

A Model Driven Framework for the Development of

Multi-Platform Mobile User Interfaces

Author

Mehreen Khan

FALL 2016-MS-16 (CSE) 00000118628

MS-16 (CSE)

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

JANUARY, 2019

A Model Driven Framework for the Development of

Multi-Platform Mobile User Interfaces

Author

Mehreen Khan

 FALL 2016-MS-16(CSE) 00000118628

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Software Engineering

Thesis Supervisor:

Dr. Farooque Azam

Thesis Supervisor’s Signature:

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

JANUARY, 2019

i

DECLARATION

I certify that this research work titled “A Model Driven Framework for the Development

of Multi-Platform Mobile User Interfaces” is my own work under the supervision of Dr.

Farooque Azam. This work has not been presented elsewhere for assessment. The

material that has been used from other sources has been properly acknowledged /

referred.

Signature of Student

Mehreen Khan

FALL 2016-MS-16(CSE) 00000118628

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also

according to the format given by the University for MS thesis work.

Signature of Student

Mehreen Khan

FALL 2016-MS-16(CSE) 00000118628

Signature of Supervisor

iii

COPYRIGHT STATEMENT

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST College of E&ME. Details may be obtained by the

Librarian. This page must form part of any such copies made. Further copies (by any

process) may not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may

not be made available for use by third parties without the written permission of the College

of E&ME, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

ACKNOWLEDGEMENTS

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work at

every step and for every new thought which You setup in my mind to improve it. Indeed, I could

have done nothing without Your priceless help and guidance. Whosoever helped me throughout

the course of my thesis, whether my parents or any other individual was Your will, so indeed none

be worthy of praise but You.

I would also like to express my gratitude to my supervisor Dr. Farooque Azam and my co-

supervisor Dr. Wasi Haider Butt for their constant motivation and help throughout this thesis.

Also, for Software Development and Architecture (SDA), Model-driven Software Engineering

(MDSE) and Software Requirement Engineering (SRE) courses which they have taught me. I can

safely say that I haven't learned any other engineering subject in such depth.

I would also like to thank my Guidance Committee Members Dr. Arslan Shaukat and Dr. Urooj

Fatima for being on my thesis guidance and evaluation committee. Their recommendations are

very valued for improvement of the work. I would like to pay special thanks to Muhammad

Waseem Anwar for his incredible cooperation. I appreciate his guidance throughout the whole

thesis. I am also grateful to Fatima Samea for her assistance and support.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study.

v

Dedicated to my remarkable parents and siblings, their incredible

support and cooperation led me to this great achievement

vi

ABSTRACT

Since the emergence of mobile devices, the architecture of mobile applications have been

transformed significantly and its complexity has grown enormously. In such mobile applications,

the User Interface (UI) is an important ingredient and with the increased complexity, its

development is getting cost / time-consuming process. There exist several mobile platforms (e.g.

Android, IOS etc.) where each has its own operating requirements. Even single platform contains

several versions of operating systems with different operating requirements. In this situation, the

development of multifaceted mobile user interfaces for different platforms is very challenging

especially dealing with the productivity and time-to-market constraints. Consequently, there is a

strong need to develop a simple and automated framework for the development of multi-platform

mobile user interfaces by exploiting the concepts of Model Driven Architecture (MDA).

Therefore, in this research, a model-based framework is proposed for the development of multi-

platform mobile user interfaces. Particularly, the UMUI (Unified modeling language profile for

multi-platform Mobile User Interfaces) has been developed, which adapts the concepts of UML

Class Diagram for representing the mobile user interface requirements at higher abstraction level.

As a part of research, a complete MMUI (Model driven multiplatform Mobile User Interfaces)

transformation engine has been developed, utilizing Model-to-Text (M2T) approach, in order to

automatically transform the high level UMUI source models into low level react native

implementation. Finally, the proposed framework application is validated through two bench mark

case studies i.e. Patient Management System & Library Application. The results prove that the

proposed framework allows the modeling of multiplatform user interfaces with styling, layout,

native look and feel requirements through UMUI with simplicity. Subsequently, the deployable

react native code can automatically be generated from the source models through MMUI

transformation engine. It has been concluded that the proposed framework is highly beneficial to

achieve major business objectives like productivity and time-to-market for mobile applications.

Keywords: Model driven engineering (MDE), Mobile based application development, Model

based user interface development (MBUID), User Interface (UI), Unified Modeling Profile (UML)

TABLE OF CONTENTS

vii

DECLARATION ..i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

COPYRIGHT STATEMENT... iii

ACKNOWLEDGEMENTS ...iv

ABSTRACT ..vi

TABLE OF CONTENTS ...vi

LIST OF FIGURES ..ix

LIST OF TABLES ... x

CHAPTER 1: INTRODUCTION... 12

1.1. Background Study .. 12

1.1.1. Model-Driven Software Engineering ... 12

1.1.2. Model-Driven Mobile Application Development .. 14

1.1.3. Model-Based User Interface Design ... 14

1.2. Problem Statement ... 14

1.3. Proposed Methodology .. 14

1.4. Research Contribution ... 15

1.5. Thesis Organization ... 15

CHAPTER 2: LITERATURE REVIEW .. 18

2.1. Literature Review... 18

2.2. Research Gaps .. 21

CHAPTER 3: PROPOSED METHODOLOGY ... 24

3.1. Proposed Profile ... 24

3.2. Input Elements Profile ... 27

3.3. Static Elements Profile ... 29

3.4. Dynamic Elements Profile ... 32

CHAPTER 4: IMPLEMENTATION .. 38

4.1. Transformation Rules .. 38

4.2. Transformation Engine Architecture ... 42

CHAPTER 5: VALIDATION .. 46

5.1. Patient Management System Case Study ... 46

5.1.1. Requirement Specification .. 46

5.1.2. Modeling ... 47

5.1.3. Code Generation .. 51

5.1.4. Verification ... 52

5.2 Library Application Case Study ... 56

5.2.1. Requirement Specification .. 56

5.2.2. Modeling ... 57

5.2.3. Code Generation .. 60

viii

5.2.4. Verification ... 61

CHAPTER 6: Comparative Analysis ... 65

6.1. Comparison with Previous Studies ... 65

CHAPTER 7: DISCUSSION AND LIMITATION .. 69

7.1. Discussion .. 69

7.2. Limitations .. 70

CHAPTER 8: CONCLUSION AND FUTURE WORK .. 72

APPENDIX A ... 73

REFERENCES .. 77

ix

LIST OF FIGURES

Figure 1: Research Flow ... 14
Figure 2: Thesis Outline ... 16
Figure 3: Proposed Unified Modeling Language profile for Mobile User Interfaces (UMUI) 25
Figure 4: Input Components Profile ... 28
Figure 5: Static Elements Profile .. 30
Figure 8: Transformation Engine Architecture ... 43
Figure 9: Transformation Tool ... 44
Figure 10: Object diagram of Patient Management System (Home Screen) .. 48
Figure 11: Object diagram of Patient Management System (Login Screen) .. 48
Figure 12: Object diagram of Patient Management System (Status Screen) .. 49
Figure 13: Object diagram of Patient Management System (Patient Information Screen) ... 49
Figure 14: Object diagram of Patient Management System (Main Screen) ... 50
Figure 15: Assigning Values to Instance Specifications ... 50
Figure 16: Transformation for User Interfaces of Patient Management System Application 51
Figure 17: Generated Files of Patient Management System ... 52
Figure 18: Generated Code of User Interfaces of Patient Management System ... 52
Figure 19: Expo XDE Deskop Application .. 53
Figure 20: Expo Mobile Client ... 53
Figure 21: User Interface after Model Transformation (Login Screen) .. 54
Figure 22: User Interface after Model Transformation (Profile Screen) .. 54
Figure 23: User Interface after Model Transformation (Registration Screen) .. 55
Figure 24: User Interface after Model Transformation (Patient Information Screen) .. 55
Figure 25: User Interface after Model Transformation (Status Screen) ... 56
Figure 26: Object Diagram of Library Application Case Study (App Screen) ... 58
Figure 27: Object Diagram of Library Application Case Study (Home Screen) .. 58
Figure 28: Object Diagram of Library Application Case Study (Profile Screen) ... 59
Figure 29: Object Diagram of Library Application Case Study (Login Screen) ... 59
Figure 30: Transformation for User Interfaces of Library Application Case Study ... 60
Figure 31: Generated Files of Library Application Case Study .. 60
Figure 32: Generated Code of User Interfaces of Library Application Case Study ... 61
Figure 33: Expo XDE Desktop Application ... 61
Figure 34: Expo Mobile Client .. 62

Figure 35: User Interface after Model Transformation (Login Screen) .. 62
Figure 36: User Interface after Model Transformation (Profile Screen) .. 63

Figure 37: User Interface after Model Transformation (Profile Screen) .. 63

x

LIST OF TABLES

Table 1: Transformation rules ... 39
Table 2: Comparison with previous studies .. 65

xi

Chapter 1

Introduction

12

CHAPTER 1: INTRODUCTION

This chapter offers a detailed introduction of the research. Section 1.1 discusses the

background study, Section 1.1 presents the problem statement, Section 1.2 gives proposed

methodology in, research contribution is detailed in Section 1.3 and Section 1.5 contains thesis

organization.

1.1. Background Study

The intention of providing the background study is to introduce the main concepts used

in this research. The concepts involved are; 1) Model-Driven Software Engineering 2) Model-

Driven Mobile Application Development and 3) Model-Based User Interface Design

(MBUID). The details of the following are given in subsequent sections.

