
 

    
 

An incremental approach for calculating dominance-based rough set 

dependency 

 

 

Author 

Rana Muhammad Kaleem Ullah 

FALL 2016-MS-16(CSE) 00000171489 

 

MS-16 (CSE) 

“Supervisor 

Dr. Usman Qamar 

 

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING 

        NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

AUG, 2020” 

 

 



 

    
 

“An incremental approach for calculating dominance-based rough set 

dependency 

Author 

Rana Muhammad Kaleem Ullah 

 FALL 2016-MS-16(CSE) 00000171489 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MS Software Engineering 

 

Thesis Supervisor: 

Dr. Usman Qamar 

 

 

Thesis Supervisor’s Signature: ___________________________________ 

 

Thesis Co-Supervisor’s Signature: _________ _________ 

 

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,  

ISLAMABAD 

AUG, 2020” 



 

i 
 

DECLARATION 

 

I certify that this research work titled “A novel incremental approach for calculating dominance-

based rough set dependency” is my work under the supervision of Dr. Usman Qamar. “This work 

has not been presented elsewhere for assessment. The material that has been used from other 

sources has been properly acknowledged/referred.” 

 

 

____________________ 

Signature of Student  

Rana Muhammad Kaleem Ullah 

FALL 2016-MS-16(CSE) 00000171489 

 

 

 

 

 

 

 

 

 

 

 



 

ii 
 

 

 

LANGUAGE CORRECTNESS CERTIFICATE 

 

“This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes.” The thesis is 

also according to the format given by the University for MS thesis work. 

 

 

 

_________________________ 

Signature of Student  

Rana Muhammad Kaleem Ullah 

FALL 2016-MS-16(CSE) 00000171489 

 

 

________________________ 

Signature of Supervisor 

Dr. Usman Qamar 

 

 

 

________________________ 

Signature of Co-Supervisor 

Dr. Summair Raza 

 



 

iii 
 

COPYRIGHT STATEMENT 

• Copyright “in the text of this thesis rests with the student author. Copies (by any process) 

either in full or of extracts, may be made only in accordance with instructions given by the 

author and lodged in the Library of NUST College of E&ME. Details may be obtained by 

the Librarian. This page must form part of any such copies made. Further copies (by any 

process) may not be made without the permission (in writing) of the author. 

• The ownership of any intellectual property rights which may be described in this thesis is 

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may 

not be made available for use by third parties without the written permission of the College 

of E&ME, which will prescribe the terms and conditions of any such agreement. 

• Further information on the conditions under which disclosures and exploitation may take 

place is available from the Library of NUST College of E&ME, Rawalpindi.”



 

iv 
 

ACKNOWLEDGEMENTS 

I am thankful to my “Creator Allah Subhana-Watala to have guided me throughout this work at 

every step and for every new thought which You put in my mind to improve it. Indeed, I could 

have done nothing without Your priceless help and guidance. Whosoever helped me throughout 

the course of my thesis, whether my parents or any other individual was Your will, so indeed none 

be worthy of praise but You.  

I am profusely thankful to my beloved parents who raised me when I was not capable of walking 

and continued to support me throughout every department of my life.” 

I would also like to express my gratitude to my supervisor Dr. Usman Qamar for his constant 

motivation and help throughout this thesis. Also, for Advance Software Engineering (ASE) and 

Data Engineering (DE) “courses which he has taught me. I can safely say that I haven't learned 

any other engineering subject in such depth than the ones which he has taught.” 

I would like to pay special thanks to Dr. Summair Raza for his incredible cooperation and for 

providing help at every phase of this thesis. “He has guided me and encouraged me to carry on and 

has contributed to this thesis with a major impact. Thank you for guiding me, often with big doses 

of patience.” 

I would also like to thank my Guidance Committee Members Dr. Saad Rehman and Dr. Wasi 

Haider Butt for being on my thesis guidance and evaluation committee. Some special words of 

gratitude go to my friends Muhammad Sufian, Faisal Masood and Zirak Khan who has “always 

been a major source of technical support and cooperation when things would get a bit discouraging. 

Finally, I would like to express my gratitude to all the individuals who have rendered valuable 

assistance to my study.” 

 



 

v 
 

 

 

 

 

 

 

 

“Dedicated to my exceptional parents and whole family whom 

tremendous support, cooperation and their prayers led me to this 

wonderful accomplishment.” 



 

 

ABSTRACT 

Feature selection and classification are widely used in machine learning to handle the immense 

amount of data. In many datasets, conditional attributes and decision classes are preference-

ordered and to perform feature selection on these types of datasets, an extension of rough set theory 

(RST) is used which is known as a dominance-based rough set approach (DRSA). A dominance-

based rough set approach follows a dominance principle which states that objects relating to a 

certain decision class must follow the preference order and this preference order states that an 

object having higher values of conditional attributes must have higher decision class. The 

dependency measure of a dataset is used in DRSA to calculate the suitable reducts of a dataset. 

The conventional DRSA uses lower and upper approximations to calculate the dependency of the 

dataset. The shortcomings of this conventional method of dependency calculation are high 

complexity and huge utilization of computational resources. This paper proposes a novel 

methodology named as “Incremental Dominance-based Dependency Calculation” (IDDC) to 

mitigate the aforementioned problems regarding the conventional approach of dependency 

calculation. The proposed methodology uses an incremental approach to find the dependency of 

datasets by scanning the data records one-by-one and comparing each record with every other 

record in the dataset. For comparison of records, IDDC uses a set of proposed dominance-based 

dependency classes. To justify the proposed approach, both IDDC and conventional approaches 

are compared using various datasets from the UCI dataset repository. Results have shown that the 

proposed approach outperforms the conventional approach by depicting on average 46% and 98% 

decrease in execution time and required runtime memory, respectively. 

 

Keywords:  Dominance-Based rough set approach (DRSA), Incremental Dominance-based 

dependency calculation Method (IDDC), Dependency classes, Rough set theory (RST), Lower 

Approximations, Upper Approximations, Reducts, Fast Reduct Generating Algorithm (FRGA), 

UCI repository.  

 

 

 



 

 

TABLE OF CONTENTS 

 

DECLARATION ……………………………………………………………………………………………………...i 

LANGUAGE CORRECTNESS CERTIFICATE .................................................................................................... ii 

COPYRIGHT STATEMENT................................................................................................................................... iii 

ACKNOWLEDGEMENTS .......................................................................................................................................iv 

ABSTRACT …………………………………………………………………………………………………….vi 

LIST OF FIGURES ....................................................................................................................................................ix 

LIST OF TABLES ....................................................................................................................................................... x 

CHAPTER 1: INTRODUCTION ....................................................................................................................... 12 

1.1. Background Study .................................................................................................................... 12 

1.2. Feature Selection and Rough Set Theory................................................................................ 14 

1.3. Dominance based Rough Set Approach (DRSA) ................................................................... 17 

1.4. Problem Statement .................................................................................................................... 18 

1.5. Proposed Methodology ............................................................................................................. 19 

1.6. Research Contribution ............................................................................................................. 20 

1.7. Thesis Organization .................................................................................................................. 21 

CHAPTER 2: DOMINANCE-BASED ROUGH SET APPROACH............................................................... 24 

2.1. Main Concept ............................................................................................................................ 24 

2.2. Dominance ................................................................................................................................. 26 

2.3. Decision Classes and Class Unions .......................................................................................... 27 

2.4. Approximations ......................................................................................................................... 28 

2.4.1. Lower Approximations ..................................................................................................... 28 

2.4.2. Upper Approximations ..................................................................................................... 29 

2.5. Dependency / Quality of Sorting .............................................................................................. 31 

CHAPTER 3: LITERATURE REVIEW ........................................................................................................... 34 

3.1. Background ............................................................................................................................... 34 

3.2. Research Sequence .................................................................................................................... 35 

3.2.1. Research Questions ........................................................................................................... 35 

3.2.2. Inclusion/Exclusion Criteria ............................................................................................ 35 

3.2.3. Keywords ........................................................................................................................... 35 

3.3. Related Work ............................................................................................................................ 36 

CHAPTER 4: CHALLENGES IN DRSA AND PROPOSED SOLUTION ................................................... 42 

4.1. Challenges in DRSA .................................................................................................................. 42 



 

 

4.2. Proposed Methodology ............................................................................................................. 45 

CHAPTER 5: IMPLEMENTATION AND VALIDATION ............................................................................ 55 

5.1. Datasets and Algorithms .......................................................................................................... 55 

5.1.1. Fast Reduct Generating Algorithm ......................................................................................... 57 

5.1.2. Genetic Algorithm ..................................................................................................................... 58 

5.1.3. Particle Swarm Optimization Algorithm ................................................................................ 60 

5.2. Case Study using Conventional Approximation’s Methodology .......................................... 62 

5.3. Case Study using Proposed Methodology ............................................................................... 67 

CHAPTER 6: COMPARATIVE ANALYSIS ................................................................................................... 78 

6.1. Comparison Framework .......................................................................................................... 78 

6.1.1. Execution Environment .................................................................................................... 78 

6.1.2. Accuracy ............................................................................................................................ 78 

6.1.3. Execution Time .................................................................................................................. 80 

6.1.4. Memory Usage ................................................................................................................... 84 

6.1.5. Complexity ......................................................................................................................... 89 

CHAPTER 7: CONCLUSION AND FUTURE WORK ................................................................................... 93 

REFERENCES ……………………………………………………………………………………………………94 



 

 

LIST OF FIGURES 

Figure 1:KDD Process .................................................................................................................. 12 

Figure 2: Complete Thesis Flow ................................................................................................... 22 

Figure 3: Pseudocode of 1st Step for calculating lower approximation. ....................................... 42 

Figure 4: Pseudocode of 2nd Step for calculating lower approximation. ...................................... 44 

Figure 5: Pseudocode of Step-3 for calculating lower approximation ......................................... 44 

Figure 6: Pseudocode of the proposed methodology .................................................................... 53 

Figure 7: Pseudocode of FRGA Algorithm .................................................................................. 58 

Figure 8: Selected chromosomes for ordered based crossover method ........................................ 58 

Figure 9:Chromosomes after ordered based crossover ................................................................. 59 

Figure 10: Chromosome after bit flip mutation ............................................................................ 59 

Figure 11: Chromosome after adjacent two mutation................................................................... 59 

Figure 12: A Typical Flow Chart of Genetic Algorithm .............................................................. 60 

Figure 13: Pseudocode of Particle Swarm Optimization (PSO) ................................................... 62 

Figure 14: Graphical Comparison of Execution time ................................................................... 84 

Figure 15: Big-O Complexity Comparison................................................................................... 91 



 

 

LIST OF TABLES 

Table I: Example of Information Table ........................................................................................ 25 

Table II: Decision System ............................................................................................................. 26 

Table III: Comparisons of techniques used in different papers .................................................... 38 

Table IV: Comparison Possibilities of two objects ....................................................................... 45 

Table V: Dataset information........................................................................................................ 56 

Table VI: Dominance Relation Matrix of Table II ....................................................................... 63 

Table VII: Dominance Relation Matrix of Table II for proposed method ................................... 68 

Table VIII: Number of comparison statements ............................................................................ 76 

Table IX: Comparison of Size of AlphaSet .................................................................................. 79 

Table X: Comparison of the number of Reducts Generated ......................................................... 79 

Table XI: Comparison of Execution time ..................................................................................... 83 

Table XII: Comparison of Memory Usage ................................................................................... 88 

Table XIII: Percentage Reduction in Memory Usage ................................................................... 88 



 

xi 
 

Chapter 1 

Introduction 



 

12 
 

CHAPTER 1: INTRODUCTION  

This section provides a detailed introduction to the research and research concepts. This 

section is organized in multiple sub-sections. Section 1.1 provides the background study, 

fundamentals of rough set approach are discussed in Section 1.2, Section 1.3 presents the basic 

understanding of the dominance-based rough set approach, Section 1.4 presents the problem 

statement of research, Section 1.5 discuss the proposed methodology, Section 1.6 gives the detail 

about research contribution, and thesis organization is presented in Section 1.7. 

1.1. Background Study 

Knowledge is only valuable when it can be used efficiently and effectively; therefore, knowledge 

management is increasingly being recognized as a key element in extracting its value. An example 

of this is a Knowledge Discovery in Databases (KDD)[1]. “Traditionally, data was turned into 

knowledge employing manual analysis and interpretation. For many applications, this form of 

manual probing of data is slow, costly, and highly subjective. Indeed, as data volumes grow 

dramatically, this type of manual data analysis is becoming completely impractical in many 

domains. This motivates the need for filtering the data. The steps involved in the knowledge 

discovery process are discussed below and Figure 1 gives its pictorial view.”  

 

 

Figure 1:KDD Process 



 

13 
 

• Data Selection 

Data selection comprises selecting the data for knowledge discovery. This may require 

selecting the data from an existing repository or creating a single source of data (a new 

repository) from multiple sources. The data is selected based on the analysis task. This is 

an important step where all the data relevant to analysis should be considered, failed to do 

so may lead to failure of the entire process. 

• Data Cleansing/ Pre-processing 

This step refers to the increasing reliability and accuracy of data. The majority of the times, 

the selected data may contain records that are potential outliers, may contain insufficient 

details (e.g. missing attribute values), noise or incorrect values, etc. Using such data may 

lead to incorrect models, may affect classification accuracy or performance of induction 

algorithms, etc at later stages. Data cleansing or pre-processing refers to the removal of all 

such factors to enhance the quality and reliability of selected data. There are many 

techniques for data cleansings. We may use outlier detection algorithms to find out outliers. 

• Data Transformation/Reduction 

This step refers to transforming the data to make it appropriate for underlying analysis and 

knowledge discovery. The data may contain redundant attributes that do not add much to 

our information or may contain irrelevant attributes. Such attributes are removed at this 

stage. Various techniques are used at this stage e.g. feature selection, feature extraction, 

attribute discretization, etc. The basic purpose is to transform/reduce the data to enhance 

performance at later stages. 

• Data Mining 

Once the data is ready, we can apply our data mining algorithms to discover the hidden 

information/patterns from our data. The use of a particular mining algorithm depends on 

the nature of the analysis and goal of the knowledge discovery e.g. either we want 

prediction or description based on data? 

• Interpretation/Evaluation 

Once the knowledge has been discovered (patterns have been identified), it is evaluated 

based on our defined goals to validate accuracy, usefulness, novelty, etc. It should be noted 

that we may need to repeat previous steps to enhance the above-mentioned measures, e.g. 

by including a greater number of features and repeating the steps. 



 

14 
 

This research focuses on the third step i.e. data reduction of Knowledge Discovery in Datasets 

process. The size of a dataset comprises two perspectives i.e. number of distinct samples to be 

processed per dataset and the number of attributes per sample. The former only affects the training 

process in data mining, depending on its use, however, the latter i.e. number of attributes per 

sample also called dimensionality, affects the training process as well as the performance of an 

algorithm. Many algorithms exhibit non-polynomial execution time with respect to 

dimensionality. 

A large number of dimensions in a dataset lead to a phenomenon called the curse of dimensionality. 

The term was first coined by Bellman [2] resulting out of the volume increase by adding extra 

dimensions to mathematical space. Curse of dimensionality is the problem faced by many data 

analysis algorithms for their practical implementation on datasets with the larger size. As already 

mentioned, the performance of data mining algorithms is inversely proportional to the 

dimensionality of datasets, so higher dimensionality not only challenges the performance of such 

algorithms but makes their implementation impractical for many real-life applications where 

datasets increase beyond smaller size. 

 

1.2. Feature Selection and Rough Set Theory 

In a dataset, against each instance, there is a big count of features. Not all features of an instance 

are important. Some features are important and can give complete information. This subset of 

features can easily replace the whole dataset with all the features [3]. Feature selection is a way to 

reduce the number of features by applying different techniques. The selected feature set can be 

easily used against the entire dataset. An efficient feature selection algorithm selects features that 

can give complete, accurate and important information [4]. 

There are two kinds of features. Strongly relevant features are those which play an important role 

in predictions. Weakly relevant features are the second type. These features cannot contribute 

much to the accuracy of the dataset[5]. There are two major feature selection techniques. 

 

• Transformation based techniques are used when underlying semantics are not 

important because this technique destroys the semantics. Examples of transformation 

based techniques are MDS [6] and PCA [7]. 



 

15 
 

• Selection based techniques preserve semantics and the original meaning of datasets 

remains the same. Rough Set Theory (RST) is the most effective and common 

technique in selection based techniques [8]. 

 

In 1982, Pawlak proposed Rough Set Theory (RST) to analyze the incomplete, inconsistent, and 

unknown information or data [9,10]. RST has become an important tool to find data reduction, 

data dependencies, rule induction, and approximate set classification from databases [11]. Since 

its inception, RST has been comprehensively used for knowledge discovery in economy and 

finance[12], medical imaging etc.[13]. However, RST is unable to generate accurate results for 

preference-ordered datasets and this makes classical RST unsuitable for preference-ordered data 

domains. Some of the applications of preference-ordered data domains are student performance 

evaluation, website rating system, etc.     

RST has become a topic of great interest over the past ten years and has been successfully applied 

to many domains by researchers. For a given dataset it is possible to find out a smaller attribute set 

(called reduct) that contains most of the information. So, attributes other than the reduct set can be 

removed from the dataset with minimal information loss. Pawlak has proposed RST for knowledge 

discovery in datasets. In contrast to conventional discrete sets, RST is based on the concepts of 

upper and lower approximations as discussed below. 

Most of the sets cannot be identified unambiguously, “so we use approximation. For an 

information system where 𝐵 ⊆ 𝐴 , we can approximate the decision class X by using the 

information contained in B.” The lower and upper approximations are defined as follows [14]: 

𝑋: 𝐵𝑋 = {𝑥|[𝑥]𝐵 ⊆ 𝑋 (1) 

 

X: 𝐵X = {𝑥|[𝑥]𝐵 ∩ 𝑋 ≠ 0 (2) 

 

Lower approximation defines the objects that are members of X with respect to information in 

“B”. Upper approximation on the other hand contains objects that with respect to “B” can be 

members of “X”. The boundary region defines the difference between lower and upper 

approximations. 



 

16 
 

X: 𝐵𝑁𝐵(X) =  𝐵X −  𝐵𝑋 (3) 

 

One way of dimensional reduction is keeping only those attributes that preserve the indiscernibility 

relation “i.e. classification accuracy. Using a selected set of attributes provides the same set of 

equivalence classes that can be obtained by using the entire attribute set. The remaining attributes 

are redundant and can be reduced without affecting classification accuracy. There are normally 

many subsets of such attributes called reducts. Calculating the reducts comprises of two steps. 

First, we calculate the dependency of the decision attribute on the entire dataset. Normally this is 

“1”, however, for inconsistent datasets, this may be any value between “0” and “1”. In the second 

step,” we try to find the minimum set of attributes on which decision attribute has the same 

dependency value as that of its value on the entire set of attributes. In this step, we may use any 

Rough Set based feature selection algorithm. It should be noted that there may be more than one 

reduct sets in a single dataset. 

The reduct set must be optimal i.e. “it should contain a minimum number of attributes to better 

realize its significance, however, finding optimal reduct is a difficult task as it requires exhaustive 

search with a greater number of resources. Normally exhaustive algorithms are used to find reducts 

in smaller datasets, however, for datasets beyond smaller size, the other category of algorithms i.e. 

random or heuristics-based search is used, but the drawback of these algorithms is that they do not 

produce the optimal result. So, getting the optimal reducts is a trade-off between the resources and 

reduct size. The Core is another important concept in Rough Set Theory. Normally the reduct set 

is not unique in a dataset i.e. we may have more than one reduct set. Although the Reduct may 

contain the same amount of information otherwise represented by the entire attribute subset, even 

in reduct some attributes are more important than others i.e. these attributes cannot be removed 

without affecting the classification accuracy of the reducts.” Mathematically it can be written as 

𝐶𝑜𝑟𝑒 = ∩𝑖=1
𝑛 𝑅𝑖 where 𝑅𝑖 is 𝑖𝑡ℎ Reduct Set. So, the Core is the attribute or set of attributes common 

to all reduct sets. 

