
1

“Implementation and Secure Extension of Mo Soft Core in FPGA.”

Author

Quratulain Abdul Ghafoor

Fall –MS2016 (CE) 00000171601

Supervisor

Dr. Farhan Hussain

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

April 2020

2

“Implementation and Secure Extension of Mo Soft Core in FPGA.”

Author

Quratulain Abdul Ghafoor

Fall 2016-MS (CE) 00000171601

In partial fulfillment of degree requirement

MS Computer Engineering

 Supervisor of Thesis

Dr. Farhan Hussain

 Signature of thesis supervisor: __________________________________

COMPUTER ENGINEERING DEPARTMENT

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

3

Declaration

Its certified that research work whose title is “Implementation and secure extension of Mo soft

core in FPGA” is my own work. I haven‟t presented that work anywhere for assessment; neither

I have taken material from other resources.

The contents that I have referenced from other resources are properly acknowledged.

 Student Signature

Quratulain Abdul Ghafoor

 Fall 2016-MS (CE) 00000171601

4

Language Correctness Certificate

This thesis is thoroughly read by English expert and is free of grammatical, typing, syntax,

spelling mistakes and semantic. The thesis is in accord of the format provided by university.

 Student Signature

 Quratulain Adul Ghafoor

 Fall 2016-MS (CE) 00000171601

Supervisor Signature

Dr. Farhan Hussain

5

Copyright Statement

 The copyright on the thesis belongs to the author of thesis. Copies (by any means), in

whole or in part, may only be according to the instructions given to the students and

filed with the NUST, College of Electrical & Mechanical Engineering Library. Librarian

can provide the details. This page is must to be part of all copies which are made. Other

copies (by any means) cannot be made without the written permission of the author.

 The ownership of all intellectual property rights described in thesis belongs to NUST

College of Electrical & Mechanical Engineering, subject to any prior agreement, and

will not be available to third party without the written consent of the owner. College of

E & ME, prescribe the terms and conditions of said agreement.

 Additional information at which exploitation and disclosures may take place on the

conditions available at the NUST College Library of Electrical & Mechanical

Engineering, Rawalpindi.

6

Acknowledgement

All praise and glory to the Almighty God (most glorified, the highest) who blessed me the

courage, patience, knowledge and ability to carry out that work and persevere and carry it out

satisfactorily.

Without a doubt, he has given me the way and without HIS blessings, I cannot achieve anything.

 I am obliged to my advisor, Dr. Farhan, for raising the spirit of my spirit and for his continued

support, motivation, dedication and valuable advice in my quest for knowledge. I am highly

thankful to Allah having a cooperative advisor and a kind mentor for my research.

With my advisor, I thank all my dissertation committee: Dr. Muhammad Usman Akram, Dr.

Arslan Shaukat of CEME and Fahad Alghazali, Muazzam shehzad, Dr. Asad of NESCOM for

their cooperation and cautious suggestions.

Finally, I express my special gratitude to my family, colleagues and to the people who have

encouraged and supported me during this period.

7

“Dedicated to those who care for mankind for sake of Allah.”

8

Abstract

In Electronics World processors are brains and can be implemented as soft core at FPGAs or

ASICs for specific applications.M0 core developed by ARM because of its specifications and

speed is a widely used general purpose processor in industrial and military applications. Mo core

because of its upward compatibility, RISC architecture and utilizing the 12000 logic gates in its

small configuration makes it very feasible to be implemented for various tasks. Because of its low

power rating low its use in low power devices is very much appropriate. . We can utilize M0 core

as a co-processor providing communication services, crypto graphical services, malware detection

services, wireless sensor nodes etc. ARM Cortex M0 core is a propriety processor and has a few

limitations of its own. As a propriety core the details of its architectures are not published. Also

interfacing of the memory (RAM, ROM) and UART needs to be done to use it for a specific

application. In our work we comprehensively study the architecture of M0 core. We thoroughly

investigated the Bus (AHB Lite) of M0 core in order to interface it with the RAM and ROM. We

were able to successfully interface the Bus with the memories. Four Blocks of 8x2048 Bits RAMs

are designed. We also interfaced the Peripheral bus (APB) for UART. UART communication is

implemented. Our experiment demonstrated successful transmission of data. For our experiment

we used the Xilinx Spartan 3-E kit to port Cortex M0 processor on FPGA. Xilinx FPGA

XC3S1600E with 33,000 logic gates are enough to port Cortex M0 soft core. In order to visualize

results Digital Clock Manager (DCM) is used to scale down 50 MHz clock frequency to

5MHz.and practically readable data is comings at HyperTerminal with variable baud rate

according to requirement showing practical implementation of coprocessor communicating

successfully.

9

List of Abbreviations

UART Universal Asynchronous Receiver Transmitter.

FPGA Field Programmable Gate Arrays.

BRAM Buffered Random Access Memory.

ROM Read Only Memory.

ABP Advanced Peripheral Bus.

TTL Transistor Transistor Logic.

DCM Digital Clock Manager.

SRAM Static Random Access Memory.

WSN Wireless Sensor Node.

NIC Network Interrupt Controller.

ASIC Advanced System Integrated Chip.

DSP Digital Signal Processor.

10

Table of Content:

I. Declaration .. 3

II. Language Correctness Certificate ... 4

III. Abstract ... 8

IV. Table of Content: ... 10

V. List of Tables .. 14

Chapter 1: INTRODUCTION .. 15

1.1 Advantages of FPGAs .. 15

1.1.4 ARM series of processor .. 16

1.2 Problem Statement ... 17

1.3 Objectives and Aims .. 18

1.4 Contributions .. 18

1.5 Structure of Thesis .. 18

Chapter 2: LITERATURE REVIEW .. 19

2.1 Embedded Systems and FPGAs ... 19

2.2 Architecture of Microcontroller: ... 19

2.3 FPGA and soft cores of Processors ... 21

2.4 ARM Understanding Different Types of Processor ... 22

2.5 ARM Cortex M0 ... 26

2.6 M0 advantages: .. 29

2.7 Applications: ... 30

Chapter 3: Hardware and Software Details .. 31

3.1 FPGA Spartan-3E as proto Board .. 31

3.2 Hardware overview ... 32

3.2.1 Slide switches .. 32

3.3 Clock .. 35

3.4 FPGA Configuration Options ... 36

3.5 Serial ports .. 37

3.6 FPGA programming ... 38

Chapter 4: Proposed Methodology .. 42

4.1 M0 processor .. 43

4.2 Slave .. 43

4.3 Slave select .. 43

11

4.4 Address decoding .. 44

4.5 APB Bus ... 44

4.6 ROM .. 44

4.6 SRAM ... 45

4.7 ABP Slave select .. 45

4.8 ABP Timer.. 46

4.9 ABP UART .. 46

Chapter 5: UART communication .. 48

5.1 M0 processor .. 48

5.2 Serial vs. Parallel ... 48

1. Asynchronous Serial .. 49

2. Synchronous Serial. ... 49

5.5 Wiring and Hardware .. 51

5.6 UARTs (Universal Asynchronous Receiver Transmitter) .. 52

5.8 Common Pitfalls .. 54

Chapter 6: EXPERIMENTS AND RESULTS ... 56

6.1 Simulation ... 56

6.2 Implementation .. 59

Chapter 7: EXPERIMENTAL OUTPUT RESULTS ON HARDWARE ... 63

7.1 Results ... 63

Chapter 8: CONCLUSION and FUTURE WORKS ... 64

8.1 Conclusion .. 64

8.2 Future Work .. 64

References .. 65

12

List of figures

Figure 1-1 ARM Microcontroller Cores…………………………………………………………16

Figure 2. 1 Basic microcontrollers Architecture………………………….………………………19

Figure 2.2 Trade-off in processor designs……………………………….……….………………22

Figure 2. 3 ARM processor families Overview………………………….…………….................23

Figure2.4 Instruction table of M family………………………………….……………………….25

Figure 2.5 Cortex M series processor compatibility……………………..….………..…..............26

