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Abstract 

Typically, shape--from.-focus (SFF) approaches do. not take into account any . prior information 

in order to improve the depth map's accuracy. Estimation of depth maps delivers a key role in 

the reconstruction of 3D shapes. There are many monocular approaches that use image focus 

to reshape 3D shapes, and shape from focus is one of them. It uses information about the 

focus of the optical system to provide a means of measuring 3D information. This study 

proposed a framework for the enhancement of the depth map by using a weighted 

combination set of guided filters in shape-from-focus. It has been observed that a different set 

of weighted combinations of guided image filters are effective in enhancing depth maps in 

SFF. After evaluation, it is found that the weighted combination of a set of 2 guided image 

filters provides an enhanced depth map. In comparison to a recent study in which the authors 

employed a set of 19 filters to enhance the depth map findings. The proposed study gives 

better outcomes with a faster and less computations-based framework to boost the depth map. 

In the literature, many guided image filters have been proposed to enhance the depth map 

individually, but few of them have computational time flaws, and some have unsatisfactory 

results. A weighted combination of 2 filter sets has been obtained best filter set combination 

for enhancement of the depth map after evaluation. The optimized weights are obtained using 

the particle swarm optimization approach, and the subset of best-performing filters is 

identified through a sequential forward search method. The experimental results have 

demonstrated that the proposed framework provides considerably improved depth maps, 

yielding 93% correlation and 4.7 root mean square error to the actual depth map. 

 

Keywords: Depth map estimation, Guided image filtering optimization, Shape-from-focus, 

Focus measure, Particle swarm optimization, Ground truth. 
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CHAPTER 1: INTRODUCTION 

As automation and artificial intelligence become increasingly popular, so does the 

need for accurate computer vision and scene rendering. Depth estimate is one of the . most 

significant aspects of computeri vision. iapplications. One of them is determining the 3D shape 

of an item from its 2D visual input. Focus analysis has been an important tool for retrieving 

the 3D structure of objects, with various methods for retrieving 3D shapes. Schemes based. on 

focus analysis are further classified into two types: shape-from-focus (SFF) and shape from 

defocus (SDF). SFD. methods use. less numbers of images which are taken with multiple 

focus perspectives. The relative blur among these images used by the algorithm to estimate 

the 3D structure of the object. While, SFF techniques create a compact depth map from a 

series of images captured at various focus . levels. Shape-from-focus has been extensively 

researched in computer vision as a method for affected depth recovery and 3D reconstruction, 

and it has found success in a variety of industrial applications. Acquiring depth estimation 

has been identified as a major topic in the field, and numerous ways to extracting the scene's 

depth have been offered. However, when the acquired images lack both color and feature 

information depth estimate using stereo matching becomes difficult and unreliable. To 

recover improved or enhanced depth maps, the proposed method uses guided filtering in SFF. 

The depth enhancement procedure can be guided by the image sequence and image focus 

volume. Guidedi imagei filteringi is a method for modifying or enhancing an image using 

weights based on the attributes of another image known as a guidance map. This technique 

filters the input image using structural information i fromi the guidance i image. The information 

in both the input image and the guide map images is about the same scene, but it is in 

different domains. 

1.1 Motivation 

There is some work on depth estimation by a variety of methods, for example, color 

filtered dual camera, single-camera video clip processing, and dual camera on a mobile 

phone. Our research is motivated by the great benefit of guided filtering, where our goal is to 

improve the depth map of images using guided filtering in SFF that will help to reconstruct 

the 3D shape of the object. The performance of focus measures is influenced by several 

aspects in the images including noise, window size, imaging agent properties, and texture. 

The object's detailed structures may be missing from the reconstructed depth or 3D shape. 
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In the shape-from-focus literature, many methods have been proposed to undertake 

these problems, and these methods are distributed into two sections. In the primary 

techniques for enhancing the preliminary focus measure image and presenting an improved 

image of the focus measure. These approaches then use the straightforward “Winner Takes 

All” methodology to estimate the depth image. In the secondary techniques, make a 

preliminary depth image from i thei image focus measure, and after that refine it to create an 

improved depth image/map. 

1.2 Problem Statement 

In computer vision and computer graphics, 3D shape reconstruction is a technique for 

capturing the form and appearance of real-world objects. There are several uses for 3D object 

reconstruction, from engineering and medical to creative and commercial design. Because it's 

being utilized in a broad variety of image processing and computer vision applications. An 

object reconstruction will be more accurate with a higher detailed photograph as the 

application's primary pillar. An object reconstruction approach relies heavily on a depth map. 

For example, light, window size, noise, scene texture and picture attributes all have an impact 

on depth map quality. As a result of these issues, the focus measure generally provides 

erroneous information about the focus of attention. As a consequence, the reconstructed 

depth or 3D shape may be devoid of the particular structures of the item or scene. To address 

these issues, we decided to focus on this area for our study, and to create a better depth map 

of the objects or scenes that would aid in their reconstruction. 

1.3 Aims i and iObjectives 

The main purpose of the proposed research is to review and study fresh developments 

in depth map enhancement and improve the depth map of images using guided filtering in 

SFF, by incorporating simple methodology with fewer computations. Guided filters are used 

to estimate the depth of synthetic objects using image processing filtering techniques. Make 

an image depth map enough to make the better decision or make him able to estimate the 

distance between the subject and the object. 

1.4 Area of Application 

Many computer vision applications require the acquisition of depth information about 

a scene. In Robot Vision, Human-Computer Interface, and many other vision-based 



    
 

3 

applications, the depth map plays a vital role. The performance of 3D image acquisition and 

Intelligent Driver Assistance Systems is also influenced by the scene's depth map. Action 

recognition, autonomous navigation, virtual-augmented reality and 3D television are all areas 

in which they play a significant role. 

1.5 Structure of Thesis 

This work is structured as follows: 

Chapter 2 Briefly represents the image depth map and how the depth map is 

conventionally estimated. In addition, an overview of guided image filters and their 

various categories. 

Chapter 3 Covers the analysis of the existing research work done for the estimation of 

depth map in past years. 

Chapter 4 Describes the proposed research work in detail. This section also defines the 

method undertaken to enhance the depth map using guided image filters in shape-from-

focus. 

Chapter 5 Provides the review of datasets and the performance measures used for 

interpretation of the proposed research work. All of the results are well-explained, along 

with the required tables and figures. 

Chapteri 6 Concludesi the framework and introduces the futurei iscope of ithis iresearch 

work. 



    
 

4 

CHAPTER 2: DEPTH MAP AND GUIDED IMAGE FILTERS 

Computers are becoming more and more like spike, causing machines to a more 

debatable and understandable height. Artificial intelligence has been a part of our world for a 

few years now. It is inconceivable to disregard the ability of machine learning. Proper use of 

artificial intelligence can change the world, by making it simple to process large amounts of 

data and make meaningful judgments. Many alternative methodologies have been proposed 

in order to discover new and more precise methods of determining the distance between 

objects, whether it is to show the way, to avoid obstacles, or to turn. 