RST provides many concepts to thoroughly analyze datasets and find irrelevant and redundant 

features. Given a dataset with discretized attribute values, it is possible to find a subset of the 

original attributes using RST that are the most informative: all other attributes can be removed 

from the dataset with minimum information loss. Unlike statistical correlation-reducing 



 

17 
 

approaches, this requires no human input or intervention. Most importantly, it also retains the 

semantics of the data, which makes the resulting models more transparent to human scrutiny. 

In a dataset, there may be redundant attributes that may be eliminated without much of the essential 

information loss. Rough sets [3] let us define strong and weak relevance levels, so that redundant 

attributes may be removed. The concept of the reduct is fundamental in RST. Being a subset of 

attributes, it can distinguish all the objects in a dataset that are discernible with respect to the entire 

attribute set. Both reduct and core are important concepts that are used in feature selection and 

dimensionality reduction. But there are some limitations to the RST one of them is that it cannot 

work properly with the dataset having dominance relation between the records of data. Now to 

handle this dominance-based or multi-criteria dataset another form of RST was introduced which 

is known as Dominance-based rough set theory (DRSA).  

1.3.  Dominance based Rough Set Approach (DRSA) 

Therefore, to process the data and information based on preference-ordered attributes, Greco et al. 

[15] have introduced the Dominance-based Rough Set Approach (DRSA) in contrast with RST, 

DRSA considers dominance relation between records and can process the information with 

preference-ordered attribute domains. In DRSA, considering attributes with preference-ordered 

domains, the conceptions to be characterized are upward and downward unions of classes rather 

than the particular classes. The basic idea behind the dominance-based rough set approach is to 

replace the equivalence relation in the Pawlak’s rough set theory with a dominance relation, which 

authorizes taking into account the preference order in the value set of the criteria. In recent decades, 

due to its ability to process information using preference-ordered domains, DRSA has been widely 

used in many real-life applications such as rural sustainable development potentialities evaluation 

[16], airline services evaluation [17–19], group decision [20], etc. 

In real-life applications, consideration of preference order and handling such inconsistencies 

becomes critical and DRSA which deduces the theory by replacing the indiscernibility relation of 

classical RST with dominance relation offers several advantages in this regard. It should be noted 

that the majority of the algorithms based on DRSA use dependency as an underlying criterion 

measure for different tasks. However, calculating dependency by using the conventional DRSA 

approach requires the calculation of lower and upper approximations, and this calculation makes 



 

18 
 

conventional DRSA computationally too expensive to be used for datasets beyond smaller size. 

DRSA is going to be explained in detail in the next chapter as we move along. 

1.4. Problem Statement 

As we discussed earlier that calculating lower approximations and upper approximations is 

computationally too expensive that affects the performance of the algorithms using these measures. 

This calculation has three main steps. Calculating the first step requires the calculation of class 

unions which is 𝐶𝑙𝑡
≥ or 𝐶𝑙𝑡

≤ structure based on which approximation we need to compute. For 

calculating those class unions, we have to traverse through complete Universe from 1 to length of 

|𝑈|, which can be time taking and computationally expensive for larger datasets. In the case of our 

example, we have to repeat this step seven times but this can easily reach thousands of times with 

larger Universe and can cause much trouble computationally. Class unions for our example which 

are shown in Table II are 𝐶𝑙1
≤

, 𝐶𝑙2
≤

, 𝐶𝑙3
≤

 and 𝐶𝑙4
≤. 

𝐶𝑙1
≤(𝑥) = {𝑋3, 𝑋4, 𝑋7} 

𝐶𝑙2
≤(𝑥) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

𝐶𝑙2
≥(𝑥) = {𝑋1, 𝑋2, 𝑋5, 𝑋6} 

𝐶𝑙2
≥(𝑥) = {𝑋2}  

Now, in Step 2 of this conventional method of approximation calculation, we have to calculate 

𝐷𝑃
+𝑥 and 𝐷𝑃

−𝑥, this step requires two loops for its implementation one will be from 1 to the 

cardinality of 𝐶𝑙𝑡
≥ to get objects one by one from the set of class union which is obtained in step 1 

and the second loop will be from 1 to cardinality of Universe to compare that selected object from 

loop one with all the members of Universe. This step is repeated for all the objects of all the class 

unions we acquired in Step 1.i-e loops for 𝐶𝑙1
≤(𝑥) will run 3 ∗ 7 = 21 times, where 3 is the 

cardinality of 𝐶𝑙1
≤(𝑥) and 7 is the cardinality of the Universe in our example. So, Step 2 is much 

more complex and needs more time for computation than step 1. 

 

Finally, in Step 3 after the calculation of 𝐷𝑃
+𝑥 and 𝐷𝑃

−𝑥, P(𝐶𝑙𝑡
≥) and P̅(𝐶𝑙𝑡

≥) is to be calculated 

which are the lower approximations and upper approximation of class unions and it is done for all 

the class unions. For this step, three loops are required. The first loop is from 1 to the cardinality 



 

19 
 

of 𝐶𝑙 and the second loop is from 1 to cardinality of 𝐷𝑃
+𝑥 or 𝐷𝑃

−𝑥. These two loops are used to 

reach the indexes of two-dimensional arrays of 𝐷𝑃
+𝑥 or 𝐷𝑃

−𝑥. After that, we have to compare these 

indexes with the class unions to check if intersection and subset property hold. For this purpose, 

the third loop from 1 to cardinality of the class union is used. Nested loops increase the execution 

time and computational complexity of the conventional approach. 

It is evident that the conventional approach carries a grave challenge to the performance of the 

algorithms when it is about huge datasets. To overcome all the above-described issues, we have 

proposed a solution that will help in reducing the computational complexity of calculating the 

quality of sorting without using approximations approach. This will contribute to an overall 

reduction in the computational time of DRSA. Therefore, this would be an efficient method to 

calculate the quality of sorting which helps further in finding the reducts. 

1.5. Proposed Methodology 

To overcome these problems, a new approach has been proposed in this paper which calculates 

the dominance-based rough set dependency measure without calculating the lower and upper 

approximations. The proposed methodology is called the “Incremental Dominance-based 

Dependency Calculation Method” (IDDC). To justify its flexibility and effectiveness, the 

proposed approach is implemented using the Fast Reduct Generating Algorithm(FRGA). The 

reason for selecting feature selection is that it is the common pre-process used to complete 

various tasks and the majority of DRSA based feature selection algorithms use dependency 

measure as criteria to select features. Results have shown that the proposed approach is more 

efficient and effective as compared to the conventional method of dependency calculation without 

affecting the accuracy of the algorithms. It is valuable to use the feature selection algorithms with 

the proposed methodology because of the following advantages as compared to conventional 

approximation methods: 

• IDDC effectively avoids the calculation of the upper and lower approximations and 

therefore it can also be used for large scale datasets. 

• IDDC calculates the same dependency value of a dataset as calculated by the conventional 

approach. 



 

20 
 

• Experimental results have shown that as compared to the conventional approach, 

calculating dependency using IDDC has reduced the execution time by 46% on average 

for selected datasets.  

• Experiments have also shown that calculating dependency using IDDC requires almost 

98% less runtime memory on average as compared to the conventional dependency 

calculation approach. 

• The overall performance of the algorithms using IDDC has been increased substantially. 

The time saved by IDDC in feature selection approaches can be used to work on other machine 

learning tasks such as classification, clustering, or pattern recognition. 

1.6. Research Contribution 

Dominance-based Rough Set approach uses equivalence structures for calculating lower and upper 

approximations. The approximations are further used for performing different tasks during data 

analysis. Calculating equivalence class structures is a computationally complex job, so in this 

research, we have provided a heuristics-based approach for calculating both of these 

approximations. The heuristics-based approach calculates these approximations without 

calculating equivalence class structures and thus significantly enhancing the efficiency. 

Similarly, Traditional dominance-based rough set-based approaches use a positive region-based 

dependency measure for the feature selection process. However, using a positive region is a 

computationally expensive approach that makes it inappropriate to use for large datasets. We have 

developed an alternate way to calculate dependency comprising of dependency classes. A 

dependency class is a heuristic which defines how the dependency measure changes as we scan 

new records during traversal of the dataset. 

In this proposed method, we start from the first record and calculate the dependency or quality of 

sorting of the dataset based on dominance relation and decision attributes of records. Then after 

adding every single record the dependency or quality of sorting is refreshed based on comparisons 

classes. In our proposed method, we formulate six different comparison classes that provide a 

much efficient and simple way to find the quality of sorting without finding the approximations 

which can be a complex and tedious task. 



 

21 
 

Based on the proposed methodology, feature selection was performed by using feature selection 

algorithms. The positive region-based dependency calculation step in these algorithms was 

replaced with proposed IDDC. Results were compared with conventional ones and it was observed 

that proposed IDDC based feature selection algorithms provide the same accuracy with a 

substantial increase in overall performance. These are the main contributions of our research: 

• Improved DRSA algorithm 

• The less computational cost of DRSA algorithm 

• Less memory consumption while using the DRSA algorithm 

• Less time complexity of DRSA algorithm 

• No compromise on accuracy 

1.7. Thesis Organization 

The overall thesis is structured as follows and Figure 2 also represents the organization of the 

thesis.  

• Error! Reference source not found. deals with the introduction having detailed background 

study about the concepts used in the research, problem statement, research contribution 

and thesis organization.  

• Error! Reference source not found.-BASED ROUGH SET APPROACH (DRSA) 

discusses the major concepts of the DRSA in detail. Each concept is explained by using 

formulas and examples.   

• Error! Reference source not found. contains the literature review which provides a 

description of work done in the field of dominance-based rough set approach. In the 

Literature review, we also highlight the advantages and disadvantages of the different 

approaches that we encountered.  

• Error! Reference source not found. explains the challenges that we face in the conventional 

approach and also covers the details of the proposed methodology that is used to mitigate 

the performance bottleneck of the conventional methodology.  

• Error! Reference source not found. provide the implementation regarding the proposed 

methodology and selection of multiple datasets, different algorithms. Validation of the 

proposed methodology is also performed in this chapter using a case study.  



 

22 
 

• Error! Reference source not found. ANALYSIS contains a brief performance analysis of 

our proposed methodology and conventional methodology based on the experimental 

results of both methodologies. 

• Error! Reference source not found. This section concludes the thesis. A summary of all of 

the findings along with an overview of future work is presented. 

 

 

 

 

Figure 2: Complete Thesis Flow 

 

 



 

23 
 

Chapter 2 

Dominance-based Rough Set Approach 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

24 
 

CHAPTER 2: DOMINANCE-BASED ROUGH SET APPROACH 

In this chapter, we will discuss major concepts regarding DRSA. In section 2.1 the main concept 

is elaborated. Further, in section 2.2, the dominance relation is discussed. In section 2.3, the 

concept of a decision class and class unions is described. In section 2.4, approximation and its 

types are explained with its calculation and in the last section 2.5, how to find the dependency of 

a dataset and then by using this dependency, how to calculate reducts and core attributes is 

explained. 

 

2.1. Main Concept 

As in conventional Rough Set Theory, “there is a decision system which is a combination of a 

finite set of objects known as Universe (U). Each object is categorized by a set of special attributes 

known as conditional attributes (C) and decision attributes (D)”. Mathematically it is shown in 

equation 4. 

α =  (U, C ∪  D) (4) 

 

In the context of DRSA, a decision table has four components and mathematically it is represented 

as shown in equation 5. 

 

Α =  (U, Q, V, f)                           (5) 

 

Here, U is Universe and Q represents a finite set of criteria i.e. “those attributes having an ordinal 

scale-based domain. 𝑄 = (𝐶 ∪  𝐷) which means that both conditional attributes and decision 

attribute(s) are included in Q.” Whereas, V can be mathematically represented as shown in 

equation 6. 

V = Uq∈Q Vq                          (6) 

 



 

25 
 

Here, 𝑉𝑞 is the value set of criteria 𝑞. 𝑓 in equation 5 represents a function of the form 𝑓 (𝑥, 𝑞) 

which assigns a particular value 𝑉𝑞 to an item 𝑥 for attribute q. The sample decision system is 

shown in Table II. 

In our sample decision system, Universe only contains a total of seven records i.e. 𝑈 =

{𝑋1, 𝑋2, 𝑋3 … … , 𝑋7}. Here, conditional criteria include {Mathematics, English} and the decision 

criterion is {Final-Result}. DRSA is an extended version of conventional RST that can be 

considered for knowledge gathering from non-ordinal datasets [21]. From the start of DRSA 

appearance, many domains have used it for better results such as multi-criteria web mining [22], 

fault diagnosis [23], in the manufacturing industry [24], finance projects [25,26], better project 

selection [27], and in data mining [28]. We have stated some core preliminaries of DRSA in the 

following sub-section to discuss the benefits, limitations, and the need for increased computational 

performance in conventional DRSA. 

 

Table I: Example of Information Table 

Universe Mathematics English 

X1 “A” “B” 

X2 “A” “A” 

X3 “B” “C” 

X4 “A” “B” 

X5 “B” “A” 

X6 “A” “B” 

X7 “C” “B” 

 

 

 

 



 

26 
 

Table II: Decision System 

Universe Mathematics English Final-Result 

X1 “A” “B” “Very Good” 

X2 “A” “A” “Excellent” 

X3 “B” “C” “Good” 

X4 “A” “B” “Good” 

X5 “B” “A” “Very Good” 

X6 “A” “B” “Very Good” 

X7 “C” “B” “Good” 

 

 

2.2. Dominance 

 For a set of criteria P ⊆ C, an item 𝑥 dominates item 𝑦 if item 𝑥 is better than 𝑦 on all the criterion 

in 𝑃 i.e. {∀q ∈ P, x ≽ q y}. It will be said that ‘‘𝑥 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑦’’ which can be denoted by 𝐷p
−(𝑥) 

and that can be defined mathematically as shown in equation 7. 𝐷p
−(𝑥) is a set of items that are 

being dominated by 𝑥 based on the information in P ⊆ C.  

𝐷p
−(𝑥) = {y ∈ ∪: xDP𝑦}                          (7) 

 

Similarly, the set of items which are dominating 𝑥 are denoted by 𝐷p
+(𝑥)and that can be defined 

mathematically as shown in equation 8. 

𝐷p
+(𝑥) = {y ∈ ∪: yDP𝑥}                          (8) 

 

For example, if we consider the item 𝑋3 in Table I as our origin and P = {Mathematics} then: 

𝐷p
−(x3) = {x3, x5, x7}  

Similarly, 

𝐷p
+(x3) = {x1, x2, x3, x4,x5, x6}  



 

27 
 

2.3. Decision Classes and Class Unions 

In traditional RST, based on decision attributes the Universe is partitioned into a finite number of 

decision classes. Likewise in DRSA, decision attributes splits the whole Universe into a finite 

number of decision classes, 𝐶𝑙 = {𝐶𝑙1, 𝐶𝑙2, 𝐶𝑙3, . . . , 𝑋𝑚}. Keep in mind that each item can be a part 

of only one decision class. Unlike the conventional RST, the decision classes in DRSA are 

supposed to be preference ordered. So, for 𝑟, 𝑠 = {1, 2, 3. . . . , 𝑚}, an item from 𝐶𝑙𝑟 is preferred 

over the item from 𝐶𝑙𝑠 for 𝑟 > 𝑠. Thus in place of simple approximation, as it is done in 

conventional RST, the approximations in DRSA are downward and upward unions based on 

decision classes. Mathematically these unions are shown in equations 9 and 10. 

𝐶𝑙𝑡
≥(𝑥) = ⋃ 𝐶𝑙𝑠 𝑠≥𝑡 𝑡 = 1, . . . , 𝑛.                            (9) 

  

𝐶𝑙𝑡
≤(𝑥) = ⋃ 𝐶𝑙𝑠𝑠≤𝑡  𝑡 = 1, . . . , 𝑛.                      (10) 

 

Here, 𝐶𝑙𝑡
≥(𝑥) represents the set of items from class 𝐶𝑙𝑡 or a more preferred class. However, 𝐶𝑙𝑡

≤(𝑥) 

represents the set of items from class 𝐶𝑙𝑡 or to a less preferred class. “In Table II, the decision 

attribute ‘‘Final-Result’’ comprises three different decision classes which are labeled as 

‘‘Excellent’’, ‘‘Very Good’’ and ‘‘Good’’. Here, class ‘‘Excellent’’ is preferred over ‘‘Very 

Good’’ which is preferred over ‘‘Good’’.” For ease of use, we will consider 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 = 3, 

𝑉𝑒𝑟𝑦 𝐺𝑜𝑜𝑑 = 2 and 𝐺𝑜𝑜𝑑 = 1. For example, based on data from Table II the 𝐶𝑙𝑡
≥(𝑥) and 𝐶𝑙𝑡

≤(𝑥) 

for t = 2 are following:   

𝐶𝑙𝑡
≥(𝑥) = {𝑋1, 𝑋2, 𝑋5, 𝑋6} 

𝐶𝑙𝑡
≤(𝑥) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

𝐶𝑙𝑡
≥(𝑥) represents the set of items either from class ‘‘Very good’’ or better class such as 

‘‘Excellent’’. Similarly, 𝐶𝑙𝑡
≤ (𝑥) represents the set of items relating to either class ‘‘Very good’’ 

or lower class such as “Good”. 



 

28 
 

2.4. Approximations 

An approximation is a key concept to find reducts and core. To decide whether an item belongs to 

a class of decision attribute or not, approximations are calculated. There are two kinds of 

approximations. 

• Lower Approximation 

• Upper Approximation 

 

2.4.1. Lower Approximations 

Lower approximations in traditional RST describe the set of those items that with certainty belong 

to a decision class based on certain conditional attributes. In DRSA, provided that 𝑃 ⊆ 𝐶, P-lower 

approximation of 𝐶𝑙𝑡
≥(𝑥) contains all those items which will, with certainty belong to 𝐶𝑙𝑡

≥(𝑥). 

Likewise, the P-lower approximation of 𝐶𝑙𝑡
≤(𝑥) will contain all those items that, with certainty 

belong to 𝐶𝑙𝑡
≤(𝑥). Mathematically it is shown in equations 11 and 12.  

𝑃(𝐶𝑙𝑡
≥) = {𝑥 ∈ 𝑈: 𝐷𝑃

+(𝑥) ⊆ 𝐶𝑙𝑡
≥}                          (11) 

 

𝑃(𝐶𝑙𝑡
≤) = {𝑥 ∈ 𝑈: 𝐷𝑃

−(𝑥) ⊆ 𝐶𝑙𝑡
≤}                          (12) 

 

Calculating P-lower approximation for both class unions 𝐶𝑙𝑡
≥ and 𝐶𝑙𝑡

≤ includes the following three 

steps which are described using data from Table II. 

