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ABSTRACT 

 

This report presents a unique approach to Structural Health Monitoring (SHM) using Artificial 

Neural Networks (ANNs) and Building Information Modelling (BIM), designed to provide 

real-time damage indices as indicators of structural health. First and foremost, this research is 

aimed at developing resilient infrastructure in regions susceptible to natural calamities, 

specifically earthquakes and floods. The approach presented herein integrates advanced sensor 

technology and machine learning to innovate traditional SHM methods. 

The study first explores the data acquisition process, where an ADXL345 sensor is employed 

to collect acceleration data from a structure. The raw data undergoes various stages of feature 

extraction including detrending, filtering, Fourier Transform, frequency extraction, and 

calculation of mode shape coefficients. The processed data then feeds into an ANN model, 

which predicts the damage index, an essential parameter in SHM. 

The validity and robustness of the proposed methodology were confirmed through 

comprehensive validation, involving a case study of a bridge. Furthermore, the SHM system's 

integration with Autodesk Revit software allows for intuitive visualization of damage indices 

on the building model, thus paving the way for informed decision-making. 

In summary, this research has laid down a strong and versatile foundation for real-time SHM. 

While the focus in this research has been restricted to buildings and bridges, the developed 

methodology and system are adaptable to other structures, marking a significant advancement 

in the future of SHM. 

Keywords: Structural Health Monitoring, Artificial Neural Network, Damage Index, Mode 

Shape Coefficients, Real-time Monitoring, Post-Disaster Damage Assessment, IoT in 

Structural Engineering, Building Information Modelling (BIM). 
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CHAPTER 1 

 INTRODUCTION 

1.1 Background 

Civil structures and infrastructures have a significant impact on the economy and are essential 

for the daily lives of people worldwide. However, these assets often experience early damage 

and approach the end of their lifespan. Replacing such structures would require a considerable 

amount of resources in terms of cost and labour, which may exceed the available financial and 

human resources (Balageas, Fritzen and Güemes, 2010). Furthermore, natural disasters such as 

earthquakes and floods can damage these structures. In the time of damage, there is a need for 

quick decision-making on behalf of the authorities as they need to find out if the structures are 

habitable or not and if displaced people can be allowed to return. 

Visual Inspection is a commonly used method as a part of this process. However, it is labour-

demanding and time-intensive as field staff are required to examine each item on the checklist 

individually. Often, this involves dismantling secondary components to reach the load-bearing 

structural elements (Liu, D. et al., 2019; Balageas, et al., 2010). Additionally, this method lacks 

efficiency, is infeasible, and does not provide quantifiable details about internal defects within 

the structural member. Furthermore, the detection of damage depends significantly on the 

judgement of the inspector. The issue with such techniques is that they result in unpredictability 

and unreliability when assessing the health of a structure (Ghosh et al., 2020). 

Structural health monitoring (SHM) is a field of science that focuses its efforts on evaluating 

and monitoring the integrity of a structure of interest. It consists of implementing a scheme of 

monitoring the structure, for example, using periodically spaced dynamic response 

measurements, extracting sensitive damage-related features from these measurements, and 

then performing statistical analyses to determine the system's actual state of health (Brownjohn, 

2006). 

While local Non-Destructive Evaluation (NDE) tools have traditionally been used for 

monitoring, recent research has focused on global monitoring using permanently installed 

sensors. This has resulted in increased interest in SHM due to its potential for significant life-

safety and economic benefits (Farrar and Worden, 2007). 
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1.2 Research Significance 

Manufacturing organizations around the world want to detect damage in their products at the 

earliest possible instance. To do that, these organizations have to perform one or another form 

of SHM and are driven by the prospective life-safety and economic benefits of this technology. 

SHM has the potential to reduce the unpredictability attached with construction process and 

notably lessen the economic and human losses incurred during a seismic activity. In addition 

to that, many components of the technical infrastructure are nearing the end of their actual 

design life. Due to financial constraints, the use of these structures is exceeding their design 

life and, in this scenario, the ability to constantly monitor these structures is becoming 

extremely crucial. 

Almost all current structural maintenance is being done in a time-based mode. With SHM, it 

will become possible for the current maintenance practices to evolve into cost-effective 

condition-based maintenance philosophies. This will entail a sensing system that notifies the 

operator that damage has been detected in a structure. However, life-safety and economic 

advantage will only be gained if the proposed SHM provides sufficient warning in a timely 

fashion so that corrective measures can be taken before damage turns into failure. This requires 

complicated monitoring hardware to be attached to the system and an equally compatible data 

analysis process to interrogate the structure. It is also important that the monitoring system 

being used is at least as accurate as the structure or the target system. 

Apart from this, SHM has the potential of increasing the time intervals between scheduled 

maintenance and enable the equipment to stay in the field for a longer period and generate 

revenue in the time it would otherwise take for it to be taken back to the manufacturer for 

inspection.  

The topic of SHM is of interest to a wide range of industries and government agencies. Several 

technical disciplines, however, need to be integrated to properly address SHM problem. 

Finally, the initiation of specialized courses on SHM technologies and methodologies is 

attestation to the keenness expressed by the industry. 

1.3 Problem Statement 

Pakistan has been a victim of multiple natural disasters in the past including floods and 

earthquakes. Rendered homeless, millions were affected. Current damage detection techniques 

include visual inspections. However, visual inspections are time-consuming and costly, 
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therefore they are not suitable for post-disaster scenarios (Liu, D. et al, 2019). Hence, there is 

a need to develop a technique that makes post-disaster damage detection quick and cost-

effective. 

