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ABSTRACT 

A bug tracking system (BTS) keeps track of the status of a software system in real time. The 

bug report it generates is sent to the software developer or centre for maintenance whenever it 

identifies an abnormal scenario. The freshly reported defect, on the other hand, could be a 

repeat in the master report repository of an old issue with a remedy already present. This 

situation results in an onslaught of replicate reports of bugs, making the software development 

life cycle difficult to manage. As a result, in the software industry, it is now an essential task 

to find repeat reports of bugs early. This research proposes a two-tier method based on topic-

based clustering done by LDA approach, multimodal representation of text using W2V, FT, 

GloVe and a measure of unified text similarity utilizing similarities of the Cosine and Euclidean 

nature to solve this challenge. The Eclipse dataset, which contains over 80,000 bug reports and 

includes both master and duplicate reports, is used to validate the suggested method. This 

investigation focuses primarily on the report descriptions in order to identify duplication. For 

Top-N proposals, the recommended two-tier technique has achieved a 75% recall rate, which 

is higher than the traditional one-on-one classification model. 

Keywords: topic modelling, machine learning, natural language processing, bug tracking, 

multimodality   
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CHAPTER 1: INTRODUCTION 

1.1. Background 

The maintenance of software is an important part of the software development life cycle. 

Bug reports (also known as Issue or Defect reports) are essential for software maintenance. 

Bug reports can be used to guide developers in repairing software defects, estimating 

problem-fixing time, deciding which bug should be solved first, deciding who should patch a 

particular bug, and assisting in locating the issue position that needs to be fixed. It can also 

provide useful information on the software project's progress.  

Bugs are usually reported to a bug tracking system (also known as a bug tracking repository 

or issue tracking system) [1], which keeps track of them which is used to monitor software 

maintenance tasks. Bug tracking systems are designed to help developers, testers, and 

consumers not only define and report system issues, but also to store bugs and other 

pertinent information while tracking the status of each issue [1] [2]. As a result, a bug 

tracking system can improve the speed with which flaws are discovered, as well as the 

quality of software and its ability to satisfy client needs. 

 

1.1.1. Bug Report: 

A bug report contains various information which is relevant to a specific bug. Bug reports 

are a type of structured record that contains several forms of information concerning bugs, as 

shown in Table 1. 

   Table 1 Information Categories and Items in Bug Reports 

 

Category Attribute Explanation 

 
Numerical Information  

 

 
Bug ID  

 

 
The Bug unique 

identification number, 

which is automatically 

generated  
 

 
Created date (Open date, 

Open date)  
 

 
The date of submission  

 

 
Close data  

 

 
The date of closing the bug  

 

 
Dup_ID  

 

 
If the bug report is a 

duplicate, the Dup ID is the 



 

 

ID of the bug report's 

master bug report. 
 

Response  time 
 

 

 
How soon the development 

team replies to a user's 

submission is determined 

by the time between 

submission and first 

comment. 
 

 
Textual Information  

 

 
Header (title, summary)  

 

 
A concise and brief 

description of the bug  
 

 
Description  

 

 
A detailed outline of what 

went wrong  
 

 
Steps to reproduce  

 

 
A description of how to 

reproduce the failure  
 

 
Author  

 

 
The name of person write 

the bug report  
 

 
Assign  

 

 
The name of person is 

assigned to fix the bug  
 

 
Comments  

 

 
The discussion about the 

bug  
 

 
Categorical Information  

 

 
keywords  

 

 
A few words to summarize 

the bug  
 

 
Type  

 

 
The bug report's nature, 

such as defect, 

enhancement, or feature 
 

 
Version  

 

 
The version of the software 

was used  
 

 
Firmware  

(Operating system)  
 

 
The firmware where the 

bug resided  
 

 
Severity  

 

 
How serious of the failure  

 

 
Frequency  

 

 
The times of the failure 

happened  
 

 
Urgency  

 

 
How important of fixing 

the failure  
 

Category (component)  
 

 
The component where the 

bug resided  
 



 

 

 
Platform  

 

 
The several types of 
systems that potentially be 
harmed by the bug 

 

 
Correlating classes, 

methods, fields  
 

 
pattern or subject of a bug  

 

 
Priority  

 

 
The priority of the bug 

report based on its severity. 
 

 
Status  

 

 
To check if the bug report 

is new, or assigned, or 

fixed, or closed  
 

 
Resolution  

 

 
To indicate whether a bug 

or error is resolved.  

 
 

 
Product  

(Hardware information)  
 

 
The product where the bug 

resided  
 

 
Execution (Crash) 

information  
 

 
Call stack trace (Exception 

stack frames)  
 

 
Stack frames which are 

recorded during the 

execution of a program, 

representing function calls 

or procedures  
 

 
Appendices  

(Patches or Screenshots)  
 

 
Attachments such as 

screenshots of failure  
 

 

1.1.2  Duplicate Bug Report 

There are two sorts of duplicates, as indicated in Figure 1 and Figure 2, according to Runeson 

et al. [3]. The first category of duplicate bug reports uses similar languages to describe the same 

failure. The second type of duplicate bug reports which describe two different failures generally 

use different vocabularies. But those failures are caused by the same underlying bug.  

 

 



 

 

 

Figure 1 First Type of Big Report 

 

 

Figure 2 Second Type of Bug Report 

 

A master (original) bug report is the first bug report submitted for a specific bug in a system, while 

duplicate bug reportsaries are the successive bug reports for the same bug. 

1.1.2. Bug Tracking Systems 

Bug reports are typically maintained in a database, which is referred to as a bug tracking system 

(bug repository). Bug tracking systems, like any other information system, are used to store and 

retrieve bug report data [4]. Its primary use is to track a specific bug. Some are commercial, such 

as Atlassian JIRA and FogBugz, while others, such as Bugzilla and ITracker, are open source 

initiatives. During the development and management of software projects, it is a centralised 

database that serves as a communication and coordination hub. 



 

 

1.2. Motivation 

Many bug reports submitted are duplicates (duplicate issue reports are created when many users 

submit bug reports for the same problem), resulting in a huge number of duplicate bug reports in a 

bug tracking system [5]. According to studies, the rate of duplicate bug reports might range from 

25 to 30%. [5] [6] [7]. Duplicate bug reports lead to a situation that same issues are assigned to 

multiple developers who reproduce and fix the issue for the similar cause, which is a waste of effort 

and cost. 

The important motivations for detecting duplicate bug reports are described below according to 

[3] [8] [9] [10]:  

➢ When duplicate bug reports are assigned to multiple developers, it wastes the developers' 

time and effort.  

➢ Addressing duplicate bug reports as a separate bug after a bug report has been addressed 

is a waste of effort.  

➢ Finding duplicate bug reports can also help with problem fixing because some duplicate 

bug reports may provide additional information.  

To identify duplicate bug reports, an analyst known as a triager now reads and reviews each 

existing bug report manually to identify duplicate bugs and determine whether a new incoming 

bug report reflects a new bug or an already reported bug [5]. He (She) uses either his (her) 

memories and experience or the bug repository's search capabilities [5]. The process is difficult 

and time-consuming, especially when considering the normal number of bug reports written 

everyday [11]. As a result, technologies for automating the detection of duplicate bug reports are 

required. New bug reports are directly compared with existing bug reports to find comparable bug 

reports, lowering bug report processing time by eliminating the need for a human to spend time 

reading, understanding, and searching. It has the potential to improve software maintenance 

efficiency. 

Although there has lately been a lot of research on automatically detecting duplicate bug 

reports, for example, several variants of information-retrieval algorithms have been examined, 

there is still a lot of potential for improvement in the duplicate detection process. Furthermore, 

only a few tools were tested in an industrial setting. 