1st Step: All the items related to the upward class union 𝐶𝑙𝑡
≥ are identified in this step. It is similar 

to computing equivalence class structure with the help of decision attributes in traditional RST. In 

this example lower approximation 𝑃(𝐶𝑙𝑡
≥) is calculated for 𝑡 = 2 and class union 𝐶𝑙𝑡

≥ for 𝑡 = 2 is 

as follows: 

𝐶𝑙𝑡
≥ = {𝑋1, 𝑋2, 𝑋5, 𝑋6} 

 

2nd Step: In this step, we will compute 𝐷𝑃
+(𝑥) for every item selected in the 1st Step. So, 𝐷𝑃

+(𝑥) 

for every item of class union 𝐶𝑙𝑡
≥ is as follows: 



 

29 
 

 𝐹𝑜𝑟 𝑋1: 𝐷𝑃
+(𝑋1) = {𝑋1, 𝑋2, 𝑋4, 𝑋6} 

𝐹𝑜𝑟 𝑋2: 𝐷𝑃
+(𝑋2) = {𝑋2} 

𝐹𝑜𝑟 𝑋5: 𝐷𝑃
+(𝑋5) = {𝑋2, 𝑋5} 

𝐹𝑜𝑟 𝑋6: 𝐷𝑃
+(𝑋6) = {𝑋1, 𝑋2, 𝑋4, 𝑋6} 

It is apparent from the above example that we have to calculate 𝐷𝑃
+(𝑥) for each item of class 

unions. This step is computationally very expensive especially for huge size datasets because to 

calculate 𝐷𝑃
+(𝑥) we have to iterate the whole dataset multiple times and these multiple iterations 

use lots of computational resources. 

3rd Step: In this step, we calculate lower approximation using the formula aforementioned in 

equations 11. Those sets identified in 2nd step which are subsets of the set identified in 1st step 

become part of the lower approximation. We can say with certainty about these items which are 

selected using the formula in equation 8 that they are part of the class union 𝐶𝑙𝑡
≥ for 𝑡 = 2. The 

calculated 𝑃(𝐶𝑙𝑡
≥) is as follows: 

𝑃(𝐶𝑙𝑡
≥) = {𝑋2, 𝑋5} 

Similarly, to calculate the lower approximations for downward class unions 𝐶𝑙𝑡
≤, all the 

aforementioned three steps are performed but in 2nd step 𝐷𝑃
−(𝑥) is calculated instead of 𝐷𝑃

+(𝑥) and 

in 3rd step formula from equation 12 is used to calculate lower approximation. 

 

2.4.2. Upper Approximations 

In the classical RST approach, the upper approximations describe those sets of items that probably 

relate to concept X. Whereas in DRSA, for 𝑃 ⊆ 𝐶 the P-upper approximations of 𝐶𝑙𝑡
≥(𝑥) describe 

the set of those items that may relate to the class unions 𝐶𝑙𝑡
≥(𝑥). Likewise, the P-upper 

approximations of 𝐶𝑙𝑡
≤(𝑥) describe the set of those items that may relate to the class unions 𝐶𝑙𝑡

≤(𝑥). 

Mathematically this is shown in equations 13 and 14. 

𝑃(𝐶𝑙𝑡
≥) = {𝑥 ∈ 𝑈: 𝐷𝑃

−(𝑥) ∩ 𝐶𝑙𝑡
≥ ≠ ∅}                          (13) 

 



 

30 
 

𝑃(𝐶𝑙𝑡
≤) = {𝑥 ∈ 𝑈: 𝐷𝑃

+(𝑥) ∩ 𝐶𝑙𝑡
≤ ≠ ∅}                         (14) 

  

Similar to lower approximation, the Computation of the upper approximation involves three 

crucial steps and these steps are computationally very expensive. Executing these three steps using 

the conventional approach results in grave performance holdups for feature selection algorithms. 

Using Table II, we will compute the p-upper approximation 𝑃(𝐶𝑙𝑡
≥) for 𝑡 = 2.  

1st Step: For Computing P-upper approximation, the 1st step is to identify all the items relating to 

the class union 𝐶𝑙𝑡
≥. Items of class union 𝐶𝑙𝑡

≥ for 𝑡 = 2 are : 

𝐶𝑙𝑡
≥ = {𝑋1, 𝑋2, 𝑋5, 𝑋6} 

2nd Step: In this step, 𝐷𝑃
−(𝑥) is calculated for each item of the set identified in the 1st step. 𝐷𝑃

−(𝑥) 

of all the items of the identified set are: 

𝐹𝑜𝑟 𝑋1: 𝐷𝑃
−(𝑥1) = {𝑋1, 𝑋3, 𝑋4, 𝑋6, 𝑋7} 

𝐹𝑜𝑟 𝑋2: 𝐷𝑃
−(𝑥2) = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

𝐹𝑜𝑟 𝑋5: 𝐷𝑃
−(𝑥5) = {𝑋3, 𝑋5, 𝑋7} 

𝐹𝑜𝑟 𝑋6: 𝐷𝑃
−(𝑥6) =  {𝑋1, 𝑋3, 𝑋4, 𝑋6, 𝑋7} 

It must be noted that this step considerably reduces the performance and efficiency because for 

every record we have to find all those records dominating it. This searching process needs a whole 

traversal of the dataset for every individual record. As there are four records in class union 𝐶𝑙𝑡
≥ 

identified in the 1st step. So, the specified dataset is traversed four times to calculate 𝐷𝑃
−(𝑥) for 

every item of the class union 𝐶𝑙𝑡
≥. 

3rd Step: Lastly, we identify those records relating to the P-upper approximation using equation 

13 and this involves selecting those records whose 𝐷𝑃
−(𝑥) (identified in 2nd Step) have a non-

empty intersection with the set identified in the 1st Step. 

In our example, all of the calculated 𝐷𝑃
−(𝑥) have a non-empty intersection with set identified in 1st 

step. So, 𝑃 (𝐶𝑙𝑡
≥) for 𝑡 = 2 is as follows:  

𝑃(𝐶𝑙𝑡
≥) = {𝑋1, 𝑋2, 𝑋5, 𝑋6} 



 

31 
 

Similarly, to calculate the upper approximations for downward class unions 𝐶𝑙𝑡
≤, these 

aforementioned three steps are performed but in 2nd step 𝐷𝑃
+(𝑥) is calculated instead of 𝐷𝑃

−(𝑥) and 

in 3rd step formula from equation 14 is used to calculate upper approximation. 

All of those algorithms which are based on conventional DRSA use these upper and lower 

approximation calculations and due to this their overall performance decreases. Therefore, 

Algorithms based on conventional DRSA are not feasible to be used for huge size datasets. 

 

2.5. Dependency / Quality of Sorting 

Dependency specifies the relation between the P-correctly stored objects and all of the objects of 

the Universe. P-correctly stored objects in the datasets are those object of the dataset which does 

not fall in any boundary region (doubtful region). The dependency of the dataset is a ratio between 

the P-correctly stored objects and all of the objects of the Universe. This can be mathematically 

represented as shown in equation 15. [29] 

𝛾𝐶(𝐶𝑙) =
|𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 − ((∪𝑡∈𝑇 𝐵𝑛𝑃(𝐶𝑙𝑡

≥)) ∪ (∪𝑡∈𝑇 𝐵𝑛𝑃(𝐶𝑙𝑡
≤)) |

|𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒|
 

(15) 

 

Here, 𝐵𝑛𝑃(𝐶𝑙𝑡
≥) represents the boundary region of the upward class union which we can be 

calculated by finding the difference of the upper approximation (𝑃(𝐶𝑙𝑡
≥)) and lower approximation 

(𝑃 (𝐶𝑙𝑡
≥)) of the upward class union. 𝐵𝑛𝑃(𝐶𝑙𝑡

≤) represents the boundary region of the downward 

class union which we can be calculated by finding the difference of the upper approximation 

(𝑃(𝐶𝑙𝑡
≤)) and lower approximation (𝑃(𝐶𝑙𝑡

≤)) of the downward class union. With the help of upper 

and lower approximation of class unions, we can calculate the P-boundaries (P-doubtful regions) 

of these class unions. The formulas to calculate P-boundary regions of upward and downward class 

unions are mentioned in equations 16 and 17, respectively. 

𝐵𝑛𝑃(𝐶𝑙𝑡
≥) = 𝑃(𝐶𝑙𝑡

≥) − 𝑃 (𝐶𝑙𝑡
≥)                         (16) 

 

𝐵𝑛𝑃(𝐶𝑙𝑡
≤) = 𝑃(𝐶𝑙𝑡

≤) − 𝑃 (𝐶𝑙𝑡
≤)                         (17) 



 

32 
 

 

It can also be said that dependency is the ratio of objects that are not in any doubtful region and 

all the objects of the Universe. This set of objects that are not in any doubtful region is called 

“AlphaSet” [29]. In the conventional approach, this AlphaSet is identified by subtracting the union 

of all the boundary region objects from the Universe as shown in equation 15. In the conventional 

methodology, you have to find all those key components like classes, Class Unions, upper and 

lower approximations and then boundary regions to calculate the dependency of datasets which is 

very complex and computationally too expensive for large size datasets.  

To avoid these expensive computations, in the proposed methodology objects from the Universe 

are taken one-by-one then they are incrementally compared with all the other objects of the 

Universe. This comparison is carried out using proposed dominance-based dependency classes. 

As a result of this comparison, AlphaSet is obtained. This AlphaSet helps us to calculate the 

dependency of datasets without calculating complex approximations. Finally, the dependency of a 

dataset is calculated by dividing the cardinality of the AlphaSet with the cardinality of the Universe. 

The formula of dependency calculation is shown in equation 18.  

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|

|𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒|
 

(18) 

 

 

 

 

 

 



 

33 
 

Chapter 3 

Literature Review 

 

 

 

 

 

 

 

 

 

 

 
 



 

34 
 

CHAPTER 3: LITERATURE REVIEW 

This chapter presents research work conducted in the area of dominance-based rough set approach 

and discusses its multiple real-time applications like in the field of manufacturing, airlines 

customer care and many more. After a brief literature review of work conducted in this area, we 

enlightened the research gaps that we found in previous works. Section 3.1 provides the 

background knowledge related feature selection, use of rough set theory and dominance-based 

rough set theory. Section 3.2 explains the research sequence of the performed research. Section 

3.3 gives detail information about related work in the field of DRSA and also provides a 

comparison of multiple techniques that were used to improve the performance of the DRSA 

algorithm.   

3.1. Background 

For different medical, banking or telecom datasets the performance and achievements of machine 

learning algorithms are affected by a variety of factors. In most of these datasets and especially in 

medical datasets the major issues are the quality of data collected. If the information gathered from 

data is redundant or maybe irrelevant or sometimes noisy and as well as unreliable, then during 

the training process knowledge discovery becomes much harder. Feature selection is used to 

identify and remove redundant, noisy and irrelevant information from the dataset. In processing 

various datasets, from these large numbers of features, an optimum subset of features should be 

elected which must not lose any necessary information. Collecting data is not and never was an 

easy task especially in medical applications because it is a slow and expensive process; less amount 

of data needs to be collected after the features are successfully reduced. In recent years, substantial 

research efforts have been made to automatically discover vital knowledge and rules in the medical 

field using data mining or machine learning techniques. Numerous classification and feature 

selection techniques based on a dominance-based rough set approach have been presented. 

Accurate, efficient and precise classification is most critical particularly in the medical field for 

the treatment of patients. As compared to multiple existing algorithms in resolving large-scale 

classification tasks, DRSA provides better and efficient results that were not offered by 



 

35 
 

conventional RST. To handle the uncertainty issues in datasets DRSA was proposed which is an 

extension of the conventional RST approach.  

3.2. Research Sequence 

Here, we will explain the steps which we follow to do the literature review for our thesis. 

 

3.2.1. Research Questions 

The following are the research questions for our thesis. 

• What are the ways to calculate lower and upper approximations in DRSA? 

• What are the ways to reduce the computational cost of calculating lower and upper 

approximations in DRSA? 

• What is the worth of the traditional algorithm of calculating lower and upper approximations 

in DRSA? 

• What is the impact of parallel and incremental computation in calculating lower and upper 

approximations in DRSA? 

 

3.2.2. Inclusion/Exclusion Criteria 

Inclusion and exclusion criteria of our reviewed papers are as follows: 

• Subject Relevant papers are selected.  

• Papers published after 2010 are selected and literature published before 2010 is not 

considered. 

• Papers from renowned digital libraries are selected such as IEEE, Elsevier, Springer. 

 

3.2.3. Keywords 

Following are the keywords for our literature review: 

• Dominance based Rough Set Theory 

• Rough Set Theory 



 

36 
 

• Lower Approximation 

• Upper Approximation 

• Computational Complexity 

• Feature Selection 

• Classification 

 

3.3. Related Work 

A systematic study of related work has been performed based on a defined set of criteria, 

consulting the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines [30]. 

As the main benefit of DRSA is to process information for preference ordered domains, thus it has 

been widely used for multi-criteria analysis [31]. For calculating the upper and lower 

approximations in DRSA, different ways have been adopted. One of them is the conventional 

method which has the highest computational cost whereas other methods are incremental and 

parallel processing methods. A brief review of different research papers along with their 

comparison is provided in this section.  

In [32], authors have used improved DRSA for the classification of medical data. The presented 

approach is used for nominal attributes whereas conventional DRSA is used for multi-criteria and 

ordinal attributes. Here, the decision table is used to find the dominance relation of all the instances 

of Universe, the proposed approach has been employed to find out the lower and upper 

approximation of the complete dataset. Lastly, for classification purposes, researchers have 

extracted the reduced attribute set by using attribute reducing technique. The proposed approach 

uses conventional lower and upper approximations which degrades the performance of the 

proposed approach. 

In [33], authors have presented a classification technique based on DRSA for the management of 

spare parts. The proposed method uses conventional upper and lower approximation measures. It 

is based on the three-step framework. In the first step, multiple ‘‘if......else’’ rules are extracted 

from the historic datasets using DRSA. In the second step, the proposed rules are validated both 

manually and automatically using cross-validation techniques. Finally, in the third step, the unused 



 

37 
 

set of spare parts is classified in a real environment. The authors tested the proposed approach by 

using real-world data and the accuracy was found to be 96%. However, the proposed approach 

uses a conventional DRSA which results in highly expensive computations. 

In [34], DRSA has been used by the authors to forecast the strength of schoolchildren that will 

probably fail the Massive Open Online Course (MOOC) class coming week by using the data of 

the preceding week. This approach divides the students into a couple of classes, 𝐶𝑙1 which 

represents ‘‘At-risk Learners’’ and 𝐶𝑙2 represents the ‘‘Active Learners’’. This technique is based 

on a two-step approach, step one establishes a preference mode and step 2 divides the students into 

classes 𝐶𝑙1 and 𝐶𝑙2. The step one itself comprises of three phases. The First phase extracts the 

learning examples of students. While phase two forms the comprehensible criteria group for 

students’ profile classification and phase three is to deduce a preference model which results in a 

collection of decision rules. The proposed technique is based on traditional DRSA. Thus, it inherits 

all the bottlenecks of the conventional approach and as a result, it considerably decreases the 

performance of the algorithm. 

In [35], authors have presented DRSA based technique for forecasting customer’s behavior in 

airline companies. This may assist managers to get new customers and get hold of esteemed and 

treasured customers. To evaluate its forecasting ability a collection of rules is extracted from a 

huge sample of international airline customers. This approach was based on traditional DRSA and 

uses upper and lower approximations which can result in the inherent performance drawbacks. 

In [36], authors have presented a novel method for discovering the reducts in DRSA. They have 

inspected the attribute reduction in DRSA accompanied by defining class-based reducts and their 

relation with earlier reducts. There are three types of class-based reducts. First reducts are called 

L-reducts and they protect the lower approximations of the decision classes. Second reducts are 

called U-reducts and they protect the upper approximations of the decision classes. Third reducts 

are called B-reducts and they protect the boundary regions of the decision classes. Moreover, they 

have demonstrated that all types of reducts can be computed broadly depending on two 

discernibility matrices related to generalized decisions. 

In [37], the authors have proposed a parallel algorithm for approximations of DRSA and compared 

them on three different MapReduce runtime systems i.e. Twister, Phoenix, and Hadoop. Execution 

time and speed parameters are used to compare the approaches. In [38], the authors have 



 

38 
 

introduced three different matrixes based on parallel methods for the DRSA approximations. This 

approach tackles large incomplete datasets with missing values. Twister MapReduce has been used 

to apply this approach.  

In [39], authors have implemented the Variable Consistency Dominance-based Rough Set 

Approach (VC-DRSA) to develop airline service strategies by making airline service decision 

rules that model passenger preferences for airline service quality. Flow graphs are used to deduce 

the decision rules. The results were improved slightly but the use of conventional methods was 

still a bottleneck for improving the overall performance. In [40], the authors have suggested a 

matrix-based dynamic incremental approach for the DRSA approximations under the process of 

attribute generalization. Five pre-processed data sets from UCI are used. Their proposed approach 

is time-efficient but has a complex algorithm structure. Whereas, some authors have also combined 

incremental and parallel approaches to mitigate the bottlenecks of conventional DRSA [41]. 

Table III shows a comparative summary of the approaches discussed above. 

 

Table III: Comparisons of techniques used in different papers 

Algorithms Technique used Advantages Disadvantages 

“Improved dominance 

rough set-based 

classification system” 

[32] 

DSRA based 

classification 

 

Improved results Conventional lower and 

upper approximation 

techniques affect the 

performance 

“Spare parts 

classification in 

industrial 

manufacturing using 

the dominance-based 

rough set approach” 

[33] 

DSRA based 

approach for spare 

parts classification 

 

High accuracy Conventional approximation 

based approaches are used 

 



 

39 
 

“Weekly predicting the 

At-Risk MOOC 

learners 

using Dominance-

Based rough set 

approach” [34] 

DSRA based 

approach for 

classifying students 

 

Prediction of ‘‘At-

risk’’ students 

Conventional approach used 

 

“A dominance-based 

rough set approach to 

customer behavior in 

the airline market” [35] 

DSRA based 

prediction approach 

Prediction and 

retaining of high 

valued customer 

Conventional approach 

affects performance 

“A unified approach to 

reducts in dominance-

based rough set 

approach” [36] 

DSRA based 

approach for finding 

reducts 

New types of 

reducts are 

introduced 

Conventional approximation 

approach affects the 

performance of the 

algorithm 

“A comparison of 

parallel large-scale 

knowledge acquisition 

using rough set theory 

on different 

MapReduce runtime 

systems” [37] 

Phoenix, Twister, 

Hadoop 

(MapReduce) Parallel 

approach 

Improved 

efficiency, low 

execution time 

Use of more hardware 

(multiple processors) 

“A Parallel Matrix-

Based Method for 

Computing 

Approximations in 

Incomplete Information 

Systems” [38] 

Twister (MapReduce) 

Parallel approach 

Efficient and 

works on 

incomplete 

missing data sets, 

low computational 

complexity 

Use of more hardware 

(multiple processors) 

“Variable Consistency 

Dominance-based 

Rough 

Variable Consistency 

Dominance-based 

Rough Set Approach 

(VC-DRSA) to 

The use of flow 

graphs to visualize 

rules makes them 

more reasonable 

Conventional 

approximation-based 

approaches are used 



 

40 
 

Set Approach to 

formulate airline 

service strategies” [39] 

formulate airline 

service strategies. 

than traditional 

methods. 

“Dynamic dominance 

rough set approach for 

processing composite 

ordered data” [40] 

DRSA based 

dynamic incremental 

approach 

Low 

computational 

complexity 

The complex architecture of 

the algorithm 

 

 

 

 

 

 

 

 

 

 

 



 

41 
 

Chapter 4 

Challenges In DRSA And Proposed Solution 



 

42 
 

CHAPTER 4: CHALLENGES IN DRSA AND PROPOSED 

SOLUTION 

This chapter explains the challenges that make the conventional DRSA algorithm less efficient 

and complex. The reason behind these challenges is also described in detail. In the later part of the 

chapter, the solution is also presented to overcome these challenges. This chapter has two sections. 