The aim of this research is to develop an accurate and efficient real-time SHM system using an 

ANN-based machine learning model integrated with Building Information Modelling (BIM). 

The system will be designed to monitor multi-storey buildings and provide real-time 

visualization for potential structural damage or failure. The research will contribute to the 

development of cost-effective and reliable SHM systems that can improve infrastructure safety, 

reduce maintenance costs, and improve disaster response. 

1.4 Objectives 

There are three main objectives of this study. These are: 

• To develop an integrated solution that combines BIM and machine learning techniques 

for real-time damage detection and visualization. 

• To explore the potential of accelerometer data as input for the machine learning 

algorithm to accurately detect and predict damage in buildings. 

• To investigate the effectiveness of the proposed solution in detecting and visualizing 

different types of damage in different building materials and structures. 

1.5 Scope of Work 

The research aims at the development of a cost-effective prototype that includes an end-to-end 

solution for structural health monitoring of concrete buildings. Data acquisition will be carried 

out using accelerometers and will be transmitted and processed using microprocessors 

connected to WiFi. The identification of damage will be carried out using an ANN-based 

machine learning model. Finally, the damage will be visualized in the form of highlighted 

elements on the Building Information Model on Revit. 

1.6 Overview of Chapters 

Chapter 2 – Literature Review offers a comprehensive overview of existing knowledge in 

this field, as well as the application of machine learning techniques, notably artificial neural 

networks, in this domain.  

Chapter 3 – Methodology we introduce our unique approach which combines real-time 

acceleration data acquisition, feature extraction, machine learning data processing, and damage 
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visualization. The specific hardware and software used, the machine learning model designed, 

and the signal processing techniques applied are all discussed in detail. 

Chapter 4 – Results and Validation presents the results of the trained model, which includes 

a thorough validation against a specific case study. This chapter also features a detailed 

discussion on the accuracy, effectiveness, and reliability of our model. 

Chapter 5 - Conclusion contains the conclusion of the study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Structural Health Monitoring 

2.1.1 Structural Health Monitoring 

The procedure of executing identification of damage in infrastructure is known as Structural 

health monitoring. For this purpose, a number of tools are available for Non-Destructive 

Evaluation (NDE). However, in recent years, a large number of SHM research has tried to 

identify damage on a global scale by use of permanently installed sensors in structures.  

Damage is widely understood as changes in any system which negatively impact its present or 

future health and performance. This implies that there has to be a comparison between two 

different states out of which one is considered the initial/undamaged state. Another note is that 

the term damage does not equal the total failure of the structure: rather, it means that the 

structure is not performing its function in its optimal manner.  

Structural Health Monitoring (SHM) is the process of using various sensors and analytical tools 

to monitor the structural condition of a system continuously or periodically, such as a building, 

bridge, or aircraft, to detect and assess any damage, degradation, or abnormalities, and provide 

early warning and information for maintenance, repair, and safety purposes. 

Identification of damage in structures is done by making use of five closely related fields which 

are: 

• Structural Health Monitoring 

• Condition Monitoring 

• Non-Destructive Evaluation 

• Statistical Process Control  

• Damage Prognosis. 

Traditionally, SHM (Worden and Dulieu-Barton, 2004) is synonymous with on-line, global 

damage identification in structures. Condition Monitoring (Bently and Hatch, 2003) is 

comparable in certain respects to SHM, but is used for damage detection in rotating machinery 

such as used in power generation. Non-Destructive Evaluation (Shull, 2002) is typically carried 
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out off-line and is primarily used for characterization of damage and check for its severity when 

there is a prior knowledge of the location of damage. Statistical Process Control (Montgomery, 

1997) is process-based and uses different types of sensors to monitor changes in a process. 

Damage Prognosis (Farrar et al. 2001, 2003) is used to predict the remaining operational life 

of a structure after the damage has been detected. 

There are numerous challenges to integration of SHM: development of a process to define the 

optimal number and placement of sensors, identification of aspects which are sensitive to minor 

levels of damage, the capacity to differentiate between changes caused by test conditions or by 

natural conditions, development of statistical models to differentiate features from damaged 

and undamaged conditions and performing a comparative study of various methods of 

identifying damage.  

The data acquisition part of SHM consists of selection of sensor types, excitation methods, 

number and location, and the storage hardware. This program is specific to applications. As a 

general rule, it is not possible to remove all sources causing variation in the data. So, we use 

the method of data cleansing. Data cleansing is the process of selecting certain data to pass on 

while removing others from the feature selection process. In this regard, filtering and re-

sampling (signal processing techniques) can be considered as data cleansing methods. 

Arguably, the part of SHM process that has received least attention is the development of 

statistical models for differentiation between features of damaged and undamaged structures. 

Statistical modelling has to do with the implementation of algorithms that operate on extracted 

features that express the state of damage of a structure in quantifiable data. The algorithms 

either contain examples from damaged structure, called supervised learning, or they are 

without examples from the damaged structure and are unsupervised learning algorithms. For 

engineering structures, unsupervised learning algorithms become the only viable option as it is 

not possible to damage structures to create data for supervised learning. 

2.1.2 Damage Classification in SHM 

The damage identification process can be summarized in a systematic structure (Rytter, 2003): 

existence, location, type, extent, prognosis. In a statistical model, usually the unsupervised 

learning model tells us about the existence and location of damage. Statistical models are also 

necessary to reduce false indications of damage. The following tables gives a summary of the 

various levels of damage detection and their description. 
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LEVEL DESCRIPTION 

Existence This is the indicator of whether the damage is present in a structure or not. 