2.1 How to estimate depth map? 

The traditional method of determining the distance of an item in an image needs a 

rectified stereo epi-polar lines image like the normal human eye. Which can be used to 

extract geometric information from a scene using parallel line, called parallax. The distance 

to an object can be calculated which is commonly called the depth of the scene. With the help 

of different images of the same scenes from a different point of view. The distance between 

these points and the camera can be calculated by calculating the displacement of points 

across different images. The effects of parallax can be seen in the differences of the two 

images points in the stereo pair. When two horizontally displaced cameras image planes are 

projected onto a point in the scene. The nearer the point is to the baseline of the camera, the 

greater the difference in its relative position on the image planes. The purpose of stereo 

matching is to find the relevant points and calculate their displacement. In order to reproduce 

the scene's geometry as a depth map. 

 

Figure: 2.1 Depth map of a scene 
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2.2 Depth Map 

The distance is represented by an image or image channel between the surfaces of 

objects from a point of view is called depth map. Figure 2.1 shows the initial depth of the 

scene where the intensity of the object closest to the subject is brighter while the intensity of 

the objects as have dark intensities. Calculating depth is an essential feature of understanding 

geometric relationships within a scene. Figure 2.2 shows the depth map of the scene on the 

left, in which the original color channel of the scene can be seen. While the initial depth map 

on the right side of the image estimates that this is the disparity output. With this kind of 

depth map machine cannot make a decision nor can it estimate the distance between the 

subject and the object. 

 

Figure: 2.2 Original scene vs disparity depth map of scene 

For many computer vision applications, obtaining depth information about a scene is 

fundamental such as navigator, Autonomous Navigation, Robot Vision, virtual-augmented  

reality, Human-Computer Interfaces, Intelligent Visual Surveillance, Intelligent Driver 

Assistance Systems, 3D Image Acquisition, Synthetic Focus, 3DTV and Action Recognition.  

2.3 Guided Image Filters  

In computer vision and computer graphics, 3D shape reconstruction is a technique for 

capturing the form and appearance of real-world objects. There are several uses for 3D object 

reconstruction, from engineering and medical to creative and commercial design. Because it's 
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being utilized in a broad variety of image processing and computer vision applications. An 

object reconstruction will be more accurate with a higher detailed photograph as the 

application's primary pillar. An object reconstruction approach relies heavily on a depth map. 

For example, light, window size, noise, scene texture and picture attributes all have an impact 

on depth map quality. As a result of these issues, the focus measure generally provides 

erroneous information about the focus of attention. As a consequence, the reconstructed 

depth or 3D shape may be devoid of the particular structures of the item or scene. To address 

these issues, we decided to focus on this area for our study, and to create a better depth map 

of the objects or scenes that would aid in their reconstruction. Some of them are texture 

removal [19], [20], extraction of joint structure [18], up sampling the depth image, and 

reduction of haze [17]. If there are any additional details related to the scene that is present in 

the guidance image/map but not in the input image called the target image. These additional 

details can be redirected from the reference image to the target image. This is the mainly key 

benefit of the guided filters. 

 

 

Figure: 2.3 Guidance image and filtered output 
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In Figure 2.3 both images guidance and target images (input image) can be seen.  This 

extra info may be useful in enhancing the target image's filtering. Two assertions are used to 

validate the information transfer: one is the guide image contains flawless structural 

information that matches the target image. In second assertion, guidance map can give more 

trustworthy info, such as edges information. 

The issue occurs, however, when the target and guide images are structurally 

incompatible. This happens when different sensors are used to acquire both the image input 

and guidance ( RGB color issue [18]). Also, in various lighting circumstances with daylight 

or night [18] and with sensor flash or without sensor flash [21]. It is possible to correct this 

mismatch by adding a restriction that prohibits unneeded or contradictory data from being 

exchanged between the guide picture and the target image. It's now up to us to find a way of 

transporting valuable information without distorting it to the point of becoming 

uncomfortable. 

 

Figure: 2.4 Guided image filter types 

We measured the effectiveness of 19 guided image filters in this study. These filters 

are part of a large family of approaches for guided filtering. As shown in Figure 2.4, we 

divide guided filters into many types. We split guided filters at the first level of 

categorization based on the number of images on which they perform the filtering process. 

Those images are integrated to modify the input images. Self-guided, use only a single image 

in the filtering process. Whereas reference-guided filters, and mutual guided fall into the 

multiple images category in which more than one images are engaged in the filtering process. 

Multiple images-based filters use more than one image in filtering process. 
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2.3.1 Self-Guided Filters 

As the name implies, the target picture (input image) is modified by calculating 

filtering weights from itself in this category. Whether the guiding picture keeps varying or 

stays static. In BF (Bilateral Filter) [22] weights stay static and vary in rolling guidance 

image filer [23].  Self-guided filters are additionally divided into two categories static-self 

and dynamic-self guidance systems. Inherently iterative, the dynamic approach posits that the 

filtered input (possible output) provides more precise weights than the initial input. As a 

result, the filtering weights for each iteration in this method are created from the filtered 

output of the previous iteration. 

 

Figure: 2.5 Self-guided filter types 

2.3.2 Reference Guided Filters 

In the reference based guided filters, a reference image is used to filter the input 

image. Static and static/dynamic guidance approaches have been classified into this group. 

The reference in both strategies remains constant. In the static-dynamic guidance approach, 

the filtered target image is used recursively to create multiple weights from the reference 

image in addition to compute static weights. As a result, this method uses static guidance to 

combine the attributes of the reference image and dynamic guidance to combine the 

properties of the filtered target. The static-reference guided category encompasses the 

majority of the guided filters previously proposed. This group is further divided into globalI 

and local methods, depending on the techniques that is used, whether they use local filtering 

or global optimization techniques. The majority of local approaches are joint extensions of 

Self-Guided

Static 
Guidance

BF

Dynamic 
Guidance

RGF
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single image smoothing and edge-preserving filters [18].  

 

Figure: 2.6 Reference guided filter types 

The weights used to filter the input target image are based on the similarity of pixels 

in the reference image within a local window. Median filtering, weighted mean filtering, and 

mode filtering procedures are among the local strategies that can be used. These .weighted 

mean approaches can be stated as follows in a generalized linear i. translationi. ivariant. ifiltering 

process including an input image. (target) T, an output T̂ and a guidance image G: 

T̂𝑝 = ∑ 𝑊𝑝𝑞(𝐺)𝑇𝑞qεN(p)
     (1) 

where iWpq(G.) are weights calculated from i the i. iguidance. imagei G and ∑  qεN(p)  are 

pixel locations. Non-average filters can also be used to accomplish edge preservation 

filtering. The pixel value is replaced by the iweighted imedian and weighted imode of its 

neighbors in weighted median or mode filters, which are generated from the reference image. 

