

Consistency Detection in Software Requirement

Specifications Using Natural Language Processing

Techniques

Author

MUHAMMAD ASIF HASAN

FALL 2016-MS-16(CSE) 00000172238

MS-16 (CSE)

Supervisor

Dr. WASI HAIDER BUTT

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

SEPTEMBER, 2020

Consistency Detection in Software Requirement

Specifications Using Natural Language Processing

Techniques

Author

MUHAMMAD ASIF HASAN

FALL 2016-MS-16(CSE) 00000172238

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Software Engineering

Thesis Supervisor:

Dr. WASI HAIDER BUTT

Thesis Supervisor’s

Signature:_____________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

SEPTEMBER, 2020

i

Declaration

I certify that this research work titled “Consistency Detection in Software Requirement

Specifications Using Natural Language Processing Techniques” is my own work under the

supervision of Dr. Wasi Haider Butt. The work has not been presented elsewhere for

assessment. The material that has been used from other sources it has been properly

acknowledged / referred.

Signature of Student

MUHAMMAD ASIF HASAN

FALL 2016-MS-16(CSE) 00000172238

ii

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

MUHAMMAD ASIF HASAN

FALL 2016-MS-16(CSE) 00000172238

Signature of Supervisor

iii

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

 The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the College of E&ME, which will prescribe the terms and conditions of

any such agreement.

 Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

Acknowledgements

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work

at every step and for every new thought which You setup in my mind to improve it. Indeed I

could have done nothing without Your priceless help and guidance. Whosoever helped me

throughout the course of my thesis, whether my parents or any other individual was Your

will, so indeed none be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of

walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Wasi Haider Butt for his help

throughout my thesis and also for Software Requirement Engineering and Software

Development for Web courses which he has taught me. I can safely say that I haven't learned

any other engineering subject in such depth than the ones which he has taught.

I would also like to pay special thanks to Mr. Abdullah Khalil for his tremendous support and

cooperation. Each time I got stuck in something, he came up with the solution. Without his

help I wouldn’t have been able to complete my thesis. I appreciate his patience and guidance

throughout the whole thesis.

I would also like to thank Guidance Committee Members Dr. Arslan Shaukat and Dr.

Muhammad Usman Akram for being on my thesis guidance and evaluation committee. I am

also thankful to Babar, Faisal and Farhan for their support and cooperation.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

v

Dedicated to my exceptional parents and adored siblings whose

tremendous support and cooperation led me to this wonderful

accomplishment

vi

Abstract

Understanding of human language text in written form by a computer tool is possible

because of Natural language processing (NLP). NLP utilizes the principles of artificial

intelligence (AI). The creation of NLP soft wares is a difficult task because computers only

understand in some programming language which is precise, unambiguous and highly

structured. Natural language text is obviously not precise. It can also be ambiguous. The

linguistic structure of the sentences can also vary a lot due to slang, regional dialects and

social context. Contradictory and inconsistent sentences in a set of requirements is known as

conflicting requirements. In the Requirements Engineering phase of Software Development

Life Cycle (SDLC) software requirements are gathered, analyzed, negotiated back and forth

manually to come to a final requirements specification document that is free from a known

problem – conflicting requirements. By automating conflict detection during requirements

analysis phase, time, effort, and resources can be saved in going back and forth and checking

for conflicts manually. Natural Language Processing is a way to pre-process software

requirements contextually before a manual or automated model or algorithm can be applied

on them. A fully automated tool was developed in python language using NLTK toolkit

utilizing multiple NLP techniques to facilitate software requirement engineer in verifying the

software requirements for consistency issues and conflicts. This tool generates a traceability

matrix to identify which possible requirements have consistency issues.

Key Words: Conflict detection, Inconsistency detection, Automated requirements analysis,

Natural Language Processing (NLP), Software requirements, Cosine similarity, Traceability

Matrix, NLTK toolkit

vii

Table of Contents

Declaration ..i

Language Correctness Certificate ... ii

Copyright Statement ... iii

Acknowledgements ...iv

Abstract ...vi

Table of Contents .. vii

List of Figures ...ix

List of Tables .. x

CHAPTER 1: INTRODUCTION... 1

1.1 Background Study ... 1

1.1.1 Requirements Elicitation ... 1

1.1.2 Requirements Specification .. 2

1.1.3 Requirements Verification and Validation ... 2

1.1.4 Requirements Management .. 2

1.2 Inconsistency and Conflict Detection in Software Requirements ... 3

1.3 Software Development Life Cycle (SDLC) .. 3

1.4 NLP Techniques for Inconsistency and Conflict Detection .. 5

1.5 Consistency Issues and Conflicts in Requirements ... 9

1.6 Traceability Matrix.. 9

1.7 Problem Statement and Proposed Solution ... 11

1.8 Thesis Organization .. 11

CHAPTER 2: LITERATURE REVIEW .. 13

2.1 Review Protocol .. 13

2.1.1. Categories Definition .. 13

2.1.2. Research Questions ... 14

2.1.3. Selection and Rejection Criteria ... 14

2.1.4. Search Process .. 16

2.1.5. Quality Assessment... 17

2.1.6. Data Extraction and Synthesis .. 18

2.2. Research and Analysis .. 18

2.3. Gap Analysis ... 20

CHAPTER 3: PROPOSED METHODOLOGY ... 22

3.1 Targeted Problem .. 22

3.2 Proposed Solution ... 24

CHAPTER 4: IMPLEMENTATION .. 26

4.1 Development ... 26

CHAPTER 5: VERIFICATION AND VALIDATION .. 63

5.1 Case Study No.1 (Digital Library System) ... 63

5.1.1 Results .. 67

viii

5.2 Case Study No.2 (Hotel Management System) ... 72

5.2.1 Results .. 74

5.3 Case Study No.3 (Custom SRS with Alterations) ... 84

5.3.1 Results .. 87

CHAPTER 6: DISCUSSION AND LIMITATION .. 91

6.1 Discussion ... 91

6.2 Limitation .. 93

CHAPTER 7: FUTURE WORK .. 95

7.1 Conclusion and Future Work .. 95

REFERENCES .. 98

ix

List of Figures

Figure 2.1: Search Process.. 17

Figure 4.1: Python 3.7.4 Shell .. 26
Figure 4.2: Creating New Editor File ... 27
Figure 4.3: Importing Required Modules ... 27
Figure 4.4: Code for welcome screen and input from user ... 28
Figure 4.5: Output on shell ... 29
Figure 4.6: Example SRS requirements .. 30
Figure 4.7: Code for NLP lower case technique ... 31
Figure 4.8: Output on shell ... 31
Figure 4.9: Code for NLP sentence tokenization technique ... 32
Figure 4.10: Output on shell ... 33
Figure 4.11: Code for verification .. 33
Figure 4.12: Output on shell ... 34
Figure 4.13: Code for NLP word tokenization technique ... 35
Figure 4.14: Output on shell ... 36
Figure 4.15: Code for NLP stop words removal technique .. 37
Figure 4.16: Output on shell ... 38
Figure 4.17: Code for removing common punctuation marks .. 39
Figure 4.18: Output on shell ... 40
Figure 4.19: Code for NLP stemming technique .. 41
Figure 4.20: Output on shell ... 41
Figure 4.21: Code for NLP part of speech tagging technique .. 42
Figure 4.22: Output on shell ... 43
Figure 4.23: Code for creating training set ... 44
Figure 4.24: Output on shell ... 45
Figure 4.25: Code for creating vectors and check for semantic similarities ... 47
Figure 4.26: Output on shell ... 50
Figure 4.27: Code for creating a traceability matrix ... 52
Figure 4.28: Output on shell ... 54
Figure 4.29: Code for creating another type of traceability matrix .. 57
Figure 4.30: Output on shell ... 58
Figure 4.31: Code for creating another type of traceability matrix .. 61
Figure 4.32: Output on shell ... 62
Figure 5.1: Traceability Matrix Generated By Tool ... 68
Figure 5.2: Traceability Matrix Generated By Tool ... 75
Figure 5.3: Traceability Matrix Generated By Tool ... 88

x

List of Tables

Table 2-1: Details of research works per publisher .. 15
Table 2-2: Data Extraction and Synthesis ... 18
Table 2-3: Conflict Detection Models and Algorithms... 19
Table 2-4: Conflict Detection Tools ... 20

Table 5-1: Summary of Results .. 67
Table 5-2: Details of the Shortlisted Cases ... 69
Table 5-3: Summary of Results .. 74
Table 5-4: Details of the Shortlisted Cases ... 76
Table 5-5: Summary of Results .. 87
Table 5-6: Details of the Shortlisted Cases ... 89

1

CHAPTER 1: INTRODUCTION

This chapter offers a detailed introduction of the research. Section 1.1 discusses the

background study, Section 1.2 discusses the Inconsistency and Conflict Detection in

Software Requirements, Section 1.3 discusses about Software Development Life Cycle

(SDLC), Section 1.4 discusses about NLP Techniques for Inconsistency and Conflict

Detection, Section 1.5 discusses about Consistency Issues and Conflicts in Requirements,

Section 1.6 discusses about Traceability Matrix, Section 1.7 gives problem statement and

proposed solution and Section 1.8 contains thesis organization.

The process of examine client needs and designing, constructing, and testing end user

applications is part of software engineering. The requirements of the user needs to be

satisfied at the end. As computers understand programming language, a choice of

programming language over which the application has to be developed has to be decided

first. Software engineering is a practical application of engineering principles for software

development.

1.1 Background Study

 Requirement Engineering includes the tasks to define, document and maintain the

user requirements. This also includes the processes of gathering and defining privileges that

is to be provided by the system. The main activities included in Requirements Engineering

Process are as follows:

 Requirements elicitation

 Requirements specification

 Requirements verification and validation

 Requirements management

1.1.1 Requirements Elicitation

 The different ways used to gain information about the project aspects and

requirements are covered in this phase. Domain knowledge can be acquired from customers,

business manuals, the existing software of same type, standards and other stakeholders of the

project.

 Interviews, brainstorming, task analysis, Delphi technique, prototyping, etc. are some

2

of the practices used for requirements elicitation phase. However, this all does not create any

formal models of the specifications understood. But it extends the knowledge of the engineer

and thus helps in offering input in the latter stages.

1.1.2 Requirements Specification

 In this phase formal software requirement models are created. Models list all the

requirements which includes functional and also the non-functional. Any constraints are also

highlighted. During this phase more information might be required which can require further

requirement elicitation processes. Models used can include ER diagrams, data flow diagrams

(DFDs), function decomposition diagrams (FDDs), data dictionaries, etc.

1.1.3 Requirements Verification and Validation

 This phase will ensure that the software is working and performing the right

functions. This work is referred to as Verification. However, to ensure that the software is

working according to the customer needs is part of Validation. If these check are not placed,

bugs and errors in the later stages of software development life cycle will result a lot of

efforts and rework. Some of the methodologies to help includes Reviews, buddy checks,

making test cases, etc.

The main steps for this stage are as follows:

 The specifications shall be consistent with all the other specifications i.e. no two

specifications shall conflict with each other

 The specifications shall be complete in every aspect

 The specifications shall be achievable

1.1.4 Requirements Management

 This phase includes the tasks to analyze, document, track, prioritize and approve the

requirements with multiple stakeholders of software project. This all is covered in

Requirement Management. This all ensures the measure is taken for changing that might

happen in requirements. Software requirement specification is targeted to be as flexible and

modifiable as possible, so that any changes can be facilitated by end users in next stages of

development. Being able to modify the application as per specifications in a organized and

controlled manner is very important aspect of requirement engineering.

3

1.2 Inconsistency and Conflict Detection in Software Requirements

 For a software project to be a success, it is ensured a set of complete, consistent and

clear requirements are specified. In the requirements engineering process people from

multiple backgrounds and varying needs are included. So it gets challenging to fully satisfy

the requirements specified by all the stakeholders. Keeping in mind the project resources

available and limitations, the requirements engineer trade-off stakeholders needs. One of the

core reasons of an increase in cost and scheduled time which will also result in project

failure, is because of not understanding and managing requirements. Requirement conflicts

can be fatal.

