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Abstract 

Neural Networks (NNs) are the core algorithms for many complex Artificial Intelligence (AI) 

applications, such as image and video classification and recognition, signal processing, etc. But 

these algorithms are both memory and computationally exhaustive, making it hard to deploy them 

on systems with restricted hardware sources. Subsequently, these systems are also extremely 

power greedy and expect a major amount of energy resources to perform the required 

computations. Approximate Computing (AC) has been gaining prominence for relieving 

computational and memory requirements of Deep Neural Networks (DNNs) benefiting from their 

error tolerance behavior. AC can be separated into two types of Hardware and Software layer 

approximations. In this research, we have considered optimization for CNN algorithms for H/W 

platforms specifically FPGAs. In this regard, we proposed multiple automated tools. The first tool 

deals with the memory optimization at S\W level approximations estimating the best levels (N) to 

quantize and encode weights with respect to user-defined requirements based on a genetic 

algorithm (GA). The GA makes use of a regression equation to determine the best population. This 

proposed module was tested for VGG-16, Cifar-Quick, and LeNet-5 returning the final population 

with an absolute maximum error of 0.038 when tested for originally quantized weights. Further, 

we proposed the design of an efficient decoder based on Canonical Huffman that can be utilized 

for the efficient decompression of weights in CNN. The proposed design makes use of Hash 

functions to effectively decode the weights eliminating the need for a searching dictionary. The 

proposed design decodes a single weight in a single clock cycle. Our proposed design has a 

maximum frequency of 408.97MHz utilizing 1% of system LUTs when tested for the Aritix 7 

platform. Lastly, the third module deals with the estimation of the best approximate multipliers for 

H/W. The proposed module is based on GA and utilizes the tf-approximate library to calculate the 

accuracy loss in models for approximate multipliers. It was noted that the complex CNN model 

VGG-16 required more iterations to determine the best multipliers compared to the simpler model 

such as LeNet-5. 
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Chapter-1 Introduction 

The prodigious success of machine learning has led us into a period of artificial intelligence. Deep 

Neural Networks are the most pre-eminent algorithms in machine learning, used to solve many 

complex problems including natural language processing (NLP), computer vision, and image 

analysis. The presence of a wide dataset in cloud platforms and accessibility of tremendous 

computing sources (e.g., GPUs) are significant factors behind this achievement. Henceforth 

research on deep neural networks has gradually increased and many architectures have been 

proposed. The graph in Figure1 is taken from google trends showing the global interest in DNN in 

recent years. 

 

 

Figure 1: Interest in DNN with respect to time [1] 

 

Accuracy is considered the most fundamental metric of many CNN models at the expense of more 

parameters, more layers, and more operations which result in high complexity of the model. The 

graphs in Figures 2 and 3 represent the depth and parameters of the most popular Deep neural 

networks being used in recent years for image classification and other applications of Artificial 

Intelligence. 
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Figure 2: Depths (Layers) in DNN [2] 

 

Figure 3: Number of Parameters in mostly used DNNs [2] 

With the evolution of technology, embedded systems have become the main building blocks for 

technology using edge-computing such as IOTs. CNNs are more frequently trying to install on 

embedded systems and cellular devices. In recent years, FPGA (Field Programmable gate array) 

technology has illustrated strong capabilities in implementing embedded intelligence. At the same 

time, chip memory limits are also a bottleneck for FPGA, so managing available system resources 



3 
 

to achieve high performance is also one of the challenges for researchers. Due to these restrictions, 

CNNs models are pre-trained offline and are implemented in these resource-scarce embedded 

systems for the inference stage. 

Despite that, FPGA having limited on-chip memory is still problematic, it relies on external off-

chip memory (DDR RAMs connected to FPGAs) to store weights of pre-trained CNN models. 

However, frequent access to off-chip memory means higher power consumption and latency 

resulting in performance reduction. For complex CNN’s on-chip memory is infeasible for 

computations and too many buffers are required even after optimization leading to the use of 

external memory [3]. Convolution computation in the inference stage is still computationally 

exhaustive, and resource-intensive as it requires a large number of multiply-accumulate (MAC) 

operations. Moreover, the number of multiplication operations gets higher while tackling complex 

problems like object recognition and detection. Multiplication operations are always the most 

difficult to implement and are time-consuming in calculations. Thus, research on accelerating 

neural networks has steadily increased and several hardware and software methods have been 

proposed for the better performance of CNN models in FPGA.  

Recent research shows that approximate computing (AC) has proved to be an effective technique 

for the acceleration and compression of neural networks. It involves such computational methods 

that return a potentially inaccurate result instead of an accurate result, reducing computations and 

memory requirements with minimal effect on the accuracy of the algorithm. These methods will 

be discussed in detail in Chapter 2. 

Problem Statement 

Approximate computing is the preferred approach for developing power-efficient systems with 

better execution times and saving computational sources. These techniques can be classified into 

two types software level (S/W) approximation and hardware level(H/W) approximation and can 

be applied on different levels of the neural network. In this research, the challenge aimed is to 

develop an automated tool for estimation of the best approximate components to optimize the 

performance of CNNs in Hardware(H/W) platforms specifically in FPGAs on basis of accuracy, 

power, energy, and space. 
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 Aims and Objectives 

The main objective of this thesis research are as follows: 

Approximate Computing 

1. Development of a framework to select the best approximate parameters for the quantization 

for efficient memory optimization in CNN models. 

2. Design a framework to select the best approximate multipliers for CNN algorithms. 

 Hardware Decoder 

To develop an efficient hardware decoder for weight compression having the following properties: 

• Decoding of single weight within a single clock cycle 

• Utilizing a lesser number of LUTs as compared to previous work 

• To overcome searching in LUT at decompressing stage. 

 Structure of Thesis 

This thesis work is structured as follows: 

Chapter 2: Covers the brief literature review of signification work done by researchers in the 

past few years for the optimization of neural networks. 

Chapter 3: Methodology and experimental results for Tool designed for optimizing CNN with 

S/W Approximation Techniques. 

Chapter 4: Methodology and experimental results for Hardware decoder for data decompression 

in FPGAs. 

Chapter 5: Methodology and experimental results for Tool designed for optimizing CNN with 

H/W Approximation Techniques. 

Chapter 6: Concludes the thesis and defined the future scope of this research. 
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Chapter-2: Literature Review 

The proposed work in this thesis is based on methods used for efficient utilization and 

implementation of CNN models in FPGAs such as Approximate Computing for Machine Learning 

and Reconfigurable architectures for memory space optimization in hardware. 

In order to understand the basic idea concerning these topics, our literature is conducted in three 

parts. In the first part, we have reviewed different approximate computing techniques for CNNs. 

The second part reviews Reconfigurable hardware architectures specifically designed for 

decompressing data, compressed for memory optimization in FPGAs. While the last part reviews 

the tools designed to estimate the best approximate techniques in CNNs. 

2.1  Approximate Computing techniques 

AC is primarily used for error-tolerant applications such as deep learning, signal and image 

processing, etc. The approximations can be applied at various levels of the CNN and are divided 

into two types i.e., software-level approximation and hardware-level approximations.  

 

Figure 4: Approximate Computing Techniques for CNNs [4-15] 
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Research has also used software-hardware co-design approximation techniques for high precision 

data. Figure 4 shows the AC techniques employed to accelerate the performance of CNNs based 

on the layers of abstraction. 

2.1.1 Software-Level Approximations 

The software level approximations skip or lesson the computations and memory requirements in 

CNNs to improve overall performance keeping significant accuracy. Weight sharing, Pruning, and 

Precision Reduction are used for computation reduction. It allows network re-training which 

enables the network to regain its lost efficiency. For Further optimization memory at hardware, 

post-training quantization followed by weight-encoding is performed. This reduces the size of 

weights to store in FPGA memories. This technique is generally known as data compression. The 

software level approximations are mostly applied at the structural level the of CNN algorithm. 

For this research project, we have used post-training quantization and weight-encoding for 

memory optimization of CNNs in FPGAs. 

Hao et al [4] recommend a novel method of removing unnecessary filters in the convolutional 

layers with a small weight magnitude compared to a threshold. This threshold is determined using 

standard deviation of weights in a processed layer. This pruning technique proved to be useful 

giving negligible loss in accuracy. They achieved 34% and 24% of FLOP reduction by pruning 

some convolution layers of VGG and ResNet50/110 by 50% when tested on the CIFAR-10 dataset. 

Song Han et al[5] introduced a deep compression method with three stages, pruning, trained 

quantization, and Huffman encoding. Quantization in second stage is employed using the k-means 

algorithm. Quantizing weights in n-clusters. While pruning of network is done using [4]. The 

method was able to reduce the size of AlexNet from 240MBs to 6.9 MBs. VGG-16 from 552MB 

to 11.3MBs. But due to Huffman coded weights the model is unable to perform efficiently for 

general-purpose processors. To overcome these limitations the authors proposed a special 

hardware at [6] serving as an accelerator for these networks. 

Alqahtani et al. [7] proposed a majority voting technique comparing the activation values among 

neurons and assigning them a quantitative score to calculate the importance of the neuron. The 

model is pruned during the training phase eliminating the need for fine-tunning and pre-training 

mechanisms. They pruned 79% of model parameters for CIFAR-10 with no loss in accuracy and 

91% of the model was pruned in case of MNIST with no loss in efficiency of the system. 
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Jacob et. al. [8] suggested a quantization procedure, using integer arithmetic at the inference of the 

CNN model for computations. The integer arithmetic requires a lesser number of bits and provides 

higher efficiency compared to floating-point operation reducing the computation complexity in the 

model. To maintain the original accuracy, the authors designed a training procedure to resolve the 

tradeoff between latency and accuracy. They achieved 3% of  accuracy loss with ReLU6 activation 

and 4% with ReLU on Inception V3 for ImageNet classification. 

2.1.2 Hardware-Level Approximations 

The hardware-level approximations help the network by easing computations in the model. 

Approximate Multipliers and Adders are used in CNNs for making approximations. These 

approximations result in a non-recoverable loss in accuracy. Due to the error-resilient nature of 

CNNs, these approximations are proved effective and reduce area, power, and computations with 

minimal loss in accuracy.  

V.Mrazek et al [9] designed approximate adders and multipliers library called EvoApprox8b. This 

library comprises 430, 8-bit approximate adders which are generated from 13 conventional adders, 

and 471 8-bit signed approximate multipliers generated from 6 conventional multipliers. These 

approximate units were generated using Cartesian genetic programming. Authors have examined 

these approximate units using Cadence Encounter RTL Compiler and TSMC 180 nm and 45nm 

library and provided seven Petro error metrics and parameters such as area, power, and delay for 

both libraries. 