In the first section, we have discussed the challenges that we face in conventional DRSA and the 

second section has further a sub-section that explains the proposed dominance-based dependency 

classes that are used to calculate the dependency of the data set incrementally. 

4.1. Challenges in DRSA 

As we have mentioned earlier that calculating dependency using the conventional approach 

requires a three-step process of calculating lower and upper approximations. This process makes 

it computationally an expensive task and significantly affects the performance of the algorithms. 

The challenges faced while performing this three-step process are discussed in this section.  

The first step for calculating approximations requires the calculation of class unions which are 

represented as 𝐶𝑙𝑡
≥ and 𝐶𝑙𝑡

≤. While calculating these class unions, we have to traverse through the 

complete Universe. This could be a time-taking process and may require lots of computing 

resources for larger datasets. For our example dataset, we only have to repeat this step seven times 

but this can easily reach thousands of times with larger Universe size. The pseudocode of step 1 

is shown in figure 3. 

𝐅𝐨𝐫 𝐢 = 𝟏 𝐭𝐨 |𝐔| 

𝐢𝐟 𝐂𝐥𝒊 ≥ 𝐂𝐥𝐭 

𝐂𝐥𝐭
≥ =  𝐂𝐥𝐭

≥ ∪ 𝐂𝐥𝒊 

𝐄𝐧𝐝 − 𝐢𝐟 

𝐄𝐧𝐝 − 𝐅𝐨𝐫 

Figure 3: Pseudocode of 1st Step for calculating lower approximation. 

 

The following are the class unions for our example dataset. 

 



 

43 
 

𝐶𝑙1
≤(𝑥) = {𝑋3, 𝑋4, 𝑋7} 

𝐶𝑙2
≤(𝑥) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

𝐶𝑙2
≥(𝑥) = {𝑋1, 𝑋2, 𝑋5, 𝑋6} 

𝐶𝑙2
≥(𝑥) = {𝑋2}  

In the 2nd Step of this conventional method of approximations calculation, we have to calculate 

𝐷𝑃
+(𝑥) and 𝐷𝑃

−(𝑥) for all the items of the calculated class unions. This step requires a nested loop 

for its implementation outer loop will execute from 1 to the cardinality of the class union to 

incrementally get the items from the set of the class union. The inner loop will execute from 1 to 

cardinality of the universe (|𝑈|) to compare the selected item from the outer loop with all the items 

of the Universe. This step is repeated for all the items of all the class unions identified in the 1st 

Step. For example, in our case inner loop for 𝐶𝑙1
≤(𝑥) will run 3 ∗ 7 = 21 times. Here, 3 is the 

cardinality of the set 𝐶𝑙1
≤(𝑥) and 7 is the cardinality of the Universe. The repetitions of the loop in 

the 2nd step can easily reach hundreds of thousands when datasets are huge in size. So, 2nd Step is 

much more complex and needs more time for computation than the 1st step. The pseudocode for 

calculating 𝐷𝑃
+(𝑥) and 𝐷𝑃

−(𝑥) is shown in figure 4. 

 

//For Dominance Positive 

𝐅𝐨𝐫 𝐢 = 𝟏 𝐭𝐨 |𝑪𝒍𝒕
≥/𝐶𝑙𝑡

≤| 

  For j=1 to |U|  

      𝐈𝐟 𝐗𝒋 ≥ 𝑿𝒊𝒕 

           𝑫𝑷
+(𝑿𝒊) = 𝑫𝑷

+(𝑿𝒊) ∪ 𝑿𝒋 

      𝐄𝐧𝐝 − 𝐈𝐟 

   𝐄𝐧𝐝 − 𝐅𝐨𝐫 

𝐄𝐧𝐝 − 𝐅𝐨𝐫 

 

//For Dominance Negative 

𝐅𝐨𝐫 𝐢 = 𝟏 𝐭𝐨 |𝑪𝒍𝒕
≥/𝐶𝑙𝑡

≤| 

For j=1 to |U| 

      𝐈𝐟 𝐗𝒋 ≤ 𝑿𝒊𝒕 



 

44 
 

 

 

 

Figure 4: Pseudocode of 2nd Step for calculating lower approximation. 

Finally in the 3rd Step, P(𝐶𝑙𝑡
≥) and P̅(𝐶𝑙𝑡

≥) are to be calculated which are the lower approximation 

and upper approximation of class unions and these are calculated for all the class unions. To 

perform this step, a triple nested loop is required. The outermost loop will execute from 1 to the 

cardinality of the class union. The middle loop will execute from 1 to the cardinality of 𝐷𝑃
+(𝑥) or 

𝐷𝑃
−(𝑥). These two loops are used to traverse a two-dimensional array of 𝐷𝑃

+(𝑥) or 𝐷𝑃
−(𝑥). After 

that, we have to compare these indexes with the class unions to check if intersection and subset 

properties hold. For this purpose, the innermost loop will also execute from 1 to the cardinality of 

the class unions. These triple nested loops tremendously increase the execution time and 

computational complexity of the conventional approach. The pseudocode of step 3 is shown in 

figure 5. 

 

𝐅𝐨𝐫 𝐢 = 𝟏 𝐭𝐨 |𝑪𝒍𝒕
≤| 

  𝐅𝐨𝐫 𝐣 = 𝟏 𝐭𝐨 |𝐃𝐍
+(𝐗𝐢)|  

      𝐅𝐨𝐫 𝐤 = 𝟏 𝐭𝐨 |𝐂𝐥𝐭
≤| 

          𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝑫𝑵
+(𝑿𝒋𝒊) ⊆ 𝑪𝒍𝒌𝒕

≤     

      𝐄𝐧𝐝 − 𝐅𝐨𝐫 

   𝐄𝐧𝐝 − 𝐅𝐨𝐫 

𝐄𝐧𝐝 − 𝐅𝐨𝐫 

Figure 5: Pseudocode of Step-3 for calculating lower approximation 

Therefore, the conventional approach for calculating dependency poses grave challenges to the 

performance of the algorithms when it comes to larger datasets. To overcome all of the above-

described performance bottlenecks of the conventional approach, we have proposed a solution that 

reduces the computational complexity of dependency calculation by avoiding the approximation 

approach. This proposed method greatly reduces the computational complexity and resource 

           𝑫𝑷
−(𝑿𝒊) = 𝑫𝑷

−(𝑿𝒊) ∪ 𝑿𝒋 

      𝐄𝐧𝐝 − 𝐈𝐟 

   𝐄𝐧𝐝 − 𝐅𝐨𝐫 

𝐄𝐧𝐝 − 𝐅𝐨𝐫 

 



 

45 
 

utilization for dependency calculation which ultimately enhances the performance of the 

algorithms. 

4.2. Proposed Methodology 

In our proposed solution, to make the reduct generation process more efficient we have replaced 

the approximation calculation part with a heuristic-based method. The proposed method is called 

the “Incremental Dominance-Based Dependency Calculation (IDDC)”. The proposed method 

reduces the computational complexity and resource utilization to calculate the dependency of a 

dataset. IDDC is a combination of two phases. The first phase of the IDDC is to calculate the 

dominance table also known as a dominance matrix which provides us information regarding the 

dominance relation between all objects of the Universe. This two-dimensional matrix stores the 

comparison results of all the objects of the Universe with four possible relations. Four possible 

relations between two objects {𝒂, 𝒃 ∈  𝑼} can hold as follows:  

i. First relation which shows that a is dominant over b. In the dominance matrix, it is 

represented by the symbol “≥”. 

ii. The second relation shows that a is dominated by b. In the dominance matrix, it is 

represented by the symbol “≤”.  

iii. The third relation shows that a and b are identical and have the same values for all the 

conditional attributes in the dominance matrix. In dominance matrix, it is represented by 

the symbol “=”. 

iv. The fourth relation shows that both of the objects are indiscernible which means that the 

value of a is greater than or equal to b for certain features and less than and equal to b for 

remaining features. In the dominance matrix, it is represented by the symbol “≠”.  

 

Table IV: Comparison Possibilities of two objects 

S. No. Possible Relations Stored Values 

1 𝐴 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝐵  𝐴 ≥ 𝐵  

2 𝐴 𝑖𝑠 𝑏𝑒𝑖𝑛𝑔 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑏𝑦 𝐵 𝐴 ≤ 𝐵 

3 𝐴 𝑖𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑡𝑜 𝐵 𝐴 = 𝐵 

4 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑖𝑛𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑙𝑒 𝐴 ≠ 𝐵 



 

46 
 

 

 

After the calculation of the dominance matrix, the second phase of IDDC is to find the dependency 

of a dataset by comparing all the records of the Universe based on proposed dominance-based 

dependency classes. This second phase is the main difference between both proposed and 

conventional methods of calculating the dependency of the dataset. In the proposed approach, we 

will avoid calculating approximations and boundary regions to calculate the dependency of the 

dataset. In this phase of the proposed approach, the following steps are taken to calculate the 

dependency of the dataset:  

• Two arrays of variable length by the name of AlphaSet (it provides a set of records to 

calculate dependency of the dataset) and Checked_Objects (it is used to avoid the 

comparison repetitions by storing those records which have already been compared) are 

created.  

• Records from Universe are taken one-by-one and compared with all the records in the 

Checked_Objects array and during comparison, their dominance relation and the decision 

classes are compared.  

• The dominance relation based on conditional attributes is compared using a dominance 

matrix.  

• Records are added or removed from the AlphaSet based on their comparison but every 

record taken from the Universe is added into the Checked_Objects array to avoid repetitive 

comparisons of records. 

• Proposed dominance-based dependency classes are used to determine the result of every 

comparison of the records.  

• When all the records from the Universe are traversed than the cardinality of AlphaSet is 

divided by the cardinality of the Universe to get the dependency also known as the quality 

of sorting of the dataset. The formula to calculate the dependency is aforementioned in 

equation 15. 

 

Each minimal subset of attribute set 𝑃 ⊆ 𝐶 will be called Reduct of 𝐶𝑙 if 𝛾𝑃(𝐶𝑙) ≥ 𝛾𝐶(𝐶𝑙) which 

means that reduct is considered valid if the dependency of the reduct is equal to or better than the 



 

47 
 

dependency of the complete dataset. We can have multiple reducts and their intersection is called 

Core and it is comprised of Core attributes. 

 

4.2.1. Proposed Dominance-Based Dependency Classes 

We have defined dominance-based dependency classes that determine the outcome of a 

comparison of records. They explain how dependency of dataset changes during traversal of the 

dataset. It starts from the first record to calculate the dependency of the dataset and as it traverses 

to next record the dependency of the dataset is updated. This incremental method avoids the 

complex dependency calculation method of the conventional approach. Table II is considered as 

an example of a dataset to demonstrate the working of each dominance-based dependency class.  

• Initial value class 

This class only checks that if the selected record 𝒊 ∈ 𝑼 is the first record of the Universe. If it is 

true then this record will be selected and added in both AlphaSet as well as Checked_Objects. This 

class determines that if the selected record is the first record of the Universe. Therefore,  it is called 

“Initial Value Class”. Dependency value for this class will be updated as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
 

 

(19) 

Here, |𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ represents the previous cardinality of Checked_Objects without adding 

the newly traversed object. Similarly, |𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ represents the previous cardinality of AlphaSet 

without adding the current object. 

Initially |𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ = 0 and |𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ = 0 because we are traversing the first object 

of the dataset. In our case when we picked our first record which is 𝑋1 from Table II, then the 

dependency of dataset became: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

0 + 1

0 + 1
= 1 

 

(20) 

After adding the first record, |𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ = 1 and |𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ = 1. 

 



 

48 
 

• True Positive class 

This class shows the consistency in the dataset and this class has two sides, one is an object having 

a higher decision class with a dominant relation and the other is an object having a lower decision 

class with a dominated relation. Dominance relation and decision classes of these records are used 

to determine which record is better. Mathematically, For two records 𝒂, 𝒃 and attribute set 𝐜 ∈ 𝐂 

first side of this class can be written as shown in equation 21. 

(𝐶(𝑎) >  𝐶(𝑏) 𝐴𝑁𝐷 𝐷(𝑎)  ≥ 𝐷(𝑏)) 

 

(21) 

This class is called “True Positive Class” because 𝒂 has dominant relation with 𝒃 and also has a 

higher decision class than 𝒃. This does not cause any inconsistency in the dataset. 

Similarly, if an object 𝒂 is dominated by object 𝒃 with lower decision class then mathematically 

the other side of this class can be written as shown in equation 22. 

(𝑐(𝑎) <  𝑐(𝑏) 𝐴𝑁𝐷 𝐷(𝑎)  ≤ 𝐷(𝑏)) 

 

(22) 

Dependency value for this class will be updated as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
 

 

(23) 

In our example Table II, 𝑋2 is dominant over 𝑋1 with a higher decision and is not causing any 

inconsistency in the dataset. So, 𝑋2 will be added to AlphaSet and dependency will become: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

1 + 1

1 + 1
= 1 

 

(24) 

Similarly, as we traverse to the 3rd record in Table II and compare the 𝑋3 with 𝑋1. This comparison 

represents the other side of the class. Where 𝑋3 is dominated by 𝑋1 and also has a lower decision 

class than 𝑋1. This does not cause any inconsistency in the dataset. So, 𝑋3 is added into AlphaSet 

and dependency of dataset becomes: 



 

49 
 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

2 + 1

2 + 1
= 1 

 

 

(25) 

• Distinct Decision Class 

This class defines one of the inconsistencies we face in the dominance-based datasets where values 

of conditional attributes for two records are similar yet they have different decision classes. 

Therefore, this class is called “Distinct Decision Class”. Mathematically, For two records 𝒂, 𝒃 and 

attribute set 𝐜 ∈ 𝐂 this class can be written as shown in equation 26. 

(𝑐(𝑎) == 𝑐(𝑏)& 𝐷(𝑎)  ≠ 𝐷(𝑏)) 

 

(26) 

Because of this inconsistency, 𝒃 will not be added into the AlphaSet and we will also remove all 

those records from AlphaSet which cause this inconsistency when compared to 𝒃. Dependency 

value for this class will be updated as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ − 𝑁

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
 

 

(27) 

Here, 𝑁 represents the number of records in AlphaSet that cause this inconsistency when compared 

with this newly traversed record. For example, as we traverse through Table II and compare 𝑋4 

with 𝑋1. This comparison shows that both records have the same attribute values but different 

decision class. Therefore, both of these records will be excluded from AlphaSet. While comparing 

𝑋4 with the records of Checked_Objects, this inconsistency appeared only once when 𝑋4 is 

compared to 𝑋1. As only one member of AlphaSet has caused this inconsistency while comparing 

with 𝑋4 so, we put 𝑁 = 1. Therefore, the dependency of the dataset becomes: 

 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ − 𝑁

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

3 − 1

3 + 1
= 0.5 

 

 

(28) 



 

50 
 

• Indiscernible class 

This class explains the indiscernible relation between the records of the datasets where one record 

has preferred values for some conditional attributes but worse values for others so, it does not 

matter what their decision classes are because both of them will be added into the AlphaSet. 

Therefore, this class is called “Indiscernible Class”. Mathematically, For two records 𝒂, 𝒃 and 

attribute set {𝐜𝟏, 𝐜𝟐 ∈ 𝐂|(𝐜𝟏 ∩ 𝐜𝟐) ≠ 𝛗} this class can be written as shown in equation 29. 

((𝑐1(𝑎)  ≥  (𝑐1(𝑏) 𝐴𝑁𝐷 (𝑐2(𝑎)  ≤  (𝑐2(𝑏)) (29) 

 

This shows that object 𝒂 is dominant over 𝒃 for criteria 𝒄𝟏but at the same time, 𝒂 is being 

dominated by 𝒃 for criteria 𝒄𝟐. Therefore, both objects will be kept in AlphaSet and the dependency 

of the dataset will be updated as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
 

 

(30) 

In Table II, when we traversed to record 𝑋5 and compare it with 𝑋1 it results in an indiscernible 

relation. As this does not cause any inconsistency in the dataset so, 𝑋5 is added into AlphaSet and 

dependency of dataset becomes: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

2 + 1

4 + 1
= 0.6 

 

(31) 

• Identical class 

This class defines the relationship between two identical records with an identical decision. 

Therefore, this class is called “Identical Class”. This shows the consistency in the dataset. 

Mathematically, For two records 𝒂, 𝒃 and attribute set 𝐜 ∈ 𝐂 this class can be written as shown in 

equation 32. 

(𝑐(𝑎) == 𝑐(𝑏)& 𝐷(𝑎) == 𝐷(𝑏)) 

 

(32) 



 

51 
 

Ideally, the newly traversed object 𝒃 should be added into AlphaSet but if object 𝒂 has already 

been a part of any inconsistency then the object 𝒃 will not be added into AlphaSet. Ideally, 

dependency for this class will be updated as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
 

 

(33) 

In Table II, when 𝑋6 is compared to 𝑋1 it shows that both records have identical attributes values 

with an identical decision class. This represents the consistency in the dataset. Ideally, 𝑋6 should 

be added into AlphaSet but 𝑋6 is not added into the AlphaSet because 𝑋1 has already been a part 

of an inconsistency. Therefore, the dependency of the dataset becomes:  

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

3

5 + 1
= 0.5 

 

(34) 

• False Positive Class 

This class also has two sides, one is an object having a lower decision class with a dominant 

relation and the other is an object having a higher decision with dominated relation. Therefore, it 

is called “False Positive Class”. Mathematically, For two records 𝒂, 𝒃 and attribute set 𝐜 ∈ 𝐂 first 

side of this class can be written as shown in equation 35. 

(𝑐(𝑎) > 𝑐(𝑏) 𝐴𝑁𝐷 𝐷(𝑎) < 𝐷(𝑏)) 

 

(35) 

Here, 𝒂 has a dominant relation over 𝒃 with a lower decision class. This causes inconsistency in 

the dataset.  

Mathematically, For two records 𝒂, 𝒃 and attribute set 𝐜 ∈ 𝐂 second side of this class can be written 

as shown in equation 36. 

(𝑐(𝑎) < 𝑐(𝑏) 𝐴𝑁𝐷 𝐷(𝑎) > 𝐷(𝑏)) (36) 

 

This states that 𝒂 is dominated by 𝒃 with a higher decision class. This also causes inconsistency 

in the dataset. Therefore, the dependency of the dataset decreases due to these inconsistencies. The 

dependency in both scenarios will be updated as follows: 



 

52 
 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ − 𝑁

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
 

 

(37) 

Here, 𝑁 represents the number of records in AlphaSet that causes the same inconsistency when 

compared with the newly traversed record. Such as if two records of AlphaSet are causing this 

inconsistency when compared with the newly traversed record then 𝑁 will be put 𝑁 = 2.  

The pseudocode of the proposed methodology is shown in figure 6. 

//For Extracting AlphaSet to calculate dependency of the dataset 

Inputs: Universe and Dominance Matrix 

Output: Dependency of Dataset 

Step 1: Find AlphaSet  

𝐹𝑜𝑟 𝑖 = 0 𝑡𝑜 |𝑈| 

      𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  𝐹𝑎𝑙𝑠𝑒 

      Pick objects from Universe one by one on every iteration let’s name it {𝑎 ∈ 𝑈}. 

      If (the first iteration of the loop) 

            Add object a to both Checked_Objects and AlphaSet arrays. 

      Else 

            𝐹𝑜𝑟 j=0 to |Checked_Objects|  

                  Pick objects from Checked_Objects iteratively and let’s name it {𝑏 ∈

𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠}. 

