
1

Code Obfuscation Techniques for Software Protection

Author

Marrium Aziz Khan

FALL 2015-MS-15(CSE) 00000117433

MS-15 (CSE)

Supervisor

Dr. Wasi Haider Butt

Department of Computer Engineering

College of Electrical & Mechanical Engineering

National University of Science and Technology, Islamabad

January, 2019

2

Code Obfuscation Techniques for Software Protection

Author

Marrium Aziz Khan

FALL 2015-MS-15(CSE) 00000117433

A thesis submitted in partial fulfillment of the requirements for the degree of MS

Software Engineering

Supervisor

Dr. Wasi Haider Butt

Thesis Supervisor‟s Signature: __________________________________

Department of Computer Engineering

College of Electrical & Mechanical Engineering

National University of Science and Technology, Islamabad

January, 2019

3

Declaration

I certify that this research work titled “Code Obfuscation techniques for Software

Protection” is my own work under the supervision of “Dr. Wasi Haider Butt”. The work has not

been presented elsewhere for assessment. The material that has been used from other sources it

has been properly acknowledged / referred.

Signature of Student

Marrium Aziz Khan

 FALL 2015-MS-15(CSE) 00000117433

4

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also

according to the format given by the University for MS thesis work.

Signature of Student

Marrium Aziz Khan

 FALL 2015-MS-15(CSE) 00000117433

Signature of Supervisor

5

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process) either in

full, or of extracts, may be made only in accordance with instructions given by the author and

lodged in the Library of NUST College of EME. Details may be obtained by the Librarian.

This page must form part of any such copies made. Further copies (by any process) may not

be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of EME, subject to any prior agreement to the contrary, and may not

be made available for use by third parties without the written permission of the College of

EME, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of EME, Islamabad.

6

Acknowledgements

Glory is to, Almighty Allah, The Most Merciful and The Most Beneficent, who bestowed

upon me great source of knowledge and his blessings made me able to complete my task. Indeed

I could have done nothing without Your priceless help and guidance. Whosoever helped me

throughout the course of my thesis, whether my parents or any other individual was Your will, so

indeed none be worthy of praise but You. The respectful and beloved Prophet (SAWW) who is

role model for us.

I am profusely thankful to my beloved parents who raised me when I was not capable of

walking and continued to support me throughout in every department of my life. I am copiously

thankful to Mr. Junaid Wasif who is great strength of me.

I would also like to express special thanks to my supervisor Dr. Wasi Haider Butt who

guided me throughout my thesis and kept my morale high and backed up with zest, constructive

criticism and inspiring guidance. Also for his tremendous efforts to taught me Software

Requirement Engineering and Web-based Software Development. I can safely say that I haven't

learned any other engineering subject in such depth than the ones which he has taught.

I would also like to thank Dr. Arsalan Shaukat and Dr. Muazzam A. Khattak for

being on my thesis guidance and evaluation committee. Their recommendations are very valued

for improvement of the work. I appreciate their guidance throughout the whole thesis.

 I would also like to pay special thanks to Mr. Furqan Azhar for his tremendous support

and cooperation. Without his help I wouldn‟t have been able to complete my thesis. I appreciate

his patience and guidance throughout the whole thesis.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

7

Dedicated to my exceptional parents and adored siblings whose

tremendous support and cooperation led me to this wonderful

accomplishment

8

Abstract

In the need of reinforcing the digital improvement, software application transforms into the most

appealing bit of the propelled world. So its common trend to dispense mobile application in such

structure that are isomorphic to the original code. Whereby using the process of reverse

engineering, attackers identify the software behavior and extract the legitimate algorithms where

traditional approaches like firewall, cryptography is not enough. Hence code obfuscation is one

of the indispensable approaches which ratify intensified security by deterring the software code

without changing the semantics and functionality. In this research, we proposed hybrid

methodology to secure the mobile application by using Pro-guard, paranoid and Allatori.

Detailed analysis and comparison of other technologies and their gaps are also part of this

research. We provided an open source package for code obfuscation supporting android. By

using Collberg’s taxonomy we also improved potency, resilience, cost and stealth in mobile

application by using hybrid approach of multiple algorithms. After carrying out test cases, we

evaluated code optimization, apk size shrinking and statement to improve Collberg’s taxonomy.

We successfully obfuscated all java source files. Effective stress test has also been performed to

de-obfuscate the code and unable to get back defined algorithm. Only resource files <xml> are

left to be obfuscate, as main focus of this research was on managed code instead of scripting

code.

9

Table of Contents

Declaration..3

Copyright Statement..5

Acknowledgements ...6

Abstract ..8

Chapter # 1: Introduction .. 16

1.1. Overview: ... 16

1.1.1. Network Protection .. 16

1.1.2. Software Protection: .. 17

1.1.2.1. Obfuscation: ... 18

1.2. Problem statement: .. 20

1.3. Research Contribution: .. 21

1.4. Thesis organization: .. 23

Chapter # 2: Literature Review .. 25

2.1. Research Methodology:... 26

2.2. Prior Study: ... 27

2.3. Procedure: ... 31

2.3.1. Gap identified in classified terms: .. 32

2.3.2. The Selection Criteria: ... 33

2.3.3. Data Sources to Extract Research Papers:... 34

2.3.4. Method of classification of computer security: ... 34

Chapter # 3: Proposed Methodology ... 40

3.1. Designated Obfuscators: ... 40

3.1.1. ProGuard: .. 40

3.1.2. Paranoid:.. 41

3.1.3. Allatori: ... 41

3.1.4. DashO:... 41

3.1.5. Arxan: .. 42

3.1.6. Cloakware: ... 42

3.2. Proposed Solution: .. 42

3.3. Set of Rules:.. 43

10

3.3.1. Obfuscation: .. 43

3.3.2. Shrinking: .. 43

3.3.3. Optimization: ... 43

3.3.4. Obfuscated Chunks: ... 44

3.4. Collberg‟s Taxonomy on hybrid approach: .. 44

3.5. Analysis Metrics: .. 44

3.5.1. Potency .. 45

3.5.2. Resilience .. 45

3.5.3. Cost ... 46

Chapter # 4 Implementation .. 49

4.1. Pro-Guard ... 49

4.1.1. Shrinking Code:... 50

4.1.2. Optimizing Code: .. 51

4.1.3. Obfuscating Code: ... 53

4.1.3.1. Obfuscation of variables, methods, classes, packages: 53

4.1.3.2. Impact of obfuscation dictionaries: ... 54

4.1.3.3. Optimizations: .. 56

4.1.3.4. Package Names Obfuscation: ... 57

4.1.3.5. Impact of flattenpackagehierarchy: ... 58

4.1.3.6. Impact of repackageclasses: .. 58

4.1.3.7. Impact of allowaccessmodification: .. 58

4.1.3.8. Obfuscation Mapping File: ... 60

4.1.3.9. Incremental obfuscation: .. 60

4.1.3.10. Unique naming of class members: .. 61

4.1.4. Limitations:.. 61

4.2. Paranoid .. 62

4.2.1. How it works: .. 64

4.3. Allatori: .. 64

Chapter # 5 Results and Limitation.. 68

5.1. Experiments: ... 68

5.1.1. VOT4CS: ... 68

11

5.1.2. Hybrid Approach for Android:... 70

5.1.2.1. Case Studies: .. 71

5.1.3. Functional Testing: .. 84

5.1.4. Limitation: ... 84

Chapter # 6 Conclusion and Future Work .. 88

6.1. Conclusion: ... 88

6.2. Future Work: .. 89

References .. 90

12

List of Figures

Figure1.1: Comparison of normal flow and MIMF .. 17

Figure1.2: Firewall Network ... 17

Figure1.3: Code Compilation Procedure .. 19

Figure1.4 : Java Compilation Flow .. 20

Figure1.5: Research Methodology Flow .. 21

Figure1.6: Input / Output Flow of Obfuscated Code .. 21

Figure1.7: Thesis Organization.. 23

Figure2.1: Research Division .. 25

Figure2.2: Research Sequence ... 26

Figure2.3: Research Approach .. 27

Figure2.4: Computer security .. 28

Figure2.5: Security Graph ... 32

Figure2.6: Search Process ... 35

Figure2.7: Classification of Publication Year .. 35

Figure2.8: Graph of Audience Feedback ... 36

Figure2.9: Attack Literature .. 37

Figure2.10: Classification of environment ... 38

Figure4.1: Pro-Guard Techniques Steps .. 49

Figure4.2: Enabling Default Pro-Guard Settings .. 50

Figure4.3: Enabling Customized Pro-Guard Settings ... 50

Figure 4.4: APK Size Ratio ... 50

Figure 4.5: Shrink APK Size ... 51

Figure4.6: Optimization Settings ... 51

Figure4.7: APK Size Ratio .. 52

Figure 4.8: Properties for Obfuscation Dictionaries ... 53

Figure 4.9: Custom entries to replace variable and class names Dictionaries 54

Figure 4.10: Original Code .. 54

Figure 4.11: Obfuscated Code ... 55

Figure 4.12: Original Code .. 55

Figure4.13: Obfuscated Code .. 56

Figure4.14: Without Optimization ... 57

Figure4.15: With Optimizations .. 57

Figure4.16: Properties for Package and Access Modifiers Obfuscation...................................... 57

Figure 4.17: Original Package naming ... 58

Figure 4.18: Package Obfuscation Level 1... 58

Figure 4.19: Package Obfuscation Level 2... 58

Figure 4.20: Class file with original access modifier.. 59

Figure4.21: Class file with changed access modifier .. 59

Figure 4.22: Property for Mapping Reference File ... 60

13

Figure 4.23: Mapping Reference File View ... 60

Figure 4.24: Property for incremental obfuscation by reusing mapping file 61

Figure4.25: Property for unique naming of classes .. 61

Figure4.26: Declaration of Strings ... 62

Figure4.27: Code before String obfuscation .. 63

Figure4.28: Code after String obfuscation ... 63

Figure4.29: Java source files inside „kickoff‟ folder .. 65

Figure4.30: Java source files folder „kickoff‟ before using Allatori ... 65

Figure4.31: Java source files folder „kickoff‟ after using Allatori .. 66

Figure5.1: Roslyn Git-hub Plugin .. 68

Figure5.2: Syntax Graph ... 69

Figure5.3: Setting Project and Defining Rules ... 69

Figure5.4: Adding Version of Code Analyzer to app Setting ... 69

Figure5.5: Virtualization Rules.. 70

14

List of Tables

Table2.1: Classification of security ... 29

Table 2.2: Characteristics of security ... 31

Table2.3: Audience feedback .. 32

Table2.4: Details of research with scientific database .. 34

Table2.5: Classification of attacks ... 37

Table3.1: Obfuscated chunks... 44

Table 3.2: Sample test projects for potency ... 45

Table 3.3: Sample test projects for resilience ... 46

Table3.4: Sample test projects for cost .. 46

Table3.5: Sample Test Projects with Overall Quality Score Before And After Obfuscation 47

Table 5.1: Before and After Code Obfuscation .. 71

Table5.2: Sample Test Projects with Function conformity after obfuscation 84

Table 5.3: Comparison of Libraries ... 86

List of Equations

Equation3.1: Potency measure ... 45

Equation3.2: Cost measure .. 46

Equation3.3: Collberg's taxonomy ... 46

15

CHAPTER 1

INTRODUCTION

16

Chapter # 1: Introduction

The introductory chapter of thesis report presents general overview of topic. It is distributed into

following sections. Section 1.1 delivers the overview, Section 1.2 elaborates the problem

statement, Section 1.3 provides the technical analysis and implementation overview of hybrid

approach for code obfuscation techniques, whereas Section 1.4 contains research contribution

and finally Section 1.5 contains thesis organization.

