

i

Automated Duplicate Defect Detection for Bug Tracking Systems

Author

Momina Nasar

FALL 2019 - MS-19 (CE) 00000319911

Supervisor

Dr. Wasi Haider

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

FEB 2022

ii

Automated Duplicate Defect Detection for Bug Tracking Systems

Author

Momina Nasar

FALL 2019 - MS-19 (CE) 00000319911

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Engineering

Thesis Supervisor:

Dr. Wasi Haider

Thesis Supervisor’s Signature:-__________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

FEB 2022

DECLARATION

I certify that this research project, "Automated Duplicate Defect Detection for Bug Tracking

Systems" is my own work under Dr. Wasi Haider's supervision. The work has not been

submitted to anyone else for review. The use of content from other sources has been

acknowledged and referred to appropriately.

Signature of Student

Momina Nasar

FALL 2019 - MS-19 (CE) 00000319911

LANGUAGE CORRECTNESS CERTIFICATE

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

Momina Nasar

FALL 2019 - MS-19 (CE) 00000319911

Signature of Supervisor

Dr. Wasi Haider

COPYRIGHT STATEMENT

2. Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

3. The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the College of E&ME, which will prescribe the terms and conditions of

any such agreement.

4. Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

ACKNOWLEDGEMENTS

All praises are to Allah. The favors He has bestowed on me have led to the successful

completion of my research work. No hurdle was complex enough not to resolve, and I have

eternal gratitude for that.

I sincerely thank my supervisor, Dr. Wasi Haider, for his extreme patience and expert guidance.

He played an integral role in keeping my direction focused and ensuring I completed all my

milestones promptly. I thank my GEC members, Dr. Usman Akram and Dr. Sajid Gul Khwaja,

for filling in any gaps in my methodology and offering their kind help. I am lucky to have had

the support of three of the soundest academic minds of the department.

This section is incomplete without mentioning the unwavering support of my family and

friends. My parents’ blind trust in my capabilities and constant prayers culminated in this

achievement. My husband, Bilal, with his continuous encouragement and my siblings, Hamna

& Ahmad, with their silent support, pushed me to step out of my comfort zone and perform

even better than I had imagined. My best friends, Maryam & Shah Rukh, were my emotional

strength and helped out whenever I was technically blocked.

I am indebted to every one of you, along with every other individual who may have played

even a small but significant role in helping me complete my research and degree. I am grateful

for being allowed to leave a small mark in academia for generations to come.

For Family & Friends

ABSTRACT

A bug tracking system (BTS) keeps track of the status of a software system in real time. The

bug report it generates is sent to the software developer or centre for maintenance whenever it

identifies an abnormal scenario. The freshly reported defect, on the other hand, could be a

repeat in the master report repository of an old issue with a remedy already present. This

situation results in an onslaught of replicate reports of bugs, making the software development

life cycle difficult to manage. As a result, in the software industry, it is now an essential task

to find repeat reports of bugs early. This research proposes a two-tier method based on topic-

based clustering done by LDA approach, multimodal representation of text using W2V, FT,

GloVe and a measure of unified text similarity utilizing similarities of the Cosine and Euclidean

nature to solve this challenge. The Eclipse dataset, which contains over 80,000 bug reports and

includes both master and duplicate reports, is used to validate the suggested method. This

investigation focuses primarily on the report descriptions in order to identify duplication. For

Top-N proposals, the recommended two-tier technique has achieved a 75% recall rate, which

is higher than the traditional one-on-one classification model.

Keywords: topic modelling, machine learning, natural language processing, bug tracking,

multimodality

Table of Contents

DECLARATION .. i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

COPYRIGHT STATEMENT...iii

ACKNOWLEDGEMENTS... iv

ABSTRACT ... vi

Table of Contents ...vii

List of Figures... x

List of Tables ... xi

CHAPTER 1: INTRODUCTION ... 12

1.1. Background.. 12

1.1.1. Bug Report:... 12

1.1.2 Duplicate Bug Report.. 14

1.1.2. Bug Tracking Systems .. 15

1.2. Motivation .. 16

1.3. Aim and Objective .. 16

1.4. Approach.. 17

CHAPTER 2: SYSTEMATIC LITERATURE REVIEW .. 18

2.1. Introduction.. 18

2.2. Review Methodologies ... 19

2.2.1. Searching Process .. 19

A. Query Search ... 19

B. Database Search ... 19

2.2.2. Selection and Rejection Criteria .. 20

2.2.3. Categories Definition ... 21

2.2.3.1. Attribute selection ... 21

2.2.3.2. Feature Weighting ... 21

2.2.3.3. Classification model ... 22

2.2.4. Data Extraction and Synthesis .. 22

2.3 Results and Analysis .. 23

2.3.1. Categorization w.r.t Feature Weighting... 23

2.3.2. Categorization w.r.t Classification model .. 25

2.3.3. Identification of Retrieval .. 26

2.3.4. Evaluation Metrics ... 27

2.4. Answers of Research Questions.. 27

CHAPTER 3: PROPOSED METHODOLOGY AND IMPLEMENTATION.. 29

3.1. Data Set .. 29

3.1.1 Source ... 29

3.1.2. Attributes ... 29

3.1.2.1 Issue Id:... 29

3.1.2.2 Priority: ... 29

3.1.2.3 Component:.. 29

3.1.2.4 Duplicated issue: .. 29

3.1.2.5 Title: .. 29

3.1.2.6 Description: .. 29

3.1.2.7 Status: ... 29

3.1.2.8 Resolution:.. 30

3.1.2.9 Version:... 30

3.1.2.10 Created time: ... 30

3.1.2.11 Resolved time:.. 30

3.2 Pre-Processing .. 30

3.2.1 Text Cleaning:... 30

3.2.2 Stop Word Removal: .. 30

3.2.3 Tokenization: .. 31

3.2.4 Lemmatization: .. 31

3.2.5 Stemming.. 31

3.5.6. Bag of Words generation: ... 31

3.3 Proposed Methodology.. 32

3.3.1 LDA Topic Modelling .. 32

3.3.1.1 Initialization: .. 32

3.3.1.2 Random topic assignment:.. 32

3.3.1.3 Reassignment: .. 32

3.3.1.4 Model updation: .. 33

3.3.1.5 Iteration: ... 33

3.3.2 Classification .. 35

3.3.2.1 Formation of Feature Vectors: ... 36

3.3.2.2 Single-Modality Feature Vector: ... 36

3.3.2.3 Multi-Modality Feature Vector: .. 36

3.3.3 Top-N Recommendations: ... 36

3.3.4.1 Cosine Similarity:.. 37

3.3.4.2 Euclidean Similarity: .. 37

3.4 Implementation .. 38

3.4.1 Computing Environment.. 38

3.4.2 Experimentation... 38

3.4.3 Evaluation Criteria ... 38

CHAPTER 4: RESULTS AND DISCUSSION ... 39

CHAPTER 5: CONCLUSION .. 52

CHAPTER 6: FUTURE WORK AND RECOMMENDATIONS ... 53

References ... 53

List of Figures

Figure 1 First Type of Big Report .. 15

Figure 2 Second Type of Bug Report ... 15

Figure 3 Selection and Rejection Criteria .. 21

Figure 4 Data Pre Processing Flow .. 30

Figure 5 Actual Data After Processing... 31

Figure 6 LDA Topic Modelling .. 32

Figure 7 LDA Based Topic Modelling Flow ... 35

Figure 8 LDA Based Topic Modelling... 39

Figure 9. RR Across all Models for 2.5k samples for w1=0.5, w2=0.5.. 40

Figure 10. RR% Comparison of M1,M2,M3 & M4 for w1=0.5, w2=0.5... 41

Figure 11. RR Comparison of M1,M2,M3 & M4 for w1=0.1, w2=0.9 ... 42

Figure 12. RR Comparison of M1,M2,M3 & M4 for w1=0.2, w2=0.8 .. 43

Figure 13 RR Comparison of M1,M2,M3 & M4 for w1=0.3, w2=0.7 ... 44

Figure 14 RR Comparison of M1,M2,M3 & M4 for w1=0.4, w2=0.6 ... 45

Figure 15. RR Comparison of M1,M2,M3 & M4 for w1=0.6, w2=0.4 .. 46

Figure 16. RR Comparison of M1,M2,M3 & M4 for w1=0.7, w2=0.3 .. 47

Figure 17. RR Comparison of M1,M2,M3 & M4 for w1=0.8, w2=0.2 .. 48

Figure 18. RR Comparison of M1,M2,M3 & M4 for w1=0.9, w2=0.1 ... 49

Figure 19. M4 Performance .. 50

Figure 20. M4 Trend for 2.5K Samples ... 51

List of Tables

Table 1 Information Categories and Items in Bug Reports... 12

Table 2 Query Search .. 19

Table 3. Database Search .. 20

Table 4 Data Extraction and Synthesis Form... 22

Table 5. Categorization w.r.t Feature Weighting... 23

Table 6. Categorization w.r.t Classification model ... 25

Table 7. Identification of Retrieval... 26

Table 8. Evaluation Metrics .. 27

Table 9 Performance Analysis W.R.T Recal Rate, For Top 2.5K, W1= 0.5, W2 = 0.5 ... 40

CHAPTER 1: INTRODUCTION

1.1. Background

The maintenance of software is an important part of the software development life cycle.