Figure2.6 Cortex M0 simplified block diagram……………………………………….................27

Figure2.7 Cortex M0 simple systems………………………………………………..…………...28

Figure3.1: Xilinx Spartan FPGA Board ………………………………………………………....31

Figure 3.2: Four Slide Switches…………………………………………………………………..32

Figure 3.3: UCF for Slide Switches……………………………………………………………....32

Figure 3-4: Rotary push buttons and four push buttons…………………………………………..32

Figure 3.5: Push buttons must have internal pull down resistor in FPGA………………………..33

Figure 3.6: UCF for Push-Button Switches………………………………..……..………………33

Figure 3.7: Pull up resistor for push button switch in FPGA…………………………………….33

Figure 3.8: UCF file for Rotary Push-Button Switch…………………………………………….34

Figure 3.9: Eight surface mount LEDs…………………………………………………………..34

Figure 3.10: UCFs for Eight Discrete LEDs……………………………………………………..34

Figure 3.11: Available Clock……………………………………………………………….........35

Figure 3.12: UCF for Clock Sources…………………………………………………………….35

Figure 3.13: Configuration settings of Spartan-3E Starter Kit for FPGA………...……………..36

Figure 3.14: Detailed Configuration Options……………………………………………………37

Figure 3.15: RS-232 Serial Ports…………………………………………………………………37

Figure 3.16: UCF for DCE RS-232 Serial Port …………………………………………….........38

Figure 3.17: iMPACT open up option…………………………………………………………...38

Figure 3.18: New configuration file for FPGA……………………………………………….….38

Figure 3.19: iMPACT Programming Succeeded ………………………………………………..39

Figure 3.20: Set Properties for Bit stream Generator……………………………….………........39

Figure 3.21: PROM, ACE, or JTAG File generation………………………………….…………40

 Figure 3.22: Click PROM File Formatter………………………………………………………..40

Figure 3.23: Selection of XCF04S Platform Flash PROM…………………………………..…..40

Figure 3.24: PROM File Formatter Succeeded………………………………………………..…41

13

Figure 4.1 Block diagram of M0……………………………………………………………........42

Figure 4.2: ‟cmsdk_ahb_default_slave.v‟ model…………………………………………….......43

Figure 4.3: ‟cmsdk_ahb_slave_mux.v‟ model ……………………………………………..……43

Figure 4.4 cmsdk_ahb_rom model……………………………………………………………….44

Figure 4.5 cmsdk_ahb_to_sram.v model……………………………………………………..….45

Figure 4.6 cmsdk_apb_slave_mux.v module………………………………………………….....45

Figure 4.7 Block diagram of timer…………………………………………………………….…46

Figure 4.8 Block diagram of ABP UART…………………………………………………...…...46

Figure 5.1 parallel communication……..……………………………………………………...…47

Figure 5.2 serial communication……..…...…………………………………………………...…47

Figure 5.3 data framing….…………………………………..………………………………...…49

Figure 5.4 data packet for serial protocol……………………………………………………...…50

Figure 5.5 Hardware connection……….……………………………………………………...…51

Figure 5.6 5volt TTL signal…………………………………………………………………...…51

Figure 5.7 13 volt TTL signal………….……………………………………………………...…52

Figure 5.8 UART interface…………….……………………………………………………...…52

Figure 5.9 UART internal block diagram…………………………………………………...…...53

Figure 5.10 Pro mini design………...……………………………………..…………………..…54

Figure 5.11 Mismatched data……………………………………………..…………………...…54

 Figure 6.1 Keil Program……………………………………………………………………..…...56

Figure 6.2 FPGA settings…………………………………………………………………..…….57

Figure 6.3: Path for image.hex file in cmsdk_ahb_rom.v ……………………………………….57

Figure 6.4: Path for image.hex file in cmsdk_fpga_rom.v. ……………………………………..58

Figure 6.5: Path for BRAM files in cmsdk_fpga_rom.v.…………………………………….….58

Figure 6.6: Simulation of M0 core processor.……………………………………………………59

Figure 6.7: Path for image.hex file in cmsdk_ahb_rom.v..……………………………………59

Figure 6.8: BRAM settings..…………………………………………………………………..…60

Figure 6.9: 8x2048 size BRAM..……………………………………………………………...…60

Figure 6.10: BRAM file path..…………………………………………………………………...60

Figure 6.11: DCM clock frequency settings..…………………………………………………....61

Figure 6.12: UCF of M0 core .…………………………………………………………………...61

Figure 6.13: top level M0 core implementation.………………………………………………....62

Figure 6.14: M0 core implementation on FPGA.……………………………………………..….62

Figure 7.1: Result data.………………………………………………………………..……...…..63

14

List of Tables

Table 2.1: Typical components in microcontrollers... 21

Table 3.1 Clocks, Global buffers and DCM... ………36

15

Chapter 1: INTRODUCTION

Motivation

Susceptible attacks and hacking of processor architectures, theft of cryptographic keys led this

research work to start. For that an appropriate, low power, high speed, efficient and cost effective

solution is investigated for architectural design. Fast speed processor core in FPGA researched

and investigated to be the brilliant idea because of its flexibility, design modification and

customization properties.

In the age of technology, to be competitive, the product must have dynamic and unexpected

changes. In this work, field programmable gate matrices (FPGA), in the age of technology, are

enough to show the dynamic and unexpected changes of the product adapted to meet these

requirements. They are economical, adaptable, powerful and economical and can be configured

in a hardware using HDL language.

Traditionally, the designer can perform has following three options to perform hardware control

platforms:

 DSP (Digital signal processors).

 ASIC (Application specific integrated circuits).

 FPGA (Field programmable Gate arrays).

ASICs provide optimal performance because they are designed to meet the requirements of the

application. However, the budgets for ASIC-based solutions are maximized, since production

machines is usually relative small due to the small number units compared to the products it

produces. On the other hand, DSP-based solutions are economical, but their processing speed is

not sufficient due to software execution.

1.1 Advantages of FPGAs

The development of FPGA technology has grown in recent years in terms of usable resources,

processing speed, number of access points, retail prices and energy consumption. Advanced

FPGAs are therefore a reliable alternative to common microcontrollers and ASICs for

applications. Recent FPGA-based systems also include many advantages of DSP and ASIC. That

is, high flexibility, reuse capacity, rapid development cycles, moderate costs and easy updating

(due to the use of the abstract hardware description language (HDL)), and feature expansion

16

(provided FPGA resources are not depleted) in addition, current FPGAs can be integrated as

software processors. Therefore, an FPGA can have typical processor capabilities.

1.1.1 FPGAs as ARM microprocessors:

Primary use of an FPGA is for computationally intensive, parallel processing tasks and high-

speed, however the ARM microprocessor is used mainly due to its versatility many manufacturer

used it as the core of their applications i.e ZYNQ family of devices. ARM because of their wide

use as a processor variations of operating systems are available.

1.1.2 Embedded processors on FPGA soft-core vs hardcore

In integrated systems, field programmable gate array (FPGA) is a very effective solution due to

their ability to reconfigure, scale and be low cost. Due to the configurable logical capability of the

FPGA, designers have been forced to integrate software processors into the FPGA for use in

various peripherals. To this end, many software and hardware cores have been developed for

different software and hardware.

1.1.3 Linux soft cores

The cores of the arm processor are called cortex. The Cortex-M FPGA solutions provided by

Altera (soft cores of M1 is provided) also Actel provide the same package, while the Cortex-M3 is

in available as IC package. Xilinx has provided no practical solution to date. ARM has released a

low-cost and low-cost solution of the M0 processor that can be programmed in an FPGA or used

as ASIC applications. XILINX does not provide a soft MB core.

1.1.4 ARM series of processor

The Cortex series of processors as shown in Figure 1, includes cores of economical

microcontroller solutions and state of the art processors which are capable of handling huge tasks

and advanced operating systems. Other processors of the same family are ARM7 series, ARM9

series and ARM11 series. The specialized SecurCore ™ series is also primarily intended for

security as well as cryptography applications.

17

Figure 1-1 ARM Microcontroller Cores

1.1.5 Advantages of ARM processor family:

ARM cortex processors mainly used for high performance applications with real time and

embedded operating systems. These processors are low cost, low power, fixed latency interrupt

handling processors. Cortex Mo is alternative for 8 bit microcontrollers as they have high

processing capacity.