1.1. Overview:

In the necessity of strengthening the digital enhancement, software turns into the most alluring

piece of the advanced world. IT industry burn through billions of dollars every year for averting

from security attacks, i.e. tampering and malicious reverse engineering [1, 2]. Furthermore

mobile applications has been increasing greater ubiquity and malevolent reverse engineering is

an intellectual property intrusion attack looked by applications, which points on comprehension

and reusing the functionalities of a current item in the improvement of different items. Such

attacks make it simpler for the attackers to extricate the exclusive calculations and information

structures from applications so as to fuse them into their own projects, to reduce their effort on

time and cost [3].

As a result of enormous application and improvement on digital advancements, the huge

necessity for research on sanctuary and protection has been framed. Every organization has its

own licensed revolution and it's a major purpose for using them to secure their information.

There are multiple ways to secure information, i.e. Network protection, software legislation,

piracy or infusion of malicious code and so on.

1.1.1. Network Protection:

The assurance to protect the devices at hardware level against vulnerabilities is network security.

Many organizations define some policies and rules to verify the hardware security at network

level from Man-in-the-middle attack as shown in Figure 1.1 [4].

17

Figure1.1: Comparison of normal flow and MIMF (https://www.veracode.com/file/325)

 It involves device to examine the network traffic and identify abnormal behavior from external

world. It mostly secures access from external network by using many terminologies like firewall

as shown in Figure 1.2, proxy servers (i.e. access to VPN), DMZs etc. [5, 6]. Some hardware

security modules are also implemented cryptographic keys and encryptions [7, 8]. But all these

security mechanisms will only secure against theft if the whole process is implemented on

device. Uncertainty application is on commercial level it will always decompile the decrypted

code in case if code is encrypted and executed in software by virtual machine [9].

Figure1.2: Firewall Network (https://www.researchgate.net/figure/A-Layered-Firewall-Architecture_fig11_228527355)

1.1.2. Software Protection:

Encryption and firewalls are satisfactory approaches to alleviate the threads of attackers (Man-in-

the-middle) who endeavor to disrupt into the targeted system [10]. Though, these approaches

don‟t resist shielding targeted system when attacker is end client (Man-at-the-end) [11, 12].

Furthermore, whenever targeted system is business and proposed to be utilized on customer

https://www.veracode.com/file/325
https://www.researchgate.net/figure/A-Layered-Firewall-Architecture_fig11_228527355

18

device then hardware protection isn't sufficient advance to take. So in any approach developer

needs to secure the system with software mean also.

The expense of commercial applications drives a few contenders to fall back on intellectual

property theft. If the application inside any item isn't secured in any capacity, contenders can

essentially purchase a duplicate of the item, figure out the calculations actualized in that item and

utilize these calculations inside their very own item. This term leads to software cracking and

there are significant loses have been incurred for such commercial applications [13].

There are two general way to ensure the protection of software application, in the legal mean [14,

15] and technical mean. In terms of technical means, proprietary software might be vulnerable

with the anticipation that legitimate provisions will be sufficient to halt attackers. Nevertheless,

legislation might be restricted to explicit geographical territory and not adjusted to the globe but

software can be distributed globally. Subsequently, software developer must secure commercial

application in technical means as well to make it troublesome for attackers who are utilizing

application on their own devices. With the mean of accomplishing security at higher level is as

yet not feasible subsequent to introducing security and cryptography networks. With respect to

protect software application at code level, among all other techniques code obfuscation is staple

implementation which endorses intensified security by averting code alterations [16].

1.1.2.1. Obfuscation:

Obfuscation is a standout amongst the most utilized protection method to keep the cognizance of

projects against MATE attacks. There are many methodologies to reach high level of obfuscation

[17]. Some of approaches are data obfuscation and code obfuscation. In the mean of securing

application all obfuscation approaches comprises of program change methodologies that intend

to make programs more unreservedly to examine, while preserving their semantics. Though, data

obfuscation aims to stow away the structure of variables content and its usage, whereas code

obfuscation changes format and data to render the code difficult to figure out and reverse

engineer [18].

1.1.2.2. Code Obfuscation:

Code obfuscation is method to alleviate process of reverser engineering by altering the original

code without changing its semantics and hindering to understandable by human and fetching

19

algorithm [19, 20, 21, 22]. Reverse engineering is the process that targets refurbishing a high

level representation to investigate its structure and behavior as shown in Figure 1.3 [23]. Now

day‟s applications are being developed and installed on client devices, where process of reverse

engineering cannot be fully avoided. Consequently there is a need to secure end-to-end

application against reverse engineering and raise bar against attackers to a magnitude where it

does not merit contributing the assets to de-obfuscate application or extracting algorithm in any

term. The proprietary systems are secured in software, secrecy causes, and duplicate assurance

components are the most vital examples.

Figure1.3: Code Compilation Procedure (https://www.semanticscholar.org/paper/A-code-obfuscation-technique-to-

prevent-reverse-Dalai-Das/0eac488df57ae4cc3c580a4c9ad25d097d322abb)

Some other important features like cryptographic algorithms i.e. AES that are implemented for

trusted end-points by entrenching encryption and decryption and endure attacks in black-box

context where attacker is not able to get awareness inside algorithms. Nonetheless this traditional

end-to-end encryption is not enough to withstand attacker when it‟s easy to investigate the

software while its execution. Hence code obfuscation is method to obscure the executions that

are sensitive to client and used to mitigate the way to reverse engineering as shown in Figure 1.4

[23].

https://www.semanticscholar.org/paper/A-code-obfuscation-technique-to-prevent-reverse-Dalai-Das/0eac488df57ae4cc3c580a4c9ad25d097d322abb
https://www.semanticscholar.org/paper/A-code-obfuscation-technique-to-prevent-reverse-Dalai-Das/0eac488df57ae4cc3c580a4c9ad25d097d322abb

20

Figure1.4 : Java Compilation Flow (https://www.guardsquare.com/en/blog/decompiling-obfuscated-android-applications)

Collberg et al define the code obfuscation as transformation τ as transformation of program P

and convert into obfuscated program P‟. After obfuscation their behavior examined that P and P‟

are expecting to have same behavior but P‟ is difficult to understand by user after the process of

reverse engineering. Code obfuscation shield against malicious alterations of application

developed and software piracy as an assailant should initially know and comprehend the product

before they can make indicated adjustments. The dimension of security in an application

comprises of the required obstruction of the application against reverse engineering and

tampering attacks.

1.2. Problem statement:

In the age of digital enrichment the mobile applications are in hand and its use is not restricted.

In the establishment of digital environment, the malevolent Android applications are expanding

hastily. Consequently many files and settings are being smashed by Android malware, moreover

some unwanted application are also installed in result of this attack. So it is mandatory to

identify such behavior. In result, many security methodologies are presented to hinder these

malware. Traditional techniques like cryptography are not enough here to rescue from malicious

activities. Subsequently some methodologies required to handle the Man-at-the-end attacks.

Many techniques and algorithms are proposed to handle such troublesome however none of the

algorithm obscures the code to grasp at maximum level of security. Moreover, some prior

techniques aspect some issues regarding scalability. And none of any algorithm is open source to

offer maximum obscurity.

https://www.guardsquare.com/en/blog/decompiling-obfuscated-android-applications

21

1.3. Research Contribution:

The intact process is being conducted in the design-based research as explained in Figure

1.5. As the research premises, we perform brief analysis of practical problematic area and it

is supposed to be very first step. Once problem is identified, then we suggest the solution for

recognized problem in analogous to literature review for accomplishing experiments with

numerous hypothetical frameworks for obfuscation. Hereby the literature review elaborates

the background study of code obfuscation.

Figure1.5: Research Methodology Flow

The proposed approach describes hybrid obfuscation techniques for obscurity and software

protection. As the part of evaluation and testing the solution, we perform the experiments and

get the consequences from hybrid approach; firstly investigation is done on VOT4CS which

is virtualization obfuscation tool for .NET. Depending upon its results, where we found no

area of improvement restrictions on complier level and Roslyn code analyzer [13], we moved

to hybrid obfuscation for android. Here we used three techniques Pro-guard, Paranoid and

Allatori. For the purpose of obfuscation, we enabled configuration settings to define our rules

by using Pro-guard, Paranoid and Allatori. After obfuscating APK has been generated and

decompiled in de-complier. Test cases have been performed to re-generate java files and

analyzed the behavior of code as abstractly elaborated in Figure 1.6.

Figure1.6: Input / Output Flow of Obfuscated Code

22

This research is accomplished to provide open source hybrid obfuscator for Android Application

in one hand. Three techniques are used to make challenging to understand the code without

changing semantics and logic of program. The main aim of this research was improving

obfuscation algorithm in that way no one could acquire the program in original form after de-

compilation. Main contribution of this research to achieve application obfuscation, following

were the steps followed in exact order as stated:

 Enable ProGuard Configuration Settings in our Android Studio Project. Android Studio

provides a file that contains all of the essential configuration settings to run Android

ProGuard obfuscation with application. We have used our own customized ProGuard file

for better obfuscation than what default file provides us.