In terms of computation, local filtering algorithms are typically efficient. Although local 

filters might cause artefacts at . edgesi (e.g., halo, igradient. ireversal [17]). On the other hand, 

various methodologies create ifiltering in the iglobal ioptimization context. A reliability 
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expression and a prior regularization (smoothness) expression are typically included in the 

optimal solution of these approaches. After calculating the regularisation. weights. from. the 

guidance. image, the output is computed similar to local techniques. These techniques can be 

summarized as follows: 

𝑚𝑖𝑛𝑇̂ (𝑇̂, T ) + λϕ (𝑇̂, G)     (2) 

where input image. (target) T, an output T̂, a guidance image G, and λ represent 

positive coefficient that governing the relative status of reliability and prior regularisation. 

expression. The first part of the equation 2 shows data fidelity and the second part denotes 

regularization. The key difference between global techniques is the regularisation. term, 

which is commonly defined. in the weighted. L1 or L2 normalization [18]. The L2 

normalization is used by the majority of approaches in the literature due to its speed of 

computation. In most cases, global techniques effectively eliminate edge blurring, but at i the 

cost of globali intensity changing [17]. 

a) Local Reference Guided . Filters. 

Adding pixels in intensityi. or rangei and. space i or domain. according to the Gaussian 

distance is done by the bilateral image smoothing filer described in [22]. High-contrast edges 

are preserved when using this filter or one of its variations. Low-contrast edges or gradual 

transitions are removed. Distances from the guiding picture are calculated via the Joint 

Bilateral Filter (JBF) [21]. The Joint Bilateral Up sampling Filter (JBU) presents a 

comprehensive architecture for multi-model picture improvement. A high-level-resolution 

color photographs are utilized as a starting point to create a superior high-resolution depth 

map. With the Noise Aware Filter, you may boost the quality of depth maps by adapting to 

noise [26]. When the Weighted Mode Filter (WMF) [27] is used to create a combined depth 

map histogram, the quality of the depth map is improved. Guided Image Filter (GIF). [17] is 

one of the quickest edge-preserving. smoothing. filters. The GIF filter assumes that the output 

picture is a local linear transformation of the guiding image during the filtering process. The 

discrepancy between the input image's linear transformation and the guidance provided by a 

GIF filter is reduced. Optimizing utilizing the fidelity expression lowers the discrepancy. JBF 

gradient reversal artifacts are also prevented by the GIF filter [21]. Halos may be a problem 

because of the fixed regularization value. Guided Anisotropic Diffusion (GAD) [28], based 

on a heat diffusion mechanism, is the definition of depth augmentation. Color image pixels 
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are used to control the diffusivity of known depth data in this head diffusion system. Instead 

of weighted guided. image. filter, gradient domain GIF (iGradient.-domainmi Guided. Imagei 

Filter) [32] incorporates a first-order edge aware restriction to . avoidi halo. iartifacts. Outliers 

like salt and pepper noise may be eliminated by using the median image filter. The median 

value of a pixel's neighbors is used to replace the pixel's original value in a median image 

filter. There are two GIF upgrades suggested by the Effective-GIF (Effective Guided Image 

Filter) [33]. 

As a first step, it iincorporates. an average i of the local fluctuations of each pixel into 

the guided image filter's cost function. Secondly, a content adaptive magnification factor for 

the detail layer is computed to reduce noise while magnifying tiny details in the layer. Color 

and depth information should be merged to generate low noise and high-resolution maps of 

depth, according to the creators of Markov Random Fields-based Filter (MRFF) [34]. Edge 

changes and depth interruptions tend to align; therefore, integration is based on this idea. The 

Markov random field formulation's minimization problem is solved using a conjugate 

gradient technique. Largei. iSparse. iFusion (LSF) [35] is a technique for combining sparse laser 

data with an image to produce a dense depth map. The only other smoothing term anticipated 

was in [34], and that was just for the first order. 

b) Global Reference Guided Filters 

Least Squares (FWLS) Fast Weighted L1 (FWL1) filters . [24] divide the optimisation 

issue into a series of one-dimension sub-difficulties for global edge-preserving smoothing. 

This simplification allows for the use of efficient WL1 and WLS smoothing algorithms. 

According on the evaluation of similarities between target and guidance. Mutual Structure 

Joint Filter (MSJF). [18] refreshes both the target input and guidance image. By combining 

the benefits of both static and dynamic guiding, the  Static Dynamic Filter (SDF) [20] 

provides a unified filtering system. The input target image modified based on a weight 

function that is solely dependent on the guidance image in static guidance. filtering. The 

guidancei imaged. remainsd fixed. in static filtering. Dynamic filtering [23] iteratively constrains 

the output to reduce structural differences by using the filtered target picture. The findings are 

provided by Dynamic-Dynamic Guided Filter (MDDG) and Mutual Static-Dynamic Guided 

Filter (MSDG) [19], which leverage the guidance in a similar fashion to MSJF and SDF. 

MGDD, on the other hand, prevents halo artefacts (which are common in MSJF due to the 

formulation of local filtering). 
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Table 2.1: List of 19 guided filters that are used in this study.  

No. Filters Abbreviations  

1 MSJF [18] Mutual Structure Joint Filter  

2 MRFF [34] Markov Random Field-based Filter [5]  

3 FWL1 [24] Fast Weighted L1  

4 LSF [35] Large Sparse Fusion  

5 WGIF [31] Weighted Guided Image Filter  

6 FWMF [30] Fast Weighted Median Filter  

7 GAD [28] Guided Anisotropic Diffusion  

8 GGIF [32] Gradient-domain Guided Image Filter  

9 EGIF [33] Effective Guided Image Filter  

10 CWMF [29] Constant-time Weighted Median Filter  

11 FWLS [24] Fast Weighted Least Squares  

12 MSDG [19] Mutual Static-Dynamic Guided Filter  

13 SDF [20] Static Dynamic Filter  

14 MDDG [19] Mutual Dynamic-Dynamic Guided Filter 

15 JBU [25] Joint Bilateral Up-sampling  

16 NAF [26] Noise Aware Filter  

17 WMF [27] Weighted Mode Filter  

18 GIF [17] Guided Image Filter  

19 JBF [21] Joint Bilateral Filer [24] 

 



    
 

13 

We assessed the implementation of all the guided filters explained above in this work, 

with the exception of BF [22] and RGF [23], which do not use guidance image. It's worth 

noting that some of the guided image filters used in this study were designed for depth 

upsampling. in the first place. As a result, they've been tweaked and tailored . to function nicely 

with our SFF issue. Even though their upsampling factor was fit to one, they were able to use 

their guided depth-denoising capacity. 

2.3.3 Mutual. Guided Filter 

During the filtering process, this collection of filters changes both the target picture 

and the reference image. During the filtering process, the target picture serves as a point of 

reference for the reference image. Filtering weights are computed from the target and 

reference images iteratively in the dynamic-dynamic approach. After computing weights, 

combine and update both photos. These filters transmit structural information between target 

and guiding pictures based. on structural consistency. (i.e., sharp. edges and smooth . regions). 

 

Figure: 2.7 Mutual guided filter types 

The results are provided by Mutual Static-Dynamic Guided Filter (MSDG) and 

Dynamic-Dynamic (MDDG) filters [19]. They use the guidance in a similar fashion to MSJF 

and SDF. Mutual static dynamic guided filters prevents halo artefacts (iappear. i in iMSJF dued to. 

localu filtering. iformulation). 

