“Implementation and Secure Extension of Mo Soft Core in FPGA.”

Author
Quratulain Abdul Ghafoor
Fall -MS2016 (CE) 00000171601

Supervisor

Dr. Farhan Hussain

DEPARTMENT OF COMPUTER ENGINEERING
COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD
April 2020

“Implementation and Secure Extension of Mo Soft Core in FPGA.”

Author

Quratulain Abdul Ghafoor
Fall 2016-MS (CE) 00000171601

In partial fulfillment of degree requirement

MS Computer Engineering

Supervisor of Thesis

Dr. Farhan Hussain

Signature of thesis supervisor:

COMPUTER ENGINEERING DEPARTMENT
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

Declaration

Its certified that research work whose title is “Implementation and secure extension of Mo soft
core in FPGA” is my own work. I haven’t presented that work anywhere for assessment; neither

| have taken material from other resources.

The contents that | have referenced from other resources are properly acknowledged.

o
o “43/;;(5! by
Student Signature
Quratulain Abdul Ghafoor

Fall 2016-MS (CE) 00000171601

Language Correctness Certificate

This thesis is thoroughly read by English expert and is free of grammatical, typing, syntax,
spelling mistakes and semantic. The thesis is in accord of the format provided by university.

5

Sehalopn, >

Student Signature
Quratulain Adul Ghafoor

Fall 2016-MS (CE) 00000171601

Supervisor Signature

Dr. Farhan Hussain

Copyright Statement

e The copyright on the thesis belongs to the author of thesis. Copies (by any means), in
whole or in part, may only be according to the instructions given to the students and
filed with the NUST, College of Electrical & Mechanical Engineering Library. Librarian
can provide the details. This page is must to be part of all copies which are made. Other
copies (by any means) cannot be made without the written permission of the author.

e The ownership of all intellectual property rights described in thesis belongs to NUST
College of Electrical & Mechanical Engineering, subject to any prior agreement, and
will not be available to third party without the written consent of the owner. College of
E & ME, prescribe the terms and conditions of said agreement.

e Additional information at which exploitation and disclosures may take place on the
conditions available at the NUST College Library of Electrical & Mechanical
Engineering, Rawalpindi.

Acknowledgement

All praise and glory to the Almighty God (most glorified, the highest) who blessed me the
courage, patience, knowledge and ability to carry out that work and persevere and carry it out
satisfactorily.

Without a doubt, he has given me the way and without HIS blessings, | cannot achieve anything.

I am obliged to my advisor, Dr. Farhan, for raising the spirit of my spirit and for his continued
support, motivation, dedication and valuable advice in my quest for knowledge. I am highly
thankful to Allah having a cooperative advisor and a kind mentor for my research.

With my advisor, | thank all my dissertation committee: Dr. Muhammad Usman Akram, Dr.
Arslan Shaukat of CEME and Fahad Alghazali, Muazzam shehzad, Dr. Asad of NESCOM for
their cooperation and cautious suggestions.

Finally, 1 express my special gratitude to my family, colleagues and to the people who have
encouraged and supported me during this period.

“Dedicated to those who care for mankind for sake of Allah.”

Abstract

In Electronics World processors are brains and can be implemented as soft core at FPGAs or
ASICs for specific applications.MO core developed by ARM because of its specifications and
speed is a widely used general purpose processor in industrial and military applications. Mo core
because of its upward compatibility, RISC architecture and utilizing the 12000 logic gates in its
small configuration makes it very feasible to be implemented for various tasks. Because of its low
power rating low its use in low power devices is very much appropriate. . We can utilize MO0 core
as a co-processor providing communication services, crypto graphical services, malware detection
services, wireless sensor nodes etc. ARM Cortex MO core is a propriety processor and has a few
limitations of its own. As a propriety core the details of its architectures are not published. Also
interfacing of the memory (RAM, ROM) and UART needs to be done to use it for a specific
application. In our work we comprehensively study the architecture of MO core. We thoroughly
investigated the Bus (AHB Lite) of MO core in order to interface it with the RAM and ROM. We
were able to successfully interface the Bus with the memories. Four Blocks of 8x2048 Bits RAMs
are designed. We also interfaced the Peripheral bus (APB) for UART. UART communication is
implemented. Our experiment demonstrated successful transmission of data. For our experiment
we used the Xilinx Spartan 3-E kit to port Cortex MO processor on FPGA. Xilinx FPGA
XC3S1600E with 33,000 logic gates are enough to port Cortex MO soft core. In order to visualize
results Digital Clock Manager (DCM) is used to scale down 50 MHz clock frequency to
5MHz.and practically readable data is comings at HyperTerminal with variable baud rate
according to requirement showing practical implementation of coprocessor communicating

successfully.

List of Abbreviations

UART
FPGA
BRAM
ROM
ABP
TTL
DCM
SRAM
WSN
NIC
ASIC
DSP

Universal Asynchronous Receiver Transmitter.
Field Programmable Gate Arrays.
Buffered Random Access Memory.
Read Only Memory.

Advanced Peripheral Bus.
Transistor Transistor Logic.

Digital Clock Manager.

Static Random Access Memory.

Wireless Sensor Node.

Network Interrupt Controller.

Advanced System Integrated Chip.
Digital Signal Processor.

Table of Content:

[DECIAFALION ...ttt ettt e b et sttt e b e b e b e sbe e et e e e e e reenheesaneeas 3

. Language Correctness CertifiCateoooiviiiiiiiiiie e e e e e e 4

1 O X < 3 1 - ot O TP P RO PRROPPTO 8
1% Table Of CONTENT:......co.oiieiii ettt sttt et e s b e st e s e s b e ebeennes 10
V. LiSt Of TABIES ...ttt e e st e st e e bee e sabe e e bt e e sareesbeeesareenn 14
Chapter 1: INTRODUCTIONciiieuiiiiiinniiiiinniiiisnssisiiessssiisssssssiessssssssssssssssssssssssssssssssnsssssssnsssssssnsses 15
1.1 AAVANTAEES OF FPGASeeii ettt ettt e ettt e e e et e e e et e e e e e bteeeeebtaeesesteeeeenbaaeeeanseneeseseaeesaseneesanses 15
1.1.4 ARM SEIIES Of PrOCESSON ...vviiiiiiiieeicciiiee ettt e ectte e eette e e e e ctte e e e et e e e e e beeeessbtaeeesbteeessbeneessnstaneesnes 16

1.2 Problem StAtEMENTc..ci ittt sttt st sae e saeeeare s 17
1.3 (0] o [Tt A1V LTI Yo o I AN 15 SRR 18
L4 CONEIIDULIONS ..eiiitie ettt ettt et e s e e bt e e s a bt e sttt e sabeesbteesabeesabaeesabeesabaeesbeesabeeesareenn 18
1.5 SErUCLUIE Of TRESHS ..ottt b e s ae e st e et e e s bt e s bt e saeesaeesabeeabeebeennes 18
Chapter 2: LITERATURE REVIEWouiiiiiiiiiiciee ettt e sttt e e et e s e tee e s ssaa e e s s nstaeassnraeesennsaeessnnsenas 19
2.1 Embedded Systems @nd FPGAS..........ccccuiii e ccteee e ettt e e ectee e e e ete e e e eetteeeeseataeeesassaeeessssaeeeensssseesasreeenan 19
2.2 Architecture of MICrOCONTIOIIEI:.........ooiiieeee ettt sttt sbe e saee s 19
2.3 FPGA and SOft COres Of PrOCESSOIS ...cciiuiiiiiiieiiieriee sttt ettt ettt e st e st e sbtesbee e sbeessbteessbeesbeeesareens 21
2.4 ARM Understanding Different TYPes Of PrOCESSONccuuiiiieciiieeecieeeeeciteeeecteee e eetee e e esare e e esraeeeesareeeean 22
2.5 ARM COMEX IMD.....eiiiieiieeieetee ettt ettt st st et e b e e b e s bt e s st e st e et e e b e e beesmeesaeesaneenneeneesneesane e 26
P R Y Yo LV T o =Y - Y PRSP 29
D A Y o] o] [ToF: 1 o Yo F-3 P 30
Chapter 3: Hardware and Software Detailsoooviiiiiiiiiiiiiceeec et 31
3.1 FPGA Spartan-3E as Proto BOArdc.ccciiiiiiii ettt e e e etttrre e e e e e e et e e e e e e e e e nnbeaneeaeeeeanas 31
3.2 HardWare OVEIVIEW.ceiiuiieiiieeieeeeitee sttt site e s et e st e st e s ee e sab e s bt e e s st e e sbeeesmeeesabeesabeeesabeesneeesneeesareeesnneesn 32
3.2.1 SIIAE SWILCNES ...ttt b e b e s bt sat e et e e teesbeesbeesaeeeas 32

B3 ClOCK ettt ettt h e bt ea et et e bt e bt e ehe e ea bt e bt e b e e bt e beeehe e eaeeeate e beenbeesheenaeenas 35
3.4 FPGA CoNnfiguration OPtiONSciiccuiiiiiiiiieicitie e eciitee e st e e st e e e e ete e e e s satr e e e ssstaeeesansseeesnssseeesansseeesssseeenns 36
IR Y=L =1 I oL SN 37
RSN o G N o1 o =4 = Y0 4 0 110 V=N 38
Chapter 4: Proposed MethodolOgyciiieeeiiiiimeiiiiieciireei e renesessrenesessrenesssssenesssssenesssssenanas 42
|V 0 I T o Yol STy N 43
B.2 SIAVE ..t st et b bbbt e et Rt e bt e bt e s he e sae e st b e e b e e nreenreesaee et s 43
B.3 SIAVE SEIBCT. .. ettt sttt et e bt s b e san e s bt bt e b e b e e saeeeaeeene s 43

o T [Ty =Tl Yo [T T~ SRR 44

A5 APB BUS ...ttt ettt ettt sttt ettt h e b e sttt et e bt b et e R et e a et e Rt e bt e e b e e eh e e eaee e bt e b e e beeabeeeneeenreennean 44
A8 ROM ..ttt ettt b e b e s h e st e bt et e bt e b e s bt e S a et e Rt e bt e eh e e ehe e eae e et e e b e e beenbeeaheeeaeeeaneen 44
L GRS 2V AN 1Y N 45
4.7 ABP SIQVE SEIECT ...ttt ettt st st e b e b e s saee et s 45
Y 2T N1 1= OO U TP T PO PPPPT ORI 46
L AN = o U A 3 N 46
Chapter 5: UART COMMUNICAtIONc..uiiiiiiiiiccitee ettt e e se e e e ste e e e et te e e s e ate e e senntaeesennraeeeennreeeeennsenas 48
o R Y [o] o Yol T o T PP PPPPPPRPPPRPRY 48
5.2 SerTal VS PArall@l ...cc..eeeeieeeee ettt s he e sttt sreesane e 48
O XV ol o e T Lo T LY T o - | U SPPRPt 49

DY 0Tl o T oY o Lo YU Y=Y o -1 RPN 49

5.5 WiriNg @and HardWare.......coo ettt sttt et e e st ee e e e e e e e e snbae e e esabaeessnnbeeeeenreeas 51
5.6 UARTS (Universal Asynchronous Receiver TranSmitter)ccocoeveeveveneeceseeeece e 52
5.8 COMMON PItfallscoeiiiiiee ettt b e sttt ete e be e beesaee e 54
Chapter 6: EXPERIMENTS AND RESULTSccooiiiiiiiiieeiieecieeesteesieeeteessteessteeesaeeesveesssseesnseesnssessnseesnnnes 56
6.1 SIMUIAEION <.ttt ettt e et e s bt e s bt e e sat e e s bt e e sabeesabeesabbeesabeeebbeessbeesseeesareenn 56
o3 A Ve Y o] (=T 0 g 1T o = Lo o ISP 59
Chapter 7: EXPERIMENTAL OUTPUT RESULTS ON HARDWAREccccoeniiniiniiniinieeeeieeneee e 63
7L RESUIES .ttt ettt sttt e h e e h e st et e b e bt e R e e s re e saee et e e r e e reenreenane e 63
Chapter 8: CONCLUSION and FUTURE WORKSuuiiiiiiieeciiee et e eetee e e tte e e e e ate e e e e nree e e e araea s enraeas 64
8.1 CONCIUSTON «.eeieit et b ettt ettt b ettt b e 64
8.2 FULUIE WOTK .ttt ettt 64
REFEIENCESottt ettt sttt e b e e bt e s bt e ehe e s ateea b e et e e abeesbeesaeesabesabeeabeebeennes 65

11

List of figures

Figure 1-1 ARM Microcontroller COTeS.ouiiniiriitit it 16
Figure 2. 1 Basic microcontrollers Architecture.............o.oouviiiiiiini i 19
Figure 2.2 Trade-off in processor deSi@NS.o.vuuineintitiitit et teie et e eeaeas 22
Figure 2. 3 ARM processor families OVerVIEW..........vvuiiiiiiiiii it e et e 23
Figure2.4 Instruction table of M family....... ... 25

Figure 2.5 Cortex M series processor compatibility..................cooiiiiiiiiiiiiii e 26