 To enable code optimization, we used a different default ProGuard configuration file. We

modified the „proguard-android.txt‟ value to „proguard-android-optimize.txt‟ in our

gradle file.

 For more advanced optimizations, we added certain filters in ProGuard rules file to

improve code removal, simplification and merging.

 We have created a text file with random customized entries which is being used for

obfuscation of variables, classes and packages. Otherwise, ProGuard uses default values

to implement obfuscation.

 As ProGuard cannot obfuscate hard-coded string, we have used Paranoid library to

achieve our purpose. To make Paranoid functional in your code, we have annotated all of

our classes and activities with @Obfuscate which contain strings and need to be

obfuscated. Every string literal and string constant defined in annotated classes or

activities will be obfuscated.

 Sync and Build Project to allow Android Studio run all obfuscation, shrinking and

optimization techniques

 Generate Signed APK

 Upload Signed APK on http://www.javadecompilers.com

 APK decompiled online through http://www.javadecompilers.com

 Java code extracted to verify code obfuscation, shrinking and optimization

23

1.4. Thesis organization:

Thesis has been prepared in multiple segments identified by distinct chapters as shown in Figure

1.7. CHAPTER 1: INTRODUCTION gives general overview and background study of

selected topic. It explains problem statement, proposed solution, research contribution and thesis

organization. CHAPTER 2: LITERATURE REVIEW embraces the recent knowledge

including substantive findings, hypothetical and methodological contributions regarding code

obfuscation. Initially it elaborated research methodology then it discussed theoretical

frameworks for software protection and specifically code obfuscation excluding original

experimental work. CHAPTER 3: PROPOSED METHODOLOGY presents overview of

hybrid code obfuscation techniques, their detailed purpose of usage, limitation and causes of

using hybrid approach. CHAPTER 4: IMPLEMENTATION describes the execution of

proposed hybrid approach to obfuscate the Android application. Certain customized rules are

defined to make improvements in all methodologies. Obfuscating the code with customized rules

and generating APK by securing the original functionality of Application. De-compilation of

APK has been done by Javadecompile. Ensuring that after de-compilation java files must not be

in original form. CHAPTER 5: RESULTS AND LIMITATIONS gives results and comparison

after applying hybrid obfuscation techniques on three different projects and analyze the end

results for the sake of improvement in code obfuscation and discusses limitations on these

approaches. CHAPTER 6: CONCLUSION concludes the research done in field of code

obfuscation and mentions the future work.

Figure1.7: Thesis Organization

24

CHAPTER 2

LITERATURE REVIEW

25

Chapter # 2: Literature Review

This chapter of thesis report will provide an overview of the current literature on the relevant

area in detail which includes computer security comprises network security and software

security. The main focus of this literature is on code obfuscation by protection the software

applications. To attain the characterized strategy and techniques to carry out the research, the

next step is to review the literature that will discuss below and shown in Figure 2.1:

 Relevant research of selected topic is done previously.

 Terminologies and frameworks presented and measured.

 Findings and consequences of the previous research.

 Gaps in previous research.

Figure2.1: Research Division

With the purpose of these highlighted points, we extensively revised the current literature by

using different sources and their sequences shown in Figure 2.2:

 Research Engines i.e. IEEE, Elsevier, ACM, Springer.

 Academics and organizations websites.

 Git-hub.

26

Figure2.2: Research Sequence

Literature review is segmented into following parts. Section 2.1 elaborates research

methodology nominated for this specific research. Section 2.2 contains prior study on selected

topic and results of these studies. Section 2.3 discusses the procedure of research conducted

whereas Section 2.4 will discuss relevant study.

2.1. Research Methodology:

Research methodology is measure of the study that distinguishes the procedure through which

research will directed. It is the approach which is used to identify the road map of research,

select the right methodology and analyze the information about selected topic. As we selected

designed based research method to cover code obfuscation techniques for protection at software

level, which allows us recursive method to choose hybrid techniques, perform critical analysis on

selected techniques and algorithms after that assemble concentrated results to improve existing

terminologies. Our main purpose is to improve educational practices through iterative

experimentation that covers analysis, design, development and implementation with recursive

criticism and collaboration of practitioners. Our basic approach is shown in Figure 2.3 below:

Research
Engine IEEE,

Elsevier, ACM,
Springer

Academic and
Organization

Websites

Git-
hub

27

Figure2.3: Research Approach

2.2. Prior Study:

In the period of hasty alteration in software application and innovation, digitalization has now

contacted essentially all aspects of our lives where it conveys substantial social assistances and

financial benefits subsequently. In many organizations, IT-based systems are executed and

exceedingly networked. In the interim, there are some enormous fundamental changes happened

in industry where daily life is relying on digitalization. Progressively use of digital applications

provides opportunities and many risks in the same time. So security of user is extremely crucial

factor when the aim of attacker is not only to exploit vulnerabilities but also crack application

algorithm by using techniques of reverse engineering and re-use it in many other ways [24, 25,

26, 27]. According to the definition of W. Stallings about computer Security given in NIST

Computer Security Handbook “Computer security is protection afforded to automated

information system in order to attain the applicable objectives of preserving the integrity,

availability and confidentiality of information system resources” [28]. According to study of W.

Stallings increasing trend in usage of internet and applications, the chance of attacks increases

which leads to raise the requisite of execution for complex protocols and secure applications.

Any application can be secure in three ways i.e. database security, software security and network

security as shown in Figure 2.4.

28

Figure2.4: COMPUTER SECURITY

Digital application has been increasing greater prominence and malevolent reverse engineering is

a protected innovation infringement attack looked by android applications, which aims on

comprehension and reusing the functionalities of a current application in the improvement of

different application. Such attacks make it simpler for the contenders to separate the restrictive

calculations and information structures from Java applications so as to fuse them into their own

projects, to chop down their improvement time and cost [1, 2, 12]. De-compilation is the way

toward producing source codes from transitional byte codes and the semi compiled nature of

Java class files make it increasingly manageable to reverse engineering and re-engineering

attacks by using de-compilation. Such instances of licensed innovation burglaries are hard to

recognize and seek after legitimately. The American Society of Industrial Security (ASIS) has

expressed that the force of protected innovation burglaries are raising and the majority of the

organizations spend under 5% of their financial plans for security. ASIS has determined

misfortunes because of robbery as 45 billion dollars in 1999 with the most recent figure as 150

billion dollars for every year. Software obfuscation is a well-known methodology where the

program is changed into a obfuscated program utilizing an 'obfuscator' so that the usefulness and

the info/yield conduct is protected in the obfuscated program though it is substantially more hard

to figure out the obfuscated program [13, 23]. However, obscurity is a progressively practical

technique for counteracting reverse engineering; there are 'deobfucators' accessible to crush a

portion of the less modern obfuscation methodologies. The well-known change systems utilized

for obfuscation are (i) lexical obfuscation which makes the structure of the changed program

hard to fathom (ii) data flow obfuscation that clouds the significant data and their data structures.

(iii) Code flow obfuscation that changes to darken the stream of execution [16, 13]. The

C
o

m
p

u
te

r
S

e
c
u

ri
ty

Software Security

Network Security

Database Security

29

obscurity can be performed on the source code, the middle of the road code or the machine

executable code. According to Collberg, the effectiveness of obfuscation is measured into three

four degrees; potency, resilience, cost and stealth. Hence potency alludes to the difficulty of the

obfuscation to be comprehended by people, whereas resilience alludes the difficulty of the

obfuscation to be circumvent naturally by a de-confusion procedure, cost refers to the

computational overhead included by the obfuscation, stealth suggests to the perceptibility of the

obfuscated code. In the light of literature and studied techniques we identified reverse

engineering attacks are customary dispersed and effortlessly de-compliable formats like java

byte code files.

An extensive research has been conducted to extract research from different scientific databases

for computer security as discussed above. The research papers are categorized in Table 2.1 that

shows references aim to accomplish selected research and prioritize the topic on the basis of gaps

and study conducted.

Classification on Security References

Databases Security [29],[30],[31],[32],[33],[34],[35]

Network Security [36],[37],[38],[39],[40],[41],[42],[43],[4],[5],[6],[7],[8],[9]

Software Security [1],[2],[3],[11],[12],[13],[17],[18],[20],[24],[25],[26]

Table2.1: CLASSIFICATION OF SECURITY

According to extensive research on computer security, a great deal of investigation is performed

to ensure application protection. A total of 33 papers are used to categorize for identification of

the prior study. In the light of literature review, the first barrier to resist the attacker is at network

level (man-in-the-middle) and fraction of studies is high on this level. As per studies [41],

network is deliberately designed for the communication of two systems, geographically on same

or different locations. Once when system is connected, they can freely transform information

with any system. This sort of transformation is useful for individual as well as corporate. On the

one side where usage network is giving huge benefits to users, on the other side it is the way to

exchange most critical and confidential information where attacker can easily spasm on the

communication channel and stole the required data and maltreatment the user‟s information in

anyway. Attack on any system could be on data, application structure and algorithm or any

outside virus that damages the internal network. In the challenging era it is obligatory to prevent

30

from the attacks, so we need to implement security mechanisms. Subsequently first level of

security is at network level (man-in-the-middle attacks) [4] where it repels entering any malware

which is not identical or harmful. Some of the network level methods are Firewall [5, 6, 42, 45,

46], IDs, Cryptography [7, 8, 47], biometric [38], encryption and DMZ layers [49, 39, 40, 43].

Defense-in-depth is not an artifact but security architecture that alerts network to be self-

protective.

Database security is likewise imperative however it ruptures at extreme end and all organizations

have prodigious reliance on database systems as crucial “data management technology” for

handling large data ranging from daily task to critical operations. Hence extensive reliance on

database systems offers opportunity to security breaches effecting crucial information. Where

contemporary outsourced data management and cloud computing also raises bar for the need of

database systems, hence security of data is more critical as ever. Traditional perimeter-oriented

mechanisms for securing application are not sufficient for fine-grained security required for

particular and sheltered information distribution among various clients and applications. Some of

techniques to secure application in terms of data are access control mechanism, authentication,

integrity controls and auditing [29, 30, 31, 32, 33, 34, 35].

