

Source code summarization using Natural Language Processing

in C#

Author

Muhammad Qasim Khan

Regn Number

FALL 2016-MS-16(CSE) 00000171740

MS-16 (CSE)

Thesis Supervisor:

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

February, 2020

Source Code Summarization Using Natural Language

Processing in C#

Author

Muhammad Qasim Khan

FALL 2016-MS-16(CSE) 00000171740

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Software Engineering

Thesis Supervisor:

Dr. Wasi Haider Butt

Thesis Supervisor’s Signature: ___________________________________

DEPARTMENT OF COMPUTE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

MAY, 2020

i

DECLARATION

I certify that this research work titled “Source Code Summarization Using Natural Language

Processing in C# “is my own work under the supervision of Dr. Wasi Haider Butt. This work has

not been presented elsewhere for assessment. The material that has been used from other sources,

it has been properly acknowledged / referred.

Signature of Student

Muhammad Qasim Khan

FALL 2016-MS-16(CSE) 00000171740

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also

according to the format given by the University for MS thesis work.

Signature of Student

Muhammad Qasim Khan

FALL 2016-MS-16(CSE) 00000171740

Signature of Supervisor

iii

COPYRIGHT STATEMENT

• Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made online accordance with instructions given by

the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

• The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission of the

College of E&ME, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

ACKNOWLDGEMENTS

I am highly thankful to ALLAH Almighty for his blessings and constant help throughout my

thesis. Indeed this would not have been possible without his bountiful and gracious help in each

and every step. I am thankful to HIM for putting me on a path where people helped me

graciously to achieve my goal. Indeed none is worthy of praise but ALLAH Almighty.

I am profusely grateful to my beloved parents for their constant love, support, prayers and

sacrifices. I would like to pay my special thanks to my beloved father Sher Zaman, for

encouraging me to avail best opportunities in my life. I am also thankful to my sisters and family

for all the support and prayers throughout my time of research.

I would also like to express my gratitude to my supervisor, Dr. Wasi Haider Butt for his

constant motivation, patience, enthusiasm, and immense knowledge. His guidance helped me in

all the time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my MS study.

I would also like to pay special thanks to my Guidance Committee MembersDr. Arsalan

Shaukat and Dr.Urooj Fatima. Their recommendations are very valued for improvement of the

work. I would like to pay special thanks to Muhammad Waseem Anwarfor his tremendous

support and cooperation. Each time I got stuck in something, he came up with the solution.

Without his help, I wouldn’t have been able to complete my thesis. I appreciate his patience and

guidance throughout the whole thesis.

I would also like to thank my family,my brothers, my class fellows and my seniors for their

support and cooperation. Finally, I would like to express my gratitude to all the individuals who

have rendered valuable assistance to my study.

Thanks for all your encouragement!

v

Dedicated to my beloved parents whosetremendousmotivationand

support helped me to accomplish this achievement.

vi

ABSTRACT

TABLE OF CONTENTS

COPYRIGHT STATEMENT... iii

ACKNOWLDGEMENTS ..iv

ABSTRACT ..vi

TABLE OF CONTENTS ...vi

LIST OF FIGURES ... viii

LIST OF TABLES ..ix

CHAPTER 1: INTRODUCTION... 11

1.1. Background Study .. 11

1.1.1. Code Comment Generation ... 11

1.1.2. Source code summarization ... 12

1.1.3. Natural Language Processing .. 13

1.2. Problem Statement ... 16

1.3. Proposed Methodology .. 17

1.4. Research Contribution ... 18

1.5. Thesis Organization ... 19

CHAPTER 2: LITERATURE REVIEW .. 22

2.1. Introduction .. 22

2.2. Literature Review Methodology ... 23

2.1.1. Inclusion and Exclusion Criteria .. 23

2.1.2. Search Process ... 23

2.1.3. Quality Checking ... 25

2.3. Results ... 26

2.4. Discussion .. 29

2.5. Analysis ... 31

CHAPTER 3: PROPOSED METHODOLOGY ... 34

3.1. Tools and Techniques Architecture .. 44

3.2. UML Details.. 45

CHAPTER 4: IMPLEMENTATION .. 50

4.1. Architecture of Transformation Engine (MUTE) ... 50

4.1.1. User Interface ... 51

4.1.2. User interface for output .. 53

4.2. Transformation Rules .. 54

4.2.1. Thermal engine example implementation .. 57

4.2.2. Generated Summary .. 59

vii

CHAPTER 5: VALIDATION .. 65

5.1. Case Study 1 ... 66

5.1.1. Human Evaluation ... 72

5.1.1.1. Evaluation of TCS ... 73

5.1.1.2. Evaluation team ... 73

5.1.1.3. Evaluation Questions ... 74

5.1.1.4. Response Discussion ... 77

CHAPTER 6: DISCUSSION AND LIMITATIONS .. 84

6.1. Discussion .. 84

6.2. Limitations .. 86

CHAPTER 7: CONCLUSION AND FUTURE WORK .. 88

viii

LIST OF FIGURES

Figure 1.1: Process for generation of source code comments .. 12
Figure 1.2 : Source Code Summarization .. 13
Figure 1.3: Components of NLP .. 14
Figure 1.4: Flow of Research ... 18
Figure 1.5: Thesis Outline ... 20
Figure 2.1 : Search Process .. 24
Figure 3.1: Translating Code to a Simplified Summary (TCSS) Architecture .. 35
Figure 3.2: Translating Code In To Simplified Summary (TCSS) Architecture ... 36
Figure 3.3: Tokenization of if conditional statement ... 37
Figure 3.4: Programming constructs structuring for Natural Language Processing .. 39
Figure 3.5: Translating Structure in to Simplified Summary using templates ... 42
Figure 3.6 : Tools and Techniques Architecture .. 45
Figure 3.8: Class diagram of Description Area ... 47
Figure 4.1: Transformation Code System .. 50
Figure 4.2: Main Screen of TCS .. 52
Figure 4.3: Open Interface for TCS ... 53
Figure 4.4: User Interface for generated summary and code once submit button is clicked 54
Figure 4.5: TCS Output ... 58
Figure 4.6: Using TCS for SCS ... 58
Figure 4.7: Input screen for construct with in a construct ... 61
Figure 4.8: Output screen .. 62
Figure 4.9: Diagram showing different sections of summary .. 63
Figure 5.1: Quality Assessment Process of our Generated Source Code Summary .. 66
Figure 5.2: Class used in the case study .. 67
Figure 5 3: Screenshot while submitting the code of first case study to our Tool ... 68
Figure 5.4: Screenshot showing generated summary of case study 1 .. 69
Figure 5.5: Survey ... 75
Figure 5.6: Responses of the users that participated in survey .. 77
Figure 5.7: Responses of the users that participated in survey .. 78
Figure 5.8: Responses of the users that participated in survey .. 78
Figure 5.9: Responses of the users that participated in survey .. 79
Figure 5.10: Responses of the users that participated in survey .. 79
Figure 5.11: Responses of the users that participated in survey .. 80
Figure 5.12: Responses of the users that participated in survey .. 80
Figure 5.13: Responses of the users that participated in survey .. 81

file:///C:/Users/ss_ba/Downloads/31st%20may.docx%23_Toc41861886
file:///C:/Users/ss_ba/Downloads/31st%20may.docx%23_Toc41861887
file:///C:/Users/ss_ba/Downloads/31st%20may.docx%23_Toc41861888
file:///C:/Users/ss_ba/Downloads/31st%20may.docx%23_Toc41861889

ix

LIST OF TABLES

Table 2.1: Repositories, associated papers and their reference .. 25
Table 2.2: Data Extraction ... 25
Table 2.3: Frameworks/Tools proposed .. 26
Table 2.4: Language Constructs targeted .. 27
Table 2.5: Target Programming Languages... 27
Table 2.6: Input of Code / Comments for Source Code Summarization ... 28
Table 2.7:Targeted programming constructs ... 28
Table 2.8: Tools ... 31
Table 2.9: Evaluation Metrics .. 31
Table 3.1: Tokens .. 38
Table 4.1: Transformation Rules ... 55
Table 4.2: Templates for constructs and nested constructs of “If” and “For” ... 56
Table 4.3: Different type of class summaries .. 60

x

Chapter 1

Introduction

11

CHAPTER 1: INTRODUCTION

In order to find error in software code, software engineer must investigate and find exact entities of

software code which are needed to be changed [1] . Existing studies found that developers spend more

time in searching the code rather than editing it[2]. However, there are other activities that are important

along with the searching of code like: browsing and reading. Furthermore, these activities are essential

for the developer to understand the code in order to maintain or fix it. Moreover, if we want to improve

the maintainability of a software system then we have to improve its readability of source code [3].

Sometimes, developers take a quick look to understand the code rather than studying it in detail.

Furthermore, if the code is commented well, then developers find it easy to understand the code.

Unfortunately, comments are either missing or not good enough to help developers during maintenance.

To solve this problem we have presented a solution to this problem but before moving further lets

discuss some of the concepts that would be used in this paper.

This chapter includes the introduction of the research study and the background study in Section

1.1,whereas, problem has been described inSection1.2.Moreover, proposed methodology has been

described inSection1.3 , our contribution to research is included inSection 1.4and organization of thesis

is comprehended in Section1.5.

1.1. Background Study

In this section, we have included the description of some concepts used in this paper. These concepts

include:

➢ Code comment generation

➢ Source code summarization

1.1.1. Code Comment Generation

Code comment generation is to generate human readable comments for source code. Code comments are

also called as Program Annotation that is human readable explanations of the written source code.

Furthermore, they are very useful for developers during maintenance phase [4]. Code comments are very

important for software maintenance as good comments can improve readability of a program [5].

Therefore, the fact that code comments play an important role in software maintenance and development

has been widely acknowledged by the researchers[6][7][8]. Although, code comments not only

comprehend a source code but also inform about the intension and goals of programmer behind

12

developed software system [9], writing good comments is a time-consuming activity. Hence, many

activities have been carried out to generate good comments automatically. Automatic code comment

generation is really helpful in facilitating program comprehension [10, 11].Automatic Code comment

generation consists of three parts. In first part, data is prepared for the commenting system. Second part

represents source code. Furthermore, it also covers structure and semantics of source code which

contains information of structure, lexis, grammar, semantics, contexts, invocation relation and data

dependency of source code. Finally, as shown Figure 1.1in third part, text is generated which are natural

language sentences which are extracted from information from source code.

Figure 1.1: Process for generation of source code comments

1.1.2. Source code summarization

Maintaining code and re usage of source code is challenging now a days[12]. There are many practices

used to solve this problem. One of them is to generate short summaries of source code .Source code

summarization (SCS) is a task to create summaries that are readable and they describe functionality of

software .Moreover, it is an important component of software documentation generation; for example,

Java docs attaches short description of each method in Java program [13].Furthermore, source code

summarization could be done by targeting different code constructs. Researchers have targeted different

constructs to get their desired results which have been discussed in the Literature review section.

13

However, in the end, the target is to provide summary of the code in a way which would help

programmers in understanding of the code. Source code summarization is measured by measuring

complexity, conciseness and correctness of the summary generated by the SCS tool. Furthermore,

researchers have focused on automatic generation of the source code summary.

The main task of Source Code Summarization is to provide readable summaries which can help in

understanding of the source code for efficient maintenance. Furthermore, the input of SCS is source

code which upon usage of different kinds of techniques that is as following used in the last ten years:

➢ Natural Language Processing

➢ Machine Learning

➢ Neural networks

➢ Attention mechanism

Moreover, combinations of these techniques are also used for SCS which later is discussed in the

literature review section. As shown inFigure 1.2the overall process in generalized form consists of three

sections totally. Which from starting, source code is taken as input in start and processing has been done

to generate the summary in final step.

Figure 1.2: Source Code Summarization

1.1.3. Natural Language Processing

Human beings are the most advanced species on earth and there is no doubt in that .Moreover, our

success as human beings is because of our ability to communicate and share information .That is where

the concept of developing a language comes in. Furthermore, when we talk about the human language, it

is one of the most diverse and complex part of us considering a total of six thousand and five hundred

languages that exists. So, in 21stcentury, according to the industry estimates, only 21% of the available

SOURCE CODE PROCESSING SUMMARY

Figure 1.1: Source Code Summarization
Figure 1.2 : Source Code Summarization

14

data is present in the structured form. Moreover, data has being generated as we speak over calls, send

messages and write tweets or statuses on different social networks. Majority of this data is present in

textual form which is highly unstructured in nature. In order to produce significant and actionable

insights from this data it is important to understand with the techniques of text analysis and natural

language processing. Natural Language Processing is a major area of artificial intelligence [14] and it is

a process to derive meaningful information from natural text[15]. Natural language processing is carried

out with the assistance of other knowledge areas too like : Deep learning [16], attention mechanism

[17],neural networks [18] and machine learning [19]. Moreover, this technique brings closer machine to

human being because the machine becomes more human by using this technique [20]. It has various

applications like: usage in fields of machine translation, email spam detection, information extraction,

summarization, medical, and question answering etc.[21].Generally, it usually involves the process of

structuring text, deriving patterns within the structured data and finally evaluating and interpreting the

output.