                  𝐼𝑓 (𝒂 𝑎𝑛𝑑 𝒃 𝑎𝑟𝑒 𝑖𝑛𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑙𝑒) 

                        𝐼𝑓(𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑦 = 𝐹𝑙𝑎𝑠𝑒)  

                             keep object a in both Checked_Objects and AlphaSet arrays. 

                        𝐸𝑛𝑑 − 𝐼𝑓 

                  𝐸𝑙𝑠𝑒 − 𝐼𝑓(𝐶(𝑎) >  𝐶(𝑏) 𝐴𝑁𝐷 𝐷(𝑎)  ≥ 𝐷(𝑏)) 𝑜𝑟(𝑐(𝑎) <  𝑐(𝑏) 𝐴𝑁𝐷 𝐷(𝑎)  ≤

𝐷(𝑏))  

                        𝐼𝑓(𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑦 = 𝐹𝑙𝑎𝑠𝑒)  

                             keep object a in both Checked_Objects and AlphaSet arrays. 

                        𝐸𝑛𝑑 − 𝐼𝑓 

                  𝐸𝑙𝑠𝑒 − 𝐼𝑓(𝑐(𝑎) = 𝑐(𝑏)& 𝐷(𝑎)  = 𝐷(𝑏)) 



 

53 
 

                        𝐼𝑓(𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑦 = 𝐹𝑙𝑎𝑠𝑒)  

                             keep object a in both Checked_Objects and AlphaSet arrays. 

                        𝐸𝑛𝑑 − 𝐼𝑓 

                  𝐸𝑙𝑠𝑒 − 𝐼𝑓(𝑐(𝑎) == 𝑐(𝑏)& 𝐷(𝑎)  ≠ 𝐷(𝑏)) 

                        Remove object a and b from AlphaSet array but keep in Checked_Objects. 

                        𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝑇𝑟𝑢𝑒 

                  𝐸𝑙𝑠𝑒 − 𝐼𝑓(𝑐(𝑎) > 𝑐(𝑏) 𝐴𝑁𝐷 𝐷(𝑎) < 𝐷(𝑏)) 𝑜𝑟(𝑐(𝑎) < 𝑐(𝑏) 𝐴𝑁𝐷 𝐷(𝑎) > 𝐷(𝑏)) 

                        Remove object a and b from AlphaSet array but keep in Checked_Objects. 

                        𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝑇𝑟𝑢𝑒  

                  𝐸𝑛𝑑 − 𝐼𝑓 

            𝐸𝑛𝑑 − 𝐹𝑜𝑟 

      𝐸𝑛𝑑 − 𝐼𝑓 

𝐸𝑛𝑑 − 𝐹𝑜𝑟 

Step 2: Find Dependency which is the ratio of the cardinality of AlphaSet and cardinality of 

Checked_Objects which will be equal to the cardinality of Universe at the end of complete 

traversal. 

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|

|𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒|
 

Finally, Output is Dependency.  

Figure 6: Pseudocode of the proposed methodology 

This proposed approach is accurate and much more efficient than the conventional approach which 

uses the approximations. To illustrate our proposed algorithm more clearly, we have used Table II 

as a case study. With the help of this Case study, we made a comparison of statements from both 

approaches and find out a percentage decrease in the number of comparison statements. This case 

study is presented in the next chapter. 

 

 



 

54 
 

Chapter 5 

Implementation and Validation 



 

55 
 

CHAPTER 5: IMPLEMENTATION AND VALIDATION 

This chapter deals with the implementation detail for our proposed methodology and describes all 

the datasets and algorithms we used to implement our technique. In section 5.1, datasets and all 

the algorithms that are used to validate the proposed methodology are discussed. In section 5.2, a 

case study is solved using the conventional method to get its results and in section 5.3, a case study 

is solved using the proposed methodology to compare the results.  

5.1. Datasets and Algorithms 

To provide better experimentation results we applied this approach on 10 different datasets from 

the UCI repository[42]. We took data sets with a different number of instances and attributes so 

that it is easy to visualize and understand the trend of reduction of time and memory usage from a 

smaller number of instances datasets to a huge number of instances datasets. We selected those 

datasets on the bases of dominance properties. The detail of these datasets is as follows: 

• The 1st dataset that we used is Iris. Features of the dataset include sepal length, sepal width, 

petal length and petal width in cm. The data type is real. The number of instances is 150 

and the number of attributes is 4. 

• The 2nd dataset that we used is Abalone. Features of the dataset include sex, age and 

different physical measurements of the shell. The data type is real and integer. The number 

of instances is 4177 and the number of attributes is 8. 

• The 3rd dataset that we used is Breast Cancer Wisconsin. Features of the dataset include 

the size, shape of cells and information related to nuclei. The data type is an integer. The 

number of instances is 699 and the number of attributes is 10. 

• The 4th dataset that we used is Wine Quality. Features of the dataset include 

physicochemical variables that are used for testing the quality of the wine. The data type 

is real. The number of instances is 4898 and the number of attributes is 12. 

• The 5th dataset that we used is the Electrical Grid Stability data. Features of the dataset 

include the information related to the properties of the current. The data type is real. The 

number of instances is 10000 and the number of attributes is 14. 



 

56 
 

• The 6th dataset that we used is EEG Eye State. Features of the dataset include values that 

are generated according to the eye state during egg measurement. The data type is real and 

integer. The number of instances is 10200 and the number of attributes is 15. 

• The 7th dataset that we used is Pen-Based Handwritten Digit. Features of the dataset 

include integers in the range 0….100 and the last attribute is the class code 0….9. The data 

type is an integer. The number of instances is 10992 and the number of attributes is 16. 

• The 8th dataset that we used is the Hepatitis C Virus. Features of the dataset include all 

the relevant information related to the body like BMI, age, gender, etc. The data type is 

real and integer. The number of instances is 1395 and the number of attributes is 29. 

• The 9th dataset that we used is Musk 2. Features of the dataset include the exact shape and 

conformation of molecules. The data type is an integer. The number of instances is 6598 

and the number of attributes is 168. 

• The 10th dataset that we used is Isolet. Features of the dataset include post-sonorant 

features, spectral coefficients, sonorant features and pre-sonorant features. The data type is 

real. The number of instances is7797 and the number of attributes is 617. 

All the datasets have an ordinal preference domain. A summary of datasets is shown in Table V. 

Table V: Information of Datasets  

S. NO. Dataset Number of 

Instances 

Number of 

Attributes 

Type of Dataset’s 

Attributes 

1 Iris 150 4 Real 

2 Abalone 4177 8 Integer, Real 

3 Breast Cancer Wisconsin  699 10 Integer 

4 Wine Quality 4898 12 Real 

5 Electrical Grid Stability data 10000 14 Real 

6 EEG Eye State 10200 15 Integer, Real 

7 Pen-Based Handwritten Digit  10992 16 Integer 

8 Hepatitis C Virus 1380 29 Integer, Real 

9 Musk 2 6598 168 Integer 

10 ISOLET 7797 617 Real 

 



 

57 
 

Our proposed methodology can be implemented using different algorithms to get the reducts in 

lesser time but for experimentation purposes, we have picked three different algorithms to prove 

that this approach of our can be easily implemented and get accurate results in lesser time by 

reduced usage resources. These three algorithms are briefly explained below along with their 

pseudocodes. 

5.1.1. Fast Reduct Generating Algorithm 

This algorithm is an exhaustive reduct generating algorithm which helps in finding all the possible 

Quality reducts of dataset no matter how much time it takes to complete the process[20]. Quality 

Reducts or Q-Reducts are those which preserves the quality of sorting of the dataset. So, this 

algorithm is very helpful when you need to find all the possible Q-reducts. We used this algorithm 

to find the time is taken and memory used by both of the approaches because of its exhaustive 

reducts generating ability. Then, this time is taken and memory usage values are used to find the 

percentage reduction in usage of resources like time and memory by our newly proposed approach. 

The pseudocode of FRGA is presented in Figure 7[20]: 

Input: A set of objects in Universe U. These objects are described by values of attributes. 

Output: A set K which is comprised of all the possible reducts of set U. 

 

Phase 1: Creation of Sorted, Absorbed Dominance Retaining List(SADRL). 

Step 1: Create a dominance retaining list (DRL) which contains all of those attributes and criteria                        

.           that retains dominance between all the appropriate pairs of objects. The resulting list will 

.          contain ( 𝐶1, 𝐶2, 𝐶3 … . 𝐶𝑛) 

Step 2: Absorb the DRL by eliminating empty and non-minimal elements from DRL. 

.            ADRL={𝐶𝑖  ∈ 𝐷𝑅𝐿: 𝐶𝑗 ≠ ∅ , is unique in ADRL and for no 𝐶𝑗 ∈ 𝐴𝐷𝑅𝐿: 𝐶𝑗 ⊆ 𝐶𝑖} 

.            The resulting ADRL is usually less than DRL. 

Step 3: Sort the ADRL in ascending order of its element’s cardinality and we have SADRL. 

 

Phase 2: A Breadth-First search for reducts. 

Step 1: 𝑅𝑒𝑑0 = {∅} 

Step 2: For every i=1......d compute. 



 

58 
 

.           𝑆𝑖 = {𝑅 ∈ 𝑅𝑒𝑑𝑖 − 1: 𝑅 ∩ 𝐶𝑖 ≠ ∅}    

 .          𝑇𝑖 = 𝑈𝑞∈𝐶𝑖
 𝑈𝑅∈𝑅𝑒𝑑𝑖−1: 𝑅∩𝐶𝑖=∅{𝑅 ∪ {𝑞}} 

.           𝑀𝐼𝑁𝑖 = {𝑅 ∈ 𝑇𝑖 ∶ 𝐹𝑃𝐼(𝑅) = 𝑡𝑟𝑢𝑒} 

.           𝑅𝑒𝑑𝑖 = 𝑆𝑖 ∪ 𝑀𝐼𝑁𝑖  

.           the final result is 𝐾 = 𝑅𝑑 . 

Figure 7: Pseudocode of FRGA Algorithm 

5.1.2. Genetic Algorithm 

A genetic algorithm is a key tool to find the optimal solution when there are millions of potential 

solutions are available and search space is also huge. The genetic algorithm is a heuristic-based 

algorithm and heuristic can be set by the user of this algorithm. In [43] authors present a rough set 

based genetic algorithm (GA) for feature selection. So, we have implemented a genetic algorithm 

with both conventional and our proposed approaches to find the dependency of datasets and 

selecting optimal reducts. Then the comparison of both approaches explicitly highlights the time 

and resources saved by the proposed methodology.  

 These randomly initialized generations were used to construct the gene pool used to determine the 

intermediate region used for crossover and mutation operators. “For crossover, order-based and 

partially matched crossover methods were used. In order based method, a random number of 

solution points are selected from parent chromosomes. In the first chromosome selected gene will 

remain at its place whereas, in the second chromosome, the corresponding gene will be beside that 

of the first chromosome that occupies the same place.” Order based crossover method is shown in 

Figures 8 and 9. Zeros and ones in the figures represent the missing and selected attributes from 

the datasets. Figure 8 shows the selected chromosomes and Figure 9 shows the resultant 

chromosomes.  

 

Figure 8: Selected chromosomes for ordered based crossover method 



 

59 
 

 

Figure 9:Chromosomes after ordered based crossover 

For mutation, bit flip and two change mutation operators were used. In the bit flip method, “the 

mutation operator takes the chosen genome and inverts the bits like if the value of bit was 1 after 

flipping it will become 0 whereas in adjacent two input change mutation method, adjacent two 

genes are selected and place of genes are inverted.” Figures 10 and 11 show both mutation 

methods. 

 

Figure 10: Chromosome after bit flip mutation 

 

Figure 11: Chromosome after adjacent two mutation 

The typical flow chart of the Genetic Algorithm is presented in Figure 12. 



 

60 
 

 

Figure 12: A Typical Flow Chart of Genetic Algorithm 

5.1.3. Particle Swarm Optimization Algorithm 

Particle swarm optimization (PSO) is an evolutionary computation technique developed by 

Kennedy and Eberhart [43]. The original intent was to graphically simulate the graceful but 

unpredictable movements of a flock of birds. “Initial simulations were modified to form the 

original version of PSO. Later, Shi introduced inertia weight into the particle swarm optimizer to 

produce the standard PSO [44][45]. The basic pseudo-code of this PSO is presented in Figure 9.” 

Particles represent the different subsets of complete set attributes and fitness represents the 



 

61 
 

dependency or quality of sorting. Only those particles are selected which has equal or greater 

dependency than complete attribute set. 

Input:  

           𝑚: 𝑡ℎ𝑒 𝑠𝑤𝑎𝑟𝑚 𝑠𝑖𝑧𝑒; 𝑐1, 𝑐2: 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠;  𝑤: 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 

           𝑀𝑎𝑥𝑉: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

           𝑀𝑎𝑥𝐺𝑒𝑛: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

           𝑀𝑎𝑥𝐹𝑖𝑡: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 

Output: 

           𝑃𝑔𝑏𝑒𝑠𝑡: Global best position 

Begin 

           Swarms {𝑥𝑖𝑑  , 𝑣𝑖𝑑} = Generate(m); /* Initialize a population of particles with random             

.          positions and velocities on S dimensions*/ 

           𝑃𝑏𝑒𝑠𝑡(𝑖)  =  0;  𝑖 =  1, . . . , 𝑚, 𝑑 =  1, . . . , 𝑆 

           𝐺𝑏𝑒𝑠𝑡 =  0;  𝐼𝑡𝑒𝑟 =  0; 

          𝑊ℎ𝑖𝑙𝑒(𝐼𝑡𝑒𝑟 < 𝑀𝑎𝑥𝐺𝑒𝑛 𝑎𝑛𝑑 𝐺𝑏𝑒𝑠𝑡 < 𝑀𝑎𝑥𝐹𝑖𝑡) 

          {𝐹𝑜𝑟(𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖) 

              {𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑖); 

                   𝐼𝐹(𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) > 𝑃𝑏𝑒𝑠𝑡(𝑖)) 

                       {𝑃𝑏𝑒𝑠𝑡(𝑖) = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖); 𝑃𝑖𝑑 = 𝑋𝑖𝑑;  𝑑 =  1, . . . , 𝑆} 

                   𝐼𝐹(𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) > 𝐺𝑏𝑒𝑠𝑡) 

                       {𝐺𝑏𝑒𝑠𝑡 =  𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖);  𝑔𝑏𝑒𝑠𝑡 =  𝑖; } 

              } 

         𝐹𝑜𝑟(𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖) 

              {𝐹𝑜𝑟(𝑒𝑣𝑒𝑟𝑦 𝑑){ 

                     𝑉𝑖𝑑 = 𝑊 ∗ 𝑉𝑖𝑑 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑃𝑖𝑑 − 𝑋𝑖𝑑) + 𝑐2 ∗ 𝑅𝑎𝑛𝑑() ∗ (𝑃𝑔𝑑 − 𝑋𝑖𝑑) 

                           𝐼𝐹(𝑉𝑖𝑑 > 𝑀𝑎𝑥𝑉) {𝑉𝑖𝑑 = −𝑀𝑎𝑥𝑉; } 

                          𝐼𝐹(𝑉𝑖𝑑 < −𝑀𝑎𝑥𝑉) {𝑉𝑖𝑑 = −𝑀𝑎𝑥𝑉; } 

                          𝑋𝑖𝑑 = 𝑋𝑖𝑑 + 𝑉𝑖𝑑  

                                 } 

                          } 



 

62 
 

                          𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1; 

                    }/∗ 𝑟𝑎𝑛𝑑() 𝑎𝑛𝑑 𝑅𝑎𝑛𝑑() 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 [0,1] ∗/ 

                    𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑔𝑏𝑒𝑠𝑡 

               𝐸𝑛𝑑 

Figure 13: Pseudocode of Particle Swarm Optimization (PSO) 

Next section deals with the validation of our proposed methodology with the help of a case study. 

The case study is discussed and documented in descriptive form. The results of the “Student 

Academic Record” case study are discussed and validated by solving a small dataset shown in 

Table II with both the techniques. Due to a small number of instances, it is easy to see that both 

techniques produced the same results which further validates that our proposed methodology gives 

accurate results. A complete comparison of both techniques with the help of multiple datasets is 

presented in the next chapter of comparative analysis.  

5.2. Case Study using Conventional Approximation’s Methodology 

We have used the dataset shown in Table II for this case study. In this dataset we have a universe 

of seven elements, two criteria attributes and a decision attribute containing three possible 

decisions {𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡, 𝑉𝑒𝑟𝑦 𝐺𝑜𝑜𝑑, 𝐺𝑜𝑜𝑑}. Based on these decisions, the dataset is distributed into 

three classes and by using these classes, class unions of the dataset are calculated. To find the 

dependency of dataset or quality of dataset using the conventional method can be divided into six 

steps. These steps are explained below one by one.  

Step 1: In this step, we will class sets based on every instance’s decision. Decision ‘Good’ is 

represented as 𝐶𝑙𝐼, decision ‘Very Good’ is represented as 𝐶𝑙𝐼𝐼 and decision ‘Excellent’ is 

represented as 𝐶𝑙𝐼𝐼𝐼. 

𝐶𝑙𝐼 = { 𝑋3, 𝑋4, 𝑋7} 

𝐶𝑙𝐼𝐼 = { 𝑋1, 𝑋5, 𝑋6} 

𝐶𝑙𝐼𝐼𝐼 = { 𝑋2} 

Step 2: Now, based on these class sets we will perform our second step which is finding class 

unions and the class unions are calculated based on decision classes as follows: 



 

63 
 

𝐶𝑙𝐼
≤(𝑥) = {𝑋3, 𝑋4, 𝑋7} 

𝐶𝑙𝐼𝐼
≤ (𝑥) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

𝐶𝑙𝐼𝐼
≥ (𝑥) = {𝑋1, 𝑋2, 𝑋5 , 𝑋6} 

𝐶𝑙𝐼𝐼𝐼
≥ (𝑥) = {𝑋2}  

Step 3: After finding the class unions we move on to the next step which is very important of 

calculation dominance relation matrix which helps us in finding the 𝐷𝑃
+𝑥 and 𝐷𝑃

−𝑥. The relation 

between records is illustrated using mathematical symbols. Every row depicts the relation of an 

individual record with all the records of the dataset. Like, the first row shows the dominance 

relation of 𝑋1 with all the records of the dataset. In Table VI, equal to sign (=) represents the 

identical relation, not equal to (≠) sign represents indiscernible relation, greater than equal to (≥) 

sign represents that record is dominating the other record and less than equal to (≤) sign represents 

that record is being dominated by another record. The complete dominance matrix of our case 

study dataset is shown in Table VI. 

Table VI: Dominance Relation Matrix of Table II 

 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 

𝑋1 = ≤ ≥ = ≠ = ≥ 

𝑋2 ≥ = ≥ ≥ ≥ ≥ ≥ 

𝑋3 ≤ ≤ = ≤ ≤ ≤ ≠ 

𝑋4 = ≤ ≥ = ≠ = ≥ 

𝑋5 ≠ ≤ ≥ ≠ = ≠ ≥ 

𝑋6 = ≤ ≥ = ≠ = ≥ 

𝑋7 ≤ ≤ ≠ ≤ ≤ ≤ = 

 

Step 4: Now, with the help of this dominance matrix we will find 𝐷𝑃
+𝑥 and 𝐷𝑃

−𝑥 of every element 

of the Universe. 𝐷𝑃
+𝑥 will provide us with the set of elements which are dominating the respective 

element and 𝐷𝑃
−𝑥 will provide us with a set of elements that are dominated by the respective 

element. Then these 𝐷𝑃
+𝑥 and 𝐷𝑃

−𝑥 will be used to find the upper and lower approximations. First, 

find 𝐷𝑃
+𝑥 for all the seven elements of our case study. 