Figure2.6 Cortex MO simplified block diagram.............ccoooiiiiiiiiiiiii e 27

Figure2.7 CorteX MO SIMPIE SYSIEMS. ... vt 28
Figure3.1: Xilinx Spartan FPGA BOardcooviiiiiii e, 31
Figure 3.2: Four Slide SWITCNES.ot e, 32
Figure 3.3: UCF for Slide SWItChES.o 32
Figure 3-4: Rotary push buttons and four push buttons...................coco i, 32
Figure 3.5: Push buttons must have internal pull down resistor in FPGA....................oouil 33
Figure 3.6: UCF for Push-Button SWItChes. ..o 33
Figure 3.7: Pull up resistor for push button switch in FPGA............ooiiiiii, 33
Figure 3.8: UCF file for Rotary Push-Button Switch..................cooiiiiiiii 34
Figure 3.9: Eight surface moUnNt LEDS....... ... 34
Figure 3.10: UCFs for Eight Discrete LEDS..........ccouiiiiiiii e 34
Figure 3.11: Available CIOCK. ..o 35
Figure 3.12: UCF fOr CIOCK SOUICES.ouetetitetieee e e 35
Figure 3.13: Configuration settings of Spartan-3E Starter Kit for FPGA..................ccoevn 36
Figure 3.14: Detailed Configuration Options............couivuiiiiiiiitiiiiii i, 37
Figure 3.15: RS-232 Serial POItS.ouvtitiiit et 37
Figure 3.16: UCF for DCE RS-232 Serial POtooiiiiiiii e, 38
Figure 3.17: IMPACT OPEN UP OPLION.eutintiititit ittt et 38
Figure 3.18: New configuration file for FPGA........ ..., 38
Figure 3.19: iMPACT Programming Succeededcoooiiiiiiiiiiiiiiiiiiaeeee e, 39
Figure 3.20: Set Properties for Bit stream Generator..............oovviveineiiiiiiiineee e 39
Figure 3.21: PROM, ACE, or JTAG File generation...............cooeeiuiiiiiiiiiiiiiiniiiienieannnns 40
Figure 3.22: Click PROM File Formatter........ ..ot 40
Figure 3.23: Selection of XCF04S Platform Flash PROM.............coooiiiiiiiiiiiiiieae 40
Figure 3.24: PROM File Formatter Succeeded.............cooiiiiiiiiiiiiiiiiic 41

Figure 4.1 Block diagram of MO........c.oiiiiiii e et e 42

Figure 4.2: >cmsdk ahb default slave.v’ model................cooiii i, 43
Figure 4.3: >cmsdk _ahb slave mux.v’ model ... 43
Figure 4.4 cmsdk ahb rommodel.............ooii i 44
Figure 4.5 cmsdk ahb to sram.vmodel...............ooiiiiii 45
Figure 4.6 cmsdk apb slave mux.vmodule...............ooiiiiiii 45
Figure 4.7 Block diagram of timer............ooouiiiiiii e 46
Figure 4.8 Block diagram of ABP UART ..., 46
Figure 5.1 parallel communiCation.ouuiiieiiit it eeeaeeess 47
Figure 5.2 serial commMUNICAtION.iviiit ittt e e aeeaes 47
Figure 5.3 data framing.ouiiinii e 49
Figure 5.4 data packet for serial protoCol.............cooiiiiiiii e 50
Figure 5.5 Hardware CONNECHION.ottt ittt e e e e 51
Figure 5.6 S5volt TTL Signal........ouiniiii e e 51
Figure 5.7 13 volt TTL SigNal.......ouiiiieiti e 52
FIgUre 5.8 UART IO ACE. ... uititii ettt 52
Figure 5.9 UART internal block diagram.............coooiiiiiiiiiii e 53
Figure 5.10 Pro mini deSi@i.uvinintiriit et et 54
Figure 5.11 Mismatched data............coouiniiiiii e 54
Figure 6.1 Keil Program...........o.ouiiininiii e e, 56
FIQUIE 6.2 FPGA SEUNES. ... tttetetet ettt ettt ettt e e e e e e e taeaeaes 57
Figure 6.3: Path for image.hex file in cmsdk _ahb rom.voooiiiiiiiii, 57
Figure 6.4: Path for image.hex file in cmsdk_fpga_rom.v. ... 58
Figure 6.5: Path for BRAM files in cmsdk _fpga rom.v.............ccooiiiiiiiiiiiiiiin . 58
Figure 6.6: Simulation 0f MO COTE PrOCESSOT.uuuuuet ettt et ettt eeeenenes 59
Figure 6.7: Path for image.hex file in cmsdk_ahb_rom.v..................ooo. 59

Figure 6.8: BRAM SEINGS.ottt e 60
Figure 6.9: 8X2048 SIZE BRAM.......uiii e 60
Figure 6.10: BRAM file path....... ... 60
Figure 6.11: DCM clock frequenCy SEttingS..........oueeniirit it 61
FIQUIE 6.12: UCF OFf M0 COTE ...vnteitinit ettt e et e et e e, 61
Figure 6.13: top level MO core implementation..............ouvuiiereriiireieeeieeeeeeaeenens 62
Figure 6.14: MO core implementation on FPGA...............ooiiiiiiii e, 62
Figure 7.0 RESUIT Aata.. ... e e e e e iea e 63

List of Tables

Table 2.1: Typical components in MICrOCONTIONIETS..........ooiiiiiiee e 21
Table 3.1 Clocks, Global buffers and DCM..........cccoiiiiiiiiieii s e eeeaens .36

14

Chapter 1: INTRODUCTION

Motivation

Susceptible attacks and hacking of processor architectures, theft of cryptographic keys led this
research work to start. For that an appropriate, low power, high speed, efficient and cost effective
solution is investigated for architectural design. Fast speed processor core in FPGA researched
and investigated to be the brilliant idea because of its flexibility, design modification and

customization properties.

In the age of technology, to be competitive, the product must have dynamic and unexpected
changes. In this work, field programmable gate matrices (FPGA), in the age of technology, are
enough to show the dynamic and unexpected changes of the product adapted to meet these
requirements. They are economical, adaptable, powerful and economical and can be configured

in a hardware using HDL language.

Traditionally, the designer can perform has following three options to perform hardware control

platforms:

e DSP (Digital signal processors).
e ASIC (Application specific integrated circuits).
e FPGA (Field programmable Gate arrays).

ASICs provide optimal performance because they are designed to meet the requirements of the
application. However, the budgets for ASIC-based solutions are maximized, since production
machines is usually relative small due to the small number units compared to the products it
produces. On the other hand, DSP-based solutions are economical, but their processing speed is

not sufficient due to software execution.
1.1 Advantages of FPGAs

The development of FPGA technology has grown in recent years in terms of usable resources,
processing speed, number of access points, retail prices and energy consumption. Advanced
FPGAs are therefore a reliable alternative to common microcontrollers and ASICs for
applications. Recent FPGA-based systems also include many advantages of DSP and ASIC. That
is, high flexibility, reuse capacity, rapid development cycles, moderate costs and easy updating
(due to the use of the abstract hardware description language (HDL)), and feature expansion

15

(provided FPGA resources are not depleted) in addition, current FPGAs can be integrated as
software processors. Therefore, an FPGA can have typical processor capabilities.

1.1.1 FPGAs as ARM microprocessors:

Primary use of an FPGA is for computationally intensive, parallel processing tasks and high-
speed, however the ARM microprocessor is used mainly due to its versatility many manufacturer
used it as the core of their applications i.e ZYNQ family of devices. ARM because of their wide
use as a processor variations of operating systems are available.

1.1.2 Embedded processors on FPGA soft-core vs hardcore

In integrated systems, field programmable gate array (FPGA) is a very effective solution due to
their ability to reconfigure, scale and be low cost. Due to the configurable logical capability of the
FPGA, designers have been forced to integrate software processors into the FPGA for use in
various peripherals. To this end, many software and hardware cores have been developed for
different software and hardware.

1.1.3 Linux soft cores

The cores of the arm processor are called cortex. The Cortex-M FPGA solutions provided by
Altera (soft cores of M1 is provided) also Actel provide the same package, while the Cortex-M3 is
in available as IC package. Xilinx has provided no practical solution to date. ARM has released a
low-cost and low-cost solution of the MO processor that can be programmed in an FPGA or used
as ASIC applications. XILINX does not provide a soft MB core.

1.1.4 ARM series of processor

The Cortex series of processors as shown in Figure 1, includes cores of economical
microcontroller solutions and state of the art processors which are capable of handling huge tasks
and advanced operating systems. Other processors of the same family are ARM7 series, ARM9
series and ARM11 series. The specialized SecurCore ™ series is also primarily intended for

security as well as cryptography applications.

16

N Classic Embedded Application:
| gl ARM Processors GOrLex Processors. (OTLEX PFOCESSOrs,

£ (SOTLEX=AY,
g
2 GOrtex-A8
2 s
g \SOTLEXEAAD.
E ARM11 Cortex-R4!
o
3 Cortex-t14
ARMY Cortex:M3
Cortex-M1
ARM7 Cortex-M0.
2 —_—N

Figure 1-1 ARM Microcontroller Cores

1.1.5 Advantages of ARM processor family:
ARM cortex processors mainly used for high performance applications with real time and
embedded operating systems. These processors are low cost, low power, fixed latency interrupt
handling processors. Cortex Mo is alternative for 8 bit microcontrollers as they have high
processing capacity.
1.1.6 Motivation

In the field of embedded systems, a hardware which can be configured and changed even
after installation and deployment is much needed to cope with the ever increasing and changing
demand of market. The motivation behind this thesis is to develop indigenous hardware platform
for various industrial and military configurable systems and devices with low power, high

interrupt latency, good efficiency and low cost.

This design or platform can be used as 10T, Encryption controller, intrusion detection

controller and as communication control (for implementing various communication protocols).

The most attractive feature of this platform is its speed, low cost and run time

configuration feature.
1.2 Problem Statement

To develop an indigenous Mo core based on FPGA, hardware configurable solution for
various communications, industrial and military applications with all features of ARM

processor in form of soft-core of ARM family.

17

1.3 Objectives and Aims

The main goals of the investigation are the following:
« It can be implemented as indigenous 10Ts (Internet of Things)®.
« It can also be used as parallel intrusion detection processor like PHANTOM?Z,
« Can be used as platform for computer vision applications®.
« Can be used to make FPGA based multiprocessor systems™
» Secure FPGA soft core processors for symmetric key cryptography.5

» As coprocessor for specific need in various applications.

1.4 Contributions

» Comparison of working of soft-core and hardcore ARM processors
implementations.
» Selection of FPGA instead of ASIC and DSP processors.

* FPGA Spartan 3 board all functionalities and features.

1.5 Structure of the Thesis

This work is structured as under:

Chapter 2: States literature review of related work.

Chapter 3: Give details about the Hardware used in this thesis.

Chapter 4: Consists of the proposed methodology in detail. It includes: coding, system
configuration, simulations, results and analysis.

Chapter 5: This chapter consists of all the details, theory and implementation of UART
communication.

Chapter 6: Closes the thesis and reveals the future prospect of this study.

Chapter 7: Experiments and results are discussed in detail with all desired figures and
tables.

Chapter 8: Closes the thesis and reveals the future prospect of study.

18

Chapter 2: LITERATURE REVIEW

2.1 Embedded Systems and FPGAs

In embedded system industry FPGAs use is very crucial and vital. FPGA offers possibility

of a wide range of electronic gates and IC to be incorporated.

Processors main use in electronic like cell phones, computers, and television, machines
used for washing purposes and in various cards. And even in simple devices contain
processor in them like remote control of your radio, which is actually fabricated in an IC
called microcontroller .In modern microcontrollers, memory system and other peripherals

are also incorporated.

2.2 Architecture of Microcontroller:

Typical elements of a microcontroller are as under mentioned

L Qysta RTC ":— \]
Oscillator(s) = 1T
Processor — L w c::)
Voltage Manufacturing Power
3 |_regulator Test support Management ‘
B iy T
% Main System Bus infrastructure [J System ‘T -
< ,L { P = ;— 4 = Control “{
Flash e
i [.]
el SRAM BootROM | | Bridge | ['Watchdog Vj || o ()
Timer | /
System analog
components
| Peripheral Bus Infrastructure |
«] /L < L i B \[L < <. ,L Digital Peripherals
UART 6Pl0 P e s DAC o
Signal Peripherals
ﬂ @ II J:I II II Digital logic
/0 Pads
ﬁ ﬁ 3 ﬁ ﬁ ﬁ Memories
Figure 2. 1 Basic microcontrollers Architecture
Items Descriptions

Read Only memory (ROM) | It is a nonvolatile memory used for storage of program.

19

Flash

Flash is a ROM that can be reprogrammed several times, typically
used for storing program codes.

Static Random Access
memory (SRAM)

Used for data storage.it is a form of volatile memory.

Phase Lock Loop (PLL)

Its primary used for generation of variable clock frequency from a
clock (reference).

Real Time Clock (RTC)

It is simply a low power timer to calculate seconds and works with

a low power oscillator.

General purpose
Input/output (GPIO)

It is a sub module with parallel data interfacing and used for
controlling external modules and to read back the external signal
status.

Universal Asynchronous
Receiver and Transmitter
(UART)

It’s a sub module used to cater serial transfer of data to external

interface.

Inter Integrated Circuit
(IC)

It is an interface used for serial data transfer; its data transfer rate is

higher than serial.

Serial Peripheral Interface
(SPI)

It’s commonly used for serial communication with other off chip

deices.

Inter IC sound (1°S)

It’s commonly used for serial communication for audio signal.

Pulse Width Modulator
(PWM)

It is a module to output configurable square signal of flexible time

duration.