Z. Wang et al [10] suggested an approximate high-speed execution of convolution layers in the 

CNN model, using Approximate Multiply-Accumulate Array (AMAs). Mitchell’s algorithm [11] 

is utilized to produce AMAs along with an error correction unit. These AMAs are individually 

parameterizable and are connected in a systolic framework. They tested their work Sobel filter 

used for edge detection. The proposed work gave the maximum frequency of 206.8MHz compared 

to the original architecture with a maximum frequency of 184.5 MHz. But still, AMAA gives 

13.3% of error.  

J.Faraone et al [12] designed a family of  RCCMs to minimize data loss from quantization. For 

this, the coefficients in RCCMs are made constant, and input is multiplied by the fixed coefficient 

using multiplexers or bit shifts so that the multiplier is highly optimized for FPGA implementation. 

They tested their results using AlexNet, ResNet10, and ResNet18. Results show that this approach 

achieves better accuracy than networks that constrain weight parameters to have binary or ternary 
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values; while allowing the expensive multipliers usually used in fixed-point implementations to 

be replaced by shifters, adders, and small MUXes. Furthermore, the restricted number of possible 

coefficient values allows an encoding scheme to significantly reduce weight storage.  

Many other approximate units are being developed some of them are presented in Table 1. 

Table 1 Approximate Hardware Units designed for CNNs specifically 

Authors Approximate 

Unit 

Network 

Structure 

Implementation Accuracy Results 

Kin et al 

[11], 

2015  

Approximate 

Mitchell’s log 

multiplier 

AlexNet 32 nm digital 

standard cell 

library, synopsis 

design complier 

84.87 % Proposed design 

saves 80% of 

energy compared 

to 32-bit fixed-

point multiplier 

Kin et al, 

[13], 

2018 

Approximate 

Mitchell’s log 

multiplier 

LeNet 

CudaCon 

vNet 

32 nm digital 

standard cell 

library, synopsis 

design complier 

99.02 % 

81.43% 

76.6% power 

reductions 

compared to 

fixed-point 

multiplier 

Kowsalya 

et al [14] 

2019 

Pipelined 

hybrid merged 

adders 

- Xilinx Virtex 7 

FPGA 

- Area and power 

consumption are 

reduced by 50% 

Luo et al, 

[15] 2019 

Single Clock 

Cycle Adder 

LeNet 65 nm CMOS 

technology 

98.7% Speed up 

increased by 2.8x 

and 59.9% 

reduction in PDP 

Chuliang 

et al, 

[16],2019 

Reconfigurable 

approximate 

multiplier 

VGG-16 Xilinx ZCU102 

FPGA 

- 17% and 15% 

reductions in 

latency and 

power 
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2.1.3 Hardware-Software Co-design Approximations 

The Hardware-Software Co-design approximation helps decrease the computational loads and 

memory requirements by reducing the precision of the data within the network. Using of Fixed-

point representation of data makes computations easier, and it decreases the complexity of 

computational units such as adders and multipliers. While Stochastic Computing reduces the 

hardware cost and enhances the power efficiency of the system. It is a low-cost approximation that 

utilizes logic gates such as XOR, OR, AND to accomplish multiplication while additions are 

achieved using multiplexers. 

Ahmed et al. [17] designed an 8-bit fixed point parallel MAC unit using VHDL customized for 

FPGAs for the acceleration of CNNs specifically. The proposed unit achieved a high computation 

speed with a maximum frequency of 834.03 MHz implemented on Arria 10 and 594 MHz for 

Kintex-7  

Tianchan et al [18] presented a novel method that utilizes binary-weight NN (BNN) training. This 

method provides data storage recycling, and incremental training, which leads to more efficient 

use of on-chip data storage for storing weights in FPGAs platform, this resulted in less access to 

off-chip, allowing the model to train with 14× lesser latency a neural network when compared to 

the conventional BNN training method. 

2.2 Real-Time Hardware Decoder 

In the past few years, several hardware accelerators have been proposed for the efficient 

implementation of DNNs. However, only a few of these methods apply data compression 

techniques. Typical solutions for FPGA concentrate on the optimization of computations for 

effective processing time. In contrast to the approaches proposed for the compression of DNN 

addressing limited recourses in embedded devices discussed below. 

Huang et al. [19], proposed a novel algorithm for training pruning agents, deleting redundant 

convolutional filters with minimal effect on the accuracy. They demonstrated that pruning 78.4% 

of ResNet-18 convolution filters results in only a 2.9% of loss in accuracy. Aghasi et al. [20] 

proposed a post-processing method that involves layer-by-layer pruning of a trained neural 

network to maintain the internal responses.  
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However, pruning techniques provide lossy compression as they change the uncompressed 

structure of CNN affecting the network performance.  

Dahri et al. [21] suggest the Huffman algorithm on FPGA using Xilinx ISE 8.2i. This technique 

cannot guarantee real-time decoding as the search for conducting codeword matching is done 

sequentially causing system starvation. 

 Mansour et al [22] suggest a Huffman algorithm applying a two-level Look-Up Table (LUT). 

Nevertheless, this method demands a large LUT and utilizes various repetitions of shortcode words 

which leads to increasing decoder memory space.  

Lin et al [23] proposed a two-stage decompression procedure based on approximated adaptive 

Huffman and PDLZW. However, implementing this algorithm in real-time fails to ensure a weight 

decompression in a single clock cycle.  

Malach et al [24] proposed novel compression and decompression techniques and a real-time 

Huffman decoder utilizing three LUTs and address generation unit generating address by adding 

offset and index of code in LUT for decompression in a single clock cycle. They achieved a 

68.72% of compression ratio in AlexNet compared to7zip compression which achieves a 69.57% 

of compression ratio. However, they did not discuss implementation resources utilized for 

hardware decoder.  

Aspar et al [25] proposed Parallel Huffman decoder module with an optimized LUT They designed 

Bit-Serial and Bit parallel decoders for Altera FPGA with maximum operating speed of 10.89 

MHz and 11.54 MHz.  

Angulo J et at [26] designed Huffman based decoder for the decompression of high-speed seismic 

data. The data was processed using DCT and uniform quantization and passed on to the decoder. 

They achieved maximum operating speed of 256MHz using less than 1% of FPGA resources. 

 Najmabadi et at [27] architecture for asymmetric numerical systems (tANS) entropy decoder and 

compared its efficiency with canonical Huffman decoder designed in Xilinx. They achieved the 

throughput of 125MHz for tANs while 50MHz for the canonical decoder The drawback this 

procedure is that each encoded symbol may take more than single clock cycle for decoding. 
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2.3 Real Tools for Optimizing Approximate computing techniques  

Nogami et al [28] explored the numerical quantization and presented a unique “Variable Bin-size 

Quantization (VBQ)” representation. In this bin limits in quantization are optimized to achieve 

high accuracy in CNN model. For optimization purposes, authors make use of a genetic algorithm. 

The quantization process is done for inference purposes only. This reduced the computational cost 

to great extent. They determined a heuristic function for bin distribution and optimized the 

parameters of this function using simulated annealing. They used this function to find the 

parameters in AlexNet and VGG16. Results show that AlexNet and VGG16 had only 1.5% and 

2% accuracy loss with 4-bit quantization in comparison with 32-bit floating-point. However, this 

method can be time exhausting as the updated variable bin size is used to quantize the original 

model and evaluate its performance with the fitness function. 

Ansari et al [29] identified that introducing noise to AMs can improve the accuracy of NN. Then 

they intended to develop a predictor to estimate how well an AM is expected to work for a given 

CNN model. For this purpose, they extracted features from AMs that are likely to represent their 

working superiority with other multiplies. These feature values were based on 9 different error 

metrics extracted from 100 deliberately designed multipliers and 500 CGP-based multipliers.  

After selecting the best features, they used them to train their predictor a 3-layered MLP model. 

To verify the proposed predictor 114 AM were tested for their performance in LeNet-5 and 

AlexNet for SVHN and ImageNet datasets, respectively. The Final analysis made by the authors 

is classification accuracy depends on the nature of the application and depends on network type 

along with dataset, activation functions, and even compiler parameters. Hence features used to 

train the predictor cannot assure that the identified multiplier will give the best results for a certain 

application. 

2.4  Research Gaps 

From the previous work done in the field of approximate computing, it is noted that many software 

and hardware techniques proposed efficiently optimize CNN models with minimal loss in 

accuracy. However, to achieve best approximation with minimal accuracy loss these techniques 

are tested again and again with different input parameters i.e., time exhausting. To overcome this 

problem a tool can be designed for the automatic estimation of approximate components. In section 



12 
 

2.3 authors did design these tools but failed to ensue and specify the quality of these tools. Hence 

research gaps in case of approximate computing can be defined as: 

• Lack of time-efficient tools for automatic estimation of approximate components in 

CNNs. 

• Lack of techniques ensuring and specifying the quality of automatic tools for estimation 

• Lack of techniques for efficient memory utilization in CNNs for hardware optimizations. 

Furthermore, it was also learned that weight compression is the most pre-eminent technique for 

memory space optimization in FPGAs. However, these weights are to be decompressed while 

performing calculations leading us to study decompression in Hardware. Many hardware decoders 

have been designed in this regard mentioned in section 2.2, but these decoders are time-consuming 

and resource exhaustive. Following research gaps were observed in case of Hardware decoders 

• Hardware Decoder requiring multiple LUTs for decompression. 

• Hardware Decoder requiring multiple clock cycles for decoding a single compressed 

weight. 

2.5  Chapter Summary 

In this chapter we studied the previous work done in approximations of deep neural networks for 

optimization purposes. Many software and hardware techniques were noted and discussed. It was 

noted that one of the most important techniques used for memory optimization of CNN in FPGAs 

is data compression which includes pruning of the network followed by post training quantization 

of network weights and finally encoding of these quantized weights. This also led us to study the 

work done for the decoding of these quantized weights in FPGA. Many decoders have been 

designed but most of them utilizes more than a single clock cycle for decoding of single weight 

and some of them make use of multiple LUTs increasing the resource utilization. On other hand 

hardware approximations are done for the reduction of easing complex calculations by using 

approximate multipliers and adders. There are also hardware-software co-design techniques that 

make use of both methods for making approximations. Finally, we investigated the tools that can 

be used to predict the best parameters utilized to approximate a CNN model but the designed 

techniques lack in ensuring and specifying the quality of designed tools for estimation.  
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Chapter-3: Optimizing CNN with S/W Approximation Techniques for 

memory optimization 

This chapter provides a detailed overview of our proposed tools for optimization of CNN in 

FPGAs. We have proposed multiple tools in this regard. The first tool deals with memory 

optimization at software level approximations where quantization and canonical Huffman coding 

have been used to compress pre-trained weights. The proposed tool estimates the approximate 

parameters at which a CNN model can be quantized for user defined “acceptable error” in 

accuracy. In order to implement a memory optimization scheme in Hardware, a canonical Huffman 

encoder is used to encode weights reducing memory size to store weights in an FPGA. This leads 

us to design our second tool, a novel architecture for canonical Huffman decoder in hardware that 

works within a single clock cycle with restricted FPGA resources. Finally, our third tool deals with 

approximate units, specifically multipliers. This tool identifies the set of best approximate 

multipliers based on "acceptable error”, “area” and “power” in FPGAs. The overview of proposed 

methodology can be seen in Figure 5. 