Even if computer system is protected by network and database end still it is not secure if

application is executed on end-user mobile/ device. In our case, research is conducted to handle

Man-at-the-end attacks [10] that‟s caters at software level. So principle center is around software

protection on the grounds that in period of advanced application improvement for the most part

applications are introduced and utilized on customer devices /mobiles. Man-At-The-End attacks

are particularly common where attacker has physical access to the targeted area. These types of

attacks are challenging to evaluate because attacker has limitless and authorized access to the

targeted system where as all obstruction like network security are implemented on limited set of

rules and they are not sufficient to address Man-at-the-end attacks because attack is not on

organizational devices. A significant part of the surviving concentration to manage MATE

assaults is technical. With the mean of achieving the software protection, mechanisms against

Man-at-the-end are accredited as digital asset protection. Consequently network security is in

adequate for such security. So to handle such attack many techniques are implemented at

software level, but code obfuscation is one of the most adopted solutions and is aimed to hinder

31

the understanding of code. Code understanding can‟t be totally obstructed. With spending a lot of

time and cost on getting knowledge of obfuscated code attacker might not be able to extract

exact algorithm and back track. Regardless of largely approved solution, its evaluation has been

tended to in a roundabout way either by utilizing inside measurements or taking the perspective

of code analysis, e.g., thinking about the related computational multifaceted nature. As per

literature and practitioner practices, certain factors has been extracted listed in Table2.2

Characteristics Network Security Database Security Software Security

Nature Static Dynamic Dynamic

Development cost High Low Low

Maintenance cost High Low Low

Resistance High Low Low

Learnability Low High High

Deploy-ability Hardware-dependent Easy Easy

Exploitable High Low Low

Table 2.2: CHARACTERISTICS OF SECURITY

2.3. Procedure:

This research is conducted by reviewing total 60 research papers extracted from different search

engines including IEEE, Elsevier, ACM, Springer. The selected papers was narrowed by

focusing on concerned research specifically code obfuscation, its techniques and

experimentations. Initially research is made on wider area of computer security by selecting 33

papers on the criteria of relevancy and methodology proposed; in the result of that research we

identified three main security classifications as shown in Figure 2.4. Computer security is

divided in network security scrutinized on 14 research papers, database security analyzed on 7

research papers and software security examined on 12 research papers as shown in Figure 12.

32

Figure2.5: Security Graph

2.3.1. Gap identified in classified terms:

After scrutinizing and reviewing selected research papers and collecting feedback from

practitioners and students, it is examined that in the era of digital technology mobile applications

are most commonly used as shown in Table 2.3

Table2.3: AUDIENCE FEEDBACK

As per market requirement and paradigm shifted towards digital world, mobile applications are

in more demands. After compiling the general feedback and prior research made in computer

security, result is concluded that network security is already done vast to resist the attackers from

external attacks and presented a lot of techniques, protocols and frameworks but they are not

sufficient to secure mobile applications because it is always being installed on end-user device.

So in this case, if mobile application is not protected inside by any mean, competitor can buy a

33

copy and perform reverse engineering calculations; hence attacker damages the proprietary

software.

2.3.2. The Selection Criteria:

The selection criteria are utilized to recognize the correct way to deal with concentrate look into

papers. On the premise where featured papers were not meeting the selection criteria, at that

point they were avoided from research. Selection criteria covers three points discussed as follow:

 The literature depended on a hunt in the descriptor for „computer security‟. Research has

been conducted by using search engines i.e. IEEE, Elsevier, ACM, Springer to collect the

literature on computer security. Afterwards feedback has been collected to identify the

pain area of end-user. Then a result has been compiled on the basis of feedback and

research results.

 Right off the bat we chose base paper to comprehend the idea of code obfuscation, which

is “Manufacturing cheap, resilient, and stealthy opaque constructs” by Collberg (1998).

On the basis on main concepts, the selected papers published from 2000 to 2018. The

explanation behind choosing this timeframe is that, main this topic didn‟t find so vast

research moreover numerous journals and conferences have distributed inquires about

identified with context-aware computing since 2000.

 This paper covers journal, conference, survey and one book chapter. The reason behind

selecting maximum journals and conferences is that both industrial experts and

academicians use these much of the time to acquire information and spread their

examination discoveries. Consequently, these demonstrate the most abnormal amount of

research

34

Sr.

no

Scientific

database

Selected Research No. of

researches

1. IEEE [1],[3],[4],[5],[6],[9],[10],[14],[15],[16],[17],[18],[19],[24],[26],

[27],[44],[45],[52],[56]

20

2. ACM [7],[12],[13],[21],[22],[46],[48],[49],[50],[54],[55] 11

3. Springer [11],[23],[29],[43] 4

4. Elsevier [20], [31],[32],[33],[34],[35],[36],[38],[39],[40],[41],[46] 12

5. Others [2],[8],[25],[28],[30],[37],[42],[47],[53] 9

Table2.4: DETAILS OF RESEARCH WITH SCIENTIFIC DATABASE

2.3.3. Data Sources to Extract Research Papers:

The papers were scrutinized according to process as shown in Figure 2.6. The data source of this

research were optional source involves journal and conferences on software security from 2000

to 2018. The papers are selected as follow: initially base paper was identified to understand the

concept of code obfuscation. Then we listed search engines that will be using authentic research,

afterwards papers were searched on that selected scientific databases by using titles i.e. computer

securities, network protection, hardware security, software protection, code obfuscation. Almost

approx. 450 papers were identified. That was shrinking down on the basis of abstract / full title

description. Next, the papers were cautiously checked on to choose those that considered the

concerned topic as the core part, 60 remained on the grounds that the rest of the papers did not

meet the second determination criteria.

2.3.4. Method of classification of computer security:

For the purpose of this research, the classification created here comprises of following three

categories i.e. network security, software security and database security. As already discussed in

Figure 2.4 and Table 2.1 each category is further divided into sub categories.

2.3.4.1. Classification Method:

The classification is based on literature review and feedback collected including the trending

topics in computer applications. It is distinguished as per titles, publication years and language

used for implementation.

35

Figure2.6: Search Process

2.3.4.2. General Classification by title / Abstract:

Once base paper was selected, next step was to perform brief analysis to search for titles on

scientific database. Where papers were identified and excluded if titles were not relevant. After

performing this exercise, papers were excluded on the base of abstract review, where content

analysis was performed

2.3.4.3. Classification by publication year:

As our research is design-based and according to topic demand, we selected papers from 2000 to

2018 because fundamental this theme didn't discover so tremendous research in addition various

research have conveyed asks about related to setting mindful figuring since 2000 as shown in

Figure 2.7.

Figure2.7: Classification of Publication Year

1980

1990

2000

2010

2020

2030

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

count

year

36

2.3.4.4. Classification on the basis of feedback collected:

After reviewing literature, we conducted little survey to capture feedback from industries and

students to identify the pain area of this era regarding trends in market. We selected 25 students

and 20 practitioners to fill the survey. After collecting feedback from academics as well as

industry we identify there is more need of mobile applications as shown in Figure 2.8. Where we

identified when we are running in the era of digital technology, then only network security is not

sufficient to protect applications.

Figure2.8: Graph of Audience Feedback

2.3.4.5. Classification on the basis of attacks on software security:

After identifying the intensified problem statement, we tried to identify attacks on software

security because end-user is executing the application on its own device. As already elaborated,

there are many techniques to protect software from reverse engineering but we need to highlight

attacks from which our mobile application is being attacked as shown in Figure 2.9 and Table

2.5.

0%

10%

20%

30%

40%

50%

60%

70%

Web Applications Digital Apps Web Applications Digital Apps

Students Practitioners

Feedback %age

37

Sr. no Attacks Percentage Reference

1. Buffer over flow 29% [57]

2. Code injection 18% [58]

3. JIT Spraying 11% [59]

4. Slicing 7% [59]

5. piracy 7% [60]

6. Reverse Engineering 28% [23] Our Research Focus

Table2.5: CLASSIFICATION OF ATTACKS

Figure2.9: Attack Literature

2.3.4.6. Classification on the basis of Environment:

After mitigating the attacks on software, we analyzed the language platform and intermediate

compiler from different scientific databases to identify the gaps and flaws left in studies as per

literature in software security. We collected a lot of literature from prior studies. By focusing on

specific mobile applications and supporting platform i.e. android we found less literature in

selected area. Detailed analysis is shown in Figure 2.10

29%

18%

11%

7%

7%

28%

Attacks Literature

Buffer over fow

Code injection

JIT Spraying

Slicing

piracy

Reverse Engineering

38

Figure2.10: Classification of environment

39

CHAPTER 3

PROPOSED METHODLOGY

40

Chapter # 3: Proposed Methodology

By combining all efforts done for this planned research, this chapter is designed to elaborate

proposed methodology. Section 3.1 will discuss the tools and frameworks used for code

obfuscation, whereas Section 3.2 will cover proposed method of this research

3.1. Designated Obfuscators:

As part of this research, Pro-guard, Allatori and Paranoid is being compiled in single library and

provided all obfuscation facilities in single open source package.

 Class, package, method name obfuscation

 Debug info obfuscation

 Incremental obfuscation

 Optimization of code

 Shrinking of unused resources

 String Obfuscation

 Flow Obfuscation

 Prevention of java files after de-obfuscation

 Dead code insertion

3.1.1. ProGuard:

ProGuard also offers defense to counter reverse engineering by obfuscating the names of classes,

fields and methods. It is a default tool in development IDE‟s including Android Studio to

obfuscate, shrink, optimize, and preverify your code. Classes, methods and variables can also be

better obfuscated by specifying a text file in ProGuard rules file which contains list of custom

entries. Optimization can be made more advanced by changing code filters and optimization

passes given in ProGuard rules file. ProGuard does not obfuscate resources and strings.

Availability: Open-source

41

3.1.2. Paranoid:

Paranoid is an open-source third party string obfuscator library specifically for Android

Applications. Every string literal and string constant defined in annotated classes or activities

will be obfuscated. Paranoid initializes an array of unique characters from all obfuscated strings

and an array of indexes in the character array per each obfuscated string. When a project is

compiled all hardcoded strings are swapped with function calls with a parameter which returns

that specific string. The outcome is when the code is decompiled it is not possible to simply

search for strings.

