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Abstract 

3D Cardiac Magnetic Resonance Imaging (MRI) is widely used for the diagnosis of 

cardiac diseases such as congenital heart defect, left ventricular hypertrophy and left atrium 

hypertrophy etc. It is one of the noninvasive technique to examine cardiac anatomy. However 

this technique is semi- automatic, i.e. the images obtained directly from MRI machine have to be 

segmented manually. This includes the segmentation of chambers and vessels, which is quite 

complex and requires specialized technical knowledge. Without proper segmentation, it is 

extremely difficult for medical staff to examine the data. This research suggest a fully automatic 

method for cardiac chamber segmentation (Left Atrium and Left Ventricle pair) in 3D cardiac 

MRI based on a combination of traditional and artificial intelligence method. The proposed 

method identifies the junction of Left Atrium (LA) and Left Ventricle (LV) using neural 

networks. The features used for this purpose are based on shape, size and position. Then it uses 

traditional methods to track and stack the upper and lower slices based on neighborhood. I.e. a 

3D model of the segmented LA and LV is reconstructed from the 2D slices. This enhanced 3D 

image model helps in deducing quality information for the diagnosis of various heart diseases. 

The proposed algorithm shows acceptable performances for all planes of LV and LA. We have 

achieved 91.57% mean segmentation accuracy. The proposed algorithm is not effected by the 

thickness of the slices. It is simple and computationally less intensive than existing algorithms. 

The proposed method is applicable to the high resolution (0.5mm) 3D MRI setup. For such high 

resolution the existing algorithms are not able to perform well.  

 

 

Key Words: Cardiac MRI Segmentation, Left Ventricle Segmentation, Left Atrium 

Segmentation, Heart Chamber Segmentation 
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Chapter 1 : Introduction 

The research work in this document is divided into four basic parts i.e. introduction, 

literature review, proposed method and experimentation setup along with results. Each part is 

explained in detail in the respective chapters. This chapter give a brief overview of some of the 

preliminary background, which include 

 Basics of MRI, 

 Basic cardiac anatomy, 

 Background, scope and motivation of the research topic. 

1.1 Basics of MRI 

A human body is composed of 70% of water. A water molecule possess a hydrogen atom 

along with a proton. Magnetic Resonance Imaging (MRI) is based on magnetic resonance of 

these hydrogen protons. These protons are excited when a radio frequency pulse is introduced. 

When the pulse is removed the protons go back to their relaxation state and releases the energy. 

The magnetic resonance machine captures the released signals. During relaxation two processes 

take place i.e. longitudinal relaxation (T1) and transversal relaxation (T2). T1 provides 

information about anatomy in Z-plane while T2 provides information about anatomy in XY 

plane. 

A human body possess different types of tissues. Each tissue has different proportion of 

water and fat. Both have different relaxation time (T1 and T2). This create high signal intensity 

in case of fats and low signal intensity in case of water. With the help of these differences, an 

image is created.  

A 3D MRI possess various slices of single plane (Figure 1.1). This plane may be either 

axial (transversal), coronel or sagittal. These slices are also known as sequences. Axial plane 

consist of transversal slices (Figure 1.2).  Sagittal plane also known as longitudinal plane, divides 

the body into right and left parts. Coronal plane is a vertical plane at right angles to a sagittal 

plane, dividing the body into anterior and posterior portions. Figure 1.2 shows all cross sectional 

planes i.e. axial, coronal and sagittal.  
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Figure 1.1: Cross sectional axial slices of an artery. 

 

 

Figure 1.2: MRI planes, axial (transversal), coronal and sagittal [52] 

1.2 Basic Cardiac Anatomy in MRI 

A human heart can be divided into four chambers, i.e. left atrium (LA), left ventricle 

(LV), right atrium (RA) and right ventricle (RV). Figure 1.3 shows all the respective cardiac 

chambers while figure 1.4 shows all the respective chambers in an axial slice. In MRI slices the 

color of LA and LV is light gray, this is due to the fact that these chamber possesses more pool 

of blood. RA and RV is light gray due to lesser blood pool. It can be observed from Figure 1.4 

that in an MRI the LA and LV shape resembles an ellipse. 
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Figure 1.3: Cardiac anatomy 

 

 

Figure 1.4: Cardiac anatomy in axial slices. 

1.2.1 Cardiac Anatomy in 3D MRI 

A 3D MRI has various slices in all planes depending upon the temporal resolution of 

MRI machine. These slice cuts are placed on some non-zero angle, usually 30 degrees. It is due 

to the fact that human heart is placed at the same angle in the ribcage. Figure 1.5 shows an 

example of a 3D cut in all planes. 
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(a) 

  

                                       (b)                                                                       (c) 

Figure 1.5: 290th 3D slice of left ventricle. (a) Axial, (b) Coronal and (c) Sagittal 
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1.3 Background, Scope and Motivation 

Cardiac imaging plays a major role in the diagnostics of various cardio vascular diseases 

and abnormalities [1-6], such as ventricular tachycardia, atrial fibrillation and myocardial 

infraction etc. These medical imaging techniques include echo diagram, intravascular ultrasound, 

2-D and 3D cardiac MRI, nuclear imaging and CC [7]. Some of these techniques are invasive i.e. 

use physical catheter which are injected in to a patient body. These physical catheters are painful 

for patients especially elders and children. Moreover there are patients who have little or non-

significant form of disease. Such patients may not require painful invasive techniques. These 

patients can be dealt with non-invasive techniques like ECHO or MRI. The problem with ECHO 

cardiograph is that it is based on geometrical assumptions and have poor spatial resolution (see 

Figure 1.6 for comparison). This technique is getting obsolete. On the other hand modern 

techniques such as magnetic resonance cardiac imaging has good spatial resolution and provides 

the necessary information in term of cardiac anatomy. Also MRI techniques are noninvasive. 