 

Figure 5: Overview of Proposed methodology 
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Both proposed automated estimation tools are based on genetic algorithms. John Holland created 

the genetic algorithm (GA), along with his colleagues between the 1960s and 1970s [30]. This 

algorithm is extracted from Charles Darwin's theory of natural selection in biological evolution. 

Since then, many variants of Genetic Algorithm have been developed for optimization problems 

in image processing, signal processing and artificial intelligence. This chapter discusses the 

Automated tool for the selection of best parameters in data compression for CNNs. 

3.1  Automated tool for Data Compression in CNNs 

The proposed Framework is specifically designed for data compression in CNNs. For this purpose, 

we collected data for different types of quantization methods and found a relation between 

accuracy loss that occurred after using quantized weights to N levels at which quantization is done, 

parameters and layers of CNN model. Similarly, we found a relationship of the said factors with 

memory of encoded weights. This relationship is determined using regression which is later used 

by a proposed automated tool.  Hence, before jumping into the working of the main automated 

tool let us discuss the process of data collection and regression selection. The overall block diagram 

can be seen in the following Figure 6.  

 

Figure 6: Overall Workflow of S/W Automated Tool 
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3.1.1 Data Compression 

In our proposed framework Quantizer and Canonical Huffman Encoder has been used for the 

compression of data. The data compression model inputs “pre-trained weights” for a certain CNN 

model, N levels, and quantization type (Q-type).  

3.1.1.1 Quantization 

Quantization is a process of mapping continuous value to a set of discrete values. Quantizer is a 

post-training process that utilizes pre-trained CNN weights, N-levels and quantization type (Q-

type) for the generation of codebook. This codebook is then used to quantize the weights.  

 

Figure 7: Workflow of Quantizer 

Form Figure 7 it can be seen that quantized weights are been fed to CNN model for inference only 

and accuracy loss is being stored for different values of N. For our framework we have used three 

different types of quantization methods: 

1. Uniform Quantization 

In Uniform Quantization “N-levels” are evenly spaced between minimum and maximum 

value of weights. Code Book generation for uniform is done using equation 1 and 2. 

 

 
𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒 =

(𝑀𝑎𝑥 −𝑀𝑖𝑛)

(𝑁 − 1)
 

 

  (1) 

 
𝐶𝑜𝑑𝑒𝐵𝑜𝑜𝑘(𝑥𝑖) = {

𝑥 =  min    , 𝑖 = 0
𝑥 = 𝑥𝑖−1 + 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒 , 0 > 𝑖 < 𝑁 − 1

      𝑥 = max      ,         𝑖 = 𝑁 − 1
 

  (2) 
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2. Non-Uniform Quantization 

In Non-Uniform Quantization “N-levels” are unevenly spaced between minimum and 

maximum value of weights. Code Book generation for non-uniform is done through 

following formulas in equation 3 and 4. 

 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒(𝑥𝑖) =

{
 

 𝑥 =
(𝑀𝑎𝑥 −𝑀𝑖𝑛)

(𝑁 − 1)
 , 𝑖 = 0

𝑥 = 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒(𝑥𝑖−1) +  
𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒(𝑥𝑖−1)

𝑖 +  𝑚
 , 𝑖 > 0

 

  (3) 

 

 

𝐶𝑜𝑑𝑒𝐵𝑜𝑜𝑘(𝑥𝑖) = {

𝑥 =  min    , 𝑖 = 0
𝑥 = 𝑥𝑖−1 + 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒𝑖, 0 > 𝑖 < 𝑁 − 1

      𝑥 = max      ,         𝑖 = 𝑁 − 1
 

  (4) 

3. Asymmetric Quantization 

Asymmetric Quantization is done by using a zero-point (also called quantization bias or 

offset) in addition to the scale factor. This scale factor is determined using following 

equation 5. 

 
𝑆𝑐𝑎𝑙𝑒 =

max(𝑤) − min (𝑤)

max(𝑊𝑞) − min (𝑊𝑞)
 

  (5) 

 

Where W represents original weights value and Wq represents weights are uniformly 

quantized. 

As for our work we used 𝑖𝑡ℎquantization minimum and maximum value and 𝑖𝑡ℎ maximum 

and minimum values of original weights to determine the scale factor. To do so we 

determined the step size in case of uniform quantization and adding that step size with 

respect to “N” levels. We determined the 2nd minimum value and 2nd highest value in 

quantization using following formulas mentioned in equation 6 and 7. 

 𝑀𝑖𝑛𝑖 = min(𝑊𝑖−1) + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒   (6) 

 

 𝑀𝑎𝑥𝑖 = max(𝑊𝑖−1) + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒   (7) 

While zero-point is calculated using equation 8 and codebook is generated using equation 

9. 
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𝑧𝑒𝑟𝑜 𝑝𝑜𝑖𝑛𝑡(𝑧) = 𝑚𝑖𝑛(𝑊𝑞𝑖) − 

𝑚𝑖𝑛 (𝑊𝑖)

𝑠𝑐𝑎𝑙𝑒
 

  (8) 

 

 

𝐶𝑜𝑑𝑒𝐵𝑜𝑜𝑘(𝑥𝑖) = {

𝑥 =  𝑚𝑖𝑛(𝑊)    , 𝑖 = 0

𝑥 = 𝑧 +
𝑊𝑖

𝑠𝑐𝑎𝑙𝑒
, 0 > 𝑖 < 𝑁 − 1

 𝑥 = 𝑚𝑎𝑥(𝑊)      ,         𝑖 = 𝑁 − 1

 

  (9) 

 

After codebook being generated the original weights are mapped to nearest values present in the 

codebook. Separate codebooks are generated for all convolutional and dense layers with respect 

to their weight parameters. 

3.1.1.2 Variable Weight Encoding 

Encoding is done to further reduce the size of memory after quantization in order to stored weights 

in FPGAs. From Figure 6 it can be seen that after encoding weights, we have calculated the new 

memory of our encoded weight file. Compression ratio and percentage of memory being saved  for 

all values of “N-levels” were calculated using following equations 10 and 11 and stored in datafile. 

 
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =  

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦
 

 (10) 

 

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑆𝑎𝑣𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦 =  

(|𝑛𝑒𝑤𝑚𝑒𝑚𝑜𝑟𝑦 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑒𝑚𝑜𝑟𝑦|)

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑒𝑚𝑜𝑟𝑦
 

 (11) 

 

It is noted that Quantizing weights with specified “N-levels” helped reduce the memory size to 

great extent after encoding. For example, if weights are quantized with N = 10 levels it means that 

the weight file will contain only 10 repeated unique symbols which can be encoded using codes 

having a lesser number of bits. Hence N is directly proportional to the average bits per symbol. 

3.1.1.2.1 Canonical Huffman Encoding 

In this research we have preferred canonized compression of weights as it proved to be beneficial 

for our real-time hardware decoder which will be discussed later in chapter 4. 
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Canonical Huffman Coding is a subset of the Huffman Coding having numerical sequence 

property. To Canonize the weights, we must encode them with Huffman encoder to get the bit 

length information for each code assigned to all unique symbols (weights). Then to Canonize the 

Huffman codes first step is to sort the codes according to their bit lengths and then sort them 

lexicographically for the same bit lengths. Thus, the bit length for each code remains the same as 

Huffman code. Second step is to assign them new codes, the first symbol is assigned zero with the 

same bit length as its original code. For successive symbols get codes incremented by one if they 

have the same bit lengths as the previous symbol. If bit length changes, then after incrementing 

the previous code, zeros are appended to the right to match the bit length. An example of Huffman 

and Canonical Huffman code is shown in Figure 8. 

 

Figure 8(a):  Huffman Tree Codes 

 

Figure 8(b): Canonized Huffman Codes 
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3.1.2 Approximate Data Collection 

Data collection is done to test approximate behavior of the CNN model at inference level. This 

behavior is tested based on following two cases: 

• Same Quantization levels (N) for both Convolutional and Dense layers 

• Different Quantization levels (N) for Convolutional and Dense layers 

Data for all quantization types (Q-types) discussed in previous sections is gathered for these two 

cases and attributes mentioned in Table2 were noted. 

Table 2: Attributes Stored in Data file 

Case 1:  Different Levels for both 

Dense and Convolutional layers 

Case 2:  Same Levels for both Dense 

and Convolutional layers 

Conv Levels (cN) Levels (N) 

Dense Levels (dN) 
 

Accuracy loss Accuracy loss 

Compression Ration Compression Ration 

Percent saved memory Percent saved memory 

No. of Parameters in CNN Number of Parameters 

No. of Convolution Layers in CNN No. of Convolution Layers in CNN  

 

To collect these attributes, following CNN models and Datasets were used shown in Table 3.  

These models and datasets are discussed in detail in section 3.2.1. These models were trained then 

quantized with different N-levels for all Q-types. 

Table 3: CNN model used to Collect Data 

Model Dataset Layers Parameters Original 

Accuracy 

Original 

Memory 

LeNet 5 MNIST 2 61,706 0.9849 120.36 KB 

Cifar Quick Cifar10 3 211,818 0.7302 847.272 KB 

VGG16 ILSVR 2012  13 14,714,688 0.9389 129.33 MB 
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For different levels and Q-types different datafiles were created. Hence total 6 datafiles were 

created.  

• Uniform Quantization [case1, case2] 

• Non-Uniform Quantization [case1, case2] 

• Asymmetric Quantization [case1, case2] 

Visualization of Datafile is shown in Figure 9 and Figure 10 

 

Figure 9: Case 1 Different Levels for both Dense and Convolutional layers 

 

Figure 10: Case 2 Same Levels for both Dense and Convolutional layers 

3.1.3 Regression 

Regression is used to find the relationship between continuous data. So, for our problem regression 

fits perfectly. So we tested the following regression on our data for memory and accuracy loss 

separately.  