Bug reports (also known as Issue or Defect reports) are essential for software maintenance.

Bug reports can be used to guide developers in repairing software defects, estimating

problem-fixing time, deciding which bug should be solved first, deciding who should patch a

particular bug, and assisting in locating the issue position that needs to be fixed. It can also

provide useful information on the software project's progress.

Bugs are usually reported to a bug tracking system (also known as a bug tracking repository

or issue tracking system) [1], which keeps track of them which is used to monitor software

maintenance tasks. Bug tracking systems are designed to help developers, testers, and

consumers not only define and report system issues, but also to store bugs and other

pertinent information while tracking the status of each issue [1] [2]. As a result, a bug

tracking system can improve the speed with which flaws are discovered, as well as the

quality of software and its ability to satisfy client needs.

1.1.1. Bug Report:

A bug report contains various information which is relevant to a specific bug. Bug reports

are a type of structured record that contains several forms of information concerning bugs, as

shown in Table 1.

 Table 1 Information Categories and Items in Bug Reports

Category Attribute Explanation

Numerical Information

Bug ID

The Bug unique

identification number,

which is automatically

generated

Created date (Open date,

Open date)

The date of submission

Close data

The date of closing the bug

Dup_ID

If the bug report is a

duplicate, the Dup ID is the

ID of the bug report's

master bug report.

Response time

How soon the development

team replies to a user's

submission is determined

by the time between

submission and first

comment.

Textual Information

Header (title, summary)

A concise and brief

description of the bug

Description

A detailed outline of what

went wrong

Steps to reproduce

A description of how to

reproduce the failure

Author

The name of person write

the bug report

Assign

The name of person is

assigned to fix the bug

Comments

The discussion about the

bug

Categorical Information

keywords

A few words to summarize

the bug

Type

The bug report's nature,

such as defect,

enhancement, or feature

Version

The version of the software

was used

Firmware

(Operating system)

The firmware where the

bug resided

Severity

How serious of the failure

Frequency

The times of the failure

happened

Urgency

How important of fixing

the failure

Category (component)

The component where the

bug resided

Platform

The several types of
systems that potentially be
harmed by the bug

Correlating classes,

methods, fields

pattern or subject of a bug

Priority

The priority of the bug

report based on its severity.

Status

To check if the bug report

is new, or assigned, or

fixed, or closed

Resolution

To indicate whether a bug

or error is resolved.

Product

(Hardware information)

The product where the bug

resided

Execution (Crash)

information

Call stack trace (Exception

stack frames)

Stack frames which are

recorded during the

execution of a program,

representing function calls

or procedures

Appendices

(Patches or Screenshots)

Attachments such as

screenshots of failure

1.1.2 Duplicate Bug Report

There are two sorts of duplicates, as indicated in Figure 1 and Figure 2, according to Runeson

et al. [3]. The first category of duplicate bug reports uses similar languages to describe the same

failure. The second type of duplicate bug reports which describe two different failures generally

use different vocabularies. But those failures are caused by the same underlying bug.

Figure 1 First Type of Big Report

Figure 2 Second Type of Bug Report

A master (original) bug report is the first bug report submitted for a specific bug in a system, while

duplicate bug reportsaries are the successive bug reports for the same bug.

1.1.2. Bug Tracking Systems

Bug reports are typically maintained in a database, which is referred to as a bug tracking system

(bug repository). Bug tracking systems, like any other information system, are used to store and

retrieve bug report data [4]. Its primary use is to track a specific bug. Some are commercial, such

as Atlassian JIRA and FogBugz, while others, such as Bugzilla and ITracker, are open source

initiatives. During the development and management of software projects, it is a centralised

database that serves as a communication and coordination hub.

1.2. Motivation

Many bug reports submitted are duplicates (duplicate issue reports are created when many users

submit bug reports for the same problem), resulting in a huge number of duplicate bug reports in a

bug tracking system [5]. According to studies, the rate of duplicate bug reports might range from

25 to 30%. [5] [6] [7]. Duplicate bug reports lead to a situation that same issues are assigned to

multiple developers who reproduce and fix the issue for the similar cause, which is a waste of effort

and cost.

The important motivations for detecting duplicate bug reports are described below according to

[3] [8] [9] [10]:

➢ When duplicate bug reports are assigned to multiple developers, it wastes the developers'

time and effort.

➢ Addressing duplicate bug reports as a separate bug after a bug report has been addressed

is a waste of effort.

➢ Finding duplicate bug reports can also help with problem fixing because some duplicate

bug reports may provide additional information.

To identify duplicate bug reports, an analyst known as a triager now reads and reviews each

existing bug report manually to identify duplicate bugs and determine whether a new incoming

bug report reflects a new bug or an already reported bug [5]. He (She) uses either his (her)

memories and experience or the bug repository's search capabilities [5]. The process is difficult

and time-consuming, especially when considering the normal number of bug reports written

everyday [11]. As a result, technologies for automating the detection of duplicate bug reports are

required. New bug reports are directly compared with existing bug reports to find comparable bug

reports, lowering bug report processing time by eliminating the need for a human to spend time

reading, understanding, and searching. It has the potential to improve software maintenance

efficiency.

Although there has lately been a lot of research on automatically detecting duplicate bug

reports, for example, several variants of information-retrieval algorithms have been examined,

there is still a lot of potential for improvement in the duplicate detection process. Furthermore,

only a few tools were tested in an industrial setting.

1.3. Aim and Objective

Our study’s goal is to find duplicate bug complaints. Because of the following reasons,

automated duplicate bug report detection is a difficult challenge [12], [13]

➢ Bug reports are written in a natural language manner. In the event that several aberrant

behaviours are caused by the same software bug, these reports may use different

terminology to describe the same bug. In natural language comprehension, there is a

linguistic ambiguity and variability problem, which makes it difficult to distinguish

reports that are comparable.

➢ The bug tracking system has a high amount of bug reports. The number of bug reports in

the TROUBLE of the case corporation – Axis is over 100,000, which is a significant

number when compared to the amount of work involved.

➢ The quality of a part of bug reports is not sufficient, for example, the bug report contains

weak, inadequate, missing, or even incorrect information.

We want to build a system that automatically recognizes duplicate bug reports.

1.4. Approach.

We proposed a double tier model. The model will look for the Top-N similar master reports

whenever a brand-new report is submitted. It consists of two steps that are clustering and

classification In clustering, preprocessing of the date set is done and is fed into LDA-based topic

modelling. Classification comprehends numerous steps that includes single and multi-modal

text representation using Word2vec (W2V), top-N clusters selection, GloVe, Fasttext (FT), and

measure of similarity of text which is attained by fusing similarity measures of the Cosine and

Euclidean nature via assigning different weights.

CHAPTER 2: SYSTEMATIC LITERATURE REVIEW

This-chapter contains the systematic literature review performed for our research. Section 2.1

consists introduction to the SLR. Research methodology of literature review is explained in

Section 2.2. The results and analysis are interpreted in Section 2. 3. Answers to the-research-

questions are explained in the Section 2.4. Conclusion of SLR is discussed in Section 2.5

2.1. Introduction

There are always challenges that arise throughout the development, maintenance, and use of a

software application, placing the system's overall functionality in peril due to intrinsic defects. The

software industry spends billions of dollars on product maintenance [14], [15]. A Bug Tracking

System (BTS), like Bugzilla1, recognises a technical disagreement in a software environment as a

bug and creates a bug report. Every problem report is assigned to software developers for further

assistance as needed, based on its severity. The biggest difficulty with the procedure is the chance

of multiple bug reports being filed with similar types of issues, resulting in a high likelihood of

having the same or similar solution repeatedly. As a result, duplicate bug reports [16], [17] become

a problem. These bug reports are published in plain text, which might be difficult to decipher,

making it harder to spot duplicates because different terms can be used to describe the same issue.

