

Model-based Data Synchronization Framework for

Data-driven Serverless Applications

Author

Fatima Samea

FALL 2016-MS-16(CSE) 00000171206

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

JANUARY 2019

Model-based Data Synchronization Framework for

Data-driven Serverless Applications

Author

Fatima Samea

FALL 2016-MS-16(CSE) 00000171206

A thesis submitted in partial fulfillment of the requirements for the degree of

MS SOFTWARE Engineering

Thesis Supervisor:

Dr. Farooque Azam

Thesis Supervisor’s Signature: __________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

JANUARY 2019

i

Declaration

I certify that this research work titled “Model-based Data Synchronization

Framework for Data-driven Serverless Applications” is my own work. The work has not

been presented elsewhere for assessment. The material that has been used from other sources

it has been properly acknowledged / referred.

Signature of Student

Fatima Samea

FALL 2016-MS-16(CSE) 00000171206

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is

also according to the format given by the University for MS thesis work.

Signature of Student

Fatima Samea

FALL 2016-MS-16(CSE) 00000171206

Signature of Supervisor

iii

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

 The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME and may not be made available for use by

third parties without the written permission of the College of E&ME, which will

prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

Acknowledgements

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this

work at every step and for every new thought which You setup in my mind to improve it.

Indeed, I could have done nothing without Your priceless help and guidance. Whosoever

helped me throughout the course of my thesis, whether my parents or any other individual

was Your will, so indeed none be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable

of walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Farooque Azam and

Dr. Wasi Haider for their help throughout my thesis and also for Software Development and

Architecture (SDA) and Model Driven Software Engineering (MDSE) courses which they

have taught me. I can safely say that I haven't learned any other engineering subject in such

depth than the ones which he has taught.

 I would like to pay special thanks to Muhammad Waseem Anwar for his

tremendous support and cooperation. Each time I got stuck in something, he came up with the

solution. Without his help I wouldn’t have been able to complete my thesis. I appreciate his

patience and guidance throughout the whole thesis.

I would also like to thank Dr. Arslan Shaukat, Dr. Urooj Fatima for being on my

thesis guidance and evaluation committee. I am also thankful to Mehreen Khan for her

support and cooperation.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

v

Dedicated to my husband and children whose extraordinary support

and cooperation always remained a source of motivation for me in

accomplishing this tremendous achievement.

vi

Abstract

Serverless Computing is a new approach to cloud computing in which the cloud provider

dynamically manages the allocation of machine resources. The recent trend in writing

serverless applications mainly addresses the web as well as other data-driven and event-

driven distributed applications which frees developers from maintaining a server. Developers

just focus on the application logic in developing applications. Data management is the

foundation of high-quality data-driven serverless applications in use today. Such data-driven

applications are used on multiple devices, over a variety of connections and it is essential to

offer a consistent user experience across different connection types. Particularly, the growing

number of these serverless applications that allow activities such as messaging, commenting

and collaboration present users with updated information using real time ability.

Consequently, design and implementation of behavior of such serverless applications is very

complex especially when data is shared among multiple users. To target this issue, this

research introduces UMSDA (Unified Modeling Language Profile for Serverless Data-driven

Applications) which adapts the concept of UML Class Diagram, Object Diagram and State

Machine Diagram to model the frontend and backend requirements for data-driven serverless

applications at high abstraction level. To resolve the complexity of application behavior,

backend requirements containing data store and sync concepts are modelled in UMSDA. For

integration of data with the view layer, UMSDA covers the frontend requirements including

the user interface and data binding. As a part of research, a complete transformation engine is

developed using Model-to-Text approach to automatically generate frontend and backend low

level implementations of Angular 2 and GraphQL respectively from high level source

UMSDA models. Finally, the validation of this research work is presented through two case

studies: 1) Real-time Chat Application and 2) Weather Forecast Application, deployed on

AWS (Amazon Web Services) Serverless platform. The outcomes prove that the proposed

framework allows the modeling of both frontend as well as backend requirements of data-

driven serverless applications with simplicity. Furthermore, a transformation engine is

capable to automatically generate the deployable Angular 2 and GraphQL code. Finally, it

has been concluded that the proposed framework greatly simplifies the design and

implementation complexity of data-driven serverless applications to achieve certain business

objectives like productivity and time to market.

Key Words: UMSDA, Data-driven, Data Synchronization, MDA, Serverless Applications

vii

 Table of Contents

Contents
Declaration.. i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

Copyright Statement .. iii

Acknowledgements .. iv

Abstract ... vi

Table of Contents .. vii

List of Figures ... ix

List of Tables ... x

CHAPTER 1: INTRODUCTION .. 12

1.1 Background Study ... 12

1.1.1 Serverless Computing .. 12

1.1.2 Data-driven Applications ... 13

1.1.3 Model Driven Architecture .. 13

1.2 Problem Statement .. 14

1.3 Proposed Methodology ... 14

1.4 Research Contribution ... 16

1.5 Thesis Organization... 16

CHAPTER 2: LITERATURE REVIEW ... 19

2.1 Literature Review .. 19

2.2 Research Gaps ... 23

CHAPTER 3: PROPOSED METHODOLOGY .. 26

3.1 UMSDA Description ... 26

3.1.1 Structural Concepts of Application ... 26

3.1.2 User Interface Concepts ... 28

viii

3.1.3 Serverless Schema Concepts ... 32

3.1.4 Behavioral Concepts of Application .. 34

CHAPTER 4: IMPLEMENTATION ... 39

4.1 Transformation Rules .. 39

4.1.1 Transformation Rules for Application Structure ... 39

4.1.2 Transformation Rules for User Interfaces ... 39

4.1.3 Transformation Rules for Serverless Schema ... 41

4.1.4 Transformation Rules for Application Behavior ... 42

4.2 Transformation Engine Architecture .. 43

CHAPTER 5: VALIDATION .. 46

5.1 Real Time Chat Application Case Study .. 46

5.1.1 Requirements ... 46

5.1.2 Modeling .. 49

5.1.3 Code Generation .. 54

5.1.4 Verification .. 57

5.2 Weather Forecast Application .. 64

5.2.1 Requirements ... 64

5.2.2 Modeling .. 65

5.2.3 Code Generation .. 69

5.2.4 Verification .. 72

CHAPTER 6: COMPARATIVE ANALYSIS .. 77

6.1 Comparison ... 77

CHAPTER 7: DISCUSSION AND LIMITATION ... 80

7.1 Discussion ... 80

CHAPTER 8: CONCLUSION AND FUTURE WORK ... 83

REFERENCES .. 84

ix

List of Figures

Figure 1: Research Flow .. 15
Figure 2: Thesis Outline .. 17
Figure 3: Structural Concepts of Application .. 27
Figure 4: User Interface Concepts ... 28
Figure 5: Serverless Schema Concepts .. 32
Figure 6: Data Management Concepts ... 35
Figure 7: Transformation Engine Architecture .. 43
Figure 8: Transformation Engine Input Model Interface... 44

Figure 9: Data Requirements in Real time Chat Application .. 46
Figure 10: Application FrontEnd Model ... 49
Figure 11: Model of Serverless Schema .. 51

Figure 12: Model of Data Synchronization ... 52
Figure 13: Transformation for Data Synchronization in Real time Chat Application................. 54
Figure 14: Generated Code for Frontend User Interface ... 55
Figure 15: Genearted Code for Data Synchronization Client. ... 55
Figure 16: Generated Code for Server Type System ... 56
Figure 17: Generated Code for Data Resolvers. .. 56
Figure 18: Code Deployed for Real Time Chat Application (User Interface). 57
Figure 19: Code Deployed for Real Time Chat Application (Data Sync Client). 57
Figure 20: Code Deployed for Real Time Chat Application (Serverless Schema). 58
Figure 21: Code Deployed for Real Time Chat Application (Data Resolvers). 58

Figure 22: Deployment on AWS using Cloud Formation ... 59

Figure 23: Client Application Deployed to cloud. ... 59
Figure 24: Transformation Result of Chat Application.(Main Page) .. 60

Figure 25:Chat Components with Behavior (User 1) .. 60

Figure 26:Transformation Result of Chat Application (Mobile Web) .. 61

Figure 27:Chat Components with Behavior (User 2) .. 61
Figure 28:Users Table Amazon DynamoDb ... 62

Figure 29:User Conversations Table ... 62

Figure 30:Messages Table ... 63

Figure 31:Conversations Table .. 63
Figure 32: Model for Weather Forecast Application Frontend. .. 66
Figure 33: Model of Serverless Schema for Weather Application. ... 67
Figure 34: Model of Data Synchronization Client for Weather Application. 68
Figure 35: Transformation for Data Synchronization in Weather Data Application. 70
Figure 36: Generated Code of User Interface for Weather Data Application.. 70
Figure 37: Generated Code of Data Synchronization Client for Weather Data Application. 71
Figure 38: Generated Code of Server Type System for Weather Data Application. 71
Figure 39: Generated Code for Data Resolvers for Weather Data Application. 72
Figure 40: Code Deployed for Weather Forecast Application (User Interface). 72
Figure 41: Code Deployed for Weather Forecast Application (Data Sync Client). 73
Figure 42: Code Deployed for Weather Forecast Application (Server Type System) 73
Figure 43: Code Deployed for Weather Forecast Application (Data Resolvers). 74

Figure 44: Deployment on AWS Cloud Formation. .. 74

Figure 45: Transformation Result of Weather Data Application. .. 75

Figure 46: Destination Table.. 75

x

List of Tables

Table 1: Transformation rules for Application Structure Code ... 39
Table 2: Transformation rules for User Interface Code ... 40

Table 3: Transformation rules for Server Type System Code ... 41

Table 4: Transformation rules for Data Synchronization Rules .. 42

Table 5: Comparison .. 77

11

 Chapter 1

 Introduction

12

CHAPTER 1: INTRODUCTION

This chapter delivers a comprehensive introduction of the research which is categorized in

different sections. Section 1.1 presents background study. Section 1.2 is problem statement.

Section 1.3 is proposed methodology. Section 1.4 is research contribution and Section 1.5

represents thesis organization.

1.1 Background Study

The background study introduces the concepts being used in this research which are;

1) Serverless Computing, 2) Data-driven Applications and 3) Model Driven Architecture.

The details of the following are given in subsequent sections.