1. Linear Regression 

2. Lasso Regression 

3. Bayesian Ridge Regression 
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4. TheilSen Regressor 

5. SVM Linear 

6. SVM Polynomial 

7. SVM RBF 

8. SVM Sigmoid 

9. Huber Regression 

10. RANSAC Regression 

To select the best regression equation, we developed an algorithm that calculates Mean Squared 

Error (MSE) for above-mentioned regressions tested for all datafiles. In order to do so, it inputs a 

Dataset and array of regressions to be tested. The dataset is divided in test and train parts. The 

following regression fit the training set and is tested on test dataset to obtain MSE using equations 

12 and 13 mentioned in Algorithm 1 

Algorithm 1: Selection best Regression Equation 

 Input: Datafile, FR (Regressor function array) 

Output: out[Ft, MSE] 

Procedure: 

t ← 0 

Re ← Rm ← 𝜑  # Re: regressor error 

                          # Rm: regressor memory 

train_m, test_m ← split(shuffle(Datafile)) 

train_e, test_e ← split(shuffle(Datafile)) 

While (t == length(FR) -1) do: 

Eq1 ← FRt(train_e) # for error 

Eq2 ← FRt(train_m) # for memory 

Ye = Eq1.predict(test_e) 

Ym = Eq1.predict(test_m) 

 
E ←  

1

𝑛
∑(𝑌𝑒 ,   𝑇𝑒𝑠𝑡_𝑒)2
𝑛

0

   

 

(12) 

 
𝑀 ←  

1

𝑛
∑(𝑌𝑚 ,   𝑇𝑒𝑠𝑡_𝑚)2
𝑛

0

   

 

(13) 

                        Re U E U FRt , Rm U M U FRt 

End 

FR error ← Min(Re , E) 

FR mem ← Min(Rm , M) 

Return FR error , FR me 
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To select the best regression for accuracy loss and memory percentage, MSE obtained for all 

datafiles were averaged and the regression with minimum average MSE is selected. Graphs for 

Average MSE for both accuracy loss and Memory loss are shown in Figure 11 and 12. 

From Figure 11 and 12 it is noted that the lowest MSE for accuracy loss is given by SVM with 

kernel RBF while for memory percentage it is given by linear regression. 

 

Figure 11: Average MSE for regressions for accuracy loss 

 

Figure 12: Average MSE for regressions for percentage saved memory 
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Now that we have calculated all input parameters required by our main module based on GA. Let 

us discuss the Framework of our main automated tool used for the estimation of parameters needed 

by quantization with respect to its user requirements. 

3.1.4 Proposed Automated Tool 

As discussed above the proposed automated tool is based on GA which makes use of inputs 

provided by users, to estimate the best parameters for the optimization of CNN model.  

3.1.4.1 Inputs needed by Genetic Algorithm 

Inputs required by proposed optimization tool are listed below: 

1. Population Size required to initialize population (size) 

2. User acceptable error in accuracy of CNN model (er) 

3. Percentage Memory to be saved for CNN model (mr) 

4. Number of generations (gen) 

5. Threshold (thresh) 

6.  Preference variables (α, β) 

7. Regression Equations for accuracy loss and memory percentage (reg_e, reg_m) 

8. CNN parameters and layers (par, lay) 

3.1.4.2 Output provided by Genetic Algorithm 

The proposed algorithm provides following outputs: 

1. Fitness of final population (MSE) 

2. Fitness of each individual in final Population (Find) 

3. Final Population (Po) 

 

3.1.4.3 Working of Proposed Framework  

The workflow of our proposed algorithm is presented in Algorithm 2. At the first iteration, it will 

use the population initialization function to initialize the population. Once the population is 

initialized it is passed to the fitness function. Then the said population is modified with respect to 

their individual fitness values in the population modification stage. In order to terminate the GA 

two of one condition must satisfy i.e., either the MSE value of the current population is lesser than 

the user-defined threshold or the number generation also known as loop iterations are completed. 
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If these conditions are not satisfied the GA will keep on working. The three sub-modules used in 

Algorithm 2 are explained in the next sections.. 

Algorithm 2: Pseudocode of Proposed Automated Tool (Genetic Algorithm) 

Input        : size, er, mr , gen, thresh , α, β , reg_e ,  reg_r , par, lay 

Output     : F_ind, Mse, Po 

Procedure: 

t ← 0 

Po ← initialize(size) 

While(t < gen) do: 

F_indt,Mset ← Fitness(Po , er , mr , α, β , reg_e , reg_r , par, lay, )  

if(Mset <= thresh)do: 

   break 

             Pot ←  Modification(F_ind, Pot) 

End 

Return  F_ind, Mse, Po 
 

3.1.4.4 Population Initialization 

The population initialization procedure is called only once at the beginning of the genetic 

algorithm to initialize a random population of individuals to enable processing in GA. The size of 

the population (m) is inputted by users according to their needs. The size of the population defines 

the number of individuals present in the population. The population is initialized with respect to 

the type of problem the user is dealing with. In our situation, we want to determine the values of 

the best parameters for quantization i.e., “N-levels” representing an integer value. It has been 

discussed in Table 3 that N-levels are defined differently using two cases. Hence the population of 

random integers with size population size (m) has been generated for these two cases differently 

as represented in Table 4. 

Table 4: The Population inilization array format for two defined cases 

Case 1:  Different Levels for both Dense and 

Convolutional layers 

Case 2: Same Levels for both Dense and 

Convolutional layers 

Po = array ([c1, d1], [c2, d2] ……, [cM, dM]) Po = array ([cd1], [cd2] ……., [cdM]) 
 

Where c represents the levels in convolutional layers and d represents the levels in dense layers  

3.1.4.5 Fitness Evaluation 

A fitness function is a specific type of objective function that determines how close a particular 

population is to user requirements using a single fitness value. For this purpose, it makes use of 
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the selected regression equation in section 3.1.3. The accuracy loss and memory reduction 

percentage are determined using these regression equations for the inputted population. Fitness 

values of each individual member in the population and Fitness for the entire population are 

calculated. Based on these calculated values, the population is modified, i.e., a new population is 

generated. Fitness is calculated for all generations of the population until GA is 

terminated. Algorithm 3 is designed to calculate the fitness in the proposed tool. 

Algorithm 3: Fitness Evaluation 

 Input: Po, er, mr, Svmrbf ,  lm, α and β 

Output: FP, F_ind 

Procedure: 

 t ← 0 

 F_ind ← 𝜑 

 Ye = lm.predict(Po) 

 Ym = SVMrbf.predict(Po) 

E ← 
1

𝑛
∑(𝑌𝑒 ,   𝑒𝑟)2 × α  #MSE (14a) 

 

M ← 
1

𝑛
∑ (𝑌𝑚 ,   𝑚𝑟)2𝑛
0  × β #MSE (15a) 

FP = E+M 

While(t < length (Po)) do: 

          # Absolute error of each individual 

Er ← abs( Yet – Ep) × α                                                                                   (14 b) 

Mr ← abs(Ymt – Mp) × β                                                                                (15 b) 

F_ind U (Er + Mr) 

t ← t + 1 

End 

Return FR error, FR me  
 

The proposed Fitness function in Algorithm 3 outputs a single fitness value for the entire 

population and individual fitness values for all members within the population. The input of fitness 

function is population, regression equations, user acceptable accuracy loss (er), user required saved 

memory (mr), and preference variables (α and β) 

•         Preference Variables  

Preference variables are used to tell the proposed algorithm which user-defined parameter 

is critical. In the proposed algorithm α is assigned to accuracy loss, while β is assigned to 

the percentage of memory to be saved. To understand the use of the preference variables 

let's consider an example, if accuracy loss is more critical than the percentage of memory 

to be saved then the weight given to α will be greater than β. The sum of α and β is 1. 
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Therefore, if both user-required parameters are equally critical then both α and β are 

assigned a value of 0.5. 

Now that we know the inputs and outputs of the fitness function let's understand its internal 

working form Algorithm 3. Firstly, accuracy loss and percent saved memory has been determined 

using SVM with RBF kernel and linear regression equations calculated in section 3.1.3. Then using 

equation 14a and 15a provided in Algorithm 3, MSEs is determined for accuracy loss (E) and 

percent saved memory (M) with user-entered parameters (er and mr). The final fitness value (FP) 

of populations is the sum of both MSEs (E and M).  

For estimating individual fitness for all members within a population, Absolute error (AE) is used 

defined in equations 14b and 15b in Algorithm 3 The predicted accuracy loss and saved memory 

for each individual is processed through the said equations and the answer is saved in (F_ind) array 

with respect to their indexes in population. This individual Fitness (F_ind) is used in the population 

modification process for updating the current population. 

3.1.4.6  Population Modification 

Population Modification is a process of selecting two or more individuals from the current 

population to generate new offspring and updating them into current population using following 

three procedures: 

1. Parent Selection 

The proposed algorithm uses Fitness based selection sub-type of the survivor-based 

selection procedure. In this process, the individuals that have the least fitness values 

i.e., individuals with the largest (AE) are selected and passed over to the next process. 

Firstly, individual population fitness (F_ind) is copied to another array (F_n) to avoid 

any data losses. Secondly, the individual with the highest (AE) is determined and its 

index position is saved to the index array (indx) and the individual at that index in the 

population is saved to the selected parent list (Ps). In the next step, the individual fitness 

of the selected individual in the array (F_n) is set to the maximum integer value. The 

process is repeated to find the next parent and can be seen in Algorithm 4.. 
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Algorithm 4: Parent Selection 

 Input: Po, F_ind 

Output: Parents (Ps) , indexes (indx) 

Procedure: 

t ← 0 

No. of parents = 2 

Ps← 𝜑 

Indx ← 𝜑 

F_n = copy(F_ind) 

While(t < No. of parents)) do: 

index ← max (F_n) 

indx U index 

Pst = Po[index] 

F_n[index] = -999999999 

End 

Return Ps , indx 

 

# Ps = Array (Parent1 , Parent2) 
 

2. Crossover 

In Crossover selected parents are used to generate one or more off-springs using the 

genetic material of the parents. For this process selected parents (Ps) are binarized with 

the same bit length. In this thesis, the one-point crossover is performed for generating 

new offspring, A random index within the bit length of binarized parents is produced. 

For generating the first offspring the first part of parent 1 in Ps is joined to the second 

part of parent 2 after that random index. The same procedure is repeated for generating 

the second offspring but with parent 2 as the first part and parent 1 as the second part. 

These newly generated offspring should be different from all individuals present in the 

current population if any of the offspring overlaps with the current population. Then 

that offspring is passed to the mutation process to generate new offspring. Once these 

offspring are finalized, they are converted to the decimal point and replaced with 

selected parents (Ps) using their index values (indx). This process is represented in 

Algorithm 5. 
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Algorithm 5: Crossover 

 Input: Pst  

Output: Offsprings 

Procedure: 

t ← 0 

Offspring← 𝜑 

#P1 ← Pst [0] 

#P2 ← Pst [1] 

While(t < No. of Parents)) do: 

          cross_point ←random_integer(size=1 , len(parents)) 

o1 ← join first part of P1 and second part of P2 

o2 ← join first part of P2 and second part of P1 

Offspring U o1 U o2 

If(Offspringt in Po) do 

  Offspringt← mutation(Offspringt) 

End 

Return offspring  
 

3. Mutation 

A mutation is a process used to create genetic diversity in newly generated offspring. 