Availability: Open-source

3.1.3. Allatori:

Allatori Obfuscator has all the features we will possibly require for protecting our mobile

application, and is frequently enhanced and improved to meet the challenge of functioning as a

cutting edge Java obfuscator system. Following features make Allatori one of the best

obfuscators for Android after ProGuard:

 Name Obfuscation

 Incremental and Flow Obfuscation

 Debug Info Obfuscation

 String Encryption

 Optimizing

 Watermarking

Availability: Its trail version is available with limited features.

3.1.4. DashO:

DashO is a Java and Android Obfuscator. It provides large-scale app hardening and aggressive

defense, greatly decreasing the danger of logical property theft, data theft, piracy, and tampering.

Its layered obfuscation, encryption, watermarking, auto-expiry, anti-debug, anti-tampering, anti-

hooking, anti-rooted device solution offers guard for applications all around the globe.

Availability: Trial Version Unpaid

42

3.1.5. Arxan:

Arxan provides mobile application code protection for apps written in Java and Kotlin to protect

against successful decompiling and tampering. Arxan can provide defense for keys and delicate

data via White-Box Cryptography for all Android-based devices. Arxan mobile application

protection also comprises of risk analytics to aid customers recognize whether apps are

functioning securely vs. running in a hazardous and unsafe environment.

Availability: Paid version

3.1.6. Cloakware:

Cloakware Software Protection is a collection of innovative cyber security technologies, libraries

and tools that enable the users to customize the protection of their critical digital assets such as

keys, code and data. It works on an extensive range of platforms including PC‟s and mobile

devices whether Android and iOS.

Availability: Not available anymore

3.2. Proposed Solution:

With the support of extensive prior study and practitioner‟s feedback, we proposed hybrid open

source code obfuscation technique. We created one package by using three libraries pro-guard,

paranoid and allatori by enhancing and providing features in one library. By using such

algorithms we defined customized set of rules. And by using our base paper, we used Collberg‟s

points of efficiency in regards to check the level of code obfuscation. We also performed code

optimization and code shrinking to reduce APK size and efficiency on HIGH.

Paranoid initializes an array of unique characters from all obfuscated strings and an array of

indexes in the character array per each obfuscated string. When a project is compiled all

hardcoded strings are swapped with function calls with a parameter which returns that specific

string. ProGuard uses a different mechanism for hardening code to achieve name obfuscation. It

utilized dictionaries to designate what to rename a class, method and package. ProGuard has a

default dictionary which contains the letters a-z. It also provides flexibility to use a customized

dictionary with user-defined entries. Control flow obfuscation is accomplished by inserting

irrelevant and dead code, reordering statements and flattening logical structure of code. Initially,

we split up the body of the method to simple blocks, and then we combine all these blocks,

43

which were formerly at different nesting levels, adjacent to each other. Allatori gives one name

to as many components as possible for name obfuscation. As a result, there is a high probability

that one name will be reused for naming the variables, classes and methods. Allatori changes the

typical java loops i.e. conditional and branching statements and where it's possible, the series of

instructions are transformed so that after decompilation the original java code is impossible to

find. After analyzing a class, Allatori finds all the hard-coded strings and encrypt them and are

kept in constant pool of the affected class. The combination of distinct methods used in Allatori

secures the application to the maximum, often resulting into failure of the decompilation process.

3.3. Set of Rules:

3.3.1. Obfuscation:

1. ‟minifyEnabled‟ set to true in Gradle settings file

2. Using „useuniqueclassmembernames‟ property to give the identical obfuscated names to

class members that have the same original names, and different obfuscated names to class

members that have different names

3. Referring to use customized text file with random entries for better obfuscation of variables,

methods, classes and packages names i.e. obfuscationdictionary, classobfuscationdictionary,

packageobfuscationdictionary with parameter of custom file being used.

4. Repackaging all renamed packages in one package by name as entered after

flattenpackagehierarchy property

5. Repackaging all renamed classes in one package by name as entered after repackageclasses

property

3.3.2. Shrinking:

1. „shrinkResources‟ and ‟minifyEnabled‟ set to true in Gradle settings file

3.3.3. Optimization:

1. ‟minifyEnabled‟ set to true in Gradle settings file

2. Using a different default ProGuard configuration file by modifiying the „proguard-

android.txt‟ value to „proguard-android-optimize.txt‟ in Gradle settings

3. Adding filter „optimizationpasses‟ with numeric value which indicates number of

optimization passes to be executed. Default number of passes is only one. We have set 5 for

best optimization.

44

4. Adding different parameters to „optimizations‟ for achieving enhanced optimization like

code/removal, code/simplification.

3.3.4. Obfuscated Chunks:

There are many obfuscated methods i.e. lexical, control flow, data flow obfuscation. These levels

of obfuscation are being attained by performing many experiments.

Techniques Results

Lexical Obfuscation - Achieved from pro-guard for class, package,

method, statements, variables obfuscation

- Achieved by paranoid for String obfuscation

Control flow Obfuscation - Achieved by using Allatori

Data flow Obfuscation - Achieved by pro-guard

Table3.1: OBFUSCATED CHUNKS

3.4. Collberg’s Taxonomy on hybrid approach:

Collberg discussed efficient analysis of code obfuscation by giving four taxonomies i.e.

Resilience, Cost, Potency, Stealth. Because of the regular code impression of the interpreter,

virtualization obfuscation can be effortlessly distinguished and in this manner its stealth is

generally low contrasted with most obfuscation methods. Accordingly, we don't trust this

measure requires further examination for the specific execution displayed in this research work.

Rest of the three taxonomies and their analysis is below:

3.5. Analysis Metrics:

Although obfuscation implementations can make de-obfuscation attacks difficult and more

complex, it is unavoidable to make any code totally unreadable and attack free. Identical

obfuscation implementation was performed for all test sample projects but the result varied due

to different code flows, structures and practices applied.

To assess the quality of any obfuscator, the overall performance will be denoted as S quality.S quality

consists of three major metrics i.e. Potency as S pot, Resilience as S res, and Cost as S cost.

Following are the metrics with the help of which we can assess the effectiveness of our

obfuscation techniques applied on mobile application code:

45

3.5.1. Potency

Potency is the extent to which an attacker can read, understand and interpret any obfuscated

code. Since measuring potency of any obfuscated program is difficult, the potency can be drilled

down to make the analysis easier into following four complexity parts: variable potency, nesting

potency, control flow potency, and code length. Nesting complexity and code length have been

given more weightage than the others by experts. Low weightage factors result in modest

increased time for cracking the code. A medium weight adds more increased time to decompile

the code. A high weight factor not only adds overhead and decompiling time but also transforms

the methodology of code structure. Potency equation is as follows:

S pot = 0.4 (S nesting) + 0.2 (S variable) + 0.2 (S control) + 0.4 (S length)

EQUATION3.1: POTENCY MEASURE

Potency has positive impact on the quality of any obfuscated program. Potency is measured on

the scale from 0 to 1, where 1 means extremely potent and 0 means no potency in obfuscated

code. Based on our extensive survey conducted from experts of Information Security field to

assess the level of potency our obfuscation achieves for all tested sample projects, following was

the result concluded:

Sr. # Test S pot before

obfuscation

S pot after obfuscation

1 Project 1 0 0.75

2 Project 2 0 0.68

3 Project 3 0 0.65

Table 3.2: SAMPLE TEST PROJECTS FOR POTENCY

3.5.2. Resilience

Resilience is the extent to which automated attacks can manipulate and reverse engineer any

obfuscated code with the intention of extracting and exploiting useful information. These attacks

can be termed as efforts to convert the code back to its original source code form. Resilience also

has positive impact on the quality of any obfuscated program. No specific formula has been

defined to evaluate Resilience, so we give a float value from 0 to 1.

46

Sr. # Test S res before

obfuscation

S res after obfuscation

1 Project 1 0 0.6

2 Project 2 0 0.4

3 Project 3 0 0.5

Table 3.3: SAMPLE TEST PROJECTS FOR RESILIENCE

3.5.3. Cost

The cost measures delay and additional resources utilized by an obfuscated program during

runtime. Cost is split into three types: memory, storage and runtime. Memory is the heap and

non-heap memory consumption for classes, arrays, methods and variables used by an obfuscation

program compared to that of original program. Storage implies the file size of obfuscated code

whereas runtime is the amount of time an obfuscated program takes to run and also to generate

APK file. Cost has a negative impact on the quality of obfuscated code. Experts believed that

memory and runtime are far more crucial than size of an obfuscated program. Below is the cost

equation:

S cost = 0.4 (S memory) + 0.45 (S runtime) + 0.15 (S storage)

EQUATION3.2: COST MEASURE

Negative cost shows a positive impact on overall quality of obfuscation applied is shown in

Table 3.4.

Sr. # Test S cost before

obfuscation

S cost after

obfuscation

1 Project 1 0 - 0.08

2 Project 2 0 - 0.05

3 Project 3 0 - 0.01

Table3.4: SAMPLE TEST PROJECTS FOR COST

S quality = 0.4 (S pot) + 0.6 (S res) - S cost

EQUATION3.3: COLLBERG'S TAXONOMY

47

Both potency and resilience have positive impact on quality while cost has negative impact on

quality of an obfuscator. Resilience has been given more weightage than potency by experts as

cognitive aptitude of computer programs is far low as compared to that of humans. If above

statement gives zero result value, it means that no obfuscation has been implemented in code and

is entirely readable and understandable. Therefore, greater the result value is, better will be the

overall quality of an obfuscator as shown in Table 3.5.

Sr. # Test S quality before

obfuscation

S quality after obfuscation Overall

S quality

1 Project 1 0 0.4 (0.75) + 0.6 (0.6) – (–0.08)

= 0.3 + 0.36 + 0.08

0.74

2 Project 2 0 0.4 (0.68) + 0.6 (0.4) – (–0.05)

= 0.27 + 0.24 + 0.05

0.56

3 Project 3 0 0.4 (0.65) + 0.6 (0.5) – (–0.01)

= 0.26 + 0.3 + 0.01

0.57

Table3.5: Sample Test Projects with Overall Quality Score Before And After Obfuscation

48

CHAPTER 4

IMPLEMENTATION

49

Chapter # 4 Implementation

4.1. Pro-Guard

Pro-Guard is one of the most popular and trustworthy java obfuscators. It makes Java and

Android applications up to 90% smaller and up to 20% faster. Pro-Guard also offers defense to

counter reverse engineering by obfuscating the names of classes, fields and methods. Pro-Guard

can be used free of cost to secure mobile applications. It is a default tool in development IDE‟s

including Android Studio to obfuscate, shrink, optimize, and pre-verify your code. Below Figure

4.1 shows Pro-Guard techniques steps.