1.1.1 Serverless Computing

Serverless is a new approach to cloud computing where the cloud provider

dynamically manages the allocation and provisioning of servers. It allows us to build

applications without managing the complex infrastructure such as containers, virtual machines

etc. As compared to traditional applications, a serverless application runs in stateless compute

containers that are short-lived, event-triggered and fully managed by the cloud provider.

Pricing is based on the consumption of resources, rather than on pre-purchased compute

capacity. Applications can be written to be purely serverless and use no provisioned servers at

all i.e. “Focus on application, not the infrastructure”.

This is a substantial change from the application hosting platform-as-a-service

providers. Instead of servers running continuously, functions are deployed that operate as

event handlers, and the cost occurs only for CPU time based on execution of these functions

[1]. The developers write concise, stateless functions which can be triggered through events

produced from different sensors as well as services / users or middleware [2]. Amazon was

the first one to introduce serverless paradigm in year 2014 by introducing Lambda.

Nowadays almost every cloud provider e.g Google, Apache, Microsoft etc offers serverless

platform which appeals to many developers. The developers just focus on the application

logic while shifting infrastructure concern to platform. In response for writing stateless short-

running functions, the platform ensures secure and timely execution of these functions. The

function implements a business logic, depending on the desired result of the application [3].

These functions are typical piece of code in well-known programming languages that perform

execution in a stateless manner. The developers use special cloud functions such as AWS

13

Lambda [4], IBM OpenWhisk functions [5], Azure Functions [6] and Google Cloud

Functions [7] for executing custom application codes. The vendor is responsible to run the

infrastructure efficiently as well as optimize resources for satisfying execution of functions

owing to changes due to user demand [8]. Various applications are developed using

serverless cloud computing. Data-driven apps are one amongst them. Developing these

applications is a tedious and error prone task. The details are in the next section.

1.1.2 Data-driven Applications

Data-driven applications have become a major growth engine for the worldwide software

market. The application flow is governed by data it processes. Input data set can change the

behavior of your application. Programming logic will remain same, but it will be coded such

that input changes the way application behaves. Designing these applications still requires

technical and programming skills. Another important aspect is real time data synchronization

which is a complex process to be handled in synchronizing data among multiple devices and

automatically catering changes back and forth. Most modern applications are written to take

benefit of RESTful web services for accessing data that uses HTTP requests to GET, PUT,

POST and DELETE data. For applications using REST (Representational State Transfer) for

serverless backend, a set of Lambda functions behind an API gateway are used to access the

data.

1.1.3 Model Driven Architecture

MDA (Model-driven architecture) is a renowned software design methodology to abstract

the complexity of software development. It simplifies the design and development of

software applications [9]. Therefore, it is generally applied in diverse domains like embedded

systems [10] etc. and is used in complex application development [11]. Models are used as a

set of guidelines to structure design specifications. In MDA, business and application logic is

separated from the underlying platform technology [12]. The functionality of the system is

defined without having any technology-specific implementation information i.e. as a

platform-independent model. Transformation techniques convert platform-independent

models into platform-specific models. The MDA model is related to multiple standards.

Among them UML (Unified Modelling Language) is one of the most powerful language

which has been used by many software engineers. UML provides a standard means for

visualizing the design of the system.

https://www.webopedia.com/TERM/D/data.html
https://www.webopedia.com/TERM/D/device.html
https://searchwindevelopment.techtarget.com/definition/HTTP
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Software_system

14

UML diagrams are divided into two groups: Structural and Behavioral. Structural diagrams

represent the structure of the system whereas Behavioral diagram describes the functionality

of the software system. UML conceptual models can be customized and extended using a

UML profile diagram. A profile is a lightweight extension mechanism to the UML standard

[13].

1.2 Problem Statement

Data driven serverless applications are the most widely used applications in software

industry. The demand of these applications is increasing day by day. However, implementing

these applications on cloud is a complex process. Firstly, managing identity to authenticate

and authorize users is a difficult process. Secondly, there are so many devices and a lot of

variations in platform. Moreover, data is very complex to manage, specially synchronization.

Different storage systems are used to get data. Millions of users using the applications would

require real time data whenever any change happens on the server database. The data is then

distributed and sent down to the concerned client among the millions of clients. However,

aggregating all data and displaying data in the application without introducing any

complexity is a difficult task.

The development complexity increases as data requirements vary across devices and

becomes harder when multiple users share data. The practical applications in industry are

providing solution to these applications, still its behavior is complex and complicated to

develop on cloud. In response to this problem, this research provides a solution that simplifies

the design and low-level implementation complexity by introducing Unified Modeling

Language Profile which provides a high level of abstraction and automatically generate target

code.

1.3 Proposed Methodology

Research is carried out in a systematic way. Figure 1 presents the step by step flow of

research. Firstly, we identify the problem and proposed a solution for the identified problem.

A comprehensive and detailed literature review has been carried out to find the ideal solution

for the problem. Also, the related work regarding the proposed solution is analyzed.

Furthermore, the proposed solution comprises a model-based approach for data

synchronization in serverless data driven applications at platform independent level. A UML

Profile is defined to support the modelling of both frontend and backend implementations. It

15

also provides tool for model to text transformation. The transformation engine is based on

mapping rules which transforms the source model into target low level implementation code.

The transformation has been verified by two case studies.

Figure 1: Research Flow

16

1.4 Research Contribution

The contribution made in this research work are as follows:

 Modeling frontend of the data driven applications at platform independent level

including User Interface (UI), Data Sync Client (which communicates with the

backend and bind data to UI).

 Modeling backend at platform independent level to manage real time data and present

the updated information to users.

 Transformation engine to generate frontend and backend implementation by

transforming higher level model to low level implementation code in Angular and

GraphQL. The transformation engine is developed using Acceleo.

 Validation of the proposed work by deploying it to AWS Serverless platform.

1.5 Thesis Organization

Figure 2 represent the thesis organization. Chapter 1: Deals with introduction

consisting of background study about the concepts used in research, problem statement,

research contribution and thesis organization. Chapter 2: Comprises of literature review and

deliver the description of the work done in serverless computing and data driven applications.

Research gaps are also highlighted. Chapter 3: Describes the details of proposed

methodology used for identified problem. It presents UMSDA (Unified Modeling Language

Profile for Serverless Data driven Applications) for building data-driven applications.

Chapter 4: Covers the detailed implementation regarding the transformation rules for the

proposed UML profile and transformation engine along-with its architecture. Chapter 5:

Presents the validation of the proposed methodology using two case studies. The case studies

used are Real-time Chat application and Weather Forecast Application. The applications are

verified by deploying it to AWS Serverless platform to validate our proposed approach.

Chapter 6: Narrates a brief analysis of our proposed work with the previous research works.

Chapter 7: A brief discussion on the work done is presented in this chapter. It also contains

the limitations in our research. Chapter 8: Concludes the research and recommends future

work.

17

Figure 2: Thesis Outline

18

Chapter 2

 Literature Review

19

CHAPTER 2: LITERATURE REVIEW

This chapter presents research work conducted in cloud computing for developing

applications. After a brief literature review of work conducted in this area we highlighted the

research gaps that we found in previous works.

2.1 Literature Review

Nowadays, an IT industry is moving into a wide array of cloud platforms. Various researches

related to cloud application development has been found in literature. Xiuwei Zhang et al.

[14] proposes an on-demand Service Oriented Architecture based approach for enterprise and

mashup applications development. Their proposed MDA approach uses Role and Goal,

Process-Service meta-model through which they achieve the model transformation of

Computation Independent Model, Platform Independent Model and Platform Specific Model.

They present a prototype application of their proposed framework. However, they develop an

initial prototype model of their proposed work.

Wei-Tek Tsai et al. [15] propose a SaaS (Software as a service) design strategies for

applications build using Google App Engine as platform as a service. They use a model-

based approach for multitenancy, customization, scalability etc. to automatically generate

code for Google App Engine based SaaS application. Their proposed model driven approach

saves time and effort in developing a large scalable software system.

Wei-Tek Tsai et al. [16] propose a SaaS Application development framework. Their proposed

framework decreases the tenant workload, provides a layered customization model based on

keyword search engine and also provides testing support in the SaaS application

development. Their proposed framework provides two ways for building SaaS application. In

the first way, the tenants publish the specifications of the application with their requirements,

while in the second way, the tenants use the templates provided in their proposed framework

for composing the application.

Assylbek Jumagaliyev, Jon Whittle [17] analyzes variability challenges for the development

of multitenant SaaS applications. They propose an idea of model driven engineering as a

potential solution to achieve the variability in software as a service application. They consider

the surveys application and discuss the challenges faced during its development. For instance,

in multitenant SaaS application if one instance of an application fails, it affects all the tenants

sharing that instance.

20

Xiaoyan Jiang et al. [18] propose a model-based approach for SaaS application platform that

focuses on three aspects such as multitenancy, integration and customization over the

platform. However, their proposed work is partially complete and did not cover security and

scalability issues of the platform.

Xiyong Zhu [19] describes the design and implementation of an XML based service template

markup language to provide a comprehensive solution for customizing SaaS applications for

distinct users. Dapeng Chen et al. [20] propose a process customization framework for SaaS

environment that configures and customizes processes keeping the tenancy isolation. Each

tenant administrator customizes the process to meet the demand. Tenancy user information is

used to guarantee the isolation between tenants.

G Fylaktopoulos et al. [21] propose a CIRANO platform with Model driven development for

rapid development of advanced cloud applications. However, as an application platform as a

service, it still has some shortcomings in terms of development such as change in

programming language by developers, their methodology and the set of tools they used in

development. Ioana Baldini et al. [22] demonstrates the usage of OpenWhisk in mobile

applications development which allows the Application programming interface customization

for mobiles and simplifies the architecture of mobile applications.

 Moez Essaidi [23] presents a platform that provides on-demand business intelligence

services. Their proposed platform supports current business intelligence and data ware

housing problems. They use model driven approach to design the data ware house framework

through a 2-track unified process. Their proposed approach offers a mix-driven approach

including a combination of user, data and the goal-driven approaches with semantic-driven,

model-driven approaches.

The core of data-driven applications is visualization and manipulation of data. Richard

Fujimoto et al. [24] propose a dynamic data driven system to track a vehicle. Their proposed

approach tracks a vehicle’s movements form the live video and image data to predict future

locations and data dissemination over wireless network. They use image processing

algorithms to capture the vehicle from the real time image data. The proposed framework

selects a suitable prediction model dynamically based upon currently available data.