1.1.1. Model-Driven Software Engineering

Model-Driven Software Engineering is a field of software engineering which deals with

the software’s complexity by developing the conceptual meta-models and models of a

particular problem. Thus, providing an abstract representation of processes and knowledge

which are essential for the execution and creation of a software. It helps in analyzing and

understanding problem of a particular domain and foster the communication between

developers, architectures and managers.

Model-Based Software Engineering uses different multiple modeling languages to create

the meta-models as well the conceptual model of a particular problem of a specific domain.

Many software engineers use UML (Unified Modeling Language), which is one the most

effective language in this domain. It provides a standard way to present a design of an

expected system. Structural and Behavioral diagrams are used by UML to represent the

system. Structural diagram deals with the overall structure of a system that is component

and their dependencies. Whereas, Behavioral diagram deals with the behavior of the system

i.e. step by step activities of a component. Through UML profile diagram, UML conceptual

models can be customized and extended. It also helps in preventing the contradiction and

refining the standard semantics in a strict manner. Using transformation engine, the models

created by above diagrams can be converted into code of any

13

Language. Transformation engine have ability to synthesize other artifacts too e.g.

documentation, model, configuration etc. and is based on transformation rules.

1.1.2. Model-Driven Mobile Application Development

Now a days, due to intensive use of smart devices, mobile applications are becoming more

existent in our lives and mobile domain is experiencing intense competition due to

increasingly powerful devices to market and innovative operating systems continuously

introducing. To face the fast-emerging technology for mobile application development for

multiple-platforms user interfaces, model-driven development is a promising approach.

Due to increasing attention several researchers proposed a model-based approach for

different features of mobile application such as user interaction, user interface, application

data and business logic. In model driven paradigm, models are the primary artifacts and

through model’s implementation is generated automatically. Which allows improvement

in quality and productivity of the software. This study [13] presents the state-of-art model-

based approaches and classified them on basis of model-driven techniques, mobile

application types, supported mobile platforms.

1.1.3. Model-Based User Interface Design

MBUID is a method based on models to structure the development of user interfaces. This

approach allows the developers attention on creating the abstract representation of user

interfaces and delegate the user interface code generation process to automatic tools. By

identifying the high-level models, it makes the development process more structured

allowing a designer to analyze and specify applications from an abstract level without being

tangled by many implementation details. To specifically state each chunk of development

process is the one important aspect of the model-based user interface design in an

independent way, thus forming a sheer separation of concerns in the applications definition.

1.2. Problem Statement

Rapid evolution of the mobile market results in significantly transformation of mobile

architecture due to which mobile applications complexity has grown enormously. In such

mobile applications, the User Interface (UI) is an important ingredient and with the

increased complexity, platform fragmentation, stakeholder diversity, its development is

getting cost / time-consuming process. Since each platform has its own interfaces and

14

architecture, developing user interfaces for a multi-platform is a daunting and tedious task

for any application developer. Developing multi-platform mobile user interfaces has

become need of the hour because poor user interface design may result in rejection of an

application. Thus, main problem addressed in our proposed work are platform

fragmentation, stakeholder diversity and development complexity.

1.2. Proposed Methodology

The entire research is done in a very systematic way. Step by step, flow of the research

is shown in Figure 1. First, we identify the problem, then we propose a solution to the identified

problem. Then, we carry out a comprehensive literature review which becomes the foundation

of the proposed solution. Researches related to the proposed solution are analyzed and

compared.

The proposed work includes an automated approach for obtaining the graphical user

interface. The proposed tool provides facilities of modeling, transformation and verification.

Mapping rules defined for the transformation become the basis of transformation engine. In the

implementation phase, the transformation engine helps transform the high-level UMUI source

models into low-level implementation for mobile user interfaces. The proposed methodology

has been validated through patient management application and library application case study.

Figure 1: Research Flow

15

1.3. Research Contribution

Contributions made from this research work are

 We have presented model driven framework to design user interfaces for multi-platform

mobile interfaces. It helps to provide a higher-level abstraction of the system and reduces

the design complexity.

 The transformation engine is developed using Java and Acceleo for the generation of

automated multi-platform mobile user interfaces from the UMUI models.

 We have provided validation of our proposed work using benchmark case studies i.e.

patient management system case study and library application case study.

1.4. Thesis Organization

Organization of the thesis is represented in Figure 2. CHAPTER 1: INTRODUCTION

offers a brief introduction containing the background study, problem statement, research

contribution and thesis organization. CHAPTER 2: LITERATURE REVIEW provides the detailed

literature review highlighting the work done in the area of mobile application development

using Model Driven Architecture (MDA). The systematic literature review is composed of four

main sections. First section is review protocol which gives details on the methodology using

which the literature review is carried out. Section two offers details on research works using

MDA for mobile user interface development (MBUID). Whereas, section three highlights the

research gaps that we encountered. CHAPTER 3: PROPOSED METHODOLOGY covers the details

of proposed methodology used for identification of problem. CHAPTER 4: IMPLEMENTATION

presents the detailed implementation regarding the proposed tool and transformation engine

along-with its architecture. CHAPTER 5: VALIDATION provides the validation performed for

our proposed methodology using two case studies. The two case studies selected for validation

purpose is Patient Management System and Library Application. CHAPTER 7: DISCUSSION

AND LIMITATION contains a brief discussion on the work done and contains the limitations to

our research. CHAPTER 8: CONCLUSION AND FUTURE WORK concludes the research and a

future work for the research.

16

Figure 2: Thesis Outline

17

Chapter 2

Literature Review

18

CHAPTER 2: LITERATURE REVIEW

This chapter presents research work conducted in the area of Model Driven Mobile Application

Development. After a brief literature review of work conducted in this area we enlightened the

research gaps that we found in previous works.

2.1. Literature Review

In the software engineering field, recent researches show the emerging paradigm from object

oriented to model oriented, where everything is an object to everything is a model, demands to

change saying “write once, run everywhere” by “model once, generate everywhere” [4,10]. In

the recent years, when it comes to MDD (Model Driven Development) of mobile applications,

several approaches have been proposed and one is AXIOM [8], a MDE approach for the

development of multiplatform application. For model transformation and code generation, it

uses Abstract Model Tree and application requirements are described in platform independent

model (PIM) using AXIOMs DSL later transformed to a running code. Another Solution

Mendix App Platform which is commercial with a MDD platform using Cordova to generate

cross platform apps. 82% of the surveyed approaches try to bring the focus in the native

application development. The core reason of this is apparent high application quality, due to

ability of exploiting, performance, usability and integrating with the most advance features of

smart phones. Small and medium sized enterprises (SEMs) with limited resources are losing

advantages of the native applications to reach a substantial audience at a maintainable resources

such as cost. According to Gartner more than 50% applications deployed in 2016 were hybrid.

[5]

Another approach extends the WebML standard for modelling RIA and it focuses in

functionality distribution, content model and business logic. Regarding the user interface, only

the page structure can be modelled, but not single user interface components. A WebML based

tool exists which is also a commercial product, this also focuses on business logic, content

models and lacks the capabilities of modelling user interface components. [6] Brambilla

describes an extension to IFML for the model based development of application optimized for

Apache Cordova Framework based on JavaScript (JS), HTML5 and CSS. Inspired by the

experience of WebRatio Tool and WebML, WebRatio developed the IFML and OMG adopted

it as a standard. It can be used to model the content, structure and user interaction of web pages,

however as stated on their website, “IFML (Interaction Flow Modeling Language) does not

19

cover the modeling of presentation issues of an application frontend e.g. Layout, Style and look

& Feel. Also, does not cater for the specification of native mobile applications. [7]

Christoph proposed MAML framework [1] to model mobile applications using graphical DSL.

While the evaluation of this framework supports the advantages of it’s related with technical

IFML notation, but to confirm its results, applying it to real world case studies and more

extensive studies, might reveal further need for improvement. Design of front end mobile user

interfaces is a complex task. IFML is an OMG’s standard introduced in 2013 and can be used

in user interface modeling of desktop, web and mobile applications. Maryam [2] performed a

detailed systematic literature review on IFML and concluded that it’s a challenging area and

it’s not mature enough. Mobile extension of IFML is presented in [3] for the control behavior,

content and user interaction of front end applications.

Delgado [9] discussed and analyzed the limitations and benefits of reusing User Interface

elements supported by Model Based UI development (MBUID) and proposed an approach

called WAINE, which supports in its models, the reuse of user interface elements and results

shows that with flexible techniques provides a significant benefit in cost consuming task and

provides direction with enhanced capabilities for future systems and also highlighted the open

issues for future research direction, included: Exploring and analyzing reusability techniques

e.g. object oriented, component based etc. by increasing the body of knowledge in the Model

Driven User Interface Development (MBUID) context.

Hanane [10] proposed a Model Driven approach by using acceleo based on automatic code

generation for android application development. Roberto [11] proposed a tool called Web Ratio

Mobile Platform, which is an extended version of Object Management Group standard

language called IFML. This tool features full code generation in Apache Cordova Framework.

Model driven approach for android application development can be found in Abilio [13]

encamping an increased modeling effort because the input model to this tool can be expressed

through UML diagrams such as Class Diagram and Sequence Diagrams. The input itself is not

a plain PIM, it requires advance Android knowledge is one of the drawbacks.

Muhammad [14] proposed an approach that allows the user to automate the business logic code

for mobile platforms by a tool called Mobile Application Generator (MAG) this approach uses

UML profile, class diagram, state machine diagram and ALF. Another model driven approach

called Mobile Multimodality Creator (MIMIC) [17] that uses M4L that allows the modeling

20

and code generation of multimodal mobile interfaces for Web, Android and iOS. Obeo

Designer is used to specify its graphical editor.

