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Abstract 

The light curve analysis of the heavenly bodies is an indispensable tool for understanding the 

physical phenomena that govern them. Doing so not only leads to new discoveries but also 

enhances our understanding of the universe. Large telescopes like the Large Synoptic Survey 

Telescope (LSST) will produce an excess of data that will necessitate the need for automated 

methods to sift through it quickly and efficiently, as doing so manually can be truly laborious. 

Furthermore, such a method should be able classify the observed astronomical objects 

accurately. Keeping this in view, this research presents an automated classification method 

using the simulated, photometric light curves provided in the Kaggle Challenge PLAsTiCC 

hosted by the LSST Team, in to 14 different classes. The classification model has been built 

around extracting several features and employing three different classifiers: Random Forest, 

eXtreme Gradient Boosting and Light GBM into an ensemble rounded off by a 5-layer 

Multilayer Perceptron (MLP). The training dataset containing 7848 samples has been used to 

train all three classifiers with different subsets of features sorted on the bases of their 

importance to the classifier. The MLP has then been trained on the concatenated probabilities 

of the three classifiers to predict the probabilities for 14 classes. The proposed methodology 

performs reasonably well for most of the classes achieving around an accuracy of 85% on the 

3.5 million testing samples present in the test dataset. As the proposed methodology relies on 

features extracted from photometric light curves, therefore it can be adapted and extended for 

use in other fields that rely on similar light curves. 

 

Key Words: Large Synoptic Survey Telescope, Light Curves, Random Forests, eXtreme 

Gradient Boosting, Light GBM, Multilayer Perceptron, Deep Learning, Computer Aided 

Classification System, Astronomy 
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Chapter 1 : INTRODUCTION 

Since time immemorial, man has looked upwards towards the heavens in an endeavor to 

decipher its mysteries, or at the very least, understand his place in the cosmos. Centuries of 

advancements have transformed the science of astronomy from its humble beginnings in 

ancient time [1] to a field whose refinement of numerous ideas and techniques, when applied 

to other aspects of modern life, greatly benefit them. The never-ending quest for knowledge of 

the skies and the ensuing cycle of advent of better and modern tools have helped improve life 

here on Earth in health, transportation, public safety and computer technology segments [2]. 

Technological breakthroughs have paved the way for today’s massive telescopes (both optical 

and radio) [3], [4], [5] that peer into the darkest and oldest corners of the universe and have 

helped develop a better understanding of the inner workings of the universe and different forces 

that govern it.  

A new ground based telescope called Large Synoptic Survey Telescope (LSST) [6] is being 

added to astronomy’s arsenal that will allow us to look farther and deeper than we have done 

before [7]. Owing to its massive size, the amount of data that LSST will generate will be 

unparalleled and so it necessitates an automated method for swiftly and correctly identifying 

different astronomical phenomena so that the interesting astronomical objects can be studied 

in detail. This research presents an automated classification model for 14 different types of 

astronomical objects.  

1.1 Motivation 

Due to new, powerful telescopes becoming operational all around the globe, the amount and 

the availability of astronomical data has skyrocketed. This has led to several new discoveries 

which have helped progress our understanding of the cosmos. Understanding the world around 

us is a basic human instinct similar to space exploration and space travel. In addition, recent 

advances in computation have allowed us to manipulate this abundance of data with ease. The 

matrimony of this data and computational prowess can lead to better, speedier and efficient 

solutions of characterizing the said data. Accurate and swift classification of astronomical 

objects from their light curves can significantly cut back on the manual effort required by the 

researchers and can really help the diverse scientific community to achieve equally diverse 

scientific goals. 
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In order to comprehend how a system works and what laws and rules make it turn, we have to 

appreciate how its components work. Therefore, identifying and studying far-flung stars and 

galaxies can grow our knowledge base and can help us make sense of the universe.  

While interstellar travel might still be a distant dream, the pursuit of understanding the heavens 

by looking up from our pale blue dot is as old as time itself and playing a small portion in this 

very human endeavor is the motivation for taking on this research work. 

 

1.2 Problem Statement 

Swift and accurate prediction of astronomical entities from the data gathered from LSST (and 

similar telescopes) can speed up the process of identifying and studying old and new 

cosmological phenomena. However, using light curves for identifying astrophysical 

phenomenon poses a serious challenge as they can include a large amount of noise that results 

in difficulty in identifying the classes of these objects.  

The purpose of this research is to explore different features that can help separate objects into 

their respective class based on their light curves along with building an ensemble of different 

classifiers including deep learning techniques.  

1.3 Aims and Objectives 

Major objectives of the research are as follow:  

 To reform raw, simulated astronomical data to be used for classification   

 Explore gradient boosting techniques for analysis of astronomical data 

 Devise an algorithm for classification of astronomical bodies into existing and new 

classes 

 To find out best features for proper representation of data   

1.4 Structure of Thesis 

This work is structured as follows: 

Chapter 2 covers the basics of LSST including the advances that make this telescope possible 

in addition with characteristics of the data captured by it.  

Chapter 3 gives review of the literature and the significant work done by researchers in past 
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few years for classification of heavenly entities using light curves. 

Chapter 4 consists of the proposed methodology in detail. It includes the details about the 

features extracted and subsequently used along with the ensemble of different classifiers. 

Chapter 5 includes all the experimental results accompanied by relevant figures. 

Chapter 6 concludes the thesis and reveals future scope of this research. 
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Chapter 2 : LARGE SYNOPTIC SURVEY TELESCOPE  

Telescopes have revolutionized the way we observe the universe and, consequently, our 

understanding of it. Since the first telescope in the 1600s [8], they have improved leaps and 

bounds, with the ability to “see” more than the naked human could ever see. This chapter will 

briefly cover the Large Synoptic Survey Telescope, its observational and imaging capabilities, 

the database management system that it will employ, and, finally, the form of data that will be 

made available to scientists courtesy of this telescope. 

During the last couple of decades, the scientific community has greatly benefited from several 

large-scale surveys of the sky ranging from Sloan Digital Sky Survey [9] to Galaxy Evolution 

Explorer [10]. Owing to the success of these surveys in the form of a slew of new scientific 

discoveries, the genesis of another large-scale survey of the entire Southern sky [11] was just 

a natural progression of such scientific ventures. The Large Synoptic Survey Telescope (LSST) 

is at the heart of this ambitious undertaking.   

As the name implies, LSST aims to photograph and study a large portion of the sky for a course 

of 10 years [6] once it becomes fully operational in 2022 [11]. Located at Cerro Pachon, Chile 

[11], this telescope will observe the flux changes of millions upon millions of different 

astronomical entities every night and will catalogue the changes observed for each of these 

objects.  

LSST has been conceived with a number of diverse science drivers in mind that also dictate 

the physical dimensions and other restrictions of the design. Primarily, the data gained from 

the LSST will be used by the scientific community for: 

 Better understanding of the dark energy and dark matter, how they shape the universe 

and how the dark energy’s behavior is influenced over time [6], [12] 

 Better understanding and charting of the millions of small to medium sized bodies that 

populate the Solar System along with keeping track of potentially hazardous asteroids 

that are larger than 140 meters [6], [12]  

 Better understanding of the fast transients exhibited by different astronomical objects 

by repeatedly photographing the night sky in addition to providing timely notifications 

of such phenomenon [6], [12] 

 Better understanding and charting of our Milky Way Galaxy with high quality, 

accurate data than ever before [6] 

The current LSST design and dimensions ensure that the above-mentioned goals are met.  
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2.1 LSST Site and Facility 

The LSST is under construction in north-central Chile with the Andes Mountain range as the 

backdrop on a site owned by the Association of Universities for Research in Astronomy [13]. 

Building such a telescope necessitates that the housing of the telescope is adequately equipped 

to alleviate the environmental issues that are bound to plague a setup of this proportion. The 

testing of the site in the form of geotechnical studies, computational fluid dynamics modelling 

and weather simulations was carried out and it was determined that this location provides the 

most stable platform for installing the LSST [14]. Figure 2.1 shows the cutaway diagram of the 

various sections of the entire facility. 