Figure4.1: Pro-Guard Techniques Steps

Android Studio provides a file that contains all of the essential configuration settings to run

Android Pro-Guard obfuscation with application. To enable Pro-Guard work with default

settings in Android Studio, following steps were taken:

1. Set Minify enabled as true and default Pro-Guard file settings in App level gradle file as

shown in below Figure 4.2.

50

Figure4.2: Enabling Default Pro-Guard Settings

We have used our own customized ProGuard file for better obfuscation than what default file

provides us. For that, following change has to be done in above code as illustrated in Figure4.3.

Figure4.3: Enabling Customized Pro-Guard Settings

4.1.1. Shrinking Code:

There are many noticeable advantages of making app size smaller, such as improving user

retention and contentment, faster downloads and no. of installations, and reaching users on

lower-end devices, particularly in evolving markets. Many developers are more concerned about

the obfuscation part of ProGuard, but the major edge it offers is the elimination of all unused

code and resources that are otherwise dispatched with APK file. Below image shows the

contribution of contents in making up the whole app size. From the looks of this Figure,

resources (res) and code (.dex) contribute massively to the APK size.

Figure 4.4: APK Size Ratio

51

Setting „minifyEnabled‟ true shrinks code by removing unused chunks of code and references

including code libraries. Whereas, setting „shrinkResources‟ true on the other hand removes

unused resource files from resources folder that are not references in the code. For

„shrinkResources‟ to work effectively, „minifyEnabled‟ must be set to true as well as indicated in

below Figure. Our APK size was decreased from 7.13 MB to 4.34 MB after setting both

properties as true.

Figure 4.5: Shrink APK Size

4.1.2. Optimizing Code:

To unlock code optimization, we used a different default Pro-Guard configuration file. We

modified the „proguard-android.txt‟ value to „proguard-android-optimize.txt‟ in build.gradle file

as given in below Figure 4.6.

Figure4.6: Optimization Settings

52

This will possibly enable app to run faster and decrease code size due to optimizations such as

method in lining, class merging and code simplification and removal. For more advanced

optimizations, we added certain filters in Pro-Guard rules file which are given in below figure:

Figure4.7: APK Size Ratio

First filter „optimizationpasses‟ indicate number of optimization passes to be executed. Default

number of passes is only one. Numerous passes on code result in improved optimizations

definitely. When maximum optimization is done, no more passes are performed. In second

filter, we have included several parameters for enhanced optimization.

code/removal - It removes unused variables, dead code based on control flow analysis and data

flow analysis and also removes exceptions with empty try blocks.

code/simplification – It performs peephole optimizations for variable loading and storing,

arithmetic instructions, casting operations, field loading and storing, branch instructions, constant

strings. It also simplifies code based on control flow analysis and data flow analysis.

class/merging – It merges classes vertically and horizontally in the class hierarchy

code/merging – It merges identical blocks of code by modifying branch targets

method/in-lining – It does inline short methods, inline methods that are only called once, and

simplifies tail recursion calls wherever feasible.

field – It removes write-only fields, marks fields as private and propagates the values of fields

across methods.

53

4.1.3. Obfuscating Code:

4.1.3.1. Obfuscation of variables, methods, classes, packages:

Variable and method names are obfuscated with default set of characters and strings like a, b, xy

etc. But they can also be better obfuscated by specifying a text file in Pro-Guard rules file which

contains list of custom entries. Name obfuscation is hardly improved by doing this therefore, to

overcome it, it is recommended to provide entries which can be confusing like using java

keywords i.e. class, string, public, if etc. Entries from the list are chosen entirely random.

Punctuation characters, empty lines, white spaces and comments after hash sign are totally

ignored.

Above technique is only limited to renaming of methods and fields. To obfuscate class names,

we have to specify text file separately in Pro-Guard rules file. Similarly, to obfuscate package

names, we must provide text file explicitly in Pro-Guard rules file.

Figure 4.8: Properties for Obfuscation Dictionaries

Here, keywords.txt is our file with customized entries which is being used for obfuscation of

variables, classes and packages. Different files can also be used and assigned to variable, classes

and packages but we have used same file for this purpose. Below figure only shows a small part

of keywords text file due to space limitation.

54

Figure 4.9: Custom entries to replace variable and class names Dictionaries

4.1.3.2. Impact of obfuscation dictionaries:

The impact of using class, variables and methods obfuscation dictionary from custom file is

illustrated in below figures which show the original code and code after applying obfuscation.

Figure 4.10: Original Code

55

Figure 4.11: Obfuscated Code

-- Change starts

Above obfuscation is the outcome of using randomized dictionary to make it difficult to decompile

classes and extract useful information. ProGuard uses all valid identifiers in the file. It ignores empty

spaces and lines starting with '#'.

-- Change ends

Figure 4.12: Original Code

56

Figure4.13: Obfuscated Code

-- Changes start

Above renaming obfuscation of java classes is the result of using randomized dictionary so that every

build will have a unique mapping, making it difficult for an attacker to understand and manipulate the

code.

-- Changes end

4.1.3.3. Optimizations:

Optimization passes improves code removal and simplification wherever necessary. This directly

reduces our application size and performance. Below figures show the difference between codes

without and with applying optimizations.

57

Figure4.14: Without Optimization

Figure4.15: With Optimizations

-- Changes start

Applied optimization passes and filter settings have led to removal of unused and dead code from

original program and simplify complex chunks of code wherever possible.

-- Changes end

4.1.3.4. Package Names Obfuscation:

Names of packages in our code can be obfuscated in multiple ways. All packages are obfuscated

by repackaging them into one given package to reduce code size and increase accessibility by

specifying any custom name to replace it with (Figure 31). Packaging can be further obfuscated

by combining obfuscated classes into a single package (shown in Figure 32).

Figure 32 clearly shows how we achieved repackaging of classes and package. Whole package

of obfuscated classes can be removed as well by giving no argument or leaving with an empty

string „‟. Another important flag in Pro-Guard is obfuscation of the access modifiers of classes

and its members as displayed in Figure 33.

Figure4.16: Properties for Package and Access Modifiers Obfuscation

58

4.1.3.5. Impact of flattenpackagehierarchy:

Figure 4.17: Original Package naming

Figure 4.18: Package Obfuscation Level 1

4.1.3.6. Impact of repackageclasses:

Repackage classes obfuscates all classes into root level package thereby reducing code size as

shown in below figure.

This configuration moves all classes to a single root-level package „myobfuscated‟.

Figure 4.19: Package Obfuscation Level 2

4.1.3.7. Impact of allowaccessmodification:

Below are given figures which are showing the original access modifier and modified access

modifier of a class after using „allowaccessmodification‟ in Pro-Guard rules file.

59

Figure 4.20: Class file with original access modifier

Figure4.21: Class file with changed access modifier

-- Changes start

Allowaccessmodification can improve the results when applying optimization to expand the access

modifiers of classes and methods. But this option should not be used if those classes are intended to be

private due to API calls.

-- Changes end

60

4.1.3.8. Obfuscation Mapping File:

We write a reference obfuscation mapping file in our Pro-Guard rules file. In this mapping file,

there is a reference between all original names and their obfuscated names whether it is a

variable name, class name or some else. This information proves useful if there is a need to map

obfuscated names back to their original ones. Here‟s how we print the mapping file:

Figure 4.22: Property for Mapping Reference File

Below is the mapping reference from original names to obfuscated names in mapping.txt file:

Figure 4.23: Mapping Reference File View

4.1.3.9. Incremental obfuscation:

We can achieve incremental obfuscation by specifying to reuse the mapping name which was

printed out in the last obfuscation run of ProGuard. Classes and variables which are listed in the

respective mapping file get the names indicated alongside while classes and variables that are not

indicated get new names. Here‟s how we introduce incremental obfuscation:

61

Figure 4.24: Property for incremental obfuscation by reusing mapping file

-- Changes start

With this setting provided by ProGuard, incremental obfuscation is achieved as after every build, classes

methods variables and packages will get unique names compared to previously used obfuscated names

to avoid easy decompilation.

-- Changes end

4.1.3.10. Unique naming of class members:

This property mentions to give the identical obfuscated names to class members that have the

same original names, and different obfuscated names to class members that have different names

as illustrated in below figure.

Figure4.25: Property for unique naming of classes

4.1.4. Limitations:

1. ProGuard does not obfuscate hard-coded strings.

2. ProGuard optimization processes assumes that the processed code never goes into busy and

non-ending loops.

3. ProGuard optimization processes assumes that the processed code never throws

NullPointerExceptions, ArrayIndexoutofBoundsExceptions etc in order to accomplish

something useful.

62

4.2. Paranoid

Pro-Guard has its own limitations and one of them is not obfuscating string literals in code. For

this reason, we have used Paranoid library and its Gradle plugin in Android Studio. Paranoid is

an open-source third party string obfuscator library specifically for Android Applications.

To make Paranoid functional in your code, we must annotate the classes and activities with

@Obfuscate (as illustrated in the Figure A) which contain strings and need to be obfuscated.

Every string literal and string constant defined in annotated classes or activities will be

obfuscated.

Figure4.26: Declaration of Strings

Below are the given sample string obfuscation screenshots before and after implementation of

Paranoid library.

63

Figure4.27: Code before String obfuscation

Figure4.28: Code after String obfuscation

64

4.2.1. How it works:

Paranoid initializes an array of unique characters from all obfuscated strings and an array of

indexes in the character array per each obfuscated string. When a project is compiled all

hardcoded strings are swapped with function calls with a parameter which returns that specific

string. The outcome is when the code is decompiled it is not possible to simply search for strings.

Major drawback of ProGuard is that it does not obfuscate hardcoded strings present in the code.

It alters the class names, method names and variable names but not of variable values. Here the

problem originates because anyone can reverse-engineer the apk and get the source code. Even if

the code is obfuscated, anybody can get all the hardcoded strings present in the code by

searching double quotes. String searching exposes interesting information in code so avoiding

this can increase code security and protection significantly for more people. To overcome this

problem, we have made the use of Paranoid in our work.

