a problem statement

automatically. Tokenization, stemming, POS tagging, parsing, lemmatization, and chunking are

all used by the author using the NLP software Spacy. The algorithm and preprocessing stage

have a significant impact on the extracting outcomes. The algorithm was derived from a variety

of sources, with extra rules added during the implementation stage.

2.10 Answers to Research Questions

RQ1: What are the major NLP techniques, tools, and algorithms for the generation of Class

Diagram from Natural Language Requirements?

2.10.1 Natural Language Processing Techniques

The Tokenization, POS tagging, Chunking and Parsing are the basic NLP techniques to process

the initial plain text requirements. The utilization of major natural language processing

techniques, in the context of first two SDLC phases, has been summarized in Table 6. It can be

analyzed from the Table 6 that these major NLP techniques are utilized by the researchers

exclusively as well as jointly. There are researches that do not explicitly define the utilization of

NLP techniques in their study but specific tool has been used to achieve the desired objectives.

Table 6 Natural Language Processing (NLP) techniques utilized in different articles

Sr. No. NLP Techniques Relevant Articles Total

1 POS Tagging [33],[42] 2

2 Tokenization+ Parsing [36] 1

3 POS Tagging +Parsing +Type Dependency (TD) [37] 1

4 Tokenization + Stemming+ POS Tagging + Stop

Words

[38] 1

5 POS Tagging + Tokenization + Parsing [39] 1

6 POS Tagging + Tokenization [40],[28] 2

7 POS Tagging + Stop words Removal [34] 1

8 POS tagging + Stemming + tokenization + parsing [29],[30] 2

9 POS tagging + Stemming + tokenization + parsing +

Lemmatization

[35] 1

10 POS tagging + dependency Parsing [31] 1

11 Stop words Removal + Lemmatization + Parsing [32] 1

12 Sentence splitting + tokenization + POS Tagging [43] 1

13 POS tagging + Stemming+ tokenization + parsing +

Lemmatization + Sentence Splitting

[41] 1

14 POS tagging + Stemming + tokenization + parsing +

Lemmatization + Chunking

[44] 1

Total Articles 17

41

2.10.2 Natural Language Processing Tools

2.10.2.1 Tools Utilized by Researchers

There are few existing tools, utilized by the researchers, in order to achieve particular research

objective. So, it is important to identify and highlight such NLP existing tools as shown in Table

7. NLP tools are used to perform certain relevant activities like parsing, text chunking etc. We

identified 11 NLP tools that is used by researchers. Most of the researchers do not mention the

specific NLP tool kit as we can see in Sr. No.1 of Table 7.

Table 7 NLP tools utilized by researchers

Sr. No. Tools Utilized by Researchers Relevant Article Total

1 NLP [28], [31], [36],[42],[41] 5

2 NLTK [33] 1

3 Stanford core NLP [30], [35] 2

4 Stanford Parser- v3.5.2 [32] 1

5 Stanford Parser [34] 1

6 NLP+ used richer language model and

AnModeler

[37] 1

7 NLTK + Domain ontology techniques [38] 1

8 SpaCy [39],[44] 2

9 SharpNLP [40] 1

10 SharpNLP-1.0.2529 + Wordnet [43] 1

11 Stanford core NLP + Wordnet [29] 1

Total Articles 17

2.10.2.2 Tools and Algorithms Purposed by Researchers

We identify 12 algorithms, proposed/utilized by researchers to develop particular tools. Table

show the different Algorithms against the tools that is identified from the different articles.

Provide the foundation to develop particular NLP-based tool for the generation of required

SDLC artifact. For example, [38] employ READ algorithm to develop READ tool.

42

Table 8 NLP algorithm used by researchers in purposed tool

Sr. No. Tool Name Algorithm Relevant Article

1 UML class diagram

generation

Design Element Extraction [29]

2 Conceptual Model Rule based approach [30]

3 Class diagram solution approach based on syntactic

dependency analysis and GKPs

[34]

4 UML Class Diagram NLP+ heuristic rule algorithm [35]

5 Class name Algorithm to Extract class name by

analyzing test file

[36]

6 Identify domain

elements

systematic NLP rule-based approach [37]

7 READ READ Algorithm for class

generation

[38]

8 UML generator NLP+XML rules [40]

9 AR2DT rule based algorithm to generate

class diagram

[43]

10 AL2UML Rule based Algorithm to process

Arabic Language

[42]

11 Automated class

diagram

extract classes and attribute

algorithm

[44]

12 LIDA, CM Builder,

RE-Builder UML,

UMLG, RACE,

RAPID, RAUE, DC-

Builder, ABCD, SUCM

LIDA model Algorithm, Parsing and

conference algorithm for CM

Builder, RAUE filtering Algorithm

for RAUE

[41]

RQ2: What level of automation is achieved through the NLP for the generation of class

diagrams?

2.10.3 Automation Level of Design Phase

To this point, we already identified and present the significant NLP techniques, tools and

algorithms for the generation of requirements, and design artifacts of SDLC through the

Systematic Literature Review. In this section, we perform the detailed analysis of leading class

generation approaches as summarized in Table 9. It has been analyzed that the design phase

studies mostly deal with the generation of class diagram. Therefore, we deeply examine the

significant class generation studies) with important evaluation parameters because in many

articles researchers claim that they identify the complete elements of the class diagram and

43

remove the redundancy between the classes but they do not identify all the elements of the class

.so we set some evaluation parameters to check the automation level of class diagram. The

selected articles were evaluated against the following aspects, each on a pre-defined scale of 0 to

1. This was done to check automation level of class diagram. At the end, total Score of each

article tell us the automation level of each.

So, following are the evaluation parameters of the class diagram to check the Automation Level

• CEP1: Articles deal with Classes- Yes (+1), NO (0).

• CEP2: Articles deal with Attributes- Yes (+1), NO (0).

• CEP3: Articles deal with Functions- Yes (+1), NO (0).

• CEP4: Articles deal with Association- Yes (+1), NO (0).

• CEP5: Articles deal with Direction Association- Yes (+1), NO (0).

• CEP6: Articles deal with Inheritance/Generalization- Yes (+1), NO (0).

• CEP7: Articles deal with Realization- Yes (+1), NO (0).

• CEP8: Articles deal with Multiplicity- Yes (+1), NO (0).

• CEP9: Articles deal with Aggregation- Yes (+1), NO (0).

• CEP10: Articles deal with Composition- Yes (+1), NO (0).

• CEP11: Articles deal with Redundancy- Yes (+1), NO (0).

44

Table 9 Level of Automation of Class Diagram using NLP

S
r.

 N
o
.

R
ef

.

C
la

ss

A
tt

ri
b

u
te

s

F
u

n
ct

io
n

s

A
ss

o
ci

a
ti

o
n

D
ir

ec
t

A
ss

o
ci

a
ti

o
n

In
h

er
it

a
n

ce
 /

G
en

er
a
li

za
ti

o
n

R
ea

li
za

ti
o
n

M
u

lt
ip

li
ci

ty

A
g
g
re

g
a
ti

o
n

C
o
m

p
o
si

ti
o
n

R
ed

u
n

d
a
n

cy

T
o
ta

l

1 [28] 1 1 0 1 0 0 0 0 0 0 0 3

2 [29] 1 1 1 1 0 0 0 0 1 0 1 6

3 [30] 1 1 1 1 0 1 0 0 1 0 0 6

4 [32] 1 0 0 1 0 0 0 0 0 0 0 2

5 [33] 1 0 0 0 0 0 0 0 0 0 0 1

6 [34] 1 1 0 1 0 1 0 0 0 0 0 3

7 [35] 1 1 1 1 0 1 0 0 1 1 0 7

8 [36] 1 0 0 1 0 0 0 0 0 0 0 2

9 [37] 1 1 1 0 0 0 0 0 0 0 0 3

10 [38] 1 1 1 1 0 0 0 0 0 0 0 4

11 [39] 1 0 0 0 0 0 0 0 0 0 0 1

12 [40] 1 1 1 1 0 0 0 0 0 0 0 4

13 [43] 1 0 0 1 0 0 0 0 0 0 0 2

14 [44] 1 1 1 1 0 0 0 0 0 0 0 4

2.11 Limitations

The findings of this study are done against a defined methodology. There might be some relevant

studies which fall beyond the boundaries of the methodology and hence, are missing from this

study.

Cognitive Bias: the keywords selected to represent the search query were thought by the authors.

There can be synonyms or other words, used in articles, to represent the same concepts.

45

Selection Bias: the articles selected for this study were taken from conferences or journal of five

e-repositories, published between 2014 and 2021. Other repositories might have relevant

literature. Also, there can be other articles in the same repositories that were published beyond

the decided timeline and address the same concerns.

2.12 Conclusion

This paper investigates the Natural Language Processing (NLP) applications to automatically

create the class diagram from early plain text requirements. A systematic literature review (SLR)

was conducted to select 29 studies that were published between 2014 and 2021. After quality

evaluation found 17 articles that helps to answer the research questions.

Consequently, 14 combinations of main NLP techniques (i.e., Tokenization, POS tagging,

Chunking and Parsing e.tc) are identified. Moreover, NLP algorithms are identified that

purposed by researchers to for their tools furthermore, overall, 12 tools, proposed by the

researchers, are presented. In additional, 11 existing tools, utilized by the researchers in the given

research context. It is concluded that NLP demonstrates promising outcomes for the automation

of software development phases. For example, design artifacts like class diagrams are effectively

generated from initial requirements by utilizing various NLP techniques. Furthermore, it is also

concluded that some sort of manual processing is required on early requirements before applying

NLP techniques for the generation of desired SDLC artifact i.e., requirement and design phase.

The findings of SLR like NLP techniques, tools and algorithms are highly beneficial for the

students, developers and researchers of the domain. Furthermore, there is a fair possibility to

extend this research in multiple directions. For example, one probable area would be the

empirical investigation of identified tools through certain parameters like usability, operational

complexity etc. Another interesting area would be the comparative analysis of the identified tool

development algorithms.

46

CHAPTER 3

METHODOLOGY

3.1 Introduction

Getting adequate and desired information from preliminary data in the initial and the most the

critical phase of analysis requires a lot of manual intervention which results in huge processing

time. Additionally, such manual interventions in data processing cause a lot of errors if overall

data is complex and huge. To overcome these issues, Natural Language Processing (NLP), a

field of text mining shows some encouraging and propitious results especially in bio-medical

domain [57]. Sentence splitting, tokenization, POS tagging, and other natural language

processing (NLP) techniques provide complex and automated data processing features and now

it is applied over different software development phases to automatically generate the

requirement specifications [58], and design models which includes automated use case

generation [59], class diagram generation [59], activity diagram generation [60] and so on from

natural language user requirements.