 

Figure 2.1 Cutaway View of the LSST Facility [14] 

The telescope pier that will harbor the optical system is built on the highest point of the peak 

and rises to 16 meters culminating in a 30-meter wide dome that is capable of rotating thus 

allowing the whole telescope to point at the desired patch of the sky. An attached 3000 m2 

building will act as the services and operations hub where not only the mirrors of the LSST 

will be coated before initial installation but will also be serviced during their entire lifetime. 

[14]. For maintenance or resuming operations, an 80-ton platform will carry the telescope 

components to and from the pier. The entire facility will temperature-controlled and different 

sections of the housing will be kept at different temperatures [14]. Once the LSST facility is 
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up and running, it will be highly automated requiring only limited number of workers to operate 

it [16].  

2.2 LSST Design and Dimensions 

LSST has been designed from the ground up by keeping in view the diverse goals that were to 

be met. This has resulted in radical new designs and improved subsystems that push the 

boundaries of the design and functionality of such ground based telescopes. 

The LSST optical design has incorporated a number of innovative concepts that set it apart 

from telescopes of similar size. While LSST’s primary mirror has a diameter of 8.4 meter, its 

three-mirror design results in a remarkable improvement in its Field of View (FoV). The 

primary mirror M1 has a diameter of 8.4 meter but its effective diameter comes out to be at 6.5 

meter; M2, the secondary convex mirror has a diameter of 3.5 meter that reflects the light into 

a tertiary, 5-meter mirror M3 [6]. Figure 2.2 shows mirror assembly the LSST and how all 

mirrors reflect the light. 

 

Figure 2.2 Rendering of LSST at 45 Degrees 

LSST packs the above three-mirror assembly along with the camera in a compact 6.4-meter 

length from the vertex of M2 to the vertex of M3 [17]. Because of this design, LSST has a FoV 

of 9.62 degree2 (a radius of 1.75 degrees) which is a massive improvement compared to other 

telescopes in the same 8 meter category. This enables the LSST to capture an area of the sky 

in which seven full moons can fit end-to-end. In comparison, the Hubble Space Telescope is 

only able to view a small portion of the moon itself [6]. Figure 2.3 illustrates the difference 

between the FoV of a typical telescope of similar size primary mirror and that of the LSST.  
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Figure 2.3 LSST's Field of View Comparison to a Similar Telescope [13] 

Owing to its incredible optical capabilities, the LSST will be able to resolve details that are 

even smaller than the width of a human hair that is held at arm’s length [14]. All these 

improvements will enable the scientists to observe the sky in unprecedented detail.  

The incredible optical system of the LSST is complemented by an equally impressive camera 

system. LSST’s camera takes the crown of the largest digital camera ever constructed at 1.65 

meter by 3 meter and is nearly as tall as an average human adult is while weighing mammoth 

2.8 metric tons [20]. Figure 2.4 shows the cutaway diagram of the camera.  

 

Figure 2.4 Cross Section of LSST Camera [16] 

LSST’s camera houses three lenses; the first lens L1 is also the largest one measuring 1.55 

meter in diameter, the second lens L2 has a diameter of 1.1 meter and the third lens L3 is 

relatively small at 0.72 meter. In addition to focusing light as part of the three-lens system, L3 
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also acts as a vacuum barrier for the pixel array of the camera that lies after it. The different 

filters that allow to LSST to observe the universe in several wavelengths is present between 

the L2 and L3 [17].   

To build such a massive camera that lies at the heart of the LSST, 9 charge-coupled device 

(CCD) imaging sensors of 4096x4096 pixels each are arranged in a 3x3 grid known as a “raft”. 

Each raft measures about 16.8 Megapixel. 21 such rafts are then combined to form the entire 

imaging plane of the LSST’s camera that has a diameter of 64 centimeters [6], [20]. Each CCD 

sensor is capable of delivering 16 outputs, so, consequently, each raft has 144 outputs adding 

up to 3024 channels for the entire camera. In order to carry the data from the sensors to the on-

facility data storage and processing equipment, the rafts are mounted on a tower-like structure 

that holds the electronics to convert the signals into a digital format and then transmit it 

onwards. As the camera will be operational for long periods, therefore, it is necessary that they 

have adequate cooling built in to prevent overheating. This is accomplished by adding cooling 

elements to the tower that help keep the temperature of the sensors to -100 degree Centigrade. 

The benefit of using such tower like structures is that each tower acts like an individual camera 

that can then be interconnected to form the entire array [22]. Figure 2.5 shows how each sensor 

is packaged, joined with other sensors in a raft and how each raft is mounter on a tower. 

 

Figure 2.5 Raft and Tower Assembly [22] 

Each pixel in the camera has a significant physical size of 10 micrometers with a dynamic 

range of 18 bits/pixel and the entire array is capable of imaging the entire sky in just 2 seconds. 

In addition to the imaging pixels, different types of sensors (wave front and guide sensors) are 

also present on the imaging plane. The focal plane and its accompanying electronics are 
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contained in a cryostat chamber. [6], [20]. Figure 2.6 shows the intricate structure of the 

imaging focal plane.   

 

Figure 2.6 LSST Pixel Array measuring a mammoth 3.2 Gigapixels [6] 

The camera system of the LSST has been coupled with a series of different filters that allow 

the telescope to detect different wavelengths of light and thus view different types of 

astronomical entities in different light. 

 

Figure 2.7 Filter Changing Mechanism [20] 

The filters reside above the cryostat chamber in a circular pattern and are pulled down in front 

of the L3 by a rail-type mechanical arm within two minutes. This location of the filters ensures 

that they are in a temperature-controlled environment thus significantly reducing light 
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distortions. Figure 2.7 shows how the lenses will be switched and the effect that it will have on 

the images captured by the LSST.  

The mechanical shutter of the camera has been designed to reduce the wear and tear of the 

components over the lifetime of the telescope by making the shutter blinds close alternatively 

[20]. Figure 2.8 (a, b and c) depict the action of the shutter blinds. 

 

 

Figure 2.8 (a) Shutter Open,         (b) Right Shutter Blind Closing,   (c) Left Shutter Bind Closing 

 

2.3 LSST Passbands 

Astronomical entities exhibit different behavior in different bands of electromagnetic spectrum 

and observing them in several wavelengths can reveal more about these bodies than observing 

them in a single wavelength would ever accomplish [6]. For example, infrared wavelength can 

pass through dust clouds enabling to survey the astronomical entities that are hidden from direct 

view [17]. The data gathered through such techniques has resulted in important discoveries 

ranging from the determining the redshift values of the galaxies [21] to the selection of quasars 

based on their photometric values [22]. LSST filter bank has been inspired Sloan Digital Sky 

Survey [9]. 

 

Figure 2.9 LSST Band passes [6] 

The filters have been designed to detect bands of light from ultraviolet to near infrared and 

have been symbolized as u, g, r, i, z and y. u band accommodates the wavelengths between 300 

to 400 nanometers, g band houses the wavelengths between 400 to 600, r band lies in 500 to 
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700 nanometer range, 650 to 850 nanometer wavelength are present in i band, z band houses 

800 to 950 mm and y band holds 950 to 1050 nm wavelengths [11]. Figure 2.9 depicts the 

design of the filters of the LSST.  

If the light coming from an astral entity is directly incident on the center of the focal plane (or 

within 0.7 degrees on either side), the LSST optical system is able to capture 63% of this light. 

The percentage steadily drops to 57% at the end of the FoV of the camera. Figure 2.10 shows 

how the throughput of the system drops when moving away from the center of the FoV [17]. 