Analog to Digital
Convertor (ADC)

Its primary purpose is to transform analog signal to digital format.

Digital to analog convertor
(DAC)

Its primary function is to convert digital signal form to analog
signals.

NBatch Dog Timer

It’s a programmable time device to ensure that processor is running
as program. In enable state, the timer should be updated by the
programmer after certain time interval. When the program is
crashed that timer gets expired and on the basis of this critical

system interrupt or system reset is triggered.

Table 2.1: Typical components in microcontrollers

20

2.3 FPGA and soft cores of Processors

FPGA facilitated the incorporation of soft processor cores. Processors as soft core can be
considered equivalent to "computer on a chip™ or microcontroller. Core conglomerates a
Central processing Unit, memory and peripherals on a single chip. Custom interfaces can

also be accessed beyond the real standard integrated FPGA of integrated chip.

Many types of microcontrollers are available with many types of processors, peripherals
and memory sizes in them which can be marketed in various packages in market.
Processors are used in various applications so that using software system can be

controlled and various features can be developed.

Cortex M0+ processors and ARM cortex M0 and mainly used as SOCs, microcontrollers,
ASIC and ASSPs. And sometimes used in many subsystems.

Available reduced instructions set computer (RISC) architectures in market are:

1. ALTERA launched CPUs like NIOS and NIOS II.

2. Gaisler Research launched CPU like LEON2 and LEONS.

Microcontroller systems are now becoming increasingly advanced and demanded and can
achieve greater performance to fulfill the requirements of more suitable functions and operations.
Sometimes, they are costly; therefore, microcontroller systems are determined as designs of a
chip only detected in high-performance 32-bit processors, which dominate the current market.
Variety of peripheral are evolved after requirement rose from software development and pressure

of costly standardization.

Industry designed ARM M series of processors to meet above challenges, now over 200
companies are producing these chips from standard core to meet all applications like sensor

nodes to radio communication for 10Ts.

With the access of microcontrollers to more and more people, the software will be available for
you to see. Real-time operating systems (RTOS) have quickly become a recommended industry
exercise and their use gaining importance for software engineering. The combination of these
components in the industry presented a problem for those who were developers, who were in
charge of the industry to reduce system costs and marketing success. Therefore, the architectures
of Cortex-M processors coupled with CMSIS standard is basis of hardware and software

standard.

21

2.3.1 Applications of soft-core processors:

Soft-core processors have many applications:

1. As Embedded machine learning processor for intrusion detection [5].

2. As a secure processor called PHANTOM in which practical oblivious computation is
performed [6].

3. Design and development of a security coprocessor based on a chip system (SOC) and a
program protection mechanism for wireless sensor nodes (WSN).[7]

2.4 ARM Understanding Different Types of Processor

Industry has designed many processors for various applications. ARM also designed
different processor series for different applications. For server, a processor with high data rate is
required. For battery applications, performance can be compromised in order to achieve low
power. For high performance, processor needs to have more transistors as this is rule of physics.

As frequency increases so as the power dissipation by the processor.

Cost
Features
Computing
Sefvers

Performance

Smart

Pl as

Microcontrellers

Power

Figure 2. 2 Trade-off in processor designs

Increasing the size of silicon results in increases in production cost (Figure 2.2). Hence different
processor have been designed for different applications. Also, chip designer’s needs to select
suitable processor for their application. Luckily, many vendors provide different processors for
different applications. ARM also provides processors as per designer need.

2.4.1 Overview of the ARM Processor Families
ARM has designed alot processors for several applications as shown in the Figure 2.3. Let see

what ARM has to offer for designers.

ARM designed the processor since long. Over 20 years of their experience ARM has provided 32
Bits processors but recently they have designed processor for mixed architecture of 32 Bits and
64 Bits.

22

ARMT processor is the first series of processors marketed for the designers. It is high efficiency
and high code density allows the designers to use state of the art operating system. They are used
frequently in next generation mobile phones. ARM after great response from designers continue
design new series like ARM9/9E and ARM11 family of processor.

Cortex-A72
High-end
ARM Cortex Application
Performance, processors Cortex-A57 processors
functionality
Cortex-A17
Cortex-A15 Cortex-A12
Cortexh? Cortex-A53
Cortex-A8
orex Cortex-A7
Cortex-A5
7 High performance
ot ol Real-time systems
ARM11 Cortex-R5
series
Cortex-R4
OConex-M7
ARMS9E OCOnex-M4
series Cortex-M3 "
() OC S — Microcontroller
ARM7TDMI ortex- applications
0 OCortex-MO
Cortex-M1
2003 2005 2009 2012 Future g

Figure 2. 3 ARM processor families Overview

2.4.1.1 Cortex-A series processors:

Some application requires high performance so that they support advance operating system. Such
processors have longer processing channels and can operate at high clock frequency. (1 GHz or
greater). For functionality MMU (Memory management unit) supports virtual memory
addressing. These are used in cell phones, mobile computing and energy efficient processor. For

fast response ARM has designed R series of processor.

2.4.1.2 Cortex-R series processors:
For fast response Cortex-R series is launched. Their clock frequency is less than A series
(between 500 MHz to 1GHz). They have tightly coupled memories to improve response time.

Some are provided with additional features like ECC (Error correction code) for reliability.

23

Their application includes disk drive controllers, wireless controllers/ modems, automotive
controllers and in industrial controllers. They consume a lot of power and have complex

architecture. For integrated products ARM launched another M series of processor.

2.4.1.3 Cortex-M series Processors:

M series is used for application where less processing is required at the cost of low power. Their
pipeline is short (2 stage for MO and 3 stage for M3, M4), however, M7 has pipeline of 6 steps
because of greater performance requirements; however, it is much smaller than pipeline of high
end application processors. Due to tube optimization and power consumption in the application,
the maximum clock rates of them are slower than those of the R and A series processors.

However, for low processing application this is not a issue.

Cortex-M series processors can handle very fast interrupts response. To achieve this goal they are
equipped with special module called nested vector interrupt controller (NVIC). This module has
very handy features of interrupt handling. They are easy in use and programmed in C language.
Because of features like low power, high performance and user friendly Cortex-M series
processors in sensors, chips used for mixed-signal ASIC / ASSP, and are even use as a controller

in complex use processor / SOC product subsystems.

Instruction set is compared in figure 2.4, MO, MO+and M1 support small instruction set (56
instructions). Most are 16 Bits as they provide effiecient code density. MO and MO0+ instructions
are simple in nature and can perform complex task easily. For state of the art operating system
M3 processor is used as it has 32 bit of instruction support and can support following:

e More addressing modes of memory

e Inthe 32-bit instructions Larger immediate data

e Conditional branch ranges and longer branch

e Additional branch instructions

e Hardware divide instructions

e Multiply accumulate instructions (MAC)

e Processing instructions bit view

e Adjustment instructions and saturation.
M3 can handle complex data quickly. With same code size as MO and MO+ because it uses same

instructions for same task. 32 bit instructions can do same task efficiency then 16 bit instructions.

24

For DSP applications that involves filtering and signal transformation. M3 also equipped with

SIMD (Single Instruction multiple data). Data path of processor is also reduce to accommodate

that.

[

wninnn |

][
wvemre | [wainmm

] () (
1 [wanmc) [wammy

]

Cortex-M7 FPU
[single and doubile
precision floating point)

Cortex-WE FFUT

(e J[v J[vew [vowe J[vor J(vom J[wew J [_wow][wen) EEEEE
T | ST | ST ST | ST | ST | GRS | T | ST | T
T | S | S | S | S | S | G | S | S | o
[omwoo | [oaco | [oeooae)| osooe | [sepoas | [seope | uspbpie | [uapos] [uWapoae] [uHeoos]w
[amsue | [osue | [osuese J[asues | [sswmis | [ssms |[[wsoms | [wsues | [umsueas | [umsues |
[aec][w0][aor [wwe][am [) [aIc i { SJ.::f“ }[l sH::De]]E Z:t: }
C=JC= =)= Ilm)= =) o o o
EOE) = I e JC o JC o J o)5)|) o) Come
Com) Cme) [Cow) e J e (o) Com | s =
o | S | S | o | o | S | [;Jm, le=la— 5
C I I D JCme L I ™ | (oo (o) (o
e e e e s e | e
r[' mor [euss][ror '1[' ore | [oen [wmow [mar] [omoe) [e) (wa
me][mev [reis][mewsw][o=] [e [@A] [swan]
(o)) L= J (o) lom)|C == J(e JL = L =]| —ew) we) (e)
= = I wm = I == I = | = o
(. —— ————— T T e e
(o) (=) (=) (20 =) ()| C =) Lo) Lo) o | o) o) o)
B E &)))|) (e) (o D) Comn)| o o) e
2 G2 § | T N T | | O O O e NPT
() (roe] [mon] (e) (oo) (oo)| (_smmoor) (o) [wowr) (= | —mm o) (e)
sac ELE N ST SN TN || SR S Y ST [wmesae | [swramas | [swewa |
B D E|C=I =) =D)| e) e
@@ Coru{a:kl\:&"g&;fml [1rr]) [w=e J [] e [e) [e]
15-bit instructions 32-bit instructions Cortex-M3 [ARNwWT-M) Cortex-M4 (ARMyTE-M)

Figure 2.4 Instruction table of M family

2.4.1.4 Portability Software of Cortex®-M Processors:

MO, MO+ and M1 series processor are based on ARMv6. M3, M4 and M7 based on ARMv7

architecture as show in the figure 2.5 for instruction set support.

25

FPGA optimized

Cortex-M1 Upward Upward
compatible compatible
FRGA ASIC Upward
prototyping miaration compatible Cortex-M3 Cortex-M4 Cortex-M7
Easy Easy
software software
Cortex-MO+ porting porting
Cortex-MO
High performance, feature High performance, low power Excellent peformance, ful
rich and ultra low power microcontrollers with DSP feature microcontrollers with
Ultra low power and microcontrollers capability and single DSP capability and single/
low cost precision floating paint double precision floating point
microcontrollers,
mixed signal SoC
ARMvE-M ARMT-M ARMTE-M ARMyTE-M
Architecture Architecture Architecture Architecture

Figure 2.5 Cortex M series processor compatibility

2.5 ARM Cortex MO

It is 32 Bit processor; it means that internal registers banks, data path and bus interfaced are all 32
Bits. It has single bus interface means its architecture is Von Neumann type. It has three stage
pipeline i.e. (Fetch, decode and execute). Most of the instructions are 16 bit, however only few
are 32 bits. It can support optional 32x32 bit multiplier. Address supports 4GB of memory
interfacing. MO bus interface is based on AHB-Lite protocol that can support 8, 16 and 32 bit
data transfer. Protocol is pipelined and can support high operating frequency and peripheral can
be connecting AHB-Lite with APB Bus Bridge. MO supports 32 interrupts trough Nested Vector
interrupt controller (NVIC). It supports Two sleep modes (normal sleep and deep sleep) are used

for power saving.

2.5.1 Block Diagram:

Block diagram MO is shown as figure 2.6

MO contains register for data storage, ALU and control logic. Three stages of pipeline for fetch
decode and execute stage. Banks are of 32 bits. Some are special usage like PC while others are

used as general purpose.

NVIC can handle up to 32 interrupts with functionality to compare priority between interrupts
request and current interrupt priority level. In case of a interrupt, NVIC communicate with the

processor to execute interrupt correctly.

26

There are 32 bits AHB-Lite bus interface, processor core, internal bus system, and data path.

AHB-Lite bus

Power maragement interace
Wakeup JTAG /
Interrupt Serial-Wire Connection

Controller Debug * ™ o debugger
(WIC) Interface

B T

Mested

Interrupt
raquests and
NM

Vector
Interrupt
Controller
(NVIC)

T I o Ul

Internal Bus System

i

|

Pracessor Debug I
core subsystem |

i

YyYyYvyy lll’\

I I
Processor AHB LITE
System bus nterfaca
(Inl‘edg;;i;mn Cortex-M0 unit
¥ Processor -\,—- Bus Interfece
L

Memory and
Perpherals

Figure 2.6 Cortex MO simplified block diagram

2.5.2 System overview:
MO processor inherently does not have any memory and peripherals. However, designers needs

them for their design, so MO processors based IC have different addressing range, interrupts and

memories. Normally MO have following peripherals:

e Program code storage use ROM (Read only memory). e.g. flash memory
e SRAM (Static RAM) for data read write.

e Bus interfacing for various memories and processor joining.

MO processor can be look like as shown in the Figure 2.7

27

Interrupts
—{M]—D- Processor o)
Digital logic
I System bus (AHB Lite) Memoaories
lash High Speed Bus Digital Peripherals
Boot ROM Flas SRAM Peripherals Bridge .
Memory (e.g. GPIO) Analogue / Mixed
A Signal Peripherals
IRQs Peripheral bus (APB)
| | | | |
UART SPI Timers DAC ADC Other
peripherals
D —) A T
IRQs y y L] y v
[I/O pads)

Figure 2.7 Cortex MO simple systems
MO based design might have bus partition into two parts:

e RAM, ROM, Flash memory, SRAM, few other peripherals connected by the bus and a
bus bridge.
e Peripherals attached by the help of peripheral bus, might have different operation

frequency.
APB is connected with AHB-L.ite bus through Bus Bridge. APB bus use is as follows:

e Low cost solution as APB bus is non-pipelined and is simpler to implement than
AHB-Lite bus.

e Makes possible to interface others sub modules at different frequency of operations
than main bus.

e Where large combinational blocks are required for logic implementation, they are

attached with APB bus to avoid bottle neck for high operating frequency.