As said earlier, the requirement identification and analysis phase are most critical stage in

software development as analysis of software user requirements is extremely crucial task in the

software development life cycle (SDLC), as input to this stage is mostly in natural language

which is ambiguous. Communication between the project stakeholders i.e., users and developers

are in natural language, as developers also need to analyze the requirements document was

written in the plain natural language i.e., English. Advantage of using natural language for this

purpose is the freedom of expression as each and everything can be described by using natural

language. But on the other hand, still natural language creates many problems for the software

designers because of its error-prone nature and ambiguities in requirements written in plain

natural language can be interpreted in different ways and software designers must tackle a huge

number of requirements which will create difficulties for them.

During the requirements analysis phase, analysts, and project stakeholders simultaneously

gathers the requirements for the project. These preliminary requirements serve as an input to the

next phases of software development for the planning of efforts and schedule. This needs to be

completed as early as possible. Requirements change during any phase of the project will be

more and more expensive than the requirement phase itself. The biggest problem with natural

language requirements is that stakeholders assume that analysts know everything regarding

requirements. Such problem in the initial and most critical phase will cause a disagreement

between the project stakeholders i.e., users and analysts much later, for once or in later stages of

the project that will consume a lot of time and effort to fix it.

To overcome the requirements change from the users, most projects need a sign off of the

preliminary requirements by all the relevant stakeholders i.e., users, analysts, designers and

testers. Requirement’s analysis phase is subjective in nature and highly dependent on opinions of

47

personals. Some project stakeholders i.e., designers got trouble understanding the natural

language user requirements without any analyst’s assistance. It is significant for the stakeholders

i.e., designers & developers to understand the user requirements presented by the analyst so that

to understand the user requirements in an efficient manner.

Different tools exist to visualize and render requirement specification, but none of them help the

analyst during the initial and critical phase. The conceptual model is a relevant and useful

artefact for visualizing user requirements. In a problem domain, a conceptual/domain model

depicts entities and relationships. Only domain entities & attributes are defined by Larman et al

[61], which is a static model of the system. On the other hand, Booch et al [62] presents the

OOAD model, which resembles a UML class diagram, which includes classes, attributes,

operations and relationships and is a dynamic model of the system. A conceptual/ domain model

is considered as an efficient model in terms of visual communication as of this type of model

consumes less space than the natural language requirements and conveys the maximum

information. In newer software development models, the use of the conceptual model is

recommended, like in agile modeling [63] and adopted in OO development models by using

UML [64].

LindLand et al [65] proposed a quality framework for the conceptual model validation

for the first time in history which basically covers three types of quality models: pragmatic

quality model, semantic quality model, and syntactic quality model. Pragmatic quality model

addresses model efficiency and ensure that the audience understand the information given in

the model or not. The semantic model addresses the validity and completeness of the model

keeping in mind the target domain while the syntactic quality model addresses the correctness of

the model by using formal syntax. Every quality model elaborates some goals and objectives.

Using such a quality framework in a project’s initial phase will make a suitable way for the

systematic analysis of requirements in visual terms.

In this paper, a methodology is proposed to focus on the automated extraction of classes and

their attributes and relationships to create a conceptual model i.e., class diagram from natural

language plain text in an effective way. The main goal is to create a class diagram that will help

the designers in the later phases of software development, and it will help the requirements

analyst too to help the other stakeholders of the project to understand the requirements in visual

form (as told earlier the advantages of visual communication).

Another advantage of automation of this step is: the focus of the designer will be on model

refinement rather than by creating a manual class diagram. This will help the designer to

communicate with requirement analysts and other stakeholders and due to this, analysts can do

multiple iterations of requirement analysis refinement which results in the requirements in which

all the stakeholders feel comfortable.

48

Overall overview of this research is given in following Figure 6.

Figure 6 Overview of research study

In this thesis, a class diagram tool named SD-LINGO is developed for the automatic

identification of classes, attributes, and relationships from raw requirements written in plain

English language. SD-LINGO is validated over different case studies and results are presented in

(Chapter 04). First existing literature regarding class diagram generation from user requirement

using NLP is reviewed including NLP techniques that transform plain text to conceptual class

model. Also reviewed and examined the rules to convert the natural language text to conceptual

class model i.e., class diagram. SD-LINGO process the case study sentence by sentence. When

one sentence in the case study is processed by the system then it moves to the next sentence. This

research work starts with the identification of classes, attributes, and relationships from the plain

text while using existing NLP tools named NLTK to identify noun phrases, adjectives, verb

49

phrases etc. This step is processed in our research based on the existing work. After POS

tagging, the process of extraction of classes, attributes, and relationships is based on a set of

rules.to remove the redundancy between the classes wordnet library is used that helps to find the

synonyms of words. When all the processing is done then the system generates the class

diagram.

3.2 Strategy and Design of the Proposed Tool

SD-LINGO is a natural language-based CASE tool that is used to perform object-oriented

analysis. Natural language plain text is used as input to this tool, which is linguistically evaluated

to extract classes, attributes, functions, and relationships. SD-LINGO is written in python with

approximately twenty-four hundred lines of code. The tool used for front-end development is

Spyder IDE 5.1.5. SD-LINGO produces all the elements of a class diagram such as classes,

attributes, function, and relationships (Association, Direct Association,

Inheritance/Generalization, Multiplicity, Realization). Python offers a number of alternatives for

creating graphical user interfaces (GUIs). For designing the GUI of the tool, we used Tkinter.

Tkinter is Python's standard GUI library. We chose Tkinter because it allows us to construct GUI

apps quickly and easily using Python and Tkinter. Tkinter gives the Tk GUI toolkit a strong

object-oriented interface.

The steps are summarized as follows:

• Take a set of natural language software requirements (plain English text).

• Used NLTK tool kit of NLP to identify noun phrases, adjectives & verb phrases from

natural language text.

• Apply rules and identify all the elements of class.

• Generate a class diagram.

• All the processes of the presented tool are fully automated.

3.3 Proposed Methodology and Implementation

3.3.1 Natural Language Software Requirements

There is not any standardized format or template to writing natural language software

requirements. As input to SD-LINGO is in natural language which is plain text, so obviously, it

is inherently ambiguous and error-prone. The basic challenge to our tool is the plain text which is

obviously our aim too. SD-LINGO will accept natural language software requirements as input.

3.3.2 Pre-Processing

Minor pre-processing steps are applied to the plain text for consistency purposes. Not so much

altered the document so that to alive the subject of research of having natural language text as an

input. Pre-processing steps are given as follow:

50

Rule no 1: Select abbreviations or full descriptions

In this rule, we have decided to select only one thing in description i.e., Abbreviation or

a word whose description is given. For example, in the ATM case study word ATM is stated like

this automatic teller machine (ATM) so we have to ignore automatic teller machine and just

written ATM instead of automatic teller machine.

Rule no 2: Remove brackets (if any)

As described above we have selected (ATM) instead of an automatic teller machine. But

in the passage, it will be with brackets around ATM which some time misses in the phase of POS

tagging so we have eliminated such types of brackets to ease and accuracy of the POS tagging

phase.

Rule no 3: Remove unnecessary full stop like if there is any e.g., remove it because it makes

classes

We discovered 'e' and 'g' as nouns during the POS tagging step due to the purpose of writing

'e.g.,' that is being used for the purpose of short cut to “for example” so we recommend to

remove such types of things from text to get correct entities only.

Rule no 4: If there are any examples to explain requirements remove it

Same in the case of things, which are not part of requirements, but are included in the

text. To just explain the idea with different examples. We recommend removing such types of

examples from the text. Like in the case study of the Bank Account management system they

have exampled the joint account and given the husband-and-wife account for that purpose which

is not part of the requirement. Husband and wife are nouns and if we process them as it is they

will be our classes so it necessary is to remove such types of things.

Rule no 5: Unnecessary capital words into lower case

In some case studies or textual descriptions, we have found the unnecessary capital words which

are not necessary like:

• The branches are considered subdivisions of the Consumer Division. The above the

statement has C capital in Consumer and D capital in Division which is not necessary.

We recommend converting such words in lower case and then put into the tool for further

process. The processed sentence is “the branches are considered subdivisions of the

consumer division”.

3.3.3 Comprehension of input using Natural Language Toolkit NLTK [66]

• NLTK is a popular Python environment for working with human language data. It

includes a set of text processing libraries for tokenization, classification, tagging,

stemming, semantic reasoning and parsing, as well as wrappers for industrial-strength

51

NLP libraries and an active discussion forum, as well as convenient interfaces to over 50

corpora and lexical resources like WordNet.

• Sentence Splitting: This tool's feature divides a big text file into a series of sentences,

reducing the text file's complexity.

• Tokenization: This tool's functionality turns sentences into tokens, which includes

punctuation, words, and numbers being separated.

• Stop words are terms that we want to omit, therefore the system removes them from the

text as it is processed. Words like 'is,' 'in,' and 'an' are commonly utilized as stop words

because they don't offer much significance to a text.

• Stemming is a text processing activity that involves reducing words to their root that is

the most fundamental portion of the word. The root "help" is shared by words like

"helping" and "helper." Stemming helps to focus on a word's essential meaning instead of

the specifics of how this is being utilized. Although NLTK has several stemmers, we'll

use the Porter stemmer.

• POS-tagging: Part of speech is a grammatical term that refers to the roles that words play

in sentences when they are used together. The process of classifying the words within

your text according to their part of speech, is known as POS tagging.

• Chunking: This capability of tool provides the detection of phrases boundaries. E.g., verb

phrases chunk in a sentence.

• Parsing: This capability of tool provides formal description of a given sentence in a

language called a grammar in an allowed structure.

Example of POS tagged extracting nouns, verbs, adverbs and adjectives from natural language

requirements are given in Figure 7. Table 10 contains a list of POS tagged words and their

abbreviations.

Figure 7 Example of POS tagged sentence

52

3.3.4 Rules Used by SD-LINGO Tool

This section includes the set of rules that provides some correspondence among the natural

language sentences and OO modeling. This set of rules is applied over the natural language

requirements for the extraction of knowledge using natural language processing. The specific set

of rules is given below for determining the entities (classes), attributes, and relationships.

Purposed Tool has a list for common attributes, non-attributes, common functions, non-function,

and common classes and non-classes. When the system identifies any tag such as noun, verb, and

adjective, etc. then firstly it matches that identified to the list that is mentioned above. These lists

are helping the system to get valuable information from requirements and increase the accuracy

of our system.

These lists (common attributes, non-attributes, common functions, non-function, common

classes, and non-classes) are updated over time. When the lists become larger and become more

versatile than it helps the system to enhance the accuracy with the best and accurate results.

3.3.4.1 Rules for the Identification of Classes, Attributes, and Functions

Rule No. 1:

If the system finds a token having a tag of NNS, then it checks the token in the non-classes list if

that token does not exist in the list of non-classes, then the system uses that token as a class and

add that token in classes-list and set that class as an active class for the attributes and functions.

Rule No. 2:

If the system finds a token having a tag of VB, then it checks the token in the list of the common

attributes if that token exists in the list of common attributes, then the system adds that token in

the list of attributes or functions according to the system other rules that are used for the

identification of function and attributes.