As a result of this stumbling block, the developer is forced to look for the same solutions for diverse

defect reports, resulting in software companies spending more than 45 percent of their budget on

bug patches [14]. If the repository already has a master report of incoming bug reports and the

report is still given to the developer, a significant amount of resources will be wasted on an issue

that has already been fixed or is now being resolved. As a result, it's critical to spot duplicate bug

reports.

As a result, there is a compelling need to conduct a thorough evaluation of current literatures on

bug duplication. The goal is to lay a solid foundation for a comprehensive comparison of present

and future automated duplicate bug report identification systems. This contribution is especially

valuable for academics who want to contribute to this study area by developing new ways to

automated duplicate bug report detection or improving or refining existing ones.

The research questions that we will answer to identify and categorize existing automated duplicate

bug reports detection methods are as follows:

RQ1 What are the existing methods to detect duplicated bug reports automatically?

RQ2 What are different categories of all automated duplicate bug reports detection

methods?

RQ03 How are the methods evaluated?

2.2. Review Methodologies

Kitchenham [14] outlined a well-defined methodology for conducting a systematic literature

review (SLR). SLR is most commonly performed using this pattern by researchers. Throughout

order to gain more exact and accurate responses to our queries, we followed this strategy in our

research.

2.2.1. Searching Process

A. Query Search

Kitchenham [14] [18] advised that terms and structured search strings from RQ1 be classified

according to Population, Intervention, Comparison, and Outcomes.

To create the search string, the detected keywords were sorted into groups and their synonyms

were considered..

Table 2 Query Search

Concept Searched String

Bug

(bug*; defect*; failure; error*; problem*; issue*; crash*)

Detection

detect*, rank*, retriev*, link*, connect*

 Duplicate (duplicat*; same; similar*)

 Report (report*; document*; text*)

B. Database Search

Those search strings are used to conduct a manual search to identify as much relevant primary

studies as possible on four digital databases: IEEE Xplore, ACM Digital Library and Scopus.

Table 3. Database Search

Database

Website

Search Result

Setting

IEEE Xplore

http://ieeexplore.ieee.org

2092

Metadata Only

ACM Digital

Library

http://dl.acm.org

386

Default

Scopus

https://www.elsevier.com/

3940

Default

We used the below search Query:

(bug* OR defect* OR failure* OR error* OR problem* OR issue* OR crash*) AND (detect*

OR rank* OR retriev* OR link* OR connect*) AND ((duplicat* OR similar* OR same) AND

(report * OR document * OR text)

2.2.2. Selection and Rejection Criteria

During the primary studies screening procedure, the following selection and rejection criteria

were utilised to determine whether an article's content was relevant based on titles, abstracts,

keywords, full-text reading, and quality assessment to omit studies that did not answer the RQ1.

The following are the selection criteria:

➢ Automated duplicate bug report detection research must have been addressed in studies.

➢ Peer-reviewed studies must be published in journals, conferences, and workshops

➢ Studies in the subject of software engineering are required.

The following exclusion criteria were used to reject a study:

➢ Any article that is not peer-reviewed (grey literature, books, presentations, blog posts, etc.

➢ Any article that is not available in full-text,

➢ Any conference proceedings (e.g., messages from chair of editorial boards, etc.

➢ Any article that is a duplicate of other studies are all excluded.

Figure 3 Selection and Rejection Criteria

2.2.3. Categories Definition

For the organization of selected researches, we have defined five categories. This will improve

the efficiency of answers-of the-research-questions. The explanation for each category is given

below.

2.2.3.1. Attribute selection

The attribute selection task entails picking a subset of the originally available attributes to be used

in the model generation process. General-purpose attribute selection algorithms can be used to

choose attributes for a variety of target algorithms, as well as – in certain cases – distinct target

tasks..

2.2.3.2. Feature Weighting

Characteristic weighting is a crucial step in text categorization that determines the importance of

each document's feature.

2.2.3.3. Classification model

A classification model attempts to draw a conclusion from the training data. It will forecast the

class labels/categories of the new data.

2.2.4. Data Extraction and Synthesis

To record all the relevant information that will allow us to answer the proposed RQ1, we

extracted data based on the following data extraction form as shown in Table 4-8, which was

adapted from other similar studies [18] [19]. There is a data item and a value in each data

extraction field. The resulting database collects general studies information and specific data

information addressing the RQ1, RQ2, RQ3 and RQ4.

Table 4 Data Extraction and Synthesis Form

Category

Data Field
Value

General Information

Article Title

Name of the articles

Author Name

Set of Names of the authors

Year of Publication

Calendar year

Type of Contribution

Model, theory, framework, or approach,

instructions, lessons gained, counsel or

implications, and tools are examples of

study outcomes. These numbers were

taken from [19].)

Type of Research

Research types (evaluation research,

solution proposal, validation research,

philosophical papers, opinion papers,

experience papers, etc. These values were

adapted from [19].)

Research Method

Research methods employed as part of the

research process (case study, industry

report, experiment, survey, action

research, mixed methods, grounded

theory, design science, opinion paper, and

not stated. These values were adapted

from [20].)

Specific Information

Keywords

Concept labels or keywords found in the

abstracts and conclusion

Method

Activities that are proposed to

automatically detect duplicated bug reports

Evaluation

Activities that are proposed to evaluate a

method

Dataset

Databases that are mentioned in the

primary studies comprise defect reports

Metric

Metrics are proposed to measure a method

Performance

Outcomes of evaluation that measure the

performance of a method

We applied a qualitative synthesis method and performed a statistical analysis of the data

extracted from the primary studies separately based on the classification scheme with the main

goal of understanding, structuring, and classifying current research on the automated duplicate

bug reports detection.

2.3 Results and Analysis

The application of the SMS protocol yielded the results which are presented in this section.

Before presenting results, As illustrated in Figure, we consider the various publication venues.

In systematic mapping research, examining specific publication outlets is typical. [21].

2.3.1. Categorization w.r.t Feature Weighting.

Table 5. Categorization w.r.t Feature Weighting

Model Scheme Reference Number

Vector Space

Model

TF-IDF [4], [5], [6], [7], [8],
[9], [10], [11], [12],
[13], [14], [15], [16],
[17], [18], [19], [20],

[21], [22]

19

BM25-based (BM25,
BM25F, BM25Fext)

[23], [24], [25], [15],
[26], [27], [12], [16],
[28]

9

IDF (weight =
log2(frequency))

[29], [30], [9], [12] 4

TF-IDF-CFC weighting [31], [16] 2

Term frequency (TF),
Total term frequency

(TTF)

[12] 1

Log-based (weight = 1 +
log(frequency))

[32] 1

Log-IDF, Log-Entropy,
TF-Entropy

[8] 1

Jelinek Mercer language
model

[15] 1

Dirichlet language
model

[15] 1

Temporal k-occurrence
model

[11] 1

Wiki-similarity [12] 1

Character-Level N-Gram

Model

Character n-gram
feature extractor

similarity computation
module

[33], [34], [35], [19],
[36], [21]

6

Top-N similar bug
reports retrieval module

[33] 1

An adaptation of the
INCLUS algorithm

[37] 1

Correlation coefficient

BM25 ranking function

[16] 1

Topic Model LDA [24], [8], [26], [38],
[36], [39], [28], [40]

8

 LSI [8], [14], [12] 3

 Labelled LDA [26], [28] 2

 Hierarchical Dirichlet
Process

[41] 1

Word Embedding Model Word2vec [16], [22], [40] 3

 FastText [40] 1

 GloVe [40] 1

2.3.2. Categorization w.r.t Classification model

Table 6. Categorization w.r.t Classification model

Classification model Method Reference Occurrences

Discriminative model

(Binary Classification,

Cluster Modeling)

Support Vector
Machine

[29], [25], [31], [35],
[20], [16], [28]