 Gathering requirements can be a long and arduous task in the Software Development

Life Cycle (SDLC), and this task can result in errors that can be a cause of worry later on.

Understanding the root cause of false requirements is a necessity to avoid adverse effect of

eliciting and incorporating wrong requirements that can ultimately hinder the progress of an

efficient software project. The analysis and detection of inconsistency issues and conflicts in

the specifications step are one of the very important steps in requirements engineering.

1.3 Software Development Life Cycle (SDLC)

Software development life cycle (SDLC) is basically a framework. It defines activities

conducted at each step of the software development process. Development team of a software

organization follows the structure defined by SDLC. A detailed plan to develop, maintain and

replace specific tool is described in SDLC. A methodology to enhance the quality of software

and the overall development process is also covered in SDLC. Another name for this cycle is

knows as software development process. Implementing the best practices and stages of this

cycle will ultimately make the project work in a smooth, efficient and productive way.

 Identify the current problems

“What don’t we want?” In this phase of cycle includes to get input from all stakeholders,

including customers, salespeople, industry experts, and programmers. It also covers to take

lessons from the strengths and weaknesses of the current tool with an enhancement as the

goal.

4

 Plan

“What do we want?” In this phase of cycle includes a detailed specification of the

specifications of the new application and determines the cost and resources required by the

software team. The risks involved and possible sub-plans for softening those risks are also

enlisted. At the end of this phase, a Software Requirement Specification document is created.

 Design

“How will we get what we want?” In this phase of cycle involves the creation of a design

plan from the software specifications. This is also called the Design Specifications. This plan

is then checked by all the stakeholders’ feedback and suggestions are collected. To

incorporate and collect the stakeholder input into this document, things become little difficult,

however, this is very important. If this phase is not focused properly and is not a success, this

will cause in cost overruns or a total failure of the software project at worst.

 Build

“Let’s create what we want.” In this phase of cycle the development of the tool is done by

writing all the actual code. This is not a very complicated step, however, only if the earlier

stages have been followed with focus to detail.

 Test

“Did we get what we want?” In this phase of cycle testing for defects and deficiencies are

involved. Until the product meets the original specifications, correction of problems are done.

 Deploy

“Let’s start using what we got.” In this phase of cycle the task happens in a restricted way

at first. Based on the input from users, more changes are made.

 Maintain

“Let’s get this closer to what we want.” In reality the planning never fully turn out to

perfection. Updating and advancing the software to match the conditions that change in real

world are accommodated as well.

 The SDLC has been changed a lot because of the DevOps movement. More and more

stages of the entire development processes are becoming the responsibility of Developers.

When the use of the same toolset to check performance and highlight defects from inception

are done by development and Ops teams, this helps to bring a common language and quicker

handoffs between both teams. During development, QA, and production multiple APM tools

can be utilized. This will ensure that the same toolset across the entire development lifecycle

is utilized.

5

The popular SDLC examples and models are listed below:-

 Waterfall Model

The oldest and simplest model of SDLC is Waterfall Model. The steps and method

involves finishing one phase before the next is started. A mini-plan is available for every

phase and each phase “waterfalls” into the next. But a disadvantage of this methodology is

that if little of details are incomplete, it can pause up the entire process.

 Agile Model

In Agile Model the process is divided into cycles and provides a working software very

quickly. A successive releases are produced using this model. As each version is tested, a

feedback input is incorporated into later versions. Robert Half has pointed out an important

disadvantage of this model. He tells that this model focuses heavily on stakeholder’s

interaction and this can ultimately lead the project in the fatal direction in many cases.

 Iterative Model

Repetition is greatly involved in this model. A version can be developed by developers

very quickly. This also results is relatively small cost and to test and improve it through rapid

and successive versions is quite simple. However a drawback of this model is that it can

consume up resources quickly if left uncontrolled.

 V-Shaped Model

This model is an enhanced version of waterfall model. In this model each stage of

development is tested. However a drawback is that, it can go into a complete roadblock.

 Big Bang Model

This model is for small projects. This model focusses on deploying most of the resources

at the development. But a detailed requirements specification stages of the other methods is

not focused in this method.

 Spiral Model

This model is very flexible. This is quite similar to iterative model as it also focusses on

repetition. The planning, design, build and test phases are gone through over and over again

with enhancements being done side by side.

1.4 NLP Techniques for Inconsistency and Conflict Detection

 If requirement conflicts are not managed properly, according to multiple studies this

results in project failure. This is because by cost and lack of time issues. To prevent re-

iterations of all stages of project life-cycle, it is important to detect and fix conflicts in early

stages. Requirement elicitation and analysis is one of the main step in the development of a

6

product. Usually this involves a list of reasons that can hinder proper and efficient

requirements elicitation, analysis and specification. One of the issues faced is conflict

emergence between requirements. If the requirements are not processed and issues not found

and corrected, the base of a product starts as hollow. For software requirements there have

been methods and techniques introduced and adapted over the years to weed out the conflicts,

inconsistencies, and ambiguities amongst other issues. One of the most commonly used

technique is Natural Language Processing (NLP) on a set of requirements. NLP is done on

any set of requirements using a number of pre-processing techniques.

 The communication that happen between natural language and computers is based on

Natural Language Processing (NLP) techniques. Despite this technology has been around for

a good long time, but it has been greatly taken for granted. An example of NLP technology

that public use almost daily includes Spelling Checks.

Following are some types of commonly used natural language processing techniques:-

 Sentence Tokenization

 Dividing paragraphs of written language into its subsequent sentences is part of

Sentence Tokenization. This is also called sentence segmentation. The methodology is quite

simple. As we know that we can break apart the sentences in English or any other language

based on punctuation marks.

 Word Tokenization

 Dividing individual sentences of written language into its composed words is part of

Word Tokenization. This is also called Word Segmentation. As we know space is a good

indication of a word token in English or any other language which uses Latin alphabet.

 But this can however still cause some issue of only by space splitting is done to

achieve results. As we know there are some English compound nouns that are written with

spaces. To cater this issue a library is deployed to achieve wanted results.

 Text Lemmatization and Stemming

 The text can often contain multiple forms of a word such as drive, drives, driving due

to grammar. Related words with a similar meaning are also found such as nation, national,

nationality. Reducing the inflectional forms and derivationally related forms of a token to a

7

common core form is part of both stemming and lemmatization. Both are special cases of

normalization. But they are not the same thing.

 A crude heuristic activity that chops off the ends of tokens to is part of stemming

process. This is based on the removal of derivational affixes.

 However, the utilization of a vocabulary and morphological analysis of words to do

this task is part of lemmatization process. The aim is to get rid of inflectional endings only

and to return the base or dictionary form of a token. This form of word is called as the

lemma.

 So it can be seen that a stemmer works without learning of the context, and therefore

cannot understand the difference between tokens which have different meaning. The meaning

or semantics depend on part of speech. But they do have some pros. They are quite easy to

implement and they often are also fast. This do cause a reduced “accuracy” but that may not

matter for some environments.

 Stop words

 The words which are removed out before or after processing of the content are

included in Stop words. As they cause a lot of noise if input into machine learning, so they

are omitted out of text. Commonly found words such as “and”, “the”, “a” in a natural

language are included in stop words. However there is no one universal list of stop words

which can be used as a standard. So they change according to the environment and

application.

 Stop words comprise of the most common words such as “and”, “the”, “a” in a

language, but there is no even a once standard universal list of stop words. The list of the stop

words can change depending on your software. The NLTK toolkit has a library of stop words

that are also based on commonly found stop words.

 Bag-of-words

 Machine learning algorithms require quantitative representation. A raw text cannot be

directly processed. So it is required to transform text in to vectors of numbers and this

process is called feature extraction. A simple feature extraction methodology used when we

work with text utilizes the bag-of-words model. This is quite popular model. The occurrence

of each word within a text is described in this model.

8

To use this model, we need to:

1. Design a vocabulary of known words (also called tokens)

2. Choose a measure of the presence of known words

 The details about the order or structure of words is removed. This is the reason it is

called a bag of words. In this model the learning is based on whether a known word occurs in

a document. However, it doesn’t focus on where is that word in the document. As similar

documents have similar contents, this is the motivation of this model. Furthermore from the

contents, a learning of something about the meaning of the document can also be attained.

 Machine learning algorithms to text and speech as applied using NLP techniques. A

leading platform for building Python programs is NLTK (Natural Language Toolkit). These

programs work with human language information. Breaking a paragraph of written language

into its component sentences is part of Sentence tokenization. The issue of dividing a

sentence of written language into its component words is part of Word tokenization. Both

stemming and lemmatization bring down inflectional forms or derivationally related forms of

these tokens in to core common token. The words which are removed out before or after

processing of text are included in stop word list. A simple feature extraction technique is

employed when we work with text utilizes bag-of-words methodology. This model details

about the occurrence of each word within a content. A statistical measure can also be used

based on TF-IDF. This analyzes the importance of a word to a document in a collection or

corpus.

 A popular tool for creating Python programs to work with natural language data is

NLTK (Natural Language Toolkit). This toolkit has simple interfaces to many corpora and

lexical resources. It has modules for text processing libraries that are used for classification,

tokenization, stemming, tagging, parsing, and semantic reasoning. This is a free and open

source toolkit. This is basically a community-driven project. This toolkit provides an

environment where Python tools that work with natural language information can be build

using the principles of Natural Language Processing techniques.

 Natural Language Toolkit also includes graphical demonstrations and testing data

sets. It also has a cook book. This book explains the fundamentals behind the language

processing tasks that NLTK deploys. This was authentically written by Steven Bird, Edward

Loper and Ewan Klein for utilization in development and education. Areas of computational

9

linguistics as well as programming principles for Python are also guided in it. This makes it

ideal for linguists who have no detailed concepts in programming. Also for engineers and

researchers that require to go into computational linguistics it is very helpful. And for of

course the students and educators utilize them for learning and educational purposes. 50

corpora and lexical sources are included in this toolkit. This includes the Penn Treebank

Corpus, Open Multilingual WordNet, Problem Report Corpus, and Lin’s Dependency

Thesaurus.

1.5 Consistency Issues and Conflicts in Requirements

A cross check of requirements is done for consistency checking. It is made sure that

no requirements should be contradictory to each other. So N X N operations are required to

be performed, where N states for number of requirements. There are three types of

inconsistencies which are mentioned as below:-

 Terminology clash: this refers to the same concept named differently in different

requirements e.g. library management: “borrower” vs. “patron”

 Designation clash: this refers to the same name for different concepts in different

requirements e.g. “user” for “library user” vs. “library software user”

 Structure clash: this refers to the same concept structured differently in different

requirements e.g. “latest return date” as time point (e.g. Fri 5pm) vs. time interval

(e.g. Friday)

 A strong conflict is one in which requirements are not justifiable together i.e. logically

inconsistent: S, not S. For example “participant constraints may not be disclosed to anyone

else” vs. “the meeting initiator should know participant constraints”.

 A weak conflict is one in which requirements are not justifiable together under some

boundary condition, i.e. strongly conflicting if B holds: potential conflict. This is much more

frequent in requirement engineering. For example “patrons shall return borrowed copies

within X weeks” vs “patrons shall keep borrowed copies as long as needed”.

1.6 Traceability Matrix

During software development a table which is called a traceability matrix is used. It

assists to determine the connectivity of a relationship by correlating any two baselined

10

requirements using a many-to-many relationship comparison. With the high-level

requirements this is quite often used. It is also utilized with detailed requirements of the

application to the matching parts of high-level design, detailed design, test plan, and test

cases.