Even though most sensors and algorithms are very adept at deducing whether 

damage exists or not, there can be an occurrence of false positive or negative. 

Location After it has been ascertained that damage is present in a structure, its location 

is determined. This can be a complex task as depending on the sensors and the 

algorithm being used, the location determined can either be global or local. 

Type This is the kind of damage the structure has experienced. This includes 

foundation damage, cracks, water damage, fire damage, wind and storm 

damage, earthquakes, impact damage, fatigue damage, corrosion damage, 

chemical damage, etc. 

Extent This is the degree to which the damage has spread or to which it has affected 

the health of the structure. It can vary from low to high. 

Prognosis This is the result after a careful analysis of the above four. It tells us the overall 

health of the structure and what level of service can be expected from it in the 

future. 

Table 1 Levels of Damage Classification in SHM 

2.1.3 Challenges faced in SHM 

The first challenge faced in SHM is perhaps that damage is generally at a local level and might 

not have a notable impact on the global low-frequency response (which is usually measured 

during SHM process). Secondly, feature selection and identification of damage in structure 

must be performed by the unsupervised learning mode of the algorithm because the data from 

damaged systems is not available. Lastly, an important challenge is to predict the required 

properties of the sensing systems before they have been deployed, and to ascertain whether the 

sensors themselves are in any danger of damage after deployment in the field.  

2.2 Machine Learning in SHM 

Machine Learning (ML) is the latest and most advanced tool in structural health monitoring. It 

is used to make the monitoring process independent in training itself using various techniques 

and tools in order to accurately predict the damage and in some cases, the extent, in the 

structure. There are two methods of ML, supervised and unsupervised. Supervised learning is 

a subclass of ML. It uses labelled datasets to train algorithms which, in turn, are used to classify 

data or predict the outcomes of an event accurately. Supervised learning uses data sets to train 
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models to reach certain outcomes. Unsupervised learning, on the other hand, uses ML 

algorithms to analyze and group together the unlabeled datasets. Unsupervised learning 

discovers patterns and data groupings without the need for human interference. This mode of 

learning is used mainly for clustering, association, and dimensionality reduction (reducing the 

number of inputs while preserving the integrity of datasets). 

2.3 Current Practices for ML in SHM 

Some of the machine learning models applied in SHM previously are discussed below. Our 

discussion will mainly focus on the following supervised ML techniques: 

• Artificial Neural Networks (ANN) 

• Convolutional Neural Network (CNN) 

• Support Vector Machines (SVM) 

2.3.1 Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is the most common and well-known ML algorithm used for 

supervised learning. ANN is predominantly applied in problems related to classification and 

regression. The structure of ANN is such that it comprises of an input layer, hidden layer(s) 

depending on the nature and complexity of the algorithm, and an output layer. Datasets are 

provided for the training of ANN systems and then using those, the supervised models in SHM 

process perform damage detection, localization, and severity estimation. 

Some of the ANN techniques used in ML for SHM are listed below: 

• In Tan, Z.X. et al., (2019), the authors proposed ANN architectures for damage 

detection and localization in different structures. For this purpose, an experimental 

model of a multiple steel girder composite bridge was tested. The ANN techniques used 

was LMBP. 

• In Padil, K.H. et al., (2020), presence of damage was identified with respect to multiple 

variables and uncertainties. A simply supported steel truss bridge finite element (FE) 

model was tested. The ANN techniques used was LMBP. 

• In Mousavi, A.A., et al., (2020), the presence, location and severity of bridge damage 

was identified. A fourteen-bay steel truss bridge experimental model was used for this 

paper. The ANN technique implemented for this was BP. 
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• In Finotti, R.P., et al., (2019), statistical indicators were used to detect changes in 

structures. A simply supported beam FE model and railway bridge experimental models 

were tested in this study. The ANN techniques used here is LMBP. 

• In Chang, C.M., et al., (2018), the study was focused on identification of presence, 

location and severity of damage in a building. A twin-tower building experimental 

model was studied in this research. The ANN technique used here is BP. 

• In Geng, X., et al., (2018), the research was directed towards identification of presence 

and the type of damage in plate. For this, a carbon fiber-reinforced plastic plate was 

used. The ANN technique used in this study is BP. 

• In Morfidis, K., et al., (2017), damage sensitive features were proposed for the purpose 

of improving ANN structural damage prediction. For this study, numerical models of 

30 reinforced concrete buildings were used. The ANN technique used was LMBP, 

along with SCG. 

• In Padil, K.H. et al., (2017), presence of damage in a structure was identified using 

noisy ANN training data. A single-span steel frame numerical model was studied for 

this research. The ANN technique used in this research was LMBP. 

• In Jin, C., et al., (2016), a damage detection method was proposed using ANN and EKF 

for structures under temperature changes. A Meriden bridge FE model was adopted for 

this study. The ANN technique used was BP. 

• In Dworakowski, Z., et al., (2016), an ensemble design method for ANN 

hyperparameter selection was proposed. For this research, an instrumented aircraft 

panel and an instrumented wind turbine were studied. The ANN algorithm used was 

not specified. 

• In Ng, C.T., (2014), a Bayesian model class selection method was proposed to select 

optimal ANN hyperparameters. The Phase 2 IASC-ASCE SHM benchmark structure 

FE model was used. The ANN algorithm used was not specified. 

• In Min, J., et al., (2012), an NN technique was reported which could be used to select 

damage-sensitive frequency ranges and diagnose structural damage. The study was 

carried out on an aluminum beam experimental model. The ANN technique adopted 

for this research was BP. 