The major components of NLP shown in Figure 1.3as follows:

1. Natural Language Understanding

2. Natural Language Generation

Figure 1.2: Components of NLP

Natural Language Understanding generally refers to mapping the given input into language, performing

useful representation of that language and analyzing those aspects of language. On the other hand,

Natural Language Generation of producing meaningful phrases and sentences in the form of Natural

Language from some internal representation . Generally, Natural Language Understanding is more

complex than Natural Language Generation.

There are various steps involved in Natural Language Processing which are as follows:

Figure 1.3: Components of NLP

NATURAL LANGUAGE PROCESSING

NATURAL LANGUAGE UNDERSTANDING NATURAL LANGUAGE GENERATION

15

1. Tokenization

2. Stemming

3. Lemmatization

4. Generating POS Tags

5. Named entity recognition

6. Chunking

Tokenization is the first step of NLP. It is the process operating strings into tokens which are small

structures or units that can be used for tokenization. The second step of NLP is stemming. It includes

normalization of the words into its base form or root form. The third step of NLP is Lemmatization. It

groups together different inflected forms of a word called lemma. It is somehow similar to stemming

which maps several words into one common root. However, the major difference between stemming and

lemmatization is that the out of lemmatization is a proper word. Fourth step of NLP is POS Tags. POS

tags show the grammatical type of the word or it separates the parts of speech and identifies its

grammar. A word can have more than one part of speech based on the context it is used. The next step of

NLP is Named Entity Recognition in which it identifies the names of entities such as person names,

company names etc. The final step of NLP is Chunking. In this step, all the extracted information is

gathered into bigger pieces and meaningful statements or information. These bigger pieces are also

known as chunks. In the context of NLP, grouping of tokens into chunks is called chunking.

Furthermore, it also refers to the artificial intelligence of communicating with an intelligent system

using the natural language. Additionally;its goal is to find high quality information from the given text.

Natural Language Processing and Text mining go hand in hand as parallel to each other sometimes.

One of the goals of the big data analytics is to make the most out of the textual data with access to

standard Natural Languages Processing are good but deep learning techniques can improve the text

learning and text generation. These methods typically rely on a “language model”. A model that

estimates the likelihood of seeing a particular component in a body of natural language. One example is

the trigram model which attempts to calculate probability of seeing a pacific sequence of three words in

a natural language corpus. Furthermore, all these methods perform well in practice but each one have

some kind of limitation. Language is subjective and ambiguous i.e. sometimes the same word can mean

different depending upon the context. Moreover, sometimes synonyms can have subtly different

meanings depending on the way they are used. It can also be difficult to add new words to an existing

language model. So, NLP often requires a lot of manual curation. This added labor comes at the cost of

16

variable quality and consistency. However, there are some ways like deep learning to overcome the

limitations of NLP.For example, Google 1T Corpus has a vocabulary of over 13 million words.

The first and the most important application of natural language processing is sentiment analysis.

Another natural language processing application is on speech recognition software to find the meaning

from conversations of people or audio data of videos. Moreover, it has been also applied in translation of

finding relevant and high quality information from source code by providing meaningful summaries.

Machine translation is also another use case of NLP and the most common example is Google Translate

which in real time uses NLP to translate data from one language into another one. Another application of

NLP is spell checking keyword and also extracting information from any document or any website.

Information extraction is heavily used in Source code summarization by using NLP.

Today, NLP is used in many applications to solve some business problems. One of them is “Spam

detection”. Spam detection is to detect a spam comment or spam like advertisements in website. When a

spam is detected the user is given options to hide in order to focus on the part where he is interested.

Spam detection using NLP helps improving the user experience on websites.

Another application of NLP is autocorrect feature which is largely used in computer software’s and

mobile software.So, NLP has been used in different applications today and is a significant area of

research for research during the past decade.

1.2. Problem Statement

As discussed earlier in this chapter that Source code summarization have significantly gained the

attention of researchers and practitioners around the world. Software systems are used in many fields of

life now a days; for example PE teaching and human movement science [22]not only this but the fact is

that software are used in every digital device and real world departments i.e. Health Care, Automotive

Systems etc., have increased their maintenance. Maintenance of software systems has become more

significant task in business world too and now it is very important for a software to be maintainable

[23]. As time is referred as money in business[24]; therefore, source code summarization can help

programmers to focus on the real task rather than spending more time in understanding of the code. Due

to complex design of software system, maintenanceinvolves difficult technical complications if the code

is not well commented. Many researchers have worked on analyzing the techniques used on generation

of source code comments [5, 25]. Importance of code comment surges us to perform it automatically to

help engineers as much as we can. Automatic source code summarization will save enormous amounts

17

of cost, development time and maintenance time. Automatic SCS provides us the capability to

understand code in lesser time, therefore, it has been researched frequently during the last decade in

domain of software maintenance system.

As discussed in Section 2.2 and 2.3, inthe domain of software maintenance and SCS system researchers

have proposed solutions to automatically generate source code summaryof source at higher abstraction

level. SCS provides the ability to create summaries to represent source code functionality which can

later be used for software maintenance with minimum effort. Hence it concludes that the source code

summary, which includes information regardingclasses, methods and other constructs can help

programmer to maintain program faster. Some researchers have generated summaries for classes and

some have generated summaries for methods. Consequently, researchers have been trying to explain the

functionality of software in by targeting different constructs. This creates a gap in which researchers

haven’t been targeting the constructs in such a way that the logic of the method could be understood, as

summaries generate automatically with different methodologies used by them. However, Researchers

haven’t been targeting nested constructs which are a part of source code and can’t be ignored. Therefore,

there is a dire need to provide a better and detailed summary of source code levelthat is generatedby

keeping in view important constructs like classes and methods in such a way that nested constructs like

if statements and for loops are not ignored. So, programmers can have a better understanding of the

source code to fill thisresearch gap.

1.3. Proposed Methodology

Our research has been done in systematic way. We have shown each step of our research in Figure

1.4.Problem has been identified in the first step. In second step we have identified the ideal solution of

the problem shown in first step of research. Furthermore, comprehensive and detail literature review was

carried out by uswhich helped us to identify the optimal solution for the problem. Review of the research

related to our proposed solutionwas carried out by us, analyzed and compared it. We also performed a

comparative analysis of source code summarization techniques and frameworks.

The proposed solution includes an automatic source code summarization in c# languagetargeting

constructs like loops, if statements, functions. It also includes detailed summary which identifies the

functions of classes and explains it in simple language. Furthermore, it explains the logic of function by

explaining the usage of loops and conditional statement .The summary has been generated using natural

language processing. Three case studies has validated the proposed methodology.

18

1.4. Research Contribution

Detailed set of contributions of the proposed approach are as follows:

➢ We have presented newmethodologyforNatural Language Processing of Code whichcan generate

source code summary for source code. It helps to provide a higher-level description of the source

codeand reduces the time in understanding of code.

➢ We have used the core concepts of Natural Language Processing to propose new methodology

for SCS in C#.

➢ We have validated our proposed methodology by using threedifferent benchmark case studies

2

Problem Identification Literature Review Problem Solution

Validation Implementation Proposed Work

Conclusion

1 3

4 5 6

7

Figure 1.4: Flow of Research

19

1.5. Thesis Organization

Thesis organization can be viewed in Figure 1.5.In Chapter 1: INTRODUCTION,the introduction

consists of the background study of the concepts used in this research, problem statement,and proposed

methodology, contribution of research and organization of thesis. Chapter 2: LITERATURE

REVIEW discusses the previous contributions in domain of embedded systems in the context of Source

code summarization. We went through two steps to perform Literature Review. Firstly, the research

articles are evaluated to find SCSbased research in domain of Source code summarization. Secondly,

multiple research articles from the last decade were studied in detail to extract data from each research

article. Finally, research gap has been identified from the literature review. Chapter 3: PROPOSED

METHODOLOGY narrates the proposed methodology for the problem identified where the summary

of source code using natural language processing is performed and the results are shown. Chapter 4:

IMPLEMENTATION covers the detailed description of our methodology using Natural Language

Processing. Chapter 5: VALIDATION ensures authentication of proposed framework by usage of 3

case studiesi.e. 1) Car Engine 2) Automatic Lift 3) Social media application. During validation, Source

Code Summary of these case studies is generated, then these summaries are checked by different

programmers via survey. Chapter 6: DISCUSSION AND LIMITATION consists of a brief discussion

on the work done by us and its limitations. Chapter 7: CONCLUSION AND FUTURE WORK

concludes our research and recommends a future work for the researchers which could play vital role in

advancement of science.

20

Introduction

Chapter 1 Chapter 2 Chapter 3

Chapter 6 Chapter 5 Chapter 4

Chapter 7

Literature Review Proposed
Methodology

Implementation Validation
Discussion &
Limitations

Conclusion &
Future Work

Figure 1.5: Thesis Outline

21

Chapter 2

Literature Review

22

CHAPTER 2: LITERATURE REVIEW

In software development and software maintenance phase, the key to success is comprehension of code.

Moreover, source code is the primary source for finding information about systems[26]. Even open

source software systems maintenance is also a vital research topic for researchers [27]. Not only this but

software maintenance is also important for software evolution too [28]. Source code summary is crucial

to enhance the understanding of code. Therefore, Source Code Summarization (SCS) is getting

recognition among researchers and programmers during the past few years due to its ability to improve

understandability of code. So, many researchers have proposed and developed different tools in past

decade for helping maintenance programmers and maintenance engineers for improvement of

maintenance phase of Software Engineering. Automatic Source code summarization has been performed

using different techniques and has been applied on various programming languages. So, there is strong

need to summarize the latest advancements in SCS. Therefore, this article contains a Systematic

Literature Review (SLR) which identifies 22 research papers (i.e.2010-2020) either performing source

code summarization or suggesting state-of-the-art methodologies. Furthermore, 16 implemented

methodologies and 5 proposed ones are identified. Moreover, some advantages of source code

summarization have been identified. Finally, a comparative analysis of tools developed, is performed. In

a nutshell, SCS provides a facility for programmers to understand the written code well.

2.1. Introduction

Developer analyses the code for software evolution process, for doing so, they must understand the code

faster[29]. It takes more time if it is done manually than by using automated source code summarization

techniques [30]. Source code summarization is a technique used to generate natural language summaries

of source code. Although, software maintenance could be performed faster if developer pays more

attention towards editing the code, they spend more time reading the code[31]. Furthermore, this

happens because good comments are missing in the code. Source code summaries mostly depend on

high quality identifiers and method’s identifiers due dependency on natural language processing [32].

Early researches have been using techniques Natural language processing, machine learning, neural

networks etc. for the development of code summaries.

Code comments generation is very important and challenging topic among researchers now a days due

to its importance in maintenance of software[5]. Automatic source code summarization is a process in

which human readable code comments or code summaries are generated automatically using various

23

techniques. Meanwhile, such a description should not only be covering the description of the program

code but also the intent of the developer behind code. For Automatic SCS, many tools have been

proposed or developed by the researchers in the past decade (2010-2020).

Following are the research questions suggested for this article:

• What are the significant frameworks/methodologies developed / proposed for SCS from 2010 to

2020?

• What are the approaches used by researchers for SCS from 2010 to 2020?

• Which programming constructs were targeted by the researchers for SCS during 2010 to 2020?

• Which programming languages were targeted for the generation of SCS?

• What are the significant metrics required to measure the quality of Summaries?

We have performed Systematic literature review to give quantitative answers of the above research

questions. For this purpose, 22 research papers are selected, which are published from 2010 to 2020 in 4

significant libraries that are: IEEE, SPRINGER, ACM AND ELSEVIER .Along with that, analysis has

been performed on the tools developed by researchers. It is concluded that SCS helps in reducing efforts

of software maintenance engineers by giving them understanding of the code in reduced time.