To check if the current project requirements are being met, a traceability matrix is a

great help. It also helps in the development of a request for proposal, software requirements

specification, various deliverable documents, and project plan activities. An identifier is used

for every requirement of a SRS and placed in the left column. In the top row identifiers for

the other requirements are placed. A mark is placed in the intersecting cell when a

requirement in the left column is related to a requirement across the top. For each row and

each column, the quantity of relationships are added up. This figure will give an idea of the

mapping of the two items. If a value is null, it indicates that no relationship exists. The goal is

to determine if a relationship happens. If the relationship is too complex, value will be large

and hence, it should be simplified.

It is a good practice to add the relationships to the requirements for both backward

traceability and forward traceability. This eases down the creation of traceability matrices.

Traceability matrix can also be used in the form of requirements vs test cases. During the

development of a new software, this is a very important tool. This will also ensure

transparency and completeness of the product testing.

Testing matrix shows a great help when it comes to convince the stakeholders that all

the needs have been met and there are no loopholes in the product at the time of software

delivery and installation. It often involves columns such as requirement, document reference

number, bug ID and test case. The columns involved makes things quite manageable as the

tracking of any requirement is made by the user using defect ID.

Some of the usual entities that are involved in software testing matrix are requirement

ID, risks involved, requirement type and description, unit test cases, integration test cases,

user acceptance test cases and trace to test script. For the testing team, traceability matrix is

very advantageous.

Some of these are as mentioned below:

 In each stage of the SDLC, the matrix helps the developer team to be sure about the

inclusion of all the user needs

 This matrix also confirms that all the specifications have been traced in to the test

cases

11

 This matrix also facilitates the user that the software is developed according to the

specification conveyed by them

 Any missing functionalities are also quickly and easily identified

1.7 Problem Statement and Proposed Solution

 Due to the growing complexity of products, it has become vital to find out issues in

software requirements at an early stage. Detecting conflicts has become difficult in parallel.

Moreover, hidden conflicts can cause issues in all the leading steps in a products

development lifecycle. To avoid these problems, conflicts must be found at the requirements

elicitation phase. Without a proper method to evaluate requirements or a set of rules to

identify general categories of conflicts in requirements, the problem statement becomes moot.

 The requirement engineer is supposed to find all the conflicts and inconsistency issues

in software requirements in order to avoid bugs and errors at the later stages of software

development life cycle. A bug and error at the later stage to project life cycle is going to

increase the cost of software project exponentially. But doing this job as much as it is

essential is far more complicated and cumbersome. Imagine if there is a software requirement

specification document having 5 hundred requirements in it. The requirement engineer is

supposed to check 124500 (NxN / 2 - 500) possible cases of checks. This a humanly very

difficult task to do but it is done throughout the world and heavy project budgets being paid

to requirement engineer teams to ensure a perfect job.

 If the use to computing power can be utilized to help requirement engineers, this can

greatly reduce project cost and most importantly time. This will also result in an efficient way

of working and will require a smaller requirement engineer team. Hence, in order to detect

inconsistency issues and conflicts in software requirements, the author and his supervisor

decided to develop a fully automated tool, in python language, that will be using Natural

Language Processing techniques and semantic similarity algorithms to facilitate the

requirement engineer in this difficult task of software development life cycle.

1.8 Thesis Organization

Organization of the thesis is as follows:-

Chapter 1: Introduction offers a brief introduction containing the Background Study,

Inconsistency and Conflict Detection In Software Requirements, Software Development Life

12

Cycle (SDLC), NLP Techniques for Inconsistency and Conflict Detection, Consistency

Issues and Conflicts in Requirements, Traceability Matrix, Problem Statement and Proposed

Methodology and Thesis Organization.

Chapter 2: Literature Review provides the detailed literature review highlighting the work

done in the domain of conflict detection in software requirements. The systematic literature

review is composed of three main sections. First section is review protocol which gives

details on the methodology using which the literature review is carried out. Section two offers

details on research works in this area. Whereas, section three highlights the research gaps that

were encountered.

Chapter 3: Proposed Methodology covers the details of proposed methodology used for

identification of problem.

Chapter 4: Implementation presents the detailed implementation regarding the proposed

tool and all the modules that were created for it.

Chapter 5: Validation provides the validation performed for our proposed methodology

using three important case studies. The three case studies selected for validation purposes are

of different domains and different sizes to make sure that our proposed approach works on

every case.

Chapter 6: Discussion And Limitation contains a brief discussion on the work done and

also contains the limitations to our research.

Chapter 7: Conclusion And Future Work concludes the research and recommends future

works for the research.

13

CHAPTER 2: LITERATURE REVIEW

This chapter presents the literature review carried out for the research. Section 2.1

discusses the review protocol, Section 2.2 presents the results obtained from the review

protocol and Section 2.3 highlights the research gaps which form the foundation of our

research.

The phase to define the expectations of the users for the software that is to be created

or modified is covered in Requirements Analysis. All the steps that are done to identify the

needs of different stakeholders are involved in this phase. To analyze, document, validate and

manage application or system requirements is the entire requirement analysis process.

2.1 Review Protocol

A systematic literature review (SLR) is type of research literature review which will

identify, select and critically appraise research in order to answer a clearly formulated

questions. This review implements an explicitly defined protocol or plan, where the criteria is

clearly stated before the review is started. A comprehensive and transparent search is

conducted over different research repositories. This will include a plan for the strategy which

will focus to answer the research questions lied down. The type of information searched,

critiqued and reported within a specific timeframes is identified by this review process. This

review includes the search terms, search strategies (including database names, platforms,

dates of search) and limits.

Review protocol development for this study was based on already defined Systematic

Literature Review by Kitchenham. This review protocol demonstrates the category definition,

criteria of selection and rejection, assessment of quality, extraction of data and the

mechanism used for data synthesis. The details of these elements are given in following

subsections.

2.1.1. Categories Definition

Three categories to simplify the data extraction and synthesis process were defined.

The details of each of these categories is given as below.

 Natural Language Processing Techniques:

This category include the use of Natural Language Processing (NLP) techniques in

detection of conflicts in software requirements irrespective of a specific industry. This

14

includes all studies that make the use of one or more techniques of NLP on a set of

requirements to focus on conflict detection.

 Software Requirements:

This category includes software requirements and the issues found in requirements

during elicitation, analysis or specifications phase of requirements in the development

lifecycle of a product.

 Conflict Detection:

This category deals with all the studies that focused on conflict detection in software

requirements. This includes all the software requirements based studies that focused

on finding conflicts. Conflict detection alone in software specific requirements were

not quite enough, so any set of requirement for any product that is focused on conflict

detection was included to start with a database of studies.

2.1.2. Research Questions

Research questions for which this Systematic Literature Review was focused to find answers

for, are as follows:-

 What are significant researches reported from 2009-2019 where conflict detection in

software requirements is focused?

 What are significant researches reported from 2009-2019 where conflict detection in

software requirements using Natural Language Processing Techniques is focused?

 What are significant models/algorithms proposed or used by researchers to aid

conflict detection in software requirements during 2009-2019?

 What are significant tools proposed or used by researchers to aid conflict detection in

software requirements during 2009-2019?

 Is there any fully automated tool available in researches for conflict detection using

Natural Language Processing techniques during 2009-2019?

To answer the above questions a Systematic Literature Review was performed. 30

research papers were selected from 4 scientific libraries ELSEVIER, IEEE, SPRINGER and

ACM in the year bracket of 2009-2019.

2.1.3. Selection and Rejection Criteria

In order to achieve precision in literature selection, six constraints are defined. On

basis of following constraints, research papers will either be selected or rejected. The studies

that do not comply with and do not fulfill these six parameters are not considered. (1)

15

Nominated Research article will be selected only if it is relevant to our research perspective.

Only those papers were selected that dealt with conflict detection in requirements and Natural

Language Processing. Further selection was done on the basis of the responses of the research

questions that were asked for. Furthermore, the unrelated research studies that did not include

both conflict detection and NLP in them were rejected. (2) Research work published between

2009 and 2019 will be selected only. It was ensured that the collection of the latest studies

were included by opting for those studies which lie in the years 2009 to 2019, and by not

considering those researches that lie outside of our selected time range. (3) Primarily four

popular scientific databases were used, which are ELSEVIER, IEEE, SPRINGER, and ACM;

to ensure the selection of authentic and state of the art research works we opted for those

articles which have been brought forward by the specified publishers. (4) Result-oriented

studies were to be opted that are model/algorithm oriented. (5) Redundancy in research

studies was to be evaluated and only most outstanding one of them were to be used. (6)

Selected researches that proposed algorithms or used existing models for conflict detection

were to be selected.

Table 2-1: Details of research works per publisher

Sr.# Database Type Selected Research No. of Researches

1 ELSEVIER Conference

Journal

[6, 9]

[31,34]

6

2 IEEE Conference

Journal

[10-18]

[37-39]

12

3 SPRINGER Conference

Journal

[20]

1

4 ACM Conference

Journal

[21-28]

[41-43]

11

16

2.1.4. Search Process

According to the selection and rejection criteria “2009–2019” year-filter on all the

search terms to get the searches put out during 2009–2019, merely. Four prime databases of

publication (i.e. Springer, IEEE, Elsevier and ACM) were used to perform the systematic

literature review process. “AND” operator was used to accomplish the possible investigation

outcomes necessary for this study. Some of the search terms included (e.g. Conflict detection,

software requirements, inconsistency detection, automated requirement analysis, requirement

analysis, and NLP). The search flow process is as mentioned below:-

 Identification: Multiple search expressions were specified in four scientific databases

and got about 2347 results.

 Screening: About 1561 studies were excluded in the screening process because their

title of research did not comply with our criteria.

 Eligibility: About 693 researches were excluded by accessing and reading their

abstracts because they did not match with our selection and rejection criteria.

 Detailed Study: A thorough qualitative and quantitative study of 93 researches was

done by extracting their data and synthesizing it later for our research questions. After

detailed examination of 93 papers we rejected 63 studies which did not fulfill our

merit of quantitative and qualitative criteria.

 Selected Researches: Finally remaining 30 papers were included because they

comply with our set criteria for selection and rejection.

17

Figure 2.1: Search Process

2.1.5. Quality Assessment

Quality Assessment of research articles is very important because the result of this

research depends on the crucial results of nominated research articles. Quality assessment

principles were developed to ensure that high quality research is selected for this study.

Journal papers were also selected as they are more authentic than conference proceedings.

Only latest research articles were selected in the year limit from 2009-2019. Most reliable

scientific databases to achieve quality results were selected which includes IEEE and

Springer. The data evaluation of the researches is checked whether it is free from the

ambiguous statements and relies on the solid facts and theoretical discerning. Uniqueness of

the work is another critical feature. Therefore, only those research studies were included that

are published in at least one of the following four well-known and internationally

acknowledged scientific databases.

18

2.1.6. Data Extraction and Synthesis

Data extraction and synthesis is performed by comprehensive study of selected

researches. Table 2.2 shows the data extraction and synthesis performed for our chosen

researches to find the answers of our research questions.

Table 2-2: Data Extraction and Synthesis

Sr.# Description Details

1 Bibliographic

information

Author, Title, Publication Year, Publisher, Type of

Research (Journal/Conference)

Data Extraction

2 Overview Main objective of the selected paper

3 Results Results acquired from the selected paper

4 Data Collection Qualitative and quantitative method used

5 Assumptions To validate the outcome

6 Validation Manual and Automated testing comparison

Data Synthesis

7 Model/Algorithm

selection

Models and Algorithms used for conflict detection

8 Tool Selection Tools used for conflict detection

2.2. Research and Analysis

The literature from 30 research papers that were utilized for this work have been

summarized in the Table 2-3 and Table 2-4. This has been done to acknowledge the relevant

research work.