• In Mardiyono, M., et al., (2012), an SHM system based on ANN was proposed to 

predict the building damage index. For this study, a building FE model was used. The 

ANN technique/algorithm used in this research was BP. 
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2.3.2 Convolutional Neural Network (CNN) 

The Convolutional Neural Network (CNN), perhaps the most commonly used deep AI 

algorithm, has found applications across numerous data-based classification fields and 

regression-related problems (Gomez-Cabrera, A., et al, 2022). A standard CNN comprises 

three distinct layer types based on the specific functions they perform. These include 

convolutional layers, pooling layers, and fully connected layers. Convolutional layers 

undertake the automatic feature extraction from the input data, while pooling layers help reduce 

the size of the data. On the other hand, fully connected layers handle data classification. CNN 

design architecture allows for stacking numerous layers to elevate the network's complexity. 

However, an increase in the number of layers implies an increase in computational training 

time and resource usage during computations. Some techniques used in CNN are: 

• In Sony, S., et al., (2022), a 1D-CNN for multiclass structural damage detection using 

limited datasets was proposed. The research was conducted on a Z24 bridge 

experimental model.  

• In Zhang, R., et al., (2020), a CNN architecture was proposed to develop a surrogate 

model for modelling the seismic response of the building structures. For this study, a 

six-storey hotel instrumented building was used.  

2.3.3 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a much-preferred machine learning algorithm often 

employed for solving classification and regression issues. The maximization objective within 

SVM can be interpreted as an optimization problem, and various methods can be applied to 

solve it. However, the SVM training phase can be computationally intensive and may not be a 

good fit for real-time SHM systems that rely on post-training enhancements and updates to the 

ML model (Gomez-Cabrera, A., et al, 2022). One way to mitigate the computational costs 

associated with SVM is to combine it with other signal processing techniques or damage-

sensitive feature extraction methods. For instance, Cuong-Le et al, (2021) proposed an 

integration of Particle Swarm Optimization (PSO) and SVM for structural damage 

identification. They compared the performance of ANN, DNN, Adaptive Neuro-Fuzzy 

Inference System (ANFIS), and SVM. The combined PSO-SVM model exhibited the highest 

accuracy amongst the four ML algorithms tested and was successful in accurately predicting 

damage locations in validation tests. 
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2.4 Building Information Modelling (BIM) 

Building Information Modelling (BIM) serves as the foundational element in the digital 

transformation sweeping across the architecture, engineering, and construction (AEC) industry. 

It provides a digital illustration of the physical and functional attributes of a building and 

facilitates its design, construction, and operation. The AEC industry widely embraces BIM due 

to its numerous advantages such as enhanced collaboration, reduction in errors and rework, and 

augmented efficiency. Nonetheless, its utilization within the field of structural health 

monitoring (SHM) is still in its nascent stages. This underdevelopment can be attributed to the 

SHM community's limited and gradual acceptance of the technology (Edirisinghe, et al., 2017).  

Traditionally, a large number of software applications were used for building systems design, 

planning, documenting, drafting, designing, and structural analysis. These applications had no 

cohesion and there was no method which could be employed so that more than one software 

could work in sync to perform different tasks. This made the designing of a structure an 

extremely arduous, expensive and inefficient process. The unique advantage BIM has is the 

solution of all these problems under one single program. This integration of functionalities of 

different software into one application is the reason why 96% of professionals are in favor of 

implementing this technology in the construction industry here in Pakistan (Masood, et al., 

2007). In this regard, Autodesk Revit is one of the most significant tools for BIM. This is 

because Revit treats any object in modelling as actual objects by giving them real-life qualities 

(Zolotova, et al., 2015). 

The integration of BIM with SHM can be divided into four stages: the creation of an accurate 

model representation, sensor-based information collection, data storage, and linking the 

amassed data to the BIM model. The model should incorporate the virtual sensor's location and 

its parameters to aid engineers in visually locating the sensor effortlessly and to enhance data 

management (Valinejadshoubi, et al., 2019; Boddupalli, et al., 2018). 

However, BIM is hindered by a limitation which is the lack of interoperability and data 

exchange with other software due to the absence of models that support efficient data transfer 

(Delgado et al., 2017). The Industry Foundation Class (IFC) serves as a standard data format 

for cross-platform data exchange, implying that the BIM model must be translated into an IFC 

file prior to interaction with other software such as SHM and Finite Element analysis software. 



12 

 

2.5 Internet of Things (IoT) 

The phrase is composed of the words “Internet” and “Things” where internet is used to describe 

a system that connects different networks of computers whereas the word Things are the objects 

which can help in sensing and collection of data about their environment. So, Internet of Things 

can be defined as a universal mechanism using an IP suite in which objects or “things” having 

an identity work in a smart environment while being effortlessly interconnected into the 

network of information and are equipped with sensors or RFID tags. IoT is dependent on a 

variety of materials, technology, communication networks and infrastructural protocols.  

Sensors are used for the collection and acquirement of data in real time over the internet to a 

data storage. The purpose is to enable the end user to remotely access the devices using the 

Internet. However, like other computational models and services, IoT also faces constraints 

from computational usage and energy consumption. This is commonly mitigated by integrating 

different protocols and practices. 

2.6 Feature Extraction 

Feature extraction is a fundamental process in machine learning and pattern recognition that 

involves transforming raw data into a reduced and representative set of features. The aim is to 

extract meaningful and relevant information from the data while reducing its dimensionality. 