 

Figure 2.10 Effect on Throughput when Moving Away from the Centre of the Focal Plane [23] 

2.4 LSST Data Management 

Owing to the scale of the LSST, it will generate data at an unprecedented rate totaling more 

than 20 terabytes of raw data every night. Over the course of its 10-year life, LSST will gather 

60 Petabytes of raw data that will result in an enormous catalogue of astronomical bodies 

amounting to 15 Petabytes [6]. LSST’s source catalogue will have approximately 7 trillion 

rows while the object catalog will comprise of 37 billion rows containing more than 200 

attributes each [27]. Such an extraordinary amount of data will require significant computation 

prowess; 150 trillion floating point operations per Second (TFLOPS) will process the data 

creating several hundred Petabytes of data. As the data collected by the telescope will increase 

with every year, so will the computational power required to process it. By the last year of 

LSST’s lifetime, 950 TFLOPS will be required to process the entirety of the data [28].  

In order to deal with this onslaught of data, a data management system had to be developed 

from scratch capable of handling the storage and processing requirements. Not only that, 

LSST’s data management system will also have to ensure data integrity i.e. the data is not 
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damaged when being converted from raw image capture of the LSST’s camera to such a format 

that truly represent the unfolding of the universe. In order to accomplish this herculean task, 

LSST’s data management system consists of three main layers. The bottommost infrastructure 

layer that handles the bulk of the tasks such as storage and computation along with networking 

and software stack that links them all together. The middle layer is mainly responsible for 

distribution of computation among the nodes and an interface for users to access data. The top 

application layer centered on the data products that will be produced by LSST [28]. All the 

data gathered by the LSST will be transmitted to several, remote data centers for access and 

archival purposes [6].  

In order to streamline the data collection and cataloging, the LSST team has come up with an 

inventive sphere that divides the sky visible from the Southern hemisphere into different 

quadrants. Figure 2.11 illustrates this concept.  

 

Figure 2.11 LSST Data Mining Sphere [25] 

As a testament to the capability of data management system, interesting transient events 

detected by the subtraction of two consecutive nightly images will be relayed to the scientific 

community within 60 seconds of such an event being detected [28].  

The data gathered by the difference of images from a reference image will result in flux value 

measurements for each heavenly body in the FoV of LSST. This flux values will be used to 

generate time-series light curves that will help identify different types of astrophysical 

phenomenon visible from this vantage point [11].  



    
 

13 

The innovations in the subsystems of the Large Synoptic Survey Telescope make it one of the 

most powerful telescope of the next decade. The data that the LSST will capture will 

undoubtedly result in new discoveries that will broaden our current understanding of the 

universe.   
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Chapter 3 : LITERATURE REVIEW 

The recent years have seen an upsurge in the data generated by the telescopes – both ground 

based and orbital – and that has led to a need for automated methods for detection of different 

astronomical entities by finding patterns in the data that require minimal to no human 

intervention. For this reason, researchers have applied machine-learning techniques for solving 

different problems. This chapter summarizes some of the valuable contributions that have been 

made to this field.   

3.1 Traditional Machine Learning Techniques 

Richards et al. [30] were one of the first ones to use machine learning techniques specifically 

Random classifier. The scientists computed both statistical and periodic features for classifying 

25-class dataset of various stars. They fitted different periods to the light curves in order to 

estimate a true representation of the actual period. In addition, the researches employed 

hierarchal classification for certain star classes while using the feature importance calculated 

by the Random Forrest classifier as a heuristic as to use which features and drop others. Using 

this procedure, they were able to achieve an overall improvement of 24% over the previous 

best solution while for a couple of classes, the accuracy was over 98 percent representing a 

huge improvement.   

Jenkins et al. [31] proposed a method for reducing the number of Threshold Crossing Events 

for vetting by Kepler Threshold Crossing Event Review Team that relied on a classifier based 

on Random Forest. This facilitated the researchers by bringing down the initial number of the 

interesting objects by a wide margin (along with the time requirements of accomplishing this 

task) thus providing a smaller list that could be analyzed in-depth. By classifying the planet 

candidates as planet candidate, astrophysical false positive or a non-transiting phenomenon, 

the researchers wanted to eliminate as much possible candidates as possible so that most 

interesting cases could be focused on first.   

Tackling the ever-persistent problem of gigantic amount of data that could not be classified in 

a reasonable amount of time by human effort, Coughlin et al. [32] proposed a set of algorithms 

for automatic vetting of the threshold crossing events from the Kepler pipeline that tried to 

mimic the decision making process of humans vetting the same data. These algorithms named 

“Robovetters” tried to determine whether the shape of the signal is transit like or not and 

whether another transit like event exists in the same signal indicating an eclipsing binary 

system. In addition, they also used the pixel level data captured by the telescope in conjunction 
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with the light curves. The researchers used Q1-Q16 catalogues of Kepler Data Pipeline as 

benchmarks. Their methodology performed almost on par with the human expertise. For Q17, 

the results of only Robovetter were presented. 

Thompson et al. [33] made improvements to the “Robovetter” algorithms. In order to improve 

the performance of their system, the researchers used light curves that have been detreneded. 

Each light curve was folded in bins totaling N which represented the number of initial 

dimensions. Then leveraging dimensionality reduction the number of features were further 

reduced based on Locality Preserving Projections. 

These “improved” samples were used for k-nearest neighbor algorithm for removing non-

transient events. The researchers’ solution was able to successfully detect 99% of already 

known planet candidates while removing 90% of non-transiting events. 

Mullally et al. [34] also proposed a method to eliminate false positives further improving the 

Robovetter. The researchers modelled actual transiting planets and other artifacts that mimic 

such behavior. Then, threshold crossing events were compared with each of the model. 

Bayesian Information Criterion was used to determine which model fits the profile of an 

individual event more closely. They were able to detect successfully false positives 

approximately 60 to 70 percent of the time while retaining the correct classification for 95 

percent of true transits. This approach can be used for data of other missions as well as it relies 

on modelling both the true transits and the false alarms and then using them for comparison on 

sample-to-sample basis.  

For classification of different supernovae using photometric data, Lochner et al. [35] tested 

different combinations of machine learning methods and handcrafted features obtained from 

different techniques. Starting with template fitting the researchers moved on to wavelet based 

decomposition after interpolating the data with Gaussian Process Regression Technique. 

Principal Component Analysis was further applied to the output of Wavelet decomposition to 

reduce the dimensionality. The researchers tried a number of robust machine learning 

techniques ranging from naïve Bayes to k-nearest neighbor, from Support Vector Machines to 

Multilayer Perceptron, finally settling on Boosted Decision Trees. The team was able to 

achieve a score of 0.98 on Area under the Curve metric commonly used for comparing the 

performance of different machine learning algorithms. 

Hartley et al. [36] used Support Vector Machines in order to detect gravitational lensing 

systems i.e. the gravity of a massive object distorting the image of another object in its 

background to bigger proportions. Galaxies that exhibit such behavior usually have elliptical 

shape due to strong gravitational lensing. Detection of arc like and ring like objects in raw 
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images while rejecting false positive given by ring galaxies was accomplished by the use of 

Gabor Filters that not only detected the desired shape but also made use of the information of 

the colour in the image. Feature elimination was done by using brute force. Their results 

showed that the algorithm developed by the scientists outperformed detection by visual 

inspections in majority of the cases.  

Mislis et al. [37]  realized that better predictions could be made if time-series data was cleaned 

of undesirable noise even after it had undergone detrending. To accomplish this, they employed 

a new clustering technique called TSARDI which itself was based on DBSCAN. DBSCAN is 

a clustering algorithm that divides a set of points into separate clusters, which have a minimum 

number of points, separated not more than a maximum distance defined by a certain distance 

criterion.  

TSARDI creates “de-noised” light curves by implementing DBSCAN algorithm four times 

consecutively. However, at each step the maximum distance between the points, the distance 

criterion and the minimum number of points in each cluster is varied. The output of one step 

of TSARDI is becomes the input of the next step. With this method, their results showed that 

they were able to improve the results by almost 11 percent compared to the simple technique 

of sigma clipping. TSARDI is built from the ground up to work on any time series data.  

3.2 Deep Learning Techniques 

In addition to conventional machine learning techniques, some researchers have explored deep 

learning techniques for the classification of astronomical entities or phenomenon using 

photometric or photographic data. Although, deep learning itself and its application to such 

problems is not new, it has seen a definite uptick in the recent years due to computation 

becoming cheap and accessible. Therefore, researchers have applied deep learning methods 

such as neural networks and convolutional neural networks (CNN) for classification. 