Biplab Deka [25] presents the different data-driven approaches for mobile application design

including interaction mining and dynamic components of application design. They present

21

two approaches for interaction mining existing Android Applications. One of the application

capture data seamlessly in the background while uses human interaction for exploring an

application. The second application uses automated agent leveraging human interaction.

Also, three interaction mining mobile applications are presented by the resulting data.

Jiaju Wu et al. [26] designed a data driven based universal data editing framework which

takes the data models as input and only corresponding data models need to be adapted on data

alteration. They used model driven approach in designing their framework. Two model

transformations are used in their approach. Firstly, they transform the data model into java

code and then they transform the data model into relational database schema which provides

an HTML preview and two editing patterns. However, their framework has a limitation that

they only focus on five components which ultimately leads to incorrect working of some their

data models.

Joao Seixas [27] proposes a model driven approach namely XIS-Web technology for the

development of responsive web applications. Their approach comprises of two main

components which are XISWeb modeling language and XIS-Web framework. The first one is

implemented as UMLProfile while the other focuses on the software tools that support their

approach. Their framework consists of four main characteristics: 1) splits web application

modeling in 6 views to promote separation of concerns for managing complexity. 2)

generates the interaction spaces and navigation among the views to relieve the complex task

from the user. 3) allowing flexible development of responsive web applications using modern

web technologies such as JavaScript, CSS and HTML5. 4) allows the creation of (PIM)

platform-independent models.

Kapil Kumar et al. [28] provide a dashboard framework which amalgamates data from

various analytics sources i.e. Flurry, JSON, Google Analytics and Excel files to create a

customizable user interface. They use two configuration files for dashboard configuration

which are generic information and individual services. Also, they develop a prototype for

their proposed framework. Voon Yang Nen, Ong Chin Ann [29] develop a prototype tool

named pigeon-table for developing data-driven web application to reduce the development

time and effort. Their proposed tool retrieve data from MySQL database. The retrieved data

is then rendered into an interactive table in a web application and also responsive for mobile

devices.

22

Steffen Vaupel et al. [30] propose a general architecture for context aware data and

transaction management in mobile applications. Their proposed framework support changing

network states so that users can use applications in both online and off line conditions. They

also implement a prototype for Android and used simulation experiments to validate their

approach.

Janis Kampars, Janis Grabis [31] addresses the problem of data integration and processing

for designing data driven applications with the introduction of auto scaling and adjustment

platform for cloud based systems using model driven approach which supports configuration,

scalability, context processing algorithms etc.

With the paradigm shift to serverless computing, a few research studies also mention

application development with serverless computing. For instance, Mengting Yan et al. [32]

present a chatbot prototype using serverless platform. Their proposed architecture is based on

function sequences which coordinates with the cognitive services in the Watson Developer

cloud so that the chatbot can interact with the outside services. Nirmal K Mukhi [33] present

a practical application of a personalized tutoring system using serverless technology. They

implement the Watson Tutor orchestration logic using OpenWhisk. Their designed system is

multimodal (provides a tutoring understanding comprising of various learning activities),

stateful and interactive dialog.

Josep Sampe et al. [34] propose a data-driven middleware for object storage using serverless

computing. The proposed data driven functions captures and operate over objects as they are

read or write to an object store. They use OpenStack Swift to implement a prototype of their

serverless framework which store huge volume of data through RESTful API. They evaluate

their approach on swift by running benchmarks to observe the behavior of the functions. The

results show that their functions runtime is five times less than AWS lambda runtime.

Li Weiping [35] analyze challenges in the workflow system of SaaS applications and provide

a solution to the identified problems based on these characteristics: workflow model,

wokflow engine and time management. Garrett McGrath et al. [36] discuss the current state

of cloud event services and highlighted the difference between application programming

paradigms with cloud events and software designs with more traditional infrastructure by

presenting two real world applications. Also, they highlight challenges in cloud events.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22J%C4%81nis%22&searchWithin=%22Last%20Name%22:%22Kampars%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22J%C4%81nis%22&searchWithin=%22Last%20Name%22:%22Grabis%22&newsearch=true&sortType=newest

23

Jaewook Kim et al. [37] propose a GPU-enabled serverless computing framework. Their

proposed framework deploys services efficiently as compared to current serverless computing

framework. They implement an Application Programming Interface that integrates the open

source serverless framework to the NVIDIA-Docker and commands used for enabling GPU

Programming. They measure the performance of their approach through experiments.

Theo Lynn et al. [38] analyze the seven enterprise serverless computing platforms. Their

results suggest that several use cases which are currently unaddressed by the academic

community can be targeted to serverless cloud computing. Furthermore, they also suggest the

issues which needs to be addressed in two major areas i.e System level challenges,

programming model and Dev-Ops challenges.

Markus Ast et al. [39] propose an approach for enabling self-contained web components in

serverless computing. Usually, web components functionality consists of presentation and

business logic. Their proposed approach deploys the business logic of web component as

cloud hosted functions which can easily be integrated into existing websites, thereby reducing

cost and time. However, their proposed solution cannot be merged into current cloud

providers due to user privileges for security and privacy requirements. Vendor lock in is

another challenge due to non-compatibility of APIs.

2.2 Research Gaps

This section discusses the research gaps from the literature review. After analyzing the above

literature, it has been observed that the increasing use of multiple devices (e.g laptops,

mobile, tablets, watches etc.) has increased the importance of data driven serverless

applications. Researchers propose different type of frameworks for data driven applications

for both web and mobile. A few of them uses model driven engineering [27, 29] but does not

cover serverless architecture. Furthermore, few studies support real time data synchronization

capabilities on different devices. Developing such serverless data driven applications is a

complex process. Particularly, data management is difficult for applications to be developed

on cloud because of accessing backend resources and changing network states. Furthermore,

low level implementation of application behavior is very complex especially when data is to

be distributed among several users and on different devices. Although there are practical

applications developed in industry for real time and offline data synchronizations, but

24

implementation complexity increases for developers. Therefore, the need arises for a solution

to simplify the low-level implementation for serverless data driven applications.

25

Chapter 3

 Proposed Methodology

26

CHAPTER 3: PROPOSED METHODOLOGY

As mentioned earlier, software market is evolving towards the data-driven applications.

However, developing such applications is a time consuming and tedious task. This chapter

discusses our proposed UML profile for modelling Data-driven Serverless Applications at

platform independent level.

In UML, a profile provides a light-weight generic extension mechanism for

customizing UML models for specific application domains and platforms which are based on

various elements: Stereotypes (allow you to increase UML vocabulary) , Tag values(used to

extend the UML properties so that we can add additional information in the specification of

a model element) and Constraints(to specify conditions that must be held true at all time).

These all are applied to specific model elements such as Classes, Operations, Attributes,

Activities etc.

3.1 UMSDA Description

The proposed UMSDA is developed in Unified Modeling Language tool Papyrus based on

Eclipse. Our proposed profile provides stereotypes to model both the frontend and backend of

the data driven serverless application including the application behavior. These stereotypes

are the extensions of UML meta-classes and it provide support to modeling using multiple

UML diagrams. Figure 4 shows a complete picture of the proposed profile. Numerous

concepts are defined for frontend modelling. Various stereotypes related to Application

Structure are defined. Different stereotypes for User Interface are defined. For modelling the

backend, stereotypes for data management tasks such as data store, data synchronization and

updated real time data are defined. Some stereotypes related to data fetching from the server

are defined and modelled in a profile. Each of these stereotypes consists of tagged values.

The details of each of the stereotype along with its functionality is discussed in the sub

section. Transformation rules are defined for model to text transformation.

3.1.1 Structural Concepts of Application

Figure 3 shows the stereotypes used to model the frontend application structure. It consists of

four stereotypes and two base classes.

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Domain_model

27

Figure 3: Structural Concepts of Application

1) Application Module Stereotype

Description: Stereotype “Application Module” is used for launching an application.

Base Class: Class

Tag Values: It consists of three tag values: Properties of type Property, Module_declaration

of type String and Module_imports of type String. Properties defines the service providers

that become accessible in all parts of the application. Module_declaration is used to define

the components that belong to this Application module. Module_imports defines the exported

declarations of other modules which are available in the current module.

2) Application Component Stereotype

Description: Stereotype “ApplicationComponent” is defined to separate the functionality.

Base Class: Class, Instance Specification

Tag Values: It comprises of two tag values: Selector_Component and Url_Template. The tag

value Selector_Component create and insert an instance of the component. Url_Template is

the address of the components template which needs to be rendered in the application.

3) Routing Stereotype

Description: Stereotype “Routing” is responsible for navigation.

Base Class: Class

Tag Values: It has two tag values: Path and Component. Path is a string that matches

the URL in the browser address bar. Component defines the component that the router

should create when navigating to this route.

28

4) Services Stereotype

Description: Stereotype “Services” gets the data and configuration from the server.

Base Class: Class

Tag Values: The tag value Name is the name of service used in the application. The tag

value VariableName enables/disable the offline setting option.

3.1.2 User Interface Concepts

The user interface concepts modelled are defined in Figure 4.

Figure 4: User Interface Concepts

29

5) Stereotype Components

Description: Stereotype “Components” defines the user interface related concepts. This

stereotype sets the common properties which are present in all the components.

Base Class: Class, Instance Specification

Tag Values: The tag value type defines the type of component. Tag value border_radius

specify the radius of the elements corner. The property margin and padding set the spacing of

elements. The tag value margin-top and margin-bottom specifies the margin for top and

bottom sides of an element. Icon_font property defines the glyphs used on the element. The

tag value display defines the elements display property. Similarly, other tag values such as

alignment sets the horizontal and vertical alignment of the element, text_color defines the

color of the text, background_color specifies the background color, heading defines the

heading and text_weight are also defined to specify the font weight. An enumeration class

TextWeight is defined that contains three literal values which are normal, bold, bolder and

lighter. The component specific values are defined in their corresponding stereotypes.

6) Stereotype Container

Description: Stereotype “Container” is used to center and horizontally pad the contents of

the site.

Base Class: Class, Instance Specification

Tag Values: The tag value container_size defines the width of the viewport and is of type

String.

7) Stereotype Grid

Description: Stereotype “Grid” defines the layout and align contents which is placed inside

the column.