1.3. Aim and Objective 

Our study’s goal is to find duplicate bug complaints. Because of the following reasons, 

automated duplicate bug report detection is a difficult challenge [12], [13]  



 

 

➢ Bug reports are written in a natural language manner. In the event that several aberrant 

behaviours are caused by the same software bug, these reports may use different 

terminology to describe the same bug. In natural language comprehension, there is a 

linguistic ambiguity and variability problem, which makes it difficult to distinguish 

reports that are comparable.  

➢ The bug tracking system has a high amount of bug reports. The number of bug reports in 

the TROUBLE of the case corporation – Axis is over 100,000, which is a significant 

number when compared to the amount of work involved.  

➢ The quality of a part of bug reports is not sufficient, for example, the bug report contains 

weak, inadequate, missing, or even incorrect information.  

We want to build a system that automatically recognizes duplicate bug reports. 

 

1.4. Approach. 

We proposed a double tier model. The model will look for the Top-N similar master reports 

whenever a brand-new report is submitted. It consists of two steps that are clustering and 

classification In clustering, preprocessing of the date set is done and is fed into LDA-based topic 

modelling. Classification comprehends numerous steps that includes single and multi-modal 

text representation using Word2vec (W2V), top-N clusters selection, GloVe, Fasttext (FT), and 

measure of similarity of text which is attained by fusing similarity measures of the Cosine and 

Euclidean nature via assigning different weights. 

  



 

 

CHAPTER 2: SYSTEMATIC LITERATURE REVIEW 

This-chapter contains the systematic literature review performed for our research. Section 2.1 

consists introduction to the SLR. Research methodology of literature review is explained in 

Section 2.2. The results and analysis are interpreted in Section 2. 3. Answers to the-research-

questions are explained in the Section 2.4. Conclusion of SLR is discussed in Section 2.5 

2.1.  Introduction 

There are always challenges that arise throughout the development, maintenance, and use of a 

software application, placing the system's overall functionality in peril due to intrinsic defects. The 

software industry spends billions of dollars on product maintenance [14], [15]. A Bug Tracking 

System (BTS), like Bugzilla1, recognises a technical disagreement in a software environment as a 

bug and creates a bug report. Every problem report is assigned to software developers for further 

assistance as needed, based on its severity. The biggest difficulty with the procedure is the chance 

of multiple bug reports being filed with similar types of issues, resulting in a high likelihood of 

having the same or similar solution repeatedly. As a result, duplicate bug reports [16], [17] become 

a problem. These bug reports are published in plain text, which might be difficult to decipher,  

making it harder to spot duplicates because different terms can be used to describe the same issue.  

As a result of this stumbling block, the developer is forced to look for the same solutions for diverse 

defect reports, resulting in software companies spending more than 45 percent of their budget on 

bug patches [14]. If the repository already has a master report of incoming bug reports and the 

report is still given to the developer, a significant amount of resources will be wasted on an issue 

that has already been fixed or is now being resolved. As a result, it's critical to spot duplicate bug 

reports. 

As a result, there is a compelling need to conduct a thorough evaluation of current literatures on 

bug duplication. The goal is to lay a solid foundation for a comprehensive comparison of present 

and future automated duplicate bug report identification systems. This contribution is especially 

valuable for academics who want to contribute to this study area by developing new ways to 

automated duplicate bug report detection or improving or refining existing ones. 

The research questions that we will answer to identify and categorize existing automated duplicate 

bug reports detection methods are as follows: 

RQ1 What are the existing methods to detect duplicated bug reports automatically? 

RQ2 What are different categories of all automated duplicate bug reports detection 

methods? 



 

 

RQ03 How are the methods evaluated? 

2.2. Review Methodologies 

Kitchenham [14] outlined a well-defined methodology for conducting a systematic literature 

review (SLR). SLR is most commonly performed using this pattern by researchers. Throughout 

order to gain more exact and accurate responses to our queries, we followed this strategy  in our 

research. 

2.2.1. Searching Process 

A. Query Search 

Kitchenham [14] [18] advised that terms and structured search strings from RQ1 be classified 

according to Population, Intervention, Comparison, and Outcomes. 

To create the search string, the detected keywords were sorted into groups and their synonyms 

were considered.. 

Table 2 Query Search 

 

Concept Searched String 

 
Bug 

 

 
(bug*; defect*; failure; error*; problem*; issue*; crash*) 

 

 
Detection 

 

 
detect*, rank*, retriev*, link*, connect* 

 

  Duplicate (duplicat*; same; similar*) 

  Report (report*; document*; text*) 

B. Database Search 

Those search strings are used to conduct a manual search to identify as much relevant primary 

studies as possible on four digital databases: IEEE Xplore, ACM Digital Library and Scopus. 

 

 

 

 



 

 

Table 3. Database Search 

 

 
Database  

 

 
Website  

 

 
Search Result  

 

 
Setting  

 

 
IEEE Xplore  

 

 
http://ieeexplore.ieee.org  

 

 
2092  

 

 
Metadata Only  

 

 
ACM Digital 

Library  
 

 
http://dl.acm.org  

 

 
386  

 

 
Default  

 

 
Scopus  

 

 
https://www.elsevier.com/  

 

 
3940  

 

 
Default  

 

 

We used the below search Query: 

 

(bug* OR defect* OR failure* OR error* OR problem* OR issue* OR crash* ) AND (detect* 

OR rank* OR retriev* OR link* OR connect*) AND ((duplicat* OR similar* OR same) AND 

(report * OR document * OR text) 

 

2.2.2. Selection and Rejection Criteria 

During the primary studies screening procedure, the following selection and rejection criteria 

were utilised to determine whether an article's content was relevant based on titles, abstracts, 

keywords, full-text reading, and quality assessment to omit studies that did not answer the RQ1. 

 

The following are the selection criteria:  

➢ Automated duplicate bug report detection research must have been addressed in studies.   

➢ Peer-reviewed studies must be published in journals, conferences, and workshops 

➢ Studies in the subject of software engineering are required. 

 
The following exclusion criteria were used to reject a study:  

➢ Any article that is not peer-reviewed (grey literature, books, presentations, blog posts, etc.  

➢ Any article that is not available in full-text,  

➢ Any conference proceedings (e.g., messages from chair of editorial boards, etc.  



 

 

➢ Any article that is a duplicate of other studies are all excluded.

 

Figure 3 Selection and Rejection Criteria 

 

2.2.3. Categories Definition 

For the organization of selected researches, we have defined five categories. This will improve 

the efficiency of answers-of the-research-questions. The explanation for each category is given 

below. 

2.2.3.1. Attribute selection 

The attribute selection task entails picking a subset of the originally available attributes to be used 

in the model generation process. General-purpose attribute selection algorithms can be used to 

choose attributes for a variety of target algorithms, as well as – in certain cases – distinct target 

tasks..  

2.2.3.2.  Feature Weighting 

Characteristic weighting is a crucial step in text categorization that determines the importance of 

each document's feature. 



 

 

2.2.3.3.  Classification model 

A classification model attempts to draw a conclusion from the training data. It will forecast the 

class labels/categories of the new data. 

2.2.4. Data Extraction and Synthesis 

To record all the relevant information that will allow us to answer the proposed RQ1, we 

extracted data based on the following data extraction form as shown in Table 4-8, which was 

adapted from other similar studies [18] [19]. There is a data item and a value in each data 

extraction field. The resulting database collects general studies information and specific data 

information addressing the RQ1, RQ2, RQ3 and RQ4.  

Table 4 Data Extraction and Synthesis Form 

 

 
Category  

 

Data Field  
Value  

 

 
General Information  

 

 
Article Title  

 

 
Name of the articles  

 

  
Author Name  

 

 
Set of Names of the authors  

 

  
Year of Publication  

 

 
Calendar year  

 

  
Type of Contribution  

 

 
Model, theory, framework, or approach, 

instructions, lessons gained, counsel or 

implications, and tools are examples of 

study outcomes. These numbers were 

taken from [19].)  
 