However, magnetic resonance imaging is made difficult by both respiratory motion and cardiac 

motion occurring at the same time and the poor contrast between adjacent blood pools. 

 

 

          (a)               (b) 

Figure 1.6: Spatial resolution of (a) MRI and (b) ECHO 

 

Techniques like breath-hold and fast acquisition for 3-D MRI have made drastic 

improvement to cardiac MRI [8-10]. These techniques have made the diagnostic process more 
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accurate, precise and easy for physicians and patients. However this process still require manual 

segmentation in order to make raw 3D cardiac MRI readable for physicians. This includes   

cardiac   chamber segmentation (Ventricles and Atrium) and vessels segmentation (includes 

RCA, LCA, and LAD). For this purpose specific technical and medical training is required to 

understand and segment raw 3D MRI. The technician also needs to know about the sophisticated 

post processing softwares. Which means that the pre-diagnosing process depends on the 

technical skills of the technicians. It is also time consuming for physicians to identify the target 

anatomy and to perform examination and diagnostics. Therefore it is important for the pre-

diagnostic process to have fully automatic segmentation in cardiac images. Although some of the 

semi-automatic techniques [11-18] have been developed, these methods require some human 

interaction. Artificial intelligence and fuzzy logic may be used to provide solutions to various 

image processing and segmentation tasks. [19-21].  

This thesis proposes  a  solution  to segment left atrium and  left  ventricle  from  3D MRI 

images using artificial neural networks  in  conjunction with traditional  image  processing  

approaches. This method identifies and segments the chambers intelligently by an automated 

system.  We then make a 3D segmented model of LA and LV.   
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Chapter 2 : Literature Review 

This chapter provides literature review and basic trends in the field of cardiac chamber 

(LV and LA) segmentation in 3D MRI. This chapter is divided into three main parts 

 Existing techniques 

 Comparative analysis of existing techniques 

 Complexity analysis of existing techniques. 

2.1 Existing Techniques 

A few techniques have been developed for cardiac chamber segmentation. These include 

statistical, shape based morphological, contouring and training approaches [13], [22-27]. The sub 

sections below presents a detailed overview of some of the existing techniques. 

2.1.1 Shape Base Techniques 

Shape based techniques take the advantage of the fact that the shape of various objects in 

a cardiac MRI possess properties of geometrical shapes, such as an ellipse (Figure 2.1), circle or 

semi cardioid. 

 

                      (a)                                           (b)                                           (c)  

Figure 2.1: LA shape in (a) Axial (b) Coronal and (c) Sagittal slices. 
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Shape based methods include bilinear shape based model, variants of Hough transform such as 

elliptical Hough transform and circular Hough transform etc. Below is the review of some of the 

common shape based methods. 

2.1.1.1 Bilinear Statistical Models 

Bilinear shape based model [45], use bilinear statistical models to divide the shape 

variation into two components i.e. inter-subject variation and intrinsic dynamics of the human 

heart. This bilinear statistical model is a two-factor model which is linear in any one factor when 

the other is kept as a constant. With the help of this model it reconstruct the shape of the heart at 

specific slices in the whole MRI. It however require a small number of shape instances 

representing the same subject cardiac MRI at different points. This method reconstruct a cardiac 

model of a maximum 2 mm depth, while the average depth is 3.5 mm.  

2.1.1.2 Active Shape Models 

An active shape model (ASM) consist of a statistical shape model. This model is known as 

Point Distribution Model (PDM). It is obtained by a principle component analysis on the set of 

various aligned shapes Segmentation via ASM is performed by placing the predefined model on 

the image. And then estimations are rotated iteratively, with different translation and scaling 

parameters [46]. Due to scaling and translation the shape model is invariant to transformations. 

The main advantage of the ASM methods is its ability to overcome the noisy structure (which in 

this case is the non-chamber tissue and ribcage noise). ASM based techniques build a complete 

shape model using manually segmented data. In ASM a shape model is defined as a structure 

which reflects the typical structure of a special set of anatomical objects of interest. Variants of 

ASM may use several ways to represent a shape e.g. cloud point, mesh, surface etc. In most 

cases for cardiac segmentation, surface and mesh models are mostly used. ASM may have 

different variants, however the general steps used often are given below.  

 contour extraction and spatial alignment 

 Temporal alignment 

 Construction of the shape model 

 Dimensionality reduction 

 Shape correspondence 
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2.1.1.3 Review of Shape Based Methods 

 However each technique is effective only for specific scenario [28-29]. For example the 

shape based technique suggested in [17] is appropriate for left ventricle segmentation due to the 

fact that left ventricle shape resembles ellipse. However this technique fails to segment RA and 

RV. Similarly [45] is only effective for ventricle segmentation in low resolution MRI. Almost in 

all cases shape based morphological and contouring methods would not work effectively for all 

cases due to a high variation and abnormal or irregular cardiac anatomy [22]. To our knowledge, 

there is no shape based technique reported in the literature for the high resolution (640x512x512 

or 0.4mm depth) MRI. 