4.3. Allatori:

Allatori is also a java obfuscator which offers many features but the reason why we have used

this third party utility is its capability to completely hide java files. It does not work with

Paranoid library so we excluded Paranoid library to see the impact of Allatori. Allatori also does

not obfuscate resources like ProGuard but overall ProGuard takes the lead over obfuscation.

Below figures show the result of using Allatori in our project:

65

Figure4.29: Java source files inside ‘kickoff’ folder

Figure4.30: Java source files folder ‘kickoff’ before using Allatori

66

Figure4.31: Java source files folder ‘kickoff’ after using Allatori

67

CHAPTER 5

RESULTS AND LIMITATIONS

68

Chapter # 5 Results and Limitation

This chapter is designed to elaborate the experiments performed, results concluded and

limitations. Section 5.1 is about Experiments, Section 5.2 is about Results, Section 5.3 discusses

the limitations of this research.

5.1. Experiments:

5.1.1. VOT4CS:

Initially for the purpose of code obfuscation, we selected .NET platform, VOT4CS tool and

Roslyn Code analyzer to improve the Collberg‟s four taxonomies.

1. Firstly Roslyn Git library was integrated to VS2015, VS2107 as shown below:

Figure5.1: Roslyn Git-hub Plugin

2. Roslyn Code analyzer was integrated with VS2015 for syntax analyzer by using nugget

packages, and performed analysis of code as shown below:

69

Figure5.2: Syntax Graph

3. After that VOT4CS was integrated with VS 2015, set of rules were defined for the sake

of improvement of Collberg‟s taxonomy. Code Structure, app Setting and .cs is shown in

figure below

Figure5.3: Setting Project and Defining Rules

Figure5.4: Adding Version of Code Analyzer to app Setting

70

Figure5.5: Virtualization Rules

Results:

After performing experiments, we identified that, there were certain improvements needed

for VOT4CS.

1. VOT4CS don‟t handle lambda expression

Limitation 1:

Roslyn doesn‟t support to implement the lambda expression.

2. VOT4CS don‟t handle try/catch

Limitation 2:

Roslyn doesn‟t support to implement the finally statement.

3. VOT4CS can‟t store data in struct

Limitation 3:

It gives error after compilation when we are trying to access the attribute of struct.

5.1.2. Hybrid Approach for Android:

Finally, we selected hybrid method to obfuscate the android application by using pro-guard,

paranoid and allatori to compile all feature set in one package. Hence pro-guard provided for

class, package, method, statements and variables obfuscation. Where pro-guard doesn‟t

71

facilitates the string obfuscation, so to compensate this gap we used paranoid. And for the sake

of control flow and de-obfuscation java files, we used allatori. We also used de-obfuscator

“http://www.javadecompilers.com/” to de-obfuscate our APK and performed reverse engineering

to get back the algorithm. Below are results.

5.1.2.1. Case Studies:

Three projects have been selected for experimentation, where set of rules are implemented with

configuration settings.

Sr. # Test Before obfuscation Cost After obfuscation Cost

1 Project 1 0 - 0.08

2 Project 2 0 - 0.05

3 Project 3 0 - 0.01

Table 5.1: Before and After Code Obfuscation

Test Case 1:

Class name obfuscation:

Project 1:

Before Obfuscation:

http://www.javadecompilers.com/

72

After Obfuscation:

Class names have been obfuscated aggressively by using randomized dictionary placed in our

project. No two classes can get identical name, making it difficult for an attacker to understand

and manipulate the code. This specific type of renaming obfuscation is enabled by using

following command in proguard rules file:

classobfuscationdictionary dictionary.txt

Exactly same class obfuscation technique has been sued for other two test projects.

Project 2:

Before Obfuscation:

After Obfuscation:

73

Project 3:

Before Obfuscation:

After Obfuscation:

Test Case 2:

Code obfuscation:

Project 1:

Before Obfuscation:

74

After Obfuscation:

Class names have been obfuscated aggressively by using randomized dictionary placed in our

project. No two classes can get identical name, making it difficult for an attacker to understand

and manipulate the code. This specific type of renaming obfuscation is enabled by using

following command in proguard rules file:

classobfuscationdictionary dictionary.txt

Exactly same class obfuscation technique has been sued for other two test projects.

Project 2:

Before Obfuscation:

75

After Obfuscation:

Project 3:

Before Obfuscation:

After Obfuscation:

76

Test Case 3:

Method obfuscation:

Project 1:

Before Obfuscation:

After Obfuscation:

Class member variables and methods have been obfuscated aggressively by using randomized

dictionary placed in our project. No two methods or variables can get identical names, making it

quite difficult for an attacker to understand and manipulate the code. This specific type of

renaming obfuscation is enabled by using following command in proguard rules file:

obfuscationdictionary dictionary.txt

Exactly same class methods and variables obfuscation technique has been used for other two test

projects.

77

Project 2:

Before Obfuscation:

After Obfuscation:

Project 3:

Before Obfuscation:

78

After Obfuscation:

Test Case 4:

Package obfuscation:

Project 1:

Before Obfuscation:

After Obfuscation:

All packages are obfuscated by repackaging them into one given package. Packaging can be

further obfuscated by combining obfuscated classes into a single package. This specific type of

renaming obfuscation is enabled by using following commands in proguard rules file:

Flattenpackagehierarchy – myobfuscated

Repackageclasses - myobfuscated

Exactly same package obfuscation technique has been used for other two test projects.

79

Project 2:

Before Obfuscation:

After Obfuscation:

Project 3:

Before Obfuscation:

After Obfuscation:

Test Case 5:

String obfuscation:

Project 1:

Before Obfuscation:

80

After Obfuscation:

Hard-coded literals and strings cannot be obfuscated by ProGuard so to achieve string

obfuscation we have used third party library i.e. Paranoid. Paranoid initializes an array of unique

characters from all obfuscated strings and an array of indexes in the character array per each

obfuscated string. When a project is compiled all hardcoded strings are swapped with function

calls with a parameter which returns that specific string. The outcome is when the code is

decompiled it is not possible to simply search for strings. This specific type of string obfuscation

is enabled by using following line above every class name in each java file:

@Obfsucate

Exactly same string encryption/obfuscation technique has been used for other two test projects.

Project 2:

Before Obfuscation:

After Obfuscation:

81

Project 3:

Before Obfuscation:

After Obfuscation:

Test Case 6:

Code Optimization:

Project 1:

With Optimization:

82

Without Optimization:

Code gets optimized intensively after going through numerous passes with filters applied to

remove dead unused code and simplify loophole and infinite loops.

Exactly same optimization techniques have been used for other two test projects.

Project 2:

With Optimization:

83

Without Optimization:

Test Case 7:

APK Size Comparison:

Project 1:

It can be clearly seen that application size has been significantly decreased by applying multiple

code shrinking, optimization and obfuscation techniques altogether through different means i.e.

ProGuard, Allatori and Paranoid.

Exactly same techniques have been used for other two test projects.

Project 2:

84

Project 3:

5.1.3. Functional Testing:

Functional testing of any program is aimed at testing whether functionality of the program

remains same after obfuscation. Below result shows that there is no effect on functionality of

tested features after obfuscation:

Sr. # Test Function Name Function Conformity

after obfuscation

1 Project 1 Login No change

2 Project 2 Registration No change

3 Project 3 Settings No change

Table5.2: Sample Test Projects with Function conformity after obfuscation

5.1.4. Limitation:

We performed code obfuscation on android application by using hybrid approach of pro-guard,

paranoid and allatori. After complete implementation and experiments we are successful to

obfuscate all java source files. But resource files <xml> are left to be obfuscated due to the

limitation of scripting language, as we performed obfuscation on managed code.

5.1.5. Comparisons:

Below section elaborates the libraries and their feature set, availability, platform and its

evaluation.

85

Obfuscator Platform

Supported

Price License Evaluated Feature Set

Arxan Web, Android,

iOS

Trial

Version

Free No White box cryptography

Cloakware Web, Android,

iOS

Not

available

Not available No Data, function and control

flow transformations, anti-

debug, white box

cryptography

Zelix

Klassmaster

Java $ 479 Commercial No Flow, String and Reference

Obfuscation

JBCO Java Free Open-Source No Adding dead code, combining

try with catch blocks,

reordering conditional

statements

JMOT Java Free Open-Source No Name and string obfuscation

Sandmark Java Free Open-Source No Watermarking, tamper-

proofing and code

obfuscation, code optimizing

Jfuscator Java Trial

Version

Free No Flow, API call, string, debug

info obfuscation

JOAD Java Free Open-Source No Name, control-flow and string

obfuscation, code optimization

JShield Java Not

available

Not available No Layout, control and data

obfuscation

Smokescreen Java Not

available

Not available No Name, control-flow, string

obfuscation, removal of

unused resources

CodeShield Java Not

available

Not available No Name and control-flow

obfuscation, rearranging

statements

VOT4CS C# Yes

86

ProGuard Java and Android Free Open-Source Yes Name, debug info,

incremental obfuscation and

optimization and shrinking of

unused resources

Paranoid Android Free Open-Source Yes String obfuscation

Allatori Java and Android Trial

Version

Free Yes Name, flow, debug info,

string, incremental

obfuscation

DashO Java and Android $ 895 Commercial No Name obfuscation and

removal of unused class,

method and field.

Hybrid Android Free Proposed

Approach

YES Name, debug info,

incremental obfuscation,

optimization, shrinking of

unused resources, String

Obfuscation, Flow

Obfuscation, prevention of

java file after de-

obfuscation, dead code

insertion,

Table 5.3: Comparison of Libraries

87

CHAPTER 6

CONCLUSION AND FUTURE WORK

88

Chapter # 6 Conclusion and Future Work

6.1. Conclusion:

With the paradigm shift of digital era, software applications are light weight. It is more

demanding to use in-hand applications. This trend sets need of emerging mobile applications; so

when application is installed on end-user device then it is mandatory to secure it. If application is

not secure, by using reverse engineering process competitor recognize the behavior of

application and re-use the algorithm where traditional approaches are not enough to secure

applications. Process is initiated by collecting feedback from students and practitioner‟s and

results are below

Figure 6.1: Feedback

 The main contribution to this research was securing android application by comparing tools and

techniques for code obfuscation precisely. Many experiments are performed by using tools like

VOT4CS in .net and allatori, paranoid and pro-guard in android to provide all in one package.