Rule No. 2 also activates Rule No.4 and Rule No.15 for further processing.

Rule No. 3:

If the system finds a token having a tag of NN, and the system doesn’t have any active class

before then it checks the token in the list of non-classes if the identified token is not in the list of

non-classes, then the system adds this token in classes-list and set that class as an active class if

the system does not find any active class before.

If the system finds any active class, then it checks that token in the classes-list if that token exists

in the class-list then the system set that token as an active class otherwise system used that token

for the attribute or function according to other rules that are used for the identification of

attributes and function.

53

Rule No. 3 is also responsible for activating Rule No.8, Rule No. 9, and Rule No. 13and also set

the first combination for Rule No. 8 and Rule No. 11.

Rule No. 4:

If the system finds a token having a tag of DT, then the system activates the Rule No.4

Combination flag, and deactivates Rule No.4.

• Rule No. 4 Combination Flag: If the system gets a token having a tag of JJ, then it

activates the Rule No. 4 combination-2 flag and deactivates the Rule No. 4 combination

flag and sets the token as the first combination for Rule No. 4.

If the system does not get the JJ tag, then it deactivates the Rule No. 4 combination and

sets the first combination to unknown.

• Rule 4 Combination-2 Flag: If the system finds a token having the tag of NN then it

makes sure that this token is not in the list of non-attributes if the token does not exist in

the non-attributes list, then it combines that token with the first combination and insert in

attributes of the active class. If the system finds that token in the functions list, then we

combine it with the first combination and insert it in the active class functions list. If the

system gets NN then firstly system make sure that this token is in the list of the common

attributes if exist in this list, then it combines with the first combination and insert in

active class attributes.

Rule No. 5:

If Rule No.4 flag is deactivated and the system has an active class and the system found the tag

of DT, then it activates the Rule No. 5 combination flag. The system also activates the DT hunt

flag.

• DT Flag: If the System identifies the token with NN then the system sets it as the first

combination for Rule No. 5.

• Rule 5 Combination Flag: If Rule No.5 combination flag is true and the system gets the

token with NN and active class name, not in the non-classes list then the system

combines the first combination and adds in attributes or functions according to the rules

for functions and attributes.

Rule No. 6:

If the system identifies the token having the tag of JJ and if it is at the last index of the sentence

and the active class is not in the list of non-classes, then the system inserts the current token in

the attributes or functions list according to the rules. It also activates the Rule No.6 combination

flag if the system is not at the last index of the sentence.

• Rule 6 Combination Flag: When Rule No. 6 combination flag is activated, then the

system checks if the current token is not in the non-attributes list and not in the active

54

class attributes list then the system inserts the current token in the current class attributes

list that is active on that time.

Rule No. 7:

If the system gets the token having the tag of DT, then it activates the Rule No.7 and Rule No. 10

flag.

• Rule 7 Flag: If Rule No. 7 flag is activated and the system gets the token having a tag of

NN then it activates the Rule No. 7 combination flag and sets the current token as a Rule

No. 7 first combination.

• Rule 7 Combination Flag: If Rule No. 7 combination flag is activated and the system

gets the token having a tag of NN then the system combines the Rule No. 7 first

combination and the current token and inserts it in the active class as attributes or

functions according to the rules.

Rule No. 8:

If Rule No. 8 is activated and the system gets the token having a tag IN, then the system activates

the Rule No.11 and Rule No. 8 combination flag.

• Rule No. 8 Combination Flag: If the Rule No. 8 combination flag is on and the active

class is not in the non-classes list, then the system then the system again checks the next

token that is followed by IN and insert that token with the Rule No. 8 combination (that

gets in Rule No. 3) in the active class attributes list.

Rule No. 9:

If the Rule No. 9 activation flag is true (that is activates in rule 3) and the system gets the token

having the tag of CC, then the system activates the Rule No. 9 insertion flag.

• Rule No. 9 Insertion Flag: If the Rule No. 9 insertion flag is activated then the system

inserts the current token that is find in the Rule no 9 insertion flag in the active class

attributes list.

Rule No. 10:

If the Rule No. 10 flag is activated (activate in rule 7) and the active class flag is false, then the

system activates Rule No. 10 Step 2.

• Rule No. 10 Step 2: When Rule No. 10 step 2 flag is activated, and the system gets the

token having the tag of NN then the system activates the Rule No. 10 step 3 flag.

• Rule No. 10 Step 3: When Rule No. 10 step 3 is activated, and the system gets the token

having the tag of DT then the system activates the rule 10 step 4 flag.

55

• Rule No. 10 Step 4: When Rule No. 10 step 4 is activated, and the system gets the token

having the tag of NN then the system sets the current token as the first combination for

Rule No. 10 and activates Rule No. 10 step 5.

• Rule No. 10 Step 5: When Rule No. 10 step 5 is activated, and the system gets the token

having tag VBZ then the system set the first combination that identified in Rule no 10

step 4 that is NN as a class name and insert in the classes list and combines the first

combination of Rule No.10 and the current token that is VBZ and insert the combination

of NN +VBZ as a class attribute.

Get NN for Class name and then add NN+VBZ as a class attribute.

Rule No. 11:

If the Rule No. 11 flag is activated (that activates in Rule No.3) and the system gets the token

having the tag of DT, then the system activates the Rule No. 11 step 2.

• Rule No. 11 Step 2: If Rule No. 11 Step 2 is activated and the system gets the token

having the tag of NN or NNS or NNP then the system creates a new class of (NN, NNS,

or NP) and insert the combination for Rule No. 11 (get in Rule No. 3) that is NN+DT in

the attributes of this class. In other words, create the class NN that is before the DT and

NN insert as an attribute that is after the DT.

Rule No. 12:

If the system gets the token having the tag of CD, then the system activates the Rule No. 12 Step

2 Flag.

• Rule No. 12 Step 2 Flag: If Rule No. 12 Step 2 flag is activated and the system gets the

token having a tag of NN then it inserts the current token in the active class attributes.

Rule No. 13:

If Rule No.13 activation flag is true (activates in rule 3) and the system gets the token having the

tag of WP, then the system activates the Rule No. 13 Step 2.

• Rule 13 Step 2: If Rule No. 13 step 2 is activated and the system gets the token having

tag NN then the system inserts the current token in the active class attributes list.

Rule No. 14:

If the system gets the token having the tag of TO and the system has an active class, then it

inserts the current token in the functions of the active class if the current token does not exist in

the non-function list.

56

3.3.4.2 Rules for the Identification of Relationships

Association

If the system found two or more classes in a single sentence, then it declares an association

between these classes and if the system found any other relationships between these classes, then

it drops this relationship according to the relationship priority.

Direct Association

If the system gets the token having the tag of MD system activate the direct association flag and

if the system finds any function that is in the functions list of the current class and after that if the

system found a new class, then it declares a direct association between these two classes.

Multiplicity

If the system found a token having a tag of CD system stores this tag as a multiplicity number

and after that, if the system found a new class, then it declares a multiplicity relationship between

these classes and shows the number toward the second class and many (*) towards the first class

also if system found class and after that it found CD tag and then find new class in next token

then it declares the Multiplicity between the classes.

Generalization/Inheritance

If the system found a class and in the next token system again find a new class, then it declares

these classes as inherit classes and if found words like a child, is kind of, is type of, generalized,

is categorized, and similar words and after that found new class then the system also declares

inheritance or generalization.

Realization

If the system found a function and this function is the same as other classes that have any

relationship with this class, then we declare realization between these classes and function show

on the relationship line.

3.3.4.3 Rule for Handling the Redundancy

To overcome the redundancy such as synonyms in the natural language requirement our system

uses the library of word net which provides the facility to the system to check the different

synonyms of the words. When the system finds a token firstly it checks the synonyms of that

token if synonym of that token already exists in the classes list, then it ignores the current token

and insert the attributes and functions of that token to the existing class that is synonym of the

token.

57

Table 10 NLTK POS tag list.

58

3.3.5 SD-LINGO Design Tool

For designing the tool, we used the Tkinter package .it is the standard Python interface for the

GUI toolkit. When python combines with the Tkinter it provides a fast and very easy way to

create GUI applications [67].

3.3.5.1 Class Diagram Drawing in SD-LINGO

Firstly, we find the center of the canvas then finds the class that has maximum relationships than

the other classes. We draw that class that has a maximum relationship at the center of the canvas.

After drawing the first class our system knows their current position on canvas because before

printing first-class system does not know the position. The system finds the second class that has

maximum relationship but less than the first class that is already drawn at the canvas. And then

draw second class at the right side of first-class on the canvas. After that system finds the third

class and draws on the left side of first-class on the canvas. We draw only three classes in one

row. When the system prints three classes in the center of the canvas in one row then it draws the

other three classes on the top of the first classes in one row and then the bottom of the first class

by following the procedure of drawing that is already discussed.

For relationships we set the priority to each relationship such as association priority is 1, direct

association priority is 2, multiplicity priority is 3, inheritance/generalization priority is 4, and

realization priority is 5. Higher numbers have high priority and low numbers have the lowest

priority. For showing classes relationship system firstly checks the total relationships and after

sorting the value of the relationships according to priority picks the highest priority relationship

and discards the other relationship. And store all high-priority relationships in their dictionary.

After storing the relationship in the dictionary system find the starting class and target class of

that relationship. The system automatically finds the path for relationships from starting class to

the target class without crossing the other classes. If the target class is on the left side of the

class, then it draws the line automatically from the left side of starting and follow the same

procedure for other target class that is at the top, bottom, and right side of the starting class. And

also, we give color to each relationship such as for association color is green, color for the direct

association is Brown, color for generalization and inheritance is orange, color for multiplicity is

navy blue, and color for realization is purple.

59

CHAPTER 4

EXPERIMENTAL VALIDATION

4.1 Local Hospital Problem Case Study

4.1.1 Problem Statement

Figure 8 Duffy et al [68] LHP Problem Statement

4.1.2 After Pre-Processing

4.1.3 Manual Object diagram of the LHP

Object model of Local Hospital Problem case study by Duffy et al [68] is given in Figure 9.

Figure 9 Object Model of Local Hospital Problem

60

4.1.4 SD-LINGO Screen Shot

Screenshot of AR2DT for LHP case study in context of class identification and initial attributes

+ relationships are given in Figure 10.

Figure 10 Screenshot of SD-LINGO for LHP Case Study

4.1.5 Class Diagram

Following class diagram is generated by SD-LINGO for the LHP case study automatically from

initial plain text as shown Figure 11.

Figure 11 Class Diagram of LHP case study generated by SD-LINGO

61

4.1.6 Comparison of Generated Classes from Actual Model and SD-LINGO

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

11. SD-LINGO generated 4 correct classes, 1 incorrect class, 1 extra class and 1 missing class in

comparison with the actual model where number of correct instances made by the system is

represented by ‘Ncorrect’. Number of incorrect responses made by the system refers to the

‘Nincorrect’. Number of elements missed by the system but still extracted by the human experts

are represented by ‘Nmissing’. Where number of extra elements retrieved by the system is said to

be ‘Nextra’. Both number of ‘Nincorrect’ & ‘Nextra’ will be determined by the human experts.