Pierre [18] carried out a brief existing literature review for developing Adaptive Model-Driven

User Interfaces, evaluation of these systems, their usability problems. And also, highlighted

the issues which can be solved through further research. Such as OpenXava and Himalia

provides diverse model driven approaches for developing user interfaces, but their coupling

with programing languages hinders their use as a general solution. Andreas [20] published

about Model-Driven Framework for user interface generation called RUMO conforming to

MOF standard. DSL is used to define the set of rules to generate the target user interfaces. It

uses the template mechanism which addresses the issues of various versions of similar

platforms. Mobl is a new language designed by Zef Hemel and Eelco Visser [22], based on

DSL to construct mobile web applications for UI design, data modeling and querying.

Eric at el [23] conducted a survey study to find the best trade-offs between various different

code generation approaches based on model driven architecture and results indicates that in

absolute terms, there is no approach better than others and provides some useful guidelines to

identify the best techniques. Recently, the hot discussion in the R&D (research and

development) community is to adapt whether to choose between native or cross platform and

the result of comparative study included the both for code generators for native application

development (iOS and Android) and for cross platform application such as Titanium and

PhoneGap.

MobML (24) is a framework that assists the design and development of mobile applications.

This framework comprises of four different languages. Each of which focusing a different

various concerns such as navigation, UI, Content and Business Logic. This tool receives four

different input models and produced the source code for targeted platform. Henning et al [25]

proposed a MD2 for the development of mobile applications specifically designed for data

driven business applications through a textual DSL, defined in Xtext. Some of the limitations

of this approach are its scope is limited with mainly focused on data-driven applications with

user interface mainly consisting of form fields and lacks to supports other main device features

currently provides access only to GPS.

Wafa et al [12] addresses how the development of native and cross platform mobile

applications is a challenging task and categorize into six main approaches, explains their

limitations and open research areas. Following are the approaches (1) Compilation (2)

21

Interpretation (3) Cloud-Based (4) Modeling (5) Component-Based (6) Merged. New

platforms support the component-based architecture and focuses on the common functions. By

generating the UI code, Modeling saves the time as well useful in prototyping and the language

used is an effective tool to define requirements. Limitation mentioned is Model Driven

Development (MDD) does not support the native application development. Interpretation

approach is sub-divided into Web-based, Virtual Machine and Runtime. Cons of the web-based

applications are user interface have less performance and doesn’t have a native look and feel.

For example, PhoneGap and xFace uses web-based technologies. While using virtual machine

results in slow execution time and at run time loading performance is lower. Titanium belongs

to this category. There are three different types of mobile applications which are web app,

native app and hybrid application. The latter two are more widely used. Titanium and Xamarin

are used to produce native apps whereas PhoneGap is used to produce Hybrid apps. Final

solution does not exist and still many approaches are under research. The main part in the future

is probably be played by Merged approach. By using this approach, we can merge different

multiple approaches together to minimize the drawback and benefit from the advantages of

each individual approach. For example, ICPMD [26] merges the cross-compilation approach,

component-based approach and a new language.

2.2. Research Gaps

This section discusses the research gaps and the proposed solution on multi-platform user

interface code generation. On whole, we have identified some research works related to model-

based UI code generation. In terms of user interface generation many of the above approaches

uses libraries and templates through a complex development process and if any tool and

approach was presented, it was mostly web based. They were mostly limited to generating

business logic only. For user interface reliance on existing IFML (Interaction Flow Modeling

Language) none of them covers the model driven development of multi-platform user interface

native components with style, layout and look & feel. And most approaches comprise of DSL

(Domain Specific Language), limitation to this approach is that it is complex and to ensure a

good startup of the project developer need to study and learn the new language in order to use

a solution.

Our proposed solution uses React Native as it is popular due to quality of documentation,

development cost, emulators and debugging, response time and speed, commercial

appreciation, code reuse and teamwork, maintenance and improvements i.e. upgrades. In our

22

proposed solution we have adopted the Model driven approach to provide the higher level of

abstraction with automated user interface development to deal with complexity.

23

Chapter 3

Proposed Methodology

24

CHAPTER 3: PROPOSED METHODOLOGY

This chapter contains details of the proposed methodology. Section 3.1 discusses the

UMUI (Unified Modeling Language profile for multiplatform Mobile User Interfaces) and

Section 3.2 provides details of proposed solution.

3.1. Proposed Profile

 MDA (Model Driven Architecture) is a renowned application development approach

that simplifies the design and development of a system. UML profile is a generic extension

mechanism of model driven and comprises of following major elements (1) Meta-Class (2)

Stereotypes (3) Tagged-Values (4) Enumerations. Stereotype defines how an existing meta-

class can be extended, when stereotypes are applied to an element the value of the tagged

definitions are referred to as tagged values. Enumerations represent user defined datatypes.

And contain a set of named identifiers called enumeration literals. UML consists of two types

of modeling. (1) Dynamic Modeling (2) Static Modeling. Dynamic modeling can be described

using sequence diagrams and state machine diagrams for behavioral aspects of a system

whereas the static modeling can be described using class diagram and covers the structural

aspects of a system through instance specification, stereotypes and tagged values.

 UML profile is developed to represent mobile interfaces requirements. Stereotypes are

extended from meta-class of classifiers, models and some are extended from meta-class of

instance specifications. These UML stereotyped elements contain tagged values and

parameters which help in derivation of code and instances of the classes. The details of

stereotype and their purpose is discussed in sub sections. In our proposed framework we are

using UML profiling method for specializing the general constructs of existing modeling

language and refining it. The proposed UML profile is an extension to the meta-level UML

concepts used to provide the modeling to automatically generate mobile user interface

implementations in from the models. The proposed profile is shown in Figure 3. The reason

for this choice is that this approach greatly facilitates measure the transformations made

between the different models and text.

25

Figure 3: Proposed Unified Modeling Language profile for Mobile User Interfaces

(UMUI)

 Screen Stereotype

Description: An application is composed of several screens with which the user can

interact.

Base Class: Model

Tagged Values: It has one tagged value of type string. name: EString [1]

 Platform Stereotype

Description: Platform stereotype is for implementing separate visual components for

different platforms if a scenario may arise for a for a code to be different.

Certain elements may have properties that may work in one platform

only.

Base Class: Instance Specification, Classifier

Tagged Values: android is of type string, for android operating system. iOS is for Mac

operating system, also of type string.

Element Stereotyp

e

26

 Element Stereotype

Description: Elements let you split the UI into independent, reusable pieces. by

default, all the Elements have a series of properties relative to the size

and the position, which they inherit from the superclass called Element.

We have categorized the Elements into three sub categories

(1) Dynamic Elements (2) Static Elements (3) Input Elements

To achieve the right layout, algorithm is used to specify the

consistent layout on different screen sizes, we need to use a combination

of xAxisAlignment, yAxisAlignment and Element-Direction.

Base Class: Instance Specification, Classifier

Tagged Values: Placement is of type integer and used for dynamically expand and shrink

based on available space. Setting a value of one results to fill all the

available space. The higher the value given, the higher the ratio of space

taken by the component by its siblings. Element-Height and Element-

Width are of type Integer, elements height and width will determine its

size on screen. Element-Padding is of type integer and is used for setting

padding area on all the four sides of an element. Drop-Shadow is of type

integer and is used for adding a drop shadow to the item. Element-Margin

is of type integer and is used for setting margin area on all the four sides

of an element. Border-Width and BorderRadius are of type integer and

is used for setting the borderWidth and borderRadius of an element. Left-

Edge, Right-Edge, Top-Edge, Bottom-Edge these are the number of

logical pixels of type integer to offset the corresponding edge of an

element. zIndex of type integer and is used to control which element is

displayed on top of others. Position is an enumeration having two

enumeration-literal absolute and relative. By default, it is relative.

xAxisAlignment is an enumeration and it aligns the component in main

direction, controls how are they align vertically having enumeration

literals center, flex-end, flex-start, stretch. yAxisAlignment aligns the

element in cross direction and controls how are they align horizontally

having enumeration literals center, flex-start, flex-end, space-between,

space-evenly, space-around. Element-Direction controls which direction

27

of the container children go column or row. InStyle of type Boolean

controls whether you want to apply the inline style or not.

 Responsive-Screen Stereotype

Description: Responsive-Screen allows to manage the responsive layouts between

screen sizes and displays.

Base Class: Instance Specification, Classifier

Tagged Values:

Screen-Width is of type integer, describes the rendering surface width of

the output device. Min-Screen-Width is of type integer, describes the min

width of the rendering surface of the output device. Max-Screen-Width

describes the max width of the rendering surface of the output device.

Screen-Height describes the height of the rendering surface of the output

device. Min-Screen-Height describes the min height of the rendering

surface of the output device. Max-Screen-Height describes the max

height of the rendering surface of the output device. Screen-PixelRatio

describes the pixel ratio of the rendering surface of the output device.

Min-Screen-PixelRatio describes the min pixel ratio of the rendering

surface of the output device. Max-Screen-PixelRatio describes the max

pixel ratio of the rendering surface of the output device. All the above

tagged values are of type integer.

3.2. Input Elements Profile

Input Elements: These Elements are oriented to obtain input by the user. Figure 4 shows

the input elements profile. The stereotypes included in this profile are checkbox element, Picker

Element, Toast element, Searchbar element, InputGroup element, and radio. The description

of each stereotype with tagged values and base classes are described below.

 Picker Stereotype

Description: Picker stereotype allows user to point and click to get hovered element

Base Class: Instance Specification, Classifier

Tagged Values: Enabled tagged value is of type boolean and it is used to specify for

enabling or disabling a picker button. Placeholder tagged value is of data

type string. supportedOrientations tagged value allows the modal to

28

rotate to any of the specified orientations by type enumeration

supportedOrientationsType having two enumeration literals landscape

and portrait.

 Radio Button Stereotype

Description: Radio button stereotype allows the user to select any option from given

set of options.