Base Class: Class

Tag Values: The tag value column_width defines the width of the column in percentages.

Tag value grid_option specifies the sizes in pixels. Enumeration class Grid_Option contains

the screen sizes which are Small, Medium, Large, Extral Small and Extra Large.

8) Stereotype Card

Description: Stereotype “Card” defines an element that is used to display content.

Base Class: Class, Instance Specification

Tag Values: The tag value Cardtype defines the content type supported in the card including

text, images, links etc. The enumeration class CardContentType defines several enumeration

literals. The enumeration literal body is the basic building block of card. Further, there are

30

other card content types such as titles, links, text etc. The tag value card_width defines the

width of the card. Tag value floated_content defines the positioning and formatting content.

Clear_floated_content property is used to clear the floated content. Color_text specifies the

text color on card. Card_title_margin_bottom define the bottom margin. The tag value

title_card defines the card title.

9) Stereotype InputGroup

Description: Stereotype “Input-Group” adds text, button or button groups by extending form

controls.

Base Class: Class, Instance Specification

Tag Values: It contains two tag values: text_front and text_behind. The tag value text_front

is used to add the help text in front of input while text_behind specifies the text behind the

input.

10) Stereotype Input

Description: Stereotype “Input” is used to specify a form control for input.

Base Class: Class, Instance Specification

Tag Values: It encompasses following tag values: form_type, placeholder_value, input_id,

input_name, border_color. The tag value form_type is of enumeration type so enumeration

class FormType is defined which contains three literal values such as group, control and

inline. The literal value group add structure to forms, literal value control add style to the

form elements. The literal value inline defines the layout of the form. Input_id defines the id

for the input element. Input_name specifies the name of input element. We can set the color

of the border using border_color property.

11) Stereotype Button

Description: Stereotype “Button” specifies the button element of the user interface.

Base Class: Class, Instance Specification

Tag Values: It comprises of several tag values that are used to define the style of the button.

The tag values theme specifies the button theme which is of enumeration type, button_text

defines the text to be placed on the button, button_placement defines the button position.

Three enumeration classes for button are defined. Enumeration class ButtonTheme contains

the button styles for actions in forms, dialogs etc. ButtonStates defines the state of the button

which can be in one of three states: Normal, Active and Disabled.

31

12) Stereotype Badge

Description: Stereotype “Badge” defines a link or button to provide a counter.

Base Class: Class, Instance Specification

Tag Values: It contains two tag values: shape and appearance. The tag value shape defines

the shape of the badge e.g rounded etc. The tag value appearance specifies the appearance.

13) Stereotype Alert

Description: Stereotype “Alert” is used to define feedback messages for typical user actions.

Base Class: Class, Instance Specification

Tag Values: It consists of three tag values namely alert_type, alert_value, description.

Alert_type defines the type of alert. An enumeration AlertType is defined having literal

values primary, success, danger, warning, info, light and dark. The tag value alert_value

defines the value to be true or false for an alert and description defines the description.

14) Stereotype ListGroup

Description: Stereotype “List-Group” define the series of contents.

Base Class: Class, Instance Specification

Tag Values: The tag value Items_list defines the items to be added in a list. Tag value

ItemStates defines the item states. An enumeration ItemStates is defined that consist of three

literal values for list items namely Active and Disabled. Active is used to indicate current

active selection. Disable makes the item appear disabled.

15) Stereotype CustomElement

 Description: Stereotype “CustomElement” defines a new fully feature DOM element. The

tag value name specifies the custom element name.

16) Stereotype DataBinding

Description: Stereotype “DataBinding” controls the data flow in the application between a

component and its view template.

Base Class: Instance Specification

Tag Values: The tag values defined in this stereotype presents binding type with the tag

value of enumeration data type. IsInstanceOf is a flag that is set to bind the html control to

32

application data. Event_handler defines an operation on which data is to be bind. Event is the

occurrence of certain action.

17) Stereotype DOM_Manipulation

Description: Stereotype “DOM_Manipulation” is used to bind application data to the

attributes of HTML DOM elements.

Base Class: Instance Specification

Tag Values: It has three tag values Name, Value and Input Variable which are used to

change the layout of the application or change the behavior of the DOM element.

3.1.3 Serverless Schema Concepts

Figure 5 shows the concepts defined for serverless schema modelling. For schema, type and

fields on those types are defined for data and then functions for each field on each type is

provided.

Figure 5: Serverless Schema Concepts

33

18) Stereotype RootType

Description: Stereotype “RootType” is specified to define entry point of an application.

Base Class: Instance Specification

Tag Value: The tag value consists of Operations which are used for data fetching. Root

operations such as read, write or subscribe are taken through this stereotype.

19) Stereotype ObjectType

Description: Stereotype “ObjectType” defines an object we can fetch from our defined

service.

Base Class: Instance Specification

Tag Value: The tag value Object_Fields define the fields on that object through property

type.

20) Stereotype InputType

Description: Stereotype “InputType” is defined having tag value Input_Fields that specify

the fields for the input type.

Base Class: Instance Specification

21) Stereotype InterfaceType

Description: Stereotype “InterfaceType” is an abstract type that includes a certain set of

fields which a type must include to implement the interface.

Base Class: Instance Specification

Tag Value: The fields in the interface type are defined with the tag value Interface_Fields

through property type.

22) Stereotype UnionType

Description: Stereotype “UnionType” does not specify any fields.

Base Class: Instance Specification

Tag Value: It comprises of two tag values. The tag value Var_name specified the name for

the union type. Select_type defines the concrete object types.

23) Stereotype CustomScalarType

34

Description: Stereotype “CustomScalarType” specifies the custom scalar type.

Base Class: Instance Specification

Tag Value: The tag value name defines the custom scalar type name.

24) Stereotype TypeModifier

Description: Stereotype “Type_Modifier” defines the special group of types.

Base Class: Property, Parameter

Tag Value: It has one tag value Select_TypeModifier of type enumeration. This attribute

selects the desired modifier type from the enumeration. An enumeration class TypeModifier

is defined having two literal values: Required and List. Required presents a type as non-null

by adding an exclamation mark after the type name. List indicates that the field will return an

array of that type. This stereotype extends meta-class property and meta-class parameter.

25) Stereotype Arguments

Description: Stereotype “Arguments” contain the arguments within the fields or operations.

Base Class: Property

Tag Value: The tag value Arguments take the arguments used in the fields.

26) Stereotype Request_Data

Description: Stereotype “Request_Data” defines the requested data operation in the form of

data structure which is used to communicate with backend.

Base Class: Operation

Tag Value: It encompasses four tag values. OperationName specifies the name of the

operation. Fields define the data which must be fetched. ObjectName defines the nested data

and Fragment can construct set of fields.

Five primitive types have been defined which represents scalar type. These are ID, Int, Float,

String and Boolean.

3.1.4 Behavioral Concepts of Application

Figure 6 shows the modelling of data management concepts in a state machine such as data

access and data synchronization.

35

Figure 6: Data Management Concepts

27) Stereotype Identity Management

Description: Stereotype “IdentityManagement” is responsible for the authentication. This

stereotype authenticates users to secure and protect data.

Base Class: State

Tag Value: To manage the identities tag value Variables and Operations are used to define

the different variables and operations used for providing functionality for managing identity.

28) Stereotype UI_Router

Description: Stereotype “UI_Router” manages the transitions between states of an

application.

Base Class: State

Tag Value: The tag value Variable defines the attributes of an operation through property

type and the tag value Operations specify the operation.

36

29) Stereotype Client

Description: Stereotype “Client” is defined to communicate with the backend data sources

and binding data to the frontend user interface element.

Base Class: State

Tag Value: The tag values Variables and Operations define the logic for data

communication.

30) Stereotype Cache

Description: Stereotype “Cache” stores the data and updates the cache on arrival of new

data.

Base Class: State

Tag Value: The tag value data_response is defined that is true if data is found in the cache.

31) Stereotype Proxy Server

Description: Stereotype “Proxy Server” handles client request.

Base Class: State

Tag Value: The tag value endpoint is defined on which all requests should be directed.

32) Stereotype StorageSystemProtocolConverter

Description: Stereotype “StorageSystemProtocolConverter” defines the resolver function

which converts the payload data to the underlying storage system protocol.

Base Class: State

Tag Value: It includes the following tag values: Operation, Variables, key, Expression and

Values. Operation specifies the NoSQL database operation to be performed. Variables define

the remaining attributes of the item to be put into NoSQL database. Key denotes the key of

the item in the NoSQL database. Expression defines the query expression. Values defines the

substitution for expression attribute value. The key matches to a value placeholder used in

the expression. The value must be a typed value.

33) Stereotype MultiSourceDataIntegration

Description: Stereotype “MultiSourceDataIntegration” combines data from multiple data

sources.

37

Base Class: State

34) Stereotype Backend_Operations

Description: Stereotype “Backend_Operations” is defined which handles the backend

operations.

Base Class: Trigger

Tag Value: It have the following tag values: Read_Operation of type Operation,

Read_Parameters of type Property, Write_Operation of type Operation, Write_Parameters of

type Property, InstantUI of type Boolean, Options of type Operation, Value of type Property,

S_Operation of type Operation and S_Parameters of type Property. Write_Operation specifies

the write request followed by a fetch. Write_Parameters are the parameters used in the write

request. Read_Operation specifies the read only fetch. Read_Parameters define the

parameters for read request. InstantUI is a Boolean variable that gives an instant response in

low connectivity or offline mode. Options specify the operation for fetching data. Value

defines the data to be fetched. S_Operations is the long-lived connection for receiving data.

S_Parameters describe parameters for real time update.

38

Chapter 4

Implementation

39

CHAPTER 4: IMPLEMENTATION

4.1 Transformation Rules

This section discusses the transformation rules which are used to map UMSDA into frontend

and backend code. These rules produce a target frontend and backend code for data

synchronization in a client application through transformation engine. For UMSDA models,

Papyrus modeling editor of Eclipse is used. For validation, the code is deployed on AWS

Serverless platform using AWS SAM (Serverless Application Model).

4.1.1 Transformation Rules for Application Structure

The transformation rules for transforming UMSDA Concept into Angular Code are shown in

Table 1. Rules for main application module, application component and routing are provided

in this section.