2.1.2 Contours Based Techniques 

Previous countering method use the fact that the shape of cardiac chambers remain 

almost same in subsequent slices [32]. Example of subsequent slices can be seen in figure 2.1 

and Figure 2.2, where red arrow point out the LV. A simple approach for chamber segmentation 

in 3D is to use the manually segmented contours to locate the contour or the boundary in the 

preceding slice. This type of method can be very effective for chamber segmentation as in each 

subsequent slices the contours remain almost same. Only the size of the object is changed. So 

once the chamber is segmented at initial axial slice, it’s not tough to follow it in the preceding 

slices. However this procedure fails in case of coronal slices, in which the data is not consistent, 

especially for LV (As shown in Figure 2.2 and Figure 2.3). 

 
 

Figure 2.2: Example of consecutive axial slices. 
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Figure 2.3: Example of consecutive coronal slices. 

2.1.2.1 Deformable Models 

Deformable models [33-34] or active contours techniques [50-51] are popular model 

driven technique. It is based on the parametric curves, surfaces or volumes which deforms under 

various conditions i.e. external and internal energy. The external energy forces the contour to 

move toward boundary or edge, while the internal energy forces the contour towards smoothness 

constraint. Adding other energy terms can force the deformable model to achieve better result in 

case of chamber segmentation. However the biggest disadvantage of this method is that it cannot 

handle images with more noise. In cardiac images rib cage, backbone and other closely 

connected vessels act as a noise. Rib cage and backbone can be eliminated but the packed vessels 

are still a matter of concern for this technique. In 3D MRI as we increase the temporal resolution, 

the small vessels start appearing prominently in individual slices. Example of noise effect on 

segmentation can be seen in Figure 2.4.  

 
 

Figure 2.4: Example of a noisy active contour. 
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The circle in Figure 2.4 shows the segmented vessel. This segmented area is not a part of LA 

rather it is a part of an artery. 

2.1.2.2 Pixel Classification Method 

Pixel classification is methods are widely used for medical image segmentation when the 

dataset have multiple similar images, such as cardiac MRI. In pixel classification methods 

various features are extracted and are used to classify various objects present in the MRI images. 

For classification several supervised and unsupervised methods can be used. One of the 

unsupervised method used in the literature is Gaussian Mixture Model fitting (GMM) and 

clustering. For this purpose various methods such as geometrical assumptions (LV location, 

spatial orientation) are used. GMM is based on fitting the image histogram with a combination of 

various Gaussians using the Expectation-Minimization (EM) algorithm [47].  

Until now only a few supervised approaches have been proposed in the literature. It is 

due to the fact that learning phase is computationally intensive and require a large amount of 

dataset which is currently not available for high resolution MRI. The learning algorithm is fed 

with gray levels of labeled MRI pixels. The learning can also be done manually by selecting on a 

few pixels belonging to LV [48].  

2.1.3 Learning Based Estimation Techniques 

In learning based shape model, first the cardiac images are manually segmented and then 

the system is trained with the manually segmented data. Learning based methods in literature are 

discussed below.  

2.1.3.1 Manifold Learning 

[30] Uses manifold learning approach based on Mumford-Shah [49] function for shape 

estimation. Mumford and Shah, proposed a function of the edge set and smooth approximation 

for segmentation of the input image. It exclude the edge set from the image pixel domain yields a 

smooth approximation of the input image. The authors manually mark the points for applying 

shape based mask at start. It that it is not entirely based on AI. Rather it’s a combination of AI 

and traditional methods. In this work authors have used lesser resolution dataset and the 

reconstruction is only limited to 2D.  
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2.1.3.2 Deep Neural Network 

To improve learning based method further, deep neural network (DNN) models are 

identified [31]. With the help of these trained shapes various vessels and LV/RV chambers are 

segmented. However [31] have not been used for LV and LA pair. Also DNN based methods 

require large amount of data for training and testing, which in case of cardiac data is not 

available. Also the available data have a high degree of variability. Less data and high variability 

may lead to high error rate and inefficient segmentation and reconstruction. However if network 

is carefully trained with large data, the results may be improved to a high degree. The resulting 

reconstruction will have high temporal and transversal resolution with highest accuracy. One 

possible way to tackle this dataset issue is to use other traditional methods along with machine 

learning techniques such as shallow neural networks. 

2.2 Combined Analysis of Existing Methods 

From the above review it can be seen that various attempts have been made to segment 

cardiac chambers. Summary of these methods have been organized in Table 2.1 in detail.  