[38] applied a simple 3 layer perceptron with 5 input neurons, a hidden layer of the same size 

and one neuron on the output layer with the goal to correctly identify microlensing event 

against other variable events such as eclipsing variable stars, eruptive stars, cataclysmic stars 

and pulsating stars. As the microlensing event is an extremely rare event in the universe 

therefore it can be easily confused by any of the astronomical entities mentioned here. Instead 

of feeding the raw light curves, five features were computed and that feature set was fed to the 

neural network. The results showed that the network was able to classify the microlensing 

events with great accuracy, misclassifying only 3 instances out 800.  



    
 

17 

In order to improve the detection of microlensing events, Belokurov et al. [39] proposed a 

combination of networks connected one after another. The first network was trained to detect 

whether an event could be a microlensing event instead of any other types of the variable stars. 

The second network in the series was trained to eliminate supernovae masquerading as 

microlensing event. A separate algorithm is then used on this information to compute the 

microlensing rate. In order for an event to be classified as a microlensing event, it must pass 

through both the neural networks. Both the networks used variable number of neurons and 

hidden layers. 

[40] applied multiple Multilayer Perceptron (MLP) and 1 dimensional Convolutional Neural 

Network to time-series data from the Kepler pipeline for the detection of exoplanets. 

Exoplanets are Earth like planets (similar in size, atmosphere etc.) that orbit distant starts in 

that star’s habitable zone and can, theoretically, support life. MLPs had 4 layers each with 64, 

32, 8 and one neuron in each successive layer while the input features were approximately 180. 

For one of the MLPs, they used the Wavelet transform on the light curves and fed the detail 

coefficients as features at the input layer.  

For the CNN approach, the team used a set of 4 filters with length 6. After convolution, the 

outputs were concatenated together and treated as input of an MLP with similar architecture 

described above. While all the neural networks outperformed the conventional machine 

learning algorithms like SVM and Wavelet transformations, the Wavelet MLP showed the best 

performance. 

Kipping et al. [41] trained a MLP for prediction of transiting planets that might be in the same 

region as other transiting planets missed by a combination of sensitivity of the telescope 

(Transiting Exoplanet Survey Satellite, in this case) and noise in the data. The researchers used 

hand crafted features that were then fed to the MLP for the prediction of additional planets 

orbiting the host star. The approach used by the scientists improved the possible planet 

candidates by a factor of two.   

Shallue et al. [42] also used a 1D CNN for identification of exoplanets. The CNN architecture 

that performed the best 20 layers deep at its maximum depth. The researchers fed their CNN 

two different input presenting different “views” of the light curve namely Global view and 

Local View. These views were obtained by different sized binning of the light curve. The 

Global View had a size of 1x2001 while the Local View was limited to 1x201. The Global 

View passed 10 Convolutional layers while the Local View was subjected to only 4 such layers 

with intermittent Max Pooling layers. After both the views have traversed through the 
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Convolutional Layers, they were concatenated together and fed to 4 Fully Connected layers 

connected in a series before the final output layer. 

Their approach was able to correctly identify planet candidates 98.8% of the time reducing 

greatly the overall number of false positives. This led to the statistical validation of two new 

Kepler Planet Candidates one of which was part of a 5-planet system orbiting Kepler-80 while 

the other one was member of an 8-planet system around Kepler-90. This discovery made 

Kepler-90 to be the only know star with 8 planets like our Sun.  

For classifying supernovae based on their photometric data, [43] utilized a specific type of 

Recurrent Neural Networks termed as Long Short Time Memory (LSTM). Recurrent Neural 

Networks and by extension LSTM perform better on sequential data such has the time-series 

data of the light curves. The investigator improved upon the design of LSTM by integrating 

the time of observation as an input. Furthermore, as deep learning techniques require a huge 

amount of data, so data augmentation was also performed by using Gaussian noise for 

generating new data points. Another technique that was used to increase the amount of data 

was early truncation of artificially generated light curves. The team was able to achieve an 

accuracy of approximately 93.2% on classification of type Ia supernovae classification against 

the rest.    

The literature review shows that the automatic classification of light curves (regardless of 

whether they are light curves of transiting planets or other astronomical entities) has been 

accomplished using several machine-learning techniques to varying degrees of success and 

accuracy. The algorithms that perform the best are those that mimic the human decision making 

process. Therefore, algorithms like bagging (Random Forests) and boosting perform really well 

for this kind of data. In addition, modelling the source of the light curve along with template 

matching can give good results. Another important thing to note is that detrending the raw flux 

values using different clustering or noise removing techniques can have a large effect on the 

performance of the subsequent classifiers used.  

In addition to traditional machine learning techniques, the use of deep learning for light curve 

classification is on the rise as it eliminates the need for excessive preprocessing and feature 

engineering. Using multilayer perceptrons and 1D convolutional neural networks, researchers 

have achieved reasonable accuracy for different datasets. While deep learning eliminates the 

need for feature engineering and extraction for the most part, feeding the neural networks hand 

crafted features can improve the accuracy even further. In fact, the combination of these two 

outperforms most of the traditional machine learning techniques. One shortcoming of using 
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deep nets is that there needs to be a large amount of data for the training stage. For this reason, 

for some of the cases, the data has be augmented.  
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Chapter 4 : METHODOLOGY 

This thesis presents a method for automatic classification of light curves to identify different 

astronomical objects observed by the LSST. The proposed methodology consists of two main 

phases i.e. feature extraction and classification. However, before the feature extraction phase, 

some pre-processing is applied to the raw data. Then the first phase extracts a number of 

features for an accurate presentation of light curves that eventually supports the classification 

of these objects. 

The classification phase builds on the extracted features and uses an ensemble comprising of 

Random Forest (RF) [44], eXtreme Gradient Boosting (XGB) [45], Light GBM (LGBM) [46, 

46] and a Multilayer Perceptron (MLP) at the end to identify the astronomical entities. Figure 

4.1 shows the constituent steps of the proposed methodology. 

 

Figure 4.1 Proposed Methodology 
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4.1 Dataset Description 

The dataset, its attributes and the distribution of classes are explored in detail in Chapter 5. 

However, it is necessary to briefly explain the type of data from which the features have been 

extracted.  

For each object, we have an observed value of the flux (brightness) along with an error value 

against a timestamp. Furthermore, there is also a binary label “detected” that indicates whether 

a certain flux value is at least bigger than ±3σ compared to the rest of the signal. 

A collection of these flux values forms a light curve. Each object in the dataset has been 

observed in six different bands so each object has six corresponding light curves of varying 

lengths. Due to the design of LSST, the light curve in a passband have certain gaps in them as 

the LSST is observing that object in another passband at that particular time or is aimed at 

another patch of sky altogether. There is another important value associated with the object 

called Photometric Redshift provided with the dataset. These values are 0 for galactic objects 

i.e. found in our own Milky Way galaxy and has some value for extragalactic objects. 

Generally, the farther the object, the greater this value [11]. Figure 4.2 shows the light curve in 

a certain passband of a randomly selected object from the dataset.  

 

Figure 4.2 Flux Values for an Object in a Certain Band 
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4.2 Data Preprocessing 

In order to prepare data for the feature extraction step, it is preprocessed. Preprocessing can be 

divided into the following steps: 

4.2.1 Normalization 

The first step is to remove most of the noise so that it does not adversely affect the extracted 

features. This is accomplished by normalizing the data by using the following equation: 

 

𝑥𝑖𝜎2 + 𝑥𝑒𝑟𝑟
2𝜇 

𝜎2 + 𝑥𝑒𝑟𝑟
2

 (4.1) 

 

where 𝑥𝑖 is the raw flux value,  𝜎2 is the square of the standard deviation of the signal, 𝑥𝑒𝑟𝑟
2 

is the square of error value for 𝑥𝑖 and 𝜇 is the mean of the light curve. Normalizing in this way 

brings the values close to 0 closer still and consequently, the remaining values stand out more. 