By selecting or creating informative features, feature extraction enhances the performance of 

machine learning algorithms, improving accuracy, efficiency, and generalization. Various 

techniques such as dimensionality reduction, statistical methods, transformations, feature 

selection, text mining, and deep learning methods are employed based on the nature of the data 

and the specific problem domain. These techniques allow for the extraction of essential 

characteristics from the data, enabling more effective analysis and modelling. 

Some feature extraction techniques are: 

1. Dimensionality Reduction: Techniques such as Principal Component Analysis (PCA) 

or Singular Value Decomposition (SVD) reduce the dimensionality of the data by 

identifying the most significant orthogonal features that capture the maximum variance 

in the data. 

2. Statistical Methods: Statistical techniques like mean, standard deviation, median, or 

correlation coefficients can be used to summarize and extract relevant statistical 

features from the data. 
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3. Transformations: Data transformations like Fourier Transform, Wavelet Transform, 

or Discrete Cosine Transform can be applied to extract frequency or time-domain 

features from signals or images. 

4. Feature Selection: Feature selection methods aim to identify the most informative 

subset of features from the original dataset. Techniques like Recursive Feature 

Elimination (RFE), Information Gain, or L1 regularization (Lasso) are commonly used 

for this purpose. 

2.7 Summary of Research Gap 

It was observed, however, that there is not currently a system in place which accurately sensed 

damage in structures, acquired and processed data in real time using ML, and then showed the 

damage present in the structure on a digital twin on BIM. This research gap is what we intend 

to cover through our experimentation and research. 
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CHAPTER 3 

METHODOLOGY 

 

The methodology can be broadly classified into three main phases: data acquisition, data 

processing, and data visualization. 

1. Data Acquisition: The first stage in the system is data acquisition. For this, we utilized 

the ADXL345 accelerometer sensor and ESP32 microcontroller. The acceleration data 

collected was wirelessly transmitted to a computer in real-time, facilitating an effective 

and efficient monitoring system. 

2. Data Processing: Once the acceleration data was acquired, the next step was feature 

extraction. In this phase, we employed various signal processing techniques to obtain 

the necessary parameters. Then, we employed an Artificial Neural Network (ANN) 

model. We fed the ANN with inputs such as the fundamental frequency, mode shape 

coefficient, and storey height of the building, and trained it to predict the output, which 

was the damage index.  

3. Data Visualization: The final stage was data visualization. The damage index output 

from the ANN model was used to visualize the damage distribution in a 3D BIM model 

in Revit. This step was critical in visualizing the potential structural damage areas, 

enabling engineers and decision-makers to better understand the extent and nature of 

the damage. 

The complete system architecture is illustrated in the figure below. 

 

Figure 1 Flowchart describing the opted methodology 

Acquisition of 
acceleration data 
using ADXL345

Transmission 
using ESP32

Data is saved in 
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Processing 
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clean raw data
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to frequency 

domain

Extract 
frequency and 
mode shape

Feed the input 
parameters into 
the ANN model

Obtain the 
output parameter

Store the damage 
index in CSV 

format

Use the value to 
indicate damage 

on the BIM 
model
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3.1 Data Acquisition 

Damage detection of the SHM system relies heavily on the accuracy and resolution of the data 

collected. Therefore, an accurate and robust data acquisition setup is required. 

3.1.1 Selection of Damage Indicator 

For our purposes, acceleration was chosen as the damage indicator to be measured and 

analysed. The reasons for choosing acceleration are as follows: 

• Response to dynamic forces: Structures experience dynamic forces, such as those 

caused by earthquakes, wind, and traffic loads. Acceleration data captures the response 

of the structure to these forces, providing valuable information about its behaviour and 

integrity. 

• Mode shapes and frequencies: Acceleration data can be used to determine the mode 

shapes and frequencies of a structure, which are essential parameters in structural health 

monitoring. Changes in these parameters can indicate the presence of damage or 

structural degradation. 

• Sensitivity to damage: Acceleration data is sensitive to local damage and global 

changes in the structure. Even small changes in the stiffness or mass distribution of a 

structure can lead to noticeable variations in acceleration response, making it a suitable 

input for damage detection algorithms. 

• Ease of measurement: Accelerometers are widely available, relatively inexpensive, and 

easy to install on structures. They provide accurate and reliable measurements of 

acceleration, making them a popular choice for structural health monitoring 

applications. 

• Compatibility with ML algorithms: Acceleration data is compatible with various 

machine learning algorithms, including the one you used in our project. The data can 

be processed and transformed into meaningful features, allowing the ML model to learn 

patterns and relationships that can be used for damage detection. 

• Real-time monitoring: Acceleration data can be collected and transmitted in real-time, 

enabling the continuous monitoring of structures and the timely detection of damage. 

This is particularly important in post-disaster scenarios or for assessing the integrity of 

aging structures. 
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3.1.2 Hardware 

The hardware that was employed for our data collection process consists of two key 

components: the ADXL345 accelerometer sensor and the ESP32 microcontroller. The 

ADXL345 sensor is a high-precision micro-electro-mechanical system (MEMS) accelerometer 

that measures three-axis acceleration of the structure. It is known for its high resolution and 

measurement accuracy, making it an ideal choice for our project. The other options we have 

for MEMS accelerometers are the ADXL335 and the ADXL 355. ADXL 355 was not available 

locally, therefore, it wasn’t shortlisted. ADXL 335 was not chosen due to its inferior 

performance compared to the ADXL 345 accelerometer, including the data range, power 

consumption and data display. 