Table 2.1: Comparison of various cardiac chambers segmentation techniques 

 
Ref. Methodology Segmentation 

plane 

Automatic / 

Semi-Automatic 

Remarks 

[35] Graph Cuts 2D Semi-Automatic  

[12] Seed contour 2D Semi-Automatic Issues with discontinuous 

data 

[37] LARM and ACPS 

FFDs 

3D Automatic Computationally intensive. 

may take hours to complete 

[38] SSDM 2D Semi-Automatic Only for Left ventricle 

segmentation 

[13] Active Shape Model 2D Automatic Probabilistic approach 

having issues with 

contours. Only for LV 
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[30] Phase field 

approximation, 

Mumford-Shah 

functional 

3D Semi-Automatic Need human interaction at 

start 

[33] Deformable surface 

framework 

3D Automatic Only for Left ventricle 

segmentation 

[17] Scalable 

segmentation 

framework,  contour 

coupling technique 

2D NA Only for Left ventricle 

segmentation. Focuses on 

reducing training effort. 

Proposed 

Method 

Neural Networks 

and traditional 

methods 

3D Automatic Less effective for coronal 

slices of LA 

 

Table 2.1 shows that most of the existing algorithm uses 2D segmentation plane ([12-

13][37-38]), i.e. it do not reconstruct a complete 3D model of either left ventricle or left atrium. 

It can also be seen that most of the existing algorithms are semi-automatic ([30][35][38]), i.e. 

these techniques need human interaction at some level during segmentation. For example [30] 

require a manual seed point to be defined at the initial slice. It can also be seen that most of the 

algorithms ([13][17][33][38]) are applicable to only a single chamber segmentation i.e. LV. 

These algorithms fail to segment LA due to high variability of LA dataset. In short, without 3D 

reconstruction the diagnostic process become very difficult. Also semi-automatic algorithms 

makes the diagnostic more time consuming task. 

Table 2.2 shows the segmentation resolution of various existing algorithms in terms of 

pixels, number of images per MRI sample and millimeters (mm). It can be seen that most of the 

existing algorithms have lower slices depth or resolution i.e. greater than 1mm in terms of 

millimeter. It also shows that the existing algorithms are applicable to older MRI techniques 

having a low transversal and temporal resolution. Such low resolution MRI techniques are 

unable to reconstruct an accurate 3D model. It can also be seen that the proposed method in this 

thesis reconstructs LA and LV with the highest resolution.  
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Table 2.2: Comparison of segmentation resolution of various cardiac chambers segmentation 

techniques 

Ref. Segmentation Resolution 

(Pixels) 

Segmentation Resolution 

(No. of images) 

Segmentation Resolution (mm) 

[12] 256x256 8 10mm 

[44] NA NA 1.1–2.3mm 

[39] NA NA 2mm 

[30] 120x120 9 NA 

[13] 256x256 32 0.93-1.64mm 

[37] 280x240 140 1mm 

Proposed 

Algorithm 

512x512 512 0.5mm 

 

2.3 Complexity Analysis of Existing Techniques 

Table 2.3 shows the complexity analysis of the existing techniques. The complexity is 

discussed on the basis of computational and mathematical intensity. For example Gaussian 

filtering is less complex than PCA. PCA is less complex than ASM (Active shape models) and 

ASM is less complex than LARM and ACPS. The Most complex algorithms are ACM and 

LARM based such as [37]. According to authors such algorithm may take hours to complete. 

However there accuracy is better than most of the algorithms. It also have a good temporal 

resolution of 1mm. It is due to the fact that it construct a 3D model with a slice depth of 140 

images per sample. The second most complex algorithms are variants of high order probabilistic 

estimators [15][11][39]. Their results improve as the order increases, however the complexity is 

also increased. Such algorithms rely on the tradeoff between accuracy, temporal resolution, 

transversal resolution and complexity. Learning based estimation methods such as [16] may have 

less complexity during training. However such techniques are computationally intensive during 

the training process. 
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Table 2.3: Detailed complexity analysis of various existing cardiac chamber segmentation 

techniques 

 
Ref. Complexity Analysis 

[16] Algorithm is learning based estimation. For 64x64x64 volume at the 3 mm resolution, it 

requires to calculate 4 ∗ 105 hypothesis, which makes it computationally intensive. 

[37] Based on multiple computationally intensive algorithms i.e. LARM, ACPS and FFDs, 

According to [34] authors, it may take hours to complete. 

[15] It uses MLP (Maximum likelihood Probability), ellipse fitting, seed countering and 

thickness estimation with regularized Dirac function.  

[11] Based on high order energy estimation function. Efficiency increases as order increases, 

however it also increase complexity. 

[39] Based on high order energy estimation function. Efficiency increases as order increases, 

however it also increase complexity. 

[33] This algorithm is based on ASM (Active Shape model) Construction, Principal Component 

Analysis and Contour Coupling based objective function. 

[17] Based on ASM (Active Shape model), probabilistic data association filtering (Such as 

Gaussian filtering) and Mutual Favorite Paring algorithm. 

[13] Based on AAM (Active Appearance model), MPCA (Multilinear Principal component 

Analysis), probabilistic filtering (Gaussian distribution) and recursive Bayesian 

framework. 

[30] Estimation based on Mumford-Shah function which is a high order energy estimation 

function. It requires high computation. 