Table 1: Transformation rules for Application Structure Code

Sr.No UMSDA Concept Corresponding

Angular

Concept

Description

1.

ApplicationModule

 RootModule

ApplicationModule→RootModule

Module_declaration→declarations

Module_imports→imports

2.

ApplicationComponent

 Component

 Decorator

ApplicationComponent→Component

Decorator

Selector_Component→selector

Url_Template→templateUrl

3.

Routing

Routing Module

Routing→Routing Module

Path→path

Component→component

4.1.2 Transformation Rules for User Interfaces

Table 2 highlights the transformation rules for transforming UMSDA Concept into

corresponding Angular Html Template concept.

40

Table 2: Transformation rules for User Interface Code

Sr.No UMSDA

Concept

Corresponding

Html Concept

Description

1. Container viewport Container→viewport

2. Grid grid

 rows

 column

Grid→grid

row→row

column→column

col_width→width

grid_option→grid breakpoints

3. Input-Group

Input

 input-group

 input

Input-Group→input-group

Input→input

text_front→input-group-prepend

text_behind→input-group-append

form_type→form-control

placeholder_value→required placeholder

input_id→id

input_name→name

border_color→borders

4. Button

 button

Button→button

theme→button styles

button_text→text

5.

List-Group

list-group

List-Group→list-group

Items_List→list-group-item

ItemStates→list-group-item→Active Items

6. Card

card

Card→card

ContentType→Content types

Card_width→card width

title_card→ card title

floated_content→Float

clear_floated_content→Clearfix

border_color→border color

color_text→Text color

41

7. Badge

 badge Badge→badge

shape→Pill badges

4.1.3 Transformation Rules for Serverless Schema

The transformation rules for transforming UMSDA concepts into corresponding GraphQL

Code is summarized in Table 3. Only RootType and ObjectType rules are discussed in this

section along with the type modifiers and Request data operations.

Table 3: Transformation rules for Serverless Schema

Sr.No UMSDA

Concept

Corresponding

GraphQL Code

Description

1. RootType

Code contains the

type name and its

operations for the

stereotype

RootType.

RootType→ type

Operation→Operation→name →owned

parameter

2. RootType

TypeModifier

Code contains the

type modifiers on

parameters for the

stereotype

TypeModifier.

RootType→Operation→owned

parameter→type modifier

3. ObjectType

Code contains the

type name

operations for the

stereotype

ObjectType.

ObjectType→type

5. ObjectType

Property

Code contains fields

for Object type.

ObjectType→Property→ Fields→name and

datatype

6. ObjectType

TypeModifier

 Property

Code contains the

type modifiers on

fields for the

stereotype

TypeModifier

ObjectType→ Property→type modifier.

42

7. Arguments

Property

Code contains the

arguments in the

property for the

stereotype

Arguments

ObjectType→Property→Arguments

8. Request_Data

Operation

Code contains the

operations which

defines the data

structure for the

stereotype

Request_Data.

Request_Data→Operation

4.1.4 Transformation Rules for Application Behavior

The transformation rules for transforming UMSDA concepts into corresponding Angular 2

and VTL (Velocity Template Language) code is shown in Table 4.

Table 4: Transformation rules for Application Behavior Code

Sr.No UMSDA Concept Corresponding Angular

and VTL (Velocity

Template Language)

Code

Description

1. State

UI_Router

Code contains the

component decorators

for the stereotype

UI_Router

UI_Router→Component

2. State

IdentityManagement

Code contains the

Authentication for the

stereotype

IdentityManagement

IdentityManagement→CognitoUser

Pool for token-based

authentication.

3. State

Client

Code contains the state

operations for the

stereotype Client

Client → StateOperations (Client

mapped to the state operations)

4. State Code contains the StorageSystemProtocolConverter→

43

StorageSystemProto

colConverter

resolver functions for

the stereotype

StorageSystemProtocol

Converter

Resolver function with data

conversion for requested data

5. State

DataSource

Code contains the

operation to be

performed for

stereotype DataSource

DataSource → Database Table

6. Transition

Trigger

Backend_Operations

Code contains the data

operations for the

stereotype

Backend_Operations

Backend_Operations→Operations

for the client operations to

communicate.

4.2 Transformation Engine Architecture

After defining the transformation rules, we developed a transformation engine by

implementing transformation rules to generate Angular 2 and GraphQL code from the

models. The transformation engine architecture is shown in Figure 7. The tool used for model

to text transformation is Acceleo. The transformation engine comprises of two key

components: 1) Application Launcher and 2) Code Generator.

Figure 7: Transformation Engine Architecture

Application Launcher: The application launcher of the transformation engine consists of

three main sub-components which are WinMain, Launcher and Generate. Particularly,

44

WinMain provides the transformation engine user interface implementation. Moreover,

various settings required to execute transformation engine are implemented in Launcher sub-

component. Additionally, Generate sub-component registers the profile addresses.

Code Generator: This component is responsible for generating Angular 2 and GraphQL

code. The input model receives UML model and output folder receives the destination folder

address (where the code files are to be generated) from the application launcher component.

The Generate sub-component (Generate.mtl) extracts the desired element from the model.

Text Refiner is a sub-component that deals with the formatting issues of the generated files.

The interface for transformation engine is provide in Figure 8. Transformation Engine takes

the UML model and path of output folder for generating the code from model using the

browse button. Generate button is provided to generate the required outputs. Console shows

the progress of the transformation process. A Reset is provided to clear all fields i.e. input

model path, output folder path and console. Close button is provided to closes the interface

from the screen.

Figure 8: Transformation Engine Input Model Interface

45

Chapter 5

Validation

46

CHAPTER 5: VALIDATION

In this section, the applicability of our proposed framework is validated with the help of

case studies. The case studies are discussed and documented in descriptive form. Two case

studies are presented to validate our proposed work. The first one Real Time Chat

Application is discussed and validated in Section 5.1 and second one Weather Forecast

Application is offered in Section 5.2.

5.1 Real Time Chat Application Case Study

This case study is divided into four sections. Firstly, the requirements of the real time chat

application are discussed in Section 5.1.1. Secondly, Section 5.1.2 contains the UML class

diagram and state machine diagram with applied profile to present the system architecture of

the required system. Furthermore, Section 5.1.3 shows the transformation results in the form

of generated code. And finally, Section 5.1.4 contains validation of the system.

5.1.1 Requirements

For real time chat application, the high-level representation of the data requirements is shown

in graph in Figure 9.

Figure 9: Data Requirements in Real-time Chat Application

47

The graph comprises of edges and nodes. For each connected set of nodes cardinality

information is presented along the edges. The nodes represent the data that we are storing,

and the edges represent associations between the data. The data is stored in DynamoDb

(NoSQL) database of Amazon.

Users can see a list of all other users and can start conversations with any of them. However,

they can only see conversations that they initiated or are invited to. To make it all work, the

backend requirements includes the application behavior:

 Authentication

The primary requirement of every application is authentication that allows the user/tenant

to secure and protect data using API keys, Identity and access management or through

cognito user pools. Users register their account through one of these options and then sign

in to authenticate.

 Authorization

After successful authentication, a JWT token is returned to the application that is used to

identify the user and authorize access to backend sources.

 Client

The client rapidly builds a UI that fetches data from the cloud. It is used with one of the

view layer integrations. The client performs appropriate authorization wrapping of

request statements before submitting to the server for synchronizing. Responses are

persisted in an offline store and write requests are made in a write-through pattern. The

client submits the operation request to the server along with an identity context and

credentials.

 Operations

 Read Requests consists of fetching list of users, related conversations, and messages

 Write Requests create users, messages, conversations, and relations between users and

conversations

 Subscribe Requests automatically retrieve new messages in a conversation as soon as

they are received in the backend

 Schema

The schema consists of object types and root types which defines the data shape that

flows and the operations that can be performed. This schema validates all the data

operations.

48

 Server Synchronization

The server processes the received requests and mapped them to logical functions for data

operations or triggers. Then it passes this request to the Storage system protocol

converter.

 Storage System Protocol Converter

The storage system converter maps and executes the request payload against data source.

 Data Source

A persistent storage system along with credentials for accessing that system. The state of

the application is managed by the system or trigger defined in a data source.

The frontend requirements consist of:

 ChatApplication Module

Chat application module is composed of several components such as User list,

Conversation list, Messages, MessageView and Input component. Container and Grid

element is used for layout.

 Chat Application Components

The chat application components include:

- User List Component

User list component encompasses List Group element, Data binding and DOM

manipulation.

- Conversation List Component

Conversation list component includes List Group, Data binding and DOM

manipulation

- Messages Component

The messages component includes card and icon elements.

- MessageView Component

Message View component contains card element, data binding and DOM

manipulation

- Input Component

Input component encompasses input group. Input group contains input and data

binding. Button element is attached to the input element.

.

49

5.1.2 Modeling

A complete model including frontend and backend for Real-time Chat Application is

provided. The model of Application frontend is shown in Figure 10.

Figure 10: Application Frontend Model

50

In this model, <<ApplicationModule>> stereotype is applied to ChatAppModule which loads

other parts of our application. <<Routing>> stereotype is mapped to ChatAppRoutingModule

to tell the router which view to display when a user clicks a link or pastes a URL into the

browser address bar. <<ApplicationComponent>> stereotype is mapped to different

components of the chat application which contains template, business logic and

metadata. <<Container>> stereotype is mapped to container which provide a basic layout

element. <<Grid>> is mapped to grid for layout and content alignment using containers,

columns and rows. <<Badge>> is mapped to the badge element which create small labelling

component. <<List-Group>> stereotype is mapped to the ListGroup which displays a series

of contents. <<Input-Group>> is applied to InputGroup to provide extension to form controls

by adding buttons, button groups or text on either side of custom selects, textual inputs etc.

<<Card>> is mapped to card element for providing extensible content container with multiple

variations and selections. <<Input>> is mapped to input which extend form control by adding

text. <<Button>> stereotype is mapped to button which extend form control by adding

button. For data binding <<DataBinding>> stereotype is used which handles communication

between component and the DOM (Document Object Model). To change the DOM layout or

behavior of an element <<DOM_Manipulation>> stereotype is used.

Figure 11 shows a model of an instance specification for serverless schema which is the

backend of an application.