19

Table 2-3: Conflict Detection Models and Algorithms

Sr.# Conflict Detection Models Total

References

References

Identification

1 AOP

UML Models, OMG Models (MDA),

Theme/Doc Approach, KAOS

4 [21, 27, 31, 34]

2 Ontology-based

(OWL, Generalized Upper Model, Domain

Ontologies, Ontology of Uncertainty)

4 [6, 14, 16, 33]

3 Machine Learning

(Regression Linear Model, Multi-Sentence

Modelling of Requirements, K-means)

3 [15, 25, 32]

4 Data Models

(Semantic Data Models, Verb-centric

General Semantic Model)

2 [16, 28]

5 Algebraic Models 1 [23]

6 Self-Proposed 5 [9, 13, 25, 26, 28]

20

Table 2-4: Conflict Detection Tools

Sr.# Conflict Detection Tools Reference Identification

1 ReVerb [6]

2 SEMIOS [15]

3 ReqWiki [27]

4 cTAKES [23]

5 Text Based Retrieval System [9]

6 SAT-Analyzer [18]

7 Drools Expert [25]

8 Algebric Grammar Graph (AGG) [21]

9 General Architecture for Text Engineering (GATE) [25]

2.3. Gap Analysis

This section discusses the research gaps and limitations encountered in previous

literature. Analysis was done on around 30 researches, after an extensive screening process to

look for researches that provide automated conflict detection for software requirements. The

studies also show that how few have focused on the use of automated tools altogether.

The gap found in our selected studies was that there’s no research that focused on

using Natural Language Processing techniques to detect conflicts and inconsistency issues in

software requirements. There was no single fully automated tool available to facilitate

requirement engineer to do this cumbersome job. Though partially implemented or semi-

automated tools were available but that cannot help a requirement engineer in real life unless

he/she gets workable tool right in his/her computer machine installed. Also there were models

and algorithms available in literature but they are useful for research purposes only and

cannot help a requirement engineer either.

Hence, after a detailed meeting between the author and his supervisor, it was decided

that this applied research gap shall be addressed. The goal was decided to use Natural

Language Processing techniques along with semantic similarity algorithms to find solution to

21

this gap. If the goal was achieved, a fully automated that is capable to produce a Traceability

Matrix for the entire set of requirements shall be implemented in some high level language

that is popular in this era.

22

CHAPTER 3: PROPOSED METHODOLOGY

This chapter contains details of the proposed methodology. Section 3.1 discusses the

targeted problem and Section 3.2 provides detailed proposed solution.

Requirements elicitation is a step in the Software Development Lifecycle (SDLC). In

fact, it is the first phase of the software development lifecycle through which quality software

can be developed according to the customer’s need and handed over to them in the given

time. Detecting inconsistency issues at this stage of SDLC is very important because if these

issues are not addressed at this stage the cost to fix errors at the later stages of SDLC will be

much greater.

3.1 Targeted Problem

 The process of the production of application with the highest quality and lowest cost

in the shortest time is part of the Software Development Life Cycle (SDLC). The detailed

plan for how to develop, alter, maintain, and replace an application system is included in this

plan.

 Multiple steps are involved in this cycle which include plan, design, build, test and

deployment. Waterfall model, spiral model, and Agile model are some the renowned models

of SDLC.

 The beauty of this cycle is that it lowers the cost of software development while side

by side improve the quality and shorten the production time. These goals achievable because

this cycle follows an organized plan that removes the typical pitfalls to software development

projects. Firstly, the evaluation of existing application for deficiencies is conducted. Next, the

specifications requirements of the new system are lied down. The application through the

stages of design, development, testing, and deployment is then created. SLDC can possibly

remove the redundant rework and after-the-fact fixes, by projecting costly mistakes like

failing to ask the end client for feedbacks.

 If this cycle is followed corrected, maximum level of management control and

documentation is possible. The developer team know what they are building are why. All of

the stakeholders and software development teams agree on the common goal up front and can

visualize a clear plan.

 SDLC implementation can move into a roadblock to development if there are pitfalls

23

that are left unchecked. If the needs of customers and all users and stakeholders are not taken

into proper consideration, this can cause a poor understanding of the project requirements at

the outset. Benefits and advantages of SDLC can only be achieved if the plan is followed

heart fully and faithfully.

 The basic purpose of requirements elicitation is to extract requirements of every scope

from the client and then to process those given requirements into a well-developed

requirements specification document which is then passed off to the next step and becomes

the basis of a baseline upon which all further phases are completed and the eventual software

product developed. Usually, this phase requires the longest time to complete because of the

requirement engineer’s going back and forth with the client’s or the requirement team from

the client’s end to sort out all requirements before they can be closed off and passed on to the

next phase as a final requirements specification document. This is done to weed out problems

that may arise due to human error such as ambiguity in meaning, conflict and inconsistency

in needs, or incompatible priorities of multiples stakeholders. In this research the focus was

on the inconsistent and conflicting requirements during the requirements analysis step in the

requirements engineering phase.

 In any product development, a concise and true requirements document is vital before

the development phases can commence. In requirements engineering, one of the steps is the

consistency checking and conflict detection of requirements to solve consistency and

contradictory requirements issue which can later on impact the development of a software

product. The quality of the requirements phase effects the overall quality of the subsequent

phases and hence, the software product. Having a good software requirements specification

(SRS) document is essential to a good final product.

 To determine the needs or conditions to meet the new or altered software or project is

focused in Requirements analysis phase. Conflicting specifications of the multiple

stakeholders, and to analyze, document, validate and manage the software or system

specifications is taken into consideration. For the success or failure of an application or

software project, requirements analysis is very important part of it. The specifications should

be documented, actionable, measurable, testable and traceable as well. They should be

specified to a level of detail sufficient for application design.

24

3.2 Proposed Solution

 An automated algorithm based on Natural Language Processing (NLP) techniques

was proposed. NLP techniques include Parts of Speech (PoS) tagging, word tokenization,

stemming, and stop word removal amongst many others. NLP techniques can be used by

importing Natural Language Processing Toolkit (NLTK), which is the most generally used

toolkit available and can be used on various platforms.

 This work starts off with inputting a series of lines together in a joint thread of text,

separated by full-stops. In order to make each requirement in to lower case, the first of the

NLP technique that is used is text lowercase. Once this have been achieved, a lowercase

version of requirements, then another NLP technique to split each requirement into individual

sentences is applied. This technique is called sentence tokenization.

 Once this have been achieved, individual list of requirements, a verification check in

this tool has been put in place to determine the number of requirements successfully detected

by software. This is displayed to user so that he/she can verify that software has correctly

detected all the requirements or not.

 Afterwards, another NLP technique to convert all the sentence tokens in to word

tokens is used. This technique is called word tokenization. Once all requirements are in the

form of word tokens, all the stop words present in the requirements were removed. To do

this, another NLP technique which is called stop word removal was utilized.

 Once the word tokens are free from stop words, common punctuation marks like full

stops and commas from the tokens were removed. Once these were removed, another NLP

technique to do stemming of the word tokens was utilized. This technique is called word

stemming.

 Afterwards, part of speech tags to each word token were allocated. To do this, another

NLP technique called part of speech tagging was utilized. Now it was needed to create a

training set called dictionary or vocabulary. So an algorithm was developed to produce this

artificial intelligence in this tool.

 Once this dictionary was created, all the requirements were converted into numerical

vectors. Then these vectors were checked for cosine similarity to achieve similarity scores.

Once all the scores were available they were organized into three types of traceability

25

matrices.

 The first traceability matrix shows result with score values. The second one shows in

the form of PC and NC, representing possible conflict and no conflict respectively. The last

one shows in the form of PC and --, representing possible conflict and blacks (no conflicts)

respectively.

26

CHAPTER 4: IMPLEMENTATION

In this chapter the use of NLP techniques along with cosine similarity to ultimately

develop a fully automated tool for conflict detection has been shown. Section 4.1 shows the

development and detailed algorithms of modules used in this tool.

To develop this tool, the first decision that had to be taken was to choose which

programming language should be opted for coding. It was decided to use Python language.

The reason of choosing this language was because it has a very good compatibility with the

NLP Toolkit which was going to be integrated into this tool. The version of Python language

that was chosen was v3.7.4 which was at that time the latest version available to download.

Once the programming language was all setup and ready to be utilized, the NLP

Toolkit was downloaded that was intended to integrate into this tool. This NLP Toolkit was

NLTK v3.4.5 which was the latest version available to be downloaded at that time.

Once NLP Toolkit was setup and ready to be utilized, a couple of Python Libraries

which will be required to be used in this tool were further installed. These libraries included

gensim v3.8.1, numpy v1.17.2, jieba v0.39, scipy v1.3.1 and prettytable v0.7.2.

Finally the software environment that will be required to develop this tool were all

setup and ready to use. Windows 8.1 Professional was used over a laptop computer which

was available.

4.1 Development

Once the Python is opened to start developing a software, below is an example

snapshot of the Python Shell environment which will be noticed first.

Figure 4.1: Python 3.7.4 Shell

27

Then a new file was created to write the code for this tool by doing as below.

Figure 4.2: Creating New Editor File

Once the editor was launched, the writing of code started. It was needed to import a couple of

modules which would be required, by writing the following lines of code.

Python Algorithm

import nltk

from nltk.tokenize import sent_tokenize, word_tokenize

from nltk.corpus import stopwords

from nltk.stem import PorterStemmer

Figure 4.3: Importing Required Modules

28

The code for welcome screen and getting SRS requirements from user was written as below.

Python Algorithm

#Getting Requirements From User

print("")

print("")

print("Welcome To Automated Consistency Checking Tool")

print("")

print("")

print("Please Enter The List of Software Requirements Below, To Be Checked For

Automated Consistency Checking::")

print("")

req_set = input()

Figure 4.4: Code for welcome screen and input from user

Output

Welcome To Automated Consistency Checking Tool

Please Enter The List of Software Requirements Below, To Be Checked For Automated

Consistency Checking::

29

Figure 4.5: Output on shell

Now for example, lets input a couple of SRS requirements in to this tool.

Requirements

System should allow students to view their attendance. System should allow students to view

their grades. System should allow students to view their CGPA. System should allow faculty

members to add grades. System should allow faculty members to edit grades. System should

allow faculty members to mark attendance. Student grades should only be edited by deputy

controller once faculty members submit results. Whenever faculty members request, the

system should estimate CGPA. After training of two hours, everyone should be able, like

users to access the system. System should allow faculty members to change their passwords.

30

Figure 4.6: Example SRS requirements

The code to apply NLP technique to convert all the user requirements in to lower case was

written as below.

Python Algorithm

#Making The Requirements Into Lowercase

print("")

print("")

print("The Lowercase Version of Requirements, After NLP Processing Are As Follows::")

req_set_lowercase = req_set.lower()

print("")

print(req_set_lowercase)

31

Figure 4.7: Code for NLP lower case technique

Output

The Lowercase Version of Requirements, After NLP Processing Are As Follows::

system should allow students to view their attendance. system should allow students to view

their grades. system should allow students to view their cgpa. system should allow faculty

members to add grades. system should allow faculty members to edit grades. system should

allow faculty members to mark attendance. student grades should only be edited by deputy

controller once faculty members submit results. whenever faculty members request, the

system should estimate cgpa. after training of two hours, everyone should be able, like users

to access the system. system should allow faculty members to change their passwords.

Figure 4.8: Output on shell

The code to apply NLP technique to sentence tokenize all the user requirements was written

as below.

Python Algorithm

#Performing Sentence Tokenization

32

print("")

print("")

print("The Sentence Tokens of Requirements, After NLP Processing Are As Follows::")

req_set_sent_token = sent_tokenize(req_set_lowercase)

print("")

print(req_set_sent_token)

Figure 4.9: Code for NLP sentence tokenization technique

Output

The Sentence Tokens of Requirements, After NLP Processing Are As Follows::

['system should allow students to view their attendance.', 'system should allow students to

view their grades.', 'system should allow students to view their cgpa.', 'system should allow

faculty members to add grades.', 'system should allow faculty members to edit grades.',

'system should allow faculty members to mark attendance.', 'student grades should only be

edited by deputy controller once faculty members submit results.', 'whenever faculty

members request, the system should estimate cgpa.', 'after training of two hours, everyone

should be able, like users to access the system.', 'system should allow faculty members to

change their passwords.']