Proposed 

Method 

The algorithm uses a simple 5 layer neural network for junction detection. For tracking 

and reconstruction it uses connected components algorithm along with Euclidean function. 
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Chapter 3 : Proposed Methodology 

This chapter provides a detailed overview of the proposed method. The chapter is 

organized in the following parts, 

 Introduction 

 Proposed algorithm 

 Junction detection 

 Tracking 

 Pseudo code 

3.1 Introduction 

This work targets the segmentation of Left Atrium and Left Ventricle (i.e. LA and LV 

pair) in high resolution 3D MRI. The proposed method is divided into two major parts i.e. 

junction detection and LA/LV tracking. The junction detection part is based on AI, where 

various features are extracted and a neural network is trained with the help of these extracted 

features to locate the junction between LV and LA. Once the junction is located a traditional 

tracking methods is used to segment LA and LV.  LV is tracked in the subsequent slices and LA 

in preceding slices. After tracking the segmented layers are stacked above each other to make a 

3D segmented model.  

The junction detection further consist of training and testing phases. During the first 

phase neural network is trained for LV and LA junction. Before using neural network some 

preprocessing is performed. After preprocessing various shape based features are extracted from 

each objects in the slice. These features are fed into the neural network and after rigorously 

training the network, it is able to identify the LA/LV junction.  

3.2 Proposed Algorithm 

The complete framework is shown in Figure 3.1 in the form of a block diagram. MRI 

slices are first loaded from DICOM data. Then preprocessing is performed and geometric 

features are extracted. Using these features junction detection is performed on slices using a pre-

trained neural network. After junction detection LA and LV are tracked. Finally all the 
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segmented slices are stacked and joined to make a 3D segmented model. Each module of this 

whole framework is explained in the sub sections below. 

 
Figure 3.1: Flowchart of proposed framework 

 

3.2.1 Junction Detection 

Junction detection is the first step in the proposed cardiac LA and LV segmentation. 

Figure 3.2 shows the LA and LV, encircled in blue while the red color boundary shows the 
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separation of these two chambers. Figure 3.2 (a) represent LA and LV junction in axial plane, 

Figure 3.2 (b) represent LA and LV junction in coronal plane while Figure 3.2 (c) represent LA 

and LV junction in sagittal plane. The steps for junction detection are explained in detailed in the 

sub sections below. 

 

 

                    (a)                                          (b)                                         (c)  

Figure 3.2: LV and LA junction in (a) Axial (b) Coronal and (c) Sagittal slices. 

 

3.2.1.1 Preprocessing 

Pre-processing step includes thresholding of images in all slices in any of the plane. This is 

done in order to remove noise and prepare the data to extract features for further processing. The 

noise which need to be removed in this case are the muscular tissues and diluted blood vessels. 

Some of the noise may still exist in form of bones and parts of arteries which is catered in the 

feature selection part, where we introduce limit on the area of the objects. Thresholding is done 

by setting the limit to 85% of the maximum brightness level. This limit has been obtained from 

vigorous experimentation on various data sets. The 85% threshold provides a good tradeoff 

between accuracy and effort for feature extraction. Other thresholding methods such as adaptive 

threshoding and Otsu method do not perform well in this case. Effect of various types of 

thresholding can be seen in figure 3.3. It can be seen in figure 3.3 that adaptive thresholding fails 

to negate the tissue of RV and RA. Otsu thresholding also fails to perform. Instead of removing 

the low contrast noise, it adds it up to the LV. 
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 (a)                                                                  (b) 

 

 (c)                                                                (d) 

Figure 3.3: Thresholding (a) Original image (b) Adaptive thresholding (c) Simple thresholding 

and (d) Otsu thresholding 

 

3.2.1.2 Feature Selection 

In figure 3.4 it can be seen  that  the  size  of  the  LA and LV  along  with  its  junction  is  

much  greater  than almost all other objects in all three  slices.  Analyzing the data set it is 

observed that the shape of the LV and LA resembles to an ellipse at the junction. Figure 3.4 

shows LA and LV junction in red color. The ellipse in blue color shows that they resembles the 
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chamber shape. With the help of this observation some common features can be suggested, 

which may include parameters related to ellipse, i.e. eccentricity, major axis and area of object 

(in terms of pixels). Simulations with these features shows that the LA and LV junction can be 

identified with acceptable accuracy. However our simulations suggests that adding two more 

features (minor axis and position of object) further improves the segmentation accuracy (Table 

3.1). The results shows that using these five features the algorithm becomes more robust towards 

noise which is caused due to bones and small vessels. 

 

 

                    (a)                                          (b)                                         (c)  

Figure 3.4: LV  and  LA  junction  in  (a) Axial  (b) Coronal  and (c) Sagittal slices. 

 

Table 3.1: Junction detection accuracy based on number of hidden layers 

 
Hidden layers used 5 1 3 

Junction Detection Accuracy (Axial) 99.7 % 97.4 % 96.3% 

Junction Detection Accuracy (Sagittal) 99.9 % 98.9 % 97.4% 

Junction Detection Accuracy (Coronal) 99.9 % 97.4 % 98.3% 

3.2.1.3 Feature Extraction 

First all objects are detected in a slice by using connectivity algorithm (which is based on 

connected components algorithms [40] in binary image). The connectivity algorithm performs 

detection on the binary images which we got from preprocessing phase. The connected 

component algorithm provides us the list of pixels of individual object in the slice. Using this 
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pixel list all of the five properties of ellipse (area, eccentricity, major axis, minor axis and 

position) are found for each object in all of the slices. For example for area of individual object 

we add all the binary pixels of this object. These five features are then used as an input to the 

neural network. 