2.2. Literature Review Methodology

2.1.1. Inclusion and Exclusion Criteria

In order to optimize paper selection procedure, six constraints are defined. On the basis of these

constraints, papers will be either selected or rejected. (1) A research paper will only be selected if it is in

the scope of research perspective. Only those papers will be selected which will either be suggesting a

tool / methodology or a framework to automatically generate the summary of source code. (2) Research

papers published between 2010 and 2020 would be selected only. (3) Research papers published in

IEEE, ACM, ELSEVIER and SPRINGER will be selected only. (4) Research papers must provide solid

results in context of source code summary generation.

2.1.2. Search Process

For finding research papers we searched SPRINGER, ACM, IEEE and ELSEVIER because these

scientific libraries are widely accepted. The different search items like Source code summarization, code

24

summary, comment generation and automatic source code summarization system etc. were given to

these libraries to find conference proceedings and journal papers. Furthermore, we used AND/OR

operators on all searches where search terms were contained more than one word i.e. ((("comment

summary”: generation) AND "source code summarization”: generation) AND "All Metadata”:

Methodology). On the other hand, AND/OR operator does not make it sure to give right results. Hence,

to get research articles that were published from 2010 to 2020, a year filter “2010-2020” was also

applied during all searches. Figure 2.1 explains the search process.

IEEE Springer Elseiver ACM

242 researches 389 researches 341 researches 522 researches

Rejection based on Title of Research
(637 researches)

Rejection based on Abstract of Research
(763 researches)

Detailed Study of 94 Researches

Selected
Researchers

22

Rejected
Researchers

72

1494

1494-637=857

857-763=94

72+22=94

Selection Criteria Rejection Criteria

Figure 2.1 : Search Process

(1) We used different keywords like “source code summarization”, “automated comment generation”

etc. during our research in each of the online scientific libraries, 1494 search results were generated

upon using the above mentioned keywords. (2) 637 search results are dropped because their titles were

irrelevant to our research area. (3)We rejected 763 research papers on the basis of abstract analysis.

(4)We studied 94 research papers in detail. (5)Finally, we selected 22 research papers on the basis of our

inclusion and exclusion criteria and rejected 73 search results

25

2.1.3. Quality Checking

As a matter of fact, assessment of Quality in research articles is necessary because result of our research

is highly dependent on the results of nominated research papers. Therefore, we strictly followed

developed principles, to make sure that the impact of our study leaves a better mark on scientific society.

These quality principles consist of the following points.

1) To achieve good results; we selected most recognized scientific databases. As, they ensure the

selected research papers are reliable

2) We try to select latest research articles, to ensure the quality of nominated research articles.

Table 2.1 provides summary of number of selected research papers from associated libraries and their

reference numbers. We extracted information from finalized research articles on the basis of our

exclusion and inclusion criteria. For better study, we performed Data Synthesis on our selected research

papers. An overview of data extraction and data synthesis of selected research articles is shown inTable

2.2

Table 2.1: Repositories, associated papers and their reference

Sr# Library Type Ref Total

1. ELSEVIER
Journal [33] 1

Conference

2. ACM
Journal

Conference [34, 35] 2

3. SPRINGER
Journal [36, 37] 2

Conference

4. IEEE
Journal [13, 38] 2

Conference [2, 30, 32, 39-50] 15

Table 2.2: Data Extraction

Sr# Parameters Details

1.
Bibliographic

Information

Extracted information includes Author, title, publishing year,

details of publisher, research type

Data Extraction

2. Overview General overview of research

3. Results Found results during research

Data Synthesis

4. Approaches Identified techniques used by researchers

5. Tools Found different tools implemented by researchers

6. Benefits Identify Benefits of SCS

7. Languages SCS of different programming languages

26

2.3. Results

Table 2.3: Frameworks/Tools proposed

Sr# Frameworks /Methodology Approaches
Data Set

Ref
Description Availability

1. CloCom
NLP(Code clone

techniques)

1005 Open source

java Projects , 42

million LOC

Open Source [42]

2. JSummarizer NLP N/A N/A [45]

3. Portfolio

NLP and Spreading

activation network (SAN)

algorithms

N/A N/A [46]

4. CodeAttention Attention mechanism 1600 Java Projects Open source [36]

5. Minipar
latent semantic indexing

(LSI) ,Clustering , NLP
NA NA [40]

6. CrowdSummariser NLP, Crowd sourcing 11 Java applications Open source [38]

7.
Using abstract syntax tree and

Actor-critic network

Deep reinforcement

learning
N/A Open source [34]

8.

Comment’s generation using

natural language processing

and CCGs

NLP , CCGs
Self-created

program
Proprietary [35]

9. ContextCC Neural networks, NLP N/A Open source [33]

10.
Source code summarization

of java methods
NLP Six java projects Open source [13]

11. Hybrid Deep-com

NLP , Deep neural

network, Attention

mechanism

588,108 (methods

and comments)
Open source [37]

12. Ast -attendgru
Neural models, Neural

networks
2.1 m Java methods Open source [48]

13. MethodMan Pre-defined templates N/A Open Source [44]

14.
Functional topic summary

extractor

Topic Mining ,Relevance

Calculation, LexRank

summarization algorithm

N/A Open source [47]

15.
Method level text

summarization of java code

using nano-patterns

Nano-patterns Six Java projects Open Source [43]

16.
TASSAL (Tree-based

Autofolding Software

Summarization Algorithm)

NLP 6 Java Projects Open source [50]

17.
EBSCS (Entity based source

code summarization)
NLP N/A N/A [30]

18. Tree2Seq (Tree-to-sequence) AST-based encoder N/A Open source [39]

19.
Combination of LSI (Latent

Semantic Indexing) and

(Vector Space Model)

Latent Semantic Indexing

Vector Space Model

Two Projects From

Source Forge
Open Source [49]

This section explains the results extracted from selected research articles according to research

methodology defined in Section 2.

27

22 research articles written in past 10 years are analyzed to identify 19 different techniques to

automatically generate the summary of source code.Table 2.3 describes the

tools/methodologies/frameworks either developed or proposed for generating SCS. It also describes the

approaches used by researchers in their methodology.

Different data sets were used by researchers for experimentation of their proposed methodologies.

However, few articles have not mentioned their validation data sets. So, details of data sets and their

availability are also mentioned in Table 2.3. These data sets mostly contained java methods. Some

researchers used more than 1000 Java methods in their data sets. Also, some Data sets included

comments and code as input to their proposed tool for SCS. However, one of the proposed methodology

generated summary from summaries written by people on internet.

Table 2.4: Language Constructs targeted

Sr# Language Construct Ref

1. Method [13, 30, 32-35, 37-40, 42-44, 46-48, 50]

2. Conditional Statements [30, 32, 34, 35, 37-39, 42, 43, 45, 50]

3. Classes [2, 30, 37, 39-42, 45, 47]

4. Iterative statements [35, 37, 38, 43]

Table 2.5: Target Programming Languages

Sr# Language Ref

1. Java [2, 13, 32, 33, 35-39, 41-43, 45-48, 50]

2. Python [34, 35]

3. General [34, 36, 40, 44]

Table 2.4describes different constructs of programming languages that were targeted for SCS.

“Methods” are the most targeted construct in process of summary generation. Among 22 research

articles, 18 of them have targeted “Java” for generating summary of source code, by using different data

sources. Two of the researchers have targeted Python and 3 of them mentioned generic methodologies

for SCS.13 out of 22 researchers chose NLP as a part of their methodology and highlighted benefits of

its usage in their research articles. 3 out of 22 used neural networks in their proposed methodologies.

Furthermore, SCS methodology takes code as an input and gives simple language summary of the code

as output. The input may vary i.e. some methodologies used comments as input along with code and

some used only code as input. Most commonly used language for testing the methodologies was “Java”

in past decade as shown in Table 2.5.

InTable 2.6, we have taken six research papers as an example and showed whether they have used code

and comments for the generation of natural language summary or not. Our research paper title is

28

“Generation of Summary using natural language processing in c#”. We used source code as an input for

source code summarization but not comments. Furthermore, in the Table 2.6we have shown which of

the researchers has implemented their proposed methodology and has shown results in their articles.

“Implemented” means they have implemented and shown in results in their research article. However,

“Suggested” means that the researcher has not shown the results in their research article.

Table 2.6: Input of Code / Comments for Source Code Summarization

Ref Code Comments Source Code Nature

[33] No Yes Suggested

[38] Yes No Implemented

[45] No Yes Suggested

[30] No Yes Suggested

[2] No Yes Implemented

TCS No Yes Implemented

[13] No Yes Implemented

Table 2.7: Targeted programming constructs

Ref Inheritance Structure Member functions Member variables Classes # Nature

[33] No No Yes No None Suggested

[50] No No Yes No None Implemented

 No No Yes Yes None Suggested

[30] No No Yes No Unlimited Suggested

[2] No No Yes No None Implemented

TCS No No Yes No Unlimited Implemented

[13] No No Yes No None Implemented

Use of different constructs by selected researchers

In Table 2.7, we have discussed various constructs used by the researchers during their research. We

found out that most of them have targeted methods for their generating Source code summaries.

However, very few have targeted classes or more than one class. Furthermore, our methodology is using

29

classes and methods for the generation of Source code summary. As it is a vital part of a source code.

Therefore, we used them in our methodology for natural language processing. In a research, they have

targeted specifically methods and briefly explained their usage by processing on method’s identifier,

parameter’s identifier and return statement’s identifier for generation of natural language summary.

On the other hand, we are using the combination of classes, methods, conditional statements, iterative

statements and return statements to generate natural language summary. As you can see in Table 2.7,

very few researchers targeted constructs other than classes and methods. Therefore, there was a dire

need to work and improve the methodology used for generation of natural language summary.

2.4. Discussion

Different techniques were used by researchers for source code summarization. Clocom”, automatically

generated comments by mining the existing code [42]. “JSummarizer” , is a suggested Eclipse plug in

automatically generated summaries for Java Classes [45]. “Portfolio”, a tool suggested by researcher can

find relevant functions and their usage in the source code [46]. An approach named “Code Attention”

Translated of code into comments by focusing on symbols, keywords and critical statements using new

attention technique [36]. Furthermore, “Minipar” , did Comprehension of Source code using LSI (Latent

Semantics Indexing) , clustering and natural language processing [40]. Source code summaries were

generated by crowd sourcing in “Crowd summarizer” [38]. One of the researcher used deep

reinforcement learning to improve SCS [34]. Moreover, a researcher generated Comments from source

code of python using NLP [35]. Neural networks along with NLP were used in a methodology

developed by a researcher for SCS [33] . Automatic generation of Source Code Summaries of Java

methods was done by using NLP too [13]. Comment generation may also help programmer during

maintenance phase. Therefore,” Hybrid-Deep-Com”, was created by researchers using NLP , Deep

Neural Network and Attention mechanism in their proposed methodology [37]. A research methodology

generated natural language summaries by proposing a new neural model and used neural networks for

getting required results [48]. “Methodman” , a proposed methodology, used pre-defined template to

generate source code summaries [44]. A similar approach proposed a methodology to understand the

function of the software code [47]. Moreover, a researcher used “Nano-Patterns” to improve the natural

language summaries of java code [43]. “TASSAL”, a proposed tool , automatically creates code

summary by folding code regions that are less informative [50]. A proposed methodology proposes to

generate description of entities is generated using comments of the program in “EBSCS” [30].Another

methodology uses proposed model named “Tree2seq” for Neural Comment Generation for source code

30

by using auxiliary code classification task [39]. Moreover, a methodology generated code summary

using combination of two techniques LSI (Latent Semantics Indexing) and VSM (Vector Space Model)

[49]. Furthermore, Some researchers did generation of source code summary of java classes using NLP

[2]and micro patterns [41].

During the maintenance phase, the developer doesn’t have time to read the whole source code.

Therefore, they need a quick understanding of the code to perform modifications efficiently. As, each

entity in programming is somehow linked with other entities. Therefore, dependency between entities

must be understood clearly for modifying the source code. “Automated-Summaries “of classes, are of

great help in this regard. Therefore, a concise, correct and relevant summary of the source can help

developers during maintenance.

As discussed in Section 3, 81.18% research articles have focused on generating the summaries of only

one programming language “java”. So, the summaries being generated are language dependent.

However, to improve the scalability of SCS, we need to work on generating more “generic” summaries

i.e. language independent summaries. Syntactical and logical difference in different programming

languages make it quite challenging, to derive a general SCS approach.

Another challenge in SCS is to include maximum programming constructs, to generate a complete and

comprehensive summary. As discussed in Table 2.7, majority of researchers are targeting classes,

methods, iterative statements and conditional statements. However, more complex constructs are yet to

incorporate in SCS techniques i.e. inheritance and polymorphism etc. Incorporating maximum

constructs is significant for maintenance programmers. As, if a maintenance programmer has to

understand the complete working of the code in short time, they won’t be able to grip the complete

concept of the relevant code , from the summaries which are currently being generated.