Also, interrupts, GPIO (General Purpose Input/Output) modules can be handled easily
through APB bus.

2.5.3 ARMV6-M Architecture
MO cores are based on ARMv6-M Architecture. This refers to following two areas:

28

* ISA Model also called programmers model (software point of watching) and debug
methodology (what debugger sees).
* Microarchitecture: An implementation detail like signal interfacing, execution sequence,

pipelines etc. it is design specific. Like MO has three stage of pipeline.

2.6 MO0 advantages:

2.6.1 Low Power and Energy Efficiency
MO is very energy efficient and consumes 12.5 uW/MHz with size of 90 nm. This is low power
for 32 bit processor. ARM achieves it with less gate High efficiency count and Low power and

through logical cell enhancement.

2.6.1.1 Low gate count

Low gate count is achieved through careful design techniques at each stage. Every part was
developed very carefully and helps in minimizing gate count to 12000 only. This is lower than
even 16 bit processor keeping the performance almost double.

2.6.1.2 High efficiency

MO has many low power features to use in battery powered applications. Two modes sleep and
deep sleep are available. Sleep mode is invoked using instructions like WFE and WFI or sleep on
exit. To save further power debug system can be turned off.

2.6.1.3 Logic Cell Enhancements

Ultra Low Leakage logical cell library developed by ARM support special state retention cells

that holds information in case of system power failure.

2.6.1.4 High density of code

For 16 bit instructions MO has very high density of code. Hence application can be
accommodated into small memory.

2.6.1.5 Low interrupt latency

MO can handle interrupt in 16 clock cycles. This involves stacking of registers in stack, so that

ISR can work without any software overhead.

NVIC can handle interrupt prioritization and ISR starting address so that exact IRQ can be
serviced. Interrupt response is much lower than 8 or 16 bit system when supported by good

programing practices.

29

2.6.1.6 User friendly
MO is very user friendly as most of the software is in C language. This helps in shorter code

development and easy portability.

2.7 Applications:

Mo offer high performance, low power and user friendly. Cortex-M series processors are

carefully chosen from most of the microprocessors products. They are widely used in:

e Sensor nodes.

e Wireless communication chipset.

e Mixed signal application-specific standard product (ASSPs) and ASICs.

e In complex application systems as controller in subsystems.

e Security sensitive products as secure core processors e.g., SC000.which are used in SIM

cards, electronic ID cards and banking/payment systems.

2.7.1 Advantages

Cortex Mo processors has number of key advantages

e Flexible interrupt management is provided using NVIC (Network Interrupt Controller).

e OS support features.

e Low power support like sleep modes.

e High code density.

e Integrated debugging.

e User friendly.

e High energy efficiency because of small size and better performance.

e For power management and boot sequence cortex ARM processor can be used as System
Control Processor (SCP).

30

Chapter 3: Hardware and Software Details

In hardware Spartan 3E starter kit is used with Xilinx FPGA XC3S1600E which is compatible
with Xilinx FPGA S3E500-4.

In software Xilinx ISE, KEIL embedded core and HyperTerminal/Teraterm soft wares are used.

In order to implement our task we need FPGA with over 12k gates. After investigation and

comparison with others options Spartan 3E board is selected.

3.1 FPGA Spartan-3E as proto Board

Spartan 3E starter FPGA development board is a digital platform for various embedded
implementation. It supports 16M bytes of SDRAM and 16M bytes of ROM. It has 50MHz crystal
oscillator and base for secondary oscillator. USB2 power socket empowers all circuits,
programming and data transfer modules. Also some other sub modules such as LCD screen, LEDs
and switches, etc. LEDs can be used as event indicators. You can take advantage of Xilinx impact
software such as Chipscope Pro, xmd, etc. In our case, this has helped to program and see the
status of it easily.[10]

The Spartan 3E starter kit is compatible with Xilinx FPGA S3E500-4. In total, 500 logic gates, 20
hardware multipliers, 10,500 logic cells, 73 Kbits of DRAM, 360Kbits of RAM, having 4 clock

sources and clock frequency of 300MHz are maintained.

31

Whbdebebdsbobebabobo bl abebebdobobbol b

A ke .

! XC3S1600E "

| i |)
e ARARARRKARARARAANE Syt Sk iyt based,

Figure 3.1: Xilinx Spartan FPGA Board

3.2 Hardware overview

In order to support design Xilinx board provides many interfaces. Some are as under:
3.2.1 Slide switches

Four slides switches are here as shown in the figure 3.2. Located on lower right corner are
designated as SW3, SW2, SW1 and SWO0. When moved to up position a switch is connected to
FPGA pin to high logic (3.3V). However, in down position will ground the switch. Switch does

not have any active de bouncing circuit so it should be added by the programmer.[10]

HIGH

Low

SW3 Sw2 Swi SWO
(N17) (H18) (L14) (L13)

Figure 3.2: Four Slide Switches

UCF for slide switches is shown in the figure 3.3

32

MNET "SW<O0=" LOC = "L13" | IOSTANDARD = LVTTL
MET "SWel=" LOC = "L14" | IOSTANDARD = LVTTL
NET "SW<Z=" LOC = "Hla" | ICSTANDARD = LVTTL
MNET "SW<3=" LOC = "N1T7" | IOSTANDARD = LVTTL

Figure 3.3: UCF for Slide Switches
3.2.2 Push Buttons

FULLUFE ;
PULLUE ;
PULLUE ;
FULLUFE ;

Four push buttons are shown in figure 3.4. Location in the lower left corner, labeled as Btn North,

Btn_ East, Btn _south and Btn_west.

Rotary Push Button Switch

ROT_A: (K18) Requires an internal pull-up
BTN_NORTH ROT_B: (G18) Requires an internal pull-up
(V4) ROT_CENTER: (V16) Requires an internal pull-down

BTN_WEST 8
(D18)

BTN_EAST
(H13)

BTN_SOUTH
(K17)

Figure 3-4: Rotary push buttons and four push buttons

In order to connected FPGA pin to high logic, push button needs to be pressed. The circuit with

pull down resistor is shown in the figure 3.5.

Push Button FPGA 1/0 Pin

3.3V =
L’ >—|X€I>— BTN_* Signal

Figure 3.5: Push buttons must have internal pull down resistor in FPGA

In UCF user must define the pull down settings along with 1/0 standards and I/O pin and as sown

the figure 3.6
NET "BTN EAST" LOC = "H13" | IOSTANDARD = LVTTL
NET "BTN NORTH" LOC = "V4" | IOSTANDARD = LVTTL
NET "BTN SOUTH" LOC = "K17" | IOSTANDARD = LVTTL
NET "BTN WEST" LOC = "D18" | IOSTANDARD = LVTTL

Figure 3.6: UCF for Push-Button Switches
3.2.3 Rotary_ Push Button

PULLDOWH
PULLDOWN
PULLDOWN
PULLDOWH

Its located in the middle of push buttons switches with three output. These are Rot_A, Rot_B and

Rot_ center. Rotary switches can acts as dual functions, when shaft turns output values changes

and when pressed acts as a push button switch as sown in the figure 3.7.

33

Rotary / Push Button

&

FPGA I/0 Pin
3.3V

L’ ‘—X—FD— ROT_CENTER Signal

Figure 3.7: Pull up resistor for push button switch in FPGA
It acts like two push buttons connected by central shaft. These can acts as make before break.
When shaft is stationary in these positions both switches are closed. UCF constraints for four

push buttons is sown in figure 3.8

NET "ROT A" LOC = "K18" | IOSTANDARD = LVTTL | PULLUP ;
NET "ROT B" LOC = "G18" | IOSTANDARD = LVTTL | PULLUP ;
NET "ROT CENTER" LOC = "V1e" | IOSTANDARD = LVTTL | PULLDOWN ;

Figure 3.8: UCF file for Rotary Push-Button Switch

3.2.4 LEDs
Demo board is equipped with eight surface mount LEDs as shown in the figure 3.9. LEDs are

labeled form LEDO to LED?.

F12)

—~ T T = = N
OO T T =
LwooOwww

S S e o S S S

N~ ©
oo
ww
-l

| LEDS:
. LED4:
= LED3:
- LED2:
- LED1

© LEDO:

FigUre 3.9: Eight surface mount LEDs
LEDs are grounded from one side via current limiting resistors of 390Q. To drive LED, FPGA pin
must be high. UCF of LEDs is shown in the figure 3.10

34

NET "LED<7>" LOC = "F9" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<6>" LOC = "E9" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<5>" LOC = "D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<4>" LOC = "C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<3>" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<2>" LOC = "E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<1>" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<0O>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

Figure 3.10: UCFs for Eight Discrete LEDs
3.3 Clock

Board supports three clocks as a source to FPGA as shown in the figure 3.11.
* Clock oscillator of 50 MHz.
* SMA connector for external clock input. It is high speed connector.
» 8 pin socket for oscillator
Clocks are connected to Bank 0 of FPGA. Each pin is also connected to DCM. The settings are

as shown in table 3.1

Clock Input FPGA Pin Global Buffer Associated DCM

CLK_50MHZ 9 GCLK10 DCM_X0Y1
CLK_AUX B8 GCLK3 DCM_X0Y1
CLK SMA Al0 GCLKY DCM_X1Y1

Table 3.1 Clocks, Global buffers and DCM

Bank 0, Oscillator Voltage 8-Pin DIP Oscillator Socket
Controlled by Jumper JP9 CLK_AUX: (B8)

Prattorm Flash

Y XILII\f"X '

wwwnll Ax.ar
-
e
“rew

SPARTAN - 3E

o \ 7k ’b V/4|
On-Board 50 MHz Oscillator SMA Connector
CLK_50MHz: (C9) CLK_SMA: (A10)

Figure 3.11: Available Clock

35

3.3.1 50 MHz oscillator
Onboard oscillator frequency is about 50 MHz with 40% to 50% duty cycle.it is accurate to +
2500 Hz.

3.3.2 Oscillator socket
There is a eight pin socket for oscillator. It is normally used when operating frequency is greater

than 50MHz. Also we can use DCM for other frequency generation.

3.3.3 SMA clock
SMA connector is used for external clock provision. For external device it is single ended clock.

UCF files for clock generation is sown in figure 3.12

NET "CLK 50MHZ" LOC = "C9" | IOSTANDARD = LVCMOS33 ;
NET "CLK SMA" LOC = "Al0" | IOSTANDARD = LVCMOS33 ;
NET "CLK AUX" LOC = "B8" | IOSTANDARD = LVCMOS33 ;

Figure 3.12: UCF for Clock Sources
3.4 FPGA Configuration Options

Board support many configuration options

* Code downloading via JTAG or on USB. This combination also program board Flash
PROM and XC2C64A CPLD.

* Code downloading to 4M bit platform PROM, FPGA can be programmed from image
stored in it using master serial

* Code downloading to 16M bit PROM; FPGA can be programmed from image stored in it
using SPI.

* Code downloading to 128M bit flash, FPGA can be programmed from image stored in it
using BP1 UP or BPI down.

Figure 3.13 shows above described options in detail

36

16 Mbit ST Micro SPI Serial Flash
Serial Peripheral Interface (SPI) mode

: Configuration Options
USE-Dased DownloadiDabug. Port PROG. B button, Platform Flash PROM, mode pins

128 Mbit Intel StrataFlash
Parallel NOR Flash memory
Byte Peripheral Interface (BPI) mode

Figure 3.13: Configuration settings of Spartan-3E Starter Kit for FPGA
3.4.1 Programming push button
This button is shown in figure 3.14 that forcefully reconfigure fpga from selected configuration

memory source. This can be done by using press and release of button.

Configuration Mode Jumper Settings (Header J30)
Select between three on-board configuration sources

DONE Pin LED) PROG_B Push Button Switch
Lights up when FPGA successfully configured Press and release to restart configuration

‘. - }Jme

NI _EN
OEFAULT |
L ND JUMDER . oo

R 64 Macrocell Xilinx XC2C64A CoolRunner CPLD
4 Mbit Xilinx Platform Flash PROM Controller upper address lines in BPI mode and

Configuration storage for Master Serial mode Platform Flash chip select (User programmable)
Figure 3.14: Detailed Configuration Options

3.5 Serial ports

There are two serial ports, DB9 female connector and DTE male connector. DCE connects
directly to PC via standard serial cable. DTE connector connects madams, printers etc. Both

connectors are shown in figure 3.15

37

o Standard Standard
9-pin serial cable 9-pin serial cable ||

|eapDa .
C"DDGD -

Pin g [T ™pPing
DBS Serial Port Connector
{front view)
DCE DTE
Female DBY Male DBS
4) 2 1
a T g
J10

a T ‘S ‘ a

GHD

RS-232 Voltage Translator {IC2)

RS232_DCE_RXD
Ay
RE232_DCE_TXD
RE232_OTE_TXD
RE232_DTE_RXD

(R7) (MA4) (M13) [Us)
Spartan-3E FPGA

Figure 3.15: RS-232 Serial Ports
FPGA connects between two DB9 connectors. Its output data on LVTTL or LVCMOS levels
which converts the RS-232 voltage level. Figure 3.16 shows UCF for DTE and DCE ports.