  
Type of Research  

 

 
Research types (evaluation research, 

solution proposal, validation research, 

philosophical papers, opinion papers, 

experience papers, etc. These values were 

adapted from [19]. )  

  

  
Research Method  

 

 
Research methods employed as part of the 

research process (case study, industry 

report, experiment, survey, action 

research, mixed methods, grounded 

theory, design science, opinion paper, and 

not stated. These values were adapted 

from  [20].)  
 

 
Specific Information  

 

 
Keywords  

 

 
Concept labels or keywords found in the 

abstracts and conclusion 
 



 

 

  
Method  

 

 
Activities that are proposed to 

automatically detect duplicated bug reports  
 

  
Evaluation  

 

 
Activities that are proposed to evaluate a 

method  
 

  
Dataset  

 

 
Databases that are mentioned in the 

primary studies comprise defect reports  
 

  
Metric  

 

 
Metrics are proposed to measure a method  

 

  
Performance  

 

 
Outcomes of evaluation that measure the 

performance of a method  
 

 

 
We applied a qualitative synthesis method and performed a statistical analysis of the data 

extracted from the primary studies separately based on the classification scheme with the main 

goal of understanding, structuring, and classifying current research on the automated duplicate 

bug reports detection. 

2.3  Results and Analysis 

The application of the SMS protocol yielded the results which are presented in this section. 

Before presenting results, As illustrated in Figure, we consider the various publication venues. 

In systematic mapping research, examining specific publication outlets is typical.  [21]. 

2.3.1. Categorization w.r.t Feature Weighting. 

Table 5. Categorization w.r.t Feature Weighting 

Model Scheme Reference Number 

Vector Space 

Model 

TF-IDF [4], [5], [6], [7], [8], 
[9], [10], [11], [12], 
[13], [14], [15], [16], 
[17], [18], [19], [20], 

[21], [22] 

19 

BM25-based (BM25, 
BM25F, BM25Fext) 

[23], [24], [25], [15], 
[26], [27], [12], [16], 
[28] 

9 

IDF (weight = 
log2(frequency)) 

[29], [30], [9], [12] 4 



 

 

TF-IDF-CFC weighting [31], [16] 2 

Term frequency (TF), 
Total term frequency 

(TTF) 

[12] 1 

Log-based (weight = 1 + 
log(frequency)) 

[32] 1 

Log-IDF, Log-Entropy, 
TF-Entropy 

[8] 1 

Jelinek Mercer language 
model 

[15] 1 

Dirichlet language 
model 

[15] 1 

Temporal k-occurrence 
model 

[11] 1 

Wiki-similarity [12] 1 

Character-Level N-Gram  

Model 

Character n-gram 
feature extractor 

similarity computation 
module 

[33], [34], [35], [19], 
[36], [21] 

6 

Top-N similar bug 
reports retrieval module 

[33] 1 

An adaptation of the 
INCLUS algorithm 

[37] 1 

Correlation coefficient 

BM25 ranking function 

[16] 1 

Topic Model LDA [24], [8], [26], [38], 
[36], [39], [28], [40] 

8 

 LSI [8], [14], [12] 3 

 Labelled LDA [26], [28] 2 

 Hierarchical Dirichlet 
Process 

[41] 1 

Word Embedding Model Word2vec [16], [22], [40] 3 

 FastText [40] 1 



 

 

 GloVe [40] 1 

 

2.3.2. Categorization w.r.t Classification model 

Table 6. Categorization w.r.t Classification model 

Classification model Method Reference Occurrences 

Discriminative model 

(Binary Classification,  

Cluster Modeling) 

Support Vector 
Machine 

[29], [25], [31], [35], 
[20], [16], [28] 

7 

Naıve Bayes [35], [38], [20], [28] 4 

Logistic Regression [26], [38], [41], [28] 4 

K-NN [26], [35], [38], [40] 4 

ZeroR [26], [38], [28] 3 

LinearSVM [35], [19] 2 

Gradient 
descent(Stochastic 

gradient descent 
algorithm) 

[29], [9] 2 

Agglomerative 
Hierarchical Clustering 

[30], [42] 2 

Random Forest [35], [43] 2 

Ranking SVM [12] 1 

REPTree with 
Bootstrap Aggregating 
technique 

[38] 1 

Ensemble Averaging 
Linear combination 

[36] 1 

A clustering method [6] 1 

A graph cluster 
algorithm 

[3] 1 

Linear Regression [3] 1 

The k-means clustering 
algorithm 

[42] 1 



 

 

Expectation 
Maximization,X-means 

algorithm 

[41] 1 

Clustering Labeling [41] 1 

Multi-label classification MULAN (a multi-label 
classification scheme) 

[42] 1 

 

2.3.3. Identification of Retrieval 

Table 7. Identification of Retrieval 

Retrieval Concern Method Reference Occurrence 

Similarity 

Measurement 

Cosine Similarity [32], [4], [3], [29], [33], 
[5], [30], [6], [8], [7], 

[27], [26], [11], [12], 
[18], [34], [37], [19], 
[46], [17], [36], [16], 
[22], [10], [28], [21], 

[40] 

27 

Dice Similarity [32] 1 

Jaccard Similarity [32] 1 

Secondary 
similarity measure 

[11] 1 

Position 
Dependent Model 
(PDM) 

[42] 1 

KL-divergence [44] 1 

Character-Level N-
Gram Model 

Similarity 
computation 
module 

[33] 1 

Time window  

(Time frames) 

 [32], [7], [43], [13], [10], 
[15], [43] 

7 

Group Centroids  [7], [43] 2 

Score Cutoff Thresholds   [15], [37] 2 



 

 

Fidelity loss function  [5] 1 

Feature Reweighting Cluster Shrinkage [34] 1 

 

2.3.4. Evaluation Metrics 

Table 8. Evaluation Metrics 

Metrics Reference Occurrence 

Recall-rate@k [3],  [4], [32], [29], [33], [30], [6], [7], [45], [8], [27], 
[43], [34], [31], [16], [23], [24], [9], [13], [21], [22], 
[36], [40] 

23 

Precision [3], [25], [15], [44], [37], [35], [19], [46], [17], [36], 
[39], [47] 

12 

MAP [23], [24], [12], [22], [47], [39] 6 

AUC [39], [26], [38], [35] 4 

Kappa [39], [28], [26], [38] 4 

MRR [22], [9], [13], [21] 4 

Feedback [46], [17] 2 

Likelihood [17], [46] 2 

 

2.4. Answers of Research Questions 

RQ1 What are the existing methods to detect duplicated bug reports automatically? 

Answer:  

Attribute selection, Feature calculation, similarity calculation are the existing methods  

RQ2 What are different categories of all automated duplicate bug reports detection 

methods? 

Answer: 

Because title and summary are the most fundamental attributes of bug reports in software 

projects, the results demonstrate that they are the most often used qualities in attribute selection. 

Although extra data, like as execution information, aids in the detection of duplicate bug 



 

 

reports, obtaining it is costly due to the complexity of generating or receiving execution 

information.  

For the feature weighting model and similarity calculation, the results indicate that TF-IDF and 

Cosine Similarity are dominant techniques used in automated duplicate bug reports detection 

methods. The feature weighing model can be divided into two ways, one is machine learning 

method, another is non-machine learning method. 

When considering about applying machine learning methods, when the feature size becomes 

larger, the efficiency of classification become lower.  

These techniques can be further classified into two groups for machine learning methods: 

unsupervised learning approach and supervised learning approach. There is no need for any 

training data in the unsupervised learning strategy. As a result, it can be applied to any batch 

of problem reports. 