Figure 4.3 shows the effect of this normalization on multiple light curves. 

 

 

 

Figure 4.3 Effects of Normalization on Flux Values 
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4.2.2 Equating the Number of Days 

Up until this point, the light curves in different channels can have varying length because of 

varying number of observations on different days. To remedy this, we “stretch out” the flux 

observations to span all the days that are present in any of the bands such that the resultant light 

curve (in each band) has normalized flux values with intermittent zeros. These zeros represent 

the days when an observation was not made for a certain passband. This step ensures that each 

passband has same length after this process starting from the minimum MJD to the maximum 

MJD. Figure 4.4 depicts the changes in size of the light curves after this process. 

 

Figure 4.4 Effect of Making the Number of Days Constant over All the Bands 

 

4.2.3 Scaling of Flux Values 

The raw flux values are not used as is, instead they are scaled by multiplying each flux value 

with the square of photometric redshift value of that object if the object is extragalactic. If the 

object is galactic (Photometric Redshift Value of 0) then the flux values are not changed.  

The benefit of scaling the values in this way is that the extragalactic values and thus objects 

are easy to distinguish from the galactic values due to the scaling factor. Furthermore, as the 

scaling is non-linear, the effects of it can also be seen within the extragalactic classes.   
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4.3 Feature Extraction 

While examining the light curves of the astronomical objects manually can shed some light on 

the type of the object, doing so with large amounts of data is just not feasible. Therefore, a 

summary of the curve can be created by using a set of features extracted from the curve itself. 

As objects of different classes exhibit different behavior, therefore, the values of different 

features can be used to differentiate objects of one class from another. This feature vector can 

then be fed to a classifier (or more) for training and testing. 

We start by extracting a number of features from each band that can be grouped together in 

five distinct categories namely statistical features, features obtained from wavelet 

decomposition, shape characteristics of the signal, ratios of certain attributes of the signal and 

miscellaneous features. In addition to computing the feature for each of the bands, some 

features are also computed for an object in two ways; one, by adding up all the values of the 

passbands to create an object level signal or “profile”, and, two, by concatenating each 

passband one after another to make a similar object level “profile”.  

Once a superset of the features has been created, the features are then pruned based on the 

importance of a feature for classification for a particular classifier. This results is three different 

subsets of features for the three classifiers. 

4.3.1 Statistical Features 

The following statistical features have been extracted from each of the bands and from the 

two overall profiles of the object: 

 Mean: The mean value of the signal. 

 Weighted Average: Weighted average of the signal. The weights are error values 

provided against each flux observation. 

 Standard Deviation: Standard deviation of the signal. 

 Percent Beyond 1 STD: The percentage of values that lie beyond 1 STD from the 

weighted average. 

 Skewness: The measure of how much the signal is different from a normal distribution 

 Kurtosis: The measure of the sharpness of peak of the signal. 

 Maximum Value: Maximum value of the signal. 

 Minimum Value: Minimum value of the signal. 

 Median: Median value of the signal. It should be noted that in case of added object 

profile, the median is calculated by ignoring zeros. 
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 Median Absolute Deviation: Median of absolute differences of values of the signal 

from the median of the signal. This feature is not calculated for the two profiles of the 

object. 

 First Quartile: The median of the values between the minimum value of the signal and 

the median of the signal. It should be noted that in case of added object profile, the first 

quartile is calculated by ignoring zeros. 

 Third Quartile: The median of the values between the median of the signal and the 

maximum value of the signal. It should be noted that in case of added object profile, 

the third quartile is calculated by ignoring zeros. 

 

4.3.2 Features Obtained from Wavelet Decomposition 

Wavelet decomposition has been performed to decompose each light curve into 3 levels as a 

means of calculating energy of the decomposed components. DB1 wavelet has been used for 

the decomposition. The decomposition has been performed not only for the bands of each 

object but also for the complete object profile (both added and concatenated). Energy of the 

decomposed signal components is calculated as follows: 

𝐸 = ∑ 𝑥𝑖
2 

𝑛

𝑖=0

(4.2) 

where n is the number of samples in the decomposed component. The energy of the resulting 

decomposed components have formed 4 features. Wavelet decomposition has been performed 

to observe the energy of the signal with varying frequencies. The four features that have been 

computed are as follows:  

 Energy of Wavelet Decomposition (Detail Level 1) 

 Energy of Wavelet Decomposition (Detail Level 2) 

 Energy of Wavelet Decomposition (Detail Level 3) 

 Energy of Wavelet Decomposition (Approximation Level 3) 

The energy of the decomposed components is quite useful as astronomical entities with higher 

energy in a particular passband can be distinguished from other astronomical entities with 

comparatively lower energy in another passband. Wavelet decomposition of the signal before 

the computation of energy allows to observe whether the higher frequency bands have more 

energy or whether the energy lies in the lower range of the energy spectrum. Furthermore, the 
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energy makeup of the overall object may be different from the energy makeup of a single 

passband.  

4.3.3 Shape Based Features  

The light curve of an object of one class differ visually from the object of another class and the 

astronomers have relied on these differences for manual vetting for years. Figure 4.5 shows 

how the typical light curves of objects from different classes can differ from one another. 

 

Figure 4.5 Light Curves of Objects from Different Classes 

These differences in the shapes of the light curves have be extracted for better identification of 

the objects. As for other categories, shape based features have also been calculated for both the 

six bands and overall profiles of the object. 46 such features have been used. 

 Maximum Slope: The largest, absolute rate of change in the values of the signal. Figure 

4.6 shows how the maximum slope can differ for different types of objects. This feature 

is not calculated for the two profiles of the object. 

 

Figure 4.6 Different Slope Values for Different Classes 
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 Amplitude: Half of the difference of the maximum and the minimum value of the 

signal. This feature is not calculated for the two profiles of the object. 

 Average Rate of Change: The average of rate of change (difference between two 

consecutive values) for the entire signal. This feature is not calculated for the two 

profiles of the object. 

 Peaks above Average: Count of peaks in the signal that are above the weighted average 

of the signal. 

 Average Distance between Peaks above Average: Average of the distances between 

the middle of the peaks that lie above average in the signal. This feature is not calculated 

for the two profiles of the object. 

 Average Peak Width: Average of the width of the peaks detected that lie above 

average of the signal. 

Figure 4.7 shows how the peaks above average, the average distance between them and their 

average width is calculated for the light curves. 

 

Figure 4.7 The Line Denote the Distance between the Encircled Peaks above Average in the Signal 

 Maximum Peak Prominence: Maximum of all the values of peak prominence in the 

signal. Peak prominence is the measure of how much a peak stands out from its 

surroundings. The point of comparison is the midpoint of a horizontal line from the 

peak in consideration where that line crosses the signal [47]. 

 Minimum Peak Prominence: Minimum of all the values of peak prominence in the 

signal.  
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 Average Time to Brighten: Average of the times (in terms of samples) each peak 

above average in the signal takes to brighten. It is the time (in terms of samples) from 

the left intersection point where the horizontal line representing the average of the 

signal intersects the signal to the middle of the peak. 

 Average Time to Fade: Average of the time (in terms of samples) each peak above 

average in the signal takes to fade. It is the time (in terms of samples) from the middle 

of the peak to the right intersection point where the horizontal line representing the 

average of the signal intersects the signal. 

 Time from max to 75% of max: The time taken in terms of samples for a signal to 

drop from its maximum value to the first instance of the values that is equal to 75 

percent of the maximum value. Intermittent zeros are ignored and a shift is added to 

make all negative values greater and equal to zero while calculating this feature. 

 Time from max to 50% of max: The time taken in terms of samples for a signal to 

drop from its maximum value to the first instance of the values that is equal to 50 

percent of the maximum value. Intermittent zeros are ignored and a shift is added to 

make all negative values greater and equal to zero while calculating this feature. 

 Time from max to 25% of max: The time taken in terms of samples for a signal to 

drop from its maximum value to the first instance of the values that is equal to 25 

percent of the maximum value. Intermittent zeros are ignored and a shift is added to 

make all negative values greater and equal to zero while calculating this feature. 