51

Figure 11: Model of Serverless Schema

In this model, <<RootType>> stereotype is applied to Root Types which defines the Root

Operations (Read, Write and Subscribe). <<ObjectType>> is applied to Object Type which

define fields of the object type. The type modifiers on property and parameters are also

applied through <<TypeModifier>> stereotype. <<Request_Data>> stereotype is applied to

Root Operations that define the shape of the data that flows.

Figure 12 shows a model of state machine diagram for data sync client in data-driven

application.

52

Figure 12: Model for Application Behavior (Data Synchronization)

The model shows the state machine behavior for the whole application.

<<IdentityManagement>> is applied to AuthenticatorComponent which authenticates the

user with Amazon Cognito User Pool. Users register their account and signs in. After

53

successful authentication, a JWT token is returned by Cognito to the application that is used

to identify the user and authorize access to the application programming interface.

<<UI_Router>> is mapped to the ChatComponent that manages the transition between

application states. The ChatComponent has two states: register and createUser. <<Client>>

stereotype is applied to both the states. It performs appropriate authorization wrapping of

request statements before submitting to the server for synchronizing. Responses are persisted

in an offline store (cache) and write requests are made in a write-through pattern. In the

register state the transition is triggered on a get request to fetch the registered user from the

cache. Therefore, cache-only condition is set to true. The cache checks for the registered user.

If data is found, it subscribes to that data and updates the user interface. Then it enters the

createUser state. A write request is made to the server along with an identity context and

credentials. The request is passed to server when a transition is triggered. The server

processes the received requests and mapped them to logical functions for data operations. It

calls the createUser Resolver function that adds User to the data source by using

<<StorageTransitionProtocolConverter>> stereotype. Once the user is created in a

UsersTable, an event-based action is performed on the server that synchronizes the new user

to the users list of all the subscribers connected to this application. In case a network is low or

in offline mode the user gets updated data on network connectivity. If the user is using

application in offline mode, instant UI is created but it does not communicate with the

backend data sources. The request is saved and when the network goes online the request is

automatically sent to the server. In ChatUserListComponent state, <<UI_Router>> stereotype

is mapped. This state goes through three sub-states such as getAllUsers,

createNewConversation, createUserConv. In getAllUsers state <<Client>> stereotype is

applied, the transition is triggered on read request with cache and network condition equal to

true. The simultaneous requests are made to cache and to the backend. If data is found in

cache, a Boolean condition for data is true. When the request is sent to server. The server

calls the getAllUsers Resolver using <<StorageTransitionProtocolConverter>> stereotype. It

scans the database and response is sent to user. The cache is then updated by any new data

received from the network. Similarly, for createNewConversation and createUserConv the

same process is applied as for createUser request. When the user is invited from user list, the

conversation connection is created between the two users and messages are exchanged

between them. For each request the server calls the corresponding resolver that maps and

execute the request payload against data source. In ChatInputComponent state, new messages

54

are created in createNewMessage state using <<Client>> stereotype. The transition is

triggered on write request to server. The server calls the createMessageResolver that puts

messages in the data source. New messages are subscribed, and our message list is updated.

The same read request as dicussed earlier is applied to messageViewComponent.

5.1.3 Code Generation

This section highlights the code generation process from our proposed transformation

engine. The model of data synchronization is given as input to our proposed transformation

engine whose interface is shown in Figure 13. The transformation engine uses transformation

rules for mapping and transforms the model into code. UML model with .uml extension is

selected as input model and target folder on desktop is provided as output folder for

generated code files. On clicking the generate button following outputs are generated in the

target folder.

1. The code for frontend Application in Angular 2 as shown in Figure 14, 15.

2. The backend code in GraphQL (Graph Query Language) as shown in Figure 16, 17.

Console shows the progress of transformation process.

Figure 13: Transformation for Real-time Chat Application Code

55

Figure 14: Generated Code for FrontEnd User Interface

Figure 15: Generated Code for Data Synchronization Client

56

Figure 16: Generated Code for Serverless Schema

Figure 17: Generated Code for Data Resolvers

57

5.1.4 Verification

For verification of generated code, its compilation and execution are necessary.

Therefore, we deploy this code in angular application. We created an angular application and

pasted our generated code accordingly as shown in Figure 18,19, 20 and 21.

Figure 18: Code Deployed for Real Time Chat Application (User Interface)

Figure 19: Code Deployed for Real Time Chat Application (Data Sync Client)

58

Figure 20: Code Deployed for Real Time Chat Application (Serverless Schema)

Figure 21: Code Deployed for Real Time Chat Application (Data Resolvers)

59

Validation of the application is done after deployment of code on AWS Serverless platform

using local AWS command line interface as shown in Figure 22.

Figure 22: Deployment on AWS using Cloud Formation

Figure 23: Client Application Deployed to cloud

60

 Figure 24: Transformation Result of Chat Application (Main Page)

Figure 25: Chat Components with Behavior (User 1)

61

Figure 26: Transformation Result of Chat Application (Mobile Web)

Figure 27: Chat Components with Behavior (User 2)

62

Figure 28: Users Table Amazon DynamoDb

Figure 29: User Conversations Table

63

Figure 30: Messages Table

 Figure 31: Conversations Table

64

5.2 Weather Forecast Application

This case study is divided into four sections. Firstly, the requirements of the weather

application are discussed in Section 5.2.1. Secondly, Section 5.2.2 contains the UML class

diagram and state machine diagram with applied profile to present the system architecture of

the required system. Furthermore, Section 5.2.3 shows the transformation results in the form

of generated code. And finally, Section 5.2.4 contains validation of the system.

5.2.1 Requirements

For weather data application, user can search for popular tourist destinations. The application

will provide real time weather analysis of the indexed destination. The data requirements

include:

 Authentication

User can authenticate with API key.

 Client

The client fetches data from the cloud and rapidly builds UI. It is used with one of the

view layer integrations.

 Operations

 Read Requests consists of fetching list of travel destinations

 Write Requests create destinations

 Subscribe Requests automatically retrieve real time weather information as soon as it

is received in the backend data sources

 Schema

The schema comprises of object types and root types which defines the data shape that

flows. It also defines the operations that can be performed.

 Server Synchronization

The server processes the received requests and mapped them to logical functions for data

operations or triggers. Then it passes this request to the Storage system protocol

converter.

 Storage System Protocol Converter

The storage system converter maps and executes the request payload against data source.

65

 Data Source

A persistent storage system or a trigger, along with credentials for accessing that system

or trigger.

The frontend requirements consist of:

 WeatherApplication Module

Weather application module is composed of several components such as Destination

Input Component and Destination View component. Container and Grid element is used

for layout.

 Weather Application Components

The chat application components include:

- Destination Input Component

Input component encompasses input group. Input group contains input and data

binding. Button element is attached to the input element.

- DestinationView Component

Destination View component contains card element, data binding and DOM

manipulation

5.2.2 Modeling

A complete model of data synchronization including frontend and backend for Weather Data

Application has been provided. The model of Application User interface template is shown in

Figure 32.

66

Figure 32: Model of Weather Forecast Application Frontend

In this model, <<ApplicationModule>> stereotype is applied to WeatherAppModule which

loads other parts of our application. Also, this module imports components and modules

within our application such as WeatherAppRoutingModule, WeatherAppComponent,

DestinationViewComponent and DestinationInputComponent. <<Routing>> stereotype is

mapped to WeatherAppRoutingModule to tell the router which view to display when a user

clicks a link or pastes a URL into the browser address bar. <<ApplicationComponent>>

stereotype is mapped to different components of our weather application which contains

template, business logic and metadata. The WeatherAppComponent contains container so

<<Container>> stereotype is mapped to container which provide a basic layout element. The

application uses grid so <<Grid>> is mapped to grid to layout and align content using

containers, rows, and columns. <<Icon>> stereotype is mapped to the icon element which

displays icons with the weather information. <<Label>> stereotype is mapped to label which

provides additional information to the input. <<Input>> is applied to Input which creates a

67

destination by adding required values. <<Card>> is mapped to card element which delivers a

flexible content container with numerous variations. <<Button>> stereotype is mapped to

button which extend form control by adding button. <<DataBinding>> stereotype is mapped

to the data binding instances which binds data to that instance.

Figure 33 shows a model of an instance specification for server type system which is the

entry point of an application on server.

Figure 33: Model of Serverless Schema for Weather Forecast Application

In this model, <<RootType>> stereotype is applied to Root Types which defines the Root

Operations (Read, Write and Subscribe). <<ObjectType>> is applied to Object Type which

define fields of the object type. The type modifiers on property and parameters are also

68

applied through <<TypeModifier>> stereotype. <<Request_Data>> stereotype is applied to

Root Operations that define the shape of the data that flows.

Figure 34 shows a model of state machine diagram for data sync client in data-driven

application.

Figure 34: Model of Application Behavior for Weather Forecast Application

The model shows the state machine behavior for the whole application. For authentication

user sign up for the OpenWeatherApp account to get the API key. The API key is used for

authentication. After getting API key, user routes through the browser to the main application

page. <<UI_Router>> is mapped to the DestinationComponent and WeatherComponent that

manages the transition between application states. <<Client>> stereotype performs

appropriate authorization wrapping of request statements before submitting to the server for

69

synchronizing. Responses are persisted in an offline store and write requests are made in a

write-through pattern. To get the weather conditions, the server calls WeatherResolver that

invokes the WeatherCondition data source to fetch the weather condition of the selected city.

In the WeatherComponent, AllDestination state is triggered on a get request to fetch all the

destinations from the cache through the <<Client>> stereotype. Therefore, cache-only

condition is set to true. The cache checks for the fetched destinations. If data is found, it

subscribes to that data and updates the User interface. The request is passed to server when a

transition is triggered. The server processes the received requests and mapped them to logical

functions for data operations. It calls the AllDestination Resolver function that adds

Destination to the data source by using <<StorageTransitionProtocolConverter>> stereotype.

The response is returned to the client. The cache is updated accordingly. Similarly,

AllDestinationByState fetches the list of destinations by city State name. It calls the

AllDestinationByStateResolver function that gets the updated destination through <<

StorageTransitionProtocolConverter >> stereotype and updates the cache store.

5.2.3 Code Generation

This section highlights the code generation process from our proposed transformation

engine. The model of data synchronization is given as input to our proposed transformation

engine whose interface is shown in Figure 35. The transformation engine uses transformation

rules for mapping and transforms the model into code. UML model with .uml extension is

selected as input model and target folder on desktop is provided as output folder for

generated code files. On clicking the generate button following outputs are generated in the

target folder.