The ESP32 microcontroller functions as the control unit of our system, managing the data 

received from the sensor, and transmitting it wirelessly to the data processing unit. The ESP32 

was chosen for its high performance, integrated Wi-Fi capabilities, and compatibility with 

various development environments, thus perfectly aligning with our need for real-time data 

acquisition.  

 

3.1.3 Programming 

On the software front, the ESP32 microcontroller was programmed using the Arduino IDE. A 

specific script was developed that commands the microcontroller to gather acceleration data 

from the ADXL345 sensor, process it, and then wirelessly transmit this data to a computing 

device in real-time. At the receiving end, a Python-based script was established to receive this 

data, and concurrently store it into a .csv file. This process facilitates real-time data acquisition, 

Figure 2 Hardware Connections 
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a feature that is absolutely vital to ensure that our SHM system is working with the most current 

data, which in turn is critical for effective monitoring and timely damage detection. 

In conclusion, the meticulously designed data acquisition setup, revolving around acceleration 

measurements, ensured a consistent flow of reliable data for subsequent processing and 

analysis by our machine learning models. 

3.2 Data Processing 

Once the data is collected, it has to be processed to obtain meaningful information regarding 

the damage present in the structure. The data processing involves two major steps: feature 

extraction to obtain the necessary parameters and processing using the ANN algorithm. 

3.2.1 Feature Extraction 

Feature extraction is a crucial step in our structural health monitoring (SHM) project. This step 

involves transforming raw data into a set of features that represent the core attributes of the 

data, which can be used to train our machine learning models for damage detection. We have 

implemented a process that includes several key steps: detrending, filtering, performing a 

Fourier Transform, extracting the frequency, and calculating the mode shape coefficient. The 

coding for this process was done on a Python script. The acceleration data collected from the 

sensor, which was stored in a csv file, is passed through the following steps. 

1. The first step, detrending, is carried out to remove any trend present in our acceleration 

data that may be due to factors such as sensor drift. By applying the detrend function, 

we ensure that the data has a mean of zero, eliminating any linear trend from the data. 

This is essential to remove low-frequency components not related to the vibrational 

characteristics of the building structure. 

2. Next, we implement a low-pass Butterworth filter. Filtering is an important step in 

signal processing, allowing us to eliminate high-frequency noise that is not relevant to 

the dynamics of the structure. The data is passed through a 2nd order lowpass 

Butterworth filter with a normalized frequency cutoff limit of 0.5. This choice of a low-

pass filter permits only low-frequency components (those that represent the building 

dynamics) to pass and suppresses components at higher frequencies (usually noise or 

other environmental influences). 

3. After the acceleration data is cleaned, a Fourier Transform is applied to transform 

signals from the time domain into the frequency domain. The transformed data provides 
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the frequency content of the signal, which is necessary for the determination of natural 

frequencies. The frequency extraction step involves determining the dominant 

frequencies from the transformed signal. These frequencies correspond to the natural 

frequencies of the structure, which are fundamental characteristics that can be altered 

due to structural damage. 

4. Finally, we calculate the mode shape coefficient using the obtained Fourier Transform 

results. Mode shapes represent the deformation pattern of a structure under vibration at 

specific frequencies. The mode shape coefficient is derived from the amplitudes of the 

Fourier Transform at the dominant frequencies. 

Overall, feature extraction is a comprehensive process to transform raw acceleration data into 

meaningful information that can be used for damage detection in our SHM system. The two 

parameters that we derived are frequency and mode shape coefficient. 

3.2.2 Defining Input and Output Parameters 

Once the feature extraction is complete, the derived frequency and mode shape coefficient, 

along with the storey height, can be used as the input parameters for the ML model.  

The output of the ML model is the stiffness damage index. This is a scalar value between 0 and 

1 that gives an indication of the presence and severity of the damage on a multi-storey building. 

The stiffness damage index (Biddah et al., 1995) of the ith storey is defined as: 

where: 

𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖  is the stiffness of the building in the undamaged state and,  

𝐾𝑓𝑖𝑛𝑎𝑙
𝑖  is the stiffness of the building in the damaged state.  

K can be calculated as K = base shear/storey drift.  

Damage state for structures can be defined as minor, moderate, severe, and collapse depending 

upon the value of damage index as given in Table 2 (Gunturi, 1996). 
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Damage States Range of proposed damage index 

Minor 0.0-0.15 

Moderate (repairable) 0.15-0.3 

Severe (irreparable) 0.3-0.8 

Collapse > 0.8 

Table 2 Damage State corresponding to Damage Index 

3.2.3 Model Architecture 

Artificial Neural Networks (ANN) was chosen for our purposes due to its suitability for SHM 

because of the following characteristics: 

• Adaptability: ANNs are capable of learning complex and non-linear relationships 

between input features and output predictions. This makes them well-suited for 

problems with complicated dynamics, such as structural damage detection and 

localization, where the relationships between the input features (story height, 

frequency, and mode shape coefficient) and the output (damage index) may be non-

linear. 

• Flexibility: The architecture of an ANN can be easily adjusted to accommodate various 

problem complexities. By tuning the number of layers, neurons, and activation 

functions, we can tailor the model to our specific problem, ensuring that it is neither 

underfitting nor overfitting the data. 

• Robustness: ANNs can be relatively robust to noise and errors in the input data, which 

can be especially beneficial in the context of structural health monitoring, where 

measurement noise or environmental factors can affect the quality of the input features. 