Moreover, researchers have been facing two important problems while generating meaningful

summaries for source codes.1) determining what should be included in those summaries. 2) How to

generate summaries automatically without help of developers. Quality of the summary is highly

dependent on the good programming practices used by programmers. As, programmers are expected to

use meaningful identifiers and method names. Hence, good summary is dependent on programmers. It is

a huge challenge to generate meaningful description of methods and classes, when the identifiers are not

meaningful.

Another important challenge in SCS is “quality-evaluation” of generated summaries. Literature lacks

automatic quality evaluation tools and algorithms for source code summaries.

31

2.5. Analysis

This section provide details of the analysis performed between 9 tools identified from research articles.

Name of tool, license type, purpose and language support of the tools are mentioned in Table 2.8In

SCS one of the biggest challenge is to evaluate the validity of generated summary. Our literature does

not have solid ways to verify the quality of summaries. Hence, we have summarized different evaluation

metrics, used by researchers to validate their summaries either subjectively or objectively.

Most commonly used quality evaluation metrics in last 10 years are summarized in Table 2.9. Most

commonly used validation techniques are Human Evaluation (Questionnaire, Survey), Intrinsic online

evaluation [49]and IR metrics [50, 51]. It is evidently clear that human evaluation is the most preferred

evaluation choice. However, evaluation based on human response is error prone, consequently creates a

huge validity threat.

Table 2.8: Tools

Ref Tool
License-

Type
Purpose

Language

Developed Support

[38] CrowdSummariser Proprietary
Generate high Level

Summaries

Eclipse

Plugin
Java

[50] TASSAL
Open-

Source
Autofolding in SCS Java Java

[45] JSummarizer
Open-

Source

Automated Summary

Generation

Eclipse

Plugin
Java

[42] CloCom
Open-

Source

Mine software repositories

for automatic comment

generation

N/A Java

[33] ContextCC Proprietary
Generate high Level

Summaries
N/A Java

[36] CodeAttention Proprietary
Generate high Level

Summaries
N/A General

[43]

Method Level

Text

Summarization

Proprietary Generate Summaries N/A Java

[44] MethodMan Proprietary Generate Summaries srcML General

[2] JStereoCode
Open-

Source

Identify Java code

stereotypes

Eclipse

Plugin
Java

Table 2.9: Evaluation Metrics

Ref Validation Parameters Validation

[38] Conciseness, content adequacy,accuracy,comprehensibility IR metrics

[50] BLEU, METEOR IR metrics

[49] Number of relevant words, Length of Summary, Presence of Intrinsic online evaluation

32

method, class and attribute names in summary, Number of

leading comments, Presence of verb and object

[37] BLEU, METEOR , Accurate Comment (Survey)
Machine translation metrics ,

Human Evaluation

[48] BLEU score Machine translation metrics

[47] Semantic relevance Human Evaluation

[13]
Accuracy, Content , Concise, Methods (what, why, how) ,

Orthogonality, Interpretation level
Human Evaluation

[46] Relevance, Visualization of dependencies
Human Evaluation , IR

metrics

[2]
Understandability, Readability, Content Adequacy,

Conciseness, Expressiveness
Human Evaluation

[45] Concise, complete, readable, understandable, Human Evaluation

[43] Correctness,completeness,conciseness, Non-Redundancy Human Evaluation

[34] BLEU, METEOR,ROUGE-L, CIDER Machine translation metrics

[42]
context-sensitive text similarity measure

(accurate,adequate,concise, useful)
Human Evaluation

[36]
BLEU, METEOR ,Understandability,Similarity, Interpretability,

fluency, grammatical accuracy

IR metrics, Human

Evaluation

[33] BLEU-4 , METEOR, briefness, natural ,informative IR metrics, Qualitative

33

Chapter 3

Proposed Methodology

34

CHAPTER 3: PROPOSED METHODOLOGY

Detailed description of concepts involved in our proposed methodologyare present in this

chapter. The recommended solution is derived using customized language processing method

and generalnatural language processing that includes Tree Graph of stacks to identify the nested

constructs up to two levels.

In our proposed methodology, first our tool will get source code written in C# as an input.

However, there are some pre-requisites that must be followed while writing the code. These pre-

requisite includes proper naming of identifiers and methods. Once code has been taken as input it

will first be tokenized. The process of tokenization has been discussed earlier in 1st chapter of

this paper. However, the tokenization we have used in our methodology is purely based on

tokenizing the source code of C#. Therefore, it picks up tokens and saves it accordingly in an

array. Next step, is to identify the constructs that are part of another construct ; For example,

weather a function is a part of a class and weather the conditional statement identified is a part of

that function or not. This is the most complex part of the processing. As the limit of nesting of

constructs couldn’t be limited. However, we limited the nesting of constructs up to two levels.

Furthermore, each construct is considered as a stack. The top most stacks will be executed first

and then next one for maintaining the sequence of execution of programming constructs.

Firstly, we will discuss the proposed methodology in general steps. Later on, we will be going

into details of our proposed methodology. As you can see in Figure 3.1our methodology consists

of majorly three steps. In first, Source code is taken as an input. In second step, customized

processing is done on source code with natural language processing side by side. In this step all

the processing is done. Furthermore, from tokenization to the generation of plain language

summary of each construct is generated in this step. In the final step all those summaries are

collected together and processed in to a single summary of the source code in plain language.

The output is a summary which in plain language explains the functionality of the code.

35

Figure 3.1: Translating Code to a Simplified Summary (TCSS) Architecture

Going into details lets discuss Figure 3.2. In Figure 3.2, the process of TCSS is explained in

detail, especially the part where most of the processing is done. Furthermore, the part where we

had to define a structure of program was the most difficult and complex. The solution of such a

problem was solved by using a combination of complex structures like stacks and graphs. TCSS

includes six major steps which are as following:

• Tokenization

• Construct Identification

• Structure of Constructs

• Putting constructs in relevant stacks

• Linking Stacks with other stacks

• Natural Language Processing

36

Figure 3.2: Translating Code In To Simplified Summary (TCSS) Architecture

To begin with,InFigure 3.2, the first step of TCSS is tokenization, in this part the source code is

read and converted into tokens. Each token is basically a part of programming language. As you

can see in Figure 3.3. A conditional statement has been tokenized.

37

Figure 3.3: Tokenization of if conditional statement

In Figure 3.3we have shown how tokenization is performed of conditional statement. This

tokenization would be done by using a customized function which will consider the conditional

statement as a single token. Moreover, the example used in the Figure 3.3has considered

“status_of_air_conditioner” as a single token. This has been done for future processing for

generation of summary of conditional statements.Furthermore, we tokenized the input code.

Each token represents a word of the code; for example, in the given example:

for (inti =0 ; i<3 ; i++)

There are 12 tokens.

Furthermore, In Figure 3.2, the second step of TCSS is identification of construct and the third

one formation of structure of construct. We have divided the constructs into methods, classes,

conditional statements (if for implementation purposes) and iterative statements (for only). It is

because, we want to identify the logic used in the methods which could be covered only if we

38

include the brief explanation of conditional statements and iterative statements in our summary.

As discussed in the Chapter 3,inclusion of logic in source code summary can play a vital role in

helping programmers for improving efficiency of program. So, we considered briefly describing

the function of conditional and iterative statements in our methodology.

Table 3.1: Tokens

Word Array index Token

for 0 1

(1 2

int 2 3

i 3 4

= 4 5

0 5 6

; 6 7

< 7 8

3 8 9

i 9 10

++ 10 11

) 11 12

Moreover, each structure has been designed specifically for the usage of source code summary

which will be discussed in the next chapter. Once a structure has been identified it is added to it

is added into its relevant construct. If it is not a part of a construct then it is not added. For

example, member functions of a class will be added in the structure of class and constructs of a

function will be added in the structure of that relevant function which has been shown in Figure

3.4.

39

Figure 3.4: Programming constructs structuring for Natural Language Processing

As you can see in Figure 3.4, we have presented each node of the graph as a construct of

program. Furthermore, these nodes can be stacks of more constructs inside that node. The reason

of doing so is that for brief description of function we would need to know the order of

constructs and the information in which we can know which constructs are part of another

construct. This will play a vital role in further processing of generation of natural language

summary.Nesting is commonly used in programming codes. Furthermore, it is very important for

us to identify the hierarchy of the constructs within a function to identify its logic. Therefore, we

had to identify the hierarchy. For doing so we made an algorithm by using stacks.

To solve the nesting problem, we have used an algorithm as follows:

Firstly, we considered every construct’s body in function as a stack. Let’s name this stack as

“S1”. Suppose, “if” and “for” are two constructs. Consider the following code:

if(speed ==0) // i1

{

for(inti =0;i<3;i++) //f1

{

40

if (acceleration<3) //i2

{

 Acceleration++;

}}}

In the above code, there are three constructs i.e. two if and one for. Additionally, in comments

we have named them as “i1”, i2, f1. Let’s define the hierarchy of this code, f1 is defined inside

the body of i1 and i2 is defined in body of f1. So, to identify the hierarchy in the code constructs

we needed an algorithm. According to that algorithm, we defined a stack. In that stack each

construct will be pushed unless we found a “}” in the given code. Once we found it, we will

consider the construct present at the top position a part of construct that is present below it. From

the above code, we can make the following stack:

i2

f1

i1

Form the above stack we can identify that i2 is a part of f1. So, we will add i2 in the instance of

f1.By doing so, we would be able to identify the logic. Let’s say, we get a description

“acceleration>3 will be checked several times”

f1

i1

Once this is identified we will remove i2 from the top and then f1 would be at the top. This

process will repeat until there is only one element left in the stack. By doing so, we can identify

the hierarchy of the code constructs. So, at the end of this effort, we will get a description “When

speed==0, acceleration>3 condition will be checked several times. Each time if it is true,

“acceleration++” will be executed.”

Usage of Stacks

41

Constructs like for, if etc. can have multiple constructs within their body. Along with that, for

understanding the nominal logic of that body, the arrangement of the construct must also be

known. Therefore, for knowing the pattern, we choose to consider a stack of constructs that were

used in the body of any construct. For generation of the natural language we need to know the

order of the constructs too. So, stack can maintain the order of execution of the statement.

Natural Language Processing

Next step of our proposed methodology is Natural Language Processing. This process is done on

different occasions during the methodology where it is required. This step in parallel fixes the

identifiers and conditional statements so they can be understood easily by the reader of the

summary. Furthermore, special characters between words are removed in this section. For

example, an identifier of a function named as “stop-engine” will be processed as stop engine.

Moreover, verbs and nouns are separated in this process. With verbs “s” or “es” are attached with

verbs according to their nature. For example, “stop-engine” will be changed to “stops engine”.

The reason of doing so is that we would be using present indefinite tense in our generated

summaries. Additionally, conditional statement’s conditions are also processed for better

readability. For example, if there is a statement “length > array” would be converted into “length

is greater than array”. This will improve the readability of the summary.

Once, the structure of constructs iscompleted,Custom language processing is also done to

convert different chunks of English phrases into complete sentences using different templates.

Furthermore, these sentences are connected with connectors to convert them in a paragraph so

they are easily readable for readers. Different elements of sentences are used during the

processing. Sentence connectors like: furthermore, moreover etc. are used to fulfill the purpose

of paragraphing. For example, Consider there is a function that is returning an output by taking

some parameters as in input.

Let's consider the following code:

Class car

{

Void forward (string accelerator)

{

Return speed;

42

}

}

Our description in such case would be “The instance of car can forward. When the car forwards

it gives speed by taking accelerator as an input.”However, if the function is not taking any input,

our description will change accordingly. It will be “The instance of car can forward. When the

car forwards it gives speed without taking any input.”

On the other hand, if there isn’t any input or out of the function then our description would be

“The instance of car can forward. When the car forwards it performs some required actions

without taking any input or giving an output.” However, There are some pre-conditions that must

be followed else our proposed methodology won’t give promising results. These pre-conditions

are similar to earlier pre-conditions set by earlier researches. One of them is that Function names

must be kept in an order of verb followed by noun. If it doesn’t the coder must mention noun and

verb in the identifier of the function. Majorly, the only that the programmer or the coder must

remember is to give proper names according to the coding standards that are variables must be

identified by nouns and methods must be identified by verbal names.

Figure 3.5: Translating Structure in to Simplified Summary using templates

43

In Figure 3.5, the procedure for translation of structure of construct stack has been shown.