In primary investigations, the problem of duplicate detection has been addressed in a variety 

of methods. We divided them into three major groups: All three issues must be solved: the TOP 

N recommendation and ranking problem, the binary classification problem, and the decision-

making approach. 

RQ03 How are the methods evaluated? 

Answer:  

We identified all performance metrics which are used to evaluate various automated duplicate 

bug reports detection methods. There are precision, recall, F1 (F-measure, F-score), accuracy, 

AUC, kappa, recall-rate@k, MRR, MAP, Normalized Discounted Cumulative Gain, Cluster 

purity classification accuracy, Feedback, Likelihood, and EARate. Among them, the recall-

rate@k is the most frequently used performance metric. 

  



 

 

CHAPTER 3: PROPOSED METHODOLOGY AND 

IMPLEMENTATION 

 3.1. Data Set 

3.1.1 Source 

The Eclipse dataset is used in the ablation study. It contains 85,156 bug reports from October 10, 

2001, to December 30, 2013. After completing all of the pre-processing methods outlined in 

Section 3.2, the dataset contains 85,027 bug reports, 70,629 of which are master reports and 

14,398 of which are duplicate bug reports. In this example, all 70,629 master reports and 1000 

duplicate reports are used at random. A bug report is a structured document with eleven fields, as 

shown below, although this research just uses the description field.  

3.1.2.  Attributes 

3.1.2.1 Issue Id: 

The bug tracking system assigns a unique number to each problem report. 

3.1.2.2  Priority:  

It's the significance and urgency with which a problem must be resolved.  

3.1.2.3 Component:  

It demonstrates where an issue arises in the system.. 

3.1.2.4 Duplicated issue: 

It presents a duplicate report of the original report. 

3.1.2.5 Title:  

In a single line, state the problem. 

3.1.2.6 Description:  

This clarifies the issue much further. 

3.1.2.7 Status:  

It displays the bug's status as Open, Fixed, Closed, or Deferred. 



 

 

3.1.2.8 Resolution:  

It displays the bug report's current status, such as whether it's Fixed, Won't Fix, Invalid, or 

Duplicate. 

3.1.2.9 Version:  

It displays the programme version in which the bug was discovered. 

3.1.2.10 Created time:  

It shows when the bug report was created as well as the date and time. 

3.1.2.11  Resolved time:  

The date when the bug was repaired is displayed. 

3.2 Pre-Processing 

As previously stated, the bug reports are written in plain natural language. As a result, cleaning 

the data and converting it to a common format for future analysis necessitates a significant 

amount of pre-processing. Stop word removal, lemmatization, text cleaning, construction of a 

continuous Bag of Words, and tokenization are only a few of the procedures involved (CBoW). 

 

Figure 4 Data Pre Processing Flow 

3.2.1 Text Cleaning: 

Unnecessary sections of the bugs are deleted during text cleaning. In this phase, all invalid 

bug reports are completely erased. Invalid bug reports are ones with an empty description 

field or a set of fixed description patterns. Statement "Has been tagged as read-only" is an 

example. This indicates that the bug report is readonly. As a result, such bug reports go 

unaddressed, but their inclusion in the model may have an impact on the similarity measures. 

As a result, before modelling an efficient duplicate bug report detection system, all such 

reports must be eliminated. 

3.2.2 Stop Word Removal: 

Stop words include keywords like "the," "in," "a," and "that," among others, because they have 

little meaning or value and have a tendency to negatively impact the duplicate bug identification 



 

 

process. As a result, the elimination of these stopwords is unavoidable. A change to lower case 

occurs after all of the stop words have been removed from the text. 

3.2.3 Tokenization: 

Tokenization is the breakdown of text into a small number of significant parts called "tokens" 

[64].The process of transforming a stream of words into a stream of tokens is known as 

tokenization. This is accomplished by deleting all extraneous information such as punctuation, 

capitalization, and numerals. We eliminated all the periods and other punctuation characters from 

the bug report's text. All uppercase letters are converted to lower case letters. Tokenization is 

applied to all bug reports, and the list of tokens for each report is used as an input in the phases 

that follow. 

3.2.4 Lemmatization: 

The technique of reducing a word to its root form while keeping its context is known as 

lemmatization; for example, "fix" becomes "fix," and "requires" becomes " require."  

3.2.5 Stemming 

Words can be written in a variety of grammatical forms, but the information pertaining to that 

word remains the same. As a result, stemming a word reveals its root form. All affixes are 

removed from tokens during stemming, leaving us with a list of stemmed tokens for all bug 

reports.  

3.5.6. Bag of Words generation: 

BoW is a textual data feature extraction technique. It's a text representation that shows the 

location of a word in a document. The power to multiply a text is portrayed as a jumble of 

words with no regard for grammar or even word order. This approach consists of two steps: 

determining vocabulary and vectoring words based on their existence in a document. 

 

Figure 5 Actual Data After Processing. 

  



 

 

3.3 Proposed Methodology 

3.3.1 LDA Topic Modelling 

A statistical model that is unsupervised and allows unknown groups to examine a set of 

observations and explain why some areas of the data are similar is known as LDA. 

Representation of each document is done as a latent topics distribution, each of which is defined 

by a set of words. A document-topic matrix is built by using LDA on BOW. A distribution of 

probability of the topic is then provided by LDA within each document for every document. 

LDA starts with a key presumption, in which a document is analyzed to select a group of topics. 

Then, for each topic, it assigns a collection of words. It encompasses the six items listed below.  

 

Figure 6 LDA Topic Modelling 

3.3.1.1 Initialization:  

Using t as a predetermined number of subjects. 

3.3.1.2 Random topic assignment:  

Each topic t in topics has been allocated a v in the document di at random. This ensures 

distributions of subject and word for all papers and themes. 

3.3.1.3 Reassignment:  

Increasing the randomness of the assignments by determining the meaning of each word v in 

the document di: 

 



 

 

➢ Currently assigned total number of words in document di to topic t.  

➢ Over all the documents that arise from the term v, the total number of assignments to 

topic t.  

Finally, a new topic is given to the letter v. 

3.3.1.4   Model updation: 

The assumption made by LDA here is that the current word’s allocation is incorrect but all 

other allocations are correct. Thus upgrades the allocation of that word. 

3.3.1.5   Iteration:  

4 The same process is repeated for all the assignments so that they are all correct. The 

assignments here are then later used to perform probability distribution of the k 

topics in documents di along with the words that were assigned to each subject.  

5 The assumption here is that t topics are generated by LDA from a document di. 

Suppose the previous distribution is a k x z matrix, with δ as a variable of distribution 

of the word (δ is aggregation of words) inside the topic, δ ij = P (xj | yi ) is that the 

probability of the word xj  within the ith  topic. This results in generation of a document 

topic matrix containing N topics, which is shown in Eq (1). 