1.1.6 Motivation

In the field of embedded systems, a hardware which can be configured and changed even

after installation and deployment is much needed to cope with the ever increasing and changing

demand of market. The motivation behind this thesis is to develop indigenous hardware platform

for various industrial and military configurable systems and devices with low power, high

interrupt latency, good efficiency and low cost.

This design or platform can be used as IOT, Encryption controller, intrusion detection

controller and as communication control (for implementing various communication protocols).

The most attractive feature of this platform is its speed, low cost and run time

configuration feature.

1.2 Problem Statement

To develop an indigenous Mo core based on FPGA, hardware configurable solution for

various communications, industrial and military applications with all features of ARM

processor in form of soft-core of ARM family.

18

1.3 Objectives and Aims

The main goals of the investigation are the following:

• It can be implemented as indigenous IOTs (Internet of Things)
1
.

• It can also be used as parallel intrusion detection processor like PHANTOM
2
.

• Can be used as platform for computer vision applications
3
.

• Can be used to make FPGA based multiprocessor systems
.4

•
Secure FPGA soft core processors for symmetric key cryptography.5

• As coprocessor for specific need in various applications.

1.4 Contributions

• Comparison of working of soft-core and hardcore ARM processors

implementations.

• Selection of FPGA instead of ASIC and DSP processors.

• FPGA Spartan 3 board all functionalities and features.

1.5 Structure of the Thesis

This work is structured as under:

Chapter 2: States literature review of related work.

Chapter 3: Give details about the Hardware used in this thesis.

Chapter 4: Consists of the proposed methodology in detail. It includes: coding, system

configuration, simulations, results and analysis.

Chapter 5: This chapter consists of all the details, theory and implementation of UART

communication.

Chapter 6: Closes the thesis and reveals the future prospect of this study.

Chapter 7: Experiments and results are discussed in detail with all desired figures and

tables.

Chapter 8: Closes the thesis and reveals the future prospect of study.

19

Chapter 2: LITERATURE REVIEW

2.1 Embedded Systems and FPGAs

In embedded system industry FPGAs use is very crucial and vital. FPGA offers possibility

of a wide range of electronic gates and IC to be incorporated.

Processors main use in electronic like cell phones, computers, and television, machines

used for washing purposes and in various cards. And even in simple devices contain

processor in them like remote control of your radio, which is actually fabricated in an IC

called microcontroller .In modern microcontrollers, memory system and other peripherals

are also incorporated.

2.2 Architecture of Microcontroller:

Typical elements of a microcontroller are as under mentioned

Figure 2. 1 Basic microcontrollers Architecture

Items Descriptions

Read Only memory (ROM) It is a nonvolatile memory used for storage of program.

20

Flash Flash is a ROM that can be reprogrammed several times, typically

used for storing program codes.

Static Random Access

memory (SRAM)

Used for data storage.it is a form of volatile memory.

Phase Lock Loop (PLL) Its primary used for generation of variable clock frequency from a

clock (reference).

Real Time Clock (RTC) It is simply a low power timer to calculate seconds and works with

a low power oscillator.

General purpose

Input/output (GPIO)

It is a sub module with parallel data interfacing and used for

controlling external modules and to read back the external signal

status.

Universal Asynchronous

Receiver and Transmitter

(UART)

It‟s a sub module used to cater serial transfer of data to external

interface.

Inter Integrated Circuit

(I
2
C)

It is an interface used for serial data transfer; its data transfer rate is

higher than serial.

Serial Peripheral Interface

(SPI)

It‟s commonly used for serial communication with other off chip

deices.

Inter IC sound (I
2
S) It‟s commonly used for serial communication for audio signal.

Pulse Width Modulator

(PWM)

It is a module to output configurable square signal of flexible time

duration.

Analog to Digital

Convertor (ADC)

Its primary purpose is to transform analog signal to digital format.

Digital to analog convertor

(DAC)

Its primary function is to convert digital signal form to analog

signals.

 NBatch Dog Timer

It‟s a programmable time device to ensure that processor is running

as program. In enable state, the timer should be updated by the

programmer after certain time interval. When the program is

crashed that timer gets expired and on the basis of this critical

system interrupt or system reset is triggered.

 Table 2.1: Typical components in microcontrollers

21

2.3 FPGA and soft cores of Processors

FPGA facilitated the incorporation of soft processor cores. Processors as soft core can be

considered equivalent to "computer on a chip" or microcontroller. Core conglomerates a

Central processing Unit, memory and peripherals on a single chip. Custom interfaces can

also be accessed beyond the real standard integrated FPGA of integrated chip.

Many types of microcontrollers are available with many types of processors, peripherals

and memory sizes in them which can be marketed in various packages in market.

Processors are used in various applications so that using software system can be

controlled and various features can be developed.

Cortex M0+ processors and ARM cortex M0 and mainly used as SOCs, microcontrollers,

ASIC and ASSPs. And sometimes used in many subsystems.

Available reduced instructions set computer (RISC) architectures in market are:

1. ALTERA launched CPUs like NIOS and NIOS II.

2. Gaisler Research launched CPU like LEON2 and LEON3.

Microcontroller systems are now becoming increasingly advanced and demanded and can

achieve greater performance to fulfill the requirements of more suitable functions and operations.

Sometimes, they are costly; therefore, microcontroller systems are determined as designs of a

chip only detected in high-performance 32-bit processors, which dominate the current market.

Variety of peripheral are evolved after requirement rose from software development and pressure

of costly standardization.

Industry designed ARM M series of processors to meet above challenges, now over 200

companies are producing these chips from standard core to meet all applications like sensor

nodes to radio communication for IOTs.

With the access of microcontrollers to more and more people, the software will be available for

you to see. Real-time operating systems (RTOS) have quickly become a recommended industry

exercise and their use gaining importance for software engineering. The combination of these

components in the industry presented a problem for those who were developers, who were in

charge of the industry to reduce system costs and marketing success. Therefore, the architectures

of Cortex-M processors coupled with CMSIS standard is basis of hardware and software

standard.

22

2.3.1 Applications of soft-core processors:

Soft-core processors have many applications:

1. As Embedded machine learning processor for intrusion detection [5].

2. As a secure processor called PHANTOM in which practical oblivious computation is

performed [6].

3. Design and development of a security coprocessor based on a chip system (SOC) and a

program protection mechanism for wireless sensor nodes (WSN).[7]

2.4 ARM Understanding Different Types of Processor

Industry has designed many processors for various applications. ARM also designed

different processor series for different applications. For server, a processor with high data rate is

required. For battery applications, performance can be compromised in order to achieve low

power. For high performance, processor needs to have more transistors as this is rule of physics.

As frequency increases so as the power dissipation by the processor.

Figure 2. 2 Trade-off in processor designs

Increasing the size of silicon results in increases in production cost (Figure 2.2). Hence different

processor have been designed for different applications. Also, chip designer‟s needs to select

suitable processor for their application. Luckily, many vendors provide different processors for

different applications. ARM also provides processors as per designer need.

 2.4.1 Overview of the ARM Processor Families

ARM has designed alot processors for several applications as shown in the Figure 2.3. Let see

what ARM has to offer for designers.

ARM designed the processor since long. Over 20 years of their experience ARM has provided 32

Bits processors but recently they have designed processor for mixed architecture of 32 Bits and

64 Bits.

23

ARM7 processor is the first series of processors marketed for the designers. It is high efficiency

and high code density allows the designers to use state of the art operating system. They are used

frequently in next generation mobile phones. ARM after great response from designers continue

design new series like ARM9/9E and ARM11 family of processor.

Figure 2. 3 ARM processor families Overview

2.4.1.1 Cortex-A series processors:

Some application requires high performance so that they support advance operating system. Such

processors have longer processing channels and can operate at high clock frequency. (1 GHz or

greater). For functionality MMU (Memory management unit) supports virtual memory

addressing. These are used in cell phones, mobile computing and energy efficient processor. For

fast response ARM has designed R series of processor.

2.4.1.2 Cortex-R series processors:

For fast response Cortex-R series is launched. Their clock frequency is less than A series

(between 500 MHz to 1GHz). They have tightly coupled memories to improve response time.

Some are provided with additional features like ECC (Error correction code) for reliability.