Mutual Guided

Dynamic/Dynamic Guidance

MSJF

MGDD
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CHAPTER 3: LITERATURE REVIEW 

Shape-from-focus (SFF) techniques can be arranged in several steps as represented in 

Figure 3.1. Initially, several images of the scene are captured with a different focus setting of 

the imaging gadget. These images with different focus measures are along z-direction 

stacked. The subsequent arrangement of images is typically known as an image sequence or 

focal stack. As per the law of lens, the best focused pixels captured by the image sensor 

provides the best depth data for. those. pixels. Thus, in the second. step of shape-from-focus 

the focus characteristic of every pixel. in the image. stack is estimated by using the focus 

measure (FM) operator which is a predefined operator used to apply on each pixel in the 

image stack. The output of the FM operator is known as initial focus volume. There are many 

factors which can affect the implementation of the focus measure operators like noise level, 

texture, illumination, imaging gadgets, or contrast [5]. The scene's accurate structures or 

information may be missing from the 3D shape or depth of the scene. Because of these 

aspects initial focus. volume contains. imprecise focus values. And the reconstructed. depth 

information. or 3D shape could come up short on exact constructions of the object from the 

scene. To handle these issues, various strategies have been suggested in the SFF literature.  

In the literature, numerous optical studies have been proposed for the estimation of 

depth map. These studies mainly categorized into two forms. In the first category, initially 

enhance the initial focus volume and from initial volume image estimate the depth 

information by using depth enhancement strategy. Whereas in the second category, initial 

depth map of the scene is calculated from image focus volume and then process the initial 

depth map to obtain improved depth image. These processing steps have been shown in 

Figure 3.1.  

 

 

Figure: 3.1 Shape-from-focus System Steps 
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A fundamental problem with all of these methods is that if the initial depth map 

estimates are largely incorrect, some enhancement can be expected from these techniques, 

especially when no additional information is considered. 

This study proposes the implementation of guided .  image . filtering in . SFF to retrieve 

better depth maps. The guidance information could be used from the image layout or image 

focus volume. This. guidance. image. guides. the. process of increasing the depth map. 

Basically, this study encourages the successful use of guided image filtering, for which 

several effective methods . have recently been suggested in the previous studies. Guided image 

filtering is a filtering process that improves an image known as target image. By using certain 

weights that depend on the properties . .of another. image that is commonly referred to as a 

guidance image or a guidance map. Both images guidance map and target images have 

similar scene properties, but their information can be in different dimensions.  

3.1 Existing Techniques 

Min et al. [6], introduces a new way to increase video depth. Provided a high-

resolution color video and related low quality in-depth video. The proposed based on 

combined histogram which is used to improving the quality of depth by suppressing noise 

and increasing its resolution. The weight calculation is based on the color match between the 

reference on the color image and the neighboring pixels and is then used to count each one on 

the combined histogram of the depth map. While the ultimate solution on the histogram is 

calculate by Global Mode Search. They also reveal that temporarily increasing the depth of 

video solves a glittering problem. That improves the accuracy of depth video. 

Gong et al. [7], for color images inadequate depth maps are available they perform 

sampling and inpainting. They create a heat dissipation-based problem. In which pixels with 

known depth values are considered as sources of heat and depth is increased by spreading 

depths in unknown regions. They added the problem of the steady-state of this spread to the 

popular random hike model, which effectively improves by solving a sparse linear system. 

Sun et al. [8], they show that weighted median filtering achieves comparative 

accuracy with various sophisticated accumulation methods for correcting differences. This is 

due to the well-weighted median filtering features to eliminate outlier errors while respecting 

edges/structures. The previously overlooked refinement can be at least as important as the 
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accumulation. They also developed the first permanent time algorithm for a weighted median 

filter that uses more time than ever before. This simple combination of "box aggregation + 

weighted median" makes it a practically attractive solution for both speeds and accuracy. 

They show their dominance in different applications like depth clip-art JPEG artifact 

removal, up-sampling, and image stylization. 

Jacob et al. [25], multiple images of a focused object are compared to get in-depth 

information from the camera's IR emitter, which creates a recognized IR pattern. The BMSV 

RGB-D camera's depth map and the generated depth map are linked. They propose a method 

for generating a functional magnetic resonance imaging (fMRI) using 3D realistic head 

models. The results revealed an increase in the RGB-D sensor's speed and accuracy, resulting 

in a dense density of correct depth information regardless of the object's surface. 

Domanski et al. [26], they propose a new parallel technique that significantly reduces 

the time it takes to estimate depth maps. In this method, multiple arbitrary position input 

views are used to simultaneously create depth maps. Estimates are made for the parts and 

their sizes are used to control the trade between the quality of the depth maps and the 

processing time of the depth estimates. They also suggest a way to improve the temporary 

consistency of depth maps. This technique uses time-predicted depth, thus estimating the 

depth for P-type depth frames. For such depth frames, the temporal consistency is higher, 

while the complexity of the estimation is relatively less. 

Aizawa et al. [27], they propose a novel alpha channel estimation algorithm for 

seamless blending with the method of improving the depth map for hairy scenes. Existing 

matting algorithms can be significantly improved by using additional depth or infrared (IR) 

information. They further developed the method of alpha estimation in the temporary 

domain. The depth map was augmented by filtering spatiotemporal locations as well as depth 

values based on information provided by color and alpha images. The proposed method was 

tested primarily using the Time of Flight (TOF) camera, and Kinect is also used. 

Experimental results showed that the proposed method could produce a 3-D scene with a 

higher degree of naturalness than other methods. 

Shang et al. [28], they proposed a novel depth-guided affine transformation be used to 

filter the properties of irrelevant intensity, which is used to improve the properties of the 

depth map. Since the quality of the initial depth features is low, in-depth guidance filtering of 
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intensity properties and refining of intensity-guided depth features is done repetitively, which 

is done gradually and promotes the effects of such actions. In the refinement, depending on 

the frequency of the depth characteristics, repeat the above Sub-network, as well as 

outstanding learning, has been introduced. 

Usman et al. [37], they propose to improve focus measure by developing an energy 

minimization framework that integrates two types of shape priors and uses a nonconvex 

regularizer. The proposed regularizer is resistant to focus values that are noisy. The input 

picture sequence shape prior is the first one proposed, and it is a single and static shape prior. 

A sequence of form priors makes up the second shape prior. FVs are used to repeatedly create 

these shape priors. Both of these shape priors confine the solution space for the output focus 

measure. To optimize no convex energy functions, we employ a memorize-minimization 

strategy, which ensures a local minimum repeatedly and quickly converges. 

Guided filtering is important because it can transmit information from the guidance 

image to a target image if it has information that isn't present in the target image. When there 

are structural variations between the target and guide pictures, the issue arises. Typically, this 

occurs when both images input image and guidance image are captured by different devices 

in various lighting circumstances with daylight or night [18] and with sensor flash or without 

sensor flash [21]. 

To resolve this discrepancy, few barriers can be implemented to prevent the shifting 

of irrelevant or conflicting information from the guidance map to the target image. 