7

Naıve Bayes [35], [38], [20], [28] 4

Logistic Regression [26], [38], [41], [28] 4

K-NN [26], [35], [38], [40] 4

ZeroR [26], [38], [28] 3

LinearSVM [35], [19] 2

Gradient
descent(Stochastic

gradient descent
algorithm)

[29], [9] 2

Agglomerative
Hierarchical Clustering

[30], [42] 2

Random Forest [35], [43] 2

Ranking SVM [12] 1

REPTree with
Bootstrap Aggregating
technique

[38] 1

Ensemble Averaging
Linear combination

[36] 1

A clustering method [6] 1

A graph cluster
algorithm

[3] 1

Linear Regression [3] 1

The k-means clustering
algorithm

[42] 1

Expectation
Maximization,X-means

algorithm

[41] 1

Clustering Labeling [41] 1

Multi-label classification MULAN (a multi-label
classification scheme)

[42] 1

2.3.3. Identification of Retrieval

Table 7. Identification of Retrieval

Retrieval Concern Method Reference Occurrence

Similarity

Measurement

Cosine Similarity [32], [4], [3], [29], [33],
[5], [30], [6], [8], [7],

[27], [26], [11], [12],
[18], [34], [37], [19],
[46], [17], [36], [16],
[22], [10], [28], [21],

[40]

27

Dice Similarity [32] 1

Jaccard Similarity [32] 1

Secondary
similarity measure

[11] 1

Position
Dependent Model
(PDM)

[42] 1

KL-divergence [44] 1

Character-Level N-
Gram Model

Similarity
computation
module

[33] 1

Time window

(Time frames)

 [32], [7], [43], [13], [10],
[15], [43]

7

Group Centroids [7], [43] 2

Score Cutoff Thresholds [15], [37] 2

Fidelity loss function [5] 1

Feature Reweighting Cluster Shrinkage [34] 1

2.3.4. Evaluation Metrics

Table 8. Evaluation Metrics

Metrics Reference Occurrence

Recall-rate@k [3], [4], [32], [29], [33], [30], [6], [7], [45], [8], [27],
[43], [34], [31], [16], [23], [24], [9], [13], [21], [22],
[36], [40]

23

Precision [3], [25], [15], [44], [37], [35], [19], [46], [17], [36],
[39], [47]

12

MAP [23], [24], [12], [22], [47], [39] 6

AUC [39], [26], [38], [35] 4

Kappa [39], [28], [26], [38] 4

MRR [22], [9], [13], [21] 4

Feedback [46], [17] 2

Likelihood [17], [46] 2

2.4. Answers of Research Questions

RQ1 What are the existing methods to detect duplicated bug reports automatically?

Answer:

Attribute selection, Feature calculation, similarity calculation are the existing methods

RQ2 What are different categories of all automated duplicate bug reports detection

methods?

Answer:

Because title and summary are the most fundamental attributes of bug reports in software

projects, the results demonstrate that they are the most often used qualities in attribute selection.

Although extra data, like as execution information, aids in the detection of duplicate bug

reports, obtaining it is costly due to the complexity of generating or receiving execution

information.

For the feature weighting model and similarity calculation, the results indicate that TF-IDF and

Cosine Similarity are dominant techniques used in automated duplicate bug reports detection

methods. The feature weighing model can be divided into two ways, one is machine learning

method, another is non-machine learning method.

When considering about applying machine learning methods, when the feature size becomes

larger, the efficiency of classification become lower.

These techniques can be further classified into two groups for machine learning methods:

unsupervised learning approach and supervised learning approach. There is no need for any

training data in the unsupervised learning strategy. As a result, it can be applied to any batch

of problem reports.

In primary investigations, the problem of duplicate detection has been addressed in a variety

of methods. We divided them into three major groups: All three issues must be solved: the TOP

N recommendation and ranking problem, the binary classification problem, and the decision-

making approach.

RQ03 How are the methods evaluated?

Answer:

We identified all performance metrics which are used to evaluate various automated duplicate

bug reports detection methods. There are precision, recall, F1 (F-measure, F-score), accuracy,

AUC, kappa, recall-rate@k, MRR, MAP, Normalized Discounted Cumulative Gain, Cluster

purity classification accuracy, Feedback, Likelihood, and EARate. Among them, the recall-

rate@k is the most frequently used performance metric.

CHAPTER 3: PROPOSED METHODOLOGY AND

IMPLEMENTATION

 3.1. Data Set

3.1.1 Source

The Eclipse dataset is used in the ablation study. It contains 85,156 bug reports from October 10,

2001, to December 30, 2013. After completing all of the pre-processing methods outlined in

Section 3.2, the dataset contains 85,027 bug reports, 70,629 of which are master reports and

14,398 of which are duplicate bug reports. In this example, all 70,629 master reports and 1000

duplicate reports are used at random. A bug report is a structured document with eleven fields, as

shown below, although this research just uses the description field.

3.1.2. Attributes

3.1.2.1 Issue Id:

The bug tracking system assigns a unique number to each problem report.

3.1.2.2 Priority:

It's the significance and urgency with which a problem must be resolved.

3.1.2.3 Component:

It demonstrates where an issue arises in the system..

3.1.2.4 Duplicated issue:

It presents a duplicate report of the original report.

3.1.2.5 Title:

In a single line, state the problem.

3.1.2.6 Description:

This clarifies the issue much further.

3.1.2.7 Status:

It displays the bug's status as Open, Fixed, Closed, or Deferred.

3.1.2.8 Resolution:

It displays the bug report's current status, such as whether it's Fixed, Won't Fix, Invalid, or

Duplicate.

3.1.2.9 Version:

It displays the programme version in which the bug was discovered.

3.1.2.10 Created time:

It shows when the bug report was created as well as the date and time.

3.1.2.11 Resolved time:

The date when the bug was repaired is displayed.

3.2 Pre-Processing

As previously stated, the bug reports are written in plain natural language. As a result, cleaning

the data and converting it to a common format for future analysis necessitates a significant

amount of pre-processing. Stop word removal, lemmatization, text cleaning, construction of a

continuous Bag of Words, and tokenization are only a few of the procedures involved (CBoW).

Figure 4 Data Pre Processing Flow

3.2.1 Text Cleaning:

Unnecessary sections of the bugs are deleted during text cleaning. In this phase, all invalid

bug reports are completely erased. Invalid bug reports are ones with an empty description

field or a set of fixed description patterns. Statement "Has been tagged as read-only" is an

example. This indicates that the bug report is readonly. As a result, such bug reports go

unaddressed, but their inclusion in the model may have an impact on the similarity measures.

As a result, before modelling an efficient duplicate bug report detection system, all such

reports must be eliminated.

3.2.2 Stop Word Removal:

Stop words include keywords like "the," "in," "a," and "that," among others, because they have

little meaning or value and have a tendency to negatively impact the duplicate bug identification

process. As a result, the elimination of these stopwords is unavoidable. A change to lower case

occurs after all of the stop words have been removed from the text.

3.2.3 Tokenization:

Tokenization is the breakdown of text into a small number of significant parts called "tokens"

[64].The process of transforming a stream of words into a stream of tokens is known as

tokenization. This is accomplished by deleting all extraneous information such as punctuation,

capitalization, and numerals. We eliminated all the periods and other punctuation characters from

the bug report's text. All uppercase letters are converted to lower case letters. Tokenization is

applied to all bug reports, and the list of tokens for each report is used as an input in the phases

that follow.

3.2.4 Lemmatization:

The technique of reducing a word to its root form while keeping its context is known as

lemmatization; for example, "fix" becomes "fix," and "requires" becomes " require."

3.2.5 Stemming

Words can be written in a variety of grammatical forms, but the information pertaining to that

word remains the same. As a result, stemming a word reveals its root form. All affixes are

removed from tokens during stemming, leaving us with a list of stemmed tokens for all bug

reports.

3.5.6. Bag of Words generation:

BoW is a textual data feature extraction technique. It's a text representation that shows the

location of a word in a document. The power to multiply a text is portrayed as a jumble of

words with no regard for grammar or even word order. This approach consists of two steps:

determining vocabulary and vectoring words based on their existence in a document.

Figure 5 Actual Data After Processing.

3.3 Proposed Methodology

3.3.1 LDA Topic Modelling

A statistical model that is unsupervised and allows unknown groups to examine a set of

observations and explain why some areas of the data are similar is known as LDA.