1. The code for frontend Application in Angular 2 as shown in Figure 36, 37.

2. The backend code in GraphQL (Graph Query Language) as shown in Figure 38, 39.

Console shows the progress of transformation process.

70

Figure 35: Transformation for Weather Forecast Application

Figure 36: Generated Code of User Interfaces for Weather Forecast Application

71

Figure 37: Generated Code of Data Synchronization Client for Weather Forecast Application

Figure 38: Generated Code of Serverless Schema for Weather Forecast Application

72

Figure 39: Generated Code of Data Resolvers for Weather Forecast Application

5.2.4 Verification

For verification of generated code, its compilation and execution are necessary.

Therefore, we deploy the code in Angular Application. We created an angular application

using angular cli and pasted our generated code accordingly as shown in Figure 40, 41, 42

and 43.

Figure 40: Code Deployed for Weather Data Application (User Interface)

73

Figure 41: Code Deployed for Weather Data Application (Data Sync Client)

Figure 42: Code Deployed for Weather Data Application (Server Type System)

74

Figure 43: Code Deployed for Weather Data Application (Data Resolvers)

Validation of the application is done after deployment of code on AWS Serverless platform

using local AWS command line interface as shown in Figure 44.

Figure 44: Deployment on AWS using Cloud Formation

Figure 45 shows the transformation result of the deployed application.

75

Figure 45: Transformation Result of Weather Forecast Application

Figure 46: Destination Table

76

Chapter 6

Comparative Analysis

77

CHAPTER 6: COMPARATIVE ANALYSIS

The previous chapter deals with the implementation and validation aspects of the

proposed work. The proposed framework presents the modeling of the concepts involved in

implementation of a data synchronization for data driven serverless applications at higher

level of abstraction. To model the concepts of system Unified Modeling Language (UML)

profile is proposed and transformation of model into code has been carried out using

transformation engine for implementation purpose. Our proposed approach provided a major

contribution in the field of model driven engineering. This section discusses the comparison

with our proposed solution.

6.1 Comparison

For comparison purpose, we have selected some researches from the previous studies and

perform comparison as shown in Table 5.

 Table 5: Comparison

The above table provides a comparison between the previous literature studies and our

proposed solution. The comparison is performed among the following parameters: Serverless

computing, Data-driven Applications, Frontend Prototype, Backend, Modeling Approach and

Tool support provided. The previous researches in literature shows that tool support is

missing with data-driven serverless applications. A few solutions provided with data driven

Sr.No Serverless

Computing

Data-driven

Applications

Frontend

Prototype

Backend Validation

on Cloud

Modeling

Approach

Tool

Support

[26] No Yes No Yes No No No

[28] No Yes Yes No No No No

[29] No Yes Yes Yes No No No

[33] Yes No No Yes IBM

Watson

No No

[34] Yes Yes No Yes OpenStack

Swift

No No

Our

proposed

Work

Yes Yes Yes Yes AWS Yes Yes

78

applications target on the specific application domain. For instance, [23] provides a solution

for data driven applications for vehicle tracking. A few uses simulation [34] to validate their

approach. Some of the researches related to data driven applications has not been validated

on cloud. Similarly, researches related to serverless does not include frontend of an

application. Our proposed solution covers serverless data driven applications with tool

support that generate both frontend and backend low-level implementation code for data store

and synchronization. Moreover, we have validated our proposed approach by deploying it to

AWS (Amazon Web Services). Furthermore, it contains a tool support for model to text

transformation.

79

Chapter 7

Discussion and Limitation

80

CHAPTER 7: DISCUSSION AND LIMITATION

This section deals with a detailed discussion on the proposed research work as described in

Section 7.1.

7.1 Discussion

Data Synchronization is a complex process in cloud-based application development

especially, if data is shared among multiple users with varying devices. This research

introduces a UML Profile to model the low-level implementation with regards to data

synchronization concepts for serverless data-driven applications on cloud. Particularly, the

behavior of the application is very complex, so we use model driven approach to simplify the

design and implementation of an application. The proposed UMSDA provides backend

concepts for data store and sync as well as frontend user interface and data binding concepts

by adapting UML diagrams such as class diagram and state machine diagram. The

application structural concepts are modelled in UML class diagram while state machine

diagram is used to model the application behavior concepts. Consequently, our proposed tool

provides numerous benefits in comparison with other state-of-the-art approaches (e.g. [17],

[19] etc.).

The significant advantages of our proposed UMSDA are:

1) It simplifies the requirements for data synchronization for data-driven serverless

applications.

2) It also simplifies the frontend integration with backend. The frontend requirements are

also modelled for automatic code generation.

3) It supports the transformation engine that generates both frontend and backend code

from high level source models.

4) It provides foundation to develop any serverless data driven application that requires

real time data synchronization.

The models proposed in our solution are at high abstraction level and are easily

understandable by various stakeholders. These models neglect the implementation details,

thus simplifying the low-level implementation complexity. Furthermore, it reduces time and

cost of development. Low level implementation code can be automatically generated from

the source models. The generated code is deployed into its respective environment for

verification. These models can be easily extendible for adding more features. Also, the

81

transformation engine is extendible. We can provide transformation rules for other user

interface elements or new types in the schema.

The proposed framework has been validated on two case studies: Real time Chat

Application and Weather Forecast Application. Both case studies require real time data

synchronization and present the updated information to the users. It also handles the data in

low network connectivity. The first case study uses single data source while the second one

targets multiple data sources. The proposed solution provides automated code generation for

data synchronization in data driven serverless applications, however, there exist some

limitations. The frontend of an application does not cover all the user interface elements.

Moreover, it does not completely provide full styling of UI elements. Furthermore,

transformation rules for only Root types and object types are provided as they are used across

the most applications.

82

Chapter 8

Conclusion and Future Work

83

CHAPTER 8: CONCLUSION AND FUTURE WORK

In this research, we propose UMSDA (Unified Modeling Language Profile for Serverless

Data-driven Applications) to model the frontend and backend design and implementation

requirements for data-driven serverless applications at high abstraction level. Particularly,

due to increasing recognition of UML in industry, this research proposed the design and

implementation of data driven serverless applications through UMSDA. The proposed

UMSDA comprises several stereotypes related to frontend and backend concepts to model

the data synchronization in serverless applications. These models generate code through the

transformation engine. Verification of the generated code is done by deploying it to their

respective implementation environments.

The research work is the first step to make the cloud application development process

simpler. Particularly, UMSDA has been proposed which adapts the concept of UML Class

Diagram and State Machine Diagram to model the design and implementation for both

frontend as well as backend for data-driven serverless applications. Backend presents data

store and synchronization requirements while frontend represents user interface requirements

for integrating data with the view layer of serverless applications. A complete transformation

engine is developed to transform the UMSDA source models into target low-level

implementation of Angular 2 and GraphQL code respectively. The transformation engine

implementation is carried out in Acceleo through Model to Text approach. We demonstrate

the applicability of our proposed tool through two case studies deployed on AWS Serverless

platform.

The results prove that the proposed framework allows the modeling of both frontend as well

as backend requirements of data-driven serverless applications with simplicity. The

transformation engine automatically generate code with high accuracy. The proposed

framework greatly simplifies the design and implementation complexity of data-driven

serverless applications to achieve certain business objectives like productivity and time to

market.

In future, we may plan to further enhance the frontend to fully provide all the features by

extending it with more elements. Furthermore, we also plan to enrich our application

behavior with other javascript frontend frameworks such as React, React-Native etc. which

are the most renowned framework used for frontend development these days.

84

REFERENCES

[1] Gojko Adzi, Robert Chatley 2017, “Serverless Computing: Economic and

 Architectural Impact”; ESEC/FSE’17 Proceedings of the 2017 11th Joint Meeting

 on Foundations of Software Engineering Pages 884-889

[2] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod Muthusamy,

 Rodric Rabbah, Philippe Suter, Olivier Tardieu 2017 " The Serverless Trilemma,

 Function Composition for Serverless Computing”, Onward!’17, Proceedings of the

 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and

 Reflections on Programming and Software Pages 89-103

[3] Erwin Van Eyk, Simon Seif, Markus Thommes “The SPEC Cloud Group’s Research

vision on FaaS and Serverless Architectures”, WoSC’17 Proceedings of the 2nd

International Workshop on Serverless Computing Pages 1-4

[4] Amazon Web Services, Inc., “AWS Lambda: Developer Guide,” 2016.

[5] IBM Bluemix, “Welcome to Bluemix OpenWhisk.”:

 https://new- console.ng.bluemix.net/openwhisk/.

[6] Microsoft Azure, “Functions,” https://azure.microsoft.com/en-us/services/functions/.

[7] Google Cloud Platform, “Cloud Functions,” https://cloud.google.com/functions/.

[8] Mengting Yan, Paul Castro, Perry Cheng, Vatche Ishakian: Building a ChatBot with

Serverless Computing: Proceedings of the 1st International Workshop on Mashup of

Things and APIs (2016).

[9] Fatima Samea, Muhammad Waseem Anwar, Farooque Azam, Mehreen Khan,

Muhammad Fahad Shinwari: An Introduction to UMLPDSV for Real-Time Dynamic

Signature Verification: 24th International Conference on Information and Software

Technologies (ICIST 2018), pages 388-398. doi:

https://link.springer.com/chapter/10.1007%2F978-3-31999972-2_32.