 Comparison

There are many comparisons between old techniques and the one used by us. Previous

researchers have been solving specifically different problems related to source code

summarization. Therefore, the characteristics may vary from research article to other one. For

example, P.W. MCBurney’s work [13] in the paper in which they generated source code

summaries for the Java methods has many factors that are different from our methodology. Like

we are targeting different combination of constructs then they as well as we are also targeting a

different programming language. Furthermore, our summary is lengthier than theirs and includes

explanation of Classes too. Moreover, we didn’t work on the importance of methods among

other methods because during M.C Burney’s survey most of the programmers rejected the

concept that one method can be better than the other one on the basis of its frequent use. Rather

than that, we focus on identifying and briefly explain the logic of different methods by

generating summaries from constructs like conditional statements and iterative statements. As

these both , together lay a strong foundation of programmer’s logic. Furthermore, we have also

improved the presentation of the summary as anything written with an appropriate level of

presentation is better in terms of readability.

In Table 3.51, the comparison of our methodology has been show by showing different

characteristics. For example, ASCJM stands for Automatic Source Code Summarization of

Context for Java Methods and is work of P. W. McBurney C. McMillan and ASCCM stands for

Automatic generation of natural language summaries for Java classes a paper published in 2013

and AJMNN stands for Augmenting Java method comments generation with context information

based on neural networks, a paper published recently in 2019. As shown in Table 3.51, internal

logic description was missing in the generated summaries by the below three researchers. The

reason of doing so was their goal, which was to generate brief and concise summaries that can

only give an eagle view of source code for the readers. Furthermore, the combination of

constructs is different than others because in some methodologies their target was only to explain

the reason of existence and importance of a method. Whereas, some only focus on class’s

description while generating summary. We have not only combined these two but also

highlighted the working of iterative statements and conditional statements in our work.

44

Characteristics TCS ASCJM ASCCM AJMNN

Internal logic in

summary

Yes No No No

Methodology Tree of Stacks

and NLP

SWUM Tokenization,

NLP

Neural networks

and NLP

Constructs Class, member

functions, loops,

if condition,

return

statements,

function

parameters

Methods,

method’s

parameters,

method’s return

statement

Classes Methods,for,if,try-

catch

Input Code Code Code Code and

Comments

Programming

Language

C# Java Java Java

Table 3.51: Comparison with old methodologies

3.1. Tools and Techniques Architecture

In order to increase the process of software research and development, various tools were used

during our research and development. “End note” [55] was used for research purposes whereas

“Visual Studio” [56] was used for the development of tool which will implement our proposed

methodology. Furthermore, “Google forms” [57] was used for validation purposes. “Google

drawings” [58] was used to making drawings in the thesis. Natural language processing

libraries[59] were used in order to perform various language processing requirements.

45

Figure 3.6 : Tools and Techniques Architecture

3.2. UML Details

Uml diagrams are important for software development as well as software maintenance [52].

Therefore, we have developed some uml diagrams in order to explain our implemented software

in a better way.

46

Figure 3.7: Programming constructs details

Figure 3.7presents the details of the programming constructs which would be covered in order to

generate natural language summary. To begin with, “Classes” is representing the class construct

in which we are saving identifiers, details of member functions and member variables. Later,

during processing they will be processed to gather valuable information for our generated

summary. Secondly, “loop” represents the iterative statements in which the information

regarding an iterative statement will be saved. Furthermore, as you can see in Figure 3.7, the

class of “loop” has various member variables. These variables have usage of their own.

Moreover, “Construct_Stack” is basically a stack of constructs that would be a part of this

iterative statement. This could be a conditional statement or any of the structure mentioned

above in the Figure 3.7. The reason of doing so has been explained earlier above inFigure 3.4.

Moreover, number of loops with in this loop and number of decisions statements are also

recorded. Similarly, conditional statements are also saving relevant information in

“Decision_statement” class. It has member variables to save information specifically of an “if

statement”. Furthermore, “Function_call” covers the information of the functions called within

other constructs.

47

Figure 3.8: Class diagram of Description Area

In Figure3.8,not all the methods of this class has been shown. Only major activities carried out in

TCSS are shown. We will explain each of the method briefly for a better understanding of the

processing.

Add_This_Construct_In_The_Body_of_Upper_Construct

The functionality of this method basically to add a construct in the construct of which it is part

of. By doing so, we can get an idea which construct is part of which construct and this will help

us in generating summary of source code.

AddSecondLastRemoveTop

Once a construct has been used for natural language processing it is removed from the stack. The

method “addSecondLastRemoveTop” does removes the construct from stack once it is used for

natural language processing.

Give_Condition_Of_Decision_Statement

We need to understand the condition of a decision statement before describing its need in the

function. Therefore, the above function “GiveConditionOfDecisionStatemen” extracts the

conditional statement. Furthermore, it also removes special characters used in the conditional

statement and replaces it with natural language. For example, if a condition of a conditional

statement is “array_length>number” will be converted into array length is greater than number.

Give_Description_Of_a_Loop_Construct

48

Similarly, just like conditional statements, iterative statement like “for loops” also need to be

identified and briefly described. The method “Give_Description_Of_a_Loop_Construct” is

doing that task for us. This one is vital as there can be many conditional statements part of an

iterative statement in source code.

Furthermore, the remaining methods improve the identifiers of classes and description.

Moreover, they also improve the description of classes by performing some customized natural

language processing to improve its readability and understanding.

49

Chapter 4

Implementation

50

CHAPTER 4: IMPLEMENTATION

This chapter majorly focuses on the implementation of our proposed methodology. Furthermore,

we share the details of the TCSS (Translating Code in to Simplified Summary) design and

working for generation of source code summary. Moreover, this chapter provides details about

the architecture of transformation engine used for generation of source code summary in Section

4.1 and the transformation rules that we applied are discussed in Section 4.2.

4.1. Architecture of Transformation Engine (MUTE)

The overview of architecture of TCSS is presented in Figure 4.1. There are two important

components of this system i.e. User Interface (UI) and Source Code. The transformation is

carried out using the methodology we have shown in earlier. Moreover, the methods carrying out

the functionality explained earlier are performing different processes TCSS. Furthermore, the

program was developed in Visual Studio for testing the methodology. The languages used for

development is C# and the source code which we tested on this program was written in C#.

Figure 4.1: Transformation Code System

51

4.1.1. User Interface

A good Human computer interface is vital for better interaction of humans and computers [53].

The interface in Figure 4.2 shows the main screen of TCS. It consists of following featuresthat

are as following:

• File

• Edit

• Font

• Color Picker

• Help

• Exit

• Code input area

• Submit Button

To Begin with, File lets you write a new code by pressing “New”button that can be seen in

Figure 4.1.New allows you to discard all the screens and write or paste a new code for generation

of summary. Moreover, Edit button lets you select, cut a chunk of code, copy and paste the code

from code input area to another screen. Color Picker lets you change the color of the code. Code

input area takes code as an input. In this area, you can either write a code or paste it. For now we

have implemented the methodology on programming language of C# whereas, for future work,

we will implement more languages. Submit Button, when pressed, lets you submit your code for

further processing for the generation of natural language summary. Moreover, number of lines

can also be seen in the Code Input Area. This helps the user to understand how much lines of

code he has yet written. However, once user writes the code in the Code Input Area, the interface

changes.

52

Figure 4.2: Main Screen of TCS

Moreover, Figure 4.3shows the user interface when he/she clicks on Open. It opens a file box

from where user can select a text file from where code can be pasted into Code input area.

Similarly, when you press the Save button, it opens a dialogue box where one can select the

location where they want to save the source code written in the Code Input Area. This helps user

to define the destination location for the source code. New button allows user to reset Code Input

Area and clear the summary generation interface.Submit button starts the transformationprocess.

Open button option directs the user to destination folder. Cancel button cancels the operation and

brings back user to the interface shown inFigure 4.1.

53

Figure 4.3: Open Interface for TCS

4.1.2. User interface for output

When user will input source code the screen will which is show in Figure 4.4.Furthermore, this

screen includes one more window in which the generated summary has been shown. For an

example we have shown an example of a simple class. The code consists of single class with a

single member function named as reverse. The return type is “void’. There are some changes

more to user interface shown in Figure 4.4 .Firstly, one is that the buttons of Save and Open has

been eliminated. Secondly, user cannot edit any of the text box included. There are two text

boxes included in this user interface. First one is Code Input Area and second one on the right

shown in Figure 4.4summary area. Summary area shows the generated summary that was

generated by using the Transformation system on the basis on our proposed methodology. The

summary has some parts. To begin with, the first part consists of explanation of the functions

consisted by a class. The second part consists of brief description each function one by one.

Furthermore, each function description has been given a “Heading” before the description itself.

54

This will improve the readability of the summary. Because, in the end, all what matters is the

readability and ease of the generated summary. Therefore, we tried our best to facilitate the

reader by giving different options like: presenting the functions in a list and adding connectives

before starting another sentence. Moreover, we tried our best to present the information as

natural as we can.

Figure 4.4: User Interface for generated summary and code once submit button is clicked

4.2. Transformation Rules

Furthremore, in the Table 4.1 we have shown the templates used in our procedure. The

possibilites that would be covered during implementation has been shown in the Table 4.2.

Consider we have a program that has a “for” construct. Furthermore, in it, suppose there is a

nested loop. In this case, the description of the function would be “this function would perform

required actions repetitively.” The description has been kept simpler in order to understand the

usage of the loop constructs. However, the statements used in these constructs could also be

specified but for now that have been left for future work. Similarly, the working and the scenario

of other possibilities has been shown in Table 4.2.

55

Table 4.1: Transformation Rules

Construct 1stNestedConstruct
2ndNested

Construct
Template + Example

for If None

This “class name” can “function name”. It does it by

repetitively checking “if condition”; For example, The

instance of car can accelerate. It does so by repetitively

checking speed is greater than 0 whether it is true or not

to perform some required actions.

for For None

This “class name” can “function name”. It does so by

repetitively performing specific actions; For example,

The instance of car can accelerate. It does so by

repetitively performing required actions over and over

again.

for None None

This “class name” can “function name”. It only

performs some actions repetitively.

; For example, The instance of car can accelerate. It

only performs some actions repetitively.

if For None

This “class name” can “function name”. It checks

“condition of decision statement” and if it is true it

performs some required actions repetitively.

; For example, The instance of car can accelerate. It

only performs some actions repetitively.

if If None

The instance of “class name” can “function name”. It

checks “condition of decision statement” and if it is

true then it checks “nested decision statement

condition” to perform required actions.

; For example, The instance of car can accelerate. It

checks weather speed is equal to 0 or not and if it is

true then it checks if break is equal to true to perform

required actions

if None None

The instance of “class name” can “function name”. It

checks “condition of decision statement” and if it is

true then it checks then performs required actions.

; For example, The instance of car can accelerate. It

checks if speed is equal to 0 or not. Furthermore, if it is

true perform required actions

for If If

It repeatedly checks whether speed is equal to 0 or not

and stop is equal to 1 or not to perform some required

actions on the basis of whether they are true or not.

for For If
It repeatedly performs some actions over and over

again and checks whether speed is equal to 0 or not.

56

for If For
It repeatedly checks weather speed is equal to 0 or not

and performs required actions over and over again.

for For For
It repeatedly performs required actions over and over

again.

if If

If (Second

decision

statement)

It checks “condition of first decision statement” and

“condition of second decision statement” to perform

actions accordingly on the basis of their truthfulness.

if For
If (nested in

for)

It checks “condition of first decision statement” and

repeatedly checks “condition of the nested statement”

to perform required actions.

if If

For (nested

in the

previous if)

It checks “condition of first decision statement”, if it is

true then checks “condition of the nested statement”

and if this one is true then repeatedly perform required

actions.

if For For

It checks “condition of first decision statement” , if it is

true

Then repeatedly perform some actions over and over

again.

if function call None
It checks “condition of the decision statement” , if it is

true then it performs the function of “function name”

If For
Function

call

It checks “condition of decision statement” and if it is

true it performs some required actions repetitively and

performs the function of “function name”

if If
Function

call

It checks “condition of the decision statement”, if it is

true then “condition of the decision statement”. If it is

true then it performs the function of “function name”

For If

“If” has a

value to

return

It repeatedly checks “condition of if” and if it is true

then returns “return value name” as an output.

For example:

It repeatedly checks weather speed is equal to 0 or not

and if it is true then returns the speeds value.

Table 4.2: Templates for constructs and nested constructs of “If” and “For”

Class name
Number of Functions and Their

Name/Names
Template /Description

Car
One and the function name is

accelerate.

The instance of the “class name” can only

“function name”. For example, the instance of

a car can only accelerate.