Consequently, the difficulty is how to use helpful information wisely without introducing 

intolerable distortions. Looking at the recently proposed images filtering technique, it has 

been observed that these studies ignore shape-from-focus in their applications, except for one 

recently proposed study. In which Usman et al. used 19 different guided image filters to 

obtain an enhanced depth map of the scene [36]. While they are achieving 91% correlation 

and 5.05 root means square error with respect to the original depth of the scene by using 

average results of all these 19 filters. This technique has required more computations and a 

single guided filter may not be sufficient to enhance the depth map. In this research, we 

present shape-from-focus as an implementation with guided image filters for the 

enhancement of depth map. A strong guidance map can be created by obtaining information 

from image focus volume and a guidance map performs an essential part in guided filters. 

Though, the choice of guidance map for depth improvement in SFF is not simple. Therefore, 
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we use the mean image intensity as a guidance map. It has been observed that from thirteen 

different guidance map mean image intensity guidance map perform better and transfer more 

information as compared to others [36].  

Above all, a brief relative study of common and recently proposed studies based on 

their ability to improve depth maps is described. In this SFF framework, we suggest a relative 

analysis of guided image filters for enhancing depth. The implementation of guided image 

filters has been categorized by examining different methods.  

This research shows that guided image filtering is valuable for enhancing depth map. 

Guidance map based on average image intensity are determined with optical dimensions and 

19 guided filters, as a recent study suggests that good performance is provided regardless of 

the underlying complexity of the scene or noise level [36]. From these 19 guided filters, this 

study provides a weighted set of filters that performs better for enhancing depth map than all 

other sequential combinations of 19 filters. These best filter combinations are obtained using 

Sequential Forward Search (SFS) approach [39] and the optimized weights for these 

combinations are obtained from Particle Swarm Optimization approach [40]. For further 

details read relative section in methodology chapter. 
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CHAPTER 4: METHODOLOGY 

In this section, we will go over the proposed framework for improving depth maps as 

well as detailed steps involved in the framework. The overlook of the proposed framework is 

depicted in Figure 4.1. Initially, an FM operator is used to obtain a focus volume for an input 

image sequence. Then, from the output of the focus measure operator, an initial depth map is 

projected. The mean image intensity in the image sequence is a better choice as guidance 

map adopted from [36]. It is made up of image sequence and focus volume. Afterward, 

guided image filters are fed with an initial depth map and an appropriate guide map as input. 

This study proposes a set of 2 best filters for each synthetic image, taking the output of these 

2 filters that are chosen by using sequential forward search SFS approach to selecting the best 

performing filter from 19 filters. These 19 filters are proposed as a set of guided filters for the 

enhancement of depth map [36]. Feed them into particle swarm optimization (PSO) 

algorithm, where optimized weights for each filter are obtained. At the end, multiply these 

filtered outputs with optimized weights that are obtained from the PSO algorithm and sum up 

all the results. Finally, the resultant depth map is the enhanced depth map as compared to the 

initial depth map. 

4.1 Initial Focus Volume and Depth Map 

Initial depth map for given input images, focus or level of sharpness for each pixel is 

estimated using an FM operator. Accordingly, an image initial focus volume Fi (x, y) is given 

by: 

𝐹𝑖(𝑢, 𝑣) = 𝐹𝑀 ⊗ 𝐼𝑖(𝑢, 𝑣)    (3) 

where FM denotes to a focus measure operator, ⊗ is the 2-D convolution operator, i 

represents image sequence number and Ii (u, v) is the position of the pixels from the image. A 

notable focus measure operator is GLV [3] that measure the fluctuation of image intensities 

inside a little nearby window, and is given by, 

𝐹𝑖
(𝐺𝐿𝑉)(𝑢, 𝑣) =

1

|𝑁|
∑ (𝐼𝑖(𝑢, 𝑣) − 𝜇)2

(𝑢,𝑣)∈𝑁    (4) 

where µ and |N| is the total number of pixels and mean gray-level respectively in the 

local window N centered at (u, v). This proposed framework can be used any FM operator. 
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Furthermore, linear filtering is applied to this initial focus volume to control the noise 

concentration measurement. For this 5 × 5 neighborhood focus values are aggregated, and it 

results in an enhanced focus volume. 

 

Figure: 4.1 Proposed framework for depth map enhancement through Weighted 

Combination of Guided Filters 

With better focus measurement, the depth map is created by locating the image 

number according to the highest focus measurement for each pixel location on image I(u, v) 

[1]. The resulting yield is called the initial depth map, shown in the Figure 4.2(a), (b), and (c) 

for cone, sine and cosine images and given by, 

𝐷(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)(𝑢, 𝑣) = 𝑎𝑟𝑔𝑖𝑚𝑎𝑥 (𝐹𝑖
(𝐹𝑀)(𝑢, 𝑣))   (5) 

where Fi
(FM) is the focus measurement as described in the equation 1 applied to each 

pixel (u, v) of the image. And argimax is the maximum value for the corresponding window 

of focus measurement when applied to image (u, v). 

4.2 Guidance Map 

Due to the limited capabilities of FM operators, reconstructing the depth map can be 

challenging at times. However, the depth map’s initial miscalculations can be balanced by 

adding some extra information about the shape of the object. This data is referred to as a 

guidance map or guidance image. Figure 4.5(a), (b), and (c) show the mean guidance image 

for cosine, sine, and cone, respectively.  
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(a) Initial depth map of cone image 

 

(b) Initial depth map of cosine image 

 

(c) Initial depth map of sine image 

Figure: 4.2 Initial depth map of different images sequences 
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According to a recently proposed study, mean image guidance maps aid in the 

improvement of the initial depth map and produce superior results when compared to other 

guidance maps [36] can be seen in the Figure 4.3. The values obtained using the mean 

guidance map is shown in the first index in Figure 4.3. The mean image intensity guidance 

map along the image sequence’s z axis can be calculate by, 

𝐺𝑎𝑣𝑔𝑖(𝑢, 𝑣) =
1

𝑁
∑ 𝐼𝑖(𝑢, 𝑣)𝑁

𝑖=1     (6) 

where Gavgi, mean image intensity in the image sequence along z direction and N total 

number of pixels in the image, and the position of pixels are Ii(u,v). 

 

Figure: 4.3 RMSE and Correlation using 13 different guidance maps adopted from [36] 

4.3 Guided Image Filters  

The guided image filters update an image, using the information of another image, 

called a guidance map or guidance image. In this study, mean image is used as a guidance 

map, to impact the filtering. The guidance map is also an image itself, a different version of 

the scene. Guided image filtering works same as the other filtering operations works, but 

when calculating the value of the output pixel, the guided image considers the statistics of the 
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relevant local neighborhood area. Guided filters are mainly categorized into two classes 

based on number of inputs are implicated in the process of filtering. First category is self-

guided in which one image is involved. In the second category, referenced-based and mutual 

guided where two images are involved in filtering process. This study proposed a framework 

for the enhancement of depth map using a weighted combination, where used different 

reference-based and mutual guided filters that are shown in Table 2.1. The general processing 

flow of guided filters is shown in Figure 4.4. Guided filters operate on two input images, one 

is the target image also known as input image and second is the guidance image. Guidance 

image is used as a reference to filter input image. The guidance map image we used in this 

study is an mean input image. The mean guidance image delivers better outcomes than 

alternative guidance maps [36]. The target image is an initial depth map that we aim to 

improve. 