Base Class: Instance Specification

Tagged Values: Selected represents the state value of an item from set of choices. color

of type string represents user define color. selectedColor represents

active ratio color, is of type string.

Figure 4: Input Components Profile

 Checkbox Stereotype

Description: Checkbox stereotype allows user to select number of items, from set of

choices.

29

Base Class: Instance Specification, Classifier

Tagged Values: Checked is of type boolean, states value of an item from set of choices.

Color sets the color of the check box, is of type string.

re the input components with their description

 Toast Stereotype

Description: toast stereotype can be used to display an error messages or a quick

warning

Base Class: Instance Specification, Classifier

Tagged Values: Text is for text to be shown in the toast, is of type string. Duration is of

type integer needs to be set in milliseconds after which the toast

disappears. buttonText of type string, text to be displayed inside the

button. Type and position are enumerations. Type sets the context of the

toast to danger, success or warning position sets the position of the toast

to top or bottom.

 Input Group/Input Stereotype

Description: Input Group and Input are a foundational element for inputting a text via

keyboard into application

Base Class: Instance Specification, Classifier

Tagged Values: usernamePlaceholder and passwordPlaceholder are strings that renders

before text input is entered.

 Searchbar Stereotype

Description: Search bar stereotype is essential part of every almost application, user

resort to searching if user fail to get what they are looking for.

Base Class: Instance Specification, Classifier

Tagged Values: Option tagged value is used to wrap the search bar with the border options

by enumeration called SearchbarStyle having two enumeration literals

regular and rounded.

3.3. Static Elements Profile

Static Elements: Static elements display a screen element without providing behavior or

interaction, i.e. a functionality that does not react on user input or other events. Figure 5

shows the static elements profile. Following are the static elements with their description.

30

 Image Stereotype

Descriptions: Image stereotype is used for displaying different types of images. Such

as from local disk or network.

Base Class: Instance Specification, Classifier

Tagged Values: Source tagged value is used to specify the source of an image from

local disk or network images through data type string.

Figure 5: Static Elements Profile

 Text Stereotype

Description: Text stereotype is used for displaying text and it supports touch handling,

nesting and styling.

Base Class: Instance Specification, Classifier

Tagged

Values:

fontWeight specifies the fontWeight through integer datatype. fontSize this

tagged value specifies the fontSize through string data type. Color

specifies the text color with data type string. fontStyle tagged value

31

specifies the fontStyle with enumeration fontStyleType having

enumeration literals normal, italic. textAlign specifies the alignment of text

to auto, left, center right or justify by enumeration textAlighmentType.

fontFamily is of data type string and it is used to specify the font family.

 StyleSheet Stereotype

Description: StyleSheet stereotype represents collection of style rules like CSS

stylesheet.

Base Class: Instance Specification, Classifier

Tagged Values: StyleSheet stereotype inherit tagged values from the superclass called

Element, which have a series of properties relative to the size and the

position. hairlineWidth This constant will always be a round number of

pixels and will try to match the standard width of a thin line on the

underlying platform. absoluteFill can be used for convenience and to

reduce duplication of these repeated styles.

 Icon Stereotype

Description: An icon stereotype is for a small picture, or a symbol used to represent

something

Base Class: Instance Specification, Classifier

Tagged Values: Tagged value name is used to specify the name of the icon through

datatype string. type tagged value is used to specify the type of an icon

such as IonIcons, EvilIcons, MaterialIcons etc. through datatype string.

color is of type string and it is used to specify the color of an icon. fontSize

can be used to render the icon with defined icon-size with data type

integer. android and iOS tagged value is used to specify the name of the

icon for the corresponding devices with the data type string.

 Thumbnail Stereotype

Description: Thumb stereotype helps you to display image with various dimensions

and shape, it renders an image by default it is in circular shape.

Base Class: Instance Specification, Classifier

Tagged Values: Source tagged value is used to specify the image path for the thumbnail

through string data type. size tagged value is used to specify the size of

the thumbnail to be small and large with user-defined type enumeration.

32

shape tagged value is used to specify the shape of the thumbnail to be

circle or square with user-defined type enumeration.

 Container Stereotype

Description: All elements should be contained in containers, mainly comprises of three

types header, content and footer. It comes with predefined stylesheet we

can also add user defined styles.

Base Class: Instance Specification, Classifier

Tagged Values: Container stereotype inherit tagged values from the superclass called

Element, which have a series of properties relative to the size and the

position.

 Header Stereotype

Description: Header stereotype can be used to provide you with a stylesheet or you

can also add custom styles to it. Include header element in a container.

Base Class: Instance Specification, Classifier

Tagged Values: noShadow tagged value of data type integer is for removing the shadow.

Tagged value searchBar is for adding search bar to the header or not

through data type boolean. rounded tagged value is for making search

bar rounded through data type boolean. tagged value span can be used

for doubling the header size through data type boolean. hasSubtitle is of

type boolean and is used to add subtitle to the header. hasTabs is used

to add tabs to the header through datatype boolean. hasSegment tagged

value adds segment to the header through data type boolean.

3.4. Dynamic Elements Profile

Dynamic Elements: These elements can be activated that defines a functionality that has

interactive features such as reacts to input by the user or other events, and can cause the

display of another screen area e.g. Form, navigation. Figure 6 shows the dynamic elements

profile. Following are the dynamic elements with their description:

 Navigation Stereotype

33

Description: Navigation stereotype is for screen to navigate to other screens because

an application is composed of several screens with which users can

interact.

Base Class: Instance Specification, Classifier

Tagged Values: Tagged value name can be used to specify the name of the navigator

through data type string.

Figure 6: Dynamic Elements Profile

 Scroll View Stereotype:

34

Description: Scroll view stereotype represents a generic container that can host a

multiple elements.

Base Class: Instance Specification, Classifier

Tagged Values: horizontal tagged value is of data type boolean and is used for scrolling

vertically and horizontally. maximumZoomScale and

minimumZoomScale is for allowing the user to zoom content in and out

through data type integer.

 Switch Stereotype:

Description: Switch stereotype works like toggle, it renders a Boolean input

Base Class: Instance Specification, Classifier

Tagged Values: value tagged value is of data type string and is used for specifying the

value of switch. disabled is for toggling the switch to be true or false with

data type boolean onTintColor is for specifying the tint color on switch

through data type string.

 Button Stereotype

Description: Button stereotype is for an integral part of an application and can be

used for various purposes like performing interactive actions navigate

on click of a button show or hide something, reset or submit a form etc.

Base Class: Instance Specification, Classifier

Tagged Values: Disabled is of data type boolean and this can be used to disable the click

option for the button. Size tagged value can be used to specify the size of

the button through enumeration ButtonSize having enumeration literals

primary, light, success, info, warning, danger, dark. Theme tagged value

can be used to specify the theme of the button through enumeration

ButtonThemeType having enumeration literals primary, light, success,

info, warning, danger, dark. Type tagged value can be used to specify the

type of the button through enumeration ButtonType having enumeration

literals transparent, outline, rounded, block, full, icon, defaultType.

 Stack Stereotype

35

Description: Stack stereotype can be used on screen to navigate forward and

backwards only.

Base Class: Instance Specification, Classifier

Tagged Values: title tagged value is used to specifies the title of the navigator with the

data type string. header is used to specifies the header of the navigator,

headerStyle specifies the header style of the navigator through data type

string. gesturesEnabled is used to select whether the gestures to be

enabled or not through data type boolean. gesturesDirection is of data

type boolean and is used to specify the direction of the gestures

headerTransparent is used to select whether the header of the navigator

to be transparent or not with data type boolean.

 Tab Stereotype

Description: Tab stereotype can be used to access multiple tabs on the same screen.

Base Class: Instance Specification, Classifier

Tagged Values: showIcon tagged value is used to specify whether to enable the icon to

be shown or not. showLabel is used to specify whether to enable the label

to be shown or not. swipeEnabled is used specify whether to enable the

swipe or not. animationEnabled is used specify whether to enable the

animation or not. Locked is used to specify whether to locked or not.

Focused is used to specify the navigator to be focused or not. All the

above tagged values have data type boolean. activeTintColor specifies

the active tint color with data type string. tabBarPosition gives the

option to select different options for tab bar position with enumeration

tabBarPositionType having enumeration literals top, overlayTop,

bottom, overlayBottom

 Card/ Card Item Stereotype:

Description: Card and CardItem stereotype is used to include options for powerful

display, contextual background colors and support a wide variety of

content like icon, images, links, text and more. CardItem is the child

element of card and card can take any number of carditems.

Base Class: Instance Specification, Classifier

36

Tagged Values: bordered tagged value is for adding border to carditems having data

type boolean. Tagged value transparent is for removing the shadow

from card with data type boolean.

 floatingActionButton Stereotype

 floatingActionButton Stereotype

Description: floatingActionButton stereotype is used for special type of promoted

action. They are fixed above the user interface in a fixed position and are

distinguished by special motion behavior and circled icon.

Base Class: Instance Specification, Classifier

Tagged Values: Active tagged value is for toggling the status with data type boolean.

direction is for specifying the direction of buttons that popup on click of

FAB with enumeration directionType. Position is for positioning of FAB

on screen with enumeration positionType having enumeration literals

topLeft, topRight, bottomLeft, bottomRight.

 List/ ListItem Stereotype

Description: List stereotype is used for a continuous group of an images or text and

must contain one or more list items. Adds border at the bottom of each

ListItem.

Base Class: Instance Specification, Classifier

Tagged Values: Selected tagged value is for highlighting the selected list item by data type

boolean.