Representation of each document is done as a latent topics distribution, each of which is defined

by a set of words. A document-topic matrix is built by using LDA on BOW. A distribution of

probability of the topic is then provided by LDA within each document for every document.

LDA starts with a key presumption, in which a document is analyzed to select a group of topics.

Then, for each topic, it assigns a collection of words. It encompasses the six items listed below.

Figure 6 LDA Topic Modelling

3.3.1.1 Initialization:

Using t as a predetermined number of subjects.

3.3.1.2 Random topic assignment:

Each topic t in topics has been allocated a v in the document di at random. This ensures

distributions of subject and word for all papers and themes.

3.3.1.3 Reassignment:

Increasing the randomness of the assignments by determining the meaning of each word v in

the document di:

➢ Currently assigned total number of words in document di to topic t.

➢ Over all the documents that arise from the term v, the total number of assignments to

topic t.

Finally, a new topic is given to the letter v.

3.3.1.4 Model updation:

The assumption made by LDA here is that the current word’s allocation is incorrect but all

other allocations are correct. Thus upgrades the allocation of that word.

3.3.1.5 Iteration:

4 The same process is repeated for all the assignments so that they are all correct. The

assignments here are then later used to perform probability distribution of the k

topics in documents di along with the words that were assigned to each subject.

5 The assumption here is that t topics are generated by LDA from a document di.

Suppose the previous distribution is a k x z matrix, with δ as a variable of distribution

of the word (δ is aggregation of words) inside the topic, δ ij = P (xj | yi) is that the

probability of the word xj within the ith topic. This results in generation of a document

topic matrix containing N topics, which is shown in Eq (1).

𝑝(𝛼, 𝑦, 𝑥) = 𝑝(𝛼 | 𝜃) ∏ 𝑝(𝑦𝑛 | 𝛼)(𝑥𝑛|𝑦𝑛, 𝛿),

𝑁

𝑛=1

 (1)

This represents x as the N-word vector, y as the N-dimensional subject vector, showing the

document's topic distribution vector

𝑝(𝑦 | 𝜃, 𝛿) = ∫ 𝑝(𝛼 | 𝜃) ∏ 𝑝(𝑦𝑛 | 𝛼)(𝑥𝑛|𝑦𝑛,𝛿) 𝑑𝛼,𝑁
𝑛=1 (2)

With c being the corpus, having m documents p(c | θ , δ) is estimated, as

𝑝(𝑐|𝜃, 𝛿) = ∑ 𝑝(𝑥𝑐| 𝜃, 𝛿). (3)

𝑐 = 1...𝑚

Thus,

𝑝(𝐷|𝜃, 𝑍) = ∏ ∫ 𝑝(𝛼𝑑|𝜃)(∏ ∑ 𝑝(𝛽𝑑𝑛|𝛼𝑑) 𝑝(𝛾𝑑𝑛 |𝛽𝑑𝑛, 𝑍))𝑑𝛼𝑑. (4)

𝑑𝑛

𝑁𝑑

𝑛=1

𝑀

𝑑=1

Now, maximization of parameters is performed by the LDA model on θ and δ in p(c | θ , δ) by

using the expression

𝑝(𝛼, 𝑦|𝑥, 𝜃, 𝛿) =
𝑝(𝛼, 𝑦, 𝑥 | 𝜃, 𝛿)

𝑝(𝑦|𝜃, 𝛿)
 (5)

We are able to obtain p(c | θ , δ) θ and δ after a topic model is built. The trained topic model

is used to infer the topic of the unlabeled text and estimated and possibly forecast the related

topic distribution. One thing to note is that this is also the document's conditional probability

distribution in the topic space.

5. Selection of Optimum Number of Topics in LDA:

We get the coherence score, which is a resultant of the mix of the internal measure UMass and

the extrinsic measure UCI. It is used towards choosing the optimal number of topics, shown by

below Eq. (6).

coherence = ∑ Score (wi, wj) (6)

i < j

A Pointwise Mutual Information (PMI) is used in the UCI measure, as defined in Eq (7).

𝑠𝑐𝑜𝑟𝑒𝑈𝐶𝐼(𝑤𝑖 ,𝑤𝑗) = 𝑙𝑜𝑔
𝑃(𝑤𝑖 , 𝑤𝑗)

𝑃(𝑤𝑖)𝑃(𝑤𝑗)
 (7)

The probability of seeing ωi and ωj co-occurring in a totally random document can be

represented as P(ωi, ωj). P(ω) being the representation of the probability of seeing ωi in a

random document. Whereas the empirical conditional log-probability model is represented by

the UMass, as shown in Eq (8).

𝑙𝑜𝑔(𝑤𝑖 , 𝑤𝑗) = 𝑙𝑜𝑔
𝑃(𝑤𝑖 , 𝑤𝑗)

𝑃(𝑤𝑗)
 (8)

Counting the documents results in UMass, such as

𝑠𝑐𝑜𝑟𝑒𝑈 𝑀𝐴𝑆𝑆(𝑤𝑖 ,𝑤𝑗) = 𝑙𝑜𝑔
𝐷(𝑤𝑖,𝑤𝑗) + 1

𝐷(𝑤𝑖)
 (9)

where D(ωi, ωj) is the count of documents containing both words the words . The total number

of documents in the corpus, whereas D(ωi) is the count of documents containing the word.

Once the topic model is created, the model, under discussion, builds clusters around the

subjects.

6. Selection of Optimum Number of Topics in LDA:

The data set is compilation of master bug reports and duplicates. Our work results in isolation

of the master bug reports from the duplicate bug reports initially so that the model can be tested

on duplicate reports. The LDA model is trained using the The Bag of Words corpus obtained

from the master reports. Each master report topic is computed along with the probability

distributions of each document’s theme. Once the topic distribution is examined in the master

report, it is assigned to the cluster of highest topic distribution. This process is of cluster

formation is show in an example.

Assume the LDA produces five topics.

➢ An analysis is performed on the Master Reporti (MRi) based on the above covered

topics.

➢ MRi is assigned to the 3rd cluster, since topic 3 has the largest probability among all

the topics.

Each master report goes through this process until all of them are assigned to their proper

clusters.

Figure 7 LDA Based Topic Modelling Flow

3.3.2 Classification

This stage contains Top-n cluster selection, W2V, FT, and GloVe text representation, and a

measure of text similarity that combines similarity metrics of the Cosine and Euclidean nature.

3.3.2.1 Formation of Feature Vectors:

Various text to numeric representation algorithms are used to create feature vectors in a

multimodality and single modality fashion.

3.3.2.2 Single-Modality Feature Vector:

Word2Vec (M1), FastText (M2), and GloVe are the three feature extractors used (M3)

3.3.2.3 Multi-Modality Feature Vector:

It is commonly known that multimodal approaches provide a wealth of information extraction

and learning opportunities [65] [66] [67]. As a result, the suggested method takes use of multi-

modality feature extraction by combining various feature vectors to improve performance. As

a result, four multi-modal feature representations are proposed: M4 (FastText and GloVe), M5

(GloVe and Word2Vec), M6 (FastText and Word2Vec), and M7 (FastText, GloVe, and

Word2Vec).

The fusing of numerous feature vectors is expressed in Equation (10).

𝑣̅ = 𝑓𝑛(𝑣1
𝑅єD , 𝑣2

𝑅єD), (10)

where ν1 and ν2 are the vectors produced by single-modality feature extractors, n є 1,…4, and D

is the dimension of the vectors. The operations used to combine the feature vectors can be

summarised as follows:

𝑓1(𝑣1, 𝑣2) = 𝑣1 ⨁ 𝑣2 (11)

where Ꚛ is a concatenation operation

𝑓2(𝑣1, 𝑣2) = 𝑎𝑣𝑔(𝑣1 , 𝑣2) (12)

The point-wise average of the two feature vectors is obtained using this method. PCA can

also be used to reduce dimensionality, improve information interpretability, and reduce data

loss. It achieves this by progressively increasing the variance by introducing new unrelated

variables. As a result, the concatenated outcome from Eq(11) is subjected to PCA,like in Eq.

(13).

𝑓3(𝑣1, 𝑣2) = 𝑃𝐶𝐴 ((𝑓1(𝑣1 , 𝑣2))) (13)

Similarly, PCA is used to reduce the feature vector provided by Eq. (12), as shown below.