[10] Muhammad Waseem Anwar, Muhammad Rashid, Farooque Azam and Muhammad

Kashif Model-based design verification for embedded systems through SVOCL: an

OCL extension for SystemVerilog Journal of Design Automation for Embedded

Systems 2017, Vol 21, Issue 1, Pages 1-36

[11] Mehreen Khan, Muhammad Waseem Anwar, Farooque Azam, Fatima Samea and

Muhammad Fahad Shinwari A Model-driven Approach for Access Control in

Internet of Things (IoT) Applications – An Introduction to UMLOA The 24th

https://new-/
https://link.springer.com/chapter/10.1007%2F978-3-31999972-2_32

85

International Conference on Information and Software Technologies (ICIST 2018),

pages 198-209. DOI: https://link.springer.com/chapter/10.1007%2F978-3-319-99972-

2_16

[12] Model Driven Architecture [Online] Available: https://www.omg.org/mda/

[13] UML Profile [Online] Available: https://www.uml-diagrams.org/profile.html

[14] Xiuwei Zhang, Keqing He, Jian Wang, Jianxiao Liu, Chong Wang, Heng Lu: On-

Demand Service-Oriented MDA Approach for SaaS and Enterprise Mashup

Application Development. 2012 International Conference on Cloud Computing and

Service Computing

[15] Wei-Tek Tsai, Wu Li, Babak Esmaeili, Wenjun Wu: Model-Driven Tenant

Development for PaaS-Based SaaS. 2012 IEEE 4th International Conference on

Cloud Computing Technology and Science

[16] Wei-Tek Tsai, Yu Huang, QiHong Shao, EasySaaS: A SaaS Development

Framework. 2011 IEEE International Conference on Service-Oriented Computing and

Applications (SOCA)

[17] Assylbek Jumagaliyev, Jon Whittle: Model-Driven Engineering for Multi-Tenant

SaaS application development. CrossCloud '16 Proceedings of the 3rd Workshop on

CrossCloud Infrastructures & Platforms

[18] Xiaoyan Jiang, Yong Zhang, Shijun Liu: A Well-designed SaaS Application Platform

Based on Model-driven Approach. 2010 Ninth International Conference on Grid and

Cloud Computing

[19] Xiyong Zhu, Shixiong Wang: Software Customization Based on Model-Driven

Architecture Over SaaS Platforms. 2009 International Conference on Management

and Service Science

[20] Dapeng Chen, Qingzhong Li, Lanju Kong: Process Customization Framework in

SaaS Applications. 2013 10th Web Information System and Application Conference.

[21] G. Fylaktopoulos, M. Skolarikis, I. Papadopoulos, G. Goumas, A. Sotiropoulos, I.

Maglogiannis: A distributed modular platform for the development of cloud-based

applications. Future Generation Computer Systems

[22] Ioana Baldini, Paul Castro, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick

Mitchell, Vinod Muthusamy, Rodric Rabbah, Philippe Suter: Cloud-Native, Event-

Based Programming for Mobile Applications. 2016 IEEE/ACM International

Conference on Mobile Software Engineering and Systems

https://link.springer.com/chapter/10.1007%2F978-3-319-99972-2_16
https://link.springer.com/chapter/10.1007%2F978-3-319-99972-2_16
https://www.omg.org/mda/
https://www.uml-diagrams.org/profile.html
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6156051
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6156051
http://eurosys16.doc.ic.ac.uk/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300802
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300802

86

[23] Moez Essaidi, ODBIS: Towards a Platform for On-Demand Business Intelligence

Services. EDBT '10 Proceedings of the 2010 EDBT/ICDT Workshops

[24] Richard Fujimoto, Angshuman Guin, Michael Hunter, Haesun Park, Gaurav Kanitkar,

Ramakrishnan Kannan, Michael Milholen, SaBra Neal, and Philip Pecher: A

Dynamic Data Driven Application System for Vehicle Tracking, ICCS 2014. 14th

International Conference on Computational Science

[25] Biplab Deka, Data-Driven Mobile App Design: UIST '16 Adjunct Proceedings of the

29th Annual Symposium on User Interface Software and Technology, Pages 21-24

[26] Jiaju Wu, Bin Ji, Xinglin Zhu, Zheng Cheng, Lirong Meng: Design and

Implementation of Data-Driven based Universal Data Editing Framework, 2017

Chinese Automation Congress (CAC)

[27] Joao Seixas, A Model-Driven Development Approach for Responsive Web

Applications: The XIS-Web Technology:

https://pdfs.semanticscholar.org/f6f3/93dfafda18b6f398a601297546a5167b456a.pdf

[28] Kapil Kumar, Joy Bose, Sandeep Kumar Soni: A Generic Visualization Framework

based on a Data Driven Approach for the Analytics data, 2017 14th IEEE India

Council International Conference (INDICON)

[29] Voon Yang Nen, Ong Chin Ann: Pigeon-Table: A Quick Prototyping Tool using

Twitter Bootstraps and AngularJS for Data-Driven Web Application Development,

2017 International Conference on Computer and Drone Applications (IConDA)

[30] Steffen Vaupel, Damian Wlochowitz, Gabriele Taentzer: A Generic Architecture

Supporting Context-Aware Data and Transaction Management for Mobile

Applications, 2016 IEEE/ACM International Conference on Mobile Software

Engineering and Systems

[31] Janis Kampars, Janis Grabis: Near real-time big-data processing for data driven

applications, 2017 International Conference on Big Data Innovations and

Applications

[32] Mengting Yan, Paul Castro, Perry Cheng, Vatche Ishakian: Building a ChatBot with

Serverless Computing: Proceedings of the 1st International Workshop on Mashup of

Things and APIs (2016)

[33] Nirmal K Mukhi, Srijith Prabhu, Bruce Slawson: Using a serverless framework for

implementing a cognitive tutor: experiences and issues. WoSC '17: Proceedings of the

2nd International Workshop on Serverless Computing (2017)

http://lbd.epfl.ch/EDBTICDT/
http://uist.acm.org/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8125643
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8125643
https://pdfs.semanticscholar.org/f6f3/93dfafda18b6f398a601297546a5167b456a.pdf
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8470058
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8470058
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8262704

87

[34] Josep Sampe, Marc Sánchez-Artigas, Pedro García-Lopez, Gerard París: Data-Driven

Serverless Functions for Object Storage, Middleware '17, Proceedings of the 18th

ACM/IFIP/USENIX Middleware Conference, Pages 121-133

[35] Li Weiping, An analysis of new features for workflow system in the SaaS software.

ICIS '09 Proceedings of the 2nd International Conference on Interaction Sciences:

Information Technology, Culture and Human

[36] Garrett McGrath, Brenden Judson, Paul Brenner, Jared Short, Stephen Ennis, Cloud

Event Programming Paradigms Applications and Analysis: 2016 IEEE 9th

International Conference on Cloud Computing

[37] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, Daeyoung Kim, GPU

Enabled Serverless Computing Framework: 26th Euromicro International Conference

on Parallel, Distributed, and Network-Based Processing

[38] Theo Lynn, Pierangelo Rosati, Arnaud Lejeune, Vincent Emeakaroha, A Preliminary

Review of Enterprise Serverless Cloud Computing (Function-as-a-Service) Platforms:

2017 IEEE 9th International Conference on Cloud Computing Technology and

Science

[39] Markus Ast, Martin Gaedke, Self-contained Web Components through Serverless

 Computing: WoSC '17 Proceedings of the 2nd International Workshop on Serverless

 Computing

[40] Guangyu Li, Qiang Shen, Yong Liu, Houwei Cao, Zifa Han, Feng Li, Jin Li: Data-

driven Approaches to Edge Caching: Proceedings of the 2018 Workshop on

Networking for Emerging Applications and Technologies

[41] GraphQL [Online] Available: https://graphql.org/ [Accessed: 20-09-2018]

[42] Angular [Online] Available: https://angular.io/ [Accessed: 10-10-2018]

[43] Angular Guide [Online] Available: https://angular.io/guide [Accessed: 10-10-2018]

[44] Angular CLI [Online] Available: https://cli.angular.io/ [Accessed: 10-10-2018]

[45] Eclipse Acceleo [Online] Available: https://www.eclipse.org/acceleo/

[Accessed: 03-10-2018]

[46] Papyrus [Online] Available: https://wiki.eclipse.org/Papyrus_User_Guide

[Accessed: 03-10-2018]

[47] Acceleo Documentation [Online] Available:

https://www.eclipse.org/acceleo/documentation

http://2017.middleware-conference.org/
http://www.aicit.org/icis/
http://2017.middleware-conference.org/
https://graphql.org/
https://angular.io/
https://angular.io/guide
file:///C:/Users/BILAL/Desktop/Angular%20CLI%20%5bOnline%5d%20Available:%20https:/cli.angular.io/
https://www.eclipse.org/acceleo/
https://wiki.eclipse.org/Papyrus_User_Guide
https://www.eclipse.org/acceleo/documentation

88

[48] AWS Command Line Interface [Online] Available: https://aws.amazon.com/cli/

[Accessed: 17-09-2018]

[49] Apollo GraphQL [Online] Available: https://www.apollographql.com/

[Accessed: 22-09-2018]

[50] AWS Serverless Application Model [Online] Available:

https://aws.amazon.com/serverless/sam/ [Accessed: 13-11-2018]

[51] Unified Modeling Language [Online] Available:

https://sparxsystems.com.au/platforms/uml.html [Accessed: 19-08-2018]

[52] Papyrus UML [Online] Available: https://papyrusuml.wordpress.com/

[53] Serverless Web Application [Online] Available: https://aws.amazon.com/getting-

started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

 [Accessed: 30-09-2018]

[54] Serverless AWS Documentation [Online] Available:

https://serverless.com/framework/docs/providers/aws/ [Accessed: 30-09-2018]

[55] Serverless Architecture AWS [Online] Available:

https://aws.amazon.com/lambda/serverless-architectures-learn-more/

[Accessed: 01-10-2018]

[56] AWS SAM Local [Online] Available:

https://github.com/thoeni/aws-sam-local [Accessed: 14-10-2018]

file:///C:/Users/BILAL/Desktop/misc/AWS%20Command%20Line%20Interface%20%5bOnline%5d%20Available:%20https:/aws.amazon.com/cli/%20%5bAccessed:%2017-09-2018%5d
file:///C:/Users/BILAL/Desktop/misc/AWS%20Command%20Line%20Interface%20%5bOnline%5d%20Available:%20https:/aws.amazon.com/cli/%20%5bAccessed:%2017-09-2018%5d
https://www.apollographql.com/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://sparxsystems.com.au/platforms/uml.html
https://sparxsystems.com.au/platforms/uml.html
https://aws.amazon.com/getting-
https://aws.amazon.com/getting-
https://serverless.com/framework/docs/providers/aws/
https://serverless.com/framework/docs/providers/aws/
https://aws.amazon.com/lambda/serverless-architectures-learn-more/
https://aws.amazon.com/lambda/serverless-architectures-learn-more/
https://github.com/thoeni/aws-sam-local%20%5bAccessed:%2014-10-2018%5d
https://github.com/thoeni/aws-sam-local%20%5bAccessed:%2014-10-2018%5d