37

Chapter 4

Implementation

38

CHAPTER 4: IMPLEMENTATION

This chapter presents the implementation details for Automated MMUI (Model driven

multi-platform Mobile User Interfaces) tool. The tool we have implemented has three main

features. Firstly, it provides facility to user interface models in Eclipse editor. Secondly, it

provides a transformation engine that transforms the high-level UMUI models into low-level

user interface implementation. Main interface of MMUI Transformation Tool is shown in

Figure 7. MDE has become the basis of our work. Section 4.1 presents the transformation

rules used to develop MMUI Tool and Section 4.2 discusses the architecture of transformation

engine.

Figure 7: Main Interface of Model based Multi-Platform UI Transformation Tool

4.1. Transformation Rules

We have described the transformation rules in detail, which we have defined in order to

transform the models to code artifacts. Mapping rules used for transformation of user interface

model components into text are provided in this section. The transformation rules defined in

Table 1 are used to transform the UI components from model to code is denoted as M2T

transformation. First column represents the UMUI concept, second column represents the

corresponding react native concept and last column represents the description.

39

Table 1: Transformation rules

UMUI Concept

Corresponding

REACT

NATIVE

Concept

Description

 Element

Component

Element Component

Placementflex

Element-Width width

Element-Height height

dropShadowelevation

Element-DirectionflexDirection

Element-Paddingpadding

Element-Marginmargin

yAxisAlignmentalignItem

xAxisAlignmentjustifyContent

left-EdgeLeft

right-EdgeRight

top-EdgeTop

bottom-EdgeBottom

Element-BorderWidthborderWidth

Element-BorderRadiusborderRadius

Element-BorderStyleborderStyle

Element-Import

Import

Element-ImportImport

Element1Component1

Element2Component2

Responsive-Screen MediaQuery

screenWidthdeviceWidth

minScreenWidthminDeviceWidth

40

Responsive-Screen MediaQuery maxScreenWidthmaxDeviceWidth

screenHeightdeviceHeight

minScreenHeightminDeviceHeight

maxScreenHeightmaxDeviceHeight

screenPixelRatiodevicePixelRatio

minScreenPixelRatiominDevicePixelRatio

maxScreenPixelRatiomaxDevicePixelRatio

Container

View

ContainerView

List

ListItem

List

ListItem

List List

ListItemListItem

ListLabellabel

ListDisableddisabled

ListTitletitle

Navigation

TabNavigator

Navigation TabNavigator

Navigator-Namename

LabelEnabledShowLabel

IconEnabledShowIcon

AnimationEnabledShowAnimation

GestureEnabledShowGestures

inactiveTintColorinactiveTintColor

activeTintColoractiveTintColor

tabNavigationPositiontabBarPosition

TabTitletitle

Nav-colorcolor

41

Button

Button

Button Button

ButtonThemetheme

ButtonDisableddisabled

ButtonTypetype

ButtonSizesize

 Text

Text

TextText

TextWeightfontWeight

TextSizefontSize

TextStylefontStyle

TextColorcolor

alignmentOfTextalignText

Icon

Icon

Icon Icon

IconNamename

IconTypetype

IconColorcolor

IconFamilytype

IconSizefontSize

Image

 Image

Image Image

ImageSource source

InputGroup

Input

InputGroup

Input

InputGroupInputGroup

Input Input

UsernameusernamePlaceholder

PasswordpasswordPlaceholder

42

StyleSheet

StyleSheet

 StyleSheet StyleSheet

 Namename

Card

CardItem

Card

CardItem

Card Card

CardItemCardItem

transparentCardtransparent

selectedCardselected

ActivityIndicator Spinner

ActivityIndicator Spinner

indicatorColorcolor

Element of the UMUI concept which is extended from meta class classifier and instance

specification is mapped to Component of corresponding react native concept. Tagged values

such as xAxisAlignment and yAxisAlignment are mapped to justifyContent and alignItem

which are corresponding react native concepts. Name of Enumeration is mapped to name of

Enum in code and Enumeration Literal is mapped to user defined Enum values. Similarly,

other concepts of UMUI are mapped to corresponding react native concepts as shown on the

table above.

4.2. Transformation Engine Architecture

Architecture of our transformation engine is described in detail in Figure 8. We have

implemented a transformation engine based on model-based code generation idea. This

transformation engine fully automates the user interfaces from models. Tool used for

transformation of high-level UMUI models to low-level implementation is Eclipse Acceleo.

Our transformation engine is composed of three main components which are Main Interface,

Acceleo Transformation and Java Services. Details of functionality performed by each

component is explained below.

43

Figure 8: Transformation Engine Architecture

User Interface: User Interface component consists of three classes i.e. MainScreen, Launcher

and WinMain. These three classes are used in development of graphical user interface of our

tool. MainScreen is a class which provides execution and WinMain and Launcher contain its

actual functionality. The transformation engine takes UML models as input using a Browse

button. It also asks for path of Destination folder. By clicking the Generate button, the engine

generates the files. To represent if the transformation has been performed successfully or if

some error has occurred while transformation, a Console bar is shown. Reset button, empties

all the fields i.e. input models path, destination folder path, status and all checkboxes except

for the test case document checkbox which is by default checked. Close button is provided to

close the interface from the screen as shown in Figure 9.

Acceleo Transformation: Main interface takes UML models as input and passes them to

Acceleo Transformation. Foremost files included in Acceleo Transformation are Generate.java

containing java code for transformation and generate.mtl containing acceleo transformation

code. These two files work together to produce java script document (.js) which contains all

the UI code related concepts captured from model.

Java Services: Java Services are developed using two main classes, JavaServices and Model.

Model class only used to get the input model and instantiates output. JavaServices is the main

class we have used to store every detail needed for our helper functions as Acceleo does not

provide facility in easy way inside the mtl file. The functions defined in JavaServices class can

then be used inside generate.mtl file using queries.

44

Figure 9: Transformation Tool

45

Chapter 5

Validation

46

CHAPTER 5: VALIDATION

In this chapter, the applicability and validity of our proposed approach is presented with

the help of two detailed case studies. Details and validation of Patient Management case study

is given in Section 5.1 and Library Application is given in Section 5.2

5.1. Patient Management System Case Study

Patients Management System case study has been explained and validated using four

sections. Section 5.1.1 covers the requirement specification for an application named as Patient

Management System. Section 5.1.2 presents UMUI application, the UML object diagram of

this case study with applied profile in Eclipse editor using its Papyrus plugin. Lastly, the

transformation in Acceleo and verification has been provided in Section 5.1.3 and Section

5.1.4 respectively.

5.1.1. Requirement Specification

Following are the details of the mobile user interfaces and their specifications included

in the Patient Management System case study.

Home Interface: The Home user interface should have a navigator through which each user

interface should be accessible from all other user interfaces that exist in that application.

Login Interface: Login interface should contain a section with a login in form containing the

input placeholders for Email and Password. Person and lock icons, Login Button should be

attached to this form.

Register Interface: Register interface should contain a section with a registration form

containing all the necessary information such as name, age, gender, address etc. Register

interface should be accessible from all other interfaces.

Status Interface: Status interface should contain a section to show the current status of the

patient and allow the nurse or doctor to update it. Status interface should be accessible from all

other interfaces.

Patients Information Interface: This interface contains a section showing a list of patients

containing name, token number and status with additional file attached of patient history. This

interface should also be accessible from all other user interfaces that exist in that application.

47

5.1.2. Modeling

Our tool provides the option to open Papyrus Editor. By clicking on it, Eclipse

environment is opened, and Papyrus model can be designed by creating a new project for

Papyrus modeling. UML object diagram containing the main concepts as instance

specifications and instance specification links can easily be created in Eclipse Papyrus editor.

Object Diagram models of the Patient Management System case study are shown in Figure 10,

Figure 11, Figure 12, Figure 13, and Figure 14.

Object diagrams of Patient Management System screens are designed in Papyrus editor

using Eclipse. Main Instances used in Patient Management System are View, Icon, Button,

Text, StyleSheet, Lists and Navigator. Relationships between all the instances have also been

shown. Due to complexity, parts of object diagram of Patient Management case study are

shown in several subsequent figures.

In this case, our application is composed of different various screens. Registration view is

displayed by the first screen in which user can register the patient and second screen displays

the lists of patients and similarly others with their related information. <<Screen>> stereotype

which is extended by meta-class model is mapped to corresponding user interface screens.

Layout of each screen is set with applying responsive-screen stereotype by setting screen width

and screen-height. This stereotype is mapped to corresponding react native concept called

media query. This component is like any other react native component with props. These allows

to set screen width and height to make it good on all devices. For the user interface react native

view, we use the stereotype <<Container>> mapped to the registration view, patient view and

other screens views accordingly. it is a container of all the user interface components. The

home user interface has a navigator through which each user interface should be accessible

from all other user interfaces that exist in that application. So <<Navigation>> stereotype is

mapped to TabNavigator because it can be used to access multiple tabs on the same screen.

<<Button>> stereotype is mapped to register button instance specification having inline styles

such as disabled which is Boolean and set to false and theme which is set to be light etc.

<<Import>> is applied for specifying the directory path of screens if one want to import file

from another folder or want to import packages from node package manager. Other stereotypes

such as <<Text>>, <<Image>>, <<Icon>>, <<Card>>, <<CardItem>>, <<Input>>, <<List>>,

<<ListItem>> and <<StyleSheet>> are mapped to their corresponding instance specifications.

Relationships between all the instances have also been shown. Figure 15 shows how the values

are assigned to instances of classes in papyrus.