𝑓4 (𝑣1, 𝑣2) = 𝑃𝐶𝐴 (𝑓2(𝑣1, 𝑣2)) (14)

3.3.3 Top-N Recommendations:

This step's main purpose is to calculate an adequate measure of similarity between the

submitted bug report and the master report repository. The duplicate report's corelated master

report is fetched from the clusters when the Top-N clusters are selected. Every master report

in the Top-n clusters is compared to the duplicate report. As a result, the similarities of the

Cosine and Euclidean nature of both feature vectors are estimated using the equation below to

create feature vectors for each master report and duplicate report from the Top-N clusters.

. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑤1 × 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑤2 × 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

3.3.4.1 Cosine Similarity:

As demonstrated in below Eq, cosine similarity indicates how similar two vectors in an inner

product space are in Eq. (15).

𝑠𝑖𝑛𝑐𝑜𝑠 (𝑑1, 𝑑2) =
𝑑1. 𝑑2

‖𝑑1‖‖𝑑2‖
=

∑ (𝑑1𝑖𝑑2𝑖)𝑛
𝑖=1

√∑ (𝑑1𝑖
2)𝑛

𝑖=1 √∑ (𝑑2𝑖
2)𝑛

𝑖=1

 (15)

where d1i and d2i are the vectors of documents d1 and d2 in ith dimension topic space. It

analyses the Cosine angle between two multidimensional space projected vectors in a

significant way. The Cosine value is a number that varies from 0 to 1. The Cosine value

decreases as the angle increases.

3.3.4.2 Euclidean Similarity:

In Euclidean space, it is a straight-line distance between two points and is given by below

Equation, as

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑒𝑢𝑐 (𝑑1, 𝑑2) = √∑ (𝑑1𝑖 − 𝑑2𝑖)2𝑛
𝑖=1 (16)

where d1i and d2i are the document vectors d1 and d2 in Euclidean space є Rn. The similarity

score of the Euclidean nature between the two documents d1 and d2 can be computed from this

via below equation as

𝒔𝒊𝒎𝒆𝒖𝒄 (𝒅𝟏, 𝒅𝟐) =
𝟏

𝟏 + 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒆𝒖𝒄
 (𝟏𝟕)

3.4 Implementation

3.4.1 Computing Environment

We used Google Colaboratory for the complete implementation. Colaboratory or Colab is a

Google product. Colab allows anybody to write and execute python code through the Google

browser

3.4.2 Experimentation

The below steps were performed in order to run our pipeline and achieve our results.

1. Relevant libraries were imported.

2. Data was read.

3. Data pre-processing steps were performed as mentioned in section B-1.

4. Duplicate and master reports were separated.

5. Master reports are trained on LDA Model. When the model is trained, coherence

score is calculated to detect the best possible number of topics.

6. 10 was picked out as optimum number of topics. Master reports were then pushed

into these clusters based on topic modelling.

7. For feature selection, all these clusters were then trained on Models M1(Word2Vec),

M2(FastText) and M3(GloVe).

8. M4, M5, M6 and M7 are made by fusing M3, M2 and M1 by techniques mentioned

in section C.

9. Experimentations are performed to detect the best fusion model, for Top- 2.5K

recommendations.

10. Afterwards, experimentations are performed on the models M4, M3, M2 and M1 for

different samples starting from 10, 100, 500, 1000, 2000, and 25000 samples

11. Performance evaluation is made by recall rate

3.4.3 Evaluation Criteria

The measure provided by Equation(18) is used to assess this research.

𝑅𝑒𝑐𝑎𝑙𝑙𝑅𝑎𝑡𝑒 =
𝑁𝑡𝑟𝑢𝑒

𝑁𝑡𝑜𝑡 𝑎𝑙

 (18)

where Ntrue is the amount of duplicate reports that can locate their master report appropriately,

and Ntotal is the total number of reports that are duplicates.

CHAPTER 4: RESULTS AND DISCUSSION

To begin, training was performed for the master reports on the LDA model for 1000 iterations

and 20 passes using all the techniques outlined in Section II-D. For determining the optimal

number of topics, an analysis and a coherence score were used. The highest coherence was

achieved for 10 topics. As a result, ten topics were chosen as the optimal number for this study.

Figure 8 LDA Based Topic Modelling

In order to determine the best fusion model among our four fusion techniques namely F1 as

concatenation of the vectors F2 as average of the vectors, F3 as Dimensionality reduction

using PCA on concatenation of the vectors and F4 as Dimensionality reduction using PCA on

average of the vectors, experimentation was performed for top 2.5K recommendation. As per

the results mentioned in table I. Model M4 performed the best for all fusion techniques F1, F2,

F3 and F4 and among these with fusion F4 and RR% 71.5% it performed the best.

It is to be noted that M5 performed better than M6 and M7. And for all models M4, M3, M2

and M1 Fusion technique of Dimensionality reduction using PCA on average of the vectors

referred as F4 performed the best. Hence to carry out any further experimentation we took M4

and F4 as reference and did further experimentations by varying weights

Table 9 Performance Analysis W.R.T Recal Rate, For Top 2.5K, W1= 0.5, W2 = 0.5

 F1 F2 F3 F4

M4
65.8 67.5 68.5 71.5

M5
63.0 64.0 66.0 64.5

M6
64.5 61.5 61.5 65.0

M7
64.7 60.0 66.5 67.1

Taking this as reference, further experimentation is carried out on models M4, M3, M2 and

M1 for Top 10-N: 10, 100, 500, 1000, 2000 and 2500K by varying the weights w1 and w2.

The comparisons are done on single modality models M3, M2, and M1, as well as the best

multimodal technique

M4 that was chosen as a consequence of an early analysis, as shown in Table1. When weights

were modified, Figure 2-9 shows the trend of models M4, M3, M2, and M1. It can be seen that

M4 performed the best. It's also clear that as the number of samples grows larger, the model's

performance improves.

Figure 9. RR Across all Models for 2.5k samples for w1=0.5, w2=0.5

60.1
63.1

59.0

71.5

64.5 65.0
67.1

M1 M2 M3 M4 M5 M6 M7

Fig 2-9 give a very detailed account of the trend that were acquired as a result of running all

the pipelines by varying the weights. Here M1 and M2 utilizes continuous Bag of words

(CBoW) as backbone and trained for 1000 iterations M3 performed better when it is trained

for 2000 epochs. These Figures also present a detailed comparison of the best multimodal

technique M4 with single modality models M3, M2 and M1. It is to be noted that M4 performed

the best.

It is to be noted that M2 performed the best among single modality models M3, M2 and M1

for all the weights except when w1 = 0.9 and w2=0.1 where M1 performed better than M2 with

recall rate percent 60%.

 Figure 10. RR% Comparison of M1,M2,M3 & M4 for w1=0.5, w2=0.5

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.5, w2= 0.5

M1 M2 M3 M4

• M4 Performed the best
• M2 is better

Figure 11. RR Comparison of M1,M2,M3 & M4 for w1=0.1, w2=0.9

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.1, w2= 0.9

M1 M2 M3 M4

• M4 Performed the best
• M2 is better

Figure 12. RR Comparison of M1,M2,M3 & M4 for w1=0.2, w2=0.8

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.2, w2= 0.8

M1 M2 M3 M4

Figure 13 RR Comparison of M1,M2,M3 & M4 for w1=0.3, w2=0.7

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.3, w2= 0.7

M1 M2 M3 M4

Figure 14 RR Comparison of M1,M2,M3 & M4 for w1=0.4, w2=0.6

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.4, w2= 0.6

M1 M2 M3 M4

Figure 15. RR Comparison of M1,M2,M3 & M4 for w1=0.6, w2=0.4

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.6, w2= 0.4

M1 M2 M3 M4

Figure 16. RR Comparison of M1,M2,M3 & M4 for w1=0.7, w2=0.3

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.7, w2= 0.3

M1 M2 M3 M4

Figure 17. RR Comparison of M1,M2,M3 & M4 for w1=0.8, w2=0.2

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.8, w2= 0.2

M1 M2 M3 M4

Figure 18. RR Comparison of M1,M2,M3 & M4 for w1=0.9, w2=0.1

Figure 15-16 corroborates the findings of M4 performance across all weights for different

sample size. Increase in performance has been seen with increase in sample size. When w1=0.3

and w2=0.7 with RR percent of 75%, the proposed two-tier strategy with M4 performed the

best at iteration.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.9, w2= 0.1