 

Figure: 4.4 Guided filters flowchart 

4.4 Sequential Forward Search 

Sequential forward search algorithms are primarily a function of wrapper search 

methods [26]. Where it puts and removes sequential features from the problem area. In some 

cases, it explores each element independently and chooses M features from N features 

considering individual scores. This method is called naive feature selection. SFS approach is 

used in proposed framework to find best combination of filters. On the first iteration SFS 

techniques examine the results of 19 filters individually and on the second iteration it 

increases the set of filters and add the best performing filter into guided filter set and try all 

the remaining filter combination. Where found that a set of 2 filters is giving better results for  
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(a) Mean guidance image of cone image 

 

(b) Mean guidance image of cosine image 

 

(c) Mean guidance image of sine image 

Figure: 4.5 Mean guidance image of different images sequences 
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depth map enhancement. When the performance stopped growing, the algorithm stops 

operating. In below Figure 4.6, general SFS flow chart is shown. 

 

Figure: 4.6 General SFS flowchart 

Table 4.1: Top 10 Filter for Cosine Image. 

Filters Set of 1F Set of 2F Set of 3F Set of 4F Set of 5F 

CWMF 7.778 # # # # 

MRFF 7.8634 7.2164 # # # 

FWLS 7.8642 7.2701 7.2759 # # 

GAD 7.8651 7.3047 7.2891 7.2932 7.3088 

NAF 7.8656 7.291 7.2832 7.2957 7.3093 

EGIF 7.8657 7.2511 7.2991 7.2881 # 

JBU 7.8658 7.2639 7.2865 7.2946 7.3106 

WGIF 7.8662 7.2524 7.2829 7.3029 7.3054 

GIF 7.8662 7.2681 7.3097 7.311 7.3074 

GGIF 7.8662 7.2788 7.3193 7.2962 7.3149 
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As indicated in the Table 4.1 below, we used the SFS technique to make 

combinations of 10 filters into a 1-filter subset to five-filter set. Initially, single filter applied 

on the initial depth map individually. When results of individual filters compared to the other 

filters at first iteration on cosine image, the EGIF filter improves the depth map the better 

than the others. As a result, the filter EGIF will make the combination with all the remaining 

filters in the next iteration. The hashtag "#" in the table indicates that the filter is active in the 

current iteration. In the second iteration, a set of two filters, the EGIF filters, combine with all 

other filters, and in the third iteration, the EGIF and MGDD filters combine with all other 

filters. 

For sinusoidal images, Table 4.2 shows SFS results for one to five sets of filter 

combinations where MRFF filters perform well in the first iteration. In the second iteration, 

MRFF and EGIF filters were used. For third iterations, the least RMSE filter combination is 

Table 4.2: Top 10 Filter for Cosine Image. 

Filters Set of 1F Set of 2F Set of 3F Set of 4F Set of 5F 

EGIF 4.1001 # # # # 

MSJF 4.1287 4.1176 4.1034 4.1335 4.1058 

FWMF 4.2072 4.1201 4.1086 4.1047 # 

WGIF 4.2237 4.1002 4.1083 4.1061 4.1208 

GGIF 4.2238 4.1059 4.1231 4.1069 4.1159 

MGDD 4.2567 4.0989 # # # 

GAD 4.2818 4.1012 4.1007 4.134 4.1234 

FWL1 4.3085 4.1 4.0998 # # 

CWMF 4.3778 4.1202 4.1342 4.1421 4.1672 

LSF 4.4165 4.1751 4.121 4.1178 4.126 
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MRFF, EGIF, and FWMF. In the fourth and fifth iterations of SFS with WGIF and LSF 

filters MRFF, EGIF, and FWMF filters provide the optimal combinational set of filters. 

Table 4.3 illustrates SFS results for cone images with one to five sets of filter 

combinations where CWMF filters work effectively in the first iteration. In the second 

iteration, MRFF and CWMF filters have been used. The MRFF, CWMF, and FWLS filter 

combination with the lowest RMSE value in the third iteration. In the fourth and fifth 

iterations of SFS with EGIF and WGIF filters, MRFF, FWLS, and CWMF filters provide the 

appropriate combinational set of filters. 

4.5  Particle Swarm Optimization  

Particle swarm optimization (PSO) is a bio-inspired method that performs a basic 

search of the solution space for the optimal solution. It is distinguished from other 

Table 2.3: Top 10 Filter for Sinusoidal Image. 

Filters Set of 1F Set of 2F Set of 3F Set of 4F Set of 5F 

MRFF 2.8909 # # # # 

EGIF 2.8913 2.861 # # # 

GAD 2.9038 2.8746 2.8665 2.8644 2.8687 

MSJF 2.9062 2.8715 2.8655 2.8642 2.8605 

FWMF 2.9068 2.8649 2.8585 # # 

LSF 2.9172 2.8814 2.8844 2.8696 2.8602 

WGIF 2.9216 2.8787 2.8672 2.863 # 

GGIF 2.9216 2.8789 2.8624 2.8727 2.8684 

CWMF 2.9256 2.8638 2.8692 2.8666 2.8588 

MGDD 2.9269 2.8823 2.8715 2.8681 2.8657 
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optimization techniques by the fact that it needs just the objective function and is unaffected 

by the objective's gradient or differential form. Additionally, it features a restricted set of 

hyperparameters. 

Kennedy et al. [37] proposed particle swarm optimization approach in 1995. The 

systematic study of the biological believes that a group of fish or a flock of birds moving in a 

group "may profit from the experience of all other members". To put it another way, while a 

flock of birds is flying around looking for grain at random, all the birds in the flock can share 

their discoveries and help the entire flock have the best food possible. 

Although we can copy the motion of the bird's flock. We can consider that each bird 

from the flock is helping us to find the best optimal result in a high-dimensional solution 

space. In this kind of approach, we can never fix a specific global optimal solution, called a 

heuristic approach. Although from the different experimental results it is discovered that the 

PSO approach solution is very close to the global optimal solution. 

PSO can find better maxima or minima of the function on a multi-dimensional vector 

space. If we have a function f(X) that creates a real value from a vector parameter X(x,y)   for 

this we can use PSO (where x, y are coordinate in a plane), and X can have almost any value 

in the space. For example, f(X) is the altitude, and we can get one value for any point on the 

plane. PSO approach will return you the X value that gives you the minima of function f(X). 

 

Figure: 4.7 Scene of flock of birds 
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Let’s elaborate it with an example function: 

f(x, y) =  (y - 1.93)2 + (x -Π)2 +  sin(4x + 2.13) + sin(6y - 2.31) 

 

Figure: 4.8 Plot of above function f (x, y) 

This function resembles a curved egg carton, as shown in the graph above. Because it 

is not a convex function, finding its minimum is difficult due to a local minima obtained is 

not all the time the global minima. 

So, how to locate the function's minimal point? Certainly, we can conduct a thorough 

search: we can discover the least point by checking the value of f(x, y) for each location in 

the plane. If we believe it is too costly to search each point in the plane, may just locate few 

random examples points in the plane and determine which one gives the smallest value on 

f(x, y). However, we can see from the plot of f(x, y) Figure 4.8, that if we locate a point with 

a reduced f(x, y) value. It is easier to find a point with an even smaller value nearby. 