24

Their application includes disk drive controllers, wireless controllers/ modems, automotive

controllers and in industrial controllers. They consume a lot of power and have complex

architecture. For integrated products ARM launched another M series of processor.

2.4.1.3 Cortex-M series Processors:

M series is used for application where less processing is required at the cost of low power. Their

pipeline is short (2 stage for M0 and 3 stage for M3, M4), however, M7 has pipeline of 6 steps

because of greater performance requirements; however, it is much smaller than pipeline of high

end application processors. Due to tube optimization and power consumption in the application,

the maximum clock rates of them are slower than those of the R and A series processors.

However, for low processing application this is not a issue.

Cortex-M series processors can handle very fast interrupts response. To achieve this goal they are

equipped with special module called nested vector interrupt controller (NVIC). This module has

very handy features of interrupt handling. They are easy in use and programmed in C language.

Because of features like low power, high performance and user friendly Cortex-M series

processors in sensors, chips used for mixed-signal ASIC / ASSP, and are even use as a controller

in complex use processor / SoC product subsystems.

Instruction set is compared in figure 2.4, M0, M0+and M1 support small instruction set (56

instructions). Most are 16 Bits as they provide effiecient code density. M0 and M0+ instructions

are simple in nature and can perform complex task easily. For state of the art operating system

M3 processor is used as it has 32 bit of instruction support and can support following:

 More addressing modes of memory

 In the 32-bit instructions Larger immediate data

 Conditional branch ranges and longer branch

 Additional branch instructions

 Hardware divide instructions

 Multiply accumulate instructions (MAC)

 Processing instructions bit view

 Adjustment instructions and saturation.

M3 can handle complex data quickly. With same code size as M0 and M0+ because it uses same

instructions for same task. 32 bit instructions can do same task efficiency then 16 bit instructions.

25

For DSP applications that involves filtering and signal transformation. M3 also equipped with

SIMD (Single Instruction multiple data). Data path of processor is also reduce to accommodate

that.

Figure 2.4 Instruction table of M family

2.4.1.4 Portability Software of Cortex®-M Processors:

M0, M0+ and M1 series processor are based on ARMv6. M3, M4 and M7 based on ARMv7

architecture as show in the figure 2.5 for instruction set support.

26

Figure 2.5 Cortex M series processor compatibility

2.5 ARM Cortex M0

It is 32 Bit processor; it means that internal registers banks, data path and bus interfaced are all 32

Bits. It has single bus interface means its architecture is Von Neumann type. It has three stage

pipeline i.e. (Fetch, decode and execute). Most of the instructions are 16 bit, however only few

are 32 bits. It can support optional 32x32 bit multiplier. Address supports 4GB of memory

interfacing. M0 bus interface is based on AHB-Lite protocol that can support 8, 16 and 32 bit

data transfer. Protocol is pipelined and can support high operating frequency and peripheral can

be connecting AHB-Lite with APB Bus Bridge. M0 supports 32 interrupts trough Nested Vector

interrupt controller (NVIC). It supports Two sleep modes (normal sleep and deep sleep) are used

for power saving.

 2.5.1 Block Diagram:

Block diagram M0 is shown as figure 2.6

M0 contains register for data storage, ALU and control logic. Three stages of pipeline for fetch

decode and execute stage. Banks are of 32 bits. Some are special usage like PC while others are

used as general purpose.

NVIC can handle up to 32 interrupts with functionality to compare priority between interrupts

request and current interrupt priority level. In case of a interrupt, NVIC communicate with the

processor to execute interrupt correctly.

27

 There are 32 bits AHB-Lite bus interface, processor core, internal bus system, and data path.

AHB-Lite bus

Figure 2.6 Cortex M0 simplified block diagram

2.5.2 System overview:

M0 processor inherently does not have any memory and peripherals. However, designers needs

them for their design, so M0 processors based IC have different addressing range, interrupts and

memories. Normally M0 have following peripherals:

 Program code storage use ROM (Read only memory). e.g. flash memory

 SRAM (Static RAM) for data read write.

 Bus interfacing for various memories and processor joining.

M0 processor can be look like as shown in the Figure 2.7

28

Figure 2.7 Cortex M0 simple systems

M0 based design might have bus partition into two parts:

 RAM, ROM, Flash memory, SRAM, few other peripherals connected by the bus and a

bus bridge.

 Peripherals attached by the help of peripheral bus, might have different operation

frequency.

APB is connected with AHB-Lite bus through Bus Bridge. APB bus use is as follows:

 Low cost solution as APB bus is non-pipelined and is simpler to implement than

AHB-Lite bus.

 Makes possible to interface others sub modules at different frequency of operations

than main bus.

 Where large combinational blocks are required for logic implementation, they are

attached with APB bus to avoid bottle neck for high operating frequency.

 Also, interrupts, GPIO (General Purpose Input/Output) modules can be handled easily

through APB bus.

2.5.3 ARMv6-M Architecture

M0 cores are based on ARMv6-M Architecture. This refers to following two areas:

29

• ISA Model also called programmers model (software point of watching) and debug

methodology (what debugger sees).

• Microarchitecture: An implementation detail like signal interfacing, execution sequence,

pipelines etc. it is design specific. Like M0 has three stage of pipeline.

2.6 M0 advantages:

2.6.1 Low Power and Energy Efficiency

M0 is very energy efficient and consumes 12.5 uW/MHz with size of 90 nm. This is low power

for 32 bit processor. ARM achieves it with less gate High efficiency count and Low power and

through logical cell enhancement.

2.6.1.1 Low gate count

Low gate count is achieved through careful design techniques at each stage. Every part was

developed very carefully and helps in minimizing gate count to 12000 only. This is lower than

even 16 bit processor keeping the performance almost double.

2.6.1.2 High efficiency

M0 has many low power features to use in battery powered applications. Two modes sleep and

deep sleep are available. Sleep mode is invoked using instructions like WFE and WFI or sleep on

exit. To save further power debug system can be turned off.

 2.6.1.3 Logic Cell Enhancements

Ultra Low Leakage logical cell library developed by ARM support special state retention cells

that holds information in case of system power failure.

2.6.1.4 High density of code

 For 16 bit instructions M0 has very high density of code. Hence application can be

accommodated into small memory.

2.6.1.5 Low interrupt latency

M0 can handle interrupt in 16 clock cycles. This involves stacking of registers in stack, so that

ISR can work without any software overhead.

NVIC can handle interrupt prioritization and ISR starting address so that exact IRQ can be

serviced. Interrupt response is much lower than 8 or 16 bit system when supported by good

programing practices.

30

2.6.1.6 User friendly

M0 is very user friendly as most of the software is in C language. This helps in shorter code

development and easy portability.

2.7 Applications:

Mo offer high performance, low power and user friendly. Cortex-M series processors are

carefully chosen from most of the microprocessors products. They are widely used in:

 Sensor nodes.

 Wireless communication chipset.

 Mixed signal application-specific standard product (ASSPs) and ASICs.

 In complex application systems as controller in subsystems.

 Security sensitive products as secure core processors e.g., SC000.which are used in SIM

cards, electronic ID cards and banking/payment systems.

2.7.1 Advantages

Cortex Mo processors has number of key advantages

 Flexible interrupt management is provided using NVIC (Network Interrupt Controller).

 OS support features.

 Low power support like sleep modes.

 High code density.

 Integrated debugging.

 User friendly.

 High energy efficiency because of small size and better performance.

 For power management and boot sequence cortex ARM processor can be used as System

Control Processor (SCP).

31

Chapter 3: Hardware and Software Details

In hardware Spartan 3E starter kit is used with Xilinx FPGA XC3S1600E which is compatible

with Xilinx FPGA S3E500-4.

In software Xilinx ISE, KEIL embedded core and HyperTerminal/Teraterm soft wares are used.

In order to implement our task we need FPGA with over 12k gates. After investigation and

comparison with others options Spartan 3E board is selected.