Precision, recall and over specification of the selected case study is given below Table 11.

Table 11 Comparison of GC/AM for LHP Case Study

Sr. No. Actual Model Classes Tool Generated Classes Status Class

1 Patient Patient Correct

2 Ward Ward Correct

3 Doctor Doctor Correct

4 Nurse Nurse Correct

5 Prescription Missing

6 Drug Incorrect

7 Hospital Extra

Correct=4, Incorrect=1, Extra=1, Missing=1

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=4/ (4+1) =0.8=80%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 4/ (4+1) =0.8=80%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 1/ (4+1) = 20%

62

4.2 Bank Accounts Management System Case Study

4.2.1 Problem Statement

Figure 12 BAMS problem statement

4.2.2 After Pre-Processing

4.2.3 Manual Object Diagram of BAMS

Object model of Bank Accounts Management System case human experts is given in Figure 13.

63

Figure 13 Object Model of Bank Accounts Management System

4.2.4 SD-LINGO Screen Shot

Screenshot of SD-LINGO for BAMS case study in the context of class identification and

attributes + relationships are given Figure 14.

Figure 14 Screenshot of SD-LINGO for BAMS Case Study

64

4.2.5 Class Diagram

Following class diagram is generated by SD-LINGO for the BAMS case study automatically

from initial plain text as shown in Figure 15.

Figure 15 A Class Diagram of BAMS case study generated by SD-LINGO

65

4.2.6 Comparison of Generated Classes from Actual Model and SD-LINGO

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

12. SD-LINGO generated 8 correct classes, 1 incorrect class, 2 extra classes, and 1 missing class

in comparison with the actual model where the number of correct instances made by the system

is represented by ‘Ncorrect’. The number of incorrect responses made by the system refers to the

‘Nincorrect’. The number of elements missed by the system but still extracted by the human experts

are represented by ‘Nmissing’. Where the number of extra elements retrieved by the system is said

to be ‘Nextra’. Both numbers of ‘Nincorrect’ & ‘Nextra’ will be determined by the human experts.

Precision, recall and over-specification of the selected case study is given below Table 12.

Table 12 Comparison of GC/AM for BAMS Case Study

Sr. No. Actual Model Classes Tool Generated Classes Status

1 Account Account Correct

2 Branch Branch Correct

3 Credit card Card Correct

4 Customer Missing

5 Manager Manager Correct

6 Division Divis Correct

7 OOBank OOBank Correct

8 Client Client Correct

9 Employee Employee Correct

10 Card Attach Extra

11 Banker Incorrect

12 System Extra

Correct: 8, Incorrect: 1, Extra: 2, Missing: 1

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=8/ (8+1) =0.888=88.8%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 8/ (8+1) =0.888=88.8%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 2/ (8+1) = 0.22=22.2%

4.3 Automatic Teller Machine (ATM) Case study

Rumbaugh et al [69] initially analyzed the ATM case study using their OMT methodology, has

been presented here. We take the same problem statement in this section and present the analysis

results. After which we present our system model and also present the comparison with

Rumbaugh et al [69] model.

66

4.3.1 The Problem Statement

Automatic teller machine (ATM) problem statement as presented in the book [69] is shown in

Figure 16 as follow:

Figure 16 ATM Problem Statement

4.3.2 After Pre-Processing

4.3.3 Object Model of Rumbaugh et al [69]

Object modelling techniques also known as OMT methodology are used by Rumbaugh et al [69]

to build the object model of the automatic teller machine (ATM) case study. Author considered

all the nouns and extracted list of candidate classes from the case study problem statement. The

list of candidate classes is 7: Computer, Bank, Account, ATM, Cashier, Main computer, and

customer. After identifying such list of classes, author [30] considered all the verb phrases and

build an object model that basically presents the classes and their relationship as shown in figure

16.

67

Figure 17 Object Model of ATM

4.3.4 SD-LINGO Screenshot

Screenshot of SD-LINGO for ATM case study in the context of class identification and initial

attributes + relationships are given in Figure 18.

Figure 18 Screenshot of SD-LINGO for ATM Case Study

4.3.5 Analysis by SD-LINGO

From automatic teller machine problem statement, SD-LINGO analyzed the list of classes and

relationships as shown below. Also, give a comparison with Rumbaugh et al [69] model in this

section.

68

Class Diagram

From automatic teller machine problem statement, SD-LINGO analyzed a set of classes for

ATM problem statement and produced 7 classes by considering all types of nouns i.e., NN, NNS,

NNP and NNPS and by deleting the redundant classes and compound nouns. Finally, we got 7

classes attributes, and relationships as shown in Figure 19.

Figure 19 A Class Diagram of ATM case study generated by SD-LINGO

4.3.6 Comparison of Generated Classes by SD-LINGO and Actual Model

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

13. SD-LINGO generated 7 correct classes, 0 incorrect class, 0 extra classes, and 0 missing class

in comparison with the actual model where the number of correct instances made by the system

is represented by ‘Ncorrect’. The number of incorrect responses made by the system refers to the

69

‘Nincorrect’. The number of elements missed by the system but still extracted by the human experts

are represented by ‘Nmissing’. Where the number of extra elements retrieved by the system is said

to be ‘Nextra’. Both numbers of ‘Nincorrect’ & ‘Nextra’ will be determined by the human experts.

Precision, recall and over-specification of the selected case study is given below Table 13.

Table 13 Comparison of GC/AM for ATM Case Study

Sr. No. Actual Model Classes Tool Generated Classes Status

1 Bank Bank Correct

2 Cashier Cashier Correct

3 Account Account Correct

4 User User Correct

5 Main-Computer Main-computer Correct

6 Computer Computer Correct

7 ATM ATM Correct

Correct:7, Incorrect:0, Missing:0, Extra:0

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=7/ (7+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 7/ (7+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 0/ (7+0) = 0=0%

4.4 Library Management System

4.4.1 The Problem Statements

Library Management System problem statement as presented in the book [69] is shown in Figure

20 as follow.

Figure 20 Library Management System Problem Statements

70

4.4.2 After Pre-Processing

4.4.3 Object Diagram of Library Management System

Figure 21 Object diagram of library management system

71

4.4.4 SD-LINGO Screen Shot

Screenshot of SD-LINGO for Library Management case study in the context of class

identification and attributes + relationships are given Figure 22.

Figure 22 Screenshot of SD-LINGO for Library management system case study

4.4.5 Class Diagram

Following class diagram is generated by SD-LINGO for the Library Management System case

study automatically from initial plain text as shown in Figure 23.

72

Figure 23 Class diagram of library management system

4.4.6 Comparison of Generated Classes from Actual Model and SD-LINGO

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

14. SD-LINGO generated 6 correct classes, 0 incorrect class, 0 extra classes, and 0 missing class

in comparison with the actual model where the number of correct instances made by the system

is represented by ‘Ncorrect’. The number of incorrect responses made by the system refers to the

‘Nincorrect’. The number of elements missed by the system but still extracted by the human experts

are represented by ‘Nmissing’. Where the number of extra elements retrieved by the system is said

to be ‘Nextra’. Both numbers of ‘Nincorrect’ & ‘Nextra’ will be determined by the human experts.

Precision, recall and over-specification of the selected case study is given below Table 14.

73

Table 14 Comparison of GC/AM for Library Management system Case Study

Sr. No. Actual Model Classes Tool Generated Status

1 Member Member Correct

2 Book Book Correct

3 Notification Notif Correct

4 Fine Fine Correct

5 System System Correct

6 Card Card Correct

Correct: 6, Incorrect: 0, Missing: 0, Extra: 0

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=6/ (6+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 6/ (6+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 0/ (6+0) = 0=0%

4.5 Journal Registration Problem Case study

4.5.1 The Problem Statement

Figure 24 Journal Registration Problem (JRP) Case Study

74

4.5.2 After Pre-Processing

4.5.3 Object Model of Journal Registration Problem

Object model of Journal Registration Problem(JRP) case study by Duffy et al [68] is given in

Figure 25.

Figure 25 Object model of JRP case study

4.5.4 SD-LINGO Screen Shot

Screenshot of SD-LINGO for JRP case study in context of class identification and attributes +

relationships are given in Figure 26.

75

Figure 26 Screenshot of SD-LINGO for JRP

4.5.5 Class Diagram

Following class diagram is generated by SD-LINGO for the journal registration problem (JRP)

case study automatically from initial plain text as shown in Figure 27.

Figure 27 Class diagram of JRP case study

76

4.5.6 Comparison of Generated Classes from Actual Model and SD-LINGO

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

15. SD-LINGO generated 5 correct classes, 0 incorrect class, 1 extra classes, and 0 missing class

in comparison with the actual model where the number of correct instances made by the system

is represented by ‘Ncorrect’. The number of incorrect responses made by the system refers to the

‘Nincorrect’. The number of elements missed by the system but still extracted by the human experts

are represented by ‘Nmissing’. Where the number of extra elements retrieved by the system is said

to be ‘Nextra’. Both numbers of ‘Nincorrect’ & ‘Nextra’ will be determined by the human experts.

Precision, recall and over-specification of the selected case study is given below Table 15.

Table 15 Comparison of GC/AM for JRP Case Study

Sr. No. Actual Model Classes Tool Generated Classes Status

1 Journal Journal Correct

2 Reader Reader Correct

3 Topic Topic Correct

4 Issue Issue Correct

5 Article Article Correct

6 System Extra

Correct: 5, Incorrect: 0, Missing: 0, Extra: 1

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=5/ (5+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 5/ (5+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 1/ (6+0) = 0.16=17%

77

4.6 Course Registration Case Study

4.6.1 The problem Statement

The problem statement of course registration case study shown in the Figure 28 from IBM Corp

[70].

Figure 28 Course Registration Problem Statements

78

4.6.2 After Pre-Processing

4.6.3 Manual Object Diagram of Course Registration Case study

Object model of Course Registration case study by IBM Corp [70] is given in Figure 29.

Figure 29 Object diagram of course registration case study

79

4.6.4 SD-LINGO Screen Shot

Screenshot of SD-LINGO for Course Registration case study in context of class identification

and initial attributes + relationships are given in Figure 30.

Figure 30 Screenshot of SD-LINGO for course registration

4.6.5 Class Diagram

Following class diagram is generated by SD-LINGO for the Course Registration case study

automatically from initial plain text as shown in Figure 31.

80

Figure 31 Class diagram of course registration case study

4.6.6 Comparison of Generated Classes from Actual Model and SD-LINGO

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

16. SD-LINGO generated 10 correct classes, 0 incorrect class, 1 extra classes, and 3 missing

class in comparison with the actual model where the number of correct instances made by the

system is represented by ‘Ncorrect’. The number of incorrect responses made by the system refers

to the ‘Nincorrect’. The number of elements missed by the system but still extracted by the human

experts are represented by ‘Nmissing’. Where the number of extra elements retrieved by the system

is said to be ‘Nextra’. Both numbers of ‘Nincorrect’ & ‘Nextra’ will be determined by the human

experts. Precision, recall and over-specification of the selected case study is given below Table

16.