48

 Figure 10: Object diagram of Patient Management System (Home Screen)

 Figure 11: Object diagram of Patient Management System (Login Screen)

49

 Figure 12: Object diagram of Patient Management System (Status Screen)

Figure 13: Object diagram of Patient Management System (Patient Information Screen)

50

Figure 14: Object diagram of Patient Management System (Main Screen)

 Figure 15: Assigning Values to Instance Specifications

In next step, we used the UML approach, to transform the above instance model representing

the user interface of our case study into a code. After the mapping, we are going to define the

corresponding rules using acceleo

51

5.1.3. Code Generation

The case study model of the screens is given as input to MMUI transformation tool whose

interface is shown in Figure 16. The transformation tool uses the transformation rules for

mapping and transformation models into code. UML model with .uml extension is selected as

input model and target folder on desktop is provided as a destination folder for generating

code files. On clicking the generate button, output will be generated in the target folder and

console shows the status of the transformation process as a result Figure 17 shows the

desired output of user interfaces code.

Figure 16: Transformation for User Interfaces of Patient Management System Application

52

Figure 17: Generated Files of Patient Management System

 Figure 18: Generated Code of User Interfaces of Patient Management System

5.1.4. Verification

For the verification of generated JavaScript code, compilation and execution is necessary. For

this purpose, we have used the Expo Local Development Tool (Desktop and Mobile Client) for

the compilation and execution of code. We have created the new react native project using

Expo XDE as shown in Figure 19 and pasted our generated code to run the react native

packager. After that open the mobile expo client as shown in Figure 20 and transformation

results are shown in Figure 21, Figure 22, Figure 23, Figure 24 and Figure 25.

53

Figure 19: Expo XDE Deskop Application

 Figure 20: Expo Mobile Client

54

Figure 21: User Interface after Model Transformation (Login Screen)

Figure 22: User Interface after Model Transformation (Profile Screen)

55

 Figure 23: User Interface after Model Transformation (Registration Screen)

 Figure 24: User Interface after Model Transformation (Patient Information Screen)

56

Figure 25: User Interface after Model Transformation (Status Screen)

5.2 Library Application Case Study

Library application assists us providing educational resources online to expedite the finding

process by library members using digital library. So, this case study has been explained and

validated using four sections. Section 5.2.1 covers the requirement specification for an

application for Library. Section 5.2.2 presents UMUI application, the UML object diagram of

this case study with applied profile in Eclipse editor using its Papyrus plugin. Lastly, the

transformation in Acceleo and verification has been provided in Section 5.2.3 and Section

5.2.4 respectively.

5.2.1. Requirement Specification

We have taken a piece of Library system. Following are the details of the main interfaces and

their specifications included in this case study. Three interfaces have been selected in this

case study which are as follows

LOGIN: Login interface should contain a section with a login in form containing the input

placeholders for Email and Password. Person and lock icons, Login Button should be attached

to this form.

57

HOME: Home screen contains a section in which library timings, Website, Notice Board and

Members etc. are shown in a list along with their Icons Button and Text. Home screen should

be accessible from profile screen and can navigate back to login screen.

PROFILE: Profile interface should contain a section containing all the necessary information

such as name, name, image, membership details, currently issued books etc. profile screen

should be accessible from home screen profile page should be accessible from home screen.

5.2.2. Modeling

Object diagrams of library application screens are designed in Papyrus editor using Eclipse.

Main concepts of UMUI applied in library case-study are <<Screen>>, <<Container>>,

<<Import>> <<Icon>>, <<Button>>, <<Text>>, <<StyleSheet>>, <<List>>, << ListItem>>,

<<Import>>, <<ResponsiveScreen>> and <<Navigation>>. In this case, our application is

constituted by different screens. <<Screen>> stereotype which is extended by meta-class model

is mapped to corresponding user interface screens. Layout of each screen is set with applying

<<Responsive-Screen>> stereotype by setting screen width and screen-height. This stereotype

is mapped to corresponding react native concept called media query. This component is like

any other react native component with props. These allows to set screen width and height to

make it good on all devices. For the user interface react native view, we use the stereotype

<<Container>> mapped to the home view, login view and other screens views accordingly. it

is a container of all the user interface components. The home user interface has a navigator

through which each user interface should be accessible from all other user interfaces that exist

in that application. So <<Navigation>> stereotype is mapped to TabNavigator because it can

be used to access multiple tabs on the same screen. <<Button>> stereotype is mapped to login

button instance specification having inline styles such as disabled which is Boolean and set to

false and theme which is set to be light etc. In this case study we have used both kinds of

navigation stack and tab. Tab Navigation is at top of screen as compare to previous case study.

Import instance is for specifying the directory path of screens if one want to import file from

another folder or want to import packages from node package manager. Relationships between

all the instances have also been shown. Due to complexity, parts of object diagram of library

application case study are shown in several subsequent figures are shown in Figure 26, Figure

27, Figure 28 and Figure 29 in next section.

58

Figure 26: Object Diagram of Library Application Case Study (App Screen)

Figure 27: Object Diagram of Library Application Case Study (Home Screen)

59

Figure 28: Object Diagram of Library Application Case Study (Profile Screen)

Figure 29: Object Diagram of Library Application Case Study (Login Screen)

60

5.2.3. Code Generation

The case study model is given as input to our proposed transformation tool whose interface is

shown in Figure 28. In transformation engine, Mapping rules are used to transform the Model

into Code. UML model with. uml extension is selected as input model and destination folder

on desktop is provided as a target folder for generating code files. On clicking the generate

button output are generated in the target folder and console shows the status of the

transformation process as a result. Figure 31 and Figure 32 shows the desired output of user

interfaces code.

 Figure 30: Transformation for User Interfaces of Library Application Case Study

Figure 31: Generated Files of Library Application Case Study

61

 Figure 32: Generated Code of User Interfaces of Library Application Case Study

5.2.4. Verification

For the verification of generated JavaScript code, compilation and execution is necessary. For

this purpose, we have used the Expo Local Development Tool (Desktop and Mobile Client) for

the compilation and execution of code. We have created the new react native project using

NPM CLI as shown in Figure 33 and Figure 34. After pasting our generated code run the

command npm start to start the react native packager. Transformation results are shown in

Figure 35, Figure 36 and Figure 37.

 Figure 33: Expo XDE Desktop Application

62

Figure 34: Expo Mobile Client

Figure 35: User Interface after Model Transformation (Login Screen)

63

Figure 36: User Interface after Model Transformation (Profile Screen)

Figure 37: User Interface after Model Transformation (Home Screen)

64

Chapter 6

Comparative Analysis

65

CHAPTER 6: Comparative Analysis

The previous chapter deals with the implementation and validation aspects of the proposed

work. The proposed framework presents the modeling of the concepts involved in

implementation of a multi-platform user-interfaces. To model the concepts of system Unified

Modeling Language (UML) profile is proposed and transformation of model into code has been

carried out using transformation engine for implementation purpose. Our proposed approach

provided a major contribution in the field and in this section, we have discussed the strengths,

weaknesses and achievements of previous researches and their comparison with our proposed

solution.

6.1. Comparison with Previous Studies

Multiple researches have been carried out to provide an optimal solution for automated multi-

platform mobile application development. For comparison purpose we have selected some

researches from the previous studies and defined the seven parameters as shown in Table 2.

 Table 2: Comparison with previous studies

S
r

#

R
ec

en
t

A
p
p
ro

ac
h

es

M
u
lt

i-
P

la
tf

o
rm

U
I

P
re

se
n
ta

ti
o
n

A
p
p
li

ca
ti

o
n
s

C
o
m

p
le

x
it

y

T
ec

h
n
iq

u
es

T
o
o
l

S
u
p
p
o
rt

[15] Juse4Android No Yes Native Low DSML-Based Yes

[25] MD2 Yes No Native High DSML-Based Yes

[14] MAG Yes No Native Medium UML-Based-

DSML

Yes

[24] MobML Yes No Native High DSML-Based Yes

[17] MIMIC Yes No Mob

Web.

High UML-Based-

DSML

Yes

[5] Applause Yes No Mob

Web.

High DSML-Based Yes

[22] Mobl No Yes Mob Web High DSML-Based Yes

[33] Francese et al. Yes No Hybrid Medium UML-Based-

DSML

Yes

[19] TransUI No No Mob

Web

High DSML-Based No

[5] Mendex App

Platform

Yes No Hybrid Medium UML-Based-

DSML

Yes

66

[5] IBM Rational

Rhapsody

Yes No Native High DSML-Based Yes

[11]

[6]

[7]

Web Ratio

Mobile

Platform

Yes No Hybrid High UML-Based-

DSML

Yes

 Proposed Work Yes Yes Native Low UML-Based Yes

We have provided a detailed discussion on aforementioned studies in literature review section

but here we use these studies to compare it with our proposed solution as some of the work has

been conducted over the last few years. Table 2 summarizes the comparison of our proposed

solution with the previous studies. The parameters compare the researches on basis user

interfaces with styling and layout with native look and feel, application types such as native,

hybrid or mob web, native apps have full access to device capabilities and have highest

performance. Hybrid apps use the Web View widget that is part of both platforms and have

slow performance and some access to device capabilities whereas mob web applications are

slow and have no access to device capabilities. UI complexity represents the degree to which

users observe the info displays of the system to be easy to use and understandable. Also, based

on element interface specification, we can identify an interface complexity through its

element’s complexity, thereby providing an excellent sign of element reusability. So, we have

considered complexity with usability and understandability aspect as high, medium and low.