A particle swarm optimization works in this way; we start with a bunch of random 

points in the solution space, called particles and let them look for the minima point in random 

paths, just like a bird’s flock looking for grain. At each step, each particle should seek around 

the lowest point it has ever discovered, as well as the smallest point discovered by the entire 

swarm of particles. After a certain number of cycles, we consider the function's minima point 

to be the lowest spot ever analyzed by this swarm of particles. 
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Assume there are P particles, and the location of particle k at iteration i is denoted by 

𝑋𝑘(i), which in the example above is a coordinate 𝑋𝑘(i) = (𝑥𝑘(i), 𝑦𝑘(i)). Every particle has a 

velocity, which is represented by, 

𝑉𝑘(𝑖) = 𝑣𝑥
𝑘(𝑖), 𝑣𝑦

𝑘(𝑖)         (7) 

 In addition to its position, the following is how the position of each particle would be 

changed in the next iteration. 

𝑋𝑘(𝑖 + 1) = 𝑋𝑘(𝑖)  + 𝑉𝑘(𝑖 + 1)    (8) 

Or, homogeneously 

𝑋𝑘(𝑖 + 1) = 𝑋𝑘(𝑖)  + 𝑉𝑥
𝑘(𝑖 + 1)    (9) 

  𝑌𝑘(𝑖 + 1) = 𝑌𝑘(𝑖)  + 𝑉𝑦
𝑘(𝑖 + 1)    (10) 

The velocities are likewise adjusted by the rule at the same time: 

𝑉𝑘(𝑖 + 1) = (𝑤. 𝑉𝑘(𝑖)  + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 −  𝑋𝑘(𝑖))  +  𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 −  𝑋𝑘(𝑖) (11) 

where r1 and r2 are the random number ranging from 0 to 1. w, constants, c1 and c2 are 

PSO algorithm parameters. pbestk is the position that gives the best f(X) value ever explored 

by particle k and gbest is the position explored by all the particles in the swarm. 

 

 

 

 

 

 

Figure: 4.9 Implementation of PSO algorithm and SFS approach 
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The parameter w is inertia weight. It has a value between 0 and 1 and specifies how 

much of the particle's previous velocity must be preserved (i.e., angle and speed of the 

search). The parameters c1 and c2 represents the cognitive and social coefficients. They 

determine how much emphasis should be placed on improving the particle's search result 

versus identifying the swarm's search result. And these variables can be thought of as 

governing the exploration-exploitation trade-off. Figure 4.10 displays the PSO cost 

optimization curve after 100 iterations to obtain optimum filter set weights. 

In each cycle, the positions pbesti and gbest are modified to represent the best position 

ever discovered. In our study, the PSO approach is used to find the best weights for 

combinations of filters. These weights play a great role to enhance the depth map. When a set 

of the two best filters was achieved for increasing the depth map by sequential forward 

search, then two weights were required for each filter to make a weighted combination of 

filters to increase the depth map. As shown in below equation, 

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑑𝑒𝑝𝑡ℎ_𝑚𝑎𝑝 = ∑ 𝑤𝑛𝑛 . 𝑓𝑛
𝑜𝑢𝑡    (12) 

where n is the number of the filter in the best performing filter set and w are the 

weights obtained from PSO, ranging from 0.0 to 0.99 and fout are the outputs of the filters 

from the filter set that are obtained from SFS. 

 

Figure: 4.10 PSO cost optimization plot 



    
 

32 

CHAPTER 5: EXPERIMENTAL RESULTS 

In this section, we review the experimentally performance of the proposed 

framework. The proposed model was implemented in MATLAB ver.19a on a PC with 16GB 

RAM and a 3.30GHz processor. These filters need to set their parameters. In Section B, we 

experimentally tune all the filter parameters via extensive experimentation [36]. After that 

feeds these results to a sequential forward search to get the best combination of filters and the 

optimized weights for each filter are obtained from PSO. Finally, multiply the weights with 

the filter outputs that are chosen using SFS, and by adding these results we have a resultant 

image of the enhanced depth map. 

5.1 Dataset 

Synthetic objects have been used to assess the exhibit of guided image filters. The test 

dataset comprises three picture successions of manufactured articles or called synthetic 

objects. Synthetic objects are like artificial objects or shaped like cosine objects, con objects, 

and sinusoidal waves, whose depth map are produced using numerical functions. Gaussian 

estimation of the point spread capacity is processed utilizing the camera boundaries and the 

depth map of the item. More insight about picture models and engineered picture age can be 

found in [28]. The picture arrangement of the cone-shaped article has 97 pictures (dimension: 

360 × 360). Sinusoidal images and cosine images arrangements comprise 60 pictures and 

each picture is of dimension 300 × 300 pixels. Sample images from synthetic image 

sequences are displayed in Figure 5.1. 

 

Figure: 5.1 Synthetic image sequences samples 
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5.2 Evaluation . Measures .  

In order to evaluate the various guided filter implementations, it is necessary to use 

increased depth maps as a benchmark. Ground truth for synthetic image sequences is the 

actual depth map of these objects. Quantitative evaluation of the increased depth map's 

results is possible by comparing them to the ground truth. The root mean square blunder 

(RMSE) and the correlation are two quantitative measurements that are used (CORR). These 

two quantitative measures are given by, 

 

𝑅𝑀𝑆𝐸 = √ 1

𝑋𝑌
∑ ∑ (𝐷𝑓(𝑢, 𝑣) − 𝐷𝑔(𝑢, 𝑣))

2
𝑌
𝑣=1

𝑋
𝑢=1    (13) 

 

where Df(u,v), denote the filtered depth map and Dg(u,v), ground truth depth map. 

While X and Y represent the total number of pixels in the map. And correlation coefficient 

given by, 

 

Correlation = 
∑ ∑ (𝐷𝑓(𝑢,𝑣)−𝐷𝑚)(𝐷(𝑢,𝑣)−𝐷𝑔)𝑌

𝑣=1
𝑋
𝑢=1

√∑ ∑ (𝐷𝑓(𝑢,𝑣)−𝐷𝑚)
2

∑ ∑ (𝐷(𝑢,𝑣)−𝐷𝑔)
2𝑌

𝑣=1
𝑋
𝑢=1

𝑌
𝑣=1

𝑋
𝑢=1

  (14) 

 

5.3 Optimal Parameter Tunning  

In the proposed framework, weighted combinations of guided filters for the 

improvement of depth map in SFF. These guided filters are applied using open-source code 

made available by their authors. To achieve the highest possible average performance. The 

filter parameters were tuned experimentally, and their values are listed in Table 5.1. There are 

several parameters that are frequently used in these guided filters, including σ, indicates the 

Gaussian kernel’s standard deviation, λ, indicates the regulation parameter, n, indicates the 

total number of iterations, and w, indicates the window’s w x w size. The reader is referred to 

the pertinent literature [36] for a detailed explanation of these parameters. 
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Table 3.1: Guided Filters Parameters Tuning [36]. 