3.1 FPGA Spartan-3E as proto Board

Spartan 3E starter FPGA development board is a digital platform for various embedded

implementation. It supports 16M bytes of SDRAM and 16M bytes of ROM. It has 50MHz crystal

oscillator and base for secondary oscillator. USB2 power socket empowers all circuits,

programming and data transfer modules. Also some other sub modules such as LCD screen, LEDs

and switches, etc. LEDs can be used as event indicators. You can take advantage of Xilinx impact

software such as Chipscope Pro, xmd, etc. In our case, this has helped to program and see the

status of it easily.[10]

The Spartan 3E starter kit is compatible with Xilinx FPGA S3E500-4. In total, 500 logic gates, 20

hardware multipliers, 10,500 logic cells, 73 Kbits of DRAM, 360Kbits of RAM, having 4 clock

sources and clock frequency of 300MHz are maintained.

32

Figure 3.1: Xilinx Spartan FPGA Board

3.2 Hardware overview

In order to support design Xilinx board provides many interfaces. Some are as under:

3.2.1 Slide switches

 Four slides switches are here as shown in the figure 3.2. Located on lower right corner are

designated as SW3, SW2, SW1 and SW0. When moved to up position a switch is connected to

FPGA pin to high logic (3.3V). However, in down position will ground the switch. Switch does

not have any active de bouncing circuit so it should be added by the programmer.[10]

Figure 3.2: Four Slide Switches

UCF for slide switches is shown in the figure 3.3

33

Figure 3.3: UCF for Slide Switches

3.2.2 Push Buttons

Four push buttons are shown in figure 3.4. Location in the lower left corner, labeled as Btn North,

Btn_ East , Btn _south and Btn_west.

Figure 3-4: Rotary push buttons and four push buttons

In order to connected FPGA pin to high logic, push button needs to be pressed. The circuit with

pull down resistor is shown in the figure 3.5.

Figure 3.5: Push buttons must have internal pull down resistor in FPGA

In UCF user must define the pull down settings along with I/O standards and I/O pin and as sown

the figure 3.6

Figure 3.6: UCF for Push-Button Switches

3.2.3 Rotary_ Push Button

Its located in the middle of push buttons switches with three output. These are Rot_A, Rot_B and

Rot_ center. Rotary switches can acts as dual functions, when shaft turns output values changes

and when pressed acts as a push button switch as sown in the figure 3.7.

34

Figure 3.7: Pull up resistor for push button switch in FPGA

It acts like two push buttons connected by central shaft. These can acts as make before break.

When shaft is stationary in these positions both switches are closed. UCF constraints for four

push buttons is sown in figure 3.8

Figure 3.8: UCF file for Rotary Push-Button Switch

3.2.4 LEDs

Demo board is equipped with eight surface mount LEDs as shown in the figure 3.9. LEDs are

labeled form LED0 to LED7.

Figure 3.9: Eight surface mount LEDs

LEDs are grounded from one side via current limiting resistors of 390Ω. To drive LED, FPGA pin

must be high. UCF of LEDs is shown in the figure 3.10

35

Figure 3.10: UCFs for Eight Discrete LEDs

3.3 Clock

Board supports three clocks as a source to FPGA as shown in the figure 3.11.

• Clock oscillator of 50 MHz.

• SMA connector for external clock input. It is high speed connector.

• 8 pin socket for oscillator

Clocks are connected to Bank 0 of FPGA. Each pin is also connected to DCM. The settings are

as shown in table 3.1

Table 3.1 Clocks, Global buffers and DCM

Figure 3.11: Available Clock

36

3.3.1 50 MHz oscillator

Onboard oscillator frequency is about 50 MHz with 40% to 50% duty cycle.it is accurate to ±

2500 Hz.

3.3.2 Oscillator socket

There is a eight pin socket for oscillator. It is normally used when operating frequency is greater

than 50MHz. Also we can use DCM for other frequency generation.

3.3.3 SMA clock

SMA connector is used for external clock provision. For external device it is single ended clock.

UCF files for clock generation is sown in figure 3.12

Figure 3.12: UCF for Clock Sources

3.4 FPGA Configuration Options

Board support many configuration options

• Code downloading via JTAG or on USB. This combination also program board Flash

PROM and XC2C64A CPLD.

• Code downloading to 4M bit platform PROM, FPGA can be programmed from image

stored in it using master serial

• Code downloading to 16M bit PROM; FPGA can be programmed from image stored in it

using SPI.

• Code downloading to 128M bit flash, FPGA can be programmed from image stored in it

using BPI UP or BPI down.

Figure 3.13 shows above described options in detail

37

Figure 3.13: Configuration settings of Spartan-3E Starter Kit for FPGA

3.4.1 Programming push button

This button is shown in figure 3.14 that forcefully reconfigure fpga from selected configuration

memory source. This can be done by using press and release of button.

Figure 3.14: Detailed Configuration Options

3.5 Serial ports

There are two serial ports, DB9 female connector and DTE male connector. DCE connects

directly to PC via standard serial cable. DTE connector connects madams, printers etc. Both

connectors are shown in figure 3.15

38

Figure 3.15: RS-232 Serial Ports

FPGA connects between two DB9 connectors. Its output data on LVTTL or LVCMOS levels

which converts the RS-232 voltage level. Figure 3.16 shows UCF for DTE and DCE ports.

Figure 3.16: UCF for DCE RS-232 Serial Port

3.6 FPGA programming

FPGA can be programmed using USB provided with kit. Attach USB and iMPACT programming

software can be used directly to program FPGA. Programming options for parallel or serial

PROM is not supported. As USB is connected a green LED turns on shows good connection.

iMPACT can be directly launched from ISE project navigator as sown in the figure 3.17

39

Figure 3.17: iMPACT open up option

As board is connected software recognizes three devices in the chain. To select FPGA, right click

on it and assign new configuration file to it. Select file to program the device as show in the

figure 3.18

Figure 3.18: New configuration file for FPGA

When programming successful, FPGA application starts execution and DONE pin LED glows.

The screens as shown appears in the figure 3.19

Figure 3.19: iMPACT Programming Succeeded

40

3.6.1 Generating Bit stream file

Bit stream is used for PROM programming. FPGA provides external clock to load external

PROM. Oscillator starts from lower settings 1.5 MHz. PROM support higher frequency so this

frequency can be increased. XCF04S flash support 25MHz.

 Right click Generator programming file as shown in the figure 3.20

Figure 3.20: Set Properties for Bit stream Generator

In properties option increase clock to 25MHz. click on generate programming file. When file is

generated, use option as sown in the figure 3.21

Figure 3.21: PROM, ACE, or JTAG File generation

As iMPACT on PROM file formatter show in the figure 3.22

41

Figure 3.22: Click PROM File Formatter

Here target is Xilinx PROM. Select from any format. MCS (Intel Hex format) is popular. Enter

path for file storage. Select XCF04S PROM from the options to program it Kit has Platform

Flash PROM, XCF04S. Select XCF04s, list as sown in the figure 3.23

Figure 3.23: Selection of XCF04S Platform Flash PROM

Next step is to format the PROM and after that select bit stream file. Presses continue. PROM file

thus created is shown in the figure 3.24

Figure 3.24: PROM File Formatter Succeeded

42

Chapter 4: Proposed Methodology

As already discussed in Figure 2.7 that M0 processor is connected with others modules through

AHB-Lite bus (Advanced high speed bus) and APB (Advanced Peripherals Bus). So, in order to

make M0 core we need files in which settings and configuration of M0 are included. Also we

need files containing information about AHB and APB bus, clock settings modules. These are

shown in figure 4.1. We are going to discuss this one by one.

Figure 4.1 Block diagram of M0

M0 Processor

Address

decoding

Slave select Slave

ROM SRAM APB Bus SRAM
SRAM SRAM

 APB Slave

select

ABP Timer SRAM Test Slave SRAM
UART

43

4.1 M0 processor

In project we have use files like ‟cmsdk_ahb_memory_models_defs.v‟. This file defines memory

models that we are using for our M0 core. In total M0 support following memory models.

 Using behavioral SRAM, Behavioral ROM model, with write disabled.

 AHB SRAM interface module with SRAM model , suitable for permitting read and write

operations and FPGA flow.

 32-bit flash memory with Flash wrapper.

 16-bit flash memory with Flash wrapper.

In project we have used ‟cmsdk_apb_dualtimers_defs.v‟. In this files 32 bit down timers used in

M0 core are initialized. In ‟cmsdk_apb_watchdog_defs.v‟ file watchdog for M0 is initialized. In

‟cmsdk_mcu_defs.v file M0 core main definitions are initialized.