33

Figure 4.10: Output on shell

The code to verify the total number of user requirements entered was written as below.

Python Algorithm

#Determining The Number of Requirements Given

print("")

print("")

print("The Number of Requirements Provided By User Are Equal To::")

length = len(req_set_sent_token)

print("")

print(length)

Figure 4.11: Code for verification

Output

The Number of Requirements Provided By User Are Equal To::

34

10

Figure 4.12: Output on shell

The code to apply NLP technique to word tokenize all the user requirements was written as

below.

Python Algorithm

#Performing Word Tokenization

print("")

print("")

print("The Word Tokens of Requirements, After NLP Processing Are As Follows::")

req_word_token = [None] * length

for x in range(length):

 req_word_token[x] = word_tokenize(req_set_sent_token[x])

print("")

print(req_word_token)

35

Figure 4.13: Code for NLP word tokenization technique

Output

The Word Tokens of Requirements, After NLP Processing Are As Follows::

[['system', 'should', 'allow', 'students', 'to', 'view', 'their', 'attendance', '.'], ['system', 'should',

'allow', 'students', 'to', 'view', 'their', 'grades', '.'], ['system', 'should', 'allow', 'students', 'to',

'view', 'their', 'cgpa', '.'], ['system', 'should', 'allow', 'faculty', 'members', 'to', 'add', 'grades', '.'],

['system', 'should', 'allow', 'faculty', 'members', 'to', 'edit', 'grades', '.'], ['system', 'should',

'allow', 'faculty', 'members', 'to', 'mark', 'attendance', '.'], ['student', 'grades', 'should', 'only',

'be', 'edited', 'by', 'deputy', 'controller', 'once', 'faculty', 'members', 'submit', 'results', '.'],

['whenever', 'faculty', 'members', 'request', ',', 'the', 'system', 'should', 'estimate', 'cgpa', '.'],

['after', 'training', 'of', 'two', 'hours', ',', 'everyone', 'should', 'be', 'able', ',', 'like', 'users', 'to',

'access', 'the', 'system', '.'], ['system', 'should', 'allow', 'faculty', 'members', 'to', 'change', 'their',

'passwords', '.']]

36

Figure 4.14: Output on shell

The code to apply NLP technique to remove stop words from all the user requirements was

written as below.

Python Algorithm

#Removing Stop Words

print("")

print("")

print("The Stop Words Free Version of Requirements, After NLP Processing Are As

Follows::")

stopWords = set(stopwords.words('english'))

req_stop_word = [[None]] * length

for x in range(length):

 temp = []

 for w in req_word_token[x]:

 if w not in stopWords:

 temp.append(w)

 req_stop_word[x] = temp

print("")

print(req_stop_word)

37

Figure 4.15: Code for NLP stop words removal technique

Output

The Stop Words Free Version of Requirements, After NLP Processing Are As Follows::

[['system', 'allow', 'students', 'view', 'attendance', '.'], ['system', 'allow', 'students', 'view',

'grades', '.'], ['system', 'allow', 'students', 'view', 'cgpa', '.'], ['system', 'allow', 'faculty',

'members', 'add', 'grades', '.'], ['system', 'allow', 'faculty', 'members', 'edit', 'grades', '.'],

['system', 'allow', 'faculty', 'members', 'mark', 'attendance', '.'], ['student', 'grades', 'edited',

'deputy', 'controller', 'faculty', 'members', 'submit', 'results', '.'], ['whenever', 'faculty',

'members', 'request', ',', 'system', 'estimate', 'cgpa', '.'], ['training', 'two', 'hours', ',', 'everyone',

'able', ',', 'like', 'users', 'access', 'system', '.'], ['system', 'allow', 'faculty', 'members', 'change',

'passwords', '.']]

38

Figure 4.16: Output on shell

The code to remove common punctuation marks from all the user requirements was written

as below.

Python Algorithm

#Removing Full Stops and Commas

print("")

print("")

print("The Full Stop, Comma, Colon And Other Characters Free Version of Requirements,

After NLP Processing Are As Follows::")

comma_fullstop = {',','.','’','``','"',"''"}

req_cleaned = [[None]] * length

for x in range(length):

 temp = []

 for w in req_stop_word[x]:

 if w not in comma_fullstop:

 temp.append(w)

 req_cleaned[x] = temp

print("")

39

print(req_cleaned)

Figure 4.17: Code for removing common punctuation marks

Output

The Full Stop, Comma, Colon And Other Characters Free Version of Requirements, After

NLP Processing Are As Follows::

[['system', 'allow', 'students', 'view', 'attendance'], ['system', 'allow', 'students', 'view', 'grades'],

['system', 'allow', 'students', 'view', 'cgpa'], ['system', 'allow', 'faculty', 'members', 'add',

'grades'], ['system', 'allow', 'faculty', 'members', 'edit', 'grades'], ['system', 'allow', 'faculty',

'members', 'mark', 'attendance'], ['student', 'grades', 'edited', 'deputy', 'controller', 'faculty',

'members', 'submit', 'results'], ['whenever', 'faculty', 'members', 'request', 'system', 'estimate',

'cgpa'], ['training', 'two', 'hours', 'everyone', 'able', 'like', 'users', 'access', 'system'], ['system',

'allow', 'faculty', 'members', 'change', 'passwords']]

40

Figure 4.18: Output on shell

The code to apply NLP technique of stemming to all the user requirements was written as

below.

Python Algorithm

#Stemming Words

print("")

print("")

print("The Stemmed Version of Requirements, After NLP Processing Are As Follows::")

req_stem = [[None]] * length

ps = PorterStemmer()

for x in range(length):

 temp = []

 for w in req_cleaned[x]:

 temp.append(ps.stem(w))

 req_stem[x] = temp

print("")

print(req_stem)

41

Figure 4.19: Code for NLP stemming technique

Output

The Stemmed Version of Requirements, After NLP Processing Are As Follows::

[['system', 'allow', 'student', 'view', 'attend'], ['system', 'allow', 'student', 'view', 'grade'],

['system', 'allow', 'student', 'view', 'cgpa'], ['system', 'allow', 'faculti', 'member', 'add', 'grade'],

['system', 'allow', 'faculti', 'member', 'edit', 'grade'], ['system', 'allow', 'faculti', 'member',

'mark', 'attend'], ['student', 'grade', 'edit', 'deputi', 'control', 'faculti', 'member', 'submit', 'result'],

['whenev', 'faculti', 'member', 'request', 'system', 'estim', 'cgpa'], ['train', 'two', 'hour', 'everyon',

'abl', 'like', 'user', 'access', 'system'], ['system', 'allow', 'faculti', 'member', 'chang', 'password']]

Figure 4.20: Output on shell

42

The code to apply NLP technique to allocate part of speech tags to all the user requirements

was written as below.

Python Algorithm

#Allocating Part of Speech Tags

print("")

print("")

print("The Part of Speech Tagged Version of Requirements, After NLP Processing Are As

Follows::")

req_pos_taq = [[None]] * length

for x in range(length):

 req_pos_taq[x] = nltk.pos_tag(req_stem[x])

print("")

print(req_pos_taq)

Figure 4.21: Code for NLP part of speech tagging technique

Output

The Part of Speech Tagged Version of Requirements, After NLP Processing Are As

Follows::

43

[[('system', 'NN'), ('allow', 'JJ'), ('student', 'NN'), ('view', 'NN'), ('attend', 'VBP')], [('system',

'NN'), ('allow', 'JJ'), ('student', 'NN'), ('view', 'NN'), ('grade', 'NN')], [('system', 'NN'), ('allow',

'JJ'), ('student', 'NN'), ('view', 'NN'), ('cgpa', 'NN')], [('system', 'NN'), ('allow', 'JJ'), ('faculti',

'JJ'), ('member', 'NN'), ('add', 'NN'), ('grade', 'NN')], [('system', 'NN'), ('allow', 'JJ'), ('faculti',

'JJ'), ('member', 'NN'), ('edit', 'NN'), ('grade', 'NN')], [('system', 'NN'), ('allow', 'JJ'), ('faculti',

'NN'), ('member', 'NN'), ('mark', 'NN'), ('attend', 'NN')], [('student', 'NN'), ('grade', 'NN'),

('edit', 'NN'), ('deputi', 'NN'), ('control', 'NN'), ('faculti', 'JJ'), ('member', 'NN'), ('submit', 'NN'),

('result', 'NN')], [('whenev', 'JJ'), ('faculti', 'JJ'), ('member', 'NN'), ('request', 'NN'), ('system',

'NN'), ('estim', 'VBZ'), ('cgpa', 'NN')], [('train', 'NN'), ('two', 'CD'), ('hour', 'NN'), ('everyon',

'CC'), ('abl', 'NN'), ('like', 'IN'), ('user', 'JJ'), ('access', 'NN'), ('system', 'NN')], [('system', 'NN'),

('allow', 'JJ'), ('faculti', 'JJ'), ('member', 'NN'), ('chang', 'NN'), ('password', 'NN')]]

Figure 4.22: Output on shell

The code to create a training set was written as below.

Python Algorithm

#Creating Master Dictionary

print("")

print("")

print("The Master Dictionary/Vocabulary of Requirements, After NLP Processing Are As

Follows::")

dictionary = set(req_stem[0])

44

for x in range(length):

 dictionary = dictionary.union(set(req_stem[x]))

print("")

print(dictionary)

Figure 4.23: Code for creating training set

Output

The Master Dictionary/Vocabulary of Requirements, After NLP Processing Are As Follows::

{'faculti', 'add', 'view', 'mark', 'member', 'allow', 'estim', 'hour', 'like', 'submit', 'chang', 'system',

'edit', 'attend', 'access', 'train', 'password', 'abl', 'two', 'whenev', 'result', 'student', 'request',

'user', 'everyon', 'control', 'grade', 'cgpa', 'deputi'}

45

Figure 4.24: Output on shell

The code to create vectors of all the user requirements and checking them for semantic

similarities was written as below.

Python Algorithm

#Similarity Check

print("")

print("")

print("The Vector of Requirements, After NLP Processing Are As Follows::")

print("")

dictionary = {}

m=0

similarity = []

for m in range(length):

 for x in range(length):

 Vec1 =[]

 Vec2 =[]

 dictionary = set(req_stem[m])

 dictionary = dictionary.union(set(req_stem[x]))

 for w in dictionary:

 if w in set(req_stem[m]): Vec1.append(1)

 else: Vec1.append(0)

46

 if w in set(req_stem[x]): Vec2.append(1)

 else: Vec2.append(0)

 c = 0

 for i in range(len(dictionary)):

 c+= Vec1[i]*Vec2[i]

 cosine = c / float((sum(Vec1)*sum(Vec2))**0.5)

 similarity.append(round(cosine*100))

 print('Vec',m+1,'For Req',m+1)

 print(Vec1)

 print("")

print("")

print("The Cosine Similarity/Consistency List of The Vector of Requirements, After NLP

Processing Are As Follows::")

print("")

print(similarity)

47

Figure 4.25: Code for creating vectors and check for semantic similarities

Output

The Vector of Requirements, After NLP Processing Are As Follows::

Vec 1 For Req 1

48

[0, 0, 1, 0, 1, 1, 0, 1, 1]

Vec 2 For Req 2

[0, 0, 1, 0, 1, 1, 0, 1, 1]

Vec 3 For Req 3

[0, 0, 1, 0, 1, 1, 0, 1, 1]

Vec 4 For Req 4

[1, 1, 0, 1, 1, 0, 1, 1]

Vec 5 For Req 5

[1, 0, 1, 1, 0, 1, 1, 1]

Vec 6 For Req 6

[1, 0, 1, 1, 1, 0, 1, 1]

Vec 7 For Req 7

[1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1]

Vec 8 For Req 8

[1, 0, 1, 1, 0, 1, 1, 0, 1, 1]

Vec 9 For Req 9

[1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1]

Vec 10 For Req 10

[1, 1, 1, 1, 1, 1]

The Cosine Similarity/Consistency List of The Vector of Requirements, After NLP

Processing Are As Follows::

49

[100, 80, 80, 37, 37, 55, 15, 17, 15, 37, 80, 100, 80, 55, 55, 37, 30, 17, 15, 37, 80, 80, 100, 37,

37, 37, 15, 34, 15, 37, 37, 55, 37, 100, 83, 67, 41, 46, 14, 67, 37, 55, 37, 83, 100, 67, 54, 46,

14, 67, 55, 37, 37, 67, 67, 100, 27, 46, 14, 67, 15, 30, 15, 41, 54, 27, 100, 25, 0, 27, 17, 17,

34, 46, 46, 46, 25, 100, 13, 46, 15, 15, 15, 14, 14, 14, 0, 13, 100, 14, 37, 37, 37, 67, 67, 67,

27, 46, 14, 100]

50

Figure 4.26: Output on shell

The code to create a traceability matrix was written as below.