No. Filters 
Filter 

Parameters 

Sinusoidal 

Image 

Cosine 

Image 

Cone 

Image 

1 NAF. .[26] 
(.σs, .σr, .σd, 

.up, .e, τ, w) 

(0.2,10,2,1,0

.5,20,7) 

(2,5,5,1,0.1

,5,5) 

(0.2,10,2,1,

0.5,20,7) 

2 LSF [35] (.σr, .λ) (15,1) (15,1) (15,1) 

3 JBF. .[21] ( σs., σr., w) (1.2,0.25,5) (1.2,0.25,5) (1.2,0.25,5) 

4 WMF [27] (σr, σd, σs, w) (10,3,3,21) (16,6,2,17) (16,6,2,17) 

5 MRFF. .[34] (.σd, .σs) (0.9,0.1) (0.1,0.3) (1,1) 

6 CWMF [29] (λ) (0.01) (1102) (1102) 

7 GAD . .[28] (.σs, .c) (15,0.1) (15,0.1) (10,0.1) 

8 MSIF [18] 
(λD, λG, D, G, 

w, n) 

(5x1010,10x

1010 

,50,50,9,20) 

(5x1010,10

x1010 

,100,100,9,

20) 

(5x1010 

,10x1010,1

00,20,5,20) 

9 FWL1 [24] ( e, n,σ, λ) (5,5,0.02,50) 
(5,5,0.01,0.

5) 

(5,5,0.01,0.

9) 

10 WGIF. .[31] (.λ, .w) (0.1,9) (0.1,9) (0.1,5) 

11 FWLS [24] (σ, e, n, λ) 
(0.1,1.2,5,0.

001) 

(0.3,1.2,5,0

.1) 

(0.3,1.2,5,0

.5) 

12 SDF [20] 
(λ, µ, nei, 

step, ν) 

(2,20, 

4,10,20) 

(0.1,20,4,1

0,20) 

(1,20, 

8,10,10) 
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13 FWMF [30] 
(σ, n, nT , nG, 

wt, w) 

(100,1,256,2

56, exp,17) 

(5,1,256,25

6,exp, 5) 

(40,1,256,2

56, exp,21) 

14 EGIF [133] (λ, w) (200,9) (100,9) (230,5) 

15 GGIF. .[32] (λ, w) (0.01,9) (0.01,9) (0.01,5) 

16 MGDD [19] (n, λD, λG) (10,0.1,90) 
(10,0.01, 

100) 

(0.0005, 

5,2) 

17 JBU [25] (σs, σr, up, w) (0.5,0.1,1,5) 
(0.5,0.1, 

1,5) 
(3,3,1,5) 

18 MSDG [19] (λD, n) (0.1,10) (0.001,10) (0.001,10) 

19 GIF. .[17] (.λ, .w) (0.0001,11) (0.0001,11) (0.0001,11) 

 

5.4 Results and Discussion 

Initially, we scrutinize the quality of weighted combinations of guided filters, root 

mean square error quantitative measures have been shown in Figure 5.3, and Figure 5.4 for 

synthetic images. Depth maps of cosine image are shown in Figure 5.3(a). Below figure 

shows the initial depth map, and enhanced depth map using a weighted combination of 

guided filters from a single set of filters to a set of 5 filters. The depth map achieved by 

applying the weight combination of MSJF [18] and EGIF [33] filters (combination of 2 

filters) enhanced than the initial depth maps.  
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(a) RMSE values for cosine sequence 

 

 

(b) RMSE values for cone sequence 
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 (c) RMSE values for sinusoidal sequence 

Figure: 5.3 Root mean square error of enhanced depth map with respect to ground truth 

using multiple data sets and different combination of guided filters 

The enhanced depth map for the cone images sequences are displayed in Figure 5.3(b) 

and it is observed that the weight combination of guided filters (MRFF [34] and CWMF [29] 

filters) have created an enhanced depth map with respect to the initial depth map. Sinusoidal 

object depth map is shown in Figure 5.3(c) and for the sinusoidal object set of 5 weighted 

combinations guided filters (LSF [35], FWMF [30], EGIF [33], MRFF [18], and CWMF [29] 

filters) give an enhanced depth map as compared to the initial depth map. 

For a better performance review of weighted combinations of guided filters, all the 

results of the depth map shown in Figure 3 and the average results shown in Figure 5.4. It has 

been observed that a set of 2 filters gives better results than other filter combinations. As 

shown in Figure 5.4, the average RMSE for sinusoidal, cosine, and con image is lower at a 

combination of 2 filters than other filter combination sets. Where for cosine image, a 

weighted combination of MSJF [12] and EGIF [17] filter perform better, and for the 

sinusoidal image, it is observed that weighted combination of MRFF [13], and EGIF [17] 

filter perform well and for cone image MRFF [13], CWMF [9] filters weighted combination 

gives better performance. 
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Figure: 5.4 Mean RMSE computed over three image sequences sine, cosine, and cone with 

respect to each filter set (0-5) 

 

Figure: 5.5 Performance comparison, in terms of correlation and mean RMSE, between 

proposed approach and recent work by Usman et al. [36] 
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It has been observed that our proposed framework has improved results as compared 

to the initial depth map. The comparative results of the proposed framework and previous 

proposed study [36] are shown in Figure 5.5, where RMSE value is 4.7 and 93% correlation 

with respect to the actual depth map. Our proposed approach has been found to produce 

better results. only using a set of two filters with respect to less RMSE and more correlation 

to the actual depth map, while in a recently proposed study [36], 19 guided filters were 

included to enhance the depth map. 
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CHAPTER 6: CONCLUSION & FUTURE WORK 

6.1 Conclusion  

Shape-From-Focus uses focus in place of a cue to recreate the scene's 3D shape. FM 

operator’s performance is influenced by a variety of elements including as picture 

illumination, consistency of a surface, distinguish objects colors, quantity of noise, and 

imaging equipment attributes. As a result, there is a chance that the rebuilt depth map 

contains some incorrect depth estimates. This research discovers that, the weighted 

combination subset of guided filters is useful and efficient in enhancing the depth image. The 

chosen guided filters have been picked after a thorough assessment of the most recent 

literature. Guided filtering has been found to be helpful in enhancing the initial depth map 

image. We assess different image filters in the study, and they all offer ways to enhance the 

initial depth map. The proposed framework utilizes two guided filters subset that leads to 

fewer computations and enhanced depth maps as compared to earlier works. 

In conclusion, the findings of this study show how different weighted combination of 

guided image filters improve depth image. We feel that our research on depth map 

enhancement is important and that it will lead to future progress in the field of SFF using 

guided filtering. 

6.2 Contribution 

• A novel framework for the enhancement of depth map using guided image filters in 

shape-from-focus. 

• In the depth enhancement framework, the optimized set of guided image filters has 

been proposed. 

• Recent breakthroughs in depth map enhancement are reviewed and compared. 

6.3 Future Work 

In the future, a robust guided image filter could be used to capture image details to 

enhance the depth map. A unique guidance map image has been suggested which helps in 

guided image filtering or any other method of weight optimization that can be used to 

improve the depth map. 
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