 

64 
 

 

𝐷𝑃
+𝑥1 = {𝑋1, 𝑋2, 𝑋4, 𝑋6}  

𝐷𝑃
+𝑥2 = {𝑋2} 

𝐷𝑃
+𝑥3 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6} 

𝐷𝑃
+𝑥4 = {𝑋1, 𝑋2, 𝑋4, 𝑋6} 

𝐷𝑃
+𝑥5 = {𝑋2, 𝑋5} 

𝐷𝑃
+𝑥6 = {𝑋1, 𝑋2, 𝑋4, 𝑋6} 

𝐷𝑃
+𝑥7 = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

 

Similarly, let us find 𝐷𝑃
−𝑥 for all the elements of our dataset. 

 

𝐷𝑃
−𝑥1 = {𝑋1, 𝑋3, 𝑋4, 𝑋6, 𝑋7}  

𝐷𝑃
−𝑥2 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7}  

𝐷𝑃
−𝑥3 = {𝑋3}  

𝐷𝑃
−𝑥4 = {𝑋1, 𝑋3, 𝑋4, 𝑋6, 𝑋7}  

𝐷𝑃
−𝑥5 = {𝑋3, 𝑋5, 𝑋7}  

𝐷𝑃
−𝑥6 = {𝑋1, 𝑋3, 𝑋4, 𝑋6, 𝑋7}  

𝐷𝑃
−𝑥7 = {𝑋7}  

  

Step 5: After calculating the 𝐷𝑃
+𝑥 and 𝐷𝑃

−𝑥 for every element of the Universe we will further 

calculate the upper and lower approximations of all the union classes using 𝐷𝑃
+𝑥 and 𝐷𝑃

−𝑥 of every 

element present in those union classes. The equations for calculating these approximations are as 

following: 

Mathematically lower approximations of class unions are calculated by using these two equations. 

For 𝐶𝑙𝑡
≥(𝑥):  

𝑃(𝐶𝑙𝑡
≥) = {𝑥 ∈ 𝑈: 𝐷𝑃

+(𝑥) ⊆ 𝐶𝑙𝑡
≥}                          (38) 

 

For 𝐶𝑙𝑡
≤(𝑥):  



 

65 
 

𝑃(𝐶𝑙𝑡
≤) = {𝑥 ∈ 𝑈: 𝐷𝑃

−(𝑥) ⊆ 𝐶𝑙𝑡
≤}                          (39) 

 

Mathematically lower approximations of class unions are calculated by using these two equations. 

For 𝐶𝑙𝑡
≥(𝑥): 

𝑃̅(𝐶𝑙𝑡
≥) = {𝑥 ∈ 𝑈: 𝐷𝑃

−(𝑥) ∩ 𝐶𝑙𝑡
≥ ≠ ∅}                          (40) 

 

For 𝐶𝑙𝑡
≤: 

𝑃̅(𝐶𝑙𝑡
≤) = {𝑥 ∈ 𝑈: 𝐷𝑃

+(𝑥) ∩ 𝐶𝑙𝑡
≤ ≠ ∅}                          (41) 

 

And Boundary region of each class union is calculated by calculating the difference between Upper 

and Lower approximations. 

 

𝐵𝑛𝐶 =  𝑃(𝐶𝑙𝑡
≤ ) −  𝑃(𝐶𝑙𝑡

≤ )                          (42) 

 

The Boundary region, Lower and Upper approximations of class union 𝐶𝑙𝐼
≤(𝑥) are as follows: 

 𝑃(𝐶𝑙𝐼
≤) = {𝑋3, 𝑋7} 

 𝑃(𝐶𝑙𝐼
≤) = {𝑋1, 𝑋3, 𝑋4, 𝑋6, 𝑋7} 

 𝐵𝑛𝐶(𝐶𝑙𝐼
≤) = {𝑋1, 𝑋3, 𝑋4, 𝑋6, 𝑋7} − {𝑋3, 𝑋7}  

𝐵𝑛𝐶(𝐶𝑙𝐼
≤) = {X1, 𝑋4, 𝑋6} 

 

The Boundary region, Lower and Upper approximations of class union 𝐶𝑙𝐼𝐼
≤ (𝑥) are as follows: 

 𝑃(𝐶𝑙𝐼𝐼
≤ ) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

 𝑃̅(𝐶𝑙𝐼𝐼
≤ ) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

𝐵𝑛𝐶(𝐶𝑙𝐼𝐼
≤ ) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} − {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7}  

𝐵𝑛𝐶(𝐶𝑙𝐼𝐼
≤ ) = {Φ}  

 

The Boundary region, Lower and Upper approximations of class union 𝐶𝑙𝐼𝐼
≥ (𝑥) are as follows: 

 𝑃(𝐶𝑙𝐼𝐼
≥ ) = {𝑋2, 𝑋5} 

 𝑃̅(𝐶𝑙𝐼𝐼
≥ ) = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6} 



 

66 
 

𝐵𝑛𝐶(𝐶𝑙𝐼𝐼
≥ ) = {𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋6} − {𝑋2, 𝑋5} 

𝐵𝑛𝐶(𝐶𝑙𝐼𝐼
≥ ) = {X1, 𝑋4, 𝑋6}  

 

The Boundary region, Lower and Upper approximations of class union 𝐶𝑙𝐼
≤(𝑥) are as follows: 

 𝑃(𝐶𝑙𝐼𝐼𝐼
≥ ) = {𝑋2} 

 𝑃̅(𝐶𝑙𝐼𝐼𝐼
≥ ) = {𝑋2} 

𝐵𝑛𝐶(𝐶𝑙𝐼𝐼𝐼
≥ ) = {𝑋2} − {𝑋2} 

 𝐵𝑛𝐶(𝐶𝑙𝐼𝐼𝐼
≥ ) = {Φ}  

 

So, from all the calculated boundary regions we get that  

𝐵𝑛𝐶(𝐶𝑙𝐼𝐼
≤ ) = 𝐵𝑛𝐶(𝐶𝑙𝐼𝐼𝐼

≥ ) 

And  

𝐵𝑛𝐶(𝐶𝑙𝐼
≤) = 𝐵𝑛𝐶(𝐶𝑙𝐼𝐼

≥ ) 

 

Step 6: We have calculated Boundry regions of the dataset and these regions have given us those 

elements of the universe which belong to the doubtful region. Now in this step, by subtracting 

those elements from Universe we will get those elements that belong to the undoubtful region. 

This set of objects that are not in any doubtful region is called “AlphaSet”. In the conventional 

approach, this AlphaSet is identified by subtracting the union of all the boundary region objects 

from the Universe. With the help of this AlphaSet, we will calculate the dependency or quality of 

the sorting of the dataset. So, now the elements belonging to the doubtful region are: 

𝐵𝑛𝐶(𝐶𝑙𝐼
≤)  ∪ 𝐵𝑛𝐶(𝐶𝑙𝐼𝐼

≤ ) = {X1, 𝑋4, 𝑋6} ∪ {𝛷} 

𝐵𝑛𝐶(𝐶𝑙𝐼
≤)  ∪ 𝐵𝑛𝐶(𝐶𝑙𝐼𝐼

≤ ) = {X1, 𝑋4, 𝑋6} 

And the AlphaSet is calculated as follows: 

AlphaSet = U - (𝐵𝑛𝐶(𝐶𝑙𝐼
≤)  ∪ 𝐵𝑛𝐶(𝐶𝑙𝐼𝐼

≤ )) 

AlphaSet = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} − {𝑋1, 𝑋4, 𝑋6} 

AlphaSet = {𝑋2, 𝑋3, 𝑋5, 𝑋7} 



 

67 
 

Finally, the dependency of a dataset is calculated by dividing the cardinality of the AlphaSet with 

the cardinality of the Universe. 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑜𝑟𝑡𝑖𝑛𝑔  𝛾𝑃(𝐶𝑙) =
𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡

𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒
=>

4

7
 

The elements of AlphaSet are very important for the reduct generation process because they are 

not in any doubtful region and they must remain out of every doubtful region for every possible 

reduct.   

Now, we will find the AlphaSet of our case study using our proposed methodology to make sure 

that the proposed methodology is as accurate as the conventional one. To prove that our method is 

as accurate as the conventional method, the AlphaSet from our methodology must have the same 

cardinality and must possess the same instances of Universe which are present in the AlphaSet of 

the conventional method. 

5.3. Case Study using Proposed Methodology 

The proposed approach is illustrated using a case study. For this purpose, Table II is used as a 

dataset. There are seven records and two conditional attributes in Table II. The proposed method 

has two phases, the first phase is to generate the dominance relation matrix and the second phase 

is to compare all the records using proposed dominance-based dependency classes. Following is 

the descriptions of both of these phases: 

Phase 1: As there were seven records in Table II, so the relation matrix of order 7 × 7 was 

generated as shown in Table VII. The relation between records is illustrated using mathematical 

symbols. Every row depicts the relation of an individual record with all the records of the dataset. 

Like, the first row shows the dominance relation of 𝑋1 with all the records of the dataset. In Table 

VII, equal to sign (=) represents the identical relation, not equal to (≠) sign represents 

indiscernible relation, greater than equal to (≥) sign represents that record is dominating the other 

record and less than equal to (≤) sign represents that record is being dominated by another record. 

 



 

68 
 

Table VII: Dominance Relation Matrix of Table II for proposed method 

 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 

𝑋1 = ≤ ≥ = ≠ = ≥ 

𝑋2 ≥ = ≥ ≥ ≥ ≥ ≥ 

𝑋3 ≤ ≤ = ≤ ≤ ≤ ≠ 

𝑋4 = ≤ ≥ = ≠ = ≥ 

𝑋5 ≠ ≤ ≥ ≠ = ≠ ≥ 

𝑋6 = ≤ ≥ = ≠ = ≥ 

𝑋7 ≤ ≤ ≠ ≤ ≤ ≤ = 

 

Phase 2: After the dominance relation matrix was generated, the second phase of the proposed 

methodology was performed. In 2nd phase, two arrays of variable size named AlphaSet (it provides 

a set of records to calculate dependency) and Checked_Objects (avoids comparison repetitions by 

storing those records which have already been compared) were created. Then using a double nested 

loop, a comparison of records was carried out. The outer loop was used to select the records 

iteratively from the Universe and the inner loop was used to select the records from 

Checked_Objects array. After that, both of these selected records were compared. This comparison 

was performed based on the proposed dominance-based dependency classes.  

Here, results are shown after each iteration of the outer loop which was executed seven times 

because our dataset has seven records. Whereas, inner loop ran according to the size of the 

Checked_Objects array which was incremented by one after every iteration of the outer loop. 

• 1st Iteration 

Based on “Initial value class” 𝑋1 was selected as 𝑋1 was the first record and at that time, there 

were no records in Checked_Objects array to compare with. So, 𝑋1 was added in both arrays. 

Members of AlphaSet and Checked_Objects arrays after the 1st iteration were as follows: 

Checked_Objects = {𝑋1} 

AlphaSet = {𝑋1} 



 

69 
 

𝑋1        

Records in Checked_Objects  

𝑋1        

Records in AlphaSet  

The updated dependency of the dataset after the 1st iteration was as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

0 + 1

0 + 1
= 1 

 

(43) 

Initially, |𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ = 0 and |𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ = 0 because we were traversing the first 

record of the dataset. 

• 2nd Iteration 

In this iteration, 𝑋2 was taken from the Universe and at that time Checked_Objects was not empty. 

So, we compared 𝑋2 with 𝑋1 and based on “True positive class” 𝑋2 was selected and added into 

both arrays because it did not cause any inconsistency in the dataset. Members of AlphaSet and 

Checked_Objects arrays after the 2nd iteration were as follows: 

Checked_Objects = {𝑋1, 𝑋2} 

AlphaSet = {𝑋1, 𝑋2} 

𝑋1  𝑋2      

Records in Checked_Objects  

𝑋1  𝑋2      

Records in AlphaSet  

The updated dependency of the dataset after the 2nd iteration was as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

1 + 1

1 + 1
= 1 

 

 

 

(44) 



 

70 
 

• 3rd Iteration 

In this iteration, 𝑋3 was selected and compared with 𝑋1 and 𝑋2 based on proposed dependency 

classes. While comparing 𝑋3 did not cause any inconsistency. So, as a result 𝑋3 was added in both 

arrays. Members of AlphaSet and Checked_Objects arrays after the 3rd iteration were as follows: 

Checked_Objects = {𝑋1, 𝑋2, 𝑋3} 

AlphaSet = {𝑋1, 𝑋2, 𝑋3} 

𝑋1  𝑋2 𝑋3     

Records in Checked_Objects  

𝑋1  𝑋2 𝑋3     

Records in AlphaSet  

The updated dependency of the dataset after the 3rd iteration was as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

2 + 1

2 + 1
= 1 

 

(45) 

• 4th Iteration 

In this iteration, 𝑋4 was selected and compared with all the records in Checked_Objects array. 

Comparison between 𝑋1 and 𝑋4 showed that their decision class was not the same but they had 

dominance relation of being identical. So, based on “Distinct Decision Class” both the records 

were excluded from AlphaSet because they were causing inconsistency in the dataset. Members of 

AlphaSet and Checked_Objects arrays after the 3rd iteration were as follows: 

Checked_Objects = {𝑋1, 𝑋2, 𝑋3, 𝑋4} 

AlphaSet = {𝑋2, 𝑋3} 

𝑋1  𝑋2 𝑋3 𝑋4    

Records in Checked_Objects  

𝑋2  𝑋3      

Records in AlphaSet  



 

71 
 

The updated dependency of the dataset after the 4th iteration was as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ − 𝑁

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

3 − 1

3 + 1
= 0.5 

 

(46) 

𝑋1 was the only record that had caused inconsistency when compared with 𝑋4. So, 𝑋1 was removed 

from AlphaSet and we put 𝑁 = 1. 

• 5th Iteration 

In this iteration, no inconsistencies were found during the comparison of 𝑋5 with all the records in 

Checked_Objects array. So, 𝑋5 was added into both arrays. Members of AlphaSet and 

Checked_Objects arrays after the 5th iteration were as follows: 

Checked_Objects = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5} 

AlphaSet = {𝑋2, 𝑋3, 𝑋5} 

𝑋1  𝑋2 𝑋3 𝑋4 𝑋5   

Records in Checked_Objects  

𝑋2  𝑋3 𝑋5     

Records in AlphaSet  

The updated dependency of the dataset after the 5th iteration was as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

2 + 1

4 + 1
= 0.6 

 

(47) 

• 6th Iteration 

In this iteration, 𝑋6 was selected and compared with all the members of Checked_Objects array. 

Comparison between 𝑋6 and 𝑋4 showed that their decision class was not the same but they had 

dominance relation of being identical. So, based on “Distinct Decision Class” both the records 

were excluded from AlphaSet because they were causing inconsistency in the dataset. Members of 

AlphaSet and Checked_Objects arrays after the 6th iteration were as follows:  

Checked_Objects = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6} 



 

72 
 

AlphaSet = {𝑋2, 𝑋3, 𝑋5} 

𝑋1  𝑋2 𝑋3 𝑋4 𝑋5 𝑋6  

Records in Checked_Objects  

𝑋2  𝑋3 𝑋5     

Records in AlphaSet  

The updated dependency of the dataset after the 6th iteration was as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ − 𝑁

|𝑈|′ + 1
=

3 − 0

5 + 1
= 0.5 

 

(48) 

𝑋4 was the only record that had caused inconsistency when compared with 𝑋6. As 𝑋4 was already 

removed from AlphaSet so, we put 𝑁 = 0. 

• 7th Iteration 

In this iteration, no inconsistency was found during the comparison of 𝑋7 with all the members of 

Checked_Objects array. So, 𝑋7 was added in both of the arrays. Members of AlphaSet and 

Checked_Objects arrays after the 7th iteration were as follows:   

Checked_Objects = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

AlphaSet = {𝑋2, 𝑋3, 𝑋5, 𝑋7} 

𝑋1  𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 

Records in Checked_Objects  

𝑋2  𝑋3 𝑋5 𝑋7    

Records in AlphaSet  

The updated dependency of the dataset after the 7th iteration was as follows: 

𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|′ + 1

|𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑂𝑏𝑗𝑒𝑐𝑡𝑠|′ + 1
=

3 + 1

6 + 1
= 0.57 

 

(49) 



 

73 
 

After complete traversal of the dataset, the cardinality of the Checked_Objects becomes similar to 

the cardinality of the Universe. Dependency after the final iteration of the dataset depicts the 

overall dependency of the dataset. Members of AlphaSet after the final iteration are vital for 

generating the reducts of the dataset. The records in AlphaSet are not part of any doubtful region. 

Therefore, every reduct must keep them outside of all the doubtful regions. The overall dependency 

of the dataset was calculated as follows: 

 𝛾𝐶(𝐶𝑙) =
|𝐴𝑙𝑝ℎ𝑎𝑆𝑒𝑡|

|𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒|
=

4

7
= 0.57 

(50) 

 

The dependency of the dataset calculated by both of the approaches was the same. This depicts 

that the proposed approach has calculated accurate dependency as a conventional method. 

The comparison of the number of comparison statements (𝐶𝑆) executed to calculate dependency 

by both methodologies is given below: 

In our case study, while executing the conventional algorithm we found that there were four union 

classes. To calculate the 𝐷𝑃
+(𝑥) and 𝐷𝑃

−(𝑥), records from each union class were compared with all 

other records of the Universe. The following were the four union classes extracted from Table II.  

𝐶𝑙1
≤(𝑥) = {𝑋3, 𝑋4, 𝑋7} 

𝐶𝑙2
≤(𝑥) = {𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7} 

𝐶𝑙2
≥(𝑥) = {𝑋1, 𝑋2, 𝑋5 , 𝑋6} 

𝐶𝑙3
≥(𝑥) = {𝑋2}  

Here, we have calculated the number of comparison statements for finding 𝐷𝑃
+(𝑥) and 𝐷𝑃

−(𝑥) of 

all the records of the union classes. 

 In 𝐶𝑙1
≤(𝑥), the class union had three records. These three records were compared with all 

seven records of the dataset to calculate both 𝐷𝑃
+(𝑥) and 𝐷𝑃

−(𝑥). So, comparison statements 

were executed 2 ∗ (3 ∗ 7) = 42 times in total. 



 

74 
 

 In 𝐶𝑙2
≤(𝑥), the class union had six records. These six records were compared with all seven 

records of the dataset to calculate both 𝐷𝑃
+(𝑥) and 𝐷𝑃

−(𝑥). So, comparison statements were 

executed 2 ∗ (6 ∗ 7) = 84 times in total. 

 In 𝐶𝑙2
≥(𝑥), the class union had four records. These four records were compared with all 

seven records of the dataset to calculate both 𝐷𝑃
+(𝑥) and 𝐷𝑃

−(𝑥). So, comparison statements 

were executed 2 ∗ (4 ∗ 7) = 56 times in total. 

 In 𝐶𝑙3
≥(𝑥), the class union had only one record. This single record was compared with all 

seven records of the dataset to calculate 𝐷𝑃
+(𝑥) and 𝐷𝑃

−(𝑥). So, comparison statements 

were executed 2 ∗ (1 ∗ 7) = 14 times in total. 

Therefore, in the 2nd step of the conventional method comparison statements were executed a total 

of 196 times. In the 3rd step of the conventional method, upper and lower approximations for every 

class union were calculated and the number of comparison statements for the 3rd step was 

calculated as follows: 

 For lower approximations of two downward class unions, we compared these class unions 

with all the seven 𝐷𝑃
−(𝑥). So, comparison statements were executed 2 ∗ 7 = 14 times. 