57

Car
Two and the function names are

accelerate and stop.

The instance of the “class name” can “function

name” and “function name”. For example, the

instance of car can accelerate and stop.

Car

In this case there may be Three or

more functions. For example

function names are

accelerate,stop,reverse and

go_forward.

The instance of the “class name” can “function

name”,“function name”... and “function name”.

For example, the instance of car can accelerate,

stop, reverse and go forward.

In the beginning, suppose we have a class named “car” and it has three functions named as

“accelerate, stop and reverse”. So our program will give the description of the code as “the

instance of the car can accelerate, stop and reverse. “However, if there are only two functions

then the description will be “The instance of the car can accelerate and stop. “On the other hand,

if there is only one function in the class then the description will be “The instance of the car can

only accelerate.” However, we changed the style of the summary later on for improving the

readability. For doing so, we introduced bulleted information as well as we introduced some

information with headings. The reason of doing so was that if there were more than 10 member

functions of the class then readability would had been compromised and poor in quality.

4.2.1. Thermal engine example implementation

Before going further, we tried a code in our tool to implement our proposed methodology. First

we tried a simple class with two types of functions one with a parameter and the other without

one. In Figure 4.5,we took a class of “Thermal_Engine” having two member functions.

Moreover, the generated summary is show in the Figure 4.5. The headings of each function name

were given in Capital Letters to improve the readability for the user. The reason of using

technical word like “output”was, because these summaries would be read by programmers and

maintenance engineers. Therefore, such words are common for them in daily routine and will

help them to understand the crux of the program in a better way.

58

Figure 4.5: TCS Output

Moreover we used another set of member functions within a class. It was impossible to show the

whole code in the Figure 4.6,that is why we showed most of the output. However, the output and

the source code are mentioned separately here.

Figure 4.6: Using TCS for SCS

59

Source Code:

class Thermal_Engine

 {

boolcheck_stablility_of_engine(int temperature)

 {

boolstability_status;

if (temperature>50)

 {

stability_status = false;

returnstability_status;

 }

else

 {

stability_status = true;

returnstability_status;

 }

stringcaclulate_engine_life(intyears_used)

 {

stringlife_of_engine;

int life=5;

if (years_used<5)

 {

life -= years_used;

life_of_engine = life.ToString() ;

 }

else

 {

life_of_engine = "expired";

 }

returnlife_of_engine;

 }

}

4.2.2. Generated Summary

The instance of thermal engine can: check stability of engine and calculate engine life.

Furthermore, following is the summarized description of thermal engine functions.

CHECK STABLILITY OF ENGINE

 It check stability engine by checking temperature is greater than 50 and if it is true then it gives

stability status as an output.

 And giving stability status as an output.

CACLULATE ENGINE LIFE

 It engine life by checking years used is lesser than 5 and giving life of engine as an output.

There are different sections of our generated summary. The first part which is highlighted in the

generated summary section with blue ink is the one which defines the classes. The second part is

the connecter which is highlighted with Pink color. Furthermore, this part joins the two sections

60

of the summary that is the first one with the third one. The third part of the summary is the brief

summary of methods in which we describe the logic of each method. Furthermore, this part

consists of capital headings. The heading defines each method and is used to improve readability

of the user.

Table 4.3: Different type of class summaries

Class name Number of

Methods

Method’s identifier Summaries

Thermal_Engine One The method’s identifier is

check_stablility_of_engine.

The instance of the “class name” can

only “function name”. For example,

the instance of a thermal engine can

only check stability of engine.

Thermal_Engine Two The function names are

check_stablility_of_engine

and caclulate_engine_life.

The instance of the “class name” can

“function name” and “function name”.

For example, the instance of car can

check stability of engine. And

calculate engine life.

Thermal_Engine More than

Two

In this case there may be

Three or more functions. For

example function names are

accelerate,stop,reverse and

go_forward.

The instance of the “class name” can

“function name”, “function name”...

and “function name”. For example, the

instance of thermal engine can

accelerate, stop, reverse and

go_forward.

In Table 4.3, we have shown the three different types of class explanations which can be used

during the generation of the summary. Moreover, the first row shows that if a class a single

function then the generated summary of the class will be different than the one having two or

more methods. Furthermore, we have shown the expected summaries of classes with more than

one methods too. As the templates suggest, there is one pre-condition of this methodology that

the naming the identifiers of variables, methods, classes and other constructs must be done in

proper way. Else we won’t be able to generate a valuable summary for the maintenance engineer.

61

Figure 4.7: Input screen for construct with in a construct

In Figure 4.7, we have taken a code as an input in which there is conditional statement with in an

iterative statement. Furthermore, iterative statement is within a conditional statement. Moreover,

the method consisting of all these constructs has two parameters. One with data type of Boolean

and the other data type is integer. A class with identifier “thermal_engine” has also been

declared.

62

Figure 4.8: Output screen

The output screen has been show in Figure 4.8. We have shown the generated summary below in

different colors to identify the sections that were defined earlier.

63

Figure 4.9: Diagram showing different sections of summary

We have mentioned the sections of the descriptions of the description inFigure 4.9. Although, the

summary generated is helpful, it has some grammatical errors. The reason is the limitation of is

the natural language processing library we have used for generation of this summary. The

accuracy of finding verbs and nouns is not 100%. Due to which, some of the nouns and verbs are

misread and not identified properly. Furthermore, false identification of verbs and nouns creates

problems for adding “s” or “es” with verbs. As in the example above show in Figure 4.9,in the

method’s construct section, the sentence must start with “it switches”;however, it starts with “it

switch” which degrades the quality of the statement for the readers. It is because the library we

used for identifying the parts of the speech has misread switch as a noun whereas in the current

context it’s a verb. Moreover, verbs in present indefinite tense must be used with “s” or “es”.

Therefore, the generated summary has some errors.

64

Chapter 5

Validation

65

CHAPTER 5: VALIDATION

This chapter focuses on the validation of TCS by implementing it on three different case

studies.The study of researchers have Analyzed that the quality assessment and validation of

code commentsis another important research problem which must be solved, as the quality of

generated natural language summary or comments is an important indicator for

evaluatingwhether a commenting methodology is effective or not. Furthermore, Generated

natural language summary may describe not only the functions, but also the design intents of

developers behind source code by mentioning the logic used the developer. Therefore, validation

of generated summary is a process itself as programming languages are different from natural

languages in nature. Moreover, source code consists of a lot of information about classes,

member functions, member variables, parameters of methods, and at the same time has many

nested structures or may contain nested structure with in a nested structure andcomplex relations;

meanwhile, generated natural language summaries is writtenin natural languages are

unstructured, and expressed freely inform.

Appropriate quality assessment metrics will lead to the abundance of a quantitative comparison

that highlights the pros and cons of each source code summary generation algorithm[5]. So far,

the criteria of quality assessment of Natural language summary are not same depending on the

types of comments. For example, from the perspective of methods, summaries can be divided

into different categories and placed in the category of descriptive comments generation,

summary comments, conditional comments or description, comments for debugging and

metadata comments, etc. In each category, each technique adopts different comment assessment

criteria. Therefore, it is vital to design and formulate correct and relevant quality assessment

metrics for generated comments or summary, which will help the study of automatic code

comment generation.

In Figure 5.1, we have shown the process used for validation and quality assessment of our

developed tool and methodology. It has three parts, first, data is first one is data preparation

which prepares data for the TCS as an input. This data is a source code, we are using three case

studies / different source codes written in C# to be tested for validation. Secondly, the

representation of source code, which aims at analyzing and making the structure and semantics

of source code, such as information of structure and source code, lexis, grammar, semantics,

66

contexts, invocation relation and data dependency of source code. Thirdly, generation of natural

language sentences or summary based on the information extracted from source code by using

the process which we described in the last chapter.These studies will test and validate

functionalities and results on the basis of different types of code used. Firstly, the first case study

was tested on our implemented tool. This case study basically is a class with 17 member

functions. Each member function has different functionality and requirement. Furthermore, let’s

implement the first case and validate the results via survey of reviews given by 27 technical

people. Among these technical people, 15 are currently working as a software engineer in

various identified I.T companies. We will be showing them results in the form of generated

summaries and will ask them try to understand the code by reading our summaries. First, we will

ask them to understand the code by using our summary, the provided code and measure their

experience by their given responses.

Figure 5.1: Quality Assessment Process of our Generated Source Code Summary

5.1. Case Study 1

To begin with, we wanted to test our code on a given source code. For doing so, we have

selected a source code consisting of a single class and several member functions. The reason of

doing so was to prove and identify the potential of implementation of TCS. Therefore, we added

a number of 18 functions in the class to make it sure they are tested well by using our developed

tool. Furthermore, let’s identify the code which we are going to use to test the generated

summary from that code. We tested a class with a total of 17 member functions. Moreover, each

member function has different structure the other. This case study has been taken from online

website source code repository named as “GitHub” [link]. Furthermore, in Figure 5.2, the

structure of a single class containing 17 member functions. As you can see in theFigure 5.2,

https://github.com/riwajifyqasimkhan/eme/blob/master/Thermal_Engine.rar

67

Figure 5.2: Class used in the case study

Some functions have parameters and some don’t have. For example, the function “-

accelerate(pressure:Integer)” is a private member function indicated by “-“and the identifier of

function is “accelerate” and identifier of parameter is “pressure” of type integer.

68

Figure 5 3: Screenshot while submitting the code of first case study to our Tool

69

Figure 5.4: Screenshot showing generated summary of case study 1

The summary couldn’t be shown in the output screen that is why we are going to show the

generated summary here. Following is the generated summary shown by the system of whole

source code. The blue part is basically the brief description of class “thermal_engine” whereas

yellow is the connector line between first part of summary and the third part. The third part, in

green, is brief description of member functions. The summary generated is as following:

“The instance of thermal engine can:

 * give engine temperature

 * give pressure

 * check stability of engine

 * calculate engine life

 * accelerate

 * stop engine

70

 * check engine bolts

 * show engine figures

 * switch to turbo

 * turn off turbo

 * switch on engine

 * give battery check symbol

 * self start

 * burn petrol

 * give alert of low petrol

 * give alert of low engine oil

 * check engine oil

Furthermore, following is the summarized description of thermal engine functions.

GIVE ENGINE TEMPERATURE

It gives engine temperature by giving temperature as an output.

GIVE PRESSURE

It gives pressure by giving atmospheric pressure as an output.

CHECK STABLILITY OF ENGINE

It check stability engine by checkingtemperature is greater than 50 and if it is true then it gives

stability status as an output.

And giving stability status as an output.

CACLULATE ENGINE LIFE

It engine life by checking years used is lesser than 5 and giving life of engine as an output.

ACCELERATE

It accelerates by repetitively checking pressure is greater than 50 whether it is true or not to

perform actions accordingly.

STOP ENGINE

71

It stop engine by repetitively checking acceleration is equal to 0 or not whether it is true or not

to perform actions accordingly. And giving acceleration as an output.

CHECK ENGINE BOLTS

It check engine bolts by checking bolt is equal to 0 or not and if it is true then it gives engine bolt

status as an outputand giving engine bolt status as an output.

SHOW ENGINE FIGURES

It show engine figures by

SWITCH TO TURBO

It switch turboes by checking turbo status and if it is true then repeatedly checks turbo strength

is equal to 50 to performs required actions.

TURN OFF TURBO

It turns turbo by repetitively checking leather pressure is greater than 50 whether it is true or not

to perform actions accordingly.

SWITCH ON ENGINE

It switch engine by repetitively checking Engine Status is equal to (literal constant, "Off")

whether it is true or not to perform actions accordingly. Checking Engine Status is equal to

(literal constant, "Off")

GIVE BATTERY CHECK SYMBOL

It gives battery check symbol by checking battery color is equal to 0

SELF START

It self start by neither using any logical nor decision statements and performs some statements

to fulfill its purpose.

BURN PETROL

It burns petrol by checking petrol quantity is greater than 100

GIVE ALERT OF LOW PETROL

It gives alert petrol byneither using any logical nor decision statements and performs some

statements to fulfill its purpose .

GIVE ALERT OF LOW ENGINE OIL

It gives alert engine oil by

CHECK ENGINE OIL

72

It check engine oil by checking engine oil quantity is lesser than or equal to50 and if it is true

then it checks engine oil quantity is lesser than 30 to performs required actions.”

5.1.1. Human Evaluation

We have validated our code using human evaluation. Although, automatic evaluation techniques

is more likely to give better results in terms of evaluation of generated summary , in our case the

generated summary is collectively written and more lengthy than others. The reason is that we

are briefly describing the use of iterative statements as well as conditional statements in our

generated summary of source code.