3.2.1.4 Training the Neural Network 

LV and LA junction detection is based on neural network, which uses a simple back 

propagation algorithm for the training purpose. A sigmoid function is used as an activation 

function. The network receives five numerical inputs from the feature extraction phase (Figure 

3.5). The network provides a single output, either 1 (the object possess a junction) or 0 (this is 

not the required object). 

 

 

Figure 3.5: Neural network for LA and LV junction detection. 

 

The network is implemented and tested for various hidden layers, where each hidden layer 

has same number of neurons. It is observed that for five hidden layers with each layer having 

five neurons, the maximum performance was achieved (Table 3.2) 
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Table 3.2: Junction detection accuracies based on number of features. 

 
Features used 5 3 

Junction Detection Accuracy (Axial) 99.7 % 98.6 % 

Junction Detection Accuracy (Sagittal) 99.9 % 97.3 % 

Junction Detection Accuracy (Coronal) 99.9 % 97.1 % 

 

3.2.1.5 Testing/Junction Detection 

During testing phase similar steps are applied as training. First 3D data is loaded and 

preprocessing is performed. Then features are extracted from all slices and fed into the trained 

neural network. The network identifies the slice where the LA and LV junction is present. 

3.2.2 Tracking and Construction of 3D Volume 

After LA and LV junction is detected, first LV is followed in subsequent slices. For this 

purpose first slice which is just after the junction is loaded (Figure 3.6). Preprocessing is applied 

 

Figure 3.6: 3D slices of segmented images. 

 

to this slice and various objects are detected using connected component algorithm. Now the 

object which have maximum size and whose center has the minimum Euclidean distance from 

the junction is declared as LV. After this the next slice is loaded and similar process is followed 

except that now Euclidean distance is calculated from the previously detected LV. This process 

continues until the end of LV. In order to detect the end of LV, we set a min threshold on area. If 
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in some slice no object have the area more than the specified threshold, we declare it the end of 

LV. It is due to the fact that as we move downward, the size of LV gets smaller. Similarly the 

whole process is repeated for LA, except now we move upward and load preceding slices. After 

segmentation of LA and LV in all individual slices, all of the segmented slices are simply 

stacked above each other to generate a 3D segmented shape. 

3.3 Pseudo code for LA/LV (Test) 

1. Load any of the plane, e.g Axial 

2. Perform preprocessing 

3. Extract features 

4. Detect junction 

5. Load subsequent slices until the end of LV/LA 

6. \IF{Slice number = Junction Slice -1} 

7.        Find centers and area of objects detected during 

8.        feature extraction 

9.        Find euclidean distance between object and junction center 

10.        Assign object with min distance and max area as LA/LV.   

11. \ELSE 

12.         Find centers and area of objects detected during 

13.         feature extraction 

14.         Find Euclidean distance between object and LA/LV center in preceding slice 

15.         Assign object with min distance and max area as LA/LV    

16.  \ENDIF 

17. \ENDWHILE 

18. Stack all the segmented slices 
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Chapter 4 : Experimental Setup and Results 

This chapter provides the detailed discussion on the implementation and results of the 

proposed technique. This chapter is divided into the following parts, 

 Experimental Setup 

 Results 

 Combined Results 

4.1 Experimental Setup 

The experimental setup consist of the standard data set having total of 21400 high 

resolution 3D Cardiac MRI images of normal and abnormal human subjects. The dataset is in 

DICOM format. It contains all three slices, i.e. axial, coronal and sagittal. Further detail of the 

dataset is given in Table 4.1. The dataset is collected from Shiffa International Hospital. It 

possess two samples per person. Each sample have 640+512+512 images. The transversal depth 

of each sample is 0.5mm. 

Table 4.1: Dataset details 

 
Data Type DICOM 

Subject Age 28-50 

Slices Axial, Sagittal, Coronal 

Depth (Axial) 0.5mm 

Depth (Sagittal adf Coronal) 0.43mm 

Resolution (Axial) 512x512 

Resolution (Sagittal, Coronal) 512x640 

No. of Slices (Axial) 640 

No. of Slices (Sagittal, Coronal) 512 

 

4.2 Results  

Results section has been divided into two parts Junction detection and segmentation. 