4.2 Slave

Slave is defined in ‟cmsdk_ahb_default_slave.v‟ file. Slave responds to transfer in case master

bus tries to access undefined address. When bus is idle a zero wait state or ok response is

generated, however, slave generates error response when sequential or non-sequential transfer

takes place. AHB default slave components are shown in figure 4.2

Figure 4.2: ’cmsdk_ahb_default_slave.v’ model

4.3 Slave select

Slave select module is named as ‟cmsdk_ahb_slave_mux.v‟ file. It supports upto 10 slaves that

are connected with AHB bus. Parameters that define slave port usage are also defined in it, so that

additional logic may not be generated by synthesis. Block is shown in the figure 4.3

44

 Figure 4.3: ’cmsdk_ahb_slave_mux.v’ model

Address decoder determine selected slave and generates correspondence HSEL signal to AHB

slave and AHB slave multiplexer. Slave use register version of HSEL as data and signal are valid

during data phase. For more than 10 slaves more AHB slave modules can be cascaded.

4.4 Address decoding

In project ‟cmsdk_mcu_addr_decode.v‟ file is used in conjunction with others file. The main aim

of this file is to check the M0 generated address and compare it with assigned addresses in to the

modules of M0. If valid address is matched it grants the AHB bus access to that module for data

transfer.

4.5 APB Bus

APB bus platform is provided in „cmsdk_apb_subsystem.v‟ file. It is used to interface module

slike APB timers, Dual input timers, APB UART, AHB to ABP Bridge, Test slave and IRQ

synchronizer. It includes signals to enable all its modules. When address generated by AHB bus

matches the address allocated in APB Bus it generates corresponding enable signal. Here HCLK

(Clock for AHB) is converted into PCLKG (Gated clock for APB bus). For our code we are using

the same clock frequency for AHB to PCLKG. APB bus is used here as32 bit data bus and 16 bit

Address Width.

4.6 ROM

In project „cmsdk_ahb_rom.v‟ file is used with other files. ROM is of 32 bit data bus and 16 Bit

address bus and. The ROM model is shown as figure 4.4

45

Figure 4.4 cmsdk_ahb_rom model

4.6 SRAM

 Read write operations is performed with zero wait state. The design only supports 32 bit memory

interfacing. Here, we have made four SRAMs of 8x2048 Bits. The data transferred in it byte

wise. The main model is shown, in figure 4.5

Figure 4.5 cmsdk_ahb_to_sram.v model

4.7 ABP Slave select

The slave multiplexer is included in „cmsdk_apb_slave_mux.v‟. It supports upto 16 slaves. In

order to do this it use four bits and PADDR to generate corresponding PSEL signal. PADDR can

be configured to decode slaves. Figure 4.6 shows APB slave mux module

Figure 4.6 cmsdk_apb_slave_mux.v module

46

4.8 ABP Timer

Timer is included in project using cmsdk_apb_timer.v file. It is a 32 bit timer ,following features:

 Interrupt be generated using TIMERINT signal as counter reaches zero.

 EXTIN signal can be used as external input signal to enable timer.

 APB timer reaches zero and same time software clears, interrupt is status set to one

,previous interrupt status.

ABP timer block diagram is shown in figure 4.7

Figure 4.7 block diagram of timer

4.9 ABP UART

cmsdk_apb_uart.v is APB UART, supports 8 bit communication, simple in design,. It has no

parity and zero as stop bit. Block diagram of UART is show in figure 4.8.

UART has two buffers one for data reception and another for data transmission. Interrupt

handling execution time is short this leaves sufficient time for processor.

47

Figure 4.8 block diagram of ABP UAR

48

Chapter 5: UART communication

5.1 M0 processor

In embedded systems, processors and other integrated circuits are interlinked to make system

functional. Communication protocols have to be followed to pass information between these

circuits. There are many communication protocols used for data exchange .Major communication

protocols are two i.e serial and parallel.

5.2 Serial vs. Parallel

In parallel transfer protocol multiple bits are transferred at same time. Data transfer occurs in

form of 0's and 1‟s. Data is transmitted at buses of eight, sixteen and more wires.

Figure 5.1 parallel communication

The above picture making it clear that in above parallel communication out of used 9 wires, 8 bit

data bus is using 8 wires which are controlled by a clock. At every clock pulse a byte is

transmitted. At a time a single bit is streamed in above serial interface.

Figure 5.2 serial communication

 In above serial interface is one bit at every clock pulse is transmitted. Only 2 wires are required

in this case.

49

Over serial communication, parallel communication has also many advantages.

Following are its advantages, it is

 Relatively easy to implement

 fast

 and straight forward.

but more input/output lines are needed in parallel communication .As in most of the projects

I/O lines of the microprocessor are often very few and precious.

5.3 Types of serial Interfaces

There are two types of serial interfaces

1. Asynchronous Serial Interface.

2. Synchronous Serial Interface.

5.3.1 Synchronous serial interface

In synchronous serial interface there are data lines and a clock signal. The clock signal is actually

the common clock which all devices on the serial bus has to share. Serial date transfer is in this

case is linked with clock.

Example: I
2
C and SPI.

5.3.2 Asynchronous serial interface

In Asynchronous serial interface for data transfer no external clock signal is required. This serial

interface has advantage that it require minimum wire and I/O pins.

Its drawback is that we have to add some functionality for reliable data receiving and transferring

data. In embedded electronics ,the asynchronous serial interface is widely used .For example if u

have to add Bluetooth, XBee‟s, GPS module and other devices .

5.4 Rules of Serial

For error free and accurate ,robust data transfer In Asynchronous serial protocol following rules

has to follow. These are as under

 Baud rate(data bits per second) of the data,

 Data bits of the data,

50

 Synchronization bits of the data, and

 Parity bits of the data,

There are many ways to send data serially. This protocol is configurable. For error free data

communication same exact protocol must be used at both transmitting and receiving device on

serial bus.

5.4.1 Baud Rate Settings

In serial communication at serial line baud rate is actually specifies how fast data is transmitted in

a second. It actually defines the time in second that a single bit takes to transmit. its unit is

bits/sec.

Commonly used baud rates are 1200, 2400, 4800,19200,38400,57600, and 115200.Where speed is

not critical 9800 is the commonly used baud rate. It‟s essential for serial communication to

establish that both devices operate at same rate i.e. at same baud rate.

For most of the embedded controller projects the highest speed is 115200, above that mostly error

comes in transferred data. So, for successful data transmission appropriate baud rate has to set.

5.4.2 Format of data

In serial communication data is transmitted in form of packet or frame of bits. The frame is

formed as shown in figure below. Synchronization bits start, stop and parity is added to data bits

to form complete packet.

Figure 5.3 data framing

5.4.3 Chuck of Data

In serial packet the data chuck is actually the true data in frame. We call it as chunk as its size is

not specifically stated. The standard size is 8 bit means 1 byte, it can be set to anything from 5 to 9

bits. A 7 bit data size is more efficient than 8, if we are transferring ASCII characters.

After a data part in packet, endianness of the data has to check also.by default LSB(least

significant bit) format is used generally to transfer data.

5.4.4 Synchronization bits

Synchronization bits are the start and stop bits, these are actually the special bits transferred with

each chunk of data. These bits actually indicate start and end of the packet. Start bit is 1 always,

whereas the stop bit can be one/two. Commonly 1 stop bit is used.

These synchronization start bit actually indicate idle data line that goes from 1 to 0, and stop

bit(s) is changed back to the idle state means it hold the line at 1.

51

5.4.5 Parity bits

Error checking at low level is done by parity bit in serial communication. It has two types: odd or

even parity.

It is actually calculated by adding all 5-9 bits of data byte and if the sum is even the bit is set or

not.

As an example, even parity is set and is added to data byte, 0b10011101, which has an odd

number of 1's (5), the parity bit become now set to 1.Conversely, if the parity is set to odd, the

parity bit be 0 in that case.

To set parity is optional and not used mostly. It can help to transmit data in noisy medium. Its

drawback is that it slows down data transferring and at both sides error handling has to implement.

When it‟s detected by parity that transferred data is not accurate, that data must be resent.

