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ABSTRACT 

In the last decade, there has been an exponential increase in the video traffic over the 

internet. Social Medias are becoming one of the main source of live and on-demand video 

streaming content. With ever-increasing popularity of online different video streaming services 

on heterogeneous platforms, new research challenges are arising day by day. Few of the main 

challenges that online video streaming services face are high latency of the video, instability of 

the video, unfairness among the clients, inefficiency of the algorithm to adapt to the changes in 

the network and the start-up delay of the video. Most of the existing algorithms fail to maintain a 

balance between stability and efficiency of the algorithm in unstable network conditions. We 

have proposed SHANZ rate adaptation algorithm for which address these challenges. We have 

developed two versions of the algorithm. SHANZ-I algorithm works on HTTP1.1 protocol. It is 

a dynamic rate adaptation algorithm with feedback control mechanism and adaptive step up 

function, which acts as an explicit knob to maintain a balance between stability and efficiency of 

the algorithm, even in drastic network conditions. Moreover, it introduces randomized download 

delay for the clients to overcome bandwidth overestimation problem occurred in multiple clients. 

The second version we have proposed is SHANZ-II rate adaptation algorithm, which is based on 

HTTP/2 protocol. It utilizes HTTP/2 features like server-push, streams multiplexing and header 

compression for the enhancement of quality of experience. It minimizes the latency and start-up 

delay of the video, which are the main challenges for live video streaming. The algorithm defines 

an intelligent control mechanism for server-push, which maximizes the utility function. We have 

simulated our algorithm using ns-3 and compared our results with FESTIVE, PANDA and 

AAASH algorithms by using multiple test cases. The results demonstrate that our proposed 

algorithm outperforms other algorithms by addressing the key issues and by achieving higher 

Quality of Experience. 

 

Key Words: HTTP streaming, QoE, DASH, Dynamic Adaptive Streaming over HTTP, 

Rate Adaptation Algorithm, Adaptive Bitrate Streaming, ABR
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CHAPTER 1: INTRODUCTION 

Due to advancement of the network infrastructure in the last decades, there has been an 

exponential increase in the video traffic over the Internet. Video content on social media 

websites like Facebook, are one of the main causes of the rise in video traffic. According to 

CISCO’s Visual Networking Index [1], video content on the Internet in 2022 will constitute 82 

percent of total IP traffic. There has been a rapid convergence of many multimedia services like 

video conferencing, live and on-demand video content distribution services, Traditional TV 

service over the Internet and IPTV. In 2015, YouTube and Netflix accounted for 50% of the total 

network traffic in North America [2].  

1.1 Background, Scope and Motivation 

In the past, either traditional UDP based protocol like Real time Transport Protocol 

(RTP) [3] or TCP based Real-time Messaging Protocol (RTMP) was used for video streaming 

over the internet. In the traditional Media Servers, multiple protocols were used in combination 

for multimedia streaming over the Internet. Real-time Streaming Protocol (RTSP) was used to 

set-up a streaming session and saving the information of state of server for the session between 

client and server. RTP was responsible for the transfer of media from server to client; where as 

RTP Control Protocol was responsible for sending the status of the client to the server, which can 

help server to perform rate adaptation. This resulted in complex and computationally expensive 

media servers. One of the main drawbacks of using traditional media servers was their inability 

to traverse through NAT and Firewall. Additional protocols were required along with RTP to 

perform this functionality [4]. Moreover, due to differences in implementation or some optional 

features in place, these media servers behaved differently and had scalability issues, despite 

having same fundamental protocols in the baseline. These issues caused the failure of server or 

other glitches during the video streaming session.  

The traditional process of video streaming over the Internet is known as progressive 

download. In progressive download, source video file, which is usually of MP4 format, is 

transmitted from source server to the destination clients. The source video file remains the same 

regardless of network state or device capabilities of the client. As a result, clients face two major 
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issues in progressive download. If the file size or bitrate is too high, the client will start facing 

video stalling issue either due to lower network bandwidth or due to low processing power of the 

client. On the other hand, if the file size or bitrate is low, the client will face pixelation issue, as 

the video will not fit to the screen size and will create a blurred image due to stretching. 