Python Algorithm

#Traceability Matrix

print("")

print("")

51

print("The Automated NxN Traceability Matrix of Requirements, After NLP Processing Is

As Follows::")

print("")

from prettytable import PrettyTable

a = ['Traceability Matrix']

a.extend(list(range(1,length+1)))

t = PrettyTable(a)

for m in range(length):

 row=[m+1]

 for x in range(length):

 row.append(similarity[x+(length*m)])

 t.add_row(row)

print(t)

print("")

print("Note: The Label of Headers of Rows/Columns In The Matrix, Represent The Index of

Requirement")

print("")

print("Note: The Scores/Values In The Matrix, Are Given In Percentage(%) And Have Been

Rounded")

print("")

print("Remarks: The Score/Value Greater Than 60% Is Recommended To Be Short Listed

For Checking")

print("")

print("Copyright: Tool Developed By MUHAMMAD ASIF HASAN Under The Supervision

of Dr. WASI HAIDER BUTT At College of Electrical & Mechanical Engineering, NUST

University, Pakistan")

print("")

52

Figure 4.27: Code for creating a traceability matrix

Output

The Automated NxN Traceability Matrix of Requirements, After NLP Processing Is As

Follows::

+---------------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

| Traceability Matrix | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

+---------------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

| 1 | 100 | 80 | 80 | 37 | 37 | 55 | 15 | 17 | 15 | 37 |

| 2 | 80 | 100 | 80 | 55 | 55 | 37 | 30 | 17 | 15 | 37 |

| 3 | 80 | 80 | 100 | 37 | 37 | 37 | 15 | 34 | 15 | 37 |

| 4 | 37 | 55 | 37 | 100 | 83 | 67 | 41 | 46 | 14 | 67 |

53

| 5 | 37 | 55 | 37 | 83 | 100 | 67 | 54 | 46 | 14 | 67 |

| 6 | 55 | 37 | 37 | 67 | 67 | 100 | 27 | 46 | 14 | 67 |

| 7 | 15 | 30 | 15 | 41 | 54 | 27 | 100 | 25 | 0 | 27 |

| 8 | 17 | 17 | 34 | 46 | 46 | 46 | 25 | 100 | 13 | 46 |

| 9 | 15 | 15 | 15 | 14 | 14 | 14 | 0 | 13 | 100 | 14 |

| 10 | 37 | 37 | 37 | 67 | 67 | 67 | 27 | 46 | 14 | 100 |

+---------------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

Note: The Label of Headers of Rows/Columns In The Matrix, Represent The Index of

Requirement

Note: The Scores/Values In The Matrix, Are Given In Percentage(%) And Have Been

Rounded

Remarks: The Score/Value Greater Than 60% Is Recommended To Be Short Listed For

Checking

Copyright: Tool Developed By MUHAMMAD ASIF HASAN Under The Supervision of Dr.

WASI HAIDER BUTT At College of Electrical & Mechanical Engineering, NUST

University, Pakistan

54

Figure 4.28: Output on shell

55

The code to create another type of traceability matrix was written as below.

Python Algorithm

#Traceability Matrix (Possible Conflict/No Conflict)

print("")

print("The Automated NxN Traceability Matrix of Requirements, After NLP Processing Is

As Follows::")

print("")

PC_NC = []

for s in similarity:

 if s >= 60:

 PC_NC.append('PC')

 else:

 PC_NC.append('NC')

from prettytable import PrettyTable

a = ['Traceability Matrix']

a.extend(list(range(1,length+1)))

t = PrettyTable(a)

for m in range(length):

 row=[m+1]

 for x in range(length):

 row.append(PC_NC[x+(length*m)])

 t.add_row(row)

print(t)

print("")

print("Note: The Label of Headers of Rows/Columns In The Matrix, Represent The Index of

56

Requirement")

print("")

print("Note: The PC/NC In The Matrix, Represents Possible Conflict & No Conflict

Respectively")

print("")

print("Remarks: The Score/Value Greater Than 60% Has Been Recommended To Be Short

Listed For Checking")

print("")

print("Copyright: Tool Developed By MUHAMMAD ASIF HASAN Under The Supervision

of Dr. WASI HAIDER BUTT At College of Electrical & Mechanical Engineering, NUST

University, Pakistan")

print("")

57

Figure 4.29: Code for creating another type of traceability matrix

58

Figure 4.30: Output on shell

59

The code to create another type of traceability matrix was written as below.

Python Algorithm

#Traceability Matrix (Possible Conflict/Blanks)

print("")

print("The Automated NxN Traceability Matrix of Requirements, After NLP Processing Is

As Follows::")

print("")

PC_NC = []

for s in similarity:

 if s >= 60:

 PC_NC.append('PC')

 else:

 PC_NC.append('--')

from prettytable import PrettyTable

a = ['Traceability Matrix']

a.extend(list(range(1,length+1)))

t = PrettyTable(a)

for m in range(length):

 row=[m+1]

 for x in range(length):

 row.append(PC_NC[x+(length*m)])

 t.add_row(row)

print(t)

print("")

print("Note: The Label of Headers of Rows/Columns In The Matrix, Represent The Index of

60

Requirement")

print("")

print("Note: The PC/-- In The Matrix, Represents Possible Conflict & No Conflict

Respectively")

print("")

print("Remarks: The Score/Value Greater Than 60% Has Been Recommended To Be Short

Listed For Checking")

print("")

print("Copyright: Tool Developed By MUHAMMAD ASIF HASAN Under The Supervision

of Dr. WASI HAIDER BUTT At College of Electrical & Mechanical Engineering, NUST

University, Pakistan")

print("")

61

Figure 4.31: Code for creating another type of traceability matrix

62

Figure 4.32: Output on shell

63

CHAPTER 5: VERIFICATION AND VALIDATION

In this chapter the detailed results of the testing that was done over this tool to check

its performance will be shown. Three case studies to test this tool were used. Section 5.1

shows the case study based on Digital Library System – SRS. Section 5.2 shows the case

study based on Hotel Management System - SRS. Section 5.3 shows the case study based on

a custom made SRS out of the first two SRS already used, having some alterations done by

the author to test this tool further.

5.1 Case Study No.1 (Digital Library System)

The first case study is based on the Software Requirements Specification for the DLS

(Digital Library System) [1] which was used to test this tool. There were 60 requirements in

this SRS that were input into this tool to be checked for consistency issues and poor practices.

Following is the list of these requirements:-

‘

64

65

66

67

5.1.1 Results

Table 5-1: Summary of Results

Total Number of Requirements 60

Total NxN Cases 3600

Shortlisted Cases By Tool 16

Efforts Now Required [16/((3600-60)/2)*100] 0.90%

Requirement Engineer’s Time Saved > 99.1%

Total Number of Inconsistent Cases In SRS 2

Number of Inconsistent Cases Detected By Tool 2

Number of Poor Practices Detected By Tool 12

Number of Neutral Cases Detected By Tool 2

Accuracy [(16-2)/16*100] 87.5%

68

Figure 5.1:
Traceability Matrix

Generated By Tool

69

70

71

72

5.2 Case Study No.2 (Hotel Management System)

The second case study is based on the Software Requirements Specification for the Hotel

Management System [2] prepared by Fenil Desani, which was used to test this tool. There

were 53 requirements in this SRS that were input into this tool to be checked for consistency

issues and poor practices. Following is the list of these requirements:-

73

74

5.2.1 Results

Table 5-3: Summary of Results

Total Number of Requirements 53

Total NxN Cases 2809

Shortlisted Cases By Tool 66

Efforts Now Required [66/((2809-53)/2)*100] 4.79%

Requirement Engineer’s Time Saved > 95.21%

Total Number of Inconsistent Cases In SRS 4

Number of Inconsistent Cases Detected By Tool 4

Number of Poor Practices Detected By Tool 48

Number of Neutral Cases Detected By Tool 14

Accuracy [(66-14)/66*100] 78.79%

75

Figure 5.2:
Traceability Matrix

Generated By Tool

76

77

78

79

80

81

82

83

84

5.3 Case Study No.3 (Custom SRS with Alterations)

The third case study is based on the Software Requirements Specification taken from the

first two SRS already used, to test this tool. Some alterations were done by the author, so that

a thorough stress testing can be done of this tool. Author himself entered a couple of

consistency issues in to the requirements, to see if they can be successfully detected by this

tool or not. There were 47 requirements in this SRS that were input into this tool to be

checked for consistency issues and poor practices. Following is the list of these

requirements:-

85

86

87

5.3.1 Results

Table 5-5: Summary of Results

Total Number of Requirements 47

Total NxN Cases 2209

Shortlisted Cases By Tool 10

Efforts Now Required [10/((2209-47)/2)*100] 0.93%

Requirement Engineer’s Time Saved > 99.07%

Total Number of Inconsistent Cases In SRS 9

Number of Inconsistent Cases Detected By Tool 9

Number of Poor Practices Detected By Tool 1

Number of Neutral Cases Detected By Tool 0

Accuracy [(10-0)/10*100] 100%

88

Figure 5.3:
Traceability Matrix

Generated By Tool

89

90

91

CHAPTER 6: DISCUSSION AND LIMITATION

 In this chapter the Section 6.1 does a discussion on the use of NLP techniques along

with the concepts of cosine similarity to provide a solution to facilitate software requirement

engineer in detecting conflicts in SRS requirements. Section 6.2 discusses about the

limitations of this methodology and tool, and possible ideas to provide solution to cater them.

6.1 Discussion

 A category of artificial intelligence that make computers understand, interpret and

manipulate natural language is called Natural language processing (NLP). This branch has to

be drawn out from many disciplines which includes computer science and computational

linguistics. It is filling the gap between human language and computer understanding.

 This technology is gaining advancement because of an increase in the interest of

human-to-machine communications. Also because now a days big data, powerful computing

and enhanced algorithms are also getting available and cheaper.

 As a person, the speaking and written is done in some kind of natural language like

English, Spanish or Chinese. But computers understand machine code or machine language.

This language not understandable by people at large. Communication happen not with words

but through a lot of 0’s and 1’s that produce logical actions at computer device level.

 Computers can now communicate with people in their own language and scale other

language-related tasks by the help of this technology. As an example to take, this all makes

devices to read text, hear speech, interpret it and also even measure sentiment.

 Computer of today can process more language-based information than humans,

without fatigue and in a consistent, unbiased way as well. From medical records to social

media, a huge amount of unstructured data is being created every day. So an automation will

be critical to fully process text and speech data fast and efficiently.

 Specifications of multiple stakeholders are often detailed into use case models in

object-oriented software development. This will repalce the static domain model by dynamic

and functional specifications. These specifications are analyzed and integrated to create a

consistent overall SRS. Conflicts between requirements of different parties can cause

iterations of the model to happen with time. Conflicts are quite difficult to find out because

92

93

 dot product and magnitude as follows:

where Ai and Bi are components of vector A and B respectively.