 Modified Julian Date (MJD) Difference: Difference in terms of days between flux 

observations having the detected flag set to 1. Medium distance between such 

observations shows that the object has a cyclic behavior of brightening and fading while 

a large or small value shows that the brightening or fading happens only once during 

the observation period. If no two close values are found then this feature value is set to 

a really high value e.g. 10000. This feature is not calculated for the two profiles of the 

object. 
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Figure 4.8 Object with Decreasing Flux Value vs. Object with Cyclic Behavior 

Figure 4.8 shows the MJD Difference of a cyclic object and that of an object that has a declining 

or increasing light curve. The MJD Difference of the cyclic object is considerably greater. 

In addition to the above features that focus on the shape of the light curve, some more features 

are also calculated by overlaying a grid over the signal that divides the signal along the flux 

axis. These features take into account how light curves of different classes exhibit different 

behavior in different ranges of the flux values. Figure 4.9 illustrates the effect of dividing a 

light curve into different ranges and then using those specific ranges for different features. 

 

Figure 4.9 Values of Observed Flux for Two Different Samples of Different Classes from the Dataset 

These features can be divided into four distinct categories: number of peaks between certain 

positive ranges, number of peaks between certain negative ranges, sum of the flux values in 

certain positive ranges and finally, sum of the flux values in certain negative ranges. For 

number of peaks between certain negative ranges, -1 is multiplied with the signal first to flip it 

around the axis and then the values are computed. It is worth noting that number of peaks in 

positive and negative ranges are not calculated for the two profiles of the object. Below is a list 

of the certain ranges that are covered by these four features mentioned here. 
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 Positive Peaks Between 0 to 1: Number of the peaks that lie in 0 to 1 range. 

 Positive Peaks Between 1 to 2: Number of the peaks that lie in 1 to 2 range. 

 Positive Peaks Between 2 to 4: Number of the peaks that lie in 2 to 4 range. 

 Positive Peaks Between 4 to 8: Number of the peaks that lie in 4 to 8 range. 

 Positive Peaks Between 8 to 16: Number of the peaks that lie in 8 to 16 range. 

 Positive Peaks Between 16 to 32: Number of the peaks that lie in 16 to 32 range. 

 Positive Peaks Between 32 to 64: Number of the peaks that lie in 32 to 64 range. 

 Positive Peaks Between 64 to 128: Number of the peaks that lie in 64 to 128 range. 

 Positive Peaks Between 128 to 256: Number of the peaks in 128 to 256 range. 

 Positive Peaks Beyond 256 : Number of the peaks that lie in 256 and above range. 

 Negative Peaks Between 0 to 1: Number of the peaks that lie in 0 to 1 range. 

 Negative Peaks Between 1 to 2: Number of the peaks that lie in 1 to 2 range. 

 Negative Peaks Between 2 to 4: Number of the peaks that lie in 2 to 4 range. 

 Negative Peaks Between 4 to 8: Number of the peaks that lie in 4 to 8 range. 

 Negative Peaks Between 8 to 16: Number of the peaks that lie in 8 to 16 range. 

 Negative Peaks Between 16 to 32: Number of the peaks that lie in 16 to 32 range. 

 Negative Peaks Between 32 to 64: Number of the peaks that lie in 32 to 64 range. 

 Negative Peaks Between 64 to 128: Number of the peaks that lie in 64 to 128 range. 

 Negative Peaks Between 128 to 256: Number of the peaks in 128 to 256 range. 

 Negative Peaks Beyond 256: Number of the peaks that lie in 256 and beyond. 

 Sum of Flux Value Between 0 to +20: Sum of flux values in this particular range. 

 Sum of Flux Value Between +20 to +40: Sum of flux values in this particular range. 

 Sum of Flux Value Between +40 to +60: Sum of flux values in this particular range. 

 Sum of Flux Value Between +60 to +80: Sum of flux values in this particular range. 

 Sum of Flux Value Between +80 to +100: Sum of flux values in this particular range. 

 Sum of Flux Value Between +100 and beyond: Sum of flux values in this particular 

range. 

 Sum of Flux Value Between 0 to -20: Sum of flux values in this particular range. 

 Sum of Flux Value Between -20 to -40: Sum of flux values in this particular range. 

 Sum of Flux Value Between -40 to -60: Sum of flux values in this particular range. 

 Sum of Flux Value Between -60 to -80: Sum of flux values in this particular range. 

 Sum of Flux Value Between -80 to -100: Sum of flux values in this particular range. 
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 Sum of Flux Value Between -100 and beyond: Sum of flux values in this particular 

range. 

 

4.3.4 Ratio Based Features 

While the features extracted from individual light curve bands can tell a lot about the category 

of a heavenly body, more information can be gathered by comparing a particular feature of one 

band to the same feature of another band. These ratios can greatly help in the classification of 

an object. The ratio based features that have been used are given below. 

 Standard Deviation of Band u to Band i: The ratio of the standard deviation of band 

u to band i. 

 Standard Deviation of Band u to Band y: The ratio of the standard deviation of band 

u to band y. 

 Standard Deviation of Band i to Band y: The ratio of the standard deviation of band 

i to band y. 

 Skewness of Band z to Band y: The ratio of the value of skewness of band z to the 

skewness of band y. 

 Percent Beyond 1 STD of Band r to Band i: The ratio of the percentage of values 

beyond 1 STD of band r to the percentage of same values of band i. 

 Percent Beyond 1 STD of Band r to Band y: The ratio of the percentage of values 

beyond 1 STD of band r to the percentage of same values of band y. 

 Percent Beyond 1 STD of Band i to Band y: The ratio of the percentage of values 

beyond 1 STD of band i to the percentage of same values of band y. 

 Standard Deviation of Change in Flux to Standard Deviation of Band: The ratio of 

the standard deviation of changes in flux to the standard deviation of the band. This 

feature value is calculated for all six passbands. 

 Average of Absolute Flux to Flux Error of Band: Average of the absolute of the 

values of flux to flux error. This is calculated for all six passbands. 

Using the observed flux values, the color of astronomical entities can also be calculated which 

sheds light on how hot or cold (relatively) the body is as the color is directly related to its 

temperature. Numerically, the color is just the ratio of observed flux values between two bands 

[48]. Equation 4.3 is used to compute different colours.  
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𝐶 =  
∑ 𝑤𝑘_𝑖𝑥𝑘_𝑖

∑ 𝑤𝑘
− 

∑ 𝑤𝑗_𝑖𝑥𝑗_𝑖

∑ 𝑤𝑗
 (4.3) 

where j  and k are the two passbands. Using the weighted averages of different bands, the 

following colour values are computed: 

 U-G Colour: Colour calculated by using u and g band. 

 U-I Colour: Colour calculated by using u and i band. 

 U-Z Colour: Colour calculated by using u and z band. 

 U-Y Colour: Colour calculated by using u and y band. 

 G-R Colour: Colour calculated by using g and r band. 

 G-I Colour: Colour calculated by using g and i band. 

 G-Z Colour: Colour calculated by using g and z band. 

 G-Y Colour: Colour calculated by using g and y band. 

 R-I Colour: Colour calculated by using r and i band. 

 R-Z Colour: Colour calculated by using r and z band. 

 R-Y Colour: Colour calculated by using r and y band. 

 I-Z Colour: Colour calculated by using i and z band. 

 I-Y Colour: Colour calculated by using i and y band. 

 Z-Y Colour: Colour calculated by using z and y band. 

4.3.5 Miscellaneous Features 

In addition to the features mentioned above, there are 6 more features that are computed or 

added to the feature vector for each object. These features are: 

 Maximum Detected Flux: The maximum value of flux that has been detected in any 

of the six bands. For this feature, we use the flux values without the intermittent zeros 

i.e. the provided flux data. 

 Passband that Holds the Maximum Detected Flux: The number of the band in which 

the maximum detected flux lies. This value can be one of the following: 0, 1,2,3,4 or 5. 

 Minimum Detected Flux: The minimum value of flux that has been detected in any of 

the six bands. For this feature, we use the flux values without the intermittent zeros i.e. 

the provided flux data. 