M1 M2 M3 M4

Figure 19. M4 Performance

40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0
48.0
49.0
50.0
51.0
52.0
53.0
54.0
55.0
56.0
57.0
58.0
59.0
60.0
61.0
62.0
63.0
64.0
65.0
66.0
67.0
68.0
69.0
70.0
71.0
72.0
73.0
74.0
75.0
76.0
77.0

W
1

=
0

.1
,W

2
 =

0
.9

W
1

=
0

.2
,W

2
 =

0
.8

W
1

=
0

.3
,W

2
 =

0
.7

W
1

=
0

.4
,W

2
 =

0
.6

W
1

=
0

.5
,W

2
 =

0
.5

W
1

=
0

.6
,W

2
 =

0
.4

W
1

=
0

.7
,W

2
 =

0
.3

W
1

=
0

.8
,W

2
 =

0
.2

W
1

=
0

.9
,W

2
 =

0
.1

R
R

%

WEIGHTS

M4 P ERFORMANCE FO R 500, 1K AND 2.5K
SAMP LES

500 1000 25000

Figure 20. M4 Trend for 2.5K Samples

A decline in the trend has been seen when weightage of w1 has been increased and w2 is

decreased which determines that for M4 whenever more weights are assigned to cosine

similarity the model M4 has performed better

71.0

73.0

75.0

73.0

71.5
72.0

70.0
69.5

66.5

W
1

=
0

.1
,W

2
 =

0
.9

W
1

=
0

.2
,W

2
 =

0
.8

W
1

=
0

.3
,W

2
 =

0
.7

W
1

=
0

.4
,W

2
 =

0
.6

W
1

=
0

.5
,W

2
 =

0
.5

W
1

=
0

.6
,W

2
 =

0
.4

W
1

=
0

.7
,W

2
 =

0
.3

W
1

=
0

.8
,W

2
 =

0
.2

W
1

=
0

.9
,W

2
 =

0
.1

R
R

%

CHAPTER 5: CONCLUSION

This research proposes a two-tier method based on topic based clustering done by LDA

approach, multimodal representation of text using W2V, FT, GloVe and a unified text

similarity measure utilizing Cosine and Euclidean similarities to solve this challenge. The

Eclipse dataset, which contains over 80,000 bug reports and includes both master and duplicate

reports, is used to validate the suggested method. This investigation focuses primarily on the

report descriptions in order to identify duplication. For Top-N proposals, the recommended

two-tier technique has achieved a 75% recall rate, which is higher than the traditional one-on-

one classification model.

CHAPTER 6: FUTURE WORK AND RECOMMENDATIONS

The LDA-based topic modelling and strategy for classification which is recommended

outperforms the traditional one-on-one similarity-based classification method across all

models. In the future, it will be used to investigate improved similarity assessments and

representation methodologies of documents

References

[1] R. S. Pressman, Software engineering: a practitioner’s approach. Palgrave Macmillan,
2005..

[2] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,” Found. Empir. Softw.
Eng. Leg. Victor R Basili, vol. 426, p. 37, 2005..

[3] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect reports
using natural language processing,” in Proceedings of the 29th international conference
on Software Engineering, 2007, pp. 499–510.

[4] N. Serrano and I. Ciordia, “Bugzilla, ITracker, and other bug trackers,” IEEE Softw., vol.
22, no. 2, pp. 11–13, 2005..

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repository,” in
Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange, 2005, pp.
35–39., vol. pp. 361–370.

[6] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in Proceedings of the
28th international conference on Software engineering, 2006, pp. 361–370., vol. pp. 35–

39.

[7] N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking systems,” in
Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE
International Conference on, 2008, pp. 52–61., Vols. 7-15.

[8] Y. C. Cavalcanti, P. A. da M. S. Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S. R.
de Lemos Meira, “The bug report duplication problem: an exploratory study,” Softw.

Qual. J., vol. 21, no. 1, pp. 39–66, 2013.

[9] Y. C. Cavalcanti, E. S. de Almeida, C. E. A. da Cunha, D. Lucredio, and S. R. de Lemos
Meira, “An initial study on the bug report duplication problem,” in Software Maintenance
and Reengineering (CSMR), 2010 14th European Conference on, 2010, pp. 264–267.

[10] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate bug reports
considered harmful… really?,” in Software maintenance, 2008. ICSM 2008. IEEE
international conference on, 2008, pp. 337–345.

[11] C. R. Reis and R. P. de Mattos Fortes, “An overview of the software engineering process
and tools in the Mozilla project,” in Proceedings of the Open Source Software
Development Workshop, 2002, pp. 155–175.

[12] A. Sureka and P. Jalote, “Detecting duplicate bug report using character n-gram-based
features,” in Software Engineering Conference (APSEC), 2010 17th Asia Pacific, 2010,
pp. 366–374.

[13] F. Naumann and M. Herschel, “An introduction to duplicate detection,” Synth. Lect. Data
Manag., vol. 2, no. 1, pp. 1–87, 2010..

[14] G. Tassey, “The economic impacts of inadequate infrastructure for software testing,”
National Institute of Standards and Technology, RTI Project, vol. 7007, no. 011, pp. 429–
489, 2002.

[15] J. Sutherland, “Business objects in corporate information systems,” ACM Computing
Surveys (CSUR), vol. 27, no. 2, pp. 274–276, 1995.

[16] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug? a two-phase
recommendation model,” IEEE Transactions on Software Engineering, vol. 39, no. 11,
pp. 1597–1610, 2013.

[17] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss, “What
makes a good bug report?,” IEEE Transactions on Software Engineering, vol. 36, no. 5,
pp. 618–643, 2010.

[18] F. Elberzhager, J. Münch, and V. T. N. Nha, “A systematic mapping study on the
combination of static and dynamic quality assurance techniques,” Inf. Softw. Technol.,
vol. 54, no. 1, pp. 1–15, 2012.

[19] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and P. Abrahamsson,
“Software development in startup companies: A systematic mapping study,” Inf. Softw.
Technol., vol. 56, no. 10, pp. 1200–1218, 2014.

[20] M. Unterkalmsteiner, T. Gorschek, A. M. Islam, C. K. Cheng, R. B. Permadi, and R.
Feldt, “Evaluation and measurement of software process improvement—a systematic
literature review,” IEEE Trans. Softw. Eng., vol. 38, no. 2, pp. 398–424, 2012.

[21] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic
mapping studies in software engineering: An update,” Inf. Softw. Technol., vol. 64, pp.
1–18, 2015.

[22] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting duplicate
bug reports using natural language and execution information,” in Software Engineering,
2008. ICSE’08. ACM/IEEE 30th International Conference on, 2008, pp. 461–470..

[23] Y. Song, X. Wang, T. Xie, L. Zhang, and H. Mei, “JDF: detecting duplicate bug reports
in Jazz,” in Proceedings of the 32nd ACM/IEEE International Conf erence on Software
Engineering-Volume 2, 2010, pp. 315–316.

[24] H. Gu, L. Zhao, and C. Shu, “Analysis of duplicate issue reports for issue tracking
system,” in Data Mining and Intelligent Information Technology Applications (ICMiA),
2011 3rd International Conference on, 2011, pp. 86–91..

[25] T. Prifti, S. Banerjee, and B. Cukic, “Detecting bug duplicate reports through local
references,” in Proceedings of the 7th International Conference on Predictive Models in
Software Engineering, 2011, p. 8.

[26] N. Kaushik and L. Tahvildari, “A comparative study of the performance of IR models on
duplicate bug detection,” in Software Maintenance and Reengineering (CSMR), 2012
16th European Conference on, 2012, pp. 159–168..

[27] J. Zhou and H. Zhang, “Learning to rank duplicate bug reports,” in Proceedings of the
21st ACM international conference on Information and knowledge management, 2012,
pp. 852–861.

[28] S. Banerjee, Z. Syed, J. Helmick, and B. Cukic, “A fusion approach for classifying
duplicate problem reports,” in Software Reliability Engineering (ISSRE), 2013 IEEE
24th International Symposium on, 2013, pp. 208–217.

[29] N. Tomasev, G. Leban, and D. Mladenic, “Exploiting hubs for self -adaptive secondary
re-ranking in bug report duplicate detection,” in Information Technology Interfaces (ITI),
Proceedings of the ITI 2013 35th International Conference on, 2013, pp. 131–136..