Adaptive video streaming provides a solution to the above-mentioned problem, by providing a 

dynamic mechanism. Adaptive streaming ensures that client experiences the video on maximum 

possible video quality according to its device capabilities. Secondly, the quality of the video 

adjusts along with drastic network conditions. 

1.2 What is Adaptive Streaming? 

In 2005, adaptive video streaming method was introduced by Move Networks, which got 

famous instantly due to its simple design with better features. Many leading content providers 

quickly adopted it due to its cheap deployment cost. In 2012, MPEG declared DASH as a 

standard protocol for video streaming over the internet. HTTP based adaptive streaming (HAS) 

protocol uses HTTP as its application layer protocol and TCP as its transport layer protocol for 

video streaming. Implementing HAS on top of TCP helps the service providers to use the 

existing infrastructure of HTTP like stateless HTTP webservers, HTTP cache and CDNs. 

YouTube used server based streaming strategy for video streaming in the past but now it has 

shifted to HAS. 

HAS media severs have several advantages over traditional media servers. Firstly, it has 

multiple bit rates of the same video, which enables to deliver the video content to clients 

according to their operations. Secondly, it provides flexible service models to the clients, which 

means that clients can be charged according to its subscription. Finally, it enables the client to 

adapt the current video bit rate according to changing network bandwidth and conditions, so the 

client can enjoy seamless video streaming without any interruption. 

In the last decade, there has been a significant increase in the popularity of HTTP based 

Adaptive Video Streaming. Currently majority of multimedia servers use HAS based architecture 

to provide their services. Majority of leading commercial players like Microsoft’s Smooth 

Streaming [5], Apple’s HTTP Live Streaming (HLS) [6] and Adobe’s HTTP Dynamic Streaming 

(HDS) [7]  are all based on DASH based architecture. 
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1.3 Problem Statement 

One of the main challenges for online video streaming services is inability of the 

algorithm to cope with unstable network condition. Most of the existing algorithms fail to 

maintain a balance between stability and efficiency of the algorithm in unstable network 

conditions. We have proposed a dynamic rate adaptation algorithm with feedback control 

mechanism and adaptive step up function, which acts as an explicit knob to maintain a balance 

between stability and efficiency of the algorithm, even in drastic network conditions. 

1.4 DASH Architecture 

HAS contains multiple copies of the same video also called representations, each 

encoded at a different bit rate and resolution. Moreover, each video representation is divided into 

equally sized time fragment usually ranging from 1 to 10 seconds known as segments. Segment 

length is the shortest duration of the video after which a quality shift can occur. To ensure 

seamless streaming, video quality switches only occur at the end of a video segment and video 

segment index of all the representations are perfectly time aligned  and are of exactly same time 

interval so that client can switch up or switch down its quality level without interruption in the 

video.  

In HAS the client operates in the two phases during the video streaming process. The first 

phase is buffer-filling phase. In this phase, the client continuously downloads the video segments 

until it reaches a certain threshold level of the buffer. After the buffer reaches that threshold 

value, the client enters a steady phase, in which the client operates in ONN-OFF pattern. The 

client keeps on downloading the video segments until it reaches the upper threshold value, after 

that it stops, and the client is only playing the video, so its buffer level starts decreasing. The 

client remains in OFF state unless its buffer reaches a lower threshold value, after which it starts 

downloading video segments again. 

First segment of the video does not contain any actual metadata rather it contains 

decoding information about the video for client’s decoder. Each video segment must contain at 

least one Stream Access Point (SAP), from where client’s decoder starts the decoding of a video 

segment. Each segment of the video also contains indexes and its explicit and implicit start time 

along with its duration. Index of the segments can be used for downloading a segment in parts 
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from multiple source servers by using a signaling sub-segments method, as mentioned in the 

specification [8]. A client can request sub-segment from multiple servers simultaneously by 

using Partial HTTP GET requests.  

A simple HTTP based Adaptive Video Streaming scenario is shown in Figure 1.1. The 

process contains two phases, in the first phase MPD file of the video is transported which 

contains all the attributes of the video. After Successful transmission of MPD file, Client starts 

requesting the video segment from one of the available representations of the video. HTTP 1.1 

protocol is used for video streaming over the internet. 