 For upper approximations of two downward class unions, we compared these class unions 

with all the seven 𝐷𝑃
+(𝑥). So, comparison statements were executed 2 ∗ 7 = 14 times. 

 For lower approximations of two upward class unions, we compared these class unions 

with all the seven 𝐷𝑃
+(𝑥). So, comparison statements were executed 2 ∗ 7 = 14 times. 

 For upper approximations of two upward class unions, we compared these class unions 

with all the seven 𝐷𝑃
−(𝑥). So, comparison statements were executed 2 ∗ 7 = 14 times.  

The total number of comparison statements executed in the 3rd step was 4 ∗ 14 = 56. Therefore, 

to get the lower and upper approximations of these four class unions we had to execute 196 +

56 = 252 comparison statements in total. Finally, to calculate the dependency of the dataset six 

more comparison statements were executed. After calculating the dominance relation matrix we 

had to execute a total of 252 + 6 = 258 comparison statements to get the dependency of our case 

study dataset using the conventional method. 



 

75 
 

Whereas, while using the proposed methodology to calculate the dependency of the dataset we had 

to a execute double nested loop. The number of comparison statements for the proposed 

methodology was calculated as follows:  

 The outer loop was executed 7 times which represents the cardinality of the Universe. 

 The inner loop ran based on the size of the Checked_Objects array which was incremented 

by one after every iteration of the outer loop. 

 We compared all the seven records of the Universe with all the records in the 

Checked_Objects array. 

 Like when the 1st object from the Universe was selected no comparison was made because 

Checked_Objects array was empty. Similarly, when the 2nd object was selected 1 

comparison was made and when the 3rd object was selected 2 comparisons were made. 

This way the comparison statements for every object of the universe were different. 

 Therefore, to extract the AlphaSet of our example dataset, comparison statements were 

executed 0 + 1 + 2 + 3 + 4 + 5 + 6 = 21 times in total. 

 This above summation of the number of comparison statements can be simplified as shown 

in equation 51.  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑆 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 ∗
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 − 1)

2
 

 

(51) 

 

 This difference in the number of comparison statements is shown in Table VIII. 

 

% reduction in the number 𝑜𝑓 CS = 100 − (
CS1

CS2
) ∗ 100                          (52) 

 

In the formula mentioned in equation 52, 𝐶𝑆1 represents the number of comparison statements for 

the proposed method and 𝐶𝑆2 represents the number of comparison statements for the conventional 

method. Therefore, based on this formula percentage reduction in the number of comparison 

statements was 91.86%. Due to this reduction in the number of comparison statements, IDDC has 

shown a considerable amount of reduction in execution time, memory usage and computational 



 

76 
 

complexity. This reduction shown by IDDC in the use of computational resources is further 

elaborated in the “Comparative Analysis” chapter with the help of multiple datasets. Table VIII 

shows the comparison of the number of comparisons for both of the methodologies. 

 

Table VIII: Number of comparison statements 

 Conventional 

Algorithm 

Proposed Algorithm 

Comparison 

statements 

Runs 258 times Runs 21 times 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 
 

Chapter 6 

Comparative Analysis



 

78 
 

CHAPTER 6: COMPARATIVE ANALYSIS 

The previous chapter dealt with the implementation and validation aspects of the proposed work. 

In this chapter, the proposed methodology is compared using different datasets and implementing 

fast reduct generating algorithm. Our proposed approach provided a major contribution in the field 

of dominance-based rough set approach. In the section 6.1, we have presented a comparative 

analysis of our proposed approach and the conventional approach. It is evident from the 

comparison that our approach has shown accurate results but using fewer resources. 

For experimental analysis, a comparison framework was developed and conclusions were made 

based on conditions specified in that framework. A detailed description of the framework is 

provided here. 

6.1. Comparison Framework 

There are four main components of this comparison framework. These components are:  

• The execution environment for both approaches. 

• The accuracy of the generated results.  

• The execution time of approaches to generate results. 

• Memory utilization by both approaches.   

• The asymptotic computational complexity of both approaches. 

  

6.1.1. Execution Environment 

The execution environment used to perform the comparative analysis was a desktop computer 

having processor intel core i7 3.70GHZ, 16GB RAM and Graphics Card of 6GB, GTX1060 

Nvidia. No extra process is in working condition when the algorithms are running. During 

implementation, special care and attention are given to make sure that the processor condition 

remains the same throughout. 

 

6.1.2. Accuracy 

The term accuracy describes the correctness of the results produced. In our comparison of both 

approaches, the dependency calculated by using the IDDC was accurate and similar to the 



 

79 
 

dependency calculated by the conventional approach. The reducts generated by both approaches 

were also similar. Tables 𝐼𝑋 and 𝑋 clearly show that the size of the AlphaSets and the number of 

generated Reducts by both methodologies were identical for every dataset. Therefore, it is evident 

from the comparison that both the proposed methodology and the conventional approach are 

accurate.  

Table IX: Comparison of Size of AlphaSet 

S. NO. Dataset AlphaSet ’s Size 

(Conventional) 

AlphaSet ’s size 

(Proposed) 

1 Iris 145 145 

2 Abalone 342 342 

3 Breast cancer Wisconsin 667 667 

4 Wine Quality 3081 3081 

5 Electrical Grid Stability data 10000 10000 

6 EEG Eye State 2673 2673 

7 Pen-Based Handwritten Digit 7294 7294 

8 Hepatitis C Virus 1385 1385 

9 Musk 2 6598 6598 

10 ISOLET 7797 7797 

 

Table X: Comparison of the number of Reducts Generated 

S. NO. Dataset Reducts by 

Conventional Method 

Reducts by Proposed 

Method 

1 Iris 2 2 

2 Abalone 1 1 

3 Breast cancer Wisconsin 2 2 

4 Wine Quality 1 1 

5 Electrical Grid Stability data 256 256 

6 EEG Eye State 1 1 

7 Pen-Based Handwritten Digit 2 2 



 

80 
 

8 Hepatitis C Virus 1 1 

9 Musk 2 1 1 

10 ISOLET 2 2 

 

6.1.3. Execution Time 

Execution time specifies the time taken by an algorithm to generate the output. It is a key factor to 

distinguish the algorithm’s performance in terms of how fast it produces the results. Therefore, to 

compare the execution time of both proposed and conventional approaches, their execution time 

was observed using the system stopwatch, which was started after feeding the input and stopped 

when results were produced. Then we used the following formula to calculate the percentage 

reduction in the execution time of IDDC.  

% reduction in execution time =  100 − (
T1

T2
) ∗ 100 

(53) 

In equation 53, 𝑇1 represents the time taken by the proposed approach and 𝑇2 represents the time 

taken by the conventional approach. Table VIII shows the time taken by both methods for all the 

datasets. For instance, the time taken by both proposed and conventional approaches for the 

Abalone dataset was 54 seconds and 107 seconds, respectively. The percentage reduction in the 

execution time of IDDC for the Abalone dataset is almost 50% which was calculated using the 

formula from equation 53. 

% reduction in execution time =  100 − (
54

107
) ∗ 100  50% 

 

For the Iris dataset, the conventional algorithm code took 0.10 seconds to run and the proposed 

algorithm code took 0.06 seconds to run. When we put these values in the equation, the percentage 

decrease in execution time is 40% in the case of the Iris dataset. 

 

% reduction in execution time of 𝑰𝒓𝒊𝒔 =  100 − (
0.06

0.10
) ∗ 100  40% 

 



 

81 
 

For the Breast Cancer Wisconsin (BCW) dataset, the conventional algorithm code took 3.4 

seconds to run and the proposed algorithm code took 1.9 seconds to run. When we put these values 

in the equation, the percentage decrease in execution time is 44% in the case of the BCW dataset. 

 

% reduction in execution time of 𝑩𝑪𝑾 =  100 − (
1.9

3.4
) ∗ 100  44% 

 

For the Wine Quality dataset, the conventional algorithm code took 96 seconds to run and the 

proposed algorithm code took 51 seconds to run. When we put these values in the equation, the 

percentage decrease in execution time is 47% in the case of the Wine Quality dataset. 

 

% reduction in execution time of 𝑾𝒊𝒏𝒆 𝑸𝒖𝒂𝒍𝒊𝒕𝒚 =  100 − (
51

96
) ∗ 100  47% 

 

For the Electrical Grid Stability (EGS) dataset, the conventional algorithm code took 377 seconds 

to run and the proposed algorithm code took 200 seconds to run. When we put these values in the 

equation, the percentage decrease in execution time is 47% in the case of the EGS dataset. 

 

% reduction in execution time of 𝑬𝑮𝑺 =  100 − (
200

377
) ∗ 100  47% 

 

For the EEG Eye State dataset, the conventional algorithm code took 516 seconds to run and the 

proposed algorithm code took 278 seconds to run. When we put these values in the equation, the 

percentage decrease in execution time is 46% in the case of the EEG Eye State dataset. 

 

% reduction in execution time of 𝑬𝑬𝑮 𝑬𝒚𝒆 𝑺𝒕𝒂𝒕𝒆 =  100 − (
278

516
) ∗ 100  46% 

 

For the Pen-Based Handwritten Digit (PBHD) dataset, the conventional algorithm code took 244 

seconds to run and the proposed algorithm code took 124 seconds to run. When we put these values 

in the equation, the percentage decrease in execution time is 49% in the case of the PBHD dataset. 

 



 

82 
 

% reduction in execution time of 𝑷𝑩𝑯𝑫 =  100 − (
124

244
) ∗ 100  49% 

 

For the Hepatitis C Virus (HCV) dataset, the conventional algorithm code took 10 seconds to run 

and the proposed algorithm code took 5.3 seconds to run. When we put these values in the equation, 

the percentage decrease in execution time is 47% in the case of the HCV dataset. 

 

% reduction in execution time of 𝑯𝑪𝑽 =  100 − (
5.3

10
) ∗ 100  47% 

 

For the MUSK 2 dataset, the conventional algorithm code took 197 seconds to run and the 

proposed algorithm code took 110 seconds to run. When we put these values in the equation, the 

percentage decrease in execution time is 44% in the case of the MUSK 2 dataset. 

 

% reduction in execution time of 𝑴𝑼𝑺𝑲 𝟐 =  100 − (
110

197
) ∗ 100  44% 

 

For the Isolet dataset, the conventional algorithm code took 599 seconds to run and the proposed 

algorithm code took 329 seconds to run. When we put these values in the equation, the percentage 

decrease in execution time is 45% in the case of the Isolet dataset. 

 

% reduction in execution time of 𝑰𝒔𝒐𝒍𝒆𝒕 =  100 − (
329

599
) ∗ 100  45% 

 

It can be concluded from Table XI that bigger datasets have shown more percentage reduction in 

execution time. The percentage decrease in execution time was between 40% to 50% for all 

datasets. The average of Table XI was calculated using equation 54 to get a better picture of 

average time reduction. 

Avg reduction in execution time =
459

10
= 46% 𝑎𝑝𝑝𝑟𝑜𝑥 

(54) 

 



 

83 
 

The calculated average time reduction by the proposed methodology was 46%. Therefore, it can 

be concluded that the proposed methodology can save almost half of the execution time as 

compared to the conventional method. Figure 14 provides a pictorial comparison of both 

approaches. 

 

Table XI: Comparison of Execution time 

S. 

NO. 

Dataset Conventional 

Time (secs) 

Proposed 

Time (secs) 

% Reduction 

in Time 

Taken/  

1 Iris 0.10 0.06 40% 

2 Abalone 107 54 50% 

3 Breast cancer Wisconsin  3.4 1.9 44% 

4 Wine Quality 96 51 47% 

5 Electrical Grid Stability data 377 200 47% 

6 EEG Eye State 516 278 46% 

7 Pen-Based Handwritten Digit  244 124 49% 

8 Hepatitis C Virus 10 5.3 47% 

9 Musk 2 197 110 44% 

10 ISOLET 599 329 45% 

 



 

84 
 

 

Figure 14: Graphical Comparison of Execution time 

 

6.1.4. Memory Usage 

Memory usage specifies the maximum amount of runtime memory taken by the algorithm during 

its execution. Memory utilization is a very important parameter to judge the efficiency of an 

algorithm. Algorithms that utilize less storage space are mostly preferred. We have manually 

calculated the memory by adding the sizes of the intermediate data structures used by both 

approaches. However, the common variables used by both approaches were ignored. Two arrays 

were used by the conventional method. One of these arrays was a one-dimensional (1-D) array and 

second was a two-dimensional (2-D) array. The 1-D array was used to store class unions 𝐶𝑙≥, 𝐶𝑙≤ 

and the 2-D array was used to store the 𝐷𝑃
+ and 𝐷𝑃

− for all the records in class unions. The formula 

used for the calculation of memory usage of the conventional method is mentioned in equation 55. 

𝑀𝑒𝑚𝑜𝑟𝑦 =  2 ∗ 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 ∗ (|𝑈|)                

                                                   +   𝑆𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 ∗ (|𝑈| ∗ |𝑈|) 

 

 

(55) 

 

0

100

200

300

400

500

600

700

Iris Abalone Breast
Cancer

Wisconsin

Wine
Quality

EGS Data EEG Eye
State

PBH Digits Hepatitis C
Virus

Musk 2 ISOLET

N
u

m
b

er
 o

f 
Se

co
n

d
s 

ta
ke

n

Datasets

Conventional Method Proposed Method



 

85 
 

On the contrary, the proposed methodology has used only two 1-Dimensional arrays. The first 

array (Checked_Objects) was used to store all those instances which were checked once and this 

helped us avoid repetitive comparisons of the same records of Universe. The second array 

(AlphaSet) was used to store those records which were selected after comparison. Therefore, to 

calculate the memory usage of the proposed methodology, the formula showed equation 56 was 

used.  

𝑀𝑒𝑚𝑜𝑟𝑦 =  2 ∗  (𝑆𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒)  ∗  (|𝑈|) (56) 

 

The formula used for calculating the percentage reduction in memory utilization is given in 

equation 57. In this formula, 𝑀1 represents memory used by the proposed methodology and 𝑀2 

represents memory used by conventional methodology. 

% Reduction in memory usage =  100 − (
M1

M2
) ∗ 100                          (57) 

 

For the Iris dataset, the conventional algorithm utilizes 0.005 MB of memory and the proposed 

algorithm has utilized 0.001 MB of memory. When we put these values in the equation, the 

percentage decrease in memory utilization is 98% in the case of the Iris dataset. 

 

% reduction in memory usage of 𝑰𝒓𝒊𝒔 =  100 − (
0.001

0.05
) ∗ 100  98% 

 

For the Abalone dataset, the conventional algorithm utilizes 34.9 MB of memory and the proposed 

algorithm has utilized 0.03 MB of memory. When we put these values in the equation, the 

percentage decrease in memory utilization is 99% in the case of the Abalone dataset. 

 

% reduction in memory usage of 𝑨𝒃𝒂𝒍𝒐𝒏𝒆 =  100 − (
0.03

34.9
) ∗ 100  99% 

 

For the Breast Cancer Wisconsin (BCW) dataset, the conventional algorithm utilizes 0.98 MB of 

memory and the proposed algorithm has utilized 0.005 MB of memory. When we put these values 



 

86 
 

in the equation, the percentage decrease in memory utilization is 99% in the case of the BCW 

dataset. 

 

% reduction in memory usage of 𝑩𝑪𝑾 =  100 − (
0.005

0.98 
) ∗ 100  99% 

 

For the Wine Quality dataset, the conventional algorithm utilizes 48 MB of memory and the 

proposed algorithm has utilized 0.04 MB of memory. When we put these values in the equation, 

the percentage decrease in memory utilization is 99% in the case of the Wine Quality dataset. 

 

% reduction in memory usage 𝑾𝒊𝒏𝒆 𝑸𝒖𝒂𝒍𝒊𝒕𝒚 =  100 − (
0.04

48
) ∗ 100  99% 

 

For the Electrical Grid Stability (EGS) dataset, the conventional algorithm utilizes 200 MB of 

memory and the proposed algorithm has utilized 0.08 MB of memory. When we put these values 

in the equation, the percentage decrease in memory utilization is 99% in the case of the EGS 

dataset. 

 

% reduction in memory usage of 𝑬𝑮𝑺 =  100 − (
0.08

200
) ∗ 100  99% 

 

For the EEG Eye State (EES) dataset, the conventional algorithm utilizes 208 MB of memory and 

the proposed algorithm has utilized 0.08 MB of memory. When we put these values in the equation, 

the percentage decrease in memory utilization is 99% in the case of the EES dataset. 

 

% reduction in memory usage of 𝑬𝑬𝑺 =  100 − (
0.08

208
) ∗ 100  99% 

 

For the Pen-Based Handwritten Digit (PBHD) dataset, the conventional algorithm utilizes 241.8 

MB of memory and the proposed algorithm has utilized 0.09 MB of memory. When we put these 



 

87 
 

values in the equation, the percentage decrease in memory utilization is 99% in the case of the 

PBHD dataset. 

 

% reduction in memory usage of 𝑷𝑩𝑯𝑫 =  100 − (
0.09

241.8
) ∗ 100  99% 

  

For the Hepatitis C Virus(HCV) dataset, the conventional algorithm utilizes 3.8 MB of memory 

and the proposed algorithm has utilized 0.01 MB of memory. When we put these values in the 

equation, the percentage decrease in memory utilization is 99% in the case of the HCV dataset. 

 

% reduction in memory usage of 𝑯𝑪𝑽 =  100 − (
0.01

3.8
) ∗ 100  99% 

 

For the Musk 2 dataset, the conventional algorithm utilizes 87.1 MB of memory and the proposed 

algorithm has utilized 0.05 MB of memory. When we put these values in the equation, the 

percentage decrease in memory utilization is 99% in the case of the Musk 2 dataset. 

 

% reduction in memory usage of 𝑴𝒖𝒔𝒌 𝟐 =  100 − (
0.05

87.1
) ∗ 100  99% 

 

For the Isolet dataset, the conventional algorithm utilizes 121.6 MB of memory and the proposed 

algorithm has utilized 0.006 MB of memory. When we put these values in the equation, the 

percentage decrease in memory utilization is 99% in the case of the Isolet dataset. 

 

% reduction in memory usage of 𝑰𝒔𝒐𝒍𝒆𝒕 =  100 − (
0.06

121.6
) ∗ 100  99% 

 

A comparison of memory usage of both of these methodologies is shown in Table XII. On average, 

a 98% reduction in required runtime memory was found for ten datasets. Reduction in the memory 

usage is shown in the Table XIII. It is evident from the comparison that a huge amount of memory 

was saved by the proposed approach.  



 

88 
 

Table XII: Comparison of Memory Usage 

S. 

NO. 

Dataset Dataset’s Number 

of Records  

Memory by 

Conventional (MB) 

Memory by 

Proposed (MB) 

1 Iris 150 0.05 0.0012 

2 Abalone 4177 34.9 0.33 

3 Breast cancer Wisconsin 699 0.98 0.006 

4 Wine Quality 4898 48 0.04 

5 Electrical Grid Stability 

data 

10000 200 0.08 

6 EEG Eye State 10200 208 0.081 

7 Pen-Based Handwritten 

Digit 

10992 241 0.09 

8 Hepatitis C Virus 1380 3.8 0.01 

9 Musk 2 6598 87.1 0.05 

10 ISOLET 7797 121.6 0.06 

 

Table XIII: Percentage Reduction in Memory Usage 

S. 

NO. 