Moreover to provide open source package by using hybrid approaches to protect the software

application against duplication of algorithms. The main purpose of this research was preventing

reverse engineering attacks and raising the bars against attackers. Our research is divided into

extensive literature with practitioner feedbacks, using hybrid approaches for obfuscation and

performing experiments on selected algorithms. The purpose of code obfuscation was to shield

against malicious reverse engineering attacks. We presented hybrid methodology to mitigate

these attacks based on experimentations. Obviously with all efforts, we cannot claim to obfuscate

the application 100% but we can attain maximum results to make it harder for attacker to trace it

back. With the practices of reverse engineering, attacker would need cost and time with useless

89

efforts to get back the algorithms of application. So by concluding the research work, we can

claim (i) we provided one open source hybrid obfuscated method, (ii) we improved the

efficiency of four taxonomies of Collberg‟s i.e. resilience, cost, stealth and potency whereas

stealth as low impact on proposed algorithm. But cost has negative whereas resilience and

potency has negative impact (iii) We evaluated code optimization and shrinking apk size. We

obfuscated android application, but we left resource file obfuscation <xml>, because our main

focus was on managed code obfuscation. As resource file is scripting language. Below is given

result.

Sr. # Test S quality before

obfuscation

S quality after obfuscation Overall

S quality

1 Project 1 0 0.4 (0.75) + 0.6 (0.6) – (–0.08)

= 0.3 + 0.36 + 0.08

0.74

2 Project 2 0 0.4 (0.68) + 0.6 (0.4) – (–0.05)

= 0.27 + 0.24 + 0.05

0.56

3 Project 3 0 0.4 (0.65) + 0.6 (0.5) – (–0.01)

= 0.26 + 0.3 + 0.01

0.57

Table 6.1: Quality of Project

6.2. Future Work:

We successfully obfuscated all java files, and also performed de-obfuscation; in the result we

were not able to get back the original code. Where-as, resource files <xml> are left to be

obfuscate because they fall in scripting code that does not lie in the boundary of obfuscation for

managed code.

90

References

[1]. B. Anckaert , M. Jakubowski, “Proteus: Virtualization for Diversified Tamper-Resistance” ,

ACM , 2006

[2].

[3]. P. Sivadasan, P.Sojan Lal, “Suggesting Potency Measures for Obfuscated Arrays and

Usage of Source Code Obfuscators for Intellectual Property Protection of Java Products”, IEEE,

2011

[4]. M. Rostami, F. Koushanfar, “Hardware Security: Threat Models and Metrics”, IEEE, 2013

[5]. S. Khummanee, A. Khumseela, S. Puangpronpitag, “Towards a New Design of Firewall:

Anomaly Elimination and Fast Verifying of Firewall Rules”, IEEE, 2013

[6]. Alex X. Liu, Mohamed G. Gouda, “Firewall Policy Queries”, IEEE, 2009

[7]. A. Herzberg, SS. Pinte, “Public Protection of Software”, ACM, 1987

[8]. U.G. Wilhelm, “Cryptographically protected Objects”, 1999

[9]. C. Collberg, C. Thomborson, D. Low, “Breaking Abstraction and Unstructuring Data

Structure”, IEEE, 2009

[10]. B. Pingle, A. Mairaj, A. Y. Javaid, “Real-world Man-in-the-middle (MITM) Attack

Implementation Using Open Source Tools for Instructional Use”, IEEE, 2018

[11]. M. Ceccato, M. Penta, P, Falcarin, F. Ricca, M. Torchiano, P. Tonella, “A family of

experiments to assess the effectiveness and efficiency of source code obfuscation techniques”,

Springer, 2014

[12]. M. Franz, “E unibus pluram: Massive-Scale Software Diversity as a Defense Mechanism”,

ACM, 2010

[13]. S. Banescu, C, Lucaci, B. Krämer, A. Pretschner, “VOT4CS: A Virtualization Obfuscation

Tool for C#”, ACM, 2016

[14]. P. SamUetson, “Reverse-Engineering Someone Else‟s Software: Is It Legal”, IEEE, 1990

[15]. K. Gallagher, J. Deignan, “The Law and Reverse Engineering”, IEEE, 2012

[16]. S. Sebastian, S. Malgaonkar, P. Shah, M. Kapoor, T. Parekhji, “A Study & Review on

Code Obfuscation”, IEEE, 2016

91

[17]. C. Collberg, C. Thomborson, “Watermarking, Tamper-Proofing, and Obfuscation Tools for

Software Protection”, IEEE, 2002

[18]. A. Viticchi, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella, R. Tiella,

“Assessment of Source Code Obfuscation Techniques”, IEEE, 2016

[19]. A. Kuma, S. Sundar, S. Kumar, “A Code Obfuscation Technique to Prevent Reverse

Engineering”, IEEE, 2017

[20]. A. Sheneamer, S. Roy, J. Kalita, “A detection framework for semantic code clones and

obfuscated code”, Elsevier, 2017

[21]. J. Garcia, M. Hammad, S. Malek, “Lightweight, Obfuscation-Resilient Detection and

Family Identification of Android Malware”, ACM, 2018

[22]. C. Collberg, C. Thomborson, D. Low, “Manufacturing Cheap, Resilient and Stealthy

Opaque Constructs”, ACM, 1998

[23]. S. Schrittwieser, S, Katzenbeisse, “Code Obfuscation against Static and Dynamic Reverse

Engineering”, Springer, 2011

[24]. W. Xingkui, P. Xinguang, “Research on Data Leak Protection Technology Based on TPM”,

IEEE, 2013

[25]. A. Ramakic, Z. Bundalo, “DATA PROTECTION IN MICROCOMPUTER SYSTEMS

AND NETWORKS”, 2014

[26]. M. Markovi, “Data Protection Techniques, Cryptographic Protocols and PKI Systems in

Modern Computer Networks”, IEEE, 2007

[27]. Z. Bundalo, A. Ramakic, D. Bundalo, “Increasing Desktop Application and User Data

Protection Using Smartphone”, IEEE, 2016

[28]. W. Stallings, “Cryptography and Network Security” Fourth Edition, pg 234-345

[29]. A. Berghe1, R. Scandariato, K.Yskout, W, Joosen, “Design notations for secure software: a

systematic literature review”, Springer, 2015

[30]. E. Bertino, G. Ghinita, A. Kamra, “Access Control for Databases: Concepts and Systems”,

2011

[31]. W. Sujansky, S. Faus, E. Stone, P. Brennan, “A method to implement fine-grained access

control for personal health records through standards relational database queries”, Elsevier, 2010

[32]. J. Berrington, Databases, Elsevier, 2007

92

[33]. L. Fu Lu, J. Zhang, M. Huang, L. Fu, “String alignment pre-detection using unique

subsequences for FPGA-based network intrusion detection”, Elsevier, 2010

[34]. J. Serrano, J. Palancar, “String alignment pre-detection using unique subsequences for

FPGA-based network intrusion detection”, Elsevier, 2012

[35]. A. Sallam, E. Rabaie, O. Faragallah, “Encryption-based multilevel model for DBMS”,

Elsevier, 2012

[36]. T. Toland, C. Farkas, C. Eastman, “The inference problem: maintaining maximal

availability in the presence of database updates”, Elsevier, 2010

[37]. X. Feng, Q. Zeng, “Application of Firewall Technology and Research”, 2016

[38]. G. Bhatnagar, Q. Jonathan, B. Raman, “Biometric Template Security based on

Watermarking”, Elsevier, 2010

[39]. Xu He, W. Suo-ping, W. Ru-chuan, W. Zhong-qin, “Efficient P2P-based mutual

authentication protocol for RFID system security of EPC network using asymmetric encryption

algorithm”, Elsevier, 2011

[40]. L. Zhang, Q. Wu, Bo Qin, J. Domingo, U. Nicolas, “Asymmetric group key agreement

protocol for open networks and its application to broadcast encryption”, Elsevier, 2011

[41]. R. Madhusudhan, R. Mittal, “Dynamic ID-based remote user password authentication

schemes using smart cards: A review”, Elsevier, 2012

[42]. S. Khan, R. Gupta, “Future Aspect of Firewall in Internet Security”, 2014

[43]. P. Bera, S. Ghosh, P. Dasgupta, “Formal Verification of Security Policy Implementations in

Enterprise Networks”, Springer, 2009

[44]. B. Yadegari, B. Johannesmeyer, B.Whitely, S. Debray, “A Generic Approach to Automatic

Deobfuscation of Executable Code”, IEEE, 2015

[45]. E. Shaer, H. Hamed, “Management and Translation of Filtering Security Policies”, IEEE,

2003

[46]. S. Banescu, M. Ochoa, A. Pretschner, “A Framework for Measuring Software Obfuscation

Resilience against Automated Attacks”, ACM, 2015

[47]. M. Ulum, “Cyber Security - Literature Review”, 2017

[48]. J. Cazalas, J. McDonald, T. Andel, N. Stakhanova, “Probing the Limits of Virtualized

Software Protection”, ACM, 2014

93

[49]. T. Toland, C. Farkas, C. Eastman, “Taxonomy of obfuscation transformation”, ACM, 1998

[50]. K. Coogan, G. Lu, S. Debray, “De obfuscation of Virtualization-Obfuscated Software”,

ACM, 2011

[51]. S. Forrest, A. Somayaji, D. Ackley, “Building Diverse Computer Systems”, IEEE, 1997

[52]. J. Kinder, “Towards Static Analysis of Virtualization-Obfuscated Binaries”, IEEE, 2012

[53]. T. Laszlo, “Obfuscating C++ Programs via Control Flow Flattening”, 2007

[54]. C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, “Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation”, ACM, 2005

[55]. R. Rolles, “Unpacking Virtualization Obfuscator”, ACM, 2009

[56]. M. Sharif, A. Lanzi, J. Giffin, W. Lee, “Automatic Reverse Engineering of Malware

Emulators”, IEEE, 2009

[57]. J. Xu, Z. Kalbarczyk, R. Lyer, “Transparent runtime randomization for security”, IEEE,

2003

[58]. X. Jiang, H. Wangz, D. Xu, Y. Wang, “Thwarting code injection attacks with system

service interface”, IEEE, 2007

[59]. S. Drape, A. Majumdar, C. Thomborson, “Slicing aided design of obfuscating transforms”,

IEEE, 2007

[60]. R. Chakraborty, S. Narasimhan, S. Bhunia, “Embedded Software Security through Key-

Based Control Flow Obfuscation”, Springer, 2011