𝑝(𝛼, 𝑦, 𝑥) = 𝑝(𝛼 | 𝜃 )  ∏ 𝑝(𝑦𝑛 | 𝛼)(𝑥𝑛|𝑦𝑛, 𝛿),

𝑁

𝑛=1

       (1) 

This represents x as the N-word vector, y as the N-dimensional subject vector, showing the 

document's topic distribution vector 

𝑝(𝑦 | 𝜃, 𝛿)  =  ∫ 𝑝(𝛼 | 𝜃 )  ∏ 𝑝(𝑦𝑛 | 𝛼)(𝑥𝑛|𝑦𝑛,𝛿) 𝑑𝛼,𝑁
𝑛=1       (2) 

 
With c being the corpus, having m documents p( c | θ , δ) is estimated, as 

 

   

𝑝(𝑐|𝜃, 𝛿)  =  ∑ 𝑝(𝑥𝑐| 𝜃, 𝛿).             (3)

𝑐 = 1...𝑚

 

 
Thus,  
 

                

𝑝(𝐷|𝜃, 𝑍)  =  ∏ ∫ 𝑝(𝛼𝑑|𝜃)(∏ ∑ 𝑝(𝛽𝑑𝑛|𝛼𝑑) 𝑝(𝛾𝑑𝑛 |𝛽𝑑𝑛, 𝑍))𝑑𝛼𝑑.         (4)

𝑑𝑛

𝑁𝑑

𝑛=1

𝑀

𝑑=1

 



 

 

Now, maximization of parameters is performed by the LDA model on θ and δ in p( c | θ , δ)  by 

using the expression 

𝑝(𝛼, 𝑦|𝑥, 𝜃, 𝛿)  =  
𝑝(𝛼, 𝑦, 𝑥 | 𝜃, 𝛿)

𝑝(𝑦|𝜃, 𝛿)
        (5) 

We are able to obtain p( c | θ , δ) θ and δ after a topic model is built. The trained topic model 

is used to infer the topic of the unlabeled text and estimated and possibly forecast the related 

topic distribution. One thing to note is that this is also the document's conditional probability 

distribution in the topic space. 

5. Selection of Optimum Number of Topics in LDA: 

We get the coherence score, which is a resultant of the mix of the internal measure UMass and 

the extrinsic measure UCI. It is used towards choosing the optimal number of topics, shown by 

below Eq. (6). 

coherence =  ∑ Score (wi, wj)        (6)

i < j

 

A Pointwise Mutual Information (PMI) is used in the UCI measure, as defined in Eq (7).  

𝑠𝑐𝑜𝑟𝑒𝑈𝐶𝐼(𝑤𝑖 ,𝑤𝑗)  =  𝑙𝑜𝑔
𝑃(𝑤𝑖 , 𝑤𝑗)

𝑃(𝑤𝑖)𝑃(𝑤𝑗)
       (7) 

The probability of seeing ωi and ωj co-occurring in a totally random document can be 

represented as P(ωi, ωj ). P(ω) being the representation of the probability of seeing ωi in a 

random document. Whereas the empirical conditional log-probability model is represented by 

the UMass, as shown in Eq (8). 

𝑙𝑜𝑔(𝑤𝑖 , 𝑤𝑗) =  𝑙𝑜𝑔
𝑃(𝑤𝑖 , 𝑤𝑗)

𝑃(𝑤𝑗)
           (8) 

Counting the documents results in UMass, such as 

𝑠𝑐𝑜𝑟𝑒𝑈 𝑀𝐴𝑆𝑆(𝑤𝑖 ,𝑤𝑗)  =  𝑙𝑜𝑔
𝐷(𝑤𝑖,𝑤𝑗) + 1

𝐷(𝑤𝑖)
         (9) 

where D( ωi, ωj ) is the count of documents containing both words the words . The total number 

of documents in the corpus, whereas D(ωi) is the count of documents containing the word.  

Once the topic model is created, the model, under discussion, builds clusters around the 

subjects. 

6. Selection of Optimum Number of Topics in LDA: 



 

 

The data set is compilation of master bug reports and duplicates. Our work results in isolation 

of the master bug reports from the duplicate bug reports initially so that the model can be tested 

on duplicate reports. The LDA model is trained using the The Bag of Words corpus obtained 

from the master reports. Each master report topic is computed along with the probability  

distributions of each document’s theme. Once the topic distribution is examined in the master 

report, it is assigned to the cluster of highest topic distribution. This process is of cluster  

formation is show in an example. 

Assume the LDA produces five topics. 

➢ An analysis is performed on the Master Reporti (MRi) based on the above covered 

topics.   

➢ MRi is assigned to the 3rd cluster, since topic 3 has the largest probability among all 

the topics. 

Each master report goes through this process until all of them are assigned to their proper 

clusters. 

 

Figure 7 LDA Based Topic Modelling Flow 

3.3.2 Classification 

This stage contains Top-n cluster selection, W2V, FT, and GloVe text representation, and a 

measure of text similarity that combines similarity metrics of the Cosine and Euclidean nature. 



 

 

3.3.2.1 Formation of Feature Vectors: 

Various text to numeric representation algorithms are used to create feature vectors in a 

multimodality and single modality fashion. 

3.3.2.2 Single-Modality Feature Vector: 

Word2Vec (M1), FastText (M2), and GloVe are the three feature extractors used (M3) 

3.3.2.3 Multi-Modality Feature Vector: 

It is commonly known that multimodal approaches provide a wealth of information extraction 

and learning opportunities [65] [66] [67]. As a result, the suggested method takes use of multi-

modality feature extraction by combining various feature vectors to improve performance. As 

a result, four multi-modal feature representations are proposed: M4 (FastText and GloVe), M5 

(GloVe and Word2Vec), M6 (FastText and Word2Vec), and  M7 (FastText, GloVe, and 

Word2Vec ). 

The fusing of numerous feature vectors is expressed in Equation (10). 

𝑣̅ =  𝑓𝑛(𝑣1
𝑅єD , 𝑣2

𝑅єD),      (10) 

where ν1 and ν2 are the vectors produced by single-modality feature extractors, n є 1,…4, and D 

is the dimension  of the vectors. The operations used to combine the feature vectors can be 

summarised as follows: 

𝑓1(𝑣1, 𝑣2)  =  𝑣1 ⨁ 𝑣2   (11) 

where Ꚛ is a concatenation operation 

𝑓2(𝑣1, 𝑣2)  =  𝑎𝑣𝑔(𝑣1 , 𝑣2)       (12) 

The point-wise average of the two feature vectors is obtained using this method. PCA can 

also be used to reduce dimensionality, improve information interpretability, and reduce data 

loss. It achieves this by progressively increasing the variance by introducing new unrelated 

variables. As a result, the concatenated outcome from Eq(11) is subjected to PCA,like in Eq. 

(13). 

𝑓3(𝑣1, 𝑣2)  =  𝑃𝐶𝐴 ((𝑓1(𝑣1 , 𝑣2)))             (13) 

Similarly, PCA is used to reduce the feature vector provided by Eq. (12), as shown below. 

𝑓4 (𝑣1, 𝑣2)   =  𝑃𝐶𝐴 (𝑓2(𝑣1, 𝑣2))        (14)  

3.3.3 Top-N Recommendations: 

This step's main purpose is to calculate an adequate measure of similarity between the 



 

 

submitted bug report and the master report repository. The duplicate report's corelated master 

report is fetched from the clusters when the Top-N clusters are selected. Every master report 

in the Top-n clusters is compared to the duplicate report. As a result, the similarities of the 

Cosine and Euclidean nature of both feature vectors are estimated using the equation below to 

create feature vectors for each master report and duplicate report from the Top-N clusters. 

. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑤1 × 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑤2 × 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

3.3.4.1 Cosine Similarity:  

As demonstrated in below Eq, cosine similarity indicates how similar two vectors in an inner 

product space are in Eq. (15). 

𝑠𝑖𝑛𝑐𝑜𝑠 (𝑑1, 𝑑2)  =  
𝑑1. 𝑑2

‖𝑑1‖‖𝑑2‖
=

∑ (𝑑1𝑖𝑑2𝑖)𝑛
𝑖=1

√∑ (𝑑1𝑖
2 )𝑛

𝑖=1 √∑ (𝑑2𝑖
2 )𝑛

𝑖=1

         (15) 

where d1i and d2i are the vectors of documents d1 and d2 in ith dimension topic space. It 

analyses the Cosine angle between two multidimensional space projected vectors in a 

significant way. The Cosine value is a number that varies from 0 to 1. The Cosine value 

decreases as the angle increases.  