Techniques such as DSML based or UML based DSML and lastly, tool support provided or

not. These previous studies are mostly focused to generating business logic only such as

Juse4Android, MAG, MobML and MD2. In terms of user interface generation many of the

above approaches uses libraries and templates and if any tool and approach was presented, it

was mostly web based. For user interface reliance on existing IFML (Interaction Flow

Modeling Language) none of them covers the model driven development of multi-platform

user interface native components themselves. limitation in others model-driven approaches

such as Mobl which is for mob web applications, it results in delaying developer productivity

due to complexity of asynchronous programming style enforced by HTML5 JavaScript API’s

and in MD2 user interface is mainly consisting of form fields and due to use of html5, they

have to face restrictions with respect to device specific features therefore, its complexity is

high. And for tools like applause which is DSML- based complexity is high because it uses

their own language to describe the user interface and cannot support to generate new UI for

another platform from existing model, therefore it is essential to amend the whole tool, to

67

support multiple platforms, as it is challenging to capture the UI information of different

various platforms simultaneously. We used UML which is a generic language, provides

primitives of object oriented language and can cover a wide variety of system across broad

range of domains while most of the above mentioned approaches comprises of DSML (Domain

Specific Language) provides primitives of a specific domain, another limitation to this

approach is, to ensure a good startup of the project, in order to use a solution developer, need

to learn the new language. UML also includes the mechanism of profile which allows the

modeler to customize and add new concept in the model. Thus, UML is more flexible than

DSML. Furthermore, most of the previously proposed solutions contain high level of

complexity due to usability and understandability aspect which arise the development and

implementation issues and also few of them contains the partial tool support such as MD2,

Mendex App Platform etc. For UI does not cover the modeling of presentation issues of a native

application frontend e.g. layout, style and look & feel. While our proposed solution covers the

style, layout, native look & feel covering the multiplatform as well, which is economically

cheap, provide a high level of abstraction reducing the complexity and contain a tool support

for M2T transformation.

68

Chapter 7

Discussion and Limitation

69

CHAPTER 7: DISCUSSION AND LIMITATION

This section presents a detailed discussion on this research work Section 7.1 and

limitations to the research are also presented in Section 7.2.

7.1. Discussion

From this research, it has been analyzed that there is some amount of research work done in

the area of model-based UI design and the available research work did not capture complete

UI related requirements. Most of the work has been done only for control behavior, content

and user interaction of front-end applications and does not cover the modeling of the

presentation aspects and also does not cater for the specification of native mobile applications.

Our proposed approach is a step toward automated native mobile UI development covering the

presenting issues using models as a primary artifact of development process. In this

dissertation, UMUI has been proposed at higher level of abstraction to specify the user interface

requirements and generates low-level implementation of target platform react native. The

reason of this choice is that according to study by Hugo et al [27] React Native have the highest

recognition. It is created by the company Facebook, its development is done in JavaScript and

basing the visual components on React. This framework is considered revolutionary because

of its attempt to approximate native code of each of the operating systems. In their study they

evaluated different frameworks based on different criteria, which are essential in the

development of mobile applications and that may have preponderance in choosing the

implementation model of the business by an entity or programmer. The criteria were selected

according to the needs of mobile development are as follows: quality of documentation,

development cost, emulators and debugging, response speed and time, commercial

acknowledgement, code reuse and teamwork, maintenance and upgrades. After an evaluation

of the most recognized applications for each framework and after performing implementation

tests results were presented on a Likert scale. It was then verified that React Native is the best

solution to have a team focused on a single language and develop all kinds of front-end

solutions. In relation to other frameworks, React Native presents the best results, due to

Facebook's support in creating an efficient framework. Recently React Native has had an

exponential market recognition because Facebook, Instagram, Skype, Uber, Airbnb or even

Tesla, are examples of sound names developed in this framework.

70

 The MMUI Transformation Tool we have built, produces all the real UI artifacts that

a developer will need in order to develop the right product meeting the user specified UI

requirements. Motivation behind this work is to provide early UI design so that quality can be

build inside the application which eventually proved out to be a cost and time efficient

approach. The automated UI provide complete and detailed design for example, how it will

cover style, layout, look and feel of the front-end of mobile applications.

Automated MMUI (Model driven multiplatform Mobile User Interfaces) tool can

generate the user interface of the application easily by any level of people like managers,

product owners. So, mostly coding sessions can be avoided that way because job can be seen

and examined even before it will be coded. This leads to initiate user interface development in

the early requirement specification phases especially without considering the ultimate

application development technologies.

Case studies containing different user interface components have been selected in order

to validate our proposed approach. We selected a very detailed case studies on

Patient Management System and Library application which included more than 70

components.

7.2. Limitations

As we have taken the first step to UI generation for React Native, there are a few

limitations to our work. UMUI has a lot of potential but due to limited amount of time and

resources, we have currently only selected limited core elements i.e. Containers, Navigation of

two types i.e. tab navigation and stack navigation, Button, List and Icon etc. There are many

UMUI that we have not yet considered for example RadioButton, CheckBox, and Picker etc.

on which we intend to work in future.

71

Chapter 8

 Conclusion and Future Work

72

CHAPTER 8: CONCLUSION AND FUTURE WORK

In this dissertation, proposed approach is focused on mobile application domain that allows us

to design the user interfaces in a platform independent way. So, we have presented UMUI

(Unified Modeling Language profile for multiplatform Mobile User Interfaces) for

automatically generating the low-level implementation for react native framework from high-

level source models. The proposed UMUI consists of several stereotypes, meta-classes and

enumerations. The proposed approach makes use of MDE for user interface generation through

acceleo transformations based on different rules resulting in automated code which cover the

navigational aspects along-with the structural aspects of mobile application user interface by

using MMUI (Model driven multi-platform Mobile User Interfaces) tool. The results of our

proposed approach proved the potential and viability of UMUI models for user interface

generation by different case-studies of varying sizes.

We analyzed the major multi-platform mobile user interface development frameworks on the

market and their software development environments. This analysis has led to highlight the

recognition of react native framework. Generation of low level react native implementation

from UMUI models in the early stages of development cycle will allow developers and testers

to develop the right product by embedding the quality in it, from the beginning of development

and by making the development process less complex. Modeling under unified modeling

language notation is great benefit of our approach, by proposing a graphical way to design the

multi-platform mobile user interfaces in latest trend and technology.

Future work includes improving and extending this approach in order to support other

components like ScrollView, Thumbnail, FAB (Floating Action Buttons) and CheckBox etc.

The applicability of the proposed automated approach on other UI frameworks such Ionic and

Xamarin can be explored by the UMUI profile. The approach can be expanded to incorporate

business logic requirements and interaction with the user, in order to generate fully functional

mobile applications.

73

 APPENDIX A

USER MANUAL
1. Download Instructions

1.1. Model driven multiplatform Mobile User Interface transformation tool (MMUI)

Download Model driven multiplatform Mobile User Interface transformation tool as:

“MMUI Transformation Tool.zip”

Extract the MMUI Transformation Tool.zip file. You will find the “MMUI Transformation

Tool” Folder.

In the “MMUI Transformation Tool” Folder, you will find the following folder shown in the

Figure 1 below

 Figure 1: Files in MMUI Transformation folder

1.2. Sample Case Studies

Download sample case studies (Patient Management System Application) and (Library

Application) from MMUI website as “Sample-CaseStudies.zip”

Extract Sample-CaseStudies.zip file. You will find “PatientManagementCaseStudy” and

“Library Application” folder as shown in Figure 2. Folder contains UML models for the

corresponding case studies developed in Eclipse using Papyrus plugin.

 Figure 2: Sample Case Study folder

You can use the existing UML models to generate complete Code or you can update the

UML model to include modeling of System.

2. Prerequisites for MMUI Transformation Tool

It is required to install Java Runtime Environment (JRE) version 8 or above in order to

execute MMUI Transformation Tool.

3. Execution of MMUI Transformation Tool

74

Figure 3: Interface for Model to Code Transformation Engine

Input UML Model: (Button called browse is used to select the UML model for the case study.

Destination Folder: Button called browse is used to specify the target folder for the generated

files.

Generate Files: User can select the required files from the given four options by checking the

checkbox.

Reset: Reset Button is used to clear all the existing selections to defile new configurations.

Generate: Generate button transforms the designated UML models into the required testing

artifacts. It is mandatory to fill all the above field in order to click generate button.

Console: Console displays the status of current transformations which are either list of

generated files or files generated with errors (in case of any problem in transformation).

Close: By using close button, you can close the interface.

The UML models can be selected using browse button against each selection. Figure 4 shows

the selection of user interface model using browse button.

75

Figure 4: Selection of the UML model using Browse Button

The UML models can be transformed into JavaScript code artifacts through Generate Button

as shown in Figure 5.

 Figure 5: Generating Code Artifacts for Patient Management System Model

The screenshot for the output folder containing generated files and generate code are shown in

Figure 6 and Figure 7.

76

Figure 6: Output folder containing generated files

Figure 7: Generated Code

77

REFERENCES

[1] Christoph Rieger, Herbert Kuchen, “A process-oriented modeling approach for graphical

development of mobile business apps”, In Computer Languages, Systems & Structures

Volume 53, September 2018, Pages 43-58

[2] Maryam Hamdani, Wasi Haider Butt, Muhammad Waseem Anwar and Farooque Azam “A

Systematic Literature Review on Interaction Flow Modeling Language (IFML)”

Proceeding CMSS 2018 Proceedings of the 2018 2nd International Conference on

Management Engineering, Software Engineering and Service Sciences, Pages 134-138

[3] Marco Brambilla, Eric Umuhoza1 and Roberto Acerbis, “Model-driven development of

user interfaces for IoT systems via domain-specific components and patterns” Journal of

Internet Services and Applications (2017) 8:14

[4] Claudia Raibulet, Francesca Arcelli Fontana, And Marco Zanoni, “Model-Driven Reverse

Engineering Approaches: A Systematic Literature Review”, 2017.

[5] Eric Umuhoza and Marco Brambilla, “Model Driven Development Approaches for Mobile

Applications: A Survey”, In 13th International Conference, MobiWIS 2016, Vienna,

Austria, August 22-24, 2016, Proceedings

[6] Matthias Stürner and Philipp Brune, “Virtual Worlds on Demand? Model-Driven

Development of JavaScript-based Virtual World UI Components for Mobile Apps”,2016.