For our problem mutation is only called when newly generated offspring are already 

existing in the current population. In that case, the bit-flip mutation is done. In this type 

of mutation, one or more random bits are selected and flipped. For example, if the 

randomly selected bit is 0 then it is flipped to 1 and vice versa. Algorithm 6 is used in 

our proposed tool for mutating individuals. 

Algorithm 6: Mutation 

 Input: Po , Offspring 

Output: Offspring 

Procedure: 

t ← 0 

Offspring← 𝜑 

While(t < length(Offsping)) do: 

while (offspring(t) in Po) do: 

     ln ←length(offspring(t)) 

     point←random_integer(start:0, stop:ln) 

     offspring(t) ← flip bit(offspring(t) , point) 

 end 

End 

Return Offspring 
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After unique offspring are generated, they are replaced with the selected parents using the index 

values in the array (indx). This updated population is again processed with a genetic algorithm 

unless the fitness value of the entire population reaches the threshold, or the number of generations 

is completed. Once the genetic algorithm is terminated it outputs the current updated population 

with its population fitness value along with the fitness values of each member present in the 

population. 

3.2  Experimentation and Results 

In this section, the performance of proposed module for s/w approximation (data compression) is 

being evaluated in python. The proposed genetic algorithm is implemented using Python 3.8 and 

cuda (11.1) for NIVIDA GPU. We performed experiments with different user requirements of 

accuracy loss, percentage of memory being saved along with preference variable (α and β) and 

threshold values. The algorithm is tested for models and datasets defined in section 3.2.1. 

3.2.1 Models and Datasets 

The proposed algorithm is tested for same models used for data collection process in section 3.1.2 

presented in Table 3. In this section we will the discuss the architecture of these models and the 

attributes of datasets in detail. 

3.2.1.1  LeNet-5 Network 

Lenet-5 is a simple and straightforward pre-trained models suggested by Yann LeCun [30] in 1998 

for multiclass classification. The architecture designed was to recognize handwritten and machine 

printed characters. Lenet-5 consists of 5 layers with trainable parameters. It has three convolution 

layers with a sequence of average pooling layers in between. At last, it contains two fully connected 

layers (dense). It uses SoftMax classifier to classify the input images to their respective classes. 

The architecture of LeNet-5 can be seen in Figure 13. For our data collection and optimization 

process we trained LeNet-5 on MNIST dataset. 
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Figure 13: Architecture of LeNet-5 [30] 

3.2.1.2  MNIST Dataset 

The MNIST dataset (Modified National Institute of Standards and Technology database) is a 

collection of handwritten digits. It is a subset of NIST Special Database 3 and Special Database 1 

[31]. The images for MNIST contains a training set of 60,000 images, and a test dataset of 10,000 

images of 28x28 pixels. 

3.2.1.3 Cifar-Quick Network 

Cifar-Quick is an fast learning model designed for the fast classification of Cifar-10 dataset 

developed by Yiren Zhou [32]. Cifar-Quick consists of 4 layers with trainable parameters. It has 

three convolution layers with a sequence of maximum pooling layers in between. At last, it 

contains single fully connected layers (dense). It uses SoftMax classifier to classify the input 

images to their respective classes. The architecture of Cifar-Quick can be seen in Figure 14. 

 

Figure 14: Architecture of Cifar-Quick [32] 
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3.2.1.4 Cifar-10 Dataset 

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They 

were collected by Alex Krizhevsky. The CIFAR-10 dataset consists of 60000 32x32 color images 

in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images 

[33]. 

3.2.1.5 VGG-16 Network 

The VGG16 Architecture is developed by Karen Simonyan 2014 [34]. This architecture has 16 

layers. 13 convolutional layers with 5 max-pooling layers adjusted in between leading to 3 fully 

connected layer and single output layer using SoftMax for activation for multiclass classification. 

VGG16 architecture is an improvement version for Alex Net [36] replacing the large kernel-sized 

filters with multiple 3 x 3 kernel-sized filters one after the other. The architecture diagram of VGG-

16 is presented in Figure 15. 

 

Figure 15: Architecture of VGG-16 [35] 

For our experimentation we used this model to classify ImageNet Large Scale Visual Recognition 

Challenge dataset (ILSVR) 2012 dataset 

3.2.1.6 ImageNet Dataset 2012 

For our work we utilized a most highly used subset of ImageNet is the ILSVRC 2012-2017 image 

classification and localization dataset. This dataset spans 10 object classes and contains 13394 total 

images, 9469 training images, 3925 validation images. This subset dataset is available at Kaggle 

at [37]. 
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3.2.2 Performance Evaluation  

To determine the performance of our proposed optimizer we estimated the “N-levels” for 

quantization using following three cases shown in Table 5 for different and same levels at Dense 

and Convolution layers for all quantization types (Q-types) mentioned in section 3.1.1.1  

Table 5: Cases for testing proposed optimizer tool 

Parameters Case 1 Case 2 Case 3 

Iterations  100 200 50 

Size  10 10 10 

Crossovers  2 2 3 

User error  0.01 0.1 0.05 

User mem  0.4 0.35 0.50 

Alpha  0.6 0.6 0.5 

Beta  0.4 0.4 0.5 

Threshold  0.05 0.1 0.07 
 

The genetic algorithm was tested on the dataset and network described in section 3.2.1 for all Q-

types and scenarios 

3.2.2.1 Experimentation Results for LeNet-5  

The following Table 6 and 7 shows the results of outputted fitness values and population of best 

“N-levels” bases on above three cases. 

Table 6: The Output of optimizer for Same N levels tested for LeNet-5 
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Table 7: The Output of optimizer for Different N levels tested for LeNet-5 

 

For the verification of our results, we used the outputted population of N-levels provided for both 

cases to quantize the actual LeNet model weights and calculated the accuracy loss at CNN 

inference and percentage of saved memory. Once these values were obtained, we determined the 

mean square error with respect to the user requirements inputted to GA. The following graphs 

were obtained plotting the absolute error of the MSE calculate using GA and MSE calculate using 

actual Quantized CNN model in Figure 16(a) and (b) 

  

Figure 16(a): Different levels for Dense and 

Convolutional layers 

Figure 16(b): Same levels for Dense and Convolutional 

layers 
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3.2.2.2 Experimentation Results for Cifar-Quick 

Cifar-Quick was trained for Cifar10 dataset. The Table 8 and 9 shows the results of outputted 

fitness values and population of best “N-levels” bases on above three cases in Table 5. 

Table 8: The Output of optimizer for Same N levels tested for Cifar-Quick 

 

Table 9: The Output of optimizer for Different N levels tested for Cifar-Quick 

 

To verify the results of Cifar-Quick same procedure is followed as stated in pervious section. The 

Graph in Figure 17(a) and (b) shows the absolute error of actual computed MSE and MSE 

computed through GA. 



35 
 

 

 

3.2.2.3 Experimentation Results for VGG-16 

VGG16 was trained for ImageNet dataset. The following Tables 10 and 11 shows the results of 

outputted fitness values and population of best “N-levels” bases on above three cases in Table 5. 

Table 10: The Output of optimizer for Same N levels tested for VGG-16 

 

Figure 17(a): Different levels for Dense and 

Convolutional layers 

Figure 17(b): Same levels for Dense and Convolutional 

layers 
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Table 11: The Output of optimizer for Different N levels tested for VGG-16 

 

The following graphs in Figure 18(a) and (b) shows the absolute error of actual MSE and MSE 

from GA. 

  Figure 18(a): Different levels for Dense and 

Convolutional layers 
Figure 18(b): Same levels for Dense and 

Convolutional layers 
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3.2.3 Final Discussion 

From section 3.2.2.1 – 3.2.2.3 we can see that the different of highest error between both MSEs is 

of 0.0683 in case of CIFAR-Quick for non-uniform Q-type. To determine for which Q-type the 

highest error occurred we plotted the average of all absolute errors with respect to their Q-types in 

Figure 19. 

 

Figure 19: Average Absolute Error for all cases w.r.t Q-types 

The above graph shows that the highest average error i.e., 0.038466342 given by non-uniform 

quantization for different levels in convolutional and dense layers. This average error is very 

minimal and could be ignored. But if we are to enhance our regression equations, these errors can 

be further reduced. The regression equation only considers and parameters on a CNN model and 

the number of convolutional layers used in CNN model ignoring all information regarding dataset 

to classified with a CNN model. If a fitness function is designed to add this information, there is 

chance to reduce the error in our proposed design. 

3.3 Chapter Summary 

This chapter is divided into two parts the first part discusses the methodology used for building 

the proposed tool. The second part discuss the experimentation done for the testing of the proposed 

module. The proposed tool is based on GA estimating best quantization levels with respect to user 

requirements. The fitness function of proposed module utilizes regression equations determines 

the relationship of quantization levels with accuracy loss and memory reduction. The proposed 

module was tested for datasets and networks mentioned in section 3.2.1 for three different types 
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of quantization mentioned in section 3.1.1. The proposed module is time efficient and returned the 

optimal parameters efficiently with respect to user requirements based on mean squared error. The 

estimated parameters were then used to quantize actual weights of CNN model and mean squared 

error with user requirements was obtained. The absolute error between the originally computed 

MSE and MSE computed using GA was determined for each quantization type. The highest 

average absolute error calculated between two MSEs is of 0.038.  
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Chapter-4: Real-Time Hardware decoder for data decompression in CNNs 

The proposed de-compression decoder design is based on the Canonical Huffman Coding, which 

is a subset of the Huffman Coding having numerical sequence property. The canonized 

compression of weights is beneficial for our decoder. In basic Huffman, the coding decoder must 

pass through an entire Huffman tree for decoding an encoded symbol resulting in the utilization of 

several LUTs increasing memory of the decoder. In contrast, the canonical Huffman decoder only 

requires a number of bits to generate decoded symbols. 

4.1 The Proposed Design 

 To understand the overall framework of our proposed decoding mechanism let us consider a 

maximum 8-bit code length. Our process starts with taking an 8-bit input from a sequentially 

sliding input stream. A best way to decode a data is in a serial manner or bit by bit, However, this 

is not favorable choice as it may take more than one clock cycle to decode the data. The first goal 

is to avoid this limitation in order to do so data is processed using an 8-input multiplexer in rising 

bit order. The next goal is to verify the encoded symbol for this purpose a single LUT is used.  As 

mentioned before, in canonical Huffman, decoder only requires bit information to decode the 

encoded data. Therefore, we have used a single LUT containing bit information of each encoded 

symbol.Once the code is verified, it is used to calculate the address of the memory containing 

decoded symbols. Meanwhile the input is updated accordingly. The process is carried out till all 

weights are decoded in the encoded data. Figure 20 provides the overall architecture of our 

proposed design. The decoder contains two main sub-modules. Check_valid used to test the 

validity of the data and address_generator to calculate the memory address of decoded symbol. 