WET "RE2232_LTE RXD" LOC = "Ug" | IOSTANDARD = LVTTL ;
WET "RE232 DTE TXD" LOC = "M13" | IOSTANDARD = LVITL | IRIVE = & | SLEW = SLOW ;

UCF Location Constraints for DTE RS-232 Serial Port

NET "RS£232 DCE_RXD" LOC = "R7" | IOSTAWNDARD = LVTTL ;
WET "REZ32Z DCE TXD" LOC = "M14" | IOSTANDRRED = LVTTL | IRIVE = & | ZLEW = SLOW ;

Figure 3.16: UCF for DCE RS-232 Serial Port
3.6 FPGA programming

FPGA can be programmed using USB provided with kit. Attach USB and iMPACT programming
software can be used directly to program FPGA. Programming options for parallel or serial
PROM is not supported. As USB is connected a green LED turns on shows good connection.

IMPACT can be directly launched from ISE project navigator as sown in the figure 3.17

38

Frocesses: ;I
T U DO STOrSe T CoTe
EI E}@Generate Programming File

: @@F"mgrammmg File Generation F

Generate PROM, ACE, or JTA,

£+ Configure D [itPACTL
E IJpdate Bitztreamn with Processo
4| |

E'—t Proceszes
Figure 3.17: iMPACT open up option

As board is connected software recognizes three devices in the chain. To select FPGA, right click
on it and assign new configuration file to it. Select file to program the device as show in the

figure 3.18

“UIMPACT - C:/data/my_designs/s3e_starter_kit/s3e_starter_kit.ipf - [Boundary Scan]
EL File Edit View Operations Options Output Debug ‘Window Help

1P| % DB X|88 X%

]
- 28Bounday Scan 4
B 3S laveSerial r-nm
::]SE'EUMI’:\!P . 0l | irmwﬁ vy
::] Desktop Configu.. Program... E
2| SystemACE ' .
@ 5LE =] Verify
; %385 Gda
IMPACT Modes I topleve Get Device ID .
L — Get Device SignaturefUsercode

Assign Mew Configuration File...

Available Operations are: 4|
=) Program

Figure 3.18: New configuration file for FPGA
When programming successful, FPGA application starts execution and DONE pin LED glows.

The screens as shown appears in the figure 3.19

“iMPALT - C:/data/my_designs/s3e_starter_kit/s3e_starter_kit.ipf - [Boundary Scan]
ZL File Edit View Operations Options Qutput Debuq window Help

A E % DB X[&ex
x|
#- galBoundary Scan &
- aalSlaveSerial

L BIS cleciAP
i o — XN X
- BaDesktop Configu...

E SpstemaCE -

Y xc35500e xeiids we2chda
LIALT ez toplevel bit il 7 - e 7 --

= DO
Available Operations are: &
=P Praaram
=P ey

=P Get Device ID :
b Get Device Signatur.. Program Succeeded
=P Check ldcode !

Figure 3.19: iIMPACT Programming Succeeded

39

3.6.1 Generating Bit stream file

Bit stream is used for PROM programming. FPGA provides external clock to load external
PROM. Oscillator starts from lower settings 1.5 MHz. PROM support higher frequency so this
frequency can be increased. XCFO04S flash support 25MHz.

Right click Generator programming file as shown in the figure 3.20

Processes: ;I
ﬁ' Uszer Constraints

'- P2 1 Synthesize - X5T

-- 22 1 Implement Design |
- .:-:_'-':';Z_.:ZEEr'neratE Progracoming Fi
[Z)EDFrograr o Run

Ef@- Genera Rerun

L__f@ Configl gt Rerun all
— 5. stop

Dpen YWithout Updating

T

Figure 3.20: Set Properties for Bit stream Generator

1:|

E'—f' Froceszes

In properties option increase clock to 25MHz. click on generate programming file. When file is

generated, use option as sown in the figure 3.21

Processes: ;I

? User Constraints

-- P21\ Synthesize - K5T

- P2 Implement Design

P 2D Generate Programming File

- [2)@) Programming File Generation F
'+ Generate PROM, ACE, or JTA,

@1: Processes

Figure 3.21: PROM, ACE, or JTAG File generation
As iIMPACT on PROM file formatter show in the figure 3.22

40

iMPALCT - E:.."'d-EIII-EI.."'I'I'IH_dEs:
Eh File Edit \iew Operations

I | ® B E X &

x|
- oal SlaveSerial ;I
- oal S electkdsP
- GalDesktop Configu...

@ Sypsternd CE
é PROM File F|:|rr|.'|_..

IMPACT Modes L“-E

Figure 3.22: Click PROM File Formatter
Here target is Xilinx PROM. Select from any format. MCS (Intel Hex format) is popular. Enter
path for file storage. Select XCF04S PROM from the options to program it Kit has Platform
Flash PROM, XCF04S. Select XCF04s, list as sown in the figure 3.23

“IiMPACT - Specify Xilinx PROM Device _[C]x] l

I~ Auto Select PROM

I” Enable Revisioning

MHumber of Fevisions: IW vl

I” Enable Compression

Select a PROM: | xct x| [xci0as [524288) | Add
ucflls [131072]

wcf2s [262144]

[524280)]
¥cfl8p [1048576]
sclp [2087152)
#cfi2p [4194304]

Delete All I
< Back I Mest > I LCancel |

Figure 3.23: Selection of XCF04S Platform Flash PROM
Next step is to format the PROM and after that select bit stream file. Presses continue. PROM file

thus created is shown in the figure 3.24

| :
1 EXXILING b
3 A Exume
{ PROM :
xcflds
54.13 % Full »c3s500s
myfpoabitstream. ...

PROM File Generation Succeeded

Figure 3.24: PROM File Formatter Succeeded

41

Chapter 4: Proposed Methodology

As already discussed in Figure 2.7 that MO processor is connected with others modules through
AHB-L.ite bus (Advanced high speed bus) and APB (Advanced Peripherals Bus). So, in order to
make MO core we need files in which settings and configuration of MO0 are included. Also we
need files containing information about AHB and APB bus, clock settings modules. These are

shown in figure 4.1. We are going to discuss this one by one.

MO Processor

v
Address Slave select Slave
decoding
ROM APB Bus
SRAM
APB Slave
select
ABP Timer Test Slave
UART

Figure 4.1 Block diagram of MO

42

4.1 MO processor

In project we have use files like ’cmsdk ahb memory models defs.v’. This file defines memory

models that we are using for our MO core. In total M0 support following memory models.

e Using behavioral SRAM, Behavioral ROM model, with write disabled.

e AHB SRAM interface module with SRAM model , suitable for permitting read and write
operations and FPGA flow.

e 32-bit flash memory with Flash wrapper.

e 16-bit flash memory with Flash wrapper.

In project we have used ’cmsdk apb_dualtimers_defs.v’. In this files 32 bit down timers used in
MO core are initialized. In ’cmsdk_apb_watchdog_defs.v’ file watchdog for MO is initialized. In

’cmsdk _mcu_defs.v file MO core main definitions are initialized.
4.2 Slave

Slave is defined in cmsdk_ahb_default_slave.v’ file. Slave responds to transfer in case master
bus tries to access undefined address. When bus is idle a zero wait state or ok response is
generated, however, slave generates error response when sequential or non-sequential transfer
takes place. AHB default slave components are shown in figure 4.2

cmsdk_ahb_default_slave.v

HCLK —»
HRESETn —»
HSEL —»
HTRANS[1:0] s
HREADY —¥
HREADYOUT +—
HRESP +——

Figure 4.2: ’cmsdk_ahb_default_slave.v’ model

4.3 Slave select

Slave select module is named as ’cmsdk_ahb_slave_mux.v’ file. It supports upto 10 slaves that
are connected with AHB bus. Parameters that define slave port usage are also defined in it, so that
additional logic may not be generated by synthesis. Block is shown in the figure 4.3

43

cmsdk_ahb_sTave_mux.v

HCLK — le—— HREADYOUTO
HRESETn —» [HRDATAO[DW-1:0]
le—— HRESPO
HSELO —»
HSEL1—»
from address decoder i [+——HREADYOUT1
. (——HRDATAI[DW-1:0] [o
HSEL9 ——»| <THRESP1
HREADY —> l«—— HREADYOUT9
HREADYOQUT +— [HRDATAS[DW-1:0]
HRDATA[DW-1:0] e [+—— HRESP9)
HRESP «—

Figure 4.3: ’cmsdk _ahb_slave mux.v’ model
Address decoder determine selected slave and generates correspondence HSEL signal to AHB
slave and AHB slave multiplexer. Slave use register version of HSEL as data and signal are valid

during data phase. For more than 10 slaves more AHB slave modules can be cascaded.

4.4 Address decoding

In project ’cmsdk_mcu_addr_decode.v’ file is used in conjunction with others file. The main aim
of this file is to check the MO generated address and compare it with assigned addresses in to the
modules of MO. If valid address is matched it grants the AHB bus access to that module for data

transfer.

4.5 APB Bus

APB bus platform is provided in ‘cmsdk_apb_subsystem.v’ file. It is used to interface module
slike APB timers, Dual input timers, APB UART, AHB to ABP Bridge, Test slave and IRQ
synchronizer. It includes signals to enable all its modules. When address generated by AHB bus
matches the address allocated in APB Bus it generates corresponding enable signal. Here HCLK
(Clock for AHB) is converted into PCLKG (Gated clock for APB bus). For our code we are using
the same clock frequency for AHB to PCLKG. APB bus is used here as32 bit data bus and 16 bit
Address Width.

4.6 ROM

In project ‘cmsdk_ahb_rom.v’ file is used with other files. ROM is of 32 bit data bus and 16 Bit

address bus and. The ROM model is shown as figure 4.4

44

cmsdk_ahb_rom. v

HCLK—» MEM_TYPE = 0
HRESETn—»

HSEL —»
HADDR[AW-1:0] ==
HTRANS[1:0] =—p-
HSIZE[2:0] ==
HWRITE —»
HREADY —»
HWDATA[31:0] s
HREADYOUT #==1b1
HRESP «—|1'b0
HRDATA[31:0] <d=={{32{1'b0}

Figure 4.4 cmsdk_ahb_rom model

4.6 SRAM

Read write operations is performed with zero wait state. The design only supports 32 bit memory
interfacing. Here, we have made four SRAMs of 8x2048 Bits. The data transferred in it byte

wise. The main model is shown, in figure 4.5

cmsdk|_ahb_to_sram.v

HCLK —»
HRESETn —» - SRAMADDR[AW-3:0]
HSEL —» - SRAMWEN[3:0]
HADDR[AW-1:0] st — SRAMCS

HTRANS(1 :0] =
HSIZE[2:0] sl
HWRITE — k- SRAMWDATA[31:0]
HREADY — »
HWDATA[31:0] s
HREADYOUT +—|
HRESP +«—|
HRDATA[31:0] e | e SRAMRDATA[31:0]

Figure 4.5 cmsdk_ahb_to_sram.v model
4.7 ABP Slave select

The slave multiplexer is included in ‘cmsdk apb slave mux.v’. It supports upto 16 slaves. In
order to do this it use four bits and PADDR to generate corresponding PSEL signal. PADDR can

be configured to decode slaves. Figure 4.6 shows APB slave mux module

cmsdk_apb_slave _mux.v

—— PSELOD
DECODEA4BIT[3:0] s [«—— PREADY0
PSEL —»| [PRDATAO[31:0]

—— PSLVERRO

— PSEL1
[«—— PREADY1
[PRDATA1[31:0]
—— PSLVERR1

I

|+ PSEL15

PREADY +— le——PREADY15
PRDATA[31:0] s |t PRDATA15[31:0]
PSLVERR +—| le—— PSLVERR15

Figure 4.6 cmsdk_apb_slave_mux.v module

45

4.8 ABP Timer

Timer is included in project using cmsdk_apb_timer.v file. It is a 32 bit timer ,following features:

e Interrupt be generated using TIMERINT signal as counter reaches zero.

e EXTIN signal can be used as external input signal to enable timer.

e APB timer reaches zero and same time software clears, interrupt is status set to one

,previous interrupt status.

ABP timer block diagram is shown in figure 4.7

cmsdk_aph_timer.v

PCLK —»
PCLKG—»
PRESETn |
PSEL—»
PADDR[11:2] sy
PENABLE —|
PWRITE—»
PWDATA[31:0] sy
PREADY +—
PSLVERR +—
PROATA[31:0]
ECOREVNUM[3:0] s

+—» Reload value
CTRL[2)
Decrement f
S2gitdown | S
3 counter '_'__
CTRLI0)
Y
val==1 \
S
CTRL[3]

Edge
detecion

SET

CLR

Synchronizer

s

«—EXTIN

» TIMERINT

-~

Ld

4.9 ABP UART

Figure 4.7 block diagram of timer

cmsdk_apb_uart.v is APB UART, supports 8 bit communication, simple in design,. It has no

parity and zero as stop bit. Block diagram of UART is show in figure 4.8.

UART has two buffers one for data reception and another for data transmission. Interrupt

handling execution time is short this leaves sufficient time for processor.

46

interface v

You can write a new character to the write buf’ferj

\.while the shift register is sending out a character.

Write buffer Shift register TXD
i~

TX FSM

b
Baud rate

RX FSM
.