3.3.4.2 Euclidean Similarity: 

In Euclidean space, it is a straight-line distance between two points and is given by below 

Equation, as  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑒𝑢𝑐 (𝑑1, 𝑑2)  =  √∑ (𝑑1𝑖 − 𝑑2𝑖)2𝑛
𝑖=1                     (16) 

where d1i and d2i are the document vectors d1 and d2 in Euclidean space є Rn. The similarity  

score of the Euclidean nature between the two documents d1 and d2 can be computed from this 

via below equation as 

𝒔𝒊𝒎𝒆𝒖𝒄 (𝒅𝟏, 𝒅𝟐) =  
𝟏

𝟏 + 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒆𝒖𝒄
                        (𝟏𝟕) 



 

 

3.4 Implementation 

3.4.1 Computing Environment 

We used Google Colaboratory for the complete implementation. Colaboratory or Colab is a 

Google product. Colab allows anybody to write and execute python code through the Google 

browser 

3.4.2 Experimentation 

The below steps were performed in order to run our pipeline and achieve our results.  

1. Relevant libraries were imported.  

2. Data was read.  

3. Data pre-processing steps were performed as mentioned in section B-1.  

4. Duplicate and master reports were separated.  

5. Master reports are trained on LDA Model. When the model is trained, coherence 

score is calculated to detect the best possible number of topics.  

6. 10 was picked out as optimum number of topics. Master reports were then pushed 

into these clusters based on topic modelling.  

7. For feature selection, all these clusters were then trained on Models M1(Word2Vec), 

M2(FastText) and M3(GloVe).  

8. M4, M5, M6 and M7 are made by fusing M3, M2 and M1 by techniques mentioned 

in section C. 

9. Experimentations are performed to detect the best fusion model,  for Top- 2.5K 

recommendations.  

10. Afterwards, experimentations are performed on the models M4, M3, M2 and M1 for 

different samples starting from 10, 100, 500, 1000, 2000, and 25000 samples   

11. Performance evaluation is made by recall rate 

 

3.4.3 Evaluation Criteria 

The measure provided by Equation(18) is used to assess this research.  

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑅𝑎𝑡𝑒 =  
𝑁𝑡𝑟𝑢𝑒

𝑁𝑡𝑜𝑡 𝑎𝑙  

                (18) 

 

where Ntrue is the amount of duplicate reports that can locate their master report appropriately, 

and Ntotal is the total number of reports that are duplicates. 



 

 

 

CHAPTER 4: RESULTS AND DISCUSSION 

To begin, training was performed for the master reports on the LDA model for 1000 iterations 

and 20 passes using all the techniques outlined in Section II-D. For determining the optimal 

number of topics, an analysis and a coherence score were used. The highest coherence was 

achieved for 10 topics. As a result, ten topics were chosen as the optimal number for this study. 

 

Figure 8 LDA Based Topic Modelling 

In order to determine the best fusion model among our four fusion techniques namely F1 as 

concatenation of the vectors  F2 as average of the vectors, F3 as  Dimensionality reduction 

using PCA on concatenation of the vectors and F4 as Dimensionality reduction using PCA on 

average of the vectors, experimentation was performed for top 2.5K recommendation. As per 

the results mentioned in table I. Model M4 performed the best for all fusion techniques F1, F2, 

F3 and F4 and among these with fusion F4 and RR% 71.5% it performed the best. 

It is to be noted that M5 performed better than M6 and M7. And for all models M4, M3, M2 

and M1 Fusion technique of Dimensionality reduction using PCA on average of the vectors 

referred as F4 performed the best. Hence to carry out any further experimentation we took M4 

and F4 as reference and did further experimentations by varying weights 

 

 

 



 

 

Table 9 Performance Analysis W.R.T Recal Rate, For Top  2.5K, W1= 0.5, W2 = 0.5 

 

 F1 F2 F3 F4 

M4 
65.8 67.5 68.5 71.5 

M5 
63.0 64.0 66.0 64.5 

M6 
64.5 61.5 61.5 65.0 

M7 
64.7 60.0 66.5 67.1 

 

Taking this as reference, further experimentation is carried out on models M4, M3, M2 and 

M1 for Top 10-N: 10, 100, 500, 1000, 2000 and 2500K by varying the weights w1 and w2. 

The comparisons are done on single modality models M3, M2, and M1, as well as the best 

multimodal technique  

M4 that was chosen as a consequence of an early analysis, as shown in Table1. When weights 

were modified, Figure 2-9 shows the trend of models M4, M3, M2, and M1. It can be seen that 

M4 performed the best. It's also clear that as the number of samples grows larger, the model's 

performance improves. 

 

 

Figure 9.  RR Across all Models for 2.5k samples for w1=0.5, w2=0.5 
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Fig 2-9 give a very detailed account of the trend that were acquired as a result of running all 

the pipelines by varying the weights. Here M1 and M2 utilizes continuous Bag of words 

(CBoW) as backbone and trained for 1000 iterations M3 performed better when it is trained 

for 2000 epochs. These Figures also present a detailed comparison of the best multimodal 

technique M4 with single modality models M3, M2 and M1. It is to be noted that M4 performed 

the best.  

It is to be noted that M2 performed the best among single modality models M3, M2 and M1 

for all the weights except when w1 = 0.9 and w2=0.1 where M1 performed better than M2 with 

recall rate percent 60%.  

 

    

 Figure 10.  RR% Comparison of M1,M2,M3 & M4 for w1=0.5, w2=0.5 
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Figure 11.  RR Comparison of M1,M2,M3 & M4  for w1=0.1, w2=0.9 

  

 

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3 
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Figure 12. RR Comparison of M1,M2,M3 & M4  for w1=0.2, w2=0.8 

 

 

 

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3 
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Figure 13 RR Comparison of M1,M2,M3 & M4  for w1=0.3, w2=0.7 

 

 

  

 

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3 

 

 

 

 

 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

-3000 2000 7000 12000 17000 22000 27000

R
R

%

No. of Samples

w1 = 0.3, w2= 0.7

M1 M2 M3 M4



 

 

Figure 14 RR Comparison of M1,M2,M3 & M4  for w1=0.4, w2=0.6 

 

 

 

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3 
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Figure 15. RR Comparison of M1,M2,M3 & M4  for w1=0.6, w2=0.4 

  

  

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3 
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Figure 16. RR Comparison of M1,M2,M3 & M4  for w1=0.7, w2=0.3 

 

  

 

It can be seen that M4 performed the best and M2 is better as compared to M1 and M3 
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Figure 17. RR Comparison of M1,M2,M3 & M4  for w1=0.8, w2=0.2 
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Figure 18.  RR Comparison of M1,M2,M3 & M4  for w1=0.9, w2=0.1 

 
 

  
 
 

Figure 15-16 corroborates the findings of M4 performance across all weights for different 

sample size. Increase in performance has been seen with increase in sample size. When w1=0.3 

and w2=0.7 with RR percent of 75%, the proposed two-tier strategy with M4 performed the 

best at iteration.   
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Figure 19. M4 Performance 
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Figure 20. M4 Trend for 2.5K Samples 

 

 

A decline in the trend has been seen when weightage of w1 has been increased and w2 is 

decreased which determines that for M4 whenever more weights are assigned to cosine 

similarity the model M4 has performed better 
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CHAPTER 5: CONCLUSION 

This research proposes a two-tier method based on topic based clustering done by LDA 

approach, multimodal representation of text using W2V, FT, GloVe and a unified text 

similarity measure utilizing Cosine and Euclidean similarities to solve this challenge. The 

Eclipse dataset, which contains over 80,000 bug reports and includes both master and duplicate 

reports, is used to validate the suggested method. This investigation focuses primarily on the 

report descriptions in order to identify duplication. For Top-N proposals, the recommended 

two-tier technique has achieved a 75% recall rate, which is higher than the traditional one-on-

one classification model. 