Moreover, comment generation and summary generation are two different topics. As comment

generation is generating individual statements and putting them after every code line where as in

summary generation a whole paragraph is assembled and given in the top of the code as a

comment. Therefore, summaries are lengthy than code comments as they are shown together.

Furthermore, researchersusually evaluate their generated summaries or code comments by

human evaluators to evaluate the generated summaries / comments using assessment metrics.

Although,human evaluation’s scoreis subjective and manual scoring has low efficiency, it is

stillone of the important ways for evaluating the performanceof various commenting algorithms.

However, there are many manual evaluation metrics for measuring and validating the quality of

generatedcomments or summary. Although,quality assessment metrics are not identified with

same names in various researches[5],we gather them into three differenttypes according to their

characteristics as follows. First, analyzing code comments / summary with their contents:

evaluation of generated summary on contents, such as their adequacy, accuracy, conciseness,

how much informative is the summary and interpretability. The meaning of various features in

this group is described as follows.

• Accuracy is measurement of generated that how much it is closer to the semantics of the

relevant source code.

• Content adequacy is used to measure how much there is difference between the

generated summary meaning and the true meaning of the source code.

• Conciseness is used to measure how much unnecessary information is there in the

generated summary or comments.

73

• Informativeness measures the how much information is generated summary is providing

regarding source code.

• Interpretability measures to what extent the generated summary is interpretive and is

conveying the meaning of source code.

• Naturalness: is used to measure the grammar and fluency of generated comments or

generated summary.

• Expressiveness is used to measure how much the generated comments are expressive in

their nature. Furthermore, the readability of the comments or summary is also measured

under the umbrella of this feature.

• Understandability Is used to measure whether the generated comments are

understandable by the reader or not.

• Code understandability is used to evaluate how much the reader understood the code

after reading generated comments and generated summary.

• Necessity is used to evaluate and measure how much the generated summary is relevant

and the information express was necessary.

• Utility defines how much the generated summary was helpful.

5.1.1.1. Evaluation of TCS

Surveys are important for analyzing a software system [54]. For the evaluation of TCS, we

arranged a survey. In this survey we reached out software developers from software market.

Each developer was given the summary to read and then the code. Later, they would be giving

their opinion over different metrics we selected above for human evaluation.

5.1.1.2. Evaluation team

42 people participated in for the evaluation of our study. Among them, six were graduate

students and remaining where post graduate students form National University of science and

technology in Pakistan. Computer Science and Engineering Department of various university

graduates participated in the evaluation.

. Among them, 32 are professionals and graduate students from three different universities, not

listed due to our privacy policy. Two participants failed to respond enough of the study and we

74

had to decline their responses. These two participants were from N.U.S.T. (National university

of science and technology) of Department at the University of Computer science. Furthermore,

one of them was undergraduate and the other graduated student. Another participant only

completed the survey on two summaries before leaving the survey. The remaining participants

replied the questions on the survey in full.

5.1.1.3. Evaluation Questions

There were six question put in the survey. Furthermore, the answer of this question could be

Strong agree, agree, disagree or strong disagree except for the last two questions that are Q7 and

Q8. The participant has to answer for each statement by selecting one of the given choices.

Following are the questions that were asked in the survey:

Q1. Independent of other factors, I feel that the summary is accurate.

Q2: The summary is missing necessary information, and that can help the understanding of the

source code.

Q3: The summary consists of a lot of unwanted information.

Q4: The summary consists of information that assists me understand what the source code does

(e.g., the internals of the member functions).

Q5: The summary consists of information that assists me understand why the method exists in

the source code (e.g., the results of changing or removing the method).

Q6: The summary consists of information that assists me understand how the code was written.

Q7: Please write a summary of code in your own words.

Q8: Do you have any comments about the auto-generated summary?

75

Figure 5.5: Survey

76

In Figure 5.5, we have shown some images of survey that was recorded in order to get responses

from various users of our methodology. This survey was made in Google Forms. Furthermore,

the participants of the survey have been mentioned above. We sent source of the first case study

and the generated study in order to note their responses. So, we can have a better idea and

evaluation of our used methodology. Moreover, the participant’s responses were noted on

Google forms too. These responses later on were formulated to find the compiled results. Each

participants was asked to tell about their personal review too. In order to improve the

methodology for future work. While having that survey we came to know some limitations of

our methodology which are discussed below and will be improved in our future work.

Metrics and Statistical Tests

Each of the multiple choice questions provided by us which are mentioned above could be

repliedas“Agree”, “Stronglyagree”, “Disagree”, or “Strongly Disagree”. We gave values to these

replies as 4 for “Strongly Agree”, similarly 3 for “Agree”, 2 for “Disagree”, and 1 for “Strongly

Disagree.” Moreover, for questions 1, 4, 5, and 6, bigger values showstrongerperformance.

Furthermore, for questions 2 and 3, lower values were suggested. Moreover, we analyzed and

summarized the responses for each statement by following a process. For example, all replies to

question 1 for summaries of source code.

Response discussion

In the survey given to users we asked them to give comments about the generated summary and

there were different comments and responses from the survey. One of them who was working as

an android application developer as a freelancer and was student of Master’s Degree in software

engineering from NUST that “It was good enough to understand the flow of code”. The previous

response mentioned shows that the user thinks that it were good enough to make him understand

the code. However, one of the participants (a software engineer graduated from National

University of science and technology) gave comment that “I think your method should also

provide a brief summary of overall program.” It means that the user thinks that given

methodology should also provide a brief summary of overall program too. Furthermore, one

participant, a software engineer who currently working as an asp.net developer in Pakistan

Revenue Automation (Pvt.) Ltd in Islamabad said “The summary has to be generated in

77

moredetail for better understanding of functionalities and identify functional requirements”. So,

this user thinks that there should be more details present in the generated summary to help user

understand the code better. Another participant, a post graduate student from National University

of Sciences and technology gave response that, “It used technical terms. It would have been

better if it used terms for non-technical person too”. He means to say that in the generated

summary there were too much technical words that were creating an obstacle in understanding of

the code. However, we created the summary to make it sure that the maintenance engineers

understand the code better. On the other hand, remaining participants gave responses which

showed that they were helped by the generated summary in order to understand the code.One of

the participant, an I.T. teacher of under-graduate students, gave comment, “The summary

enhanced the understanding of code”, which shows that the generated summary helped the user

in understanding the code.

5.1.1.4. Response Discussion

In Figure 5.6, response of participants during survey are noted in a Pie chart. This pie charts

show the results of each asked question from the user. Furthermore, the Figure 5.6also includes

the responses given to each question by users. So, let’s discuss each response in detail. To begin

with, in Figure 5.6, responses has shown that 71.4% people disagree that the generated summary

is missing necessary information. Furthermore, 19% agreed that there is some missing

information in the generated summary.

Figure 5.6: Responses of the users that participated in survey

78

In Figure 5.7, we have shown the responses of the people who have participated in the survey.

Furthermore, 64.3% strongly agree that the generated summary has helped them to understand

the code. On the other hand, some the users have disagreed that the generated summary hasn’t

helped them in understanding the code.

Figure 5.7: Responses of the users that participated in survey

Figure 5.8: Responses of the users that participated in survey

79

Figure 5.9: Responses of the users that participated in survey

As shown in Figure 5.914.3% People has disagreed the question that the generated summary has

helped them in understanding why the method exists. It means most of them has got an

understanding that why a specific method exists in the code by reading our generated summary.

Figure 5.10: Responses of the users that participated in survey

In Figure 5.10, 14.3% disagree that they couldn’t understand how the code was written from the

generated summary. This provides us with a valuable information that there is need to improve

the generated summary such that it is closer to plain natural language as much as it can. On the

other hand, 76.2% understood how the code was written from the generated summary.

80

Figure 5.11: Responses of the users that participated in survey

Figure 5.12: Responses of the users that participated in survey

The reason of any generated summary is that it must be readable. Therefore, as seen in Figure

5.12, 81% thought that the generated summary was interpretable and it was easy for them to

grasp the meaning of the generated summary. Furthermore, this is only possible if the generated

summary is closer to natural language and the code is written well that is, the identifiers of the

variables are named well enough.

81

Figure 5.13: Responses of the users that participated in survey

82

In Figure 5.13, 73% people think that the generated summary was concise. Moreover, 23.8%

strongly agreed that the summary was concise. However, remaining thought that the summary

wasn’t concise at all. Therefore, we conclude from the above generated response that the

generated summary is not perfect but it can be improved. Moreover, we have taken comments

from the participants that how we can improve the generated summary. There were different

responses, some of them thought it was perfect; however, most of them gave their critical review

and enlightened us with many important points.

To begin with, some of the participants thought that the generated summary must have been less

technical so non-technical people can also understand the summary. This was not possible in our

case because we wrote the summary for maintenance engineers in order to ease them understand

the code and understand the code faster than usual.

Secondly, some participants thought the summary should have been more explanatory and some

other points of the loops should had been discussed.

Thirdly, some thought that the idea of using a single paragraph as a summary is not helpful and

would be hectic. According to them, each line of code musts be commented separately which

would be easier for them to understand the code. But there is a problem here, we wanted to

generate a summary which would either make the maintenance engineer understand the code

faster or help them understand the code. So, therefore these things are to be taken in mind for

future work.

83

Chapter 6

Discussion and Limitation

84

CHAPTER 6: DISCUSSION AND LIMITATIONS

The Section 6.1consists of detailed discussion of proposed research work done by us; however,

Section 6.2deals with the limitation of the research and of our methodology.

6.1. Discussion

In this research, we have proposed a methodology for generating source code summary for

assistance insoftwaremaintenance of software maintenance engineers. Firstly, tokenization is

done, which is complaint to C# syntax only in the current implementation. Secondly, data

structures are produced of different tokens with the combination of graphs and stacks for

identification of hierarchies in program constructs. Thirdly, a source code summary is generated

by reading those data structures using templates and natural language processing side by side.

This approach “TCS” is a huge achievement that provides brief detail of source code which can

help in software development and maintenance both.

Literature provides strong evidence of various SCS (Source code summarization) frameworks

and methodologiesin software development. Moreover, researchers have givennumerous higher

abstraction level source code summaries to incorporate semantics of various programming

languages i.e. Java, Python etc. For example, SWUM model was proposed for generation of

natural language summary of Java Methods[44]. Similarly, Swan Rai, et al.[43]have presented

Nano-patterns based approach to generate source code summary at higher abstraction level. They

are successful in generating concise summaries. Furthermore, YaoWan, , et al. [34], was

successful in bringing the summaries of Java at higher abstraction level. Also, Xing Hu, et

al.[37], Laura Moreno , et al.[2], Edmund Wong, et al.[42],Wenhao ZHENG., et al[36]have

contributed in providing a source code summary generating methodologies. Moreover, many

others have put their contribution in this field.

In aforementioned studies, researchers have givennumerousmethodologies to generate natural

language summaries of different programming languages. In fact, most of them targeted Java.

However, they have briefly and conciselygiven summaries but couldn’t use the combination of

constructs which can give a better overview of the source code.As a result, it leads to a summary

or comment which either is not showing the complete understanding of the code or is so concise

that it is missing necessary information. TCS completes this design flow, by generating summary

85

with a new methodology with the combination of various constructs like loops, conditional

statements, methods, classes etc., with the help of them the summary is generated. Hence,

research and academia can highlyget benefit from TCS, because it helps the programmer to

understand the code in a better way.

It can be argued that why C# was targeted in our methodology and why were loops and

conditional statements were used to generate the summary in order to understand the logic of

code. We did so, because most of the researchers in past targeted Java and didn’t include C# as

their target language. Furthermore, addition of loops and condition statements in summary

generation was done because they are key pillars to understand the flow of a method. Moreover,

the usage of data structures such as graph of stacks was used to understand the hierarchy as well

as the logic flow of the source code. Moreover, C# is highly used programming language and is

also used now days in development of android applications and IOS application development

too.

It can also be argued that Generated summary is highly dependent on the naming criteria of the

programmer. Therefore,it only can generate a meaningful summary if the programmer names

variables, methods and classes in proper manner. Similarly, conditional statement’s conditions

can only be interpreted if good programming practices are used. Because if naming is not done

properly then the reader will face difficulty in understanding the code using the generated

summary.

Source code summary generation isanimportant element in the modern’s software development

and software maintenance for creating ease in understanding of source of software systems. As

discussed earlier, there is dire need to generate a meaningful, concise and understandable

summary of code. Hence, TCS (Transformation code system) completes this process. On the

other hand, this also gives us an opportunity to incorporate and combine different methodologies

to gain the goals of generating a nice and readable summary.