Serial Settings: 9600 8N1 (an example)

Serial settings of 9600 8N1 means - 9600 baud, 8 data bits, no parity, and 1 stop bit .

When a device transmit ASCII character „K‟ and „O‟. It creates two packets of binary value

“01000001” and “01011010”.synchronization bit is then appended. Least significant bit is sent

first.

Figure 5.4 data packet for serial protocol

Data is transferred at 9600 baud rate i.e. per bit 104 µs.

When we transmit every bit one start bit and one stop bit, and 8data bits have to transmit.so 9600

baud rate means 9600 bits per second is sending.

5.5 Wiring and Hardware

Two wires are here, one is for sending data and other for receiving data. Devices connected with

serial should have two serial pins: RX and TX.

 Figure 5.5 Hardware Connection

Serial data can be transmitted in two ways

 Full duplex.

 Half duplex.

52

In full duplex communication both devices can receive and send simultaneously. Whereas in

Half-duplex communication serial devices sending and receiving take turns.

5.5.1 Hardware Implementation

At signal level popular hardware implementations of serial are TTL and RS232.

TTL serial signal of microcontroller voltages supply range is usually 0V to 3.3V or 5V.bit value 1

actually represent an idle line and bit value 0 represent a start bit or a data bit of value 0 or 0volt GND

signal.

Figure 5.6 5 volt TTL signal

When the TTL signals are flipped on its heads, in old communication the protocol is RS232.RS232

signals usually range between -13 to +13 volts. Low voltage (-5V, -13V) are a stop bit, data bit ,the

idle line whereas high voltages means a start bit or 0 value data bit.

Figure 5.7 13 volt TTL signal

In embedded circuits TTL is much easier to implement. But in long transmission lines, low voltage

levels are more susceptible to losses, there RS232 is suitable. More complex standard like RS-485 is

more suitable.

TTL serial device and RS232 bus can‟t be connected directly. Shifting of these signals is mandatory

and signals should match up for accurate serial communication.

UARTS are used to convert data on parallel bus to and from a serial interface.

5.6 UARTs (Universal Asynchronous Receiver Transmitter)

UART is used to create the serial packets and control physical hardware lines.

A universal asynchronous receiver/transmitter (UART) implements serial communication. UART

is electronic block between parallel and serial interfaces. At one end of UART is a bus of eight or

above data lines (plus some control pins) and on the other side is the two serial wires , RX and

TX.

https://cdn.sparkfun.com/assets/1/8/d/c/1/51142c09ce395f0e7e000002.png
https://cdn.sparkfun.com/assets/b/d/a/1/3/51142cacce395f877e000006.png

53

Figure 5.8 UART interface

Simplified UART interface. Parallel on one side, serial on the other side.

UART ICs are found commonly inside microcontrollers, they also exist as standalone ICs. Some have

none, some have one, and some have many UARTs .Datasheet will explore that the microcontroller

has UART or not. For example, the Arduino Uno which is based on ATmega328 has single UART

while the Arduino Mega which is built on an ATmega2560 has four UARTs.

 Serial data is both transmitted and received via UART.

UART is used for sending and receiving data. At transmitting side, a data packet is created,

synchronization and parity bits are appended and at TX line with precise timing and baud rate, packet

is sent.

At receiving end, the RX line has to sample according to expected baud rate, synchronization bits are

separated and data is extracted out.

Figure 5.9 UART internal block diagram

54

Advanced UARTs saves data in a buffer and can be used by the microcontroller for processing. These

buffers are in the form of first-in-first out (FIFO) basis and can be of few bits to thousands of bytes.

5.7 Software UARTs

Software serial is like bit banging process that is directly controlled by processor. For example

Arduino libraries are software serial. Software serial working is processor intensive but not very

precise as a UART but it works.

5.8 Common Pitfalls

Few mistakes an experienced engineer also can do. So, following things should be kept in mind while

working on serial and for making serial hardware connections.

5.8.1 TX-to-RX, RX-to-TX

Most commonly committed mistake is often people forget to cross the RX and TX lines between serial

devices.

Figure 5.10 Pro Mini design

5.8.2 Baud Rate matching

The language of serial communication is baud rate. To avoid missing or interpretation of data two

devices should speak at the same speed. If there is garbage data on receive line, then make it sure that

the baud rate is matched or not.

When baud rate of transmitted data is 9600 bps, but receiving data baud rate is 19200 bps. Baud rate

mismatch results in garbage data.

Figure 5.11 Mismatched data

https://cdn.sparkfun.com/assets/7/d/f/9/9/50d24be7ce395f1f6c000000.jpg
https://cdn.sparkfun.com/assets/c/e/2/d/a/50d247c5ce395fdc6b000000.png

55

5.8.3 Problem of Bus Contention

Bus contention is a problem which comes when more than one device try to transmit on single serial

line. Serial communication is actually designed in such a way that those just two devices communicate

at serial bus at a time.

As an example, if a GPS module is connected to Arduino, then its TX line with RX line of Arduino

board. But as TX pin of USB to serial converter is already connected to RX pin of the Arduino used to

program the Arduino to watch Serial Monitor.

When both the FTDI chip and GPS module trying to transmit on the same line at same time there odd

situation comes of contention.

The bus contention occurs when two transmitters send to single receivers.in that case neither of the

devices can send data. In worst situation transmit lines of both devices clogs and that situation is rare

and protection must be here to avoid that situation.

A single transmitting device can be connected with multiple receiving devices. For example, when an

lcd has to connect with Arduino then we connect Arduino TX line with LCD‟s module RX line.

Arduino‟s TX line is also connected with RX line of USB programmer‟s.in that scenario also there is

one device in taking control of transmission line.

When TX line is distributed its also dangerous from a firmware point of view, as it‟s not clear which

device achieving which transmission .LCD can get unknown data which can led it in an unknown

state.

https://cdn.sparkfun.com/assets/0/7/4/f/b/50d249a8ce395faa6f000000.png
file:///E:/MS THESIS all DATA/QURATULAIN THESIS FINAL/thesis qurat aug/THESIS REPORT/Serial Communication - learn.sparkfun.com_files/5114296cce395f8f7d000004.png

56

Chapter 6: EXPERIMENTS AND RESULTS

M0 core can be programmed in C language, so we need some tool to make hex file of the

project. In order to carry out our task we use Keil integrated development environment for

our project. In our program we are printing simple message as shown in the figure 6.1.

Figure 6.1 Keil Program

The message is simple Hello ** TEST PASSED **. The final file is saved as „image.hex‟

6.1 Simulation

In order to simulate our C code, we now need ISE navigator. Open ISE and select the FPGA as

shown in the figure 6.2

In file „cmsdk_ahb_rom‟ file give the path of „image.hex‟. as show, in the figure 6.3

57

Figure 6.2 FPGA settings

Figure 6.3: Path for image.hex file in cmsdk_ahb_rom.v

Also, add file „image.hex‟ in „cmsdk_fpga_rom‟ file as shown in the figure 6.4

58

Figure 6.4: Path for image.hex file in cmsdk_fpga_rom.v.

In order to make M0 core we need four BRAMs each of 8x2048 byte. Make four files in same

project directory. Save as "BRAM1.coe", "BRAM2.coe", "BRAM3.coe" and "BRAM4.coe". Add

files in the cmsdk_fpga_rom.v file as sown in the figure 6.5

Figure 6.5: Path for BRAM files in cmsdk_fpga_rom.v.

After that simulate the code and output is shown in the figure 6.6.

The simulation results are confirmed by matching first byte of „image.hex‟ file with

"BRAM1.coe" file. Both bytes should be same. We can check this by modifying first byte of

„image.hex‟ file and simulate the M0 core. After simulation both the bytes should be same.

59

Figure 6.6: Simulation of M0 core processor

6.2 Implementation

In order to implement M0 core, so open project „ARM_prj2_m0‟. Add „image.hex‟ file in

„cmsdk_ahb_rom‟ as shown in the figure 6.7

Figure 6.7: Path for image.hex file in cmsdk_ahb_rom.v.

60

Make all four BRAMs using IP core generator with specifications as shown in the figure 6.8

Figure 6.8: BRAM settings

Figure 6.9: 8x2048 size BRAM

Figure 6.10: BRAM file path

Press generate button to make BRAM.