 Passband that Holds the Minimum Detected Flux: The number of the band in which 

the minimum detected flux lies. This value can be one of the following: 0, 1,2,3,4 or 5. 

 Photometric Redshift: The value of the photometric redshift for the object. 
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 Redshift Flag: A binary value indicating whether the object is galactic or extragalactic. 

This flag is generated based on the value of photometric redshift. 

All the features are then concatenated to form a feature vector of length 488. Table 4.1 

summarizes the number of features that have been extracted using the six different bands and 

the over profile of the object. 

Table 4.1 Breakdown of Different Categories of All Extracted Features 

Type of 

Features 

No. of 

Features 

Calculated 

per Band 

No. of 

Features 

from All 

6 Bands 

No. of Features 

calculated from 

Added Object 

“Profile” 

No. of Features 

calculated from 

Concatenated 

Object “Profile” 

Category 

Total 

Statistical 12 72 11 11 94 

Wavelet 

Decomposition 
4 24 4 4 32 

Shape Based 46 276 22 22 322 

Ratio Based 34 34 

Miscellaneous 6 6 

Total Features 488 

 

4.4 Feature Pruning 

In order to reduce the number of the extracted features from 488 (100%) down to 160 (~ 33%) 

we prune the less useful features. The effect of this strategy is two-fold: one, this not only helps 

with reducing the training time but also makes the testing stage a lot faster, and, two, removing 

weak features (with greater noise) can generally improve the performance of a classifier by 

reducing overfitting [49].  

Pruning of features is done based on the feature importance values [50] calculated by the 

classifier itself that are used internally to split the training data so that it can be classified 

accurately. Top 160 features are selected based on the feature importance values by each 

classifier. Tables 4.2 lists the features used for the final model of Random Forest. 

Examining the above selected features for the three classifiers reveals that while there is  quite 

a bit of overlap in the final features of each classifier (redshift flag and photometric redshift 

being the prominent examples), a fair number of features are different. More importantly, even 

if the features are same, they have different importance value for different all three classifiers. 
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A feature having the same importance value for two or more classifiers is a rarity. The Venn 

diagram in Figure 4.10 shows the breakdown. 

 

Figure 4.10 Overlap of Features between the Classifiers 

4.5 Classification 

4.5.1 Random Forest 

Random Forests (RF) leverage the fact that combining several weak classifiers can result in a 

final, strong classifier. RFs work by creating an ensemble of multiple, independent decision 

trees by using a randomly selected subsample of the feature vector. For each tree in the 

ensemble, the features are different. This combination of several supplementing decision trees 

results in improved performance by increasing accuracy and provides better generalization 

[44]. The final classification is obtained by combining the output of all the classifiers using a 

particular method; either the outputs can be averaged (in essence, the averaging of models 

generated) [51] by using a certain discriminant function or voting can used with the class 

having the most votes being declared the output class [52]. Figure 4.11 shows the typical 

working of a Random Forest Classifier. 
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Figure 4.11 Random Forest Working [53] 

Random forests can be tuned to work better for a specific problem by tuning some of the hyper-

parameters. We have used a grid based searching method for hyper-parameters tuning. When 

the number of tree in the forest is set to 5550 with max tree depth restricted to 10 and using all 

features for each estimator, we get the best results by this model. In addition to the above 

parameters, attribute selection measure is set to Gini Matrix. The features that are most 

important for the RF are then used to training. The output for each sample is a 14 class 

probability. 

4.5.2 eXtreme Gradient Boosting 

eXtreme Gradient Boosting (XGB), as the name implies, is a gradient boosting technique 

relying on decision trees. Boosting techniques are similar to bagging techniques as they also 

employ a number of weak classifiers to form a strong classifier but have the added benefit of 

learning from the last weak classifier’s mistake. Simply put, XGB builds a strong classifier by 

adding on weak classifiers that optimize a learning objective function. XGB has several 

benefits the most prominent of which is that it is highly scalable [45].  

Just like Random Forests, the hyper-parameters of XGB can also be tuned for better 

performance. We have used a grid-based approach to find the best hyper-parameters for this 
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problem. The number of trees has been set to 2650 while the tree depth has been constrained 

to just 4. In addition, each tree in the ensemble uses only 70% of the features. In order to stop 

over-fitting, Alpha regularization has been used with a value of 0.01. XGB is trained on the 

shortlisted 160 features by their importance. XGB also produces a 14 class probability vector 

for each test sample.  

4.5.3 Light Gradient Boosting Machine 

Light Gradient Boosting Machine is another boosting technique that speeds up the process of 

training by making use of two novel techniques. One of them is Gradient-based One Side 

Sampling that dramatically reduces the number features that are used to calculate the 

information gain by only considering the features with large gradients. The other technique is 

Exclusive Feature Bundling that allows for combining mutually exclusive features. This 

reduces the overall number of features to consider and results in improved speed. Furthermore, 

the trees in LGBM are grown leaf wise instead of being grown level wise as in other bagging 

or boosting techniques. The tree with the most entropy is selected for this purpose [46]. Figure 

4.12 demonstrates the process of a tree being grown using LGBM.  

 

 
Figure 4.12 Leaf Wise Tree Growth in LGBM [54] 

Using the grid-based search methods for hyper-parameters of LGBM, the number of trees is 

set to 50 while the maximum tree depth is capped at 5. Like XGB, the 70% of the features are 

used for each tree and the value of alpha regularization is set to 0.01. LGBM also produces a 

14-class probability vector against each test sample. 

4.5.4 5-Layer MLP 

A multilayer perceptron with 5 hidden layers is used atop of the previous classifiers to combine 

the advantages that the different classifiers have with regard to different classes. Neural nets 
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get their name from the biological neural nets as their architecture is quite similar consisting of 

computational nodes that perform non-linear operations on the input. These nodes in each 

consecutive layers are connected by certain weights and learning these weights is the goal of 

the training process through repeated passes of forward and backward propagation [55]. Figure 

4.13 illustrates the structure of the MLP that has been used in our methodology.  

 

Figure 4.13 MLP Architecture 

The concatenated vector of 14 class probabilities is fed to the MLP as an input. Each layer of 

1024 nodes is followed by a batch normalization [56] layer which itself is followed by a 

dropout layer. Random dropout of 0.2 is applied at the dropout layer. Both the normalization 

layer and the dropout layer help to reduce overfitting. The output of the MLP is a 14-class 

probability vector which is treated as the final probability vector. 

The MLP is trained on the probabilities of all three classifiers obtained using multiple runs at 

the validation stage using random shuffling in each run. 

The main benefit of employing this methodology is while one classifier might perform well for 

one class and terribly for another, combining the classes in which all the classifiers perform 

well will result in an overall increased accuracy. Feature selection also allows to speed up the 

process of testing of incoming samples which can be an important feature if the amount of data 

is humongous. 
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Chapter 5 : EXPERIMENTAL RESULTS 

5.1 Dataset 

LSST dataset consists of simulated light curves of 14 different astronomical occurrences 

covering a wide range of objects. These light curves have been created using models presented 

by collaborators from different institutes all around the globe [51]. The 14 classes themselves 

can be divided into two main groups, namely galactic and the extragalactic objects. The 

Galactic objects are found in our galaxy Milky Way while extragalactic objects lie beyond. 

Table 5.1 contains the class labels along with the model that they represent. 