The hash tables are used for storing the decoded weights.  

 

Figure 20 The Overall Architecture of proposed Module 
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4.1.1 LUT valid 

LUT_valid is a simple Look-Up Table (LUT) consisting of two columns one representing the 

address of LUT and the second column representing the number of bits for each codeword. 

LUT_valid inputs codeword as an address/index, implying that each codeword is unique doesn’t 

repeat. In canonical Huffman encoding, it is very unlikely for a codeword to repeat with different 

bit lengths. An example of LUT_valid is represented in Table 12. 

Table 12: The representation of valid LUT 

Code / Index Number of bits 

(length) 

0000 3 

0001 3 

0010 3 

0011 0 

0100 0 

0101 0 

0110 4 

0111 4 

1000 4 

1001 4 

1010 4 

1011 4 

1100 4 

1101 4 

1110 0 

1111 0 
 

Length zero in LUT_valid represents that code is invalid and doesn’t exist. 

4.1.2 Check Valid 

Check valid determines the validity of input code using simplified LUT_valid. The internal 

Framework of check_valid module can be seen in Figure 21. 

First Input-Stream of 128bits is loaded from the encoded memory. Each stream in encoded 

memory is set in a way that all input streams contain maximum N symbols i.e., 24 maximum codes 

in our case. At initial clock cycle MUX 0 updates the IR register with input-stream controlled by 

sel_0 signal. Control signal sel_0 is initially set to 0 and then it is set to 1 to take input from MUX3. 
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At the Nth-1 state it is set to 0 so that at next coming IR can be updated with new input-stream 

without any stall cycles. 

 

Figure 21: The Internal Structure of Check Valid Module 

IR register provides the input to MUX 1 which is an 8x1 multiplexer controlled by sel_p. Mux 1 

takes first 8-bits saved in IR as input. Taking its lowest single bit as first input and increasing the 

bit size by 1 for its other. For example, MUX 1 first input will be IR [0] containing single bit and 

incrementing the bit size for each input, its last input will be IR [0:7] containing 8 bits. The output 

of MUX 1 is treated as memory address to LUT_valid. The data value at that address is noted and 

send to the input of AND gate to compare it with the output of sel_p + 1. If the inputs at AND are 

same, it will output 1 else 0. The output of AND controls MUX 3 and MUX 4. 

Simultaneously IR register is shifted left using sel_p+1 connected to one of MUX 3 inputs. Once 

the input gets verified by AND gate it enables control signal of MUX 3 and MUX 4 to 1. MUX 3 

outputs the shifted IR by sel_p+1 updating in IR for next clock cycle. While MUX 4 outputs the 

output provided by MUX1. MUX 4 output is updated to out register with positive clock cycle. 

This output is also directly connected to address generator to neglect latency cycles. This process 
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is repeated for all inputs of MUX 1 with a single clock cycle. It is to be noted that AND gate, 

Adder and Shift-Left module are working with respect to sel_p. 

4.1.3 Address Generator 

Address Generator uses the codeword input to compute the address of the hash table and hash 

index. These hash tables contains the decompressed weights sorted using the hash function during 

compression. For determining the address of the hash table and hash table index codeword is used 

as a key in the hash function. We have used single and multiple hash tables for our work. For single 

hash function only memory address is to be generated. While for multiple hash tables, table address 

is also required with memory address as shown in Figure 22(a) and (b). 

 

 

Figure 22(a): Multiple Hash Tables 

 

 

Figure 22(b): Single Hash Table 

 

4.1.3.1 HASH Functions 

Hash functions eliminates the need of searching dictionary which is time taking. Hash functions 

are defined differently with respect to number of elements to be stored in them with respect to 

number memory locations available. Generally, the number of memory locations selected using 

following equation 16.  

 Needed Locations = f x 2.6  (16) 

Where f represents the number of unique codes or symbols present in coded file. For our 

experimentation, we determined the equations for hash function for two cases for a number of 

symbols (N) 32 and 48 respectively. Hash equations are determined in such way that no memory 

location of a symbol overlaps with memory location of another symbol. To estimate the Hash 

equation efficiently following parameters are used: 
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• M: No. of Memory Locations in a single Hash Table 

• T:  No. of Hash Tables 

• f:   No. of unique codes 

• P: randomly generated prime number 

The hash equations are determined for multiple and single hash tables for both cases are 

represented in Table 13. 

Table 13: The Equation determined for hash function for the efficiently placement of decompressed weight 

Hash Equations 

Case Equation For Single Hash Table  

N= 32 Hash Memadr = Codeword % M  (17) 

N = 48 Hash Memadr = Coderword % (f /2)% M  (18) 

 Equation For Multi Hash Table  

N = 32 Hash Tableadr = (Hash Memadr + p × bitsize) %  T         (19) 

N = 48 Hash Tableadr = (Hash Memadr × bitsize % p ) %  T  (20) 

  

4.2 Experiments and Results 

This section analyzes the performance of our proposed architecture. We implemented our 

architecture using HDL Verilog in Xilinx Inc 14.7 with the target device set as XC7A200T of 

family Aritx7. 2Kb memory space is required for storing our LUT (LUT_valid) as it contains 256 

memory locations, to store bit information of maximum 8bit symbols. We experimented with our 

design using single and multiple hash memories. 

4.2.1 Dataset and CNN Model 

To verify its efficiency in decoding we tested our decoder for decoding weights of a simple CNN 

model designed in python 3.8 using TensorFlow library. The model consists of single 

convolutional layer with 28 filters of size 3x3 followed by a maximum pooling layer.  It contains 

one fully connected dense layer with 100 nodes and one output layer with SoftMax activation for 
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the testing of MNIST dataset [31].  The said model achieved 97.8% accuracy with 97MB size of 

its weights. The structure of CNN model is shown in Figure 23. 

 

Figure 23: CNN Model Defined for testing our decoder 

For testing our decoder, CNN weights were quantized, to 16-bits with N=32 and N=48 levels 

with minimal loss in accuracy. Table 14 shows the accuracy compression of quantized weights 

with original weights and memory size of original weights with encoded weights. 

Table 14:Accuracy and Memory Comparison of Original and Encoded CNN weights 

CNN Model Accuracy Memory 

Original Model 97.87 % 9.7 MB 

Quantized Model (N = 32) 97.74% 0.96 MB 

Quantized Model (N = 48) 97.77% 0.97 MB 

 

These quantized weights are passed to Canonical Huffman encoder, designed in python to generate 

a Lookup table stored in LUT_valid. Then using the Hash equations mentioned in Table 13 we 

updated Hash memories. For decompression, encoded weights were stored in single-dimensional 

arrays of 128 bits passed to the input stream of our proposed decoder once all 128 bits are processed 

the next input is updated without having a stall cycle.  
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4.2.2 Memory Requirements for Single and Multiple Hash Tables 

We calculated the memory requirements for both cases for using single and multiple hash tables 

containing memory locations of 32-bit. The required memory for both cases can be seen in Table 

15. 

Table 15: Comparison of Hash Table Memory for Single and Multiple Tables 

Memory Requirement 

Case T M Req Storage 

N: 32 1 128 4KB 

3 16 1KB 

N: 48 1 128 4KB 

5 16 2KB 

 

For saving the decompressed weights at unique memory locations we require 128 memory 

locations of 32 bit for single hash table. While only 16 memory locations per table are required in 

case of multiple hash tables i.e., total 48 memory location for case N=32 and total of 80 memory 

location for case N=48. Hence, we can say that using small chunk memories instead of using a 

single chunk can decrease our memory requirement. 

4.2.3 Resource Utilization  

Resource utilization for both scenarios were noted for target device XC7A200T-3fbg484 of 

family Aritix 7 in Xilinx. Inc 14.7 are shown in Table 16. 

Table 16: Resource Utilization for Proposed Framework 

Resource Utilization 

Device: 
XC7A200T 

Slice Reg Slice LUT LUT 

BFFs 
IOBs 

N = 32 415 481 490 158 

N = 48 410 456 467 158 

 

Our decoder only uses 1% of the system slice registers providing us efficient results with decoding 

a single weight within one clock cycle with maximum frequency of 408.97MHz. The latency of 
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system is determined using number of latent cycles into maximum clock period i.e., 2.445ns, 

408MHz. 

4.2.4 Xilinx Simulation Results   

Results for both cases were simulated on Xilinx. The encoded weight files were stored in an 2D 

array each row of that array is of 128bits of data containing 24 symbols. Hence after decoding 23 

symbols of data perfectly the signal is sent to MUX 0 to update the IR with next input stream 

present in the weight array. So, when 24th clock cycle occurs the IR gets updated without creating 

any hindrance in the system performance.  

Xilinx Simulation results for both cases are shown Figure 24(a) and 24(b). Proposed Framework 

efficiently decodes a single element within one clock cycle. 

 

Figure 24(a): Xilinx Simulation of proposed decoder, decoding CNN weight for case N = 32 

 

Figure 24(b): Xilinx Simulation of proposed decoder, decoding CNN weight for case N = 48 

4.2.5 Comparison with Literature  

It is noted that the proposed design can efficiently decode a single weight within single clock cycle. 

It only requires single LUT instead of multiple LUTs used in literature. It lessens the memory 

storage required to store multiple LUTs. Multiple hash memories proved effective in reducing 

memory requirements and access time. We compared our proposed work with pervious decoders 
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and concluded that our decoder is much simpler and easier to implement and requires less amount 

of system resources as shown in Table 17. 