61

For clock settings we use DCM IP core. Set Input clock frequency 50 MHz and set output clock

frequency. The settings should be as shown in the figure 6.11

Figure 6.11: DCM clock frequency settings

6.2.1 UART pulse counter

In order to show proper working of M0 core, we need to make a file of „uart_pulsecounter.v‟ file.

As it is already discussed that M0 core sends out data on UART. We can observe that data by

attaching serial port with our board and using any standard serial port GUI we can observe data

transmitted by M0. Here we are using LEDs for same purpose. In „uart_pulsecounter.v‟ file we

are counting 210 pulse transitions from 1 to 0. After that we are toggling a LED D13 on demo

board. UCF for same function is as shown in the figure 6.12

Figure 6.12: UCF of M0 core

Top level M0 core implementation is shown in figure 5.13

62

Figure 6.13: top level M0 core implementation

After code compilation and generation of file, we can download same file in FPGA and results as

sown in figure 6.14 at HyperTerminal.

Figure 6.14: M0 core implementation on FPGA and UART functionality

63

Chapter 7: EXPERIMENTAL OUTPUT RESULTS ON HARDWARE

This chapter, we evaluate the experiments done and their results on ISIM, Keil as well as

on hardware and at HyperTerminal attached with other computer (i.e serial

communication). The results show that the internal memory of embedded Mo soft-core is

accessed, data is processed and output data is achieved via internal embedded UART of

soft Mo core according to requirement.

7.1 Results

7.1.1 M0 core implementation on FPGA

Figure 7.1: Result data

64

Chapter 8: CONCLUSION & FUTURE WORKS

8.1 Conclusion

The achievement and conclusion of this work is that cortex Mo customized soft core is

implemented in a smart FPGA which is upward compatible with upper cores M1, M2 ...,also

which can be used as customized smart ASIC (Application Specific Integrated Circuit) for

various applications like coprocessor in WSN ,crypto, parallel processing and in communication .

ARM Cortex Mo soft-core is designed, synthesized, and coded with code memory of FPGA using

Advance Microcontroller Bus Architecture (AMBA Lite) and APB UART is functional

additionally. In Mo soft core UART (FPGA) is working via which serial communication is

possible. Error free serial data communication via customized soft core in FPGA is achieved.

Both hardware and software implementation in work and practical demonstration giving real

successful implementation of customized Mo core which can be further configured according to

requirement and application.

8.2 Future Work

In future works, the implemented cortex Mo core will be used for

 Encryption,

 Wireless sensor node and

 Security purpose.

For that purpose, in order to increase the processors capacity, other peripherals can be connected

to the AMBA bus.

 ZYNQ Linux operating system can be run over this processor that will make possible, a small

footprint design, to get Linux implementation in.

65

References

[1] ARM Ltd, “ARM DDI 0419C ARMv6-M Architecture Reference Manual”, September

2010.

[2] ARM Ltd, “ARM IHI 0033A AMBA 3 AHB-Lite Protocol V.1 Specification”, June

2006.

[3] Calix A Recado , Sankaran Rajesh "On the feasibility of an embedded machine learning

processor for intrusion detection," IEEE international conference on Big Data, 2016.

[4] Maas Martin, Love Eric, Stefanov Emil, Tiwari Mohit, Song Dawn “PHANTOM:

Practical Oblivious Computation in a Secure Processor”, university of California

Berkeley.

[5] Wang yi, Shilong Lu ”Design and implementation of a SOC based security coprocessor

and program protection mechanism for WSN”.

[6] ARM Ltd, “AT510-DC-80001-r0p0-00-rel0 ARM Cortex M0 Design Start Release

Note” August 2010.

[7] ARM Ltd, “ARM DDI 0432C Cortex M0 Revision r0p0 Technical Reference Manual”,

November 2009.

[8] ARM Ltd, “ARM DUI 0497A Cortex M0 Devices Generic User Guide”, October 2009.

[9] Xilinx, “DS312 Spartan-3E FPGA Family: Datasheet”, August 2009.

[10] Digilent, “Digilent Spartan 3E Starter Kit Reference Manual”, June 2008.

[11] Costan victor , Lebedev llia, and Davedas Srinivas , MIT CSAIL “Sanctum: Minimal

 Hardware Extension for Strong Software Isolation”.

[12] “Private Core,” http://www.privatecore.com/.

[2] J. Agat, “Transforming out Timing Leaks,” in POPL, 2000.

[13] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitigation of timing

channels,” in CCS, 2010.

[14] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating Timing Channels in

Compute Clouds,” in CCSW, 2010.

66

[15] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek, and

K. Asanovic, “Chisel: Constructing Hardware in a Scala Embedded Language,” in

 DAC, 2012.

[16] K.-M. Chung, Z. Liu, and R. Pass, “Statistically-secure oram with ˜O (log2 n) overhead,”

http://arxiv.org/abs/1307.3699, 2013.

[17] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D.Sutter, “Practical Mitigations for

Timing-Based-Channel Attacks on Modern x86 Processors,” in SP,2009.

[18] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: Deterministic Shared Memory

Multiprocessing,” in ASPLOS, 2009.

[19] C. W. Fletcher, M. v. Dijk, and S. Devadas, “A Secure Processor Architecture for

Encrypted Computation on Untrusted Programs,” in STC, 2012.

[20] C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova, and D. Wichs, “Optimizing oram

and using it efficiently for secure computation,” in PETS, 2013.

[21]. 1. Daemen and V. Rijmen, "AES proposal: Rijndael" (1999).

[22] http://www.chipcon.com/files/CC2431 Brochure.pdf,

2008-03-20.

[23]. http://www.jennic.com/files/support files/JN-DSJN5121-

1 v8.pdf, 2008-03-20

[24]. R.L. Rivest, "The RC5 encryption algorithm", in: Workshop on Fast Software Encryption

(1995) pp. 86-96.

[25]. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D.Tygar. "SPINS: Security Protocols for

Sensor Networks". In Mobile Computing and Networking 2001, Rome, Italy, 2001.

[26]. Karlof, N. Sastry, and D. Wagner. "TinySec: A Link Layer Security Architecture for

Wireless Sensor Networks". In ACM Con! on Embedded Networked Sensor Systems

(SenSys '04), November 2004.

67

[27]. Xiaoguang Niu, Yanmin Zhu, Li Cui, Lionel M. Ni, "FKM: A Fingerprint-based Key

Management Protocol for SoC-based Sensor Networks", in Wireless Communications and

Networking Conference, 2009. WCNC 2009. IEEE, 2009

[28]. X. Huang, Z. Zhao , L Cui. "EasiSOC: Towards Cheaper and Smaller". Mobile Ad-hoc

and Sensor Networks 2005(MSN'05). New York: Springer-Verlag, 2005. 229-238.

[29]. Shilong Lu, Xi Huang, Li Cui, Ze Zhao, Dong Li. "Design and Implementation of an

ASIC-based Sensor Device for WSN Applications". IEEE Transactions on Consumer

Electronics, 55(4): 1959-1967, November 2009.

[30]. Yi Wang, Shilong Lu, and Li Cui. "A Low Power Low BER Digital Base-band Design for

WSN SoC". Acta Electronica Sinica, 38(2A): 123-127, Feb. 2010

[31] O. Goldreich, “Towards a Theory of Software Protection and Simulation by Oblivious

RAMs,” in STOC, 1987.

rr[32] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on Oblivious

RAMs,” J. ACM, 1996.

[33] M. T. Goodrich and M. Mitzenmacher, “Privacy-Preserving Access of Outsourced Data

via Oblivious RAM Simulation,” in ICALP, 2011.

[34] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Privacy-preserving

Group Data Access via Stateless Oblivious RAM Simulation,” in SODA, 2012.

[35] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin, “OS-Sommelier: Memory-only Operating

System Fingerprinting in the Cloud,” in SoCC, 2012.

[36] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential Privacy Under Fire,” in

USENIX Security, 2011.

[37] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A.

J. Feldman, J. Appelbaum, and E. W. Felten, “Lest We Remember: Cold-boot Attacks on

Encryption Keys,” Commun. ACM, vol. 52, no. 5, 2009.