The architectural structure of the neural network was determined through a process of trial and 

error, aiming to reduce error margins and ensure rapid convergence. The final network 

comprised of three hidden layers along with the input and output layers. The input layer 

consists of three neurons corresponding to the input parameters: storey height, mode shape 

coefficient, and fundamental frequency. The output layer features one neuron representing the 

Damage Index (DI). Each of the hidden layers contains 30 neurons, and a nonlinear sigmoid 

function was employed as the activation function. 
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3.2.4 Model Training 

The training of our neural network was conducted using data acquired from STAAD Pro 

Analysis.  

Kanwar et al. developed a model on STAAD Pro to simulate damage on 11 different scenarios 

and extract the required parameters accordingly. Since we have 11 different damage scenarios 

and three stories each, we obtained a set of 33 datapoints that were used to train and evaluate 

the model.  

Input parameters for the network included storey height, mode shape coefficient, and 

fundamental frequency, while the output was the corresponding damage index (refer to Table 

3). The trained network is thus designed to predict the damage index for frames that were not 

included in the initial training set. 

For this study, we assumed training to be successful if the percentage errors between the 

experimental and ANN predicted values for all patterns are less than 10%. We excluded four 

patterns from the total data set for testing and prediction. 

For training, we normalized all input and output data using a maximum value, ensuring that all 

values fell within the range of 0 to +1. This process was undertaken using a normalization 

factor specific to each parameter. The output from the network is hence a normalized output, 

which is transformed back to actual values by multiplying it by the normalization factor used 

during the training set preparation. Initial weights were randomly set within the range of -0.3 

to +0.3. 

Figure 3 Architecture of ANN Model 
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Throughout the training process, the learning rate parameter and the momentum factor were 

kept constant at 0.15 and 0.85, respectively. 

3.2.5 Model Evaluation 

The following metrics were used to evaluate the model.  

Evaluation Metric Value 

MSE 0.004 

MAE 0.052 

R^2 0.565 

Table 3 Evaluation Metrics for ML Model 

The following graph shows a comparison of the predicted values against the actual values. 

 

The dataset was used to train the network, with a target of minimizing the average mean square 

error between the required output and the network's output to less than 0.005. The effectiveness 

of the network was evaluated by comparing the network's output to the same input data set 

used for its training. It's evident from the plot that the predicted damage index values 

correspond accurately with the damage index values used in training the network, indicating 

successful training.   
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3.3 Data Visualization 

Once the damage index is calculated, the damage (if present) is to be indicated on the digital 

twin. The following figure gives an overview of the visualization process: 

The most significant aspect of our data visualization process is the real-time updating of 

damage indices. These are stored in a CSV file that is updated continuously, thus facilitating 

real-time tracking of the building's structural health. The CSV file comprises two sections: the 

first cell (A1) is allocated for the latest damage index, whereas the chronological history of 

damage indices along with corresponding timestamps are logged in the cells below.  

Furthermore, Autodesk Revit, a robust architectural design and documentation software 

application, is utilized to create a BIM model of our case study building. By integrating the 

system with Revit, we can map the damage index onto the building model. Changes in the 

colour on the building model correlate with the magnitude of the damage index, providing an 

immediate visual cue of the damage severity and location. 

The following table shows damage state and the corresponding colour code. 

 

Damage State Range of Damage Index Color Highlighted  

Minor 0.00 – 0.15 Green 

Moderate (Repairable) 0.16 – 0.30 Yellow 

Severe (Irreparable) 0.31 – 0.80 Orange 

Collapse > 0.80 Red 

Table 4 Color Codes corresponding to Damage State 
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Figure 5 Data Visualization Process 
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The program utilizes two tools, namely Dynamo and PyRevit. Dynamo is a visual 

programming tool that extends the capabilities of Revit software. It provides an intuitive 

graphical interface for users to automate tasks without having to write traditional code. Users 

create scripts by connecting various nodes in a flowchart-like manner. PyRevit, on the other 

hand, is a Python-based scripting environment that runs on top of Revit. It provides a set of 

tools and an environment to write scripts in Python that interact with the Revit API. PyRevit is 

a powerful tool that enables users to automate complex tasks, customize the Revit user 

interface, and extend the functionality of Revit beyond what's possible with Dynamo or the 

built-in Revit macros. 

The process works as follows. The script is designed to be run in Autodesk Revit using 

Dynamo, which is a visual scripting tool that works with Revit. The script is written in Python 

(via the Python Script node in Dynamo), utilizing the Python Revit (PyRevit) engine that allows 

interaction with the Autodesk Revit API (Application Programming Interface). This script 

interfaces with Revit to get data about building elements and change their visual appearance 

based on the given conditions.  

The primary function of this script is to read a value from a CSV file, which is taken as the 

script's input. It then changes the color of selected building elements in the active view of the 

Revit model based on the value from the CSV file. Green, yellow, orange, or red colors are 

applied, depending on whether the input value falls within certain ranges. The colors are used 

to indicate different degrees of structural damage. Additionally, the script displays an alert 

message corresponding to the severity of the detected damage. The output of this script is the 

changed color of the elements in the Revit model and the alert messages. The script also returns 

the message "Script executed" to Dynamo, signifying its successful execution.  

Figure 6 Dynamo Script 
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Figure 7 Damage States (a) Minor, (b) Moderate, 

(c) Severe and (d) Collapse 

Figure 8 Warning Pop-ups (a) Moderate, (b) Severe 

and (c) Collapse Cases 
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CHAPTER 4 

VALIDATION 

 

It is extremely important that after a hypothesis has been formed or an experiment has been 

performed for the purpose of advancing a research theory, a real-world application of that 

hypothesis or experiment is also done to confirm that hypothesis. This real-world application 

of the hypothesis on any structure/material/object for confirmation of the results of the 

experiment is known as validation of the results.  