 

Fig.  1.1: DASH Architecture [9] 

1.4.1 MPD File 

The first task a server needs to perform to start video streaming session with the client is 

to send Media Presentation Description (MPD) file to the client. It can be transported using any 

transport medium like HTTP, broadcast, etc. MPD file in presented in XML file format, which 

contains information of segment length, segment URLs, representation levels and other attributes 

of a particular video. Each file can consist of one or more periods. A period contains information 

about audio and video codec of the video and its corresponding attributes like maximum and 

minimum available bitrate of the video, frame rate, audio channel etc. Each period can consist of 
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one or more adaptation sets. An Adaptation set contains multiple representations for a same 

video. It also contains one or more media components of the same video. For instance, one 

adaptation set can contain different representations of video components of a specific 

multimedia, while another adaptation set can contain different bitrates of audio components of 

that video.  

A representation of the video contains different encoded copy of a same video. These 

representations may differ in video resolution, bitrate in which the video is encoded, total 

number of channels used for encoding the video, or they may differ in any other similar 

characteristic of the video. Each representation of the video is divided into multiple equally sized 

media streams called as segments. A segment can vary from 1 to 10 seconds in length. Each 

video segment can be accessed through its unique URL. Figure 1.2 explains the hierarchical data 

model of media presentation description file of HAS. 

 

Fig.  1.2: Hierarchical Data Model of MPD File [9] 

All of this hierarchical information of the video is stored in its MPD file. A client 

downloads the MPD file of the video from the server and parses the XML file to check the list of 

available attributes of the video. A client then chooses suitable adaptation set of the video from 

one or more available periods according to its codec and other attributes. After the selection of 
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an adaptation set, client formally starts requesting video segments from the server in a sequential 

order. 

Adaptation algorithm is run on the client, which drives the playback of the video. 

Adaptation algorithm selects the representation of a video and requests video segments from that 

representation in such a way that is maximizes the overall Quality of Experience of the user. 

There are various parameters, which can affect the overall QoE metrics of the client. These 

parameters include measured throughput of the link, buffer status of the client, device 

specifications like screen resolution etc. Fig 1 below describes the overview of a DASH 

Architecture.  

Client drives the video streaming process by performing some of the most important 

decisions like selection and scheduling of next video segment to download, and maintaining the 

buffer level On the other hand, server regulates the video streaming by preparing the video 

content by deciding the suitable audio and video encoder. H.264/AVC is the most widely used 

video encoder used for HAS [10]. Server also decides the optimum number of representation 

levels for a certain video, and how many of them should be available to a certain client. Server 

also decides the best suitable segment size for a video.  

When multiple users in the same network stream videos simultaneously, it creates a 

bottleneck link in the network, which results in instability and unfairness among the clients [11]. 

Currently networks have very less capability to overcome the instability and unfairness issues of 

multiple DASH clients. So its responsibility of the video service providers to ensure fairness and 

stability among the clients by implementing intelligent rate adaptation algorithms. 

1.5 Challenges in HAS 

Although HAS media servers have a clear advantage over traditional media servers but 

there are still numerous challenges that are faced by HAS systems which degrade their 

performance. One of the main issues faced by HAS systems is instability of the video, which 

means frequent oscillations in the bit rate of the video, which might be due to fluctuating 

bandwidth or any other factor. Instability is one of the main reason of performance degradation 

in HAS based videos and service providers try to minimize its effect.  
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Second challenge faced by HAS based systems is unfairness among their clients. When 

multiple clients are streaming video in the same network, they create a bottleneck link. 

Sometimes when multiple clients are competing for the same resource, they do not get fair share 

of the network, rather the client is consuming higher bandwidth keeps on getting greater share in 

the network and bandwidth of other clients drop, which results in unfairness in the clients. 

Unfairness is one of the main challenges, which content service providers try to overcome.  

Third most concerned challenge of HAS based system is inefficiency of the algorithm. Mostly, 

when developers try to overcome first two challenges of the algorithm i.e. instability and 

unfairness, starts facing the third challenge i.e. inefficiency. The algorithm starts to 

underperform; as a result, client is forced to watch the video at lower bit rate even though 

bandwidth is available. 

These are three major challenges of HAS. All the HAS based systems develop their algorithms to 

overcome these challenges by using different strategies. Adaptation Algorithm is not the part of 

DASH standard, so every commercial HAS based media player has its own adaptation algorithm 

but the basic principle of all the algorithms is same.  