Data structures we used for tokenization in our approach makes our proposed methodology able

to generatemoreexplainable natural language summary of source which briefly describes the

programming constructs in the system but also enlightens the reader with the logic used in the

methods. The model of our proposed work can easily be transformed and can be used to target

any of the programming language like Java, Python etc. depending on its summary goals. Hence,

86

this methodology is highly scalable and configurable, which allows us to easily target new

programming languages for summary generation. It also consists of qualities that leads to the

high quality and less error-prone product.

In a nutshell, TCS is a Natural language based methodology which improves the summary

generated byincluding the description of program flow along with various programming

constructs in natural language. Moreover, this approach provides simplicity in the generated

summary.

6.2. Limitations

This methodology leads to the automated generation of source code summary, but there are some

limitations. The methodology is dependent on the programmer that his own grip of grammar of

natural language is strong. That is, if he uses improperly names variables and identifiers then it

won’t be possible for this system to generate a meaningful summary for the reader.

Moreover, the system is unable to generate summary for constructs that have more than 2 nested

constructs. Although, the methodology supports up to unlimited number of constructs.

Furthermore, the member variables of the class variables are not included in the generated

summary which can also be used in future work for better explanatory summary.

87

Chapter 7

Conclusion and Future Work

88

CHAPTER 7: CONCLUSION AND FUTURE WORK

The proposed methodology provided by us gives a solution for automated source code summary

generation of C# for better maintenance and understanding of source code in software system. It

is based on natural language processing and stack-graphs to provide simple, readable, helpful,

easy to understandsummary of source code. The proposed summary generation approachTCS

(Transformation Code System) provides brief and quality end summarywith feature used for

improving readability of generated summary. This reduces time and cost of development and

maintenance of software systems. The results used during validation of our proposed

methodology showed that the system worked in an expected way and was able to successfully

generate natural language summaryfor source code.

In future we tend to extend TCS to add feature of understanding the code even if it isn’t named

properly. Moreover, we tend to add machine learning algorithms that can identify and give the

functionality of overall software. Furthermore, we will adding more construct to generate more

explanatory summary which can define the logic used by the programmer in a better way. We

will be adding more features which will help. The summary has to be generated in more detail

for better understanding of functionalities and for identifying functional requirements of software

system too. Furthermore, we would be adding a feature which can detect and mention the list of

libraries or packages that are used or imported. In future, we would be improving the template so

they can also handle more complex source code.

REFERENCES

[1]. Eddy, B.P., et al. Evaluating source code summarization techniques: Replication and

expansion. in 2013 21st International Conference on Program Comprehension (ICPC). 2013.

[2]. Moreno, L., et al. Automatic generation of natural language summaries for Java classes.

in 2013 21st International Conference on Program Comprehension (ICPC). 2013.

[3]. Sedano, T. Code Readability Testing, an Empirical Study. in 2016 IEEE 29th

International Conference on Software Engineering Education and Training (CSEET). 2016.

[4]. Haouari, D., H. Sahraoui, and P. Langlais. How Good is Your Comment? A Study of

Comments in Java Programs. in 2011 International Symposium on Empirical Software

Engineering and Measurement. 2011.

89

[5]. Song, X., et al., A Survey of Automatic Generation of Source Code Comments:

Algorithms and Techniques. IEEE Access, 2019. 7: p. 111411-111428.

[6]. Pascarella, L., M. Bruntink, and A. Bacchelli, Classifying code comments in Java

software systems. Empirical Software Engineering, 2019. 24(3): p. 1499-1537.

[7]. Yang, B., Z. Liping, and Z. Fengrong, A Survey on Research of Code Comment, in

Proceedings of the 2019 3rd International Conference on Management Engineering, Software

Engineering and Service Sciences. 2019, Association for Computing Machinery: Wuhan,

China. p. 45–51.

[8]. Steidl, D., B. Hummel, and E. Juergens. Quality analysis of source code comments. in

2013 21st International Conference on Program Comprehension (ICPC). 2013.

[9]. Corazza, A., V. Maggio, and G. Scanniello. On the Coherence between Comments and

Implementations in Source Code. in 2015 41st Euromicro Conference on Software

Engineering and Advanced Applications. 2015.

[10]. Rahman, M.M., C.K. Roy, and I. Keivanloo. Recommending insightful comments for

source code using crowdsourced knowledge. in 2015 IEEE 15th International Working

Conference on Source Code Analysis and Manipulation (SCAM). 2015.

[11]. Zhao, L., L. Zhang, and S. Yan, A Survey on Research of Code Comment Auto

Generation. Journal of Physics: Conference Series, 2019. 1345: p. 032010.

[12]. Fernandes, E., et al., How Clear is Your Code? An Empirical Study with Programming

Challenges. 2017.

[13]. McBurney, P.W. and C. McMillan, Automatic Source Code Summarization of Context

for Java Methods. IEEE Transactions on Software Engineering, 2016. 42(2): p. 103-119.

[14]. Gelbukh, A. Natural language processing. in Fifth International Conference on Hybrid

Intelligent Systems (HIS'05). 2005.

[15]. Patten, T. and P. Jacobs, Natural-language processing. IEEE Expert, 1994. 9(1): p. 35.

[16]. Kłosowski, P. Deep Learning for Natural Language Processing and Language

Modelling. in 2018 Signal Processing: Algorithms, Architectures, Arrangements, and

Applications (SPA). 2018.

[17]. Huang, L., S. Zhuang, and K. Wang, A Text Normalization Method for Speech Synthesis

Based on Local Attention Mechanism. IEEE Access, 2020. 8: p. 36202-36209.

90

[18]. Ma, Q. Natural language processing with neural networks. in Language Engineering

Conference, 2002. Proceedings. 2002.

[19]. Kanan, T., et al. A Review of Natural Language Processing and Machine Learning Tools

Used to Analyze Arabic Social Media. in 2019 IEEE Jordan International Joint Conference on

Electrical Engineering and Information Technology (JEEIT). 2019.

[20]. Surabhi, M.C. Natural language processing future. in 2013 International Conference on

Optical Imaging Sensor and Security (ICOSS). 2013.

[21]. Khurana, D., et al., Natural Language Processing: State of The Art, Current Trends and

Challenges. 2017.

[22]. Li, T. and Q. Ren. Research on development and application of computer supplementary

software in PE teaching in Human Movement Science. in 2010 2nd International Conference

on Computer Engineering and Technology. 2010.

[23]. Chen, C., et al. Why Is It Important to Measure Maintainability and What Are the Best

Ways to Do It? in 2017 IEEE/ACM 39th International Conference on Software Engineering

Companion (ICSE-C). 2017.

[24]. Liu, J., C. Zhou, and M. Tang. Research on the Workday Time Management Model for

Workflows in Business Service Grid Environment. in 2006 Fifth International Conference on

Grid and Cooperative Computing Workshops. 2006.

[25]. Rodeghero, P., et al., Improving automated source code summarization via an eye-

tracking study of programmers, in Proceedings of the 36th International Conference on

Software Engineering. 2014, Association for Computing Machinery: Hyderabad, India. p.

390–401.

[26]. Singer, J. Practices of software maintenance. in Proceedings. International Conference

on Software Maintenance (Cat. No. 98CB36272). 1998.

[27]. Koponen, T. Evaluation Framework for Open Source Software Maintenance. in 2006

International Conference on Software Engineering Advances (ICSEA'06). 2006.

[28]. Munro, M. Software evolution research at the Centre for Software Maintenance. in IEE

Colloquium on Managing Requirements Change: A Business Process Re-Engineering

Perspective (Digest No. 1998/312). 1998.

91

[29]. Sousa, M.J.C. and H.M. Moreira. A survey on the Software Maintenance Process. in

Proceedings. International Conference on Software Maintenance (Cat. No. 98CB36272).

1998.

[30]. Babu K, C., K. C, and S. N, Entity based source code summarization (EBSCS). 2016. 1-5.

[31]. Armaly, A., P. Rodeghero, and C. McMillan, A Comparison of Program Comprehension

Strategies by Blind and Sighted Programmers. IEEE Trans. Softw. Eng., 2018. 44(8): p. 712–

724.

[32]. Yildiz, E. and E. Ekin. Automatic comment generation using only source code. in 2017

25th Signal Processing and Communications Applications Conference (SIU). 2017.

[33]. Zhou, Y., et al., Augmenting Java method comments generation with context information

based on neural networks. Journal of Systems and Software, 2019. 156: p. 328-340.

[34]. Wan, Y., et al., Improving automatic source code summarization via deep reinforcement

learning, in Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. 2018, Association for Computing Machinery: Montpellier, France. p.

397–407.

[35]. Matskevich, S. and C.S. Gordon, Generating comments from source code with CCGs, in

Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software

Engineering. 2018, Association for Computing Machinery: Lake Buena Vista, FL, USA. p.

26–29.

[36]. Zheng, W., et al., CodeAttention: translating source code to comments by exploiting the

code constructs. Frontiers of Computer Science, 2019. 13(3): p. 565-578.

[37]. Hu, X., et al., Deep code comment generation with hybrid lexical and syntactical

information. Empirical Software Engineering, 2019.

[38]. Badihi, S. and A. Heydarnoori, CrowdSummarizer: Automated Generation of Code

Summaries for Java Programs through Crowdsourcing. IEEE Software, 2017. 34(2): p. 71-80.

[39]. Chen, M. and X. Wan. Neural Comment Generation for Source Code with Auxiliary

Code Classification Task. in 2019 26th Asia-Pacific Software Engineering Conference

(APSEC). 2019.

[40]. Liu, Y., et al. Supporting program comprehension with program summarization. in 2014

IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS). 2014.

92

[41]. Malhotra, M. and J.K. Chhabra. Class Level Code Summarization Based on

Dependencies and Micro Patterns. in 2018 Second International Conference on Inventive

Communication and Computational Technologies (ICICCT). 2018.

[42]. Wong, E., L. Taiyue, and L. Tan. CloCom: Mining existing source code for automatic

comment generation. in 2015 IEEE 22nd International Conference on Software Analysis,

Evolution, and Reengineering (SANER). 2015.

[43]. Rai, S., et al. Method Level Text Summarization for Java Code Using Nano-Patterns. in

2017 24th Asia-Pacific Software Engineering Conference (APSEC). 2017.

[44]. Newman, C.D., et al. Automatically Generating Natural Language Documentation for

Methods. in 2018 IEEE Third International Workshop on Dynamic Software Documentation

(DySDoc3). 2018.

[45]. Moreno, L., et al. JSummarizer: An automatic generator of natural language summaries

for Java classes. in 2013 21st International Conference on Program Comprehension (ICPC).

2013.

[46]. McMillan, C., et al. Portfolio: finding relevant functions and their usage. in 2011 33rd

International Conference on Software Engineering (ICSE). 2011.

[47]. Li, W., et al. Toward Summary Extraction Method for Functional Topic. in 2017 IEEE

International Conference on Software Quality, Reliability and Security Companion (QRS-C).

2017.

[48]. LeClair, A., S. Jiang, and C. McMillan. A Neural Model for Generating Natural

Language Summaries of Program Subroutines. in 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). 2019.

[49]. Haiduc, S., et al. On the Use of Automated Text Summarization Techniques for

Summarizing Source Code. in 2010 17th Working Conference on Reverse Engineering. 2010.

[50]. Fowkes, J., et al. TASSAL: Autofolding for Source Code Summarization. in 2016

IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C).

2016.

[51]. Demartini, G. and S. Mizzaro. A Classification of IR Effectiveness Metrics. 2006. Berlin,

Heidelberg: Springer Berlin Heidelberg.

93

[52]. Fernández-Sáez, A.M., et al. On the use of UML documentation in software maintenance:

Results from a survey in industry. in 2015 ACM/IEEE 18th International Conference on Model

Driven Engineering Languages and Systems (MODELS). 2015.

[53]. Granić, A. Technology in use: The importance of good interface design. in 2017

International Conference on Infocom Technologies and Unmanned Systems (Trends and

Future Directions) (ICTUS). 2017.

[54]. Ghazi, A.N., et al., Survey Research in Software Engineering: Problems and Mitigation

Strategies. IEEE Access, 2019. 7: p. 24703-24718.

[55]. https://endnote.com/

[56]. https://visualstudio.microsoft.com/

[57]. https://www.google.com/forms/about/

[58]. https://docs.google.com/drawings/

[59]. https://archive.codeplex.com/?p=sharpnlp

https://endnote.com/
https://visualstudio.microsoft.com/
https://www.google.com/forms/about/
https://docs.google.com/drawings/