Table 17: Comparison with Resource Utilization and Maximum Frequency 

Resource Utilization Comparison 

Decoders Device Slice Reg Slice LUT Max. Clock 

Frequency 

 

Proposed 
XC7A200T 415 481 408.97MHz 

Virtex 5 408 424 270.033MHz 

XC7K325T 414 614 409.10MHz 

Canonical Decoder XC7K325T 8044 N/A 50 MHz 

Huffman Decoder Virtex 5 179 N/A 263.2 MHz 

Parallel Huffman 

Decoder  
Altera RC240-3 N/A 1145 11.54 MHz 

Alter RC240-4 N/A 1145 9.91 MHz 
 

4.3 Chapter Summary 

We designed an efficient Canonical Huffman decoder in Xilinx 14.7 using XC7A200T device to 

decode 8-bit symbols. This decoder can be integrated to machine learning algorithms implemented 

to embedded devices. The proposed framework efficiently decodes a sisngle weight within one 

clock cycle using 1% of system resources. For our experiment we assumed variable length code 

with highest 8-bit length to implement our design. We only had to store N=32 and N= 48 memory 

locations in LUT valid. But in cases where we have a lot more symbols and symbols with bit length 

greater than 8-bit it can enhance the memory requirements to store our LUT valid. Hence 

optimization strategies can be developed to further enhance our lookup table, so it does not get 

problematic to store in memory if it contains symbols more than 8-bits. 
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Chapter-5: Automated tool for the selection of best approximate units 

(multipliers) in CNNs 

5.1 Proposed Automated Tool 

The proposed Framework is specifically designed for utilizing approximate multipliers in CNNs. 

For this purpose, we used an open-source tf-approximate library which is an extension of 

TensorFlow in python. This library enables approximate computations at Convolutional layers of 

any defined CNN model. This library does not allow approximate computations at Dense layers. 

According to research, convolutional layers are more computationally extensive in comparison to 

dense layers hence the approximate computation is preferred only at convolutional layers. The 

proposed framework for this module is also based on GA and is shown in Figure 25. The genetic 

algorithm requires a set of approximate multipliers, tf-approximate library, and user requirements. 

Hence, before jumping into the internal working of GA let’s discuss the approximate multipliers 

used for our problem and tf-approximate library. 

 

Figure 25: The overall framework of proposed algorithm 

5.1.1 tf-approximate library 

The tf-approximate library extends the TensorFlow library and is provided by V.Mrazek [36][37]. 

It allows approximate computation in Convolutional layers using FakeApproxConv2D. This layer 

is implemented with reduced precision (usually 8 bits) using approximate units (multipliers). The 

approximate convolutional layer inputs an approximate multiplier defined by a binary LUT as a 

parameter. Hence for the approximate CNN inference, simply switch the original Conv2D by the 

FakeApproxConv2D to perform the approximate calculation at convolutional layers as shown in 

Figure 26. 



49 
 

 

Figure 26: The implementation of approximate layer in python keras  

In above mul_map_file is an argument which inputs binary file of specified multiplier to be used 

in approximation. The said library is available at [36][37]. This library requires following 

prerequisites to build the library 

1. CUDA SDK (10.0+) 

2. TensorFlow (2.2.0-) 

3. Ubuntu/Debian System 

In our framework this library is used in fitness function for the estimation of accuracy loss. 

5.1.2 Approximate Multipliers 

The approximate units used in this research are EvoApprox8b provided by V.Mrazek [38]. This 

approximate library contains a total 500 dominated 8bit signed approximate multipliers. The 

EvoApprox8b library provides Verilog, MATLAB and C models of all approximate circuits. The 

developers of these multipliers have tested them using Cadence Encounter RTL Compiler and 

TSMC 180 nm and 45nm library and following parameters and error metric were estimated shown 

in Table 18. 

Table 18: Represents the parameter and error metrics provided for the approximate multipliers 

Parameters Provided Error Metrics 

Area MAE - mean absolute error 

Power MSE - mean squared error 

Delay MRE - mean relative error 

 
WCE - worst case error 

 
WCRE - worst case relative error 

 
EP - error probability 

 
VAE - variance of absolute error 
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5.1.3 Datafile 

Information used by GA for fitness calculation is shown in Table 19 saved in “MUL DATA” file.  

Table 19: The imformation content in a “MUL Data” file 

MULIPLIER INFORMATION 

BINARY NAME MULTIPLIER NAME AREA (180nm) POWER (180nm) 
 

We have assigned a binary name to all multipliers with respect to their index values these binary 

names are to be used in population modification process to determine the parents and their index. 

For our work we have used area and power parameters provided for 180nm at [38], for approximate 

area and power estimations in GA. 

5.1.4 Working of Proposed GA tool 

The workflow of the proposed GA is represented in Algorithm 7. At the first iteration, it will use 

the population initialization function to initialize the population and pass it to the fitness function 

fitness_0. While in the next iterations it will pass the modified population to fitness function 

fitness_1. The population is modified with respect to their individual fitness values. In order to 

terminate the GA two of one condition must be satisfied, the MSE value of the current population 

is lesser than the user-defined threshold. Second, the number generation also known as loop 

iteration is completed. If these conditions are not satisfied the GA will keep on working. 

Algorithm 7: Proposed Genetic Algorithm 

 Input: size , er , ar, pr , gen, thresh , α, β, 𝛾, mul_dt, tf-approx 

Output: F_ind, Mse 

Procedure: 

t ← 0 

Po ← initialize(size, mul_dt) 

While(t < gen) do: 

if( t == 0) do: 

    F_indt,Mset ← Fitness_0(Po , er , ar pr, α, β, 𝛾,mul_dt, tf-approx)  

Else do: 

     F_indt,Mset ← Fitness_1(Po , er , ar pr, α, β, 𝛾, indx, prt,mul_dt, tf-approx) 

if(Mset <= thresh)do: 

   break 

indx , prt ←  Modification(F_ind, Pot) # index and parent 

          Pot[indx] ← prt 

          End 

Return  F_ind, Mse 

End procedure 
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5.1.4.1 Inputs needed by Genetic Algorithm 

Following inputs are required by our proposed tool 

1. Population Size required to initialize population (size) 

2. User acceptable error in accuracy of CNN model (er) 

3. Approximated area required by user (ar) 

4. Approximated power required by user (pr) 

5. Number of generations (gen) 

6. Threshold (thresh) 

7. Preference variables (α, β, 𝜸) 

8. Tf-approximate library (tf-approx) 

9. Multipliers datafile (mul_ft) 

5.1.4.2 Output provided by Genetic Algorithm 

Our proposed tool provides following outputs 

1. Fitness of final population (MSE) 

2. Fitness of each individual in final Population (Find) 

3. Final Population (Po) 

5.1.4.3 Population Initialization 

As mentioned above the population is initialized with respect to the type of problem the user is 

dealing with. In our situation, we want to determine the best set of approximate multipliers for a 

certain CNN model. Hence to initialize our population we need to select random multipliers from 

the data file. As we have given all multipliers an index number which can be represented with an 

integer value. So, we can generate an array of random integer values of population size (m). These 

generated values will represent the index of the approximate multiplier to be used in the data file. 

This tool is tested for two different cases. The First provides convolutional layers with the same 

multipliers and the second provides all convolutional layers with different multipliers in a CNN 

model. Population initialized for both cases is represented in Table 20. 
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Table 20: The structure of initial population array 

Case 1:  Different Multipliers for all 

Convolutional layers 

Case 2: Same Multipliers for all 

Convolutional layers 

Population = array([c1,…,cn] ,……., [cM,….,cM]) Population = array([c1], [c2],……., [cM]) 

 

Where “c” defined convolutional layers. 

5.1.4.4  Fitness Evaluation  

The proposed tool uses two fitness functions “Fitness_0” and “Fitness_1”. At initialization, the 

population is processed through “Fitness_0” and then for all generations, itis processed through 

“Fitness_1”. This is done to avoid unnecessary calculations taking a lot of time. A fitness function 

will call the tf-approx library to calculate approximate accuracy at runtime, inferring a CNN model. 

Hence, fitness_0 evaluates the model accuracy for all members in inputted population, while 

fitness_1 only evaluates the accuracy for modified members updating the previous individual 

fitness list at modified indexes only. 

5.1.4.4.1 Fitness Evaluation Parameters 

Fitness function is determined based on following three paraments 

1. Inference Error (Ye) 

2. Approximate Area (Ya) 

3. Approximate Power (Yp) 

As already discussed, before we estimate the approximate accuracy using the tf-approximate 

library, this is subtracted from the original accuracy of the model to determine inference error. 

While area and power are calculated using equations 21 and 22. 

𝐴𝑟𝑒𝑎 =  ∑
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟 𝑐

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠

𝑁𝑜.𝑜𝑓 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟𝑠 

𝑐=0

× (𝐴𝑟𝑒𝑎 𝑀𝑢𝑙𝑡[𝑐]) 

  

(21) 

𝑃𝑜𝑤𝑒𝑟 =  ∑
 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟 𝑐

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠

𝑁𝑜.𝑜𝑓 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟𝑠 

𝑐=0

× (𝑃𝑜𝑤𝑒𝑟 𝑀𝑢𝑙𝑡 [𝑐]) 

  

(22) 
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Where c represents convolutional layers. Total parameters represent the sum of parameters in all 

convolutional layers. After all, parameters are estimated, we determine the percentage absolute 

error for all these user-inputted required parameters with respect to reference variables. 

• Preference Variables  

Preference variables are used tell the proposed algorithm which user defined parameter is 

critical. In this case we have three preference variables representing one of each evaluation 

parameter (α, β, 𝜸). For example, if accuracy loss is more critical than area and power then 

weight given to α will be greater than β and 𝜸 variables. The sum of all three preference 

variables α, β and 𝜸 is 1. 

Now we know all estimation parameter and formula lets discuss the internal working of Fitness 

function given in Algorithm 8. 

Algorithm 8: Fitness_0 

Input: Po, Er, ar, pr, datafile, α ,β , 𝛾 ,tf-approx 

Output: FP, F_ind 

Procedure: 

t ← 0 

F_ind ← 𝜑 

While(t < length (Po)) do: 

Error = tf-approx-inference (Po) 

Area =  ∑
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟 𝑐

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠

𝑁𝑜.𝑜𝑓 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟𝑠 (𝑐)
0 × (𝑑𝑎𝑡𝑎𝑓𝑖𝑙𝑒[𝑎𝑟𝑒𝑎][𝑐])             (21) 

Power = ∑
 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟 𝑐

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠

𝑁𝑜.𝑜𝑓 𝐶𝑜𝑛𝑣 𝐿𝑎𝑦𝑒𝑟𝑠 (𝑐)
0 × (𝑑𝑎𝑡𝑎𝑓𝑖𝑙𝑒[𝑝𝑜𝑤𝑒𝑟][𝑐])        (22) 

Et ← abs(Error – Ee) × α #abs error 

At ← abs(Area – ar) × β #abs error 

Pt ← abs(Power – pe) × 𝛾  #abs error 

F_ind U (Et,Pt,At) 

End 

FP = (sum(E) + sum(P) + sum(A) )
1

𝑛
  #mse                                                                           (23)                                                                  

Return FP, FP_ind 

End procedure 
 

We already have discussed the calculation of each individual (F_ind). Final Fitness (FP) for entire 

population is determined using MSE at equation (23) in above pseudocode. Fitness_1 uses similar 
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equations and code the only change is that is only calculates the fitness for modified individuals 

and update F_ind at that index and determine FP using same formula. 