 

  



 

 

 

 

CHAPTER 6: FUTURE WORK AND RECOMMENDATIONS 

The LDA-based topic modelling and strategy for classification which is recommended 

outperforms the traditional one-on-one similarity-based classification method across all 

models. In the future, it will be used to investigate improved similarity assessments and 

representation methodologies of documents 

References 

 

[1]  R. S. Pressman, Software engineering: a practitioner’s approach. Palgrave Macmillan, 
2005..  

[2]  B. Boehm and V. R. Basili, “Software defect reduction top 10 list,” Found. Empir. Softw. 
Eng. Leg. Victor R Basili, vol. 426, p. 37, 2005..  

[3]  P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect reports 
using natural language processing,” in Proceedings of the 29th international conference 
on Software Engineering, 2007, pp. 499–510.  

[4]  N. Serrano and I. Ciordia, “Bugzilla, ITracker, and other bug trackers,” IEEE Softw., vol. 
22, no. 2, pp. 11–13, 2005..  

[5]  J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repository,” in 
Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange, 2005, pp. 
35–39., vol. pp. 361–370.  

[6]  J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in Proceedings of the 
28th international conference on Software engineering, 2006, pp. 361–370., vol. pp. 35–

39.  

[7]  N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking systems,” in 
Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE 
International Conference on, 2008, pp. 52–61., Vols. 7-15.  

[8]  Y. C. Cavalcanti, P. A. da M. S. Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S. R. 
de Lemos Meira, “The bug report duplication problem: an exploratory study,” Softw. 

Qual. J., vol. 21, no. 1, pp. 39–66, 2013.  



 

 

[9]  Y. C. Cavalcanti, E. S. de Almeida, C. E. A. da Cunha, D. Lucredio, and S. R. de Lemos 
Meira, “An initial study on the bug report duplication problem,” in Software Maintenance 
and Reengineering (CSMR), 2010 14th European Conference on, 2010, pp. 264–267.  

[10]  N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate bug reports 
considered harmful… really?,” in Software maintenance, 2008. ICSM 2008. IEEE 
international conference on, 2008, pp. 337–345.  

[11]  C. R. Reis and R. P. de Mattos Fortes, “An overview of the software engineering process 
and tools in the Mozilla project,” in Proceedings of the Open Source Software 
Development Workshop, 2002, pp. 155–175.  

[12]  A. Sureka and P. Jalote, “Detecting duplicate bug report using character n-gram-based 
features,” in Software Engineering Conference (APSEC), 2010 17th Asia Pacific, 2010, 
pp. 366–374.  

[13]  F. Naumann and M. Herschel, “An introduction to duplicate detection,” Synth. Lect. Data 
Manag., vol. 2, no. 1, pp. 1–87, 2010..  

[14]  G. Tassey, “The economic impacts of inadequate infrastructure for software testing,” 
National Institute of Standards and Technology, RTI Project, vol. 7007, no. 011, pp. 429–
489, 2002.  

[15]  J. Sutherland, “Business objects in corporate information systems,” ACM Computing 
Surveys (CSUR), vol. 27, no. 2, pp. 274–276, 1995.  

[16]  D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug? a two-phase 
recommendation model,” IEEE Transactions on Software Engineering, vol. 39, no. 11, 
pp. 1597–1610, 2013.  

[17]  T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss, “What 
makes a good bug report?,” IEEE Transactions on Software Engineering, vol. 36, no. 5, 
pp. 618–643, 2010.  

[18]  F. Elberzhager, J. Münch, and V. T. N. Nha, “A systematic mapping study on the 
combination of static and dynamic quality assurance techniques,” Inf. Softw. Technol., 
vol. 54, no. 1, pp. 1–15, 2012.  

[19]  N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and P. Abrahamsson, 
“Software development in startup companies: A systematic mapping study,” Inf. Softw. 
Technol., vol. 56, no. 10, pp. 1200–1218, 2014.  

[20]  M. Unterkalmsteiner, T. Gorschek, A. M. Islam, C. K. Cheng, R. B. Permadi, and R. 
Feldt, “Evaluation and measurement of software process improvement—a systematic 
literature review,” IEEE Trans. Softw. Eng., vol. 38, no. 2, pp. 398–424, 2012.  



 

 

[21]  K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic 
mapping studies in software engineering: An update,” Inf. Softw. Technol., vol. 64, pp. 
1–18, 2015.  

[22]  X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting duplicate 
bug reports using natural language and execution information,” in Software Engineering, 
2008. ICSE’08. ACM/IEEE 30th International Conference on, 2008, pp. 461–470..  

[23]  Y. Song, X. Wang, T. Xie, L. Zhang, and H. Mei, “JDF: detecting duplicate bug reports 
in Jazz,” in Proceedings of the 32nd ACM/IEEE International Conf erence on Software 
Engineering-Volume 2, 2010, pp. 315–316.  

[24]  H. Gu, L. Zhao, and C. Shu, “Analysis of duplicate issue reports for issue tracking 
system,” in Data Mining and Intelligent Information Technology Applications (ICMiA), 
2011 3rd International Conference on, 2011, pp. 86–91..  

[25]  T. Prifti, S. Banerjee, and B. Cukic, “Detecting bug duplicate reports through local 
references,” in Proceedings of the 7th International Conference on Predictive Models in 
Software Engineering, 2011, p. 8.  

[26]  N. Kaushik and L. Tahvildari, “A comparative study of the performance of IR models on 
duplicate bug detection,” in Software Maintenance and Reengineering (CSMR), 2012 
16th European Conference on, 2012, pp. 159–168..  

[27]  J. Zhou and H. Zhang, “Learning to rank duplicate bug reports,” in Proceedings of the 
21st ACM international conference on Information and knowledge management, 2012, 
pp. 852–861.  

[28]  S. Banerjee, Z. Syed, J. Helmick, and B. Cukic, “A fusion approach for classifying 
duplicate problem reports,” in Software Reliability Engineering (ISSRE), 2013 IEEE 
24th International Symposium on, 2013, pp. 208–217.  

[29]  N. Tomasev, G. Leban, and D. Mladenic, “Exploiting hubs for self -adaptive secondary 
re-ranking in bug report duplicate detection,” in Information Technology Interfaces (ITI), 
Proceedings of the ITI 2013 35th International Conference on, 2013, pp. 131–136..  

[30]  K. Liu, H. B. K. Tan, and H. Zhang, “Has this bug been reported?,” in Reverse 
Engineering (WCRE), 2013 20th Working Conference on, 2013, pp. 82–91..  

[31]  J. Lerch and M. Mezini, “Finding duplicates of your yet unwritten bug report,” in 
Software Maintenance and Reengineering (CSMR), 2013 17th European Conference on, 

2013, pp. 69–78.  

[32]  I. Chawla and S. K. Singh, “Performance evaluation of vsm and lsi models to determine 
bug reports similarity,” in Contemporary Computing (IC3), 2013 Sixth International 
Conference on, 2013, pp. 375–380..  



 

 

[33]  M. Amoui, N. Kaushik, A. Al-Dabbagh, L. Tahvildari, S. Li, and W. Liu, “Search-based 
duplicate defect detection: an industrial experience,” in Mining Software Repositories 
(MSR), 2013 10th IEEE Working Conference on, 2013, pp. 173–182.  

[34]  M.-J. Lin, C.-Z. Yang, C.-Y. Lee, and C.-C. Chen, “Enhancements for duplication 
detection in bug reports with manifold correlation features,” J. Syst. Softw., vol. 121, pp. 
223–233, 2016..  

[35]  H. Rocha, G. De Oliveira, H. Marques-Neto, and M. T. Valente, “NextBug: a Bugzilla 
extension for recommending similar bugs,” J. Softw. Eng. Res. Dev., vol. 3, no. 1, p. 3, 
2015..  