81

Table 16 Comparison of GC/AM for course registration case study

Sr. No. Actual Model Classes Tool Generated Classes Status

1 Student Student Correct

2 Course catalog Missing

3 Professor Professor Correct

4 Course Offering Offer Correct

5 Course Course Correct

6 Registration system Missing

7 Student grade Student-grade Correct

8 Billing system Billing-system Correct

9 Semester Semester Correct

10 Electronic report card Report card Correct

11 Sensitive information Missing

12 Begin Begin Correct

13 End End Correct

14 System Extra

Correct: 11, Incorrect: 0, Missing: 3, Extra: 1

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=11/ (11+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 11/ (11+3) =0.785=79%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 1/ (11+3) = 0.071=7%

4.7 Relationships of Single Line Requirements

We used single-line requirements from the software engineering books for the validation of

relationships.

4.7.1 Inheritance/Generalization

4.7.1.1 Requirement 01

Dogs are kind of pets. Cats are kind of pets.

4.7.1.1.1 Class Model of Requirement 01

Class model of Requirement 01 by R Yilmaz et al [71] is given Figure 32.

82

Figure 32 UML classes and inheritance

4.7.1.1.2 SD-LINGO Screen Shot

Screenshot of SD-LINGO for Requirement#01 in context of class identification and relationships

are given in Figure 33.

Figure 33 SD-LINGO tool screenshot req#01 for inheritance/Generalization

83

4.7.1.1.3 Class Diagram

Following class diagram is generated by SD-LINGO for Requirement#01 automatically from

initial plain text as shown in Figure 34.

Figure 34 Class diagram of req#01 for inheritance/generalization

4.7.1.1.4 Comparison of Actual Model and SD-LINGO Generated Class

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

17. SD-LINGO generated 5 correct classes and relationships, 0 incorrect class, 0 extra classes, 0

missing class, in comparison with the actual model where the number of correct instances made

by the system is represented by ‘Ncorrect’. The number of incorrect responses made by the system

refers to the ‘Nincorrect’. The number of elements missed by the system but still extracted by the

human experts are represented by ‘Nmissing’. Where the number of extra elements retrieved by the

system is said to be ‘Nextra’. Precision, recall and over-specification of the selected case study is

given below Table 17.

Table 17 Comparison of GC/AM for Requirement#01

Sr. No. Actual Model Tool Generated Status

1 Pet Pet Correct

2 Cat Cat Correct

3 Dog Dog Correct

4 Inherited relationship

between cat and pet

Inherited relationship between cat

and pet

Correct

5 Inherited relationship

between dog and pet

Inherited relationship between dog

and pet

Correct

Correct: 5, Incorrect: 0, Missing: 0, Extra: 0

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=5/ (5+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 5/ (5+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 0/ (5+0) = 0=0%

4.7.1.2 Requirement 02:

We generalized practioners as practioners doctors and nurses as a nurses doctors.

84

4.7.1.2.1 Class Model of Requirement 02

Class model of Requirement 02 by Sommerville [1] is given Figure 35.

Figure 35 UML classes and generalization

4.7.1.2.2 SD-LINGO Screen Shot

Screenshot of SD-LINGO for Requirement#02 in context of class identification and relationships

are given in Figure 36.

Figure 36 SD-Lingo tool screenshot of req#02 for generalization/inheritance

85

4.7.1.2.3 Class Diagram

Following class diagram is generated by SD-LINGO for Requirement 02 automatically from

initial plain text as shown in Figure 37.

Figure 37 Class diagram of req#02 for generalization/inheritance

4.7.1.2.4 Comparison of Actual Model and SD-LINGO Generated Class

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

18. SD-LINGO generated 5 correct classes and relationships, 0 incorrect class, 0 extra classes, 0

missing class, in comparison with the actual model where the number of correct instances made

by the system is represented by ‘Ncorrect’. The number of incorrect responses made by the system

refers to the ‘Nincorrect’. The number of elements missed by the system but still extracted by the

human experts are represented by ‘Nmissing’. Where the number of extra elements retrieved by the

system is said to be ‘Nextra’. Precision, recall and over-specification of the selected case study is

given below Table 18.

Table 18 Comparison of GC/AM for Requirement#02

Sr. No. Actual Model Tool Generated Status

1 Doctor Doctor Correct

2 Practitioners Doctors Practitioners Doctors Correct

3 Nurses Nurses Correct

4 Generalized relationship between

practitioner doctors and doctors

Generalized relationship between

practitioner doctors and doctors

Correct

5 Generalized relationship between

nurses and doctors

Generalized relationship between

nurses and doctors

Correct

Correct: 5, Incorrect: 0, Missing: 0, Extra: 0

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=5/ (5+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 5/ (5+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 0/ (5+0) = 0=0%

86

4.7.2 Realization

4.7.2.1 Requirement 03:

Printers implement contract operations and interface printer-setups are used for contract

operations by printers.

4.7.2.1.1 Class Model of Requirement 03

Class model of Requirement 03 by Sommerville [1] is given Figure 38.

Figure 38 UML classes and realization

4.7.2.1.2 SD-LINGO Screen Shot

Screenshot of SD-LINGO for Requirement 03 in context of class identification and relationships

are given in Figure 39.

Figure 39 SD-Lingo tool screenshot for realization

87

4.7.2.1.3 Class Diagram

Following class diagram is generated by SD-LINGO for Requirement 03 automatically from

initial plain text as shown in Figure 40.

Figure 40 Classes show the realization

4.7.2.1.4 Comparison of Actual Model and SD-LINGO Generated Class

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

19. SD-LINGO generated 3 correct classes and relationships, 0 incorrect class, 0 extra classes, 0

missing class, in comparison with the actual model where the number of correct instances made

by the system is represented by ‘Ncorrect’. The number of incorrect responses made by the system

refers to the ‘Nincorrect’. The number of elements missed by the system but still extracted by the

human experts are represented by ‘Nmissing’. Where the number of extra elements retrieved by the

system is said to be ‘Nextra’. Precision, recall and over-specification of the selected case study is

given below Table 19.

Table 19 Comparison of GC/AM for Requirement#03

Sr. No. Actual Model Tool Generated Status

1 Printer Doctor Correct

2 Printer-setup Practitioners Doctors Correct

3 Realization relationship between

Printer and Printer-setup

Realization relationship between

Printer and Printer-setup

Correct

Correct: 3, Incorrect: 0, Missing: 0, Extra: 0

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision = 3/ (3+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall = 3/ (3+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 0/ (3+0) = 0=0%

88

4.7.3 Direct Association

4.7.3.1 Requirement 04:

Members will be ready to search books.

4.7.3.1.1 Class Model of Requirement 04

Class model of Requirement 04 by R Yilmaz et al [71] is given Figure 41.

Figure 41 UML classes and direct association

4.7.3.1.2 SD-LINGO Screen Shot

Screenshot of SD-LINGO for Requirement 04 in context of class identification and relationships

are given in Figure 42.

Figure 42 SD-Lingo screenshot for direct association

89

4.7.3.1.3 Class Diagram

Following class diagram is generated by SD-LINGO for Requirement 03 automatically from

initial plain text as shown in Figure 43.

Figure 43 Classes show the direct association

4.7.3.1.4 Comparison of Actual Model and SD-LINGO Generated Class

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

20. SD-LINGO generated 3 correct classes and relationships, 0 incorrect class, 0 extra classes, 0

missing class, in comparison with the actual model where the number of correct instances made

by the system is represented by ‘Ncorrect’. The number of incorrect responses made by the system

refers to the ‘Nincorrect’. The number of elements missed by the system but still extracted by the

human experts are represented by ‘Nmissing’. Where the number of extra elements retrieved by the

system is said to be ‘Nextra’. Precision, recall and over-specification of the selected case study is

given below Table 20.

Table 20 Comparison of GC/AM for Requirement#04

Sr. No. Actual Model Tool Generated Status

1 Member Member Correct

2 Book Book Correct

3 Direct Association relationship

between member and book

Direct Association relationship

between member and book

Correct

Correct: 3, Incorrect: 0, Missing: 0, Extra: 0

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=3/ (3+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 3/ (3+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 0/ (3+0) = 0=0%

90

4.7.4 Multiplicity

4.7.4.1 Requirement 05:

One student can register 5 courses.

4.7.4.1.1 Class Model of Requirement 05

Class model of Requirement 05 by Sommerville [1] is given Figure 44.

Figure 44 UML classes and Multiplicity for req#05

4.7.4.1.2 SD-LINGO Screen Shot

Screenshot of SD-LINGO for Requirement 05 in context of class identification and relationships

are given in Figure 45.

Figure 45 SD-Lingo tool screenshot for Req#05 multiplicity

91

4.7.4.1.3 Class Diagram

Following class diagram is generated by SD-LINGO for Requirement 05 automatically from

initial plain text as shown in Figure 46.

Figure 46 Classes show Req#05 multiplicity

4.7.4.1.4 Comparison of Actual Model and SD-LINGO Generated Class

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

21. SD-LINGO generated 3 correct classes and relationships, 0 incorrect class, 0 extra classes, 0

missing class, in comparison with the actual model where the number of correct instances made

by the system is represented by ‘Ncorrect’. The number of incorrect responses made by the system

refers to the ‘Nincorrect’. The number of elements missed by the system but still extracted by the

human experts are represented by ‘Nmissing’. Where the number of extra elements retrieved by the

system is said to be ‘Nextra’. Precision, recall and over-specification of the selected case study is

given below Table 21.

Table 21 Comparison of GC/AM for Requirement#05

Sr. No. Actual Model Tool Generated Status

1 Student Student Correct

2 Courses Courses Correct

3 Multiplicity between student and

courses

Multiplicity between student

and courses

Correct

Correct: 3, Incorrect: 0, Missing: 0, Extra: 0

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=3/ (3+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 3/ (3+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 0/ (3+0) = 0=0%

92

4.7.4.2 Requirement 06

Each patient has exactly 1 record.

4.7.4.2.1 Class Model of Requirement 06

Class model of Requirement 06 by Sommerville [1] is given Figure 47.

Figure 47 UML classes, Association, and multiplicity for req#06

4.7.4.2.2 SD-LINGO Screen Shot

Screenshot of SD-LINGO for Requirement 06 in context of class identification and relationships

are given in Figure 48.

Figure 48 SD-Lingo tool screenshot for Req#06 multiplicity

93

4.7.4.2.3 Class Diagram

Following class diagram is generated by SD-LINGO for Requirement 06 automatically from

initial plain text as shown in Figure 49.