Each of them have been explained in the subsections below. 
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4.2.1 Junction Detection Results 

As stated earlier in neural network subsection, it was found that the five layer neural 

network showed best performance for junction detection. Figure 4.1 shows training, testing and 

validation process and their respective error histogram for axial, coronal and sagittal slices.  Here 

the performance of the network is evaluated using cross entropy loss function, which is widely 

used to measures the performance of a neural network model [41]. Cross entropy increases as the 

predicted probability of the network diverges from the actual label. For example predicting LA 

and LV junction with probability of .001 when the actual observation label is 1, would cause a 

high rate of cross entropy. For an ideal model the cross entropy is always zero. In our case at 

each epoch the network is trained and cross entropy is calculated. The training and validation 

process is stopped when minimum cross entropy is achieved in the consecutive epochs. The 

cross entropy graph in Figure 4.1 shows the min achieved cross entropy for axial, coronal and 

sagittal slices which is respectively, 0.012502, 0.004408 and 0.00041564 and which was 

achieved in 28, 32 and 10 epochs respectively. It can be seen that the achieved cross entropy is 

almost equivalent to zero.  

 

 
  (a) 
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    (b) 

 

 
(c) 

 

Figure 4.1: Validation and testing accuracy curves for junction detection in (a) Axial (b) 

Coronal and (c) Sagittal slices. 
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The error histogram is also used widely as a performance evaluator in machine learning 

and artificial intelligence [41]. It classifies the error into various bins. For example the error may 

be divided into ten discrete levels. Each bin has its own discrete range. Then we draw the 

histogram for each individual bin based on the error range. The error which has more histogram 

weight is considered to be more probable. The error histogram shows the maximum possible 

error that occur during testing phase of a learning algorithm. In our case it can be seen that the 

combined max error that occurred during training, testing and validation is 0.02306 in axial 

slices (Figure 4.2 (a)). Figure 4.2 (b) and Figure 4.2 (c) shows respective error histogram for 

coronal and sagittal slices. The error histogram in Figure 4,2 also shows the number of testing, 

training and validating instances where this error occurred. The length of blue green and red 

color in the bar in Figure 4.2 shows training, validation and test error respectively. Note that the 

error represented in the error histogram is in normalized form. This normalization is in between 

the range of +1 and -1.    

 

 

 

(a) 
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(b) 

 

 

                                                                             (c) 

Figure 4.2: Error histogram for junction detection in (a) Axial, (b) Coronal and (c) Sagittal 

slices. 
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4.2.2 Segmentation Results 

After junction detection the algorithm is tested for LV and LA segmentation. Figure 4.3 

shows some of the results of segmentation in axial plane. Figure 4.31(c) shows the LA and LV 

junction slice is segmented. Figure 4.3 (a) and (b) show examples of the segmented LA while 

Figure 4.3 (d) and (f) show examples of the segmented LV. After segmentation all slices are then 

stacked above each other to generate a complete 3D model of both chambers (Figure 4.4).  

 

 

                        (a)                                               (b)                                                (c) 

 

 

                                                 (d)                                                 (e)  

Figure 4.3: Simulation results of segmentation in axial slices (a) LA (220th slice) (b) LA (270th 

slice) (c) Junction of LV and LA is segmented (d) LV (405th slice) and (e) LV (490th slice). 
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Figure 4.4: 3D reconstruction of LV and LA from segmented slices. 

 

Segmentation results of some of the random slices of axial, coronal and sagittal can be seen in 

Figure 4.5.  

 

                        (a)                                               (b)                                                (c) 

Figure 4.5: Segmentation results in various random axial slices (a) True negative (b) True 

positive and (c) True positive 
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                        (a)                                               (b)                                                (c) 

Figure 4.6: Segmentation results in various random coronal slices (a) True negative (b) True 

positive and (c) True positive 

 

 

                        (a)                                               (b)                                                (c) 

Figure 4.7: Segmentation results in various random sagittal slices (a) True negative (b) True 

positive and (c) True positive 

 

All axial slices are compared with the manually segmented model after stacking. During 

comparison the non-chamber mass (non-chamber tissue such as associated arteries etc.) is 

measured in terms of pixels. The percentage of non-chamber mass is consider as segmentation 

error (SE) (Eq. (4.1)). In [37] authors have used mean segmentation error (MSE) as a 

performance evaluation matrix. The percent inverse of segmentation error is the accuracy (SA). 

SA can be calculated using Eq. (4.2). The mean of all the accuracies of three slices is known as 

the mean segmentation accuracy (MSA). 

 

𝑆𝐸(%) =
(𝑁𝑜𝑛 𝐶ℎ𝑎𝑚𝑏𝑒𝑟 𝑀𝑎𝑠𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑠𝑠
∗ 100                                       (4.1) 
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where SE is the segmentation error. 

𝑆𝐴 = 100(%) − 𝑆𝐸                                                (4.2) 

 

where SA is the segmentation accuracy. 

 

𝑀𝑆𝐴 =  
1

𝑛
 ∑ 𝑆𝐴𝑛

𝑛
𝑖=1                                                (4.3) 

 

where n is the number of slices. 

 

The effect of non-chamber mass in individual slices can be seen in Figure 4.8. Figure 4.8 

also shows our segmentation accuracy in all three slices. The achieved accuracy for axial slices is 

94.4%, for coronal slices the accuracy is 91.71% while for sagittal the accuracy is 88.61%. The 

overall mean segmentation accuracy is 91.57%.  

 

 

Figure 4.8: Actual chamber mass segmentation in each of the segmented slices (axial, coronal 

and s agittal). 