Shift register

Read buffer RXD

character while the data in the receive

‘r The shift register can receive the next
\erFfer is waiting for the processor to read it

Figure 4.8 block diagram of ABP UAR

47

Chapter 5: UART communication

5.1 MO processor

In embedded systems, processors and other integrated circuits are interlinked to make system

functional. Communication protocols have to be followed to pass information between these

circuits. There are many communication protocols used for data exchange .Major communication

protocols are two i.e serial and parallel.

5.2 Serial vs. Parallel

In parallel transfer protocol multiple bits are transferred at same time. Data transfer occurs in

form of O's and 1’s. Data is transmitted at buses of eight, sixteen and more wires.

OUTB69—>{IND
OUTA—Ed>{IN1L
OUT2—62—>]IN2
OUT363-IN3
OUT4—&-lIN4
OUTS[—E5—>]INS
OUT6—69>{INs
OUTZHE2-JINZ

CLK| I'LyJcLk

Figure 5.1 parallel communication

The above picture making it clear that in above parallel communication out of used 9 wires, 8 bit

data bus is using 8 wires which are controlled by a clock. At every clock pulse a byte is

transmitted. At a time a single bit is streamed in above serial interface.

OUT—69-2 62639 69-6oC2

CLK

Figure 5.2 serial communication

>

IN
CLK

In above serial interface is one bit at every clock pulse is transmitted. Only 2 wires are required

in this case.

48

Over serial communication, parallel communication has also many advantages.
Following are its advantages, it is

e Relatively easy to implement
o fast

e and straight forward.

but more input/output lines are needed in parallel communication .As in most of the projects

I/0 lines of the microprocessor are often very few and precious.

5.3 Types of serial Interfaces
There are two types of serial interfaces
1. Asynchronous Serial Interface.

2. Synchronous Serial Interface.

5.3.1 Synchronous serial interface

In synchronous serial interface there are data lines and a clock signal. The clock signal is actually
the common clock which all devices on the serial bus has to share. Serial date transfer is in this

case is linked with clock.
Example: I1°C and SPI.
5.3.2 Asynchronous serial interface

In Asynchronous serial interface for data transfer no external clock signal is required. This serial

interface has advantage that it require minimum wire and 1/O pins.

Its drawback is that we have to add some functionality for reliable data receiving and transferring
data. In embedded electronics ,the asynchronous serial interface is widely used .For example if u
have to add Bluetooth, XBee’s, GPS module and other devices .

5.4 Rules of Serial

For error free and accurate ,robust data transfer In Asynchronous serial protocol following rules
has to follow. These are as under

o Baud rate(data bits per second) of the data,
o Data bits of the data,

49

« Synchronization bits of the data, and
o Parity bits of the data,

There are many ways to send data serially. This protocol is configurable. For error free data
communication same exact protocol must be used at both transmitting and receiving device on
serial bus.

5.4.1 Baud Rate Settings

In serial communication at serial line baud rate is actually specifies how fast data is transmitted in
a second. It actually defines the time in second that a single bit takes to transmit. its unit is
bits/sec.

Commonly used baud rates are 1200, 2400, 4800,19200,38400,57600, and 115200.Where speed is
not critical 9800 is the commonly used baud rate. It’s essential for serial communication to
establish that both devices operate at same rate i.e. at same baud rate.

For most of the embedded controller projects the highest speed is 115200, above that mostly error
comes in transferred data. So, for successful data transmission appropriate baud rate has to set.

5.4.2 Format of data

In serial communication data is transmitted in form of packet or frame of bits. The frame is
formed as shown in figure below. Synchronization bits start, stop and parity is added to data bits
to form complete packet.

Frames Start Data Parity|Stop
Size (bits): 1 5-9 0-1 1-2

A serial frame. Some symbols in the frame have configurable bit sizes.

Figure 5.3 data framing

5.4.3 Chuck of Data

In serial packet the data chuck is actually the true data in frame. We call it as chunk as its size is
not specifically stated. The standard size is 8 bit means 1 byte, it can be set to anything from 5 to 9
bits. A 7 bit data size is more efficient than 8, if we are transferring ASCII characters.

After a data part in packet, endianness of the data has to check also.by default LSB(least
significant bit) format is used generally to transfer data.

5.4.4 Synchronization bits

Synchronization bits are the start and stop bits, these are actually the special bits transferred with
each chunk of data. These bits actually indicate start and end of the packet. Start bit is 1 always,
whereas the stop bit can be one/two. Commonly 1 stop bit is used.

These synchronization start bit actually indicate idle data line that goes from 1 to 0, and stop
bit(s) is changed back to the idle state means it hold the line at 1.

50

5.4.5 Parity bits

Error checking at low level is done by parity bit in serial communication. It has two types: odd or
even parity.

It is actually calculated by adding all 5-9 bits of data byte and if the sum is even the bit is set or
not.

As an example, even parity is set and is added to data byte, 0b10011101, which has an odd
number of 1's (5), the parity bit become now set to 1.Conversely, if the parity is set to odd, the
parity bit be 0 in that case.

To set parity is optional and not used mostly. It can help to transmit data in noisy medium. Its
drawback is that it slows down data transferring and at both sides error handling has to implement.
When it’s detected by parity that transferred data is not accurate, that data must be resent.

Serial Settings: 9600 8N1 (an example)

Serial settings of 9600 8N1 means - 9600 baud, 8 data bits, no parity, and 1 stop bit .

When a device transmit ASCII character ‘K’ and ‘O’. It creates two packets of binary value
“01000001” and “01011010”.synchronization bit is then appended. Least significant bit is sent

first.
0(1/1]1|1/90|0]1|0(1]10]1|1(0]|1)|0|0(1]|0]1
cg‘éu‘om SN /S) A cg._‘z;'u\o@ /NS /S8 /e /) c;—OQ

Figure 5.4 data packet for serial protocol
Data is transferred at 9600 baud rate i.e. per bit 104 ps.
When we transmit every bit one start bit and one stop bit, and 8data bits have to transmit.so 9600
baud rate means 9600 bits per second is sending.
5.5 Wiring and Hardware

Two wires are here, one is for sending data and other for receiving data. Devices connected with
serial should have two serial pins: RX and TX.

RX RX
TX TX

GND GND

Figure 5.5 Hardware Connection

Serial data can be transmitted in two ways

e Full duplex.
e Half duplex.

51

In full duplex communication both devices can receive and send simultaneously. Whereas in

Half-duplex communication serial devices sending and receiving take turns.

5.5.1 Hardware Implementation
At signal level popular hardware implementations of serial are TTL and RS232.

TTL serial signal of microcontroller voltages supply range is usually OV to 3.3V or 5V.bit value 1
actually represent an idle line and bit value O represent a start bit or a data bit of value 0 or Ovolt GND
signal.

Idle f Idle

v ;Stqrt i LSB | | | | | y HSB Stpp:
| Bit [1 | | [1 | 1 Bit

Figure 5.6 5 volt TTL signa

When the TTL signals are flipped on its heads, in old communication the protocol is RS232.RS232
signals usually range between -13 to +13 volts. Low voltage (-5V, -13V) are a stop bit, data bit ,the
idle line whereas high voltages means a start bit or 0 value data bit.

- - e 4 a . =) H . - e - A

+13uU

idlie

—Au—— | Stare , LSB
Bit '

Figure 5.7 13 volt TTL signal

In embedded circuits TTL is much easier to implement. But in long transmission lines, low voltage
levels are more susceptible to losses, there RS232 is suitable. More complex standard like RS-485 is
more suitable.

TTL serial device and RS232 bus can’t be connected directly. Shifting of these signals is mandatory
and signals should match up for accurate serial communication.

UARTS are used to convert data on parallel bus to and from a serial interface.

5.6 UARTS (Universal Asynchronous Receiver Transmitter)

UART is used to create the serial packets and control physical hardware lines.

A universal asynchronous receiver/transmitter (UART) implements serial communication. UART
is electronic block between parallel and serial interfaces. At one end of UART is a bus of eight or

above data lines (plus some control pins) and on the other side is the two serial wires , RX and
TX.

52

https://cdn.sparkfun.com/assets/1/8/d/c/1/51142c09ce395f0e7e000002.png
https://cdn.sparkfun.com/assets/b/d/a/1/3/51142cacce395f877e000006.png

cC
12
O
-

DO
D1
D2
Data Bu § _{ D3
D4

D5

X

- XA
X

F
>

Serial

D7

|____Parallel

R/W
Control I/O CLK

INT

Figure 5.8 UART interface
Simplified UART interface. Parallel on one side, serial on the other side.

UART ICs are found commonly inside microcontrollers, they also exist as standalone ICs. Some have
none, some have one, and some have many UARTSs .Datasheet will explore that the microcontroller
has UART or not. For example, the Arduino Uno which is based on ATmega328 has single UART
while the Arduino Mega which is built on an ATmega2560 has four UARTS.

Serial data is both transmitted and received via UART.

UART is used for sending and receiving data. At transmitting side, a data packet is created,
synchronization and parity bits are appended and at TX line with precise timing and baud rate, packet
is sent.

At receiving end, the RX line has to sample according to expected baud rate, synchronization bits are
separated and data is extracted out.

| Transm Transmii
_ FIFO = Shift X
logo,-gk = | Register Register
&= ¥ o =
-rowgow |~ =
RESET =
[Receie ! Receive
= | FIFO = Shift RX
| Registers Register
A0-42 & i
-45 2=
cso.cs1 ===
-Cs2
DDIS <—J
-, | -pTR.-RTS
-OP1,-OP2
_— Clock Conirol || | -gs
INT S$E f(& Logic |F- 1 -(‘D
RXRDY || £ 5 X Baud Rate -DSR
TXRDY =~ Generator

ATALL [

RCLK

\TAL2 |¢
-BatpoLT |

Internal UART block diagram (courtesy of the Exar ST 16C550 datasheet)

Figure 5.9 UART internal block diagram

53

Advanced UARTS saves data in a buffer and can be used by the microcontroller for processing. These
buffers are in the form of first-in-first out (FIFO) basis and can be of few bits to thousands of bytes.

5.7 Software UARTS

Software serial is like bit banging process that is directly controlled by processor. For example
Arduino libraries are software serial. Software serial working is processor intensive but not very
precise as a UART but it works.

5.8 Common Pitfalls

Few mistakes an experienced engineer also can do. So, following things should be kept in mind while
working on serial and for making serial hardware connections.

5.8.1 TX-to-RX, RX-to-TX

Most commonly committed mistake is often people forget to cross the RX and TX lines between serial
devices.

Figure 5.10 Pro Mini design

5.8.2 Baud Rate matching

The language of serial communication is baud rate. To avoid missing or interpretation of data two
devices should speak at the same speed. If there is garbage data on receive line, then make it sure that
the baud rate is matched or not.

% COMZ29:19200baud - Tera Term VT |) e S
File Edit Setup Control Window Help

N a3 <FToooo “Ta3BFf xy= P Yiooeod@fx UK " oaC<f ToaaaccccB3 B %o E Py
Juce
LtcccepIFxe oL« ™

of ?ooccocee Tooce 38
FMpee™ Y bococoef > P L oo ™ .
L tgexoolloef 7 ceococoone 138 0F Tpee™ Y bococF B ™ L M o~ 7

Jroe? poefF Tocoeoe Tee Tee3@F B pee™ Y ioeee ®F 3 o Y beoed ™
Ltecn &< o f 7 ococee Tocoooe 3 87 F Tee™ U Locoe @£ TOW ™ L€ ° oo JF 7
oot 3Bl xs= e F'<E£fx FUR < Padf Toaaoooax@3 0 0y
L Fpee™ Yol cc@F PN 87 T ocf P ccccoccccccooe

O o™ Ller FHE> b~ Hbor* ™
Ltococoef 7ocococoe Toc 38 BF B pooc™ Y] focoe poct
fon~y * L occeoef ?F ococotoooooooe 3 @O0

Fxy= F"YxBEAF P~ Ly L ™ Llee " ccoef 7 oocccecoccccc@3 A B g
L boee™ Yo L<
FI™ L B ™ oof 7 ocococcoocococd B EE €

= b beexeF e PUY et
Ltecxoooef 7 ocococococoe T3 S

When baud rate of transmitted data is 9600 bps, but receiving data baud rate is 19200 bps. Baud rate
mismatch results in garbage data.
Figure 5.11 Mismatched data

54

https://cdn.sparkfun.com/assets/7/d/f/9/9/50d24be7ce395f1f6c000000.jpg
https://cdn.sparkfun.com/assets/c/e/2/d/a/50d247c5ce395fdc6b000000.png

5.8.3 Problem of Bus Contention

Bus contention is a problem which comes when more than one device try to transmit on single serial
line. Serial communication is actually designed in such a way that those just two devices communicate
at serial bus at a time.

As an example, if a GPS module is connected to Arduino, then its TX line with RX line of Arduino
board. But as TX pin of USB to serial converter is already connected to RX pin of the Arduino used to
program the Arduino to watch Serial Monitor.

When both the FTDI chip and GPS module trying to transmit on the same line at same time there odd
situation comes of contention.

- R f— — — R -
2 @
— —4 =
= T2 —_—— e T a
oD <>
— >
=leND GND | =
LN |
= R —_— — —
= T
o
=
=l eND

GMND

The bus contention occurs when two transmitters send to single receivers.in that case neither of the
devices can send data. In worst situation transmit lines of both devices clogs and that situation is rare
and protection must be here to avoid that situation.