Table 5.1 Dataset Classes and Models 

Class Label Astronomical Model 

Class 6 μ-lens from single lens 

Class 15 Tidal Disruption Event 

Class 16 Eclipsing Binary stars 

Class 42 Core Collapse, Type II SN 

Class 52 Peculiar SNIax 

Class 53 Pulsating variable stars 

Class 62 Core Collapse, Type Ibc SN 

Class 64 Kilonova (NS-NS merger) 

Class 65 M-dwarf stellar flare 

Class 67 Peculiar type Ia: 91bg 

Class 88 Active Galactic Nuclei 

Class 90 WD detonation, Type Ia SN 

Class 92 RR lyrae 

Class 95 Super-Lum. SN (magnetar) 

 

The dataset is divided into two subsets; the training data and the testing data. The training data 

consists of 7848 samples while the testing data consist of 3492890 (approximately 3.5 million) 

samples. Both the training and the testing datasets are biased and the training dataset does not 

truly represent the testing dataset. In addition to the 14 classes in the testing dataset, it also 

contains a very small percentage of outliers i.e. samples which do not belong to any of the 

classes in the training dataset  [11].  Figure 5.1 shows the distribution of the classes in both the 
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training data and the testing data while Figure 5.2 shows the distribution of the samples 

according to the galactic and extragalactic subsets.  

 

Figure 5.1 Distribution of Classes in Training and Testing Data 

 

Figure 5.2 Distribution of Galactic and Extragalactic Objects 
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The dataset is provided with metadata for each object consisting of a number of fields the most 

important of which is the value of photometric redshift. In addition to the value of photometric 

redshift, the value of spectroscopic redshift is also given. Spectroscopic redshift is a far more 

accurate version of the photometric redshift. While the value of spectroscopic redshift is given 

for all training samples, only a small portion of testing samples have this value [11].  

5.2 Performance Measures  

Two metrics have been used for the evaluation of the results; the first one is the accuracy of 

each class while the second metric is the PLAsTiCC Metric Score [52]. It has been conceived 

due to the fact that it can be meaningfully interpreted for several diverse fields. The two 

parameters are defined as: 

 

𝐴𝐶𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5.1) 

𝐿 =  

∑ (𝑤𝑗 . ∑ 〖
𝐼

𝑁𝑗
𝜏𝑖,𝑗𝑙 𝑛(𝑃𝑖,𝑗))𝑁

𝑖=1 〗𝑀
𝑗=1

∑ 𝑤𝑗
𝑀
𝑗=1

(5.2) 

In case of accuracy, TP (True Positive) is the number of samples of a class that have been 

identified correctly while FP (False Positive) are the samples that have been classified as 

belonging to another class. 

The PLAsTiCC Metric Score is a weighted form of cross entropy where (𝑖,) = 1, if i is from j, 

0 otherwise, 𝑁_𝑗: Number of objects in class j and 𝑤_𝑗: weight of class j [52]. A higher weight 

is assigned to the class that has more samples than the rest. 

5.3 Results 

Results were computed for both the training dataset and the testing dataset and are given in the 

sections below. 

5.3.1 Cross Validation 

For Cross Validation, the training data had a 60:40 split. It is worth nothing that different 

classifiers performed differently for the classes in the dataset. 
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Random Forest (RF) 

The confusion matrix of Random Forest is given in Figure 5.3. RF outperformed the other two 

classifiers for the following classes: Class 6, Class 15, Class 16, Class 53, Class 62, Class 64, 

Class 67, Class 88 and Class 95. 

 

Figure 5.3 Confusion Matrix for Random Forest Classifier 

The random forest achieved an accuracy of 63.33% while a log loss score of 1.2339. 

 

eXtreme Gradient Boosting (XGB) 

The confusion matrix of eXtreme Gradient Boosting is given in Figure 5.4. XGB outperformed 

the other two classifiers for the following classes: Class 42, Class 65 and Class 92. The XGB 

achieved an accuracy of 69.7% while a log loss score of 1.6194. The higher accuracy is the 

result of performing quite well for Class 42 and Class 65 as they contain a reasonably large 

number of samples in the training dataset. 
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Figure 5.4 Confusion Matrix for eXtreme Gradient Boosting 

 

Light Gradient Boosting Machine (LGBM) 

 

Figure 5.5 Confusion Matrix for Light Gradient Boosting Machine 
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The confusion matrix of Light Gradient Boosting Machine is given in Figure 5.5. LGBM 

outperformed the other two classifiers for only one class that is Class 90. LGBM achieved an 

accuracy of 62.895% while a log loss score of 2.1541. The performance of LGB was 

considerably worse for all other classes. 

Multilayer Perceptron 

The confusion matrix of the Multilayer Perceptron is given in Figure 5.6. MLP combines the 

output of all the classifiers in a way that the accuracy of all the classes is improved. 

 

 

Figure 5.6 Confusion Matrix of Multilayer Perceptron 

The multilayer perceptron achieved an accuracy of 74.9% while a log loss score of 0.92175. 

Table 5.2 summarizes all the accuracies and the log losses. 

Table 5.2 Summary of Classifiers' Accuracies and Log Losses 

Classifier Accuracy Log Loss 

RF 63.33 1.2339 
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XGB 69.7 1.619 

LGBM 62.895 2.1541 

MLP 74.9 0.91275 

 

5.3.2 Testing 

As mentioned earlier, the testing dataset contains approximately 3.5 million samples. The data 

has been cleaned up slightly by removing the outliers present in the data. As these samples 

account only for a small percentage (less than 0.39%), therefore removing them does not affect 

the testing data very much. 

Random Forest (RF) 

The confusion matrix of Random Forest for testing dataset is given in Figure 5.7. The random 

forest achieved an accuracy of 61.792% while a log loss score of 1.455. 

 

Figure 5.7 Random Forest Confusion Forest for Testing Data 
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eXtreme Gradient Boosting (XGB) 

Figure 5.8 shows the confusion matrix of testing data. XGB achieved an accuracy of 60.63% 

while a log loss score of 1.65248 on the test data performing similarly for each of the classes 

as in cross validation.  

 

 

Figure 5.8 Confusion Matrix for eXtreme Gradient Boosting for Testing Data 

 
 

Light Gradient Boosting Machine (LGBM) 

As in the cross validation, Light Gradient Boosting Machine outperformed the other two 

classifiers for Class 90 in testing data also. LGBM achieved an accuracy of 61.23% while a log 

loss score of 2.180. For all other classes, the performance of LGBM was pretty abysmal. The 

confusion matrix of Light Gradient Boosting Machine is given in Figure 5.9 
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Figure 5.9 Confusion Matrix of LGB using Test Data 

Multilayer Perceptron 

 

Figure 5.10 Confusion Matrix of Multilayer Perceptron for Testing Data 
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The ensemble achieves an accuracy of 61.7009% for the test data and a log loss score of 1.43. 

The degradation in performance is due to the extremely large number of samples as compared 

to the training dataset. 

Table 5.3 summarizes all the accuracies and the log losses for the 3.5 million test samples. 

 

Table 5.3 Summary of Classifiers' Accuracies and Log Losses for Testing Data 

Classifier Accuracy Log Loss 

RF 61.792 1.455 

XGB 60.63 1.65 

LGBM 61.23 2.180 

MLP 61.7009 1.43 
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Chapter 6 CONCLUSION & FUTURE WORK 

6.1 Conclusion  

In the age of LSST and similar telescopes, automatic prediction of astronomical entities in a 

timely manner is the need of the hour. Keeping that in view, the results presented here are 

encouraging. An aggregate of diverse features can form a clear picture of an object for 

classification instead of relying on just a handful of features. The benefit of using multiple 

features is that a subset of features that might work for one classifier might not give good results 

for another. In addition, using the bagging and boosting classifiers in an ensemble, the overall 

accuracy can be increased to some extent. The benefit of using such an ensemble is that 

classifiers like Random Forest and Light GBM are quite fast to train so we can cut down on 

the training time if we just use a deep learning technique. An ensemble also curbs overfitting.  

6.2 Contribution 

 Fully automated system for classification of astronomical entities using light 
curves from photometric data 
 

 Engineering and extraction of useful features from the light curves to help in the 
classification 
 

 Reformatting of raw flux values and saving them with relevant information in an 
easy to access file format  

6.3 Future Work 

While the ensemble improves the accuracy of the overall model, increasing the accuracy 

of the individual classifier can greatly benefit the ensemble. In addition, the classification 

at the bagging and boosting classifiers can be done in a hierarchal manner to further 

increase the accuracy. Moreover, light curves from other sources can also be subjected to 

this approach and this model can be expanded for classification of other astronomical 

entities.  
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