 

We have also compared our mean segmentation accuracy with the existing techniques 

which can be seen in Table 4,2. The results of the proposed method is also validated by 

computing the dice coefficient (dc) [42], [43], which is widely used for performance evaluation 

in medical images segmentation. Dice coefficient measures the spatial overlap between manually 

segmented image (A) and segmented image (B) obtained from the proposed method. Dice 

coefficient can be found using Eq. (4.4). 
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𝐷𝑐(𝐴, 𝐵) = 2 ∗  
𝐴∩𝐵

𝐴+𝐵
                                                (4.4) 

 

In our case we find the individual dice coefficient of each slice and then find the average 

for all of the slices. The results of dice coefficient can be seen in Table 4.2. Table 4.2 shows that 

the proposed method have the highest dice coefficient as compared to the rest of the techniques. 

Table 4.2 also shows that the proposed method is far much better than the existing techniques in 

all aspects.  Our technique segment and reconstruct both chambers i.e. LA and LV more 

accurately. 

 

Table 4.2: Evaluation of our proposed algorithm based on mean square accuracy and dice 

coefficient. 

 
Ref. Chambers 

Segmented 

2D/3D 

Plane 

3D Reconstruction 

Done 

Segmentation Resolution 

(Pixels, mm) 

MSA 

(%) 

dc 

J. Cho [12] LV and LA 2D axial No 256x256x8, 10mm 89.3 NA 

Lynch et al. 

[44] 

LV 2D axial No NA, 

1.1–2.3mm 

89 NA 

Schaerer et al. 

[39] 

LA and LV 2D axial No NA, 

2mm 

NA 91.50 

Eslami et al. 

[30] 

LV and LA 2D axial No 120x120x9, NA NA 91.54 

Santiago et al. 

[13] 

LV 2D axial No 256x256x32, 0.93-

1.64mm 

NA 81.1 

Zhuang et al. 

[37] 

LV and LA 3D Yes 280x240x140, 1mm 89.7 86.5 

Proposed  

Algorithm 

LV and LA 3D Yes 512x512x512, 0.5mm 91.57 92.4 

 

4.3 Combined Figurative Results 

In Figure 4.9 stepwise figurative results for axial slices can be seen. Figure 4.9 (a) shows 

original image. Figures 4.9 (b) shows the image after preprocessing step is applied. Figure 4.9 (c) 

shows the segmented version of the image. Finally Figure 4.9 (d) shows the combined 

reconstructed 3D segmented LA and LV chambers. 
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                                           (a)                                                            (b)  

 

 

                                           (c)                                                            (d)  

 

Figure 4.9: Step wise results, (a) Original image (b) Preprocessing (c) Segmentation in 

individual slice and (d) 3D reconstruction 
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Chapter 5 : Conclusion and Future Work 

5.1 Conclusion 

In this work a novel technique is proposed to segment cardiac chambers pair i.e. left 

atrium and left ventricle in a 3D cardiac MRI. This technique uses neural network and other 

hybrid techniques for cardiac LA and LV chamber segmentation. The technique is divided into 

two parts i.e. junction detection and tracking. Junction detection is based on object based 

features, which include size, shape and position. This is due to the fact that the shape of the 

junction is similar to an ellipse. These features are extracted in the preprocessing process using 

the connectivity algorithm. These features are fed into a pre trained five layer shallow neural 

network. The output of the network is either 1 or 0, i.e. either the selected object in the slice 

possess LA and LV junction or it does not possess the LA and LV junction. After junction 

detection the LV and LA is tracked in the whole plane using Euclidean function. After tracking 

all of the slices of LA and LV are sequentially placed and joined to make a complete 3D 

segmented mass of the LA and LV chambers.  

The proposed method is tested on 0.5mm high resolution MRI images dataset. During 

testing process the proposed algorithm have shown optimum performance in terms of 

segmentation accuracy. The accuracy is validated using mean segmentation accuracy (MSA) and 

dice coefficient (Dc), which is widely used as a performance evaluators in image segmentation 

especially in medical image segmentation. The achieved mean segmentation accuracy is 91.57 

while the achieved dice coefficient is 92.4. It is also observed that the proposed technique is fully 

automatic and independent of the slices depth. This gives the proposed technique an edge over 

some of the existing techniques, which mostly use manual segmentation at the start. Also the 

existing algorithms are dependent on slices depth. The proposed technique reconstructs high 

resolution 3D LA and LV chamber mass. It was also observed that most of the existing 

algorithms do not reconstruct LA and LV 3D model. The reconstructed resolution is less than 

0.5mm in terms of transversal depth, which is the highest resolution reported in the literature. 
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5.2 Future Work 

The proposed technique may be extended to other two chambers (right atrium and right 

ventricle) which may help to make a complete 3D model of the whole heart. Almost the same 

algorithm with some modification may be tested for right ventricle and right atrium. RA and RV 

segmentation may need some more preprocessing along with the proposed method due to more 

tissue noise.. 

Other possible approaches can be explored in future which include an implementation of 

algorithm based completely on deep neural networks. Segmentation of LA and LV based on 

deep neural networks may be more accurate than the proposed method. However deep neural 

network based segmentation as for now is not possible due to lack of a large number of standard 

training dataset. The future work may also include the implementation of right ventricle and right 

atrium using deep neural network.  
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