A single transmitting device can be connected with multiple receiving devices. For example, when an
Icd has to connect with Arduino then we connect Arduino TX line with LCD’s module RX line.
Arduino’s TX line is also connected with RX line of USB programmer’s.in that scenario also there is
one device in taking control of transmission line.

RxX —— — — R
> —_— — >
SND

Transmiter
Recelver 2

Receiver 1

)
y

When TX line is distributed its also dangerous from a firmware point of view, as it’s not clear which
device achieving which transmission .LCD can get unknown data which can led it in an unknown
state.

55

https://cdn.sparkfun.com/assets/0/7/4/f/b/50d249a8ce395faa6f000000.png
file:///E:/MS THESIS all DATA/QURATULAIN THESIS FINAL/thesis qurat aug/THESIS REPORT/Serial Communication - learn.sparkfun.com_files/5114296cce395f8f7d000004.png

Chapter 6: EXPERIMENTS AND RESULTS

MO core can be programmed in C language, so we need some tool to make hex file of the
project. In order to carry out our task we use Keil integrated development environment for

our project. In our program we are printing simple message as shown in the figure 6.1.

_’] startup_CMSDEK_CMO.s r_’] retarget.c rj uart_stdout.c r_’] syster

lude "core cm(.h"

k3 B3 R
woe -1
-]
Rt
]
4 4
L
.
h £
L

30 [j#ifdef CORTEX MOPLUS

31 | #in ie "CMSDE CMOplus.h"
32 #in e "core cmiplus.h"
33 | #endif

34

35 de <stdio.h>

36 e "uart_stdout.h”
37

38 int main (wvoid)

39 4

40 Sf UART init

41 TarcScdCutInitc ()

42

43 printf ("Hello \n"):;

44

45 printf ("#* TEST BASSED #=#\n"):
46

47 ff End simmlation

48 UartEndSimulation () :

43

50 return 07

Figure 6.1 Keil Program
The message is simple Hello ** TEST PASSED **. The final file is saved as ‘image.hex’

6.1 Simulation

In order to simulate our C code, we now need ISE navigator. Open ISE and select the FPGA as

shown in the figure 6.2

In file ‘cmsdk_ahb_rom’ file give the path of ‘image.hex’. as show, in the figure 6.3

56

"W ISE Project Navigator (P.40xd) - D:\hex_to_coe\synth\arm_mo0_prj2\arm_m0_prj2.xise - [Design Summary]

E File Edit View Project Source Process Tools Window Layout Help
IRELEE IBERRN ™ vesior Frovertics |
L Mame: |arm_mElJ:rJ2
[7] | View: (o Il'j}[mplemenmuan + E
Location: ID:Wex_m_cne\synm'ﬁrm_mﬂjrjz
&l Behavioral
E.El [E— Working directory: |D:hex_m_cne\synm\,arm_mtljrjz
— {‘; arm_m0_prj2 Description:
o | B £ xc3s1600e-5fg320
E B3 Automatic *incudes
= i |4 cmsdk_ahb_memc Project Settings
v | cmedk_mcu_defs,
. | cmsdk_apb_dualti | Property Name Value
i cmsck_apb_watct | TopL evel Source Type HOL LI
- cmsdk_apb4_eg_slave
"' u_apb_eqg_slave_
U_apb_eg_slave_ Evaluation Development Board MNone Specified =
=] cortexm0_rst_ctl (cor: | Product Category Al Jhd
2] u_hreset req-cn | Eapily Spartan3E =
2] u_dogreset req - fip e ¥C35 1600F -
#7| u_poresetn_sync —
o [50 1) hresetn eune - | Package FE320 =
4 Speed -5 Jhad
p | €2 NoProcesses Running
% Mo single design module is selecte: Synthesis Tool XST (VHDL Neriiog) =
EP{: = g. Design Utiites Simulator 13im (VHOL fverilog) =
il Preferred Language verilog Jhad
%t Property Specification in Project File Store all values I
— Manual Compile Order I
- VHDL Source Analysis Standard VHDL-93 =l
& Start E Design I I Files [Enable Message Filtering I~
Console
GINFC:HDLCompiler:1845 OK | Cancel I Help
1 INFO:ProjectMgmt - Par i

Figure 6.2 FPGA settings

48
43

=S

B

-

2z Running

Y| u_irg_sync_5 - cmsdk_irg_sync (cmsdk_irg_sync.v)

v | u_irg_sync_6 - cmadk_irg_sync (cmsdk_irg_sync.v)

V| u_irg_sync_7 - emsdk_irg_sync {cmsdk_irg_sync.v)

V| u_irg_sync_8 - cmsdk_irg_sync {cmsdk_irg_sync.v)
=[] u_irg_sync_9 - cmadk_irg_sync (cmsdk_irg_sync.v)

v | u_irg_sync_10 - cmsdk_irg_sync {cmsdk_irq_sync.v)

V| u_irg_sync_11 - cmsdk_irq_sync {cmsdk_irq_sync.v)

V| u_irg_sync_12 - cmsdk_irg_sync {cmsdk_irq_sync.v)

v | w_irg_sync_13 - cmsdk_irg_sync (cmsdk_irg_sync.v)
u_cmsdk_mecu_stelketr] - crnsdk_mecu_stdketrl (emsdk_meu
ahb_rom - cmsdk_shb_rom (cmsdk_ahb_rom.v)

u_shb_to_sram - cmsdk_ahb_to_sram {cmsdk_ahb_to_sriJ
u_fpga_rom - cmzdk_fpga_rom (cmsdk_fpga_rom.v)
u_ghb_ram - cmsdk_shb_ram {cmsdk_ahb_ram.v)

L[0 shh tn eram - rmedle shh mI eram frmedle ahh m:l-ﬂ
3

50
51
52
23
54
S5
o6
o7
58
59
80
61
62
63
64
65
66

| ©OQ|& & FE |5

1 a7

daciuuae oS Jily e

module cmsdk_a.h.b_roni i
'

Default to

/f

parameter MEM TYPE = S Memory Tvpe

parameter AN = Lidr==zz width
parameter filename =
// parameter filename I T2 auli
parameter WS N =0, f{ First access wait =state
parameter W5 35 [// Subsequent access wait st
parameter BE =0 // Big endian
)
{
input wire HCLE, // Clock
input wire HRESETn, // Reset
input wire HSEL, // Device szelect
input wire [AW-1:0] HADDR, // Rhddress
input wire [1:0] HTBRANS, // Transfer control

Figure 6.3: Path for image.hex file in cmsdk_ahb_rom.v

Also, add file ‘image.hex’ in ‘cmsdk_fpga_rom’ file as shown in the figure 6.4

57

> u_ahb_to_sram - cmedk_shb_to_sram (cmsdk_shb_to_sram.v)
‘%] u_fpoa_rom - cmsdk_fpga_rom {cmsdk_fpga_rom.v)
- |%] u_ahb_ram - cmsdk_ahb_ram (cmsdk_ahb_ram.v)

38 input wire [AW-1:2] ADDE,
39 input wire [31:0] WDATR,

u_irq_sync_8 - cmsdk_irg_sync (cmsdk_irg_sync.v) 30 parameter AW = 14,
u_irg_sync_9 - cmsdk_irg_sync (cmsdk_irg_sync.v) 31 // parameter filename = "D:/Frocessor M
u_irq_sync_10 - emsdk_irg_sync (cmsdk_irg_sync.v) “ 32 //parameter filename = "hello.hex"
u_irg_sync_11 - cmsdk_irg_sync (cmsdk_irg_sync.v) — 33 parameter filemame =|"image.hex"
u_irq_sync_12 - cmsdk_irg_sync (cmsdk_irg_sync.v) A 34)
g u_irg_sync_13 - cmsdk_irg_sync (cmsdk_irg_sync.v) % 3L {
- 4] u_cmsdk_meou_stcketrl - cmsdk_meou_stketrl (cmsdk_mcu_stelketrl.v) 36 J/ Inputs
- %] u_ahb_rom - cmsdk_ahb_rom (cmsdk_ahb_rom.v) p 37 input wire CLE,
g
@)

40 input wire [3:0] WREN,

u_ahb_to_sram - cmsdk_ahb_to_sram {(cmsdk_ahb_to_sram.v) (;. 41 input wire Cs,
‘|| u_fpaa_sram - cmsdk_fpaa_sram (cmsdk_fpoa_sram.v) — 47
I I | H S S IO SRR .- I S,

Figure 6.4: Path for image.hex file in cmsdk_fpga_rom.v.

In order to make MO core we need four BRAMs each of 8x2048 byte. Make four files in same
project directory. Save as "BRAML1.coe", "BRAM2.coe", "BRAM3.coe" and "BRAMA4.coe". Add

files in the cmsdk_fpga_rom.v file as sown in the figure 6.5

ﬂ — | 1os ¢readmemh (filen ge) s
106 ERAHC'_fid = &F ge ™ ||-___-||:| :
ﬂ o 107 BRAMI1 fid = ol mymy ;
u_irg_sync_8 - cmsdk_irg_sync (cmsdk_irg_sync.v) 108 BRAM2 fid = &£ ce"f "W ;
; u_irg_sync_9 - cmsdk_irg_sync (cmsdk_irg_sync.v) 109 BRAM3 fid = &£ ce"f "W ;
u_irg_sync_10 - cmsdk_irg_sync (cmadk_irg_sync.v) o 110
o |v] u_irq_sync_11 - amsdk_irg_sync (cmsdk_irg_sync.v) — 111 v from zingle array to splittec
u_irg_sync_12 - cmsdk_irq_sync (cmsdk_irg_sync.v) A 112 g v (BRAMO fid, "memory initiali
E u_irg_sync_13 - cmsdk_irg_sync {cmsdk_irg_sync.v) % 113 S v({BRAM1 fid, "memory initiali
u_cmsdk_meu_stdketrl - emsdlk_meou_stdketrl (cmsdk_meou_stlked 114 g v (BRAM2 fid, v 13
E u_ahb_rom - cmsdk_ahb_rom (cmsdk_ahb_rom.v) A 115 z v (BRAM3 fid,
o |%] u_ahb_to_sram - cmsdk_ahb_to_sram {cmsdk_ahb_to_sram.v) 4 116
u_fpaa_rom - cmsdk_fpga_rom {cmsdk_fpaa_rom.v) —1 117 v (BRAMO fid,
] u_ahb_ram - cmsdk_ahb_ram {cmsdk_ahb_ram.v) ; O 118 v (BRAM1 fid,

Figure 6.5: Path for BRAM files in cmsdk_fpga_rom.v.
After that simulate the code and output is shown in the figure 6.6.

The simulation results are confirmed by matching first byte of ‘image.hex’ file with
"BRAM1.coe" file. Both bytes should be same. We can check this by modifying first byte of

‘image.hex’ file and simulate the MO core. After simulation both the bytes should be same.

58

B 15im (P.40xd) - [Defaultwefg]

] Fle Edt Veen Smiatn Window Leyout Heb _
03E [||aB0X®wa N 1 Q]E5
#O8X Gk wOEX
ﬂ»_smamnob}emfum

Wl e ﬁ @ LIy
Object Name \ P
g 11 Y
1 xmaL2
9 NRST
& Poj1so]
2 P15:0]
@ NTRST
‘F oI
@ SWDIOTMS
g SWCLKTCK
4y 0O
@ POK 0
B debug conma... z
g debug_ruming 1
3 debug_er e
g debug_test en 0
Reepry o
B BeT310)
%% 086 [31:0)
2§ NMIRQ[31:0]
2 sMuL3L:0)
i SvsT[3L0]
Bowcie o
B wianespLo) o
:é II'JIPTB I:D] 0

Tnstances ..
V] [E]

Instance and Process Nar
4§ tb_cmsdk_mcu
o

1 test
p B pofisi]
» B p1[15:0)

S M b b b e e M D

I debug_runni
B debug_err
1 debug_test ¢
p W Be[3L:0)
p W BET3L0)

> o o

Figure 6.6: Simulation of MO core processor

6.2 Implementation

=181

In order to implement MO core, so open project ‘ARM_prj2_m0’. Add ‘image.hex’ file in

‘cmsdk_ahb_rom’ as shown in the figure 6.7

s0 INUauLs SISs Sngy oo |
- [w] u_irg_sync_4 - cmsdk_irg_sync (cmsdk_irg_: - 51 ' e
- (%] u_irg_sync_5 - cmedk_irg_sync (cmadk_irg_: 53 Parameter Declarations
- [w] u_irg_sync_6 - cmsdk_irg_sync (cmadk_irg_: S
- [w] u_irg_sync_7 - cmsdk_irg_sync (cmsdk_irg_:) 54 parameter MEM TYPE =
- (%] u_irg_sync_8& - cmedk_irg_sync (cmadk_irg_: . e parameter AW - =
- (%] u_irg_sync_9 - cmsdk_irg_sync (cmsdk_irg_: A 5 parameter filename =
- %] w_irg_sync_10 - cmsdk_irg_sync (cmsdk_irg, o 57 parameter WS N =
- (W] u_irg_sync_11 - cmedk_irg_sync (cmsdk_irg, ‘"‘ 5a parameter WS S =
[w_irg_sync_12 - cmsdk_irg_sync (cmsdk_irg, ! 5g parameter BE =
v | u_irg_sync_13 - cmsdk_irg_sync (cmsdk_irg, 4 60)
u_cmsdk_meu_stdketrl - cnsdk_mou_stdketrl {on : 61 [
_] u_ghb_rom - cmsdk_shb_rom {cmsdk_ahb_rom.v) O 62 input wire HCLE,
u_ahb_to_sram - crmsdk_ahb_to_sram (cmsdk_a 63 input wire HRESETn,
=1 u fpga rom_coe - cmadk_fpga_rom_coe {cmsdk o 64 input wire HSEL,
-4 u BRAMD - BRAMO (BRAMO, xco) — Frameit mriea TAW_T .01 SOARMD fAAdraoo

Figure 6.7: Path for image.hex file in cmsdk_ahb_rom.v.