 The results of cosine similarity rage from -1 to 0 to 1. If it’s −1 it means exactly

opposite. If it’s 0 it means orthogonal or decorrelation. If it’s 1 it means exactly the same.

While in-between values show intermediate similarity or dissimilarity.

 To address the cumbersome job and demanding efforts of requirement engineer to

detect problems in the requirements of SRS, concepts of NLP techniques and cosine semantic

similarity were used to develop a fully automated tool in Python. This helps to find

inconsistency issues in SRS, efficiently and in very little time. The tool further using the

concepts of Traceability Matrix generates three types of such tables to show results in a

professional and tabulated way. This greatly saves the crucial time of engineer and also

reduces the cost of this step of software development life cycle for the software house,

ultimately reducing the cost of software project overall.

6.2 Limitation

 Those features of design or methodology that motivated the understanding of the

findings from the research, are covered in the limitations of a work. The limitations on

generalizability, applications to practice, and/or utility of findings are covered in this area.

The result of the options in which it was originally chosen to create the work or the method

used to create internal and external validity are also covered. The outcomes of unknown

challenges that happened during the study are also part of this area.

 One should always appreciate a study's limitations. It is good if the researcher

recognize and acknowledge his/her study’s limitations than to have them highlighted out by

the supervisor.

 It is an phase to make suggestions for future research work if the study’s limitations

are appreciated. By connecting the study's limitations to future work of research, the ways to

94

elaborate the unanswered questions may become more pronounced because of the work.

 This also shows and gives one with an opportunity to show that researcher have

thought deeply about the research domain and issues. He/she has also understood the relevant

literature published about it in depth. It also shows that one has correctly analyzed the

methods chosen for studying the problem domain. The goal of research processes is not just

to discover new information but also to face assumptions and find what is not known.

 Detailing limitations is greatly a subjective process. One has to calculate the impact of

those limitations on the study. It’s a poor practice to just write about the weaknesses and the

magnitude of a study's limitations. If it is done, it will reduce or eliminate the authenticity of

your research because it leaves the reader wondering thoughts. He/she might be thinking

whether, or in what ways, limitation(s) in your work may have affected the outcomes and

conclusions. Critical, overall appraisal and interpretation of limitations is essential.

 So, although this tool performs quite well, but there are always some limitations in

every work. It can noticed that this tool can process effectively if the requirement is of one

sentence. If a requirement is composed of multiple sentences, it will process them all

individually rather than as a single requirement. Although this doesn’t affect the performance

of this tool and will still provide the requirement engineer with correct results, but still that is

a technical limitation of this tool.

 To address this limitation, a solution for it has been proposed. The solution is that if a

requirement is composed of multiple sentences, replace the full stops with commas. This will

make this tool to recognize the entire requirement paragraph as one sentence and perform

correct technically.

95

CHAPTER 7: FUTURE WORK

In this chapter the Section 7.1 gives a short conclusion to sum up the discussion of

this work. This section further discusses about possible future works and upgradations that

can be done over this tool, to provide an opportunity for improvement for future research.

7.1 Conclusion and Future Work

 Natural Language Processing (NLP) has numerous advantages. To enhance the

efficiency of documentation processes and improve the accuracy of documentation, NLP can

be involved by companies. It can also help companies to identify the most pertinent data from

large databases. As an example, with the use of natural language processing in hospitals, a

specific diagnosis from a doctor’s unstructured notes can be pulled out and allocated a billing

code.

 To check one’s own emotional state, NLP can also be a helpful solution. An

electronic therapist that communicates with clients, is Woebot. It connects by Facebook

Messenger chatbot or through a stand-alone application available. Obviously there is no high-

level sentiment analysis being done in this case. However, Woebot is tracking for depression

and anxiety states of one. It searches for words that may reveal users face as an emergency

situation.

 Sentiment analysis also aids us to know society as well. Periscopic has utilized NLP

with visual recognition to develop the Trump-Emoticoaster. This is a data engine that

processes language and facial expressions to detect President Donald Trump’s emotional

state.

 To prevent school shootings, same technology can also be utilized. Researchers have

analyzed 2 million Tweets posted by 9,000 at-risk youth at Columbia University for deal such

problems. It tries to find the answer to one query: How does language change as a teen comes

closer and closer to getting violent?

 Dr. Desmond Patton is a program director who mentions that “Problematic content

can evolve over time”. When a help is needed, at-risk youth getting closer to the brink utilizes

language expressions. Flagging problematic emotional states using natural language

processing can help the social workers to intervene and act on time.

96

 Likewise Periscopic, sentiment analysis has been utilized with image recognition to

increase accuracy at Columbia. Computer vision can break down images attached to the

Tweets to apply machine learning steps as told by Patton. This can be merged together with

the language to tell the actual emotionality of an image. Is this image about threats? Is this

image about grief? What else is happening in an image that helps us understand more

complexly? Columbia program goals to prevent gang violence as well in addition to school

shootings.

 Job recruiters can utilize natural language processing to aid them sort through

resumes, attract diverse candidates, and hire more qualified workforce. To keep irrelevant

emails out of the inbox, spam detection tools utilizes NLP techniques. Outlook and Gmail

also utilize it to sort messages from certain people into folders that are created.

 Sentiment analysis tools greatly aid companies to quickly check Tweets. It can reveal

that whether they are good or bad so they can triage customer concerns. But it just doesn’t

only process words on social media but also breaks down the semantics in which they appear.

Skye Morét who is a data visualizer at analysis firm Periscopic tells that just 30 percent of

English words are positive. Rest of the words are neutral or negative. Businesses are greatly

aided by NLP to completely understand a post. What’s the consumer emotion behind those

neutral words?

 In past, natural language processing was utilized by corporations to tag feedback as

positive or negative. A senior vice president of social and innovation at Fleishman Hillard,

Ryan Smith tells that application of nowadays identify more precise emotions, like sadness,

anger, and fear than before.

 So, it can be seen that there is so much that needs and can be done in this field. Just

some areas of this field to facilitate a software requirement engineer to process the SRSs in an

efficiently way were utilized, and this saves time and errors. There’s a lot of future work that

can be done in this tool. A couple of works that are possible to extend this work has been

listed as below:-

 At the moment it can be noticed that this tool require a software requirement engineer

to enter all the requirements into tool by copying them from source. An extension

module that is able to read the SRS and input all the requirements from it in to the tool

can be a one possible extension possible.

97

 At the moment it can be noticed that this tool is not very GUI intensive. It also shows

the traceability matrix within the default python shell window. An extension to this

tool to make this tool graphically intensive can make it even more user friendly.

98

REFERENCES

[1] Software Requirement Specification Document

URL,_http://repository.sustech.edu/bitstream/handle/123456789/7384/chapter%203.pdf?s

equence=6&isAllowed=y

[2] Software Requirement Specification Document

URL,_https://vdocuments.mx/srs-for-hotel-management-system.html

[3] Agirre, E., Edmonds, P.: Word Sense Disambiguation: Algorithms and Applications, vol.

33. Springer, Berlin (2007).

[4] Ambriola, V., Gervasi, V.: On the systematic analysis of natural language requirements

with CIRCE. ASE 13(1), 107–167 (2006).

[5] Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of conformance

to requirements templates using natural language processing. TSE 41(10), 944–968

(2015).

[6] Dragos, V., Detection of contradictions by relation matching and uncertainty assessment.

Procedia Computer Science, 2017. 112: p. 71-80.

[7] Avramidis, E.: Rankeval: open tool for evaluation of machine-learned ranking. Prague

Bull. Math. Linguist. 100, 63–72 (2013).

[8] Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012).

[9] Matsumoto, Y., S. Shirai, and A. Ohnishi, A Method for Verifying Non-Functional

Requirements. Procedia Computer Science, 2017. 112: p. 157-166.

[10] Malhotra, R., et al. Analyzing and evaluating security features in software

requirements. in 2016 International Conference on Innovation and Challenges in Cyber

Security (ICICCS-INBUSH). 2016.

[11] Nikora, A.P. and G. Balcom. Automated Identification of LTL Patterns in Natural

Language Requirements. in 2009 20th International Symposium on Software Reliability

Engineering. 2009.

[12] Ott, D. Defects in natural language requirement specifications at Mercedes-Benz: An

investigation using a combination of legacy data and expert opinion. in 2012 20th IEEE

International Requirements Engineering Conference (RE). 2012.

[13] Khtira, A., A. Benlarabi, and B.E. Asri. Detecting feature duplication in natural

language specifications when evolving software product lines. in 2015 International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE).

2015.

99

[14] Nguyen, T.H., J. Grundy, and M. Almorsy. GUITAR: An ontology-based automated

requirements analysis tool. in 2014 IEEE 22nd International Requirements Engineering

Conference (RE). 2014.

[15] Mezghani, M., J. Kang, and F. Sèdes. Industrial Requirements Classification for

Redundancy and Inconsistency Detection in SEMIOS. in 2018 IEEE 26th International

Requirements Engineering Conference (RE). 2018.

[16] Herrera, J., et al. The Revealing Crosscutting Concerns in Textual Requirements

Documents: An Exploratory Study with Industry Systems. in 2012 26th Brazilian

Symposium on Software Engineering. 2012.

[17] Sandhu, G. and S. Sikka. State-of-art practices to detect inconsistencies and

ambiguities from software requirements. in International Conference on Computing,

Communication & Automation. 2015.

[18] Arunthavanathan, A., et al. Support for traceability management of software artefacts

using Natural Language Processing. in 2016 Moratuwa Engineering Research Conference

(MERCon). 2016.

[19] Camacho-Collados, J., Pilehvar, T.: From word to sense embeddings: a survey on

vector representations of meaning. arXiv preprint arXiv:1805.04032 (2018)

[20] Ferrari, A. and Esuli, A., 2019. An NLP approach for cross-domain ambiguity

detection in requirements engineering. Automated Software Engineering, 26(3), pp.559-

598.

[21] Phalnikar, R. and D. Jinwala, Analysis of Conflicting User Requirements in Web

Applications Using Graph Transformation. SIGSOFT Softw. Eng. Notes, 2015. 40(2): p.

1-7.

[22] Sousa, T.C.d., et al., Automatic analysis of requirements consistency with the B

method. SIGSOFT Softw. Eng. Notes, 2010. 35(2): p. 1-4.

[23] Perera, S., et al., Challenges in understanding clinical notes: why NLP engines fall

short and where background knowledge can help, in Proceedings of the 2013

international workshop on Data management & analytics for healthcare. 2013, ACM:

San Francisco, California, USA. p. 21-26.

[24] Ahsan, I., et al., A comprehensive investigation of natural language processing

techniques and tools to generate automated test cases. 2017. p. 132:1-132:10.

[25] Sharma, V.S., R.R. Ramnani, and S. Sengupta, A framework for identifying and

analyzing non-functional requirements from text, in Proceedings of the 4th International

100

Workshop on Twin Peaks of Requirements and Architecture. 2014, ACM: Hyderabad,

India. p. 1-8.

[26] Iren, D. and H.A. Reijers, Leveraging business process improvement with natural

language processing and organizational semantic knowledge, in Proceedings of the 2017

International Conference on Software and System Process. 2017, ACM: Paris, France. p.

100-108.

[27] Sateli, B., E. Angius, and R. Witte. ReqWiki Approach for Collaborative Software

Requirements Engineering with Integrated Text Analysis Support. in 2013 IEEE 37th

Annual Computer Software and Applications Conference. 2013.

[28] Sengupta, S., et al., Verb-based Semantic Modelling and Analysis of Textual

Requirements, in Proceedings of the 8th India Software Engineering Conference. 2015,

ACM: Bangalore, India. p. 30-39.