4.1 Overview of Process 

To validate the theory and results in our results, we performed a validation experiment on a 

bridge where there was a constant stream of traffic. The purpose of this validation experiment 

was to test the working of our system by using the raw acceleration data from the 

accelerometers. The accelerometers used in the validation experiment transmitted the raw data 

wirelessly for us to further process it into actionable input. The bridge on which the sensors 

were installed is built inside NUST and serves as a passage over a waterbody. 

After the sensors were connected with the proper instruments and software, real-time raw data 

was collected from them. This was done to ensure that the data acquired from the sensors was 

as current as possible to monitor the health of the structure in real-time. The wireless 

transmission of the data was of great significance in this regard. The sensors were programmed 

to send numerous live readings over a set amount of time and the readings were then almost 

instantaneously processed to obtain the results. 

Obtaining the results, as mentioned above, was made possible by integrating machine learning 

in our research. Machine learning is a complex field where the programs and machines are 

made to research and analyze the data automatically by using a machine learning model. In our 

research, we used Artificial Neural Network (ANN), a machine learning model which was most 

suited to our needs and the demands of the acquired data. ANN made it possible for the 

algorithm to process the raw data acquired from the accelerometers and present it in the form 

of a range between 0 and 1, which becomes the Damage Index. 

This Damage Index was then analyzed by Revit. Revit is a software for making 3D renders of 

structures. Using an already existing model of the structure inside the software, the value of 



26 

 

the damage index of the structural member would be evaluated and the software would be used 

to visualize the damage or its absence in the structure. This will be achieved by assigning a 

range between 0 and 1 to a certain color and if during the analysis the value of damage index 

fell between that range the structural member would be highlighted that color. This was 

significant because visualizing the health of the structure and the presence or absence of 

damage in such detail makes it extremely easy for technical professionals as well as non-

technical professionals to fully understand the presence, location and extent of the damage. 

4.2 Selection of Bridge 

Figure 9 Picture of Selected Pedestrian Bridge 

The bridge selected is a pedestrian bridge linking NUST Hostels with the cafeteria. The bridge 

is used by students everyday travelling from hostel to their respective departments and the 

Cafeteria C2. The bridge is a precast, double tee beam embedded in two supports. The beam is 

9.8 m long and the dimensions are shown as follows.  

Figure 10 Cross Section of Pedestrian Bridge 
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4.3 Results and Discussion  

The processed acceleration data is shown below, along with the Fourier Transform. 

 

  

The inputs to our ML model were as follows: 

• Mode Shape Coefficient: 0.0179 

• Frequency: 0.145 

• Storey Height (assumed): 1 
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Figure 11 Detrended Acceleration Data 

Figure 12 FFT Transform 
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The following results were obtained using the data: 

• Damage Index Obtained: 0.012 

• Since, the damage index lies in the “Minor Damage” Range, no pop-up was generated 

on Revit.  

• The structure was highlighted “Green”. 

 

 

 

 

 

 

 

  

Figure 13 Colour-coding of structure 
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CHAPTER 5 

CONCLUSION & RECOMMENDATIONS 

 

5.1 Conclusion 

This research has led to the development of an innovative Structural Health Monitoring (SHM) 

system employing Artificial Neural Networks (ANNs) for predicting the damage index in real-

time. This system, which leverages the advancements in sensor technology and machine 

learning, provides a proactive approach to assessing the structural integrity of buildings, 

particularly in regions prone to natural disasters such as earthquakes and floods. 

Throughout this study, we demonstrated that acceleration data, collected through an ADXL345 

sensor, could serve as a reliable source for estimating the health of a structure. Our feature 

extraction process, involving detrending, filtering, Fourier Transform, and extraction of 

frequencies and mode shape coefficients, proved effective in extracting the required parameters 

from the raw acceleration data. The data processing step further solidified the robustness of our 

methodology, where an ANN model was utilized to predict the damage index, a critical 

indicator of structural health. 

The reliability and accuracy of our system were demonstrated through the comprehensive 

validation process, which included a real-life pedestrian bridge. After applying our SHM 

system to the bridge, the system’s working and effectiveness was reaffirmed. 

Further, the integration of our system with Autodesk Revit amplified its usability by providing 

a visual representation of damage indices on the building model. This feature not only allows 

easy interpretation of the damage index but also facilitates informed decision-making. 

In conclusion, this study underscores the potential of combining machine learning and BIM in 

SHM. While our focus has been on buildings and bridges, the methodology and system 

developed can be adapted to other structures as well, making this an exciting prospect for the 

future of SHM. 
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5.2 Potential Benefits 

The system that we developed can have a significant impact in damage detection. Most notable 

benefits include: 

• Saving time and costs associated with manual inspection. 

• Saving the hassle of hiring specialized manpower for inspection. 

• Having a better visualization of the structure for non-technical stakeholders (e.g., govt, 

investors etc.) which would facilitate quick decision-making. 

• Storing and retrieving data more efficiently. 

5.3 Future Recommendations 

The research in this area can be further improved to discover more applications and fill other 

research gaps. Some of our recommendations include: 

• Use sensors with a better sampling quality to obtain more reliable data. 

• Enlarge the dataset using data augmentation techniques to improve the accuracy of the 

training of the model. 

• Include temperature as a parameter, as this has a significant impact on the acceleration 

of the structure in different scenarios. 

• Improve localization to specific element, because currently it is being done on storey-

level. 
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