59

Make all four BRAMSs using IP core generator with specifications as shown in the figure 6.8

ZEix
Documents View |
IP Symbol & x

wgic.*t Block Memory Generator

xilin.com:ip:blk_mem_gen:7.3

Component Name |BRAMU _

Interface Type
[T ’7(-“ Native
DINATT0]
Mode |Stand Alone K

Native Interface Block Memeory Generator (BMG) are the original standard BMG functions delviered by the
previous versions of the LogiCORE Black Memory Generator (prior to v6.x). They are optimized for data
storage, width canversion, and clock domain de-coupling functions..

Native Interface BMG cores can be customized to utilize Single Port RAM (SP), Simple Dual Port RAM (SDP),
True Dual Port RAM (TDP) and Single Port ROM (SP ROM) configurations. In addition, Native Interface BMG
core also support features such as SoftECC/ECC, Pipeline Stages and file based Memory

=
g P Symbol 7T Power Estimation Datasheet < Back | Page 1 of 6 Next > | Generate Cancel | Help |
o N _I
Figure 6.8: BRAM settings
[i Hemory cenerner ——— SIE
Documents View
17 Symbol & x s
(P
mg"c LI BIOCk Memory Generator xilinx.com:ip:blk_mem_gen:7.3
~Port A Option: =
- Memory Si
ADDRA[10:0] DOUTAT0] Write Width |8 Range: 1..4608 Read Width: |8 E
DINAT:0): Write Depth | 2048 Range: 2..9011200 Read Depth: 2048
perating Modh bl
& Always Enabled
& Write First
€ Use ENA Pin
© Read First
© Mo Change
I
4 1P Symbol Vo Datasheet < Back | Page 30f6 Next > | Generate Cancel | Help |
Figure 6.9: 8x2048 size BRAM
e
Documents View
1P Symbol & x i
iR
mgtC w Block Memory Generator xilirvx, com:ip:blk_mem_gen:7.3
~ Optional Output Regist =
Port
TR] I~ Register Port A Output of Memory Primitives
DINAT0] I™ Register Port A Output of Memory Core

I™ | Register Port A Inpuit of SoftECC logic

I™ Use REGCEA Pin (separate enable pin for Port A output registers)

LKA Pipeline Stages vrithin Mux [0 - Mux Size: 0x1
- Memory —
I¥ Load Init File

Coe File [0:\hex_to_cos\sim\BRAMD.coe Browse Show

I™ Fill Remaining Memory Locations

ra3 Datasheet < Back |Pa e 4 of 6 Next > | Generate Cancel | Hell |
</ 1P Symbol [| Power Estimation _I 3 L

Figure 6.10: BRAM file path
Press generate button to make BRAM.

60

For clock settings we use DCM IP core. Set Input clock frequency 50 MHz and set output clock

frequency. The settings should be as shown in the figure 6.11

E Xilinx Clocking Wizard - General Setup

E@ Xilinx Clocking Wizard - Clock Frequency Synthesizer

—Valid Ranges for Speed Grade 4

DFS Mode Fin (MHz)
Law 0.200 - 333,000
High 0.200 - 333.000

—Inputs for Jitter Calculations
Input Clock Frequency: 50 MHz

% Use output frequency

5 & MHz ns
— Input Clock Frequency ————— ’rPhau Shift

[s6 & MHz ¢ ns Type: [FONE =] " Use Mutiply (M) and Divide (D) values
Value: [0 = M m D H

i~ Exdemal Intemal " Bdemal = Intemal " None

= Single = Single —Generated Output

Calculate
~CLKIN Source ’—Feednack Souree

¢ Differential

" Differential M D Qutput
Divide By Value Feedback Valus REneliE)
’7| 2 = ’7&‘ X 2K 3 2 5

¥ Use Duty Cycle Comrection

Figure 6.11: DCM clock frequency settings
6.2.1 UART pulse counter

In order to show proper working of M0 core, we need to make a file of ‘uart_pulsecounter.v’ file.

As it is already discussed that MO core sends out data on UART. We can observe that data by

attaching serial port with our board and using any standard serial port GUI we can observe data

transmitted by MO. Here we are using LEDs for same purpose. In ‘uart_pulsecounter.v’ file we

are counting 210 pulse transitions from 1 to 0. After that we are toggling a LED D13 on demo

board. UCF for same function is as shown in the figure 6.12

AL1"™ LOC = "C9" | IOSTANDARD = LVCMOS33 ;
NET "XTALL" PERIOD = 20.0ns HIGH 40%;
18 |[# == Discrete LEDs (LED) =——=

19 # These are shared connections with the FX2 connector

20 NET "Fl<S>" LOC = "R14" | IOSTANDARD = LVIIL | SLEW = SLOW | DRIVE = & :

21 NET "uarc? txd inv" LOC = "C3" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = & :
22 NET "u | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;
23 NET | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = & ;

24 NET se" LOC = "D13" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = & ;
25 #NET "L LoC = "D11" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = 8 ;

26 #NET "LED<6>" LOC = "ES9" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE

37 #NET "LED<7>" LOC = "Fg" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE

28

29

30 # ==== Slide Switches (5W) ====

31 NET "NRST" LOC = "L13" | IOSTANDARD = LVITL | BULLUP ;

32 #NET "SW<1>" LOC = "L14" | LOSTANDARD = LVITL | PULLUE ;

Figure 6.12: UCF of MO core

Top level MO core implementation is shown in figure 5.13

m o

61

fpga_top:1

| N
u_cmsdk_mcu

uart_pulsec

ounter
N4 b

A 4
u_uart_pulsecounter

fpga_top

Figure 6.13: top level MO core implementation

sown in figure 6.14 at HyperTerminal.

After code compilation and generation of file, we can download same file in FPGA and results as

62

Chapter 7: EXPERIMENTAL OUTPUT RESULTS ON HARDWARE

This chapter, we evaluate the experiments done and their results on ISIM, Keil as well as
on hardware and at HyperTerminal attached with other computer (i.e serial
communication). The results show that the internal memory of embedded Mo soft-core is
accessed, data is processed and output data is achieved via internal embedded UART of
soft Mo core according to requirement.

7.1 Results

7.1.1 MO core implementation on FPGA

Figure 7.1: Result data

63

Chapter 8: CONCLUSION & FUTURE WORKS

8.1 Conclusion

The achievement and conclusion of this work is that cortex Mo customized soft core is
implemented in a smart FPGA which is upward compatible with upper cores M1, M2 ...,also
which can be used as customized smart ASIC (Application Specific Integrated Circuit) for

various applications like coprocessor in WSN ,crypto, parallel processing and in communication .

ARM Cortex Mo soft-core is designed, synthesized, and coded with code memory of FPGA using
Advance Microcontroller Bus Architecture (AMBA Lite) and APB UART is functional
additionally. In Mo soft core UART (FPGA) is working via which serial communication is

possible. Error free serial data communication via customized soft core in FPGA is achieved.

Both hardware and software implementation in work and practical demonstration giving real
successful implementation of customized Mo core which can be further configured according to

requirement and application.

8.2 Future Work
In future works, the implemented cortex Mo core will be used for
e Encryption,
e Wireless sensor node and
e Security purpose.
For that purpose, in order to increase the processors capacity, other peripherals can be connected
to the AMBA bus.
ZYNQ Linux operating system can be run over this processor that will make possible, a small

footprint design, to get Linux implementation in.

64

References

[1]

(2]

3]

[4]

(5]

6]

[7]

8]
[9]
[10]

[11]

[12]

[2]
[13]

[14]

ARM Ltd, “ARM DDI 0419C ARMv6-M Architecture Reference Manual”, September
2010.

ARM Ltd, “ARM IHI 0033A AMBA 3 AHB-Lite Protocol V.1 Specification”, June
2006.

Calix A Recado , Sankaran Rajesh "On the feasibility of an embedded machine learning
processor for intrusion detection,” IEEE international conference on Big Data, 2016.

Maas Martin, Love Eric, Stefanov Emil, Tiwari Mohit, Song Dawn “PHANTOM:
Practical Oblivious Computation in a Secure Processor”, university of California
Berkeley.

Wang yi, Shilong Lu ”Design and implementation of a SOC based security coprocessor
and program protection mechanism for WSN”.

ARM Ltd, “AT510-DC-80001-r0Op0-00-rel0 ARM Cortex MO Design Start Release
Note” August 2010.

ARM Ltd, “ARM DDI 0432C Cortex MO Revision rOp0 Technical Reference Manual”,
November 20009.

ARM Ltd, “ARM DUI 0497A Cortex MO0 Devices Generic User Guide”, October 2009.
Xilinx, “DS312 Spartan-3E FPGA Family: Datasheet”, August 2009.
Digilent, “Digilent Spartan 3E Starter Kit Reference Manual”, June 2008.

Costan victor, Lebedev llia, and Davedas Srinivas , MIT CSAIL “Sanctum: Minimal
Hardware Extension for Strong Software Isolation”.

“Private Core,” http://www.privatecore.com/.

J. Agat, “Transforming out Timing Leaks,” in POPL, 2000.

A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitigation of timing
channels,” in CCS, 2010.

A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating Timing Channels in

Compute Clouds,” in CCSW, 2010.

65

[15]

[16]

[17]

[18]

[19]

[20]

[21].

[22]

[23].

[24].

[25].

[26].

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek, and
K. Asanovic, “Chisel: Constructing Hardware in a Scala Embedded Language,” in

DAC, 2012.

K.-M. Chung, Z. Liu, and R. Pass, “Statistically-secure oram with “O (log2 n) overhead,”
http://arxiv.org/abs/1307.3699, 2013.

B. Coppens, |. Verbauwhede, K. D. Bosschere, and B. D.Sutter, “Practical Mitigations for
Timing-Based-Channel Attacks on Modern x86 Processors,” in SP,2009.

J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: Deterministic Shared Memory
Multiprocessing,” in ASPLOS, 20009.

C. W. Fletcher, M. v. Dijk, and S. Devadas, “A Secure Processor Architecture for
Encrypted Computation on Untrusted Programs,” in STC, 2012.

C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova, and D. Wichs, “Optimizing oram
and using it efficiently for secure computation,” in PETS, 2013.

1. Daemen and V. Rijmen, "AES proposal: Rijndael™ (1999).
http://www.chipcon.com/files/CC2431 Brochure.pdf,

2008-03-20.

http://www.jennic.com/files/support files/JN-DSIJN5121-

1 v8.pdf, 2008-03-20

R.L. Rivest, "The RC5 encryption algorithm", in: Workshop on Fast Software Encryption
(1995) pp. 86-96.

Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D.Tygar. "SPINS: Security Protocols for
Sensor Networks". In Mobile Computing and Networking 2001, Rome, Italy, 2001.

Karlof, N. Sastry, and D. Wagner. "TinySec: A Link Layer Security Architecture for
Wireless Sensor Networks”. In ACM Con! on Embedded Networked Sensor Systems

(SenSys '04), November 2004.

66

[27].

[28].

[29].

[30].

[31]

[33]

[34]

[35]

[36]

[37]

Xiaoguang Niu, Yanmin Zhu, Li Cui, Lionel M. Ni, "FKM: A Fingerprint-based Key
Management Protocol for SoC-based Sensor Networks", in Wireless Communications and
Networking Conference, 2009. WCNC 2009. IEEE, 2009

X. Huang, Z. Zhao , L Cui. "EasiSOC: Towards Cheaper and Smaller". Mobile Ad-hoc
and Sensor Networks 2005(MSN'05). New York: Springer-Verlag, 2005. 229-238.

Shilong Lu, Xi Huang, Li Cui, Ze Zhao, Dong Li. "Design and Implementation of an
ASIC-based Sensor Device for WSN Applications”. IEEE Transactions on Consumer
Electronics, 55(4): 1959-1967, November 2009.

Yi Wang, Shilong Lu, and Li Cui. "A Low Power Low BER Digital Base-band Design for
WSN SoC". Acta Electronica Sinica, 38(2A): 123-127, Feb. 2010

O. Goldreich, “Towards a Theory of Software Protection and Simulation by Oblivious
RAMs,” in STOC, 1987.

rr[32] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on Oblivious
RAMs,” J. ACM, 1996.

M. T. Goodrich and M. Mitzenmacher, “Privacy-Preserving Access of Outsourced Data
via Oblivious RAM Simulation,” in ICALP, 2011.

M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Privacy-preserving
Group Data Access via Stateless Oblivious RAM Simulation,” in SODA, 2012.

Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin, “OS-Sommelier: Memory-only Operating
System Fingerprinting in the Cloud,” in SoCC, 2012.

A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential Privacy Under Fire,” in
USENIX Security, 2011.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A.
J. Feldman, J. Appelbaum, and E. W. Felten, “Lest We Remember: Cold-boot Attacks on

Encryption Keys,” Commun. ACM, vol. 52, no. 5, 2009.

67