Figure 49 Classes show Req#06 multiplicity

4.7.4.2.4 Comparison of Actual Model and SD-LINGO Generated Class

Comparison of classes generated by SD-LINGO with the actual manual model is given in Table

22. SD-LINGO generated 3 correct classes and relationships, 0 incorrect class, 0 extra classes, 0

missing class, in comparison with the actual model where the number of correct instances made

by the system is represented by ‘Ncorrect’. The number of incorrect responses made by the system

refers to the ‘Nincorrect’. The number of elements missed by the system but still extracted by the

human experts are represented by ‘Nmissing’. Where the number of extra elements retrieved by the

system is said to be ‘Nextra’. Precision, recall and over-specification of the selected case study is

given below Table 22.

Table 22 Comparison of GC/AM for Requirement#06

Sr. No. Actual Model Tool Generated Status

1 Patient Patient Correct

2 Record Record Correct

3 Multiplicity between patient

and record

Multiplicity between patient

and record

Correct

Correct: 3, Incorrect: 0, Missing: 0, Extra: 0

Precision = Ncorrect / (Ncorrect + Nincorrect)

Precision=3/ (3+0) =1=100%

Recall = Ncorrect / (Ncorrect+Nmissing)

Recall= 3/ (3+0) =1=100%

Overspecification = Nextra/ (Ncorrect+Nmissing)

Overspecification = 0/ (3+0) = 0=0%

94

CHAPTER 5

RESULTS AND EVALUATION

In order to test the performance of the proposed tool SD-LINGO, evaluation is conducted to

different previous unseen natural language software requirements by the tool SD-LINGO. This

performance parameter plays a vital role in software development for both stakeholders i.e.,

consumers and developers. Lynette et al [72] proposed three types of evaluation.

5.1 Adequacy Evaluation

It refers to the determination of the fitness of the system for some specific tasks. This type of

evaluation is the basis to answer such types of questions: Will the system do, what is demanded?

How good will it do the task? What is the cost related to completing a task? etc.

5.2 Diagnostics Evaluation

It refers to the type of evaluation that is used by the developers of the system to test their system

during the phase of system development. For this kind of evaluation, a huge number of test data

is required. The data is now as a basis to determine the system coverage and to fix all those

founded flaws.

5.3 Performance Evaluation

It refers to the type of evaluation in which the performance of the system is measured in specific

areas. In natural language processing, many concepts have been imported from quantitative

performance evaluation to the development of evaluation methodologies. Lynette et al [72]

addresses all above three measures of evaluation and all these concepts should be taken into

account in every methodology of evaluation.

We are interested in the evaluation of speed, error rate and precision. The criteria of evaluation is

mapped on the approach of Lynette et al [72] that how closely related the model developed by

the analyst matched to the results proposed by our approach. However, no standard parameter

regarding the evaluation criteria of software requirements in context of models does not exist. So

not any model is categorized against correct or incorrect strictly. They may be categorized as

good or bad requirements depending on the identified classes and their relationship. It is assumed

in this research study that models given in OO text books are correct and good models so we

took them all as our answer key. Given the chosen criteria, related to the system performance,

i.e., hit to hit ratio and miss ratio, seconds to process ratio and % incorrect ratio. We have used

just two metrics in this research study for the evaluation of our proposed system, Recall and

Precision, developed for the evaluation of information retrieval system and also used as a

measure to evaluate search strategies. In any ideal system precision and recall would be close to

the 100%. In an information extraction system, recall is the completeness of the produced results

95

of the proposed system [73] . The relevant and the correct information produced by the proposed

system is compared to the answer keys.

Recall is defined in the equation as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

Ncorrect + Nmissing

Where number of correct instances made by the system is represented by ‘Ncorrect’. Number

of elements missed by the system but still extracted by the human experts are represented by

‘Nmissing’. Evaluation term precision shows that how much the extracted knowledge was

correct.

For the calculation of precision following formula is used:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

Ncorrect + Nincorrect

Where number of correct instances made by the system is represented by ‘Ncorrect’. Number

of incorrect responses made by the system refers to the ‘Nincorrect’ [73].

For the determination of the proper value of the given system & measure, a manual evaluation

method is used in which the results generated by the proposed system are compared with the

answer keys. SD-LINGO determines the classes/objects, their relationships and attributes.

Each concrete correct answer matches the answer key is said to be correct. If the answer does

not match to the answer key, it is said to be incorrect. If the answer element does not match to

the answer key but still if it is valid information then it is said to be extra.

If an answer matches the answer key it is said to be correct if it matches exactly (exact

matching of string of names) to the answer key. If answer does not match exactly to that is

answer key, we use problem statement and on the basis of our own judgement, will find the

element in the answer key (but the rule is: that element must be semantically identical to the

answer key element, means both of them must be referred to the same entity).

If the answer does not match to the answer key, it is said to be incorrect. And both the

problem statement and our manual judgement validate that it is wrong i.e., adverb, adjective, or

a verb in case study is given in a class incorrectly.

When an element is in the proposed model but not in the answer key, it is said to be missing

element. There is one more evaluation metric of over-specification which represents that how

much extra information in the system is not in the answer key. The object-oriented community

agreed upon this thing that in the initial stages of analysis it is recommended to over-specify

rather than to miss the important information [61].

𝑂𝑣𝑒𝑟 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑁𝑒𝑥𝑡𝑟𝑎

Ncorrect + Nmissing

96

Where number of extra elements retrieved by the system is said to be ‘Nextra’. Where

‘A set of six case studies are selected for different domains and set of six single line

requirements are extracted from a text book are used to measure the performance of proposed

tool SD-LINGO. This is the dictated choice but based on the fact that all the case studies are well

known to the software engineers with the available solution and of intermediate length. Not, any

of the case study was examined prior to the final evaluation in detail and not the system runs to

any of the case study before the evaluation. The natural language software requirements in the

case studies range from the 100-550 words and the sentence length is 5-39 words per sentence

and the average sentence length is 18 words. Following Table 23 depicts the performance of SD-

LINGO on six case studies. Every row represents the results for one case study while the last

three columns represent the performance measurement parameters recall, precision and over-

specification of SD-LINGO. System average [recall is 90.1%, precision is 97.4% and over-

specification is 5.5%]. As said earlier, that system recall and precision should be as high as

possible and the system over-specification is as low as possible. We can say that system

performance is good on over-specification because the class list produced by the SD-LINGO is

as close to the answer model. Ncorrect’ and ‘Nmissing’ are defined earlier in this section.

5.4 Comparative Analysis

Comparative analysis is performed on the proposed system as follow to validate the performance

and accuracy measure of SD-LINGO.

5.4.1 Performance Measurement of SD-LINGO on Benchmark Case Studies

Table 23 Evaluation summary of results from all case studies

Sr.

No.

Case study and

requirements
Ncor Ninc Nmis Next

Precision

(SD-

LINGO) %

Recall

(SD-

LINGO)

%

Over-

Specification

(SD-LINGO)

%

1 LHP 4 1 1 1 80% 80% 20%

2 BAMS 8 1 1 2 88.8% 22.2% 22.2%

3 ATM 7 0 0 0 100% 100% 0%

4 Library 6 0 0 0 100% 100% 0%

5 JRP 5 0 0 1 100% 100% 17%

6 Course registration 11 0 3 1 100% 79% 7%

7 Req#01 5 0 0 0 100% 100% 0%

8 Req#02 5 0 0 0 100% 100% 0%

9 Req#03 3 0 0 0 100% 100% 0%

10 Req#04 3 0 0 0 100% 100% 0%

11 Req#05 3 0 0 0 100% 100% 0%

12 Req#06 3 0 0 0 100% 100% 0%

Average 97.4% 90.1% 5.5%

97

As formal evaluation of other case tools has been there in the past research studies. So, we can

also compare results of SD-LINGO with the other two papers. Comparison with [24] is given in

the Table 24 for five case studies.

Table 24 Evaluation summary of results from Mosa Elbendak et al [24]

Sr.

No.

Case

Study

Precision

(SD-

LINGO)

%

Precision

Recall

(SD-

LINGO)

%

Recall

Over-

Specification

(SD-

LINGO) %

Over-

Specification

1 LHP 80% 80% 80% 80% 20% 60%

2 BAMS 88.8% 80% 22.2% 88% 22.2% 88%

3 ATM 100% 91% 100% 100% 0% 16%

4 Library 100% 80% 100% 80% 0% 50%

5 JRP 100% 83% 100% 100% 17% 16%

Average 93.76% 82.8% 80.44% 89.6% 11.84% 46%

Results of case studies ATM, and course registration in comparison with [30] are shown in Table

25:

Table 25 Evaluation summary of results from Vidhu Bhala et al [30]

Sr.

No.

Case

Study

Precision

(SD-

LINGO)

%

Precision

Recall

(SD-

LINGO)

%

Recall

Over-

Specification

(SD-LINGO)

%

Over-

Specification

1 ATM 100% 91.7% 100% 91.7% 0% 8.33%

2 Course

Reg.

100% 81.8% 79% 100% 7% 22.22

Average 100% 87% 90% 96% 3.5% 15%

As the formal evaluation of other case tools has been there in the past research studies. So, we

can also compare the results of SD-LINGO with the other two papers. Comparison with AR2DT

[43] is given in for five case studies.

98

Table 26 Evaluation summary of results from AR2DT [43]

Sr.

No.

Case

Study

Precision

(SD-

LINGO)

%

Precision

Recall

(SD-

LINGO)

%

Recall

Over-

Specification

(SD-LINGO)

%

Over-

Specification

1 LHP 80% 80% 80% 80% 20% 0%

2 BAMS 88.8% 72.7% 22.2% 88.9% 22.2% 88%

3 ATM 100% 100% 100% 91.7% 0% 16%

4 JRP 100% 83.3% 100% 100% 17% 16%

5 Course

Reg.

100% 92.8% 79% 100% 7% 22.22%

Average 93.76% 85.76% 76% 92% 13.24% 28%

The results of the performance evaluation for the proposed tool SD-LINGO are very encouraging

and proved efficient.

99

CHAPTER 6

CONCLUSION AND FUTURE RECOMMENDATION

This research thesis presents a Novel Natural Language Processing (NLP) approach to

automatically generate a conceptual class model from initial software requirements. This

research is carried out in three steps as follows:

In the first step, a comprehensive study is performed to investigate the application of NLP for

primary software development phases i.e., requirement, design, and testing. A Systematic

Literature Review (SLR) is carried out to select 29 articles published during 2014-2021. After

quality Evaluation, only 17 articles consider that fully fulfills the objective of our research.

Subsequently, 14 combinations of main NLP activities (i.e., Tokenization, POS tagging,

Chunking, and Parsing) and 12 NLP algorithms are identified. Furthermore, 23 existing tools are

identified that are further divided into two categories tools utilized by the researchers are 11 and

purposed by researchers are 12. Finally, a comprehensive analysis is performed to investigate the

automation level of NLP applications for the generation of the class diagrams and test cases from

early plain text requirements. This SLR leads to identifying significant research gaps like the

compulsion of manual pre-processing steps while automatically generating a conceptual class

model from plain text through NLP approaches. Also, the existing not generate the fully

automated class diagram.