[7] Brambilla, M. and Fraternali, “Large-scale model driven engineering of web user

interaction: The webml and webratio experience.”, 2014. Science of Computer

Programming, 89:71–87.

[8] Xiaoping Jia and Christopher Jones. AXIOM: A model-driven approach to cross platform

application development. In ICSOFT 2012

[9] A. Delgado, A. Estepa, J.A. Troyano, R. Estepa, “Reusing UI elements with Model-Based

User Interface Development” in 2015 Journal of Human Computer Studies

[10] Hanane BENOUDA, Redouane ESSBAI, Mostafa AZIZI and Mimoun MOUSSAOUI,

“Modeling and Code Generation of Android Applications Using Acceleo”, International

Journal of Software Engineering and Its Applications Vol. 10, No. 3 (2016), pp. 83-94

[11] Roberto Acerbis, Aldo Bongio, Stefano Butti, Marco Brambilla, “Model-Driven

Development of Cross-platform Mobile Applications with WebRatio and IFML” 2015 2nd

ACM International Conference on Mobile Software Engineering and Systems

78

[12] Wafaa S. El-Kassas, Bassem A. Abdullah, Ahmed H. Yousef, Ayman M. Wahba,

“Taxonomy of Cross-Platform Mobile Applications Development Approaches” 2017.

[13] Marco Brambilla, Roberto Acerbis, Aldo Bongio, Stefano Butti, “Model-Driven

Development of Cross-Platform Mobile Applications with Web Ratio and IFML” in 2015

2nd ACM International Conference on Mobile Software Engineering and Systems

[14] Muhammad Usman, Muhammad Zohaib Iqbal, Muhammad Uzair Khan, “A Model-

driven Approach to Generate Mobile Applications for Multiple Platforms” in 2014 21st

Asia-Pacific Software Engineering Conference

[15] Luís Pires da Silva and Fernando Brito e Abreu, “Model-Driven GUI Generation and

Navigation for Android BIS Apps” in 2014 2nd International Conference on Model-Driven

Engineering and Software Development (MODELSWARD)

[16] Mohamed LACHGAR, Abdelmounaïm ABDALI, “Generating Android Graphical

User Interfaces using an MDA Approach” in 2014 Third IEEE International Colloquium

in Information Science and Technology (CIST)

[17] Nadia Elula, Xavier Le Pallec, José Rouillard, Jean-Claude Tarby “A Model-based

Approach for Engineering Multimodal Mobile Interactions” in MoMM '14 Proceedings

of the 12th International Conference on Advances in Mobile Computing and Multimedia

[18] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu, “Adaptive Model-Driven User

Interface Development Systems” in ACM Computing Surveys (CSUR) Surveys

Homepage archive Volume 47 Issue 1, July 2014 Article No. 9

[19] Zhiyi Ma, Wei Zhang, Chih-Yi Yeh, “Model-Driven Development of Diverse User

Interfaces” in ICSE Companion 2014 Companion Proceedings of the 36th International

Conference on Software Engineering Pages 616-617

[20] Andreas Schuler, Barbara Franz, “Rule-Based Generation of Mobile User Interfaces”

in 2013 10th International Conference on Information Technology: New Generations

[21] Ayoub SABRAOUI, Mohammed EL KOUTBI, Ismail KHRISS “GUI Code

Generation for Android Applications Using a MDA Approach” in 2012 IEEE International

Conference on Complex Systems (ICCS).

[22] Zef Hemel and Eelco Visser, “Declaratively Programming the Mobile Web with Mobl”

in OOPSLA '11 Proceedings of the 2011 ACM international conference on Object oriented

programming systems languages and applications Pages 695-712

[23] Eric Umuhoza. Hamza Ed-douibi, Marco Brambilla, Jordi Cabot, Aldo Bongio

“Automatic Code Generation for Cross-Platform, Multi-device Mobile Apps: Some

79

Reflections from an Industrial Experience” in · Proceeding MobileDeLi 2015 Proceedings

of the 3rd International Workshop on Mobile Development Lifecycle Pages 37-44

[24] Marco Brambilla, Andrea Mauri, Mirco Franzag, Henry Muccini, “A Model-Based

Method for Seamless Web and Mobile Experience” in Mobile! 2016 Proceedings of the

1st International Workshop on Mobile Development Pages 33-40

[25] Henning Heitkötter, Tim A. Majchrzak, Herbert Kuchen, “Cross-Platform Model-

Driven Development of Mobile Applications with MD2” in SAC '13 Proceedings of the

28th Annual ACM Symposium on Applied Computing Pages 526-533

[26] Joachim Perchata,b, Mikael Desertotb, Sylvain Lecomteb, “Component Based

Framework to Create Mobile Cross-platform Applications” in The 3rd International

Symposium on Frontiers in Ambient and Mobile Systems (FAMS)

[27] Hugo Brito, Anabela Gomes, Álvaro Santos and Jorge Bernardino, “JavaScript in

mobile applications: React Native vs Ionic vs NativeScript vs native development” in 2018

13th Iberian Conference on Information Systems and Technologies (CISTI)

[28] Chi-Kien Diep, Quynh-Nhu Tran, Minh-Triet Tran, “Online model-driven IDE to

design GUIs for cross-platform mobile applications”in SoICT '13 Proceedings of the

Fourth Symposium on Information and Communication Technology Pages 294-300

[29] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryani Dzung Ta,

Atif M. Memon, “MobiGUITAR: Automated Model-Based Testing of Mobile Apps” IEEE

Software (Volume: 32, Issue: 5, Sept.-Oct. 2015)

[30] HenningHeitkötter, HerbertKuchen, TimA.Majchrzak, “Extending a model-driven

cross-platform development approach for business apps” in Science of Computer

Programming

Volume 97, Part 1, 1 January 2015, Pages 31-36

[31] Mohamed Lachgar and Abdelmounaïm Abdali, “Modeling and generating native code

for cross-platform mobile applications using DSL” in Intelligent Automation & Soft

Computing, 2016

[32] Roman Popp, Jurgen Falb, David Raneburger and Hermann Kaindl, “A Transformation

Engine for Model-driven UI Generation” in TAMODIA'07 Proceedings of the 6th

international conference on Task models and diagrams for user interface design Pages 112-

125

[33] Rita Francese, Michele Risi(B), Giuseppe Scanniello, and Genoveffa Tortora, “Model-

Driven Development for Multi-Platform Mobile Applications” in MOBILESoft

80

'15 Proceedings of the Second ACM International Conference on Mobile Software

Engineering and Systems

[34] Sarra Roubi, Mohammed Erramdani, Samir Mbarki, “Modeling and Generating

Graphical User Interface for MVC Rich Internet Application using a Model Driven

Approach” in 2016 International Conference on Information Technology for Organizations

Development (IT4OD)

[35] Juliano de Almeida Monte-Mor, Elton Oliveira Ferreira, Henrique Fernandes Campos,

Adilson Marques da Cunha, and Luiz Alberto Vieira Dias, “Applying MDA Approach to

Create Graphical User Interfaces” in 2011 Eighth International Conference on Information

Technology: New Generations

[36] Javier Rodríguez Escolar, “A Context-aware Dialog Model for Multi-Device Web

Apps” EICS '13 Proceedings of the 5th ACM SIGCHI symposium on Engineering

interactive computing systems Pages 167-170

[37] Ei Ei Thu, Nwe New, “Model Driven Development of Mobile Applications Using

Drools Knowledge-based Rule” 2017 IEEE 15th International Conference on Software

Engineering Research, Management and Applications (SERA)

[38] G. Botturi, E. Ebeid, F. Fummi, D. Quaglia, “Model-Driven Design for the

Development of Multi-Platform Smartphone Applications” in Proceedings of the 2013

Forum on specification and Design Languages (FDL)

[39] André Ribeiro, Alberto Rodrigues da Silva , “Survey on Cross-Platforms and

Languages for Mobile Apps” in Proceeding SAC '14 Proceedings of the 29th Annual ACM

Symposium on Applied Computing Pages 1316-1323

[40] Muhammad, R., Muhammad, W.A., Aamir, M.K., 2015, “Towards the Tools Selection

in Model Based System Engineering for Embedded Systems - A Systematic Literature

Review”, Elsevier Journal of Systems and Software, Vol. 106

[41] Object Management Group(OMG) [Online] Available:

https://www.omg.org/spec/OCL/2.4/ [Accessed: 26-Oct-2018].

[42] Papyrus User Guide [Online Available] : https://wiki.eclipse.org/Papyrus_User_Guide

[Accessed: 26-Oct-2018].

[43] Acceleo [Online Available]: https://www.eclipse.org/acceleo/documentation/

[Accessed: 26-Oct-2018].

[44] Eclipse [Online Available]: https://wiki.eclipse.org/ [Accessed: 26-Oct-2018].

81

[45] UML Diagrams [Online Available]: https://www.uml-diagrams.org/ [Accessed: 26-Oct-

2018].

[46] ECORE TOOLS [Online Available]: https://www.eclipse.org/ecoretools/doc/index.html

[Accessed: 26-Oct-2018].

[47] React Native [Online Available]: https://facebook.github.io/react-native/ [Accessed: 26-

Oct-2018].

[48] IONIC DOCUMENTATION [Online Available]: https://ionicframework.com/docs/

[Accessed: 26-Oct-2018].

[49] EXPO [Online Available]: https://expo.io/ [Accessed: 26-Oct-2018].

[50] XAMARIN [Online Available]: https://visualstudio.microsoft.com/xamarin/ [Accessed:

26-Oct-2018].