[29] Casamayor, A., Godoy, D., Campo, M.: Functional grouping of natural language

requirements for assistance in architectural software design. KBS 30, 78–86 (2012).

[30] Chen, X., Liu, Z., Sun, M.: A unified model for word sense representation and

disambiguation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pp. 1025–1035 (2014).

[31] Zambrano, A., J. Fabry, and S. Gordillo, Expressing aspectual interactions in

requirements engineering: Experiences, problems and solutions. Science of Computer

Programming, 2012. 78(1): p. 65-92.

[32] Binkley, D., et al., Increasing diversity: Natural language measures for software fault

prediction. Journal of Systems and Software, 2009. 82(11): p. 1793-1803.

[33] Bateman, J.A., et al., A linguistic ontology of space for natural language processing.

Artificial Intelligence, 2010. 174(14): p. 1027-1071.

[34] Chentouf, Z., Managing OAM&P requirement conflicts. Journal of King Saud

University - Computer and Information Sciences, 2014. 26(3): p. 296-307.

[35] Cleland-Huang, J.: Mining domain knowledge [requirements]. IEEE Softw. 32(3),

16–19 (2015).

[36] Dalpiaz, F., van der Schalk, I., Lucassen, G.: Pinpointing ambiguity and

incompleteness in requirements engineering via information visualization and NLP. In:

International Working Conference on Requirements Engineering: Foundation for

Software Quality. Springer, pp. 119–135 (2018).

101

[37] Aldekhail, M., Chikh, A. and Ziani, D., 2016. Software Requirements Conflict

Identification: Review and Recommendations. International Journal of Advanced

Computer Science and Applications, 7(10).

[38] Maysoon Aldekhail and Djamal Ziani, 2017. Intelligent Method for Software

Requirement Conflicts Identification and Removal: Proposed Framework and Analysis.

International Journal of Computer Science and Network Security, VOL.17 No.12

[39] Maysoon Aldekhail, Azzedine Chikh and Djamal Ziani, 2016. Software Requirements

Conflict Identification: Review and Recommendations. International Journal of Advanced

Computer Science and Applications, Vol. 7, No. 10

[40] Dieste, O., Juristo, N.: Systematic review and aggregation of empirical studies on

elicitation techniques. IEEE Trans. Softw. Eng. 37(2), 283–304 (2011).

[41] Jan Hendrik Hausmann, Reiko Heckel and Gabi Taentzer, 2012. Detection of

Conflicting Functional Requirements in a Use Case-Driven Approach. University of

Paderborn 33095 Paderborn, Germany

[42] Matias Urbieta, Maria Jose Escalona, Esteban Robles Luna and Gustavo Rossi, 2011.

Detecting Conflicts and Inconsistencies in Web Application Requirements. University of

Seville, Spain

[43] Jan Hendrik Hausmann, Reiko Heckel and Gabi Taentzer, 2012. Detection of

conflicting functional requirements in a use case-driven approach: a static analysis

technique based on graph transformation. ICSE '02: Proceedings of the 24th International

Conference on Software Engineering May 2002 Pages 105–115

[44] Evans, M.C.,Bhatia, J.,Wadkar, S., Breaux, T.D.: An evaluation of constituency-based

hyponymy extraction from privacy policies. In: Requirements Engineering Conference

(RE), 2017 IEEE 25th International. IEEE, pp. 312–321 (2017).

[45] Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case

study in retrieving equivalent requirements via natural language processing techniques.

IEEE Trans. Softw. Eng. 39(1), 18–44 (2013).

[46] Femmer, H., Kuˇcera, J., Vetrò, A.: On the impact of passive voice requirements on

domain modelling. In: ESEM. ACM, p. 21 (2014).

[47] Femmer, H., Fernández, D.M.,Wagner, S., Eder, S.: Rapid quality assurance with

requirements smells. JSS 123, 190–213 (2017).

[48] Ferrari, A., Gnesi, S.: Using collective intelligence to detect pragmatic ambiguities.

In: RE’12. IEEE, pp. 191–200 (2012).

102

[49] Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity and tacit knowledge in requirements

elicitation interviews. REJ 21(3), 333–355 (2016).

[50] Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language

requirements processing: a 4D vision. IEEE Softw. 6, 28–35 (2017a).

[51] Ferrari, A., Donati, B., Gnesi, S.: Detecting domain-specific ambiguities: an NLP

approach based on Wikipedia crawling and word embeddings. In: 2017 IEEE 25th

International Requirements Engineering Conference Workshops (REW). IEEE, pp. 393–

399 (2017b).

[52] Ferrari, A., Esuli, A., Gnesi, S.: Identification of cross-domain ambiguity with

language models. In: Groen, E.C., Harrison, R., Murukannaiah, P.K., Vogelsang, A. (eds)

5th InternationalWorkshop on Artificial Intelligence for Requirements Engineering,

AIRE@RE 2018, Banff, AB, Canada, 21 Aug 2018. IEEE, pp. 31–38 (2018a).

[53] Ferrari, A., Gori, G., Rosadini, B., Trotta, I., Bacherini, S., Fantechi, A., Gnesi, S.:

Detecting requirements defects with NLP patterns: an industrial experience in the railway

domain. Empir. Softw. Eng. 23(6), 3684–3733 (2018b).

[54] Gacitua, R., Sawyer, P., Gervasi, V.: On the effectiveness of abstraction identification

in requirements engineering. In: Proceedings of the 18th IEEE International

Requirements Engineering Conference (RE’10). IEEE, pp. 5–14 (2010).

[55] Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: Towards a tool explaining

ambiguity sources. In: REFSQ’10, vol. 6182. Springer, LNCS, pp. 218–232 (2010).

[56] Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability

using deep learning techniques. In: 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE). IEEE, pp. 3–14 (2017).

[57] Jha, N., Mahmoud, A.: Mining user requirements from application store reviews using

frame semantics. In: International Working Conference on Requirements Engineering:

Foundation for Software Quality. Springer, pp. 273–287 (2017).

[58] Kof, L.: From requirements documents to system models: a tool for interactive semi-

automatic translation. In: 2010 18th IEEE International Requirements Engineering

Conference, pp. 391–392 (2010).

[59] Krisch, J., Houdek, F.: The myth of bad passive voice and weak words an empirical

investigation in the automotive industry. In: 2015 IEEE 23rd International Requirements

Engineering Conference (RE). IEEE, pp. 344–351 (2015).

[60] Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In:

Advances in Neural Information Processing Systems, pp. 2177–2185 (2019).

103

[61] Lian, X., Rahimi,M., Cleland-Huang, J., Zhang, L., Ferrai, R., Smith,M.: Mining

requirements knowledge from collections of domain documents. In: 2016 IEEE 24th

International Requirements Engineering Conference (RE). IEEE, pp. 156–165 (2016).

[62] Manning, C.D.: Part-of-speech tagging from 97% to 100%: is it time for some

linguistics? In: International Conference on Intelligent Text Processing and

Computational Linguistics. Springer, pp. 171–189 (2011)

[63] Massey, A.K., Rutledge, R.L., Anton, A.I., Swire, P.P.: Identifying and classifying

ambiguity for regulatory requirements. In: RE’14. IEEE, pp. 83–92 (2014).

[64] Mikolov,T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed

representations ofwords and phrases and their compositionality. In: Advances in Neural

Information Processing Systems, pp. 3111–3119 (2013).

[65] Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. (CSUR)

41(2), 10 (2009).

[66] Pohl, K., Rupp, C.: Requirements Engineering Fundamentals. Rocky Nook Inc, San

Rafael (2011)

[67] Quirchmayr, T., Paech, B., Kohl, R., Karey, H.: Semi-automatic software feature-

relevant information extraction from natural language user manuals. In: Proceedings of

the 23rd International Working Conference on Requirements Engineering: Foundation for

Software Quality (REFSQ’17), pp. 255–272, Springer (2017).

[68] Raganato, A., Bovi, C.D., Navigli, R.: Neural sequence learning models for word

sense disambiguation. In: Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pp. 1156–1167 (2017).

[69] Robeer,M., Lucassen, G., van derWerf, J.M.E., Dalpiaz, F., Brinkkemper, S.:

Automated extraction of conceptual models from user stories via nlp. In: Proceedings of

the 24th IEEE International Requirements Engineering Conference (RE’16), pp. 196–205.

IEEE (2016).

[70] Rodriguez, D.V., Carver, D.L., Mahmoud, A.: An efficient wikipedia-based approach

for better understanding of natural language text related to user requirements. In: 2018

IEEE Aerospace Conference, pp. 1–16. IEEE (2018)

[71] Rosadini, B., Ferrari, A., Gori, G., Fantechi, A., Gnesi, S., Trotta, I., Bacherini, S.:

Using NLP to detect requirements defects: an industrial experience in the railway domain.

In: REFSQ, pp. 344–360. Springer (2017)

104

[72] Sleimi, A., Sannier, N., Sabetzadeh,M., Briand, L., Dann, J.: Automated extraction of

semantic legal metadata using natural language processing. In: 2018 IEEE 26th

International Requirements Engineering Conference (RE), pp. 124–135. IEEE (2018).

[73] Sultanov, H., Hayes, J.H.: Application of reinforcement learning to requirements

engineering: requirements tracing. In: Proceedings of the 21st IEEE International

Requirements Engineering Conference (RE’13), pp. 52–61. IEEE (2013).

[74] Taghipour, K., Ng, H.T.: Semi-supervised word sense disambiguation using word

embeddings in general and specific domains. In: Proceedings of the 2015 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pp. 314–323 (2015)

[75] Tjong, S., Berry, D.: The design of SREE a prototype potential ambiguity finder for

requirements specifications and lessons learned. In: REFSQ’13, LNCS, vol. 7830, pp.

80–95 (2013).

[76] Wang,W., Niu, N., Liu, H., Niu, Z.: Enhancing automated requirements traceability

by resolving polysemy. In: 2018 IEEE 26th International Requirements Engineering

Conference (RE), pp. 40–51. IEEE (2018).

[77] Yang, H., De Roeck, A.N., Gervasi, V.,Willis, A., Nuseibeh, B.: Analysing anaphoric

ambiguity in natural language requirements. Requir. Eng. 16(3), 163–189 (2011).

[78] Yuan, D., Richardson, J., Doherty, R., Evans, C., Altendorf, E.: Semi-supervised

word sense disambiguation with neural models (2016).

[79] D. Mairiza, D. Zowghi, and V. Gervasi, Utilizing TOPSIS: A Multi Criteria Decision

Analysis Technique for Non-Functional Requirements Conflicts in Requirements

Engineering, D. Zowghi and Z. Jin, Eds. Springer Berlin Heidelberg, 2014, pp. 31-44.

[80] T. H. Nguyen, B. Q. Vo, M. Lumpe, and J. Grundy, KBRE: a framework for

knowledge-based requirements engineering, Softw. Qual. J., vol. 22, no. 1, pp. 87-119,

Apr. 2013.

[81] A. Alebrahim, S. Fabender, M. Heisel, and R. Meis, Problem-Based Requirements

Interaction Analysis in Requirements Engineering: Foundation for Software Quality, C.

Salinesi and I. van de Weerd, Eds. Springer International Publishing, 2014, pp. 200-215.

[82] M. Kamalrudin, J. Grundy, and J. Hosking, Managing Consistency between Textual

Requirements, Abstract Interactions and Essential Use Cases in Computer Software and

Applications Conference (COMPSAC), 2010 IEEE 34th Annual, 2010, pp. 327-336.

[83] D. Mairiza, D. Zowghi, and V. Gervasi, Conflict characterization and Analysis of Non

Functional Requirements: An experimental approach, in 2013 IEEE 12th International

105

Conference on Intelligent Software Methodologies, Tools and Techniques (SoMeT),

2013, pp. 83-91.

[84] D. Mairiza, D. Zowghi, and N. Nurmuliani, Managing conflicts among non-functional

requirements, University of Technology, Sydney, 2009.