In the second step, a novel fully automated NLP approach is proposed to generate a conceptual

class model from initial software requirements. The proposed approach comprises 20 novels

NLP rules to fully automate the class generation from initial requirements without requiring any

manual pre-processing steps. As a part of the research, the SD-LINGO tool is developed.SD-

LINGO generate different elements of class diagram such as classes, attributes, relationships.SD-

LINGO is written in python with approximately twenty-four hundred lines of code. The tool

used for front end development is Spyder and for drawing class diagrams we used Tkinter.

In the final step, we evaluate the performance of our proposed approach through six benchmarks

studies and for validation of relationships; we used single line requirements used in different

books. System average [precision is 97.4%, recall is 90.1% and over-specification is 5.5%]. For

further investigation, the comparative analysis is performed with two high-quality journals and

one tool AR2DT and our research performance shows many propitious results in almost every

aspect. It is concluded that the proposed approach not only removes the compulsion of manual

preprocessing steps but also outperforms the existing approaches with respect to performance. In

the future, we will enhance SD-LINGO to automatically generate a complete class diagram from

the raw text by adding more rules to achieve high accuracy.

100

REFERENCES

1. Sommerville, I., Software Engineering. 2015: Pearson Education.

2. Kneuper, R., Sixty years of software development life cycle models. IEEE Annals of the

History of Computing, 2017. 39(3): p. 41-54.

3. Akinsola, J.E., et al. Comparative analysis of software development life cycle models

(SDLC). in Computer Science On-line Conference. 2020. Springer.

4. Saravanan, T., et al. Comparative Analysis of Software Life Cycle Models. in 2020 2nd

International Conference on Advances in Computing, Communication Control and

Networking (ICACCCN). 2020. IEEE.

5. Akbar, R., M. Haris, and M. Naeem. Requirement gathering and tracking process for

distributed agile based development. in Proceedings of the 8th Conference on Recent

Advances in Computer Engineering. 2008.

6. Yau, S.S. and J.J.-P. Tsai, A survey of software design techniques. IEEE Transactions on

Software Engineering, 1986(6): p. 713-721.

7. Robillard, M.P., Sustainable software design, in Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering. 2016,

Association for Computing Machinery: Seattle, WA, USA. p. 920–923.

8. Chemuturi, M., Requirements Management Through SDLC, in Requirements

Engineering and Management for Software Development Projects. 2013, Springer New

York: New York, NY. p. 169-175.

9. Emadi, S. and F. Shams. From UML component diagram to an executable model based

on Petri Nets. in 2008 International Symposium on Information Technology. 2008. IEEE.

10. Bell, D., UML basics: An introduction to the Unified Modeling Language. The Rational

Edge, 2003.

11. Torchiano, M. Empirical assessment of UML static object diagrams. in Proceedings. 12th

IEEE International Workshop on Program Comprehension, 2004. 2004. IEEE.

12. Tonella, P. and A. Potrich, Package Diagram. Reverse Engineering of Object Oriented

Code, 2005: p. 133-154.

13. Wei, R., et al., Automatic generation of UML profile graphical editors for Papyrus.

Software and Systems Modeling, 2020. 19(5): p. 1083-1106.

14. Backman, S., Code Generationfor UML Composite Structure Diagrams. 2018.

15. Elallaoui, M., K. Nafil, and R. Touahni, Automatic transformation of user stories into

UML use case diagrams using NLP techniques. Procedia computer science, 2018. 130: p.

42-49.

16. Ahmad, T., et al., Model-based testing using UML activity diagrams: A systematic

mapping study. Computer Science Review, 2019. 33: p. 98-112.

17. Panthi, V., et al. Functionality testing of object-oriented software using UML state

machine diagram. in 2018 International Conference on Circuits and Systems in Digital

Enterprise Technology (ICCSDET). 2018. IEEE.

18. Alshayeb, M., et al., Improving the security of UML sequence diagram using genetic

algorithm. IEEE Access, 2020. 8: p. 62738-62761.

19. Cvetković, J. and M. Cvetković, Evaluation of UML diagrams for test cases generation:

Case study on depression of internet addiction. Physica A: Statistical Mechanics and Its

Applications, 2019. 525: p. 1351-1359.

101

20. Mishra, A. Dynamic Slicing of UML Interaction Overview Diagram. in 2019 IEEE 9th

International Conference on Advanced Computing (IACC). 2019. IEEE.

21. A. Maheshwari, A.T.a.D.S.K., A New Design Based Software Coupling Metric, in 2014

International Conference on Information Technology. 2014, IEEE: Bhubaneswar, India.

p. 351-355.

22. Moreira, G.Y.d.O. and J.A.M. Santos. Applying coupling and cohesion concepts in

object-oriented software: a controlled experiment. in 19th Brazilian Symposium on

Software Quality. 2020.

23. Kanakaraddi, S.G. and S.S. Nandyal. Survey on parts of speech tagger techniques. in

2018 International Conference on Current Trends towards Converging Technologies

(ICCTCT). 2018. IEEE.

24. Elbendak, M., P. Vickers, and N. Rossiter, Parsed use case descriptions as a basis for

object-oriented class model generation. Journal of Systems and Software, 2011. 84(7): p.

1209-1223.

25. Kulkarni, N., et al. Automated Analysis of Textual Use-Cases: Does NLP Components

and Pipelines Matter? in 2012 19th Asia-Pacific Software Engineering Conference. 2012.

IEEE.

26. Geogy, M. and A. Dharani. Prominence of each phase in Software development life cycle

contributes to the overall quality of a product. in 2015 International Conference on Soft-

Computing and Networks Security (ICSNS). 2015. IEEE.

27. Kitchenham, B., Procedures for performing systematic reviews. Keele, UK, Keele

University, 2004. 33(2004): p. 1-26.

28. Conte, D.A. and J.C. Hauck. Automated Identification of Classes Using Natural

Language Processing. in Proceedings of the XII Brazilian Symposium on Information

Systems on Brazilian Symposium on Information Systems: Information Systems in the

Cloud Computing Era-Volume 1. 2016.

29. Nasiri, S., Y. Rhazali, and M. Lahmer, Towards a generation of class diagram from user

stories in agile methods, in Advancements in Model-Driven Architecture in Software

Engineering. 2021, IGI Global. p. 135-159.

30. Sagar, V.B.R.V. and S. Abirami, Conceptual modeling of natural language functional

requirements. Journal of Systems and Software, 2014. 88: p. 25-41.

31. Santos, C.J., S. Moshtari, and M. Mirakhorli. An Automated Approach to Recover the

Use-case View of an Architecture. in 2020 IEEE International Conference on Software

Architecture Companion (ICSA-C). 2020. IEEE.

32. Sanyal, R. and B. Ghoshal. Automatic extraction of structural model from semi structured

software requirement specification. in 2018 IEEE/ACIS 17th International Conference on

Computer and Information Science (ICIS). 2018. IEEE.

33. Jaiwai, M. and U. Sammapun. Extracting UML class diagrams from software

requirements in Thai using NLP. in 2017 14th International Joint Conference on

Computer Science and Software Engineering (JCSSE). 2017. IEEE.

34. Sharma, R., P.K. Srivastava, and K.K. Biswas. From natural language requirements to

UML class diagrams. in 2015 IEEE Second International Workshop on Artificial

Intelligence for Requirements Engineering (AIRE). 2015. IEEE.

35. Abdelnabi, E.A., et al. Generating UML Class Diagram using NLP Techniques and

Heuristic Rules. in 2020 20th International Conference on Sciences and Techniques of

Automatic Control and Computer Engineering (STA). 2020. IEEE.

102

36. Tripathy, A. and S.K. Rath. Application of natural language processing in object oriented

software development. in 2014 International Conference on Recent Trends in Information

Technology. 2014. IEEE.

37. Thakur, J.S. and A. Gupta. Identifying domain elements from textual specifications. in

Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering. 2016.

38. Bashir, N., et al. Modeling Class Diagram using NLP in Object-Oriented Designing. in

2021 National Computing Colleges Conference (NCCC). 2021. IEEE.

39. Saini, R., et al. Towards queryable and traceable domain models. in 2020 IEEE 28th

International Requirements Engineering Conference (RE). 2020. IEEE.

40. Narawita, C.R. and K. Vidanage. UML generator-an automated system for model driven

development. in 2016 Sixteenth International Conference on Advances in ICT for

Emerging Regions (ICTer). 2016. IEEE.

41. Abdelnabi, E.A., A.M. Maatuk, and M. Hagal. Generating UML Class Diagram from

Natural Language Requirements: A Survey of Approaches and Techniques. in 2021 IEEE

1st International Maghreb Meeting of the Conference on Sciences and Techniques of

Automatic Control and Computer Engineering MI-STA. 2021. IEEE.

42. Bousmaha, K.Z., et al. A Platform for the Conceptualization of Arabic Texts Dedicated to

the Design of the UML Class Diagram. in International Conference on Applications of

Natural Language to Information Systems. 2016. Springer.

43. Ahmed, M.A., et al. A novel natural language processing (NLP) approach to

automatically generate conceptual class model from initial software requirements. in

International Conference on Information Science and Applications. 2017. Springer.

44. Utama, A.Z. and D.-S. Jang, An Automatic Construction for Class Diagram from

Problem Statement using Natural Language Processing. Journal of Korea Multimedia

Society, 2019. 22(3): p. 386-394.

45. Wang, C., et al., Automatic generation of system test cases from use case specifications,

in Proceedings of the 2015 International Symposium on Software Testing and Analysis.

2015, Association for Computing Machinery: Baltimore, MD, USA. p. 385–396.

46. Bahaweres, R.B., et al. Behavior-driven development (BDD) Cucumber Katalon for

Automation GUI testing case CURA and Swag Labs. in 2020 International Conference

on Informatics, Multimedia, Cyber and Information System (ICIMCIS). 2020. IEEE.

47. Jali, N., D. Greer, and P. Hanna. Class Responsibility Assignment (CRA) for Use Case

Specification to Sequence Diagrams (UC2SD). in 2014 8th. Malaysian Software

Engineering Conference (MySEC). 2014. IEEE.

48. Jellali, I., et al. GSM model construction from enterprise models. in 2015 12th

International Joint Conference on e-Business and Telecommunications (ICETE). 2015.

IEEE.

49. Sawprakhon, P. and Y. Limpiyakorn. Model-driven approach to constructing uml

sequence diagram. in 2014 International Conference on Information Science &

Applications (ICISA). 2014. IEEE.

50. Mahmood, A., et al. Natural language processing based interpretation of skewed graphs.

in 2014 International Conference on Advances in Computing, Communications and

Informatics (ICACCI). 2014. IEEE.

51. Omer, M.A.M. and D. Wilson. New rules for deriving formal models from text. in 2016

International Conference for Students on Applied Engineering (ICSAE). 2016. IEEE.