Dataset Memory by 

Conventional (MB) 

Memory by 

Proposed (MB) 

% Reduction 

in usage 

1 Iris 0.05 0.0012 ≈98% 

2 Abalone 34.9 0.33 ≈99% 

3 Breast cancer Wisconsin 0.98 0.006 ≈99% 

4 Wine Quality 48 0.04 ≈99% 

5 Electrical Grid Stability 

data 

200 0.08 ≈99% 

6 EEG Eye State 208 0.081 ≈99% 

7 Pen-Based Handwritten 

Digit 

241 0.09 ≈99% 

8 Hepatitis C Virus 3.8 0.01 ≈99% 



 

89 
 

9 Musk 2 87.1 0.05 ≈99% 

10 ISOLET 121.6 0.06 ≈99% 

 

6.1.5. Complexity 

The complexity of an algorithm depends on many factors such as code execution time, memory 

usage, etc. The Big-O notation was used for the complexity analysis of both approaches. Big-O is 

a mathematical notation [46,47]. It classifies algorithms based on the number of steps, execution 

time and the number of inputs. For example, if both nested loops run 𝑛 times then Big-O will be 

𝑂(𝑛2). Algorithms with less complexity are usually preferred. For comparison purposes, Big-O 

complexity for only those parts of algorithms was calculated which were different in both 

approaches. The conventional algorithm which is based on lower and upper approximations 

comprises three main steps. The Big-O for each of these three main steps was calculated as follows: 

• Big-O for the first step of the conventional algorithm was 𝑂(𝑈) because a single loop was 

executed 𝑈 times. Here, 𝑈 represents the cardinality of the Universe. The algorithm had 

four class unions and this step was executed for all four class unions. Therefore, the Big-O 

for 1st step became 4 ∗ (𝑂(𝑈)). 

• Big-O for the second step of the conventional algorithm was 𝑂(𝐶𝑙 ∗ 𝑈) because a double 

nested loop was executed. Here, 𝐶𝑙 represents the cardinality of the class unions. The 

algorithm had four class unions and this step was executed for all four class unions. 

Therefore, the Big-O for 2nd step became 4 ∗ (𝑂(𝐶𝑙 ∗ 𝑈)). 

• Big-O for the third step of the conventional algorithm was 𝑂(𝐶𝑙 ∗ 𝐶𝑙 ∗ 𝐷𝑃
+/𝐷𝑃

−) because a 

triple nested loop was executed. Here, 𝐷𝑃
+/𝐷𝑃

− represents the cardinality of the dominance 

sets. The algorithm had four class unions and this step was executed for all four class 

unions. Therefore, the Big-O for 3rd step became 4 ∗ (𝑂(𝐶𝑙 ∗ 𝐶𝑙 ∗ 𝐷𝑃
+/𝐷𝑃

−)). The three 

loops in this step were the main reason for the high computational cost. 

 

For the complete conventional algorithm, Big-O was as follows:  

4 ∗ (𝑂(𝑈)) + (4 ∗ (𝑂(𝐶𝑙 ∗ 𝑈))) + (2 ∗ 𝑂(𝐶𝑙 ∗ 𝐶𝑙 ∗ 𝐷𝑃
+)) + (2 ∗ 𝑂(𝐶𝑙 ∗ 𝐶𝑙 ∗ 𝐷𝑃

−))  =  𝑂(𝐶𝑙 ∗

𝐶𝑙 ∗ 𝐷𝑃
+/𝐷𝑃

−).  



 

90 
 

In a worst-case scenario, 𝐶𝑙 and 𝐷𝑃
+/𝐷𝑃

− can be equal to the cardinality of the Universe. So in that 

case, Big-O will become 𝑂(𝐶𝑙 ∗ 𝐶𝑙 ∗ 𝐷𝑃
+/𝐷𝑃

−)  𝑂(𝑈3). 

Whereas in the proposed approach, approximations were not calculated instead of that the objects 

of Universe were compared based on proposed dominance-based dependency classes. Big-O 

complexity of the proposed approach was calculated as follows:  

• For the comparison of records, the proposed approach uses a double nested loop. For the 

outer loop, Big-O was 𝑂(𝑈) because we had to compare all the records of the Universe. 

 

• The inner loop runs equal to the cardinality of the Checked_Objects Array. The cardinality 

of the Checked_Objects was incremented after every outer loop’s iteration. So, Big-O at 

worst for inner loop was also 𝑂(𝑈). Therefore, the overall Big-O for the proposed 

approach was 𝑂(𝑈) ∗ 𝑂(𝑈)  =  𝑂(𝑈2). 

It can be seen after calculating the Big-O notations for both the approaches that the complexity of 

the conventional approach was 𝑂(𝑈3) which is reduced by the proposed approach to 𝑂(𝑈2). 

Therefore, with the complexity 𝑂(𝑈2) of the proposed approach is considered suitable for large 

datasets and the use of the conventional approach becomes inappropriate for such datasets. This 

comparison of Big-O complexity is also illustrated in Figure 15. 



 

91 
 

 

Figure 15: Big-O Complexity Comparison 

 

 

 

 

 



 

92 
 

Chapter 7 

Conclusion and Future Work 



 

93 
 

CHAPTER 7: CONCLUSION AND FUTURE WORK 

In this research work, we have proposed a new incremental approach to calculate the dependency 

of datasets. The proposed approach is called the “Incremental Dominance-based Dependency 

Calculation (IDDC)”. This method avoids the calculation of approximations and union classes. It 

incrementally scans all the objects of the Universe and compares them based on proposed 

dominance-based dependency classes to find the dependency of a dataset. Whereas, the 

conventional approach uses approximations for calculating the dependency of the datasets. This 

calculation of approximations comprises three computationally expensive steps that degrade the 

performance of algorithms. Due to this performance degradation, the conventional approach has 

become inappropriate for datasets beyond smaller sizes. To avoid such performance bottlenecks, 

the proposed method incrementally compares every object of the dataset with the rest of the objects 

and calculates the dependency of the dataset. To justify the effectiveness of the proposed approach, 

both IDDC and conventional approaches were compared using various datasets from the UCI 

dataset repository. Results have shown that the proposed approach outperforms the conventional 

approach by depicting on average 46% and 98% decrease in execution time and required runtime 

memory, respectively. The Big-O complexity of the algorithm was reduced by the proposed 

approach from 𝑂(𝑛3) to 𝑂(𝑛2) as well. To validate the effectiveness of the proposed approach, 

IDDC was implemented using FRGA, GA and PSO algorithms.  

The proposed approach is suitable for supervised datasets. However, we may find ourselves in a 

situation where class labels are not available. So, the future direction is to study how to use the 

proposed approach for unsupervised datasets as well. Efforts will also be made to use it for 

incomplete datasets having missing values. In its current state, the proposed approach requires 

complete datasets with values that follow the dominance principle and datasets having missing 

values should be pre-processed to fill the missing values. As results have shown that our proposed 

approach has taken 46% less execution time on average. So, there is a good chance of further 

decreasing the execution time of the proposed approach by using parallel processing 

methodologies. 

 



 

94 
 

REFERENCES 

[1] Jensen, R., & Shen, Q. (2008). Computational intelligence and feature selection: rough and 

fuzzy approaches (Vol. 8). John Wiley & Sons.  

[2] R. Bellman, "Dynamic programming: Princeton Univ. press." (1957). 

[3] Qian, W., Shu, W., Yang, B., & Zhang, C. (2015). An incremental algorithm to feature 

selection in decision systems with the variation of feature set. Chinese Journal of 

Electronics, 24(1), 128-133. DOI:  10.1049/cje.2015.01.021 

[4] Inbarani, H. H., Bagyamathi, M., & Azar, A. T. (2015). A novel hybrid feature selection 

method based on rough set and improved harmony search. Neural Computing and 

Applications, 26(8), 1859-188. DOI: 10.1007/s00521-015-1840-0 

[5] John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection 

problem. In Machine Learning Proceedings 1994 (pp. 121-129). Morgan Kaufmann. 

DOI:  10.1016/B978-1-55860-335-6.50023-4 

[6] Machado, J. T., & Lopes, A. M. (2017). Multidimensional scaling analysis of soccer 

dynamics. Applied Mathematical Modelling, 45, 642-652. DOI: 

10.1016/j.apm.2017.01.029 

[7] Halai, A. D., Woollams, A. M., & Ralph, M. A. L. (2017). Using principal component 

analysis to capture individual differences within a unified neuropsychological model of 

chronic post-stroke aphasia: revealing the unique neural correlates of speech fluency, 

phonology, and semantics. Cortex, 86, 275-289. DOI: 10.1016/j.cortex.2016.04.016 

[8] Zhang, H. Y., & Yang, S. Y. (2017). Feature selection and approximate reasoning of large-

scale set-valued decision tables based on αdominance-based quantitative rough 

sets. Information sciences, 378, 328-347. Z. Pawlak. "Rough sets-theoretical aspect of 

reasoning about data." (1991): 29-29. DOI: 10.1016/j.ins.2016.06.028 

[9] Pawlak, Z., Grzymala-Busse, J., Slowinski, R., & Ziarko, W. (1995). Rough sets. 

Communications of the ACM, 38(11), 88-95. DOI:10.1145/219717.219791 

[10] Pawlak, Z., & Slowinski, R. (1994). Decision analysis using rough sets. International 

Transactions in Operational Research, 1(1), 107-114. DOI:10.1016/0969-6016(94)90050-7 

https://doi.org/10.1049/cje.2015.01.021
https://doi.org/10.1007/s00521-015-1840-0
https://doi.org/10.1016/B978-1-55860-335-6.50023-4
https://doi.org/10.1016/j.apm.2017.01.029
https://doi.org/10.1016/j.cortex.2016.04.016
https://doi.org/10.1016/j.ins.2016.06.028


 

95 
 

[11] Anaraki, J. R., & Eftekhari, M. (2013, May). Rough set based feature selection: a review. 

The 5th Conference on Information and Knowledge Technology (pp. 301-306). IEEE. 

DOI:10.1109/IKT.2013.6620083 

[12] Podsiadło, M., & Rybiński, H. (2014). Rough sets in economy and finance. In Transactions 

on Rough Sets XVII (pp. 109-173). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-

54756-0_6 

[13] Xie, C. H., Liu, Y. J., & Chang, J. Y. (2015). Medical image segmentation using rough set 

and local polynomial regression. Multimedia Tools and Applications, 74(6), 1885-1914. 

DOI: 10.1007/s11042-013-1723-2 

[14] Pawlak Z. 1982. Rough sets. International Journal of Computer and Information Science 

11 (Oct. 1982), 341–356. 

[15] Greco, S., Matarazzo, B. & Slowinski, R. (2001). Rough sets theory for multicriteria 

decision analysis. European journal of operational research, 129(1), 1-47. 

DOI:10.1016/S0377-2217(00)00167-3 

[16] Boggia, A., Rocchi, L., Paolotti, L., Musotti, F., & Greco, S. (2014). Assessing rural 

sustainable development potentialities using a dominance-based rough set 

approach. Journal of environmental management, 144, 160-167. 

DOI: 10.1016/j.jenvman.2014.05.021 

[17] Liou, J. J. (2009). Novel decision rules approach for customer relationship management of 

the airline market. Expert Systems with Applications, 36(3), 4374-4381.  

DOI: 10.1016/j.eswa.2008.05.002 

[18] Liou, J. J., & Tzeng, G. H. (2010). A dominance-based rough set approach to customer 

behavior in the airline market. Information Sciences, 180(11), 2230-2238.  

DOI: 10.1016/j.ins.2010.01.025 

[19] Liou, J. J., Yen, L., & Tzeng, G. H. (2010). Using decision rules to achieve mass 

customization of airline services. European journal of operational research, 205(3), 680-

686. DOI: 10.1016/j.ejor.2009.11.019 

[20] Chakhar, S., Ishizaka, A., Labib, A., & Saad, I. (2016). Dominance-based rough set 

approach for group decisions. European Journal of Operational Research, 251(1), 206-224. 

DOI: 10.1016/j.ejor.2015.10.060 

https://doi.org/10.1007/s11042-013-1723-2
https://doi.org/10.1016/j.jenvman.2014.05.021
https://doi.org/10.1016/j.eswa.2008.05.002
https://doi.org/10.1016/j.ins.2010.01.025
https://doi.org/10.1016/j.ejor.2009.11.019
https://doi.org/10.1016/j.ejor.2015.10.060


 

96 
 

[21] BŁaszczyński, J., Greco,S., & SŁowiński, R. (2012).Inductive discovery of laws using 

monotonic rules. Engineering Applications of Artificial Intelligence, 25(2), 284-294. DOI: 

10.1016/j.engappai.2011.09.003 

[22] do Couto, A. B. G., & Gomes, L. F. A. M. (2016). Multi-criteria web mining with 

DRSA. Procedia Computer Science, 91, 131-140. DOI: 10.1016/j.procs.2016.07.050 

[23] Rawat, S., Patel, A., Celestino, J., & dos Santos, A. L. M. (2016). A dominance-based 

rough set classification system for fault diagnosis in electrical smart grid environments. 

Artificial Intelligence Review, 46(3), 389–411. DOI:10.1007/s10462-016-9468-8 

[24] Hu, Q., Chakhar, S., Siraj, S., & Labib, A. (2017). Spare parts classification in industrial 

manufacturing using the dominance-based rough set approach. European Journal of 

Operational Research, 262(3), 1136-1163. DOI: 10.1016/j.ejor.2017.04.040 

[25] Mohamad, M., & Selamat, A. (2018, March). Analysis of hybrid dominance-based rough 

set parameterization using private financial initiative unitary charges data. In Asian 

Conference on Intelligent Information and Database Systems (pp. 318-328). Springer, 

Cham. DOI: 10.1007/978-3-319-75417-8_30 

[26] Augeri, M. G., Colombrita, R., Greco, S., Lo Certo, A., Matarazzo, B., & Slowinski, R. 

(2011). Dominance-based rough set approach to budget allocation in highway maintenance 

activities. Journal of infrastructure systems, 17(2), 75-85. DOI: : 10.1061/(ASCE)IS.1943-

555X.0000051 

[27] Marin, J. C., Zaras, K., & Boudreau-Trudel, B. (2014). Use of the dominance-based rough 

set approach as a decision aid tool for the selection of development projects in Northern 

Quebec. Modern Economy, 2014. DOI: 10.4236/me.2014.57067  

[28] Susmaga, R. (2014). Reducts and constructs in classic and dominance-based rough sets 

approach. Information Sciences, 271, 45-64. DOI: 10.1016/j.ins.2014.02.100 

[29] Susmaga, R., Słowiński, R., Greco, S., & Matarazzo, B. (2000). Generation of reducts and 

rules in multi-attribute and multi-criteria classification. Control and Cybernetics, 29, 969-

988. 

[30] Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Reprint—Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Physical 

Therapy, 89(9), 873–880. DOI:10.1093/ptj/89.9.873 

https://doi.org/10.1016/j.engappai.2011.09.003
https://doi.org/10.1016/j.procs.2016.07.050
https://doi.org/10.1016/j.ejor.2017.04.040
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=47098
https://doi.org/10.1016/j.ins.2014.02.100


 

97 
 

[31] Pourahmadi, A., Ebadi, T., & Nikazar, M. (2017). Industrial Wastes Risk Ranking with 

TOPSIS, Multi-Criteria Decision Making Method. Civil Engineering Journal, 3(6), 372–

381. DOI:10.28991/cej-2017-00000098 

[32] Azar, A. T., Inbarani, H. H., & Devi, K. R. (2017). Improved dominance rough set-based 

classification system. Neural Computing and Applications, 28(8), 2231-2246.  

DOI: 10.1007/s00521-016-2177-z   

[33] Hu, Q., Chakhar, S., Siraj, S., & Labib, A. (2017). Spare parts classification in industrial 

manufacturing using the dominance-based rough set approach. European Journal of 

Operational Research, 262(3), 1136-1163. DOI: 10.1016/j.ejor.2017.04.040  

[34] Bouzayane, S., & Saad, I. (2017, May). Weekly predicting the at-risk MOOC learners 

using a dominance-based rough set approach. In European Conference on Massive Open 

Online Courses (pp. 160-169). Springer, Cham. DOI: 10.1007/978-3-319-59044-8_18 

[35] Liou, J. J., & Tzeng, G. H. (2010). A dominance-based rough set approach to customer 

behavior in the airline market. Information Sciences, 180(11), 2230-2238.  

DOI: 10.1016/j.ins.2010.01.025 

[36] Kusunoki, Y., & Inuiguchi, M. (2010). A unified approach to reducts in a dominance-based 

rough set approach. Soft Computing, 14(5), 507-515. DOI: 10.1007/s00500-009-0450-0  

[37] Zhang, J., Wong, J.-S., Li, T., & Pan, Y. (2014). A comparison of parallel large-scale 

knowledge acquisition using rough set theory on different MapReduce runtime systems. 

International Journal of Approximate Reasoning, 55(3), 896–907. 

DOI:10.1016/j.ijar.2013.08.003 

[38] Zhang, J., Wong, J.-S., Pan, Y., & Li, T. (2015). A Parallel Matrix-Based Method for 

Computing Approximations in Incomplete Information Systems. IEEE Transactions on 

Knowledge and Data Engineering, 27(2), 326–339. DOI:10.1109/tkde.2014.2330821 

[39] Liou, J. J. (2011). Variable Consistency Dominance-based Rough Set Approach to 

formulate airline service strategies. Applied Soft Computing, 11(5), 4011-4020. DOI: 

10.1016/j.asoc.2011.03.002 

[40] Huang, Q., Li, T., Huang, Y., Yang, X., & Fujita, H. (2020). Dynamic dominance rough 

set approach for processing composite ordered data. Knowledge-Based Systems, 187, 

104829. DOI:10.1016/j.knosys.2019.06.037 

https://doi.org/10.1007/s00521-016-2177-z
https://doi.org/10.1016/j.ejor.2017.04.040
https://doi.org/10.1016/j.ins.2010.01.025
https://doi.org/10.1007/s00500-009-0450-0
https://doi.org/10.1016/j.asoc.2011.03.002


 

98 
 

[41] Raza, M. S., & Qamar, U. (2019). A parallel approach to calculate lower and upper 

approximations in dominance-based rough set theory. Applied Soft Computing, 84, 

105699. DOI:10.1016/j.asoc.2019.105699 

[42] "UCI," [Online]. Available: https://archive.ics.uci.edu/ml/index.php. 

[43] Zuhtuogullari, K., Allahverdi, N., & Arikan, N. (2013). Genetic algorithm and rough sets 

based hybrid approach for reduction of the input attributes in medical systems. International 

Journal of innovative computing and information control, 9, 3015-3037. 

[44] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In 

Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942-

1948). IEEE. DOI: 10.1109/ICNN.1995.488968   

[45] Shi, Y., & Eberhart, R. C. (1998, March). Parameter selection in particle swarm 

optimization. In International conference on evolutionary programming (pp. 591-600). 

Springer, Berlin, Heidelberg. DOI: 10.1007/BFb0040810  

[46] Shi, Y. (2001, May). Particle swarm optimization: developments, applications and 

resources. In Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 

01TH8546) (Vol. 1, pp. 81-86). IEEE. DOI: 10.1109/CEC.2001.934374 

[47] Allen Weiss, M. (2004). Data Structures in C++. Chapman & Hall/CRC Computer & 

Information Science Series, 42–1–42–17. DOI: 10.1201/9781420035179.ch42 

[48] Sahni, S. (2004). Analysis of Algorithms. Chapman & Hall/CRC Computer & Information 

Science Series, 1–1–1–25. DOI:10.1201/9781420035179.pt1 

https://archive.ics.uci.edu/ml/index.php
https://doi.org/10.1109/CEC.2001.934374