[30] K. Liu, H. B. K. Tan, and H. Zhang, “Has this bug been reported?,” in Reverse
Engineering (WCRE), 2013 20th Working Conference on, 2013, pp. 82–91..

[31] J. Lerch and M. Mezini, “Finding duplicates of your yet unwritten bug report,” in
Software Maintenance and Reengineering (CSMR), 2013 17th European Conference on,

2013, pp. 69–78.

[32] I. Chawla and S. K. Singh, “Performance evaluation of vsm and lsi models to determine
bug reports similarity,” in Contemporary Computing (IC3), 2013 Sixth International
Conference on, 2013, pp. 375–380..

[33] M. Amoui, N. Kaushik, A. Al-Dabbagh, L. Tahvildari, S. Li, and W. Liu, “Search-based
duplicate defect detection: an industrial experience,” in Mining Software Repositories
(MSR), 2013 10th IEEE Working Conference on, 2013, pp. 173–182.

[34] M.-J. Lin, C.-Z. Yang, C.-Y. Lee, and C.-C. Chen, “Enhancements for duplication
detection in bug reports with manifold correlation features,” J. Syst. Softw., vol. 121, pp.
223–233, 2016..

[35] H. Rocha, G. De Oliveira, H. Marques-Neto, and M. T. Valente, “NextBug: a Bugzilla
extension for recommending similar bugs,” J. Softw. Eng. Res. Dev., vol. 3, no. 1, p. 3,
2015..

[36] F. Thung, P. S. Kochhar, and D. Lo, “DupFinder: integrated tool support for duplicate
bug report detection,” in Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, 2014, pp. 871–874.

[37] A. Tsuruda, Y. Manabe, and M. Aritsugi, “Can we detect bug report duplication with
unfinished bug reports?,” in Software Engineering Conference (APSEC), 2015 Asia -
Pacific, 2015, pp. 151–158..

[38] C. Jingliang, M. Zhe, and S. Jun, “A data-driven approach based on LDA for identifying
duplicate bug report,” in Intelligent Systems (IS), 2016 IEEE 8th International
Conference on, 2016, pp. 686–691.

[39] K. K. Sabor, A. Hamou-Lhadj, and A. Larsson, “DURFEX: A Feature Extraction
Technique for Efficient Detection of Duplicate Bug Reports,” in Software Quality,
Reliability and Security (QRS), 2017 IEEE International Conference on, 2017, pp. 240–
250..

[40] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining Word Embedding with
Information Retrieval to Recommend Similar Bug Reports,” in Software Reliability

Engineering (ISSRE), 2016 IEEE 27th International Symposium on, 2016, pp. 127–137.

[41] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate retrieval of duplicate
bug reports,” in Automated Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on, 2011, pp. 253–262.

[42] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug report
detection with a combination of information retrieval and topic modeling,” in

Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, 2.

[43] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identification,” in Software
Maintenance and Reengineering (CSMR), 2012 16th European Conference on, 2012, pp.
385–390..

[44] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach towards more accurate
duplicate bug report detection,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, 2013, pp. 183–192.

[45] C.-Z. Yang, H.-H. Du, S.-S. Wu, and X. Chen, “Duplication detection for software bug
reports based on bm25 term weighting,” in Technologies and Applications of Artificial
Intelligence (TAAI), 2012 Conference on, 2012, pp. 33–38..

[46] K. Aggarwal, F. Timbers, T. Rutgers, A. Hindle, E. Stroulia, and R. Greiner, “Detecting
duplicate bug reports with software engineering domain knowledge,” J. Softw. Evol.
Process, vol. 29, no. 3, 2017..

[47] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model approach for
accurate duplicate bug report retrieval,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, 2010, pp. 45–54..

[48] Q. Wu and Q. Wang, “Natural language processing based detection of duplicate defect
patterns,” in Computer Software and Applications Conference Workshops
(COMPSACW), 2010 IEEE 34th Annual, 2010, pp. 220–225..

[49] M.-J. Lin and C.-Z. Yang, “An Improved Discriminative Model for Duplication
Detection on Bug Reports with Cluster Weighting,” in Computer Software and
Applications Conference (COMPSAC), 2014 IEEE 38th Annual, 2014, pp. 117–122.

[50] P. N. Minh, “An Approach to Detecting Duplicate Bug Reports using N-gram Features
and Cluster Chrinkage Technique,” Int. J. Sci. Res. Publ., vol. 4, no. 5, 2014..

[51] A. Lazar, S. Ritchey, and B. Sharif, “Improving the accuracy of duplicate bug report
detection using textual similarity measures,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 308–311..

[52] J. Zou, L. Xu, M. Yang, X. Zhang, J. Zeng, and S. Hirokawa, “Automated Duplicate Bug
Report Detection Using Multi-Factor Analysis,” IEICE Trans. Inf. Syst., vol. 99, no. 7,

pp. 1762–1775, 2016.

[53] R. P. Gopalan and A. Krishna, “Duplicate bug report detection using clustering,” in
Software Engineering Conference (ASWEC), 2014 23rd Australian, 2014, pp. 104–109..

[54] N. Klein, C. S. Corley, and N. A. Kraft, “New features for duplicate bug detection,” in
Proceedings of the 11th Working Conference on Mining Software Repositories, 2014,
pp. 324–327..

[55] A. Hindle, A. Alipour, and E. Stroulia, “A contextual approach towards more accurate
duplicate bug report detection and ranking,” Empir. Softw. Eng., vol. 21, no. 2, pp. 368–
410, 2016.

[56] Thangarajah Akilan, Dhruvit Shah, Nishi Patel, Rinkal Mehta, "Fast Detection of
Duplicate Bug Reports using LDA-based Topic Modeling and Classification" in 2020
IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[57] N. Limsettho, H. Hata, A. Monden, and K. Matsumoto, “Automatic unsupervised bug
report categorization,” in Empirical Software Engineering in Practice (IWESEP), 2014
6th International Workshop on, 2014, pp. 7–12.

[58] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “ReBucket: a method for clustering
duplicate crash reports based on call stack similarity,” in Proceedings of the 34th
International Conference on Software Engineering, 2012, pp. 1084–1093..

[59] S. Banerjee, Z. Syed, J. Helmick, M. Culp, K. Ryan, and B. Cukic, “Automated triaging
of very large bug repositories,” Inf. Softw. Technol., vol. 89, pp. 1–13, 2017.

[60] T. Zhang and B. Lee, “A Novel Technique for Duplicate Detection and Classification of
Bug Reports,” IEICE Trans. Inf. Syst., vol. 97, no. 7, pp. 1756–1768, 2014.

[61] S. Banerjee, B. Cukic, and D. Adjeroh, “Automated duplicate bug report classification
using subsequence matching,” in High-Assurance Systems Engineering (HASE), 2012
IEEE 14th International Symposium on, 2012, pp. 74–81..

[62] H. Rocha, M. T. Valente, H. Marques-Neto, and G. C. Murphy, “An empirical study on
recommendations of similar bugs,” in Software Analysis, Evolution, and Reengineering
(SANER), 2016 IEEE 23rd International Conference on, 2016, vol. 1, pp. 46–56..

[63] L. Feng, L. Song, C. Sha, and X. Gong, “Practical duplicate bug reports detection in a
large web-based development community,” in Asia-Pacific Web Conference, 2013, pp.
709–720.

[64] B. Patel, H. Balvantrai Patel, M. Khanvilkar, N. Rajendrakumar Patel, and T. Akilan,
“ES2ISL: an advancement in speech to sign language translation using 3D avatar
animator,” in 2020 IEEE Canadian Conference on Electrical and Computer Engineering

(CCECE).

[65] T. Akilan, Q. J. Wu, A. Safaei, and W. Jiang, “A late fusion approach for harnessing
multi-cnn model high-level features,” in 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 566–571, IEEE, 2017.

[66] T. Akilan, Q. J. Wu, and H. Zhang, “Effect of fusing features from multiple dcnn
architectures in image classification,” IET Image Processing, vol. 12, no. 7, pp. 1102–

1110, 2018.

[67] Y. Yang, J. Q. Wu, X. Feng, and A. Thangarajah, “Recomputation of dense layers for the
performance improvement of dcnn,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