103

52. Mosca, N., et al., Object-Based Similarity Assessment Using Land Cover Meta-Language

(LCML): Concept, Challenges, and Implementation. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 2020. 13: p. 3790-3805.

53. Andrianjaka, R.M., et al. Restructuring extended Lexical elaborate Language. in 2019

23rd International Conference on System Theory, Control and Computing (ICSTCC).

2019. IEEE.

54. Luc, R.J., et al. Semantic aspect derivation of the Praxème methodology from the

elaborate lexicon extended language. in 2016 20th International Conference on System

Theory, Control and Computing (ICSTCC). 2016. IEEE.

55. Mahmood, A., I.S. Bajwa, and K. Qazi. An automated approach for interpretation of

statistical graphics. in 2014 Sixth International Conference on Intelligent Human-

Machine Systems and Cybernetics. 2014. IEEE.

56. Autili, M., et al., A tool-supported methodology for validation and refinement of early-

stage domain models. IEEE Transactions on Software Engineering, 2015. 42(1): p. 2-25.

57. Meteer, M., et al. MedLingMap: A growing resource mapping the Bio-Medical NLP

field. in BioNLP: Proceedings of the 2012 Workshop on Biomedical Natural Language

Processing. 2012.

58. Umber, A., I.S. Bajwa, and M.A. Naeem. NL-based automated software requirements

elicitation and specification. in International Conference on Advances in Computing and

Communications. 2011. Springer.

59. Deeptimahanti, D.K. and M.A. Babar. An automated tool for generating UML models

from natural language requirements. in 2009 IEEE/ACM International Conference on

Automated Software Engineering. 2009. IEEE.

60. Kumar, D.D. and R. Sanyal. Static UML model generator from analysis of requirements

(SUGAR). in 2008 Advanced Software Engineering and Its Applications. 2008. IEEE.

61. Larman, C., Applying UML and patterns: an introduction to object oriented analysis and

design and interative development. 2012: Pearson Education India.

62. Booch, G., I. Jacobson, and J. Rumbaugh, Object-Oriented Analysis and Design with

Applications Third Edition. 2007, Pearson Education, Inc.

63. Leffingwell, D., Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. 2010: Addison-Wesley Professional.

64. Ambler, S.W., The elements of UML (TM) 2.0 style. 2005: Cambridge University Press.

65. Lindland, O.I., G. Sindre, and A. Solvberg, Understanding quality in conceptual

modeling. IEEE software, 1994. 11(2): p. 42-49.

66. Falleri, J.-R., et al. Using natural language to improve the generation of model

transformation in software design. in 2009 International Multiconference on Computer

Science and Information Technology. 2009. IEEE.

67. Shipman, J.W., Tkinter 8.4 reference: a GUI for Python. New Mexico Tech Computer

Center, 2013. 54.

68. Duffy, D., From Chaos to Classes: Object-Oriented Software Development in C++. 1995:

McGraw-Hill Companies.

69. Blaha, M. and J. Rumbaugh, Object-oriented modeling and design with UML. 2005:

Pearson Education India.

70. Kruchten, P., The rational unified process: an introduction. 2004: Addison-Wesley

Professional.

104

71. Yilmaz, R., et al., Object-Oriented Programming in Computer Science, in Encyclopedia

of Information Science and Technology, Fourth Edition. 2018, IGI Global. p. 7470-7480.

72. Hirschman, L. and H.S. Thompson, Overview of evaluation in speech and natural

language processing. 1997.

73. Grishman, R. and B.M. Sundheim. Message understanding conference-6: A brief history.

in COLING 1996 Volume 1: The 16th International Conference on Computational

Linguistics. 1996.

	Chapter 1 Introduction
	1.1 Software Development Life Cycle (SDLC)
	1.1.1 Phases of SDLC Model
	1.1.1.1 Requirement Analysis
	1.1.1.2 Design
	1.1.1.3 Implementation
	1.1.1.4 Testing
	1.1.1.5 Deployment
	1.1.1.6 Maintenance

	1.1.2 Motivation for Selecting Software Design in SDLC

	1.2 Level of Research Carried Out on This Problem
	1.2.1 Unified Modeling Language (UML)
	1.2.1.1 Component Diagram
	1.2.1.2 Deployment Diagram
	1.2.1.3 Object Diagram
	1.2.1.4 Package Diagram
	1.2.1.5 Profile Diagram
	1.2.1.6 Composite Structure Diagram
	1.2.1.7 Use Case Diagram
	1.2.1.8 Activity Diagram
	1.2.1.9 State Machine Diagram
	1.2.1.10 Sequence Diagram
	1.2.1.11 Communication Diagram
	1.2.1.12 Interaction Overview Diagram
	1.2.1.13 Timing Diagram
	1.2.1.14 Class Diagram
	1.2.1.14.1 Cohesion and Coupling

	1.2.2 Natural Language Processing (NLP)
	1.2.2.1 Parts-of-Speech/ (POS) Tagging

	1.3 Thesis Objectives
	1.4 Thesis Contribution
	1.5 Relevance to National Needs
	1.6 Advantages of this Research

	Chapter 2 Literature Review
	2.1 Research Questions
	2
	2.1
	2.2 Search Strategy
	2.2.1 Data Sources
	2.2.2 Search Query

	2.3 Selection Strategy
	2.3.1 Inclusion Criteria
	2.3.2 Exclusion Criteria

	2.4 Quality Evaluation
	2.5 Search Process
	2.6 Distribution of Articles
	2.7 Data Extraction and Data Synthesis
	2.8 Findings
	2.9 Overview of Research Articles
	2.10 Answers to Research Questions
	2.10.1 Natural Language Processing Techniques
	2.10.2 Natural Language Processing Tools
	2.10.2.1 Tools Utilized by Researchers
	2.10.2.2 Tools and Algorithms Purposed by Researchers

	2.10.3 Automation Level of Design Phase

	2.11 Limitations
	2.12 Conclusion

	Chapter 3 Methodology
	3.1 Introduction
	3.1
	3.2 Strategy and Design of the Proposed Tool
	3.3 Proposed Methodology and Implementation
	3.3.1 Natural Language Software Requirements
	3.3.2 Pre-Processing
	3.3.3 Comprehension of input using Natural Language Toolkit NLTK [66]
	3.3.4 Rules Used by SD-LINGO Tool
	3.3.4.1 Rules for the Identification of Classes, Attributes, and Functions
	3.3.4.2 Rules for the Identification of Relationships
	3.3.4.3 Rule for Handling the Redundancy

	3.3.5 SD-LINGO Design Tool
	3.3.5.1 Class Diagram Drawing in SD-LINGO

	Chapter 4 Experimental Validation
	4.1 Local Hospital Problem Case Study
	4.1.1 Problem Statement
	4.1.2 After Pre-Processing
	4.1.3 Manual Object diagram of the LHP
	4.1.4 SD-LINGO Screen Shot
	4.1.5 Class Diagram
	4.1.6 Comparison of Generated Classes from Actual Model and SD-LINGO

	4.2 Bank Accounts Management System Case Study
	4.2.1 Problem Statement
	4.2.2 After Pre-Processing
	4.2.3 Manual Object Diagram of BAMS
	4.2.4 SD-LINGO Screen Shot
	4.2.5 Class Diagram
	4.2.6 Comparison of Generated Classes from Actual Model and SD-LINGO

	4.3 Automatic Teller Machine (ATM) Case study
	4.3.1 The Problem Statement
	4.3.2 After Pre-Processing
	4.3.3 Object Model of Rumbaugh et al [69]
	4.3.4 SD-LINGO Screenshot
	4.3.5 Analysis by SD-LINGO
	4.3.6 Comparison of Generated Classes by SD-LINGO and Actual Model

	4.4 Library Management System
	4.4.1 The Problem Statements
	4.4.2 After Pre-Processing
	4.4.3 Object Diagram of Library Management System
	4.4.4 SD-LINGO Screen Shot
	4.4.5 Class Diagram
	4.4.6 Comparison of Generated Classes from Actual Model and SD-LINGO

	3
	4
	4.1
	4.2
	4.3
	4.4
	4.5 Journal Registration Problem Case study
	4.5.1 The Problem Statement
	4.5.2 After Pre-Processing
	4.5.3 Object Model of Journal Registration Problem
	4.5.4 SD-LINGO Screen Shot
	4.5.5 Class Diagram
	4.5.6 Comparison of Generated Classes from Actual Model and SD-LINGO

	4.6 Course Registration Case Study
	4.6.1 The problem Statement
	4.6.2 After Pre-Processing
	4.6.3 Manual Object Diagram of Course Registration Case study
	4.6.4 SD-LINGO Screen Shot
	4.6.5 Class Diagram
	4.6.6 Comparison of Generated Classes from Actual Model and SD-LINGO

	4.7 Relationships of Single Line Requirements
	4.7.1 Inheritance/Generalization
	4.7.1.1 Requirement 01
	4.7.1.1.1 Class Model of Requirement 01
	4.7.1.1.2 SD-LINGO Screen Shot
	4.7.1.1.3 Class Diagram
	4.7.1.1.4 Comparison of Actual Model and SD-LINGO Generated Class

	4.7.1.2 Requirement 02:
	4.7.1.2.1 Class Model of Requirement 02
	4.7.1.2.2 SD-LINGO Screen Shot
	4.7.1.2.3 Class Diagram
	4.7.1.2.4 Comparison of Actual Model and SD-LINGO Generated Class

	4.7.2 Realization
	4.7.2.1 Requirement 03:
	4.7.2.1.1 Class Model of Requirement 03
	4.7.2.1.2 SD-LINGO Screen Shot
	4.7.2.1.3 Class Diagram
	4.7.2.1.4 Comparison of Actual Model and SD-LINGO Generated Class

	4.7.3 Direct Association
	4.7.3.1 Requirement 04:
	4.7.3.1.1 Class Model of Requirement 04
	4.7.3.1.2 SD-LINGO Screen Shot
	4.7.3.1.3 Class Diagram
	4.7.3.1.4 Comparison of Actual Model and SD-LINGO Generated Class

	4.7.4 Multiplicity
	4.7.4.1 Requirement 05:
	4.7.4.1.1 Class Model of Requirement 05
	4.7.4.1.2 SD-LINGO Screen Shot
	4.7.4.1.3 Class Diagram
	4.7.4.1.4 Comparison of Actual Model and SD-LINGO Generated Class

	4.7.4.2 Requirement 06
	4.7.4.2.1 Class Model of Requirement 06
	4.7.4.2.2 SD-LINGO Screen Shot
	4.7.4.2.3 Class Diagram
	4.7.4.2.4 Comparison of Actual Model and SD-LINGO Generated Class

	Chapter 5 Results and Evaluation
	5
	5.1 Adequacy Evaluation
	5.2 Diagnostics Evaluation
	5.3 Performance Evaluation
	5.4 Comparative Analysis
	5.4.1 Performance Measurement of SD-LINGO on Benchmark Case Studies

	Chapter 6 Conclusion and Future Recommendation
	References