[36]  F. Thung, P. S. Kochhar, and D. Lo, “DupFinder: integrated tool support for duplicate 
bug report detection,” in Proceedings of the 29th ACM/IEEE international conference on 
Automated software engineering, 2014, pp. 871–874.  

[37]  A. Tsuruda, Y. Manabe, and M. Aritsugi, “Can we detect bug report duplication with 
unfinished bug reports?,” in Software Engineering Conference (APSEC), 2015 Asia -
Pacific, 2015, pp. 151–158..  

[38]  C. Jingliang, M. Zhe, and S. Jun, “A data-driven approach based on LDA for identifying 
duplicate bug report,” in Intelligent Systems (IS), 2016 IEEE 8th International 
Conference on, 2016, pp. 686–691.  

[39]  K. K. Sabor, A. Hamou-Lhadj, and A. Larsson, “DURFEX: A Feature Extraction 
Technique for Efficient Detection of Duplicate Bug Reports,” in Software Quality, 
Reliability and Security (QRS), 2017 IEEE International Conference on, 2017, pp. 240–
250..  

[40]  X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining Word Embedding with 
Information Retrieval to Recommend Similar Bug Reports,” in Software Reliability 

Engineering (ISSRE), 2016 IEEE 27th International Symposium on, 2016, pp. 127–137.  

[41]  C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate retrieval of duplicate 
bug reports,” in Automated Software Engineering (ASE), 2011 26th IEEE/ACM 
International Conference on, 2011, pp. 253–262.  

[42]  A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug report 
detection with a combination of information retrieval and topic modeling,” in 

Proceedings of the 27th IEEE/ACM International Conference on Automated Software 
Engineering, 2.  

[43]  Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identification,” in Software 
Maintenance and Reengineering (CSMR), 2012 16th European Conference on, 2012, pp. 
385–390..  



 

 

[44]  A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach towards more accurate 
duplicate bug report detection,” in Proceedings of the 10th Working Conference on 
Mining Software Repositories, 2013, pp. 183–192.  

[45]  C.-Z. Yang, H.-H. Du, S.-S. Wu, and X. Chen, “Duplication detection for software bug 
reports based on bm25 term weighting,” in Technologies and Applications of Artificial 
Intelligence (TAAI), 2012 Conference on, 2012, pp. 33–38..  

[46]  K. Aggarwal, F. Timbers, T. Rutgers, A. Hindle, E. Stroulia, and R. Greiner, “Detecting 
duplicate bug reports with software engineering domain knowledge,” J. Softw. Evol. 
Process, vol. 29, no. 3, 2017..  

[47]  C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model approach for 
accurate duplicate bug report retrieval,” in Proceedings of the 32nd ACM/IEEE 
International Conference on Software Engineering-Volume 1, 2010, pp. 45–54..  

[48]  Q. Wu and Q. Wang, “Natural language processing based detection of duplicate defect 
patterns,” in Computer Software and Applications Conference Workshops 
(COMPSACW), 2010 IEEE 34th Annual, 2010, pp. 220–225..  

[49]  M.-J. Lin and C.-Z. Yang, “An Improved Discriminative Model for Duplication 
Detection on Bug Reports with Cluster Weighting,” in Computer Software and 
Applications Conference (COMPSAC), 2014 IEEE 38th Annual, 2014, pp. 117–122.  

[50]  P. N. Minh, “An Approach to Detecting Duplicate Bug Reports using N-gram Features 
and Cluster Chrinkage Technique,” Int. J. Sci. Res. Publ., vol. 4, no. 5, 2014..  

[51]  A. Lazar, S. Ritchey, and B. Sharif, “Improving the accuracy of duplicate bug report 
detection using textual similarity measures,” in Proceedings of the 11th Working 
Conference on Mining Software Repositories, 2014, pp. 308–311..  

[52]  J. Zou, L. Xu, M. Yang, X. Zhang, J. Zeng, and S. Hirokawa, “Automated Duplicate Bug 
Report Detection Using Multi-Factor Analysis,” IEICE Trans. Inf. Syst., vol. 99, no. 7, 

pp. 1762–1775, 2016.  

[53]  R. P. Gopalan and A. Krishna, “Duplicate bug report detection using clustering,” in 
Software Engineering Conference (ASWEC), 2014 23rd Australian, 2014, pp. 104–109..  

[54]  N. Klein, C. S. Corley, and N. A. Kraft, “New features for duplicate bug detection,” in 
Proceedings of the 11th Working Conference on Mining Software Repositories, 2014, 
pp. 324–327..  

[55]  A. Hindle, A. Alipour, and E. Stroulia, “A contextual approach towards more accurate 
duplicate bug report detection and ranking,” Empir. Softw. Eng., vol. 21, no. 2, pp. 368–
410, 2016.  



 

 

[56]  Thangarajah Akilan, Dhruvit Shah, Nishi Patel, Rinkal Mehta, "Fast Detection of 
Duplicate Bug Reports using LDA-based Topic Modeling and Classification" in 2020 
IEEE International Conference on Systems, Man, and Cybernetics (SMC).  

[57]  N. Limsettho, H. Hata, A. Monden, and K. Matsumoto, “Automatic unsupervised bug 
report categorization,” in Empirical Software Engineering in Practice (IWESEP), 2014 
6th International Workshop on, 2014, pp. 7–12.  

[58]  Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “ReBucket: a method for clustering 
duplicate crash reports based on call stack similarity,” in Proceedings of the 34th 
International Conference on Software Engineering, 2012, pp. 1084–1093..  

[59]  S. Banerjee, Z. Syed, J. Helmick, M. Culp, K. Ryan, and B. Cukic, “Automated triaging 
of very large bug repositories,” Inf. Softw. Technol., vol. 89, pp. 1–13, 2017.  

[60]  T. Zhang and B. Lee, “A Novel Technique for Duplicate Detection and Classification of 
Bug Reports,” IEICE Trans. Inf. Syst., vol. 97, no. 7, pp. 1756–1768, 2014.  

[61]  S. Banerjee, B. Cukic, and D. Adjeroh, “Automated duplicate bug report classification 
using subsequence matching,” in High-Assurance Systems Engineering (HASE), 2012 
IEEE 14th International Symposium on, 2012, pp. 74–81..  

[62]  H. Rocha, M. T. Valente, H. Marques-Neto, and G. C. Murphy, “An empirical study on 
recommendations of similar bugs,” in Software Analysis, Evolution, and Reengineering 
(SANER), 2016 IEEE 23rd International Conference on, 2016, vol. 1, pp. 46–56..  

[63]  L. Feng, L. Song, C. Sha, and X. Gong, “Practical duplicate bug reports detection in a 
large web-based development community,” in Asia-Pacific Web Conference, 2013, pp. 
709–720.  

[64]  B. Patel, H. Balvantrai Patel, M. Khanvilkar, N. Rajendrakumar Patel, and T. Akilan, 
“ES2ISL: an advancement in speech to sign language translation using 3D avatar 
animator,” in 2020 IEEE Canadian Conference on Electrical and Computer Engineering 

(CCECE).  

[65]  T. Akilan, Q. J. Wu, A. Safaei, and W. Jiang, “A late fusion approach for harnessing 
multi-cnn model high-level features,” in 2017 IEEE International Conference on 
Systems, Man, and Cybernetics (SMC), pp. 566–571, IEEE, 2017.  

[66]  T. Akilan, Q. J. Wu, and H. Zhang, “Effect of fusing features from multiple dcnn 
architectures in image classification,” IET Image Processing, vol. 12, no. 7, pp. 1102–

1110, 2018.  

[67]  Y. Yang, J. Q. Wu, X. Feng, and A. Thangarajah, “Recomputation of dense layers for the 
performance improvement of dcnn,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 2019.  

 



 

 

 

 

 

 

 

 



 

 

 