5.1.4.5  Population Modification 

Population Modification is a process of selecting two or more individual to generate new offspring 

and updating them into current population using following three procedures: 

1. Parent Selection  

2. Crossover  

3. Mutation 

These procedures are reused from section 3.1.4.6. It takes binary label are input which represents 

the index of multiplier in datafile. After modifying these binary labels, we convert them to decimal 

and pick multipliers at that indexes in datafiles and replace them with selected parents. 

5.2 Experimentations and Results 

In this section, the performance of proposed module for H/w approximation (approximate 

multipliers) is being evaluated. The proposed genetic algorithm is implemented using Python 3.8 

and cuda (11.1) for NIVIDA GPU on LINUX operating system. We performed experiments with 

different user requirements of accuracy loss, area, power along with preference variable (α, β and 

𝛾) and threshold values. The algorithm is tested for models and datasets defined in section 3.2.1. 

5.2.1 Performance Evaluation 

To determine the performance of our proposed optimizer we estimated the best approximate 

multipliers using following three cases shown in Table 21 for same multipliers at each 

convolutional layer. While the cases shown in Table 23 were used to evaluated when different 

multipliers are used for all convolutional layers in a model. For this we integrated tf-approximate 

library discussed in section 5.1.1 with our proposed algorithm to make accurate calculation for 

accuracy loss. While the relative area and power is calculated using equation (21) and (22) in 

section 5.1.4.4 

5.2.1.1 Evaluation Results for same of multiplier at each convolutional layer 

For testing the proposed framework, we assumed following three user cases for same multiplier at 

each convolutional layer shown in Table 21.  
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Table 21: User cases for the performance evaluation of proposed module 

Parameters Case 1 Case 2 Case 3 

Iterations  50 100 200 

Size  10 10 10 

User Error  0.01 0.1 0.09 

User Area  350.4 350.6 400.5 

User Power 230 230 180 

Alpha  0.6 0.6 0.6 

Beta  0.2 0.3 0.2 

Gamma 0.2 0.1 0.2 

Threshold  0.08 0.1 0.05 
 

5.2.1.1.1 Experimentation Results 

The following Table 22 shows the results of outputted fitness values by proposed model for our 

final population of best multipliers. 

Table 22: MSE and iteration for nest population of multipliers 

Same Multipliers for All Convolutional Layers 

Model Case 1 Case 2 Case 3 

 iter fitness iter fitness iter fitness 

LeNet 5  

(MNIST) 

21 0.07932563151 100 0.0997183078 19 0.0976280627 

Cifar-Quick  

(CIFAR 10) 

50 0.20852299828 100 0.1982739601 200 0.1763754142 

VGG-16 

(ILSVR 2012) 

50 0.20211111391 100 0.1932175198 200 0.22248893164 

 

We also plotted graphs showing the convergence of fitness value, MSE of area and power of the 

population at current iteration with respect to user requirements. Case one graphs are plotted for 

LeNet-5 Network classifying MNIST dataset shown in Figure 27(a) (b) and (c). 
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Case2 graphs are plotted for Cifar-Quick Network classifying Cifar10 dataset shown in Figure 

28(a), (b) and (c). 

Figure 27(c): Convergence of MSE of Power with iterations 

Figure 28(b): Convergence of MSE of Area with 

iterations 

Figure 27(b): Convergence of MSE of area with 

iterations 
Figure 27(a): Convergence of Fitness values with 

iterations  

Figure 28(a): Convergence of Fitness values with 

iterations 
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Lastly Case 3 graphs are plotted for VGG-16 Network classifying ImageNet dataset in Figure 

29(a), (b) and (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 22 it is noted that CNN networks with more parameters and layers classifying complex 

datasets are likely to take more time to find the optimal approximate unit. As discussed in section 

1, approximate multipliers introduce an error in the multiplication so for complex dataset only 

certain approximate units works properly with minimal loss in accuracy. 

Figure 28(c): Convergence of MSE of Power with 

iterations 

Figure 29(c): Convergence of MSE of Power with iterations 

 

 

Figure 29(b): Convergence of MSE of Area with 

iterations 

Figure 29(a): Convergence of Fitness values with 

iterations 
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5.2.1.2 Evaluation Results for Different of multiplier at each convolutional layer 

For testing the proposed framework we assumed following three user cases for different multipliers 

at each convolutional layer shown in Table 23.  

Table 23: User cases for the performance evaluation of proposed module 

Parameters Case 1 Case 2 Case 3 

Iterations  100 200 150 

Size  10 10 10 

User error  0.1 0.25 0.05 

User area  450.4 410.4 480.5 

User Power 230 210 250 

Alpha  0.6 0.4 0.7 

Beta  0.2 0.3 0.15 

Gamma 0.2 0.3 0.15 

Threshold  0.08 0.1 0.05 
 

5.2.1.2.1 Experimentation Results 

The Table 24 shows the results of outputted fitness values by proposed model for our final 

population of best multipliers. 

Table 24: MSE and iteration for best population of multipliers 

Different Multipliers for All Convolutional Layers 

Model Case 1 Case 2 Case 3 

 iter fitness iter fitness iter fitness 

LeNet 5 

(MNIST) 

51 0.07932563151 174 0.0997183078 19 0.0476280627 

Cifar-Quick 

(CIFAR 10) 

100 0.20852299828 34 0.0982739601 150 0.1763754142 

VGG-16 

(ILSVR 2012) 

100 0.20211111391 124 0.0992175198 150 0.22248893164 

 

We also plotted graphs showing the convergence of fitness value, MSE of area and power of the 

population at current iteration with respect to user requirements. Case 1 graphs are plotted for 

LeNet-5 Network classifying MNIST dataset shown in Figure 30(a), (b) and (c). 
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Case2 graphs are plotted for Cifar-Quick Network classifying Cifar10 dataset shown in Figure 

31(a), (b) and (c). 

 

 

Figure 30(b): Convergence of MSE of Area with 

iterations 

Figure 30(c): Convergence of MSE of Power with iterations 

Figure 31(a): Convergence of Fitness value with 

iterations 
Figure 31(b): Convergence of MSE of Area with 

iterations 

Figure 30(a): Convergence of Fitness values with 

iterations 
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At Last, we plotted graphs for VGG-16 Network classifying ImageNet dataset for case 3 shown 

in Figure 32(a), (b) and (c). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31(c): Convergence of MSE of Power with iterations 

Figure 32(a): Convergence of Fitness value with 

iterations 
Figure 32(b): Convergence of MSE of Area with 

iterations 

Figure 32(c): Convergence of MSE of Power with iterations 
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5.2.2 Final Discussion 

In the previous section, we analyzed the results given by our module for the best set of multipliers. 

From Tables 32 and 30 we can see that CNN with more parameters and complex datasets needed 

a greater number of iterations to find the best result based on the user-defined cases. It is noted 

that LeNet-5 needs a greater number of iterations compared to VGG-16 and Cifar-Quick for case 

2 from Table 31. This occurred as LeNet-5 is a simple network compared to VGG-16 and Cifar-

Quick and is classifying the MNIST dataset which is also much simpler than the ImageNet dataset 

and Cifar-10. So, introducing extreme approximation in LeNet-5 would not affect its accuracy 

much compared to the other two networks.  

The user error in case 2 of Table 31 is 0.25 is 25% of the error acceptance rate but LeNet5 accuracy 

loss is lesser than this error rate hence the MSE for LeNet-5 increases requiring more iterations to 

reduce the certain MSE. On other hand, VGG-16 and Cifar-Quick have greater accuracy loss. 

Hence, we can say that the accuracy loss due to approximations in certain CNN algorithms really 

depends on the complexity of the algorithm and the dataset it's working on. 

5.3 Chapter Summary 

This chapter deals with the optimization made at H/W levels specifically using approximate 

multipliers. The designed module estimates the best multipliers for the CNN model based on user 

requirements. The proposed module is based on GA utilizing the tf-approx library mentioned in 

section 5.1.1. for the inference of the CNN model using an approximate multiplier within python. 

The fitness is calculated based on user required area, accuracy loss, and power. The module was 

tested for datasets and networks mentioned in section 3.2.1. The module was able to identify the 

best multipliers for all CNN networks based on user-defined requirements. The said module is 

time efficient and is designed to avoid the inference of repeated multipliers in population to reduce 

execution time using two different fitness functions.  
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CHAPTER 6: CONCLUSION & FUTURE WORK 

6.1 Conclusion 

In this study, we proposed multiple tools for the optimization of CNN specifically in FPGAs. The 

first module deals with data compression of CNN weights to reduce memory requirements in 

FPGA. For our module, we used quantization and Canonical Huffman Encoding to compress the 

weights. The proposed tool efficiently determines the optimal parameters for Quantization i.e., N-

levels to quantized weights according to user requirements without performing any inference in 

the CNN model. It makes use of regression equations to determine the effect of N-levels on 

accuracy and memory for certain CNN models. For verification of our proposed module, the 

estimated parameters were used to quantize CNN pre-trained weights and determine the accuracy 

loss and memory being saved. Then these actual values were used to determine the actual fitness 

of the estimated parameters. An absolute error was calculated between original MSE and estimated 

MSE. The highest average absolute error was 0.038 for non-uniform quantization with different 

N-levels for convolution and dense layers. 

The second module is designed to decompress the compressed data in an FPGA. The proposed 

decoder uses only a single LUT to verify the codeword and manages to decode a single code within 

one clock cycle. The proposed design only uses 1% of system resources with a maximum 

frequency of 408.97MHz. The proposed decoder performs better when compared with the 

previously designed decoders. 

The third Module deals with the optimization made at H/W levels specifically using approximate 

multipliers. An efficient optimizer tool for determining best multipliers units for a CNNs model. 

The proposed module is time efficient and returns the multipliers efficiently with respect to user 

requirements based on mean squared error. The tool is designed to avoid the inference of repeated 

multipliers in population to reduce execution time. 

6.2  Future Work 

The future for this research domain has following significant directions based on the modules 

6.2.1 Approximate Computing 

In Tool 1 a strategy can be developed to enhance the results of the regression. Regression equations 

can be more optimized by adding the dataset information that is to be used in the CNN model. 
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Further optimization of this regression equation can be done by designing some optimizer such as 

in module-1 to determine the best coefficients and intercept to reduce regression error. 

While optimization tools can further be enhanced for determining the parameters of other used 

software and hardware approximate computing techniques and using different methods for 

population modification. 

6.2.2 Hardware Decoder 

In the future, we will integrate this framework with complex CNNs and other machine learning 

applications.  A strategy can be developed to optimize LUT_valid so it does not get problematic 

to store in memory if it contains symbols more than 8-bits.  
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