1.6 QoE parameters 

The basic goal of adaption algorithm is to select the video segments in such a way that it 

maximizes the Quality of Experience (QoE) of the user. QoE is a subjective criterion for analysis 

of user satisfaction of overall video quality. It consists of many attributes like average video 

quality, start-up delay, number of video quality switches, number of video freezing events etc.  

There are multiple factors, which can affect user’s Quality of Experience like, network 

channel, network signal strength, network congestion events, bandwidth fluctuation, number of 

clients in a network, etc. One algorithm can outperform other algorithms in one particular 

scenario but its performance may drop when the network conditions change. Adaptation 

algorithm should be robust as well as adaptive to perform efficiently in fluctuating network 

conditions. 

There are variety of parameters, which collectively contribute to overall user’s Quality of 

Experience (QoE). Some of the parameters have a positive effect on QoE while others have a 
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negative effect. The main goal of adaptation algorithm is to maximize the parameters having a 

positive effect on QoE and to minimize the parameters that have a negative effect on QoE. In the 

corresponding paragraphs, we will briefly discuss each of the QoE parameter and its effect on 

overall experience of the user. 

Average Bit Rate: This is one of the most important parameters of QoE metrics. It describes 

average video quality perceived by the client. Average Bit Rate is computed by adding the bit 

rate of each video segment divided by total number of video segments. This parameter gives 

direct impression of overall user experience. The goal of adaptation algorithm is to keep average 

bit rate of the client as high as possible according to the available bandwidth. 

Initial Delay: This parameter is also crucial for the analysis of overall experience of the user. 

Initial delay is the total time from when the user requests the video until the client plays first 

video segment. Higher initial delay has very negative impact of client’s user experience. Initial 

delay depends upon numerous factors like, distance of the source media server/ CDN from the 

client, popularity of the video etc. The goal of adaptation algorithm is to keep the initial delay of 

the video as minimum as possible. 

Stalling Frequency: Stalling Frequency is defined as total number of video freezing event 

during the playback. Video stalling is one of the most irritating event in the playback. It has a 

very negative impact on the quality of experience of the user. One of the most possible cause of 

the stalling event is buffer underrun or buffer depletion. 

Stalling Duration: Stalling duration is another important parameter, which have adverse effect 

on the user’s quality of experience. It is defined as total time in seconds for which video freezing 

event has occurred during the playback. Adaptation Algorithms are developed in such a way that 

it avoids any stalling event in the playback. One possible way to avoid the stalling event is to 

decrease the bit rate of the video. 

Switching Frequency: Switching Frequency is the total number of video quality switches during 

the playback. Greater the switching frequency, lower is the overall quality of experience of the 

user. Some of the possible reasons of high switching frequency could be drastic changes in the 

bandwidth of the network or aggressive approach of the algorithm. Therefore, the algorithm aims 

to keep up the efficiency of the algorithm with minimum number of video quality oscillations. 
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Switching Amplitude: This parameter is defined as the difference of bitrates before and after the 

video quality switch. Higher amplitude of video quality switch is perceived as a negative 

indicator of performance of adaptation algorithm. Therefore, the adaptation algorithm aims to 

switch the bit rate of the video with lower switching amplitude. 

Segment Size: Segment size is another parameter, which contributes towards quality of 

experience of the user. Smaller segment size means that the client can quickly adapt to the 

changes in the network, on the other hand, smaller video segments increases encoding overhead 

of the video. So, optimum size of video segment is required to get the best Quality of Experience 

for the user.  

Video Codec: The performance of the algorithm also depends upon the video codec used for 

encoding the video. There are two most popular codecs for encoding the video in HAS format. 

One of them is Advance Video Encoder (AVC). In AVC, each representation of the video is 

encoded separately. The second type of codec is Scalable Video Coding (SVC). In SVC, the 

lowest representation of the video acts as a base layer, and all the upper layers are added in the 

base layer to upgrade the bit rate of the video.  

Average Buffer: Average buffer is one of the most important parameters of Quality of 

Experience metrics. The buffer status drives the overall process of video streaming. The aim of 

the algorithm is to find out, what is the optimum buffer level for the client and to keep the buffer 

level closer to the optimum buffer level. If the buffer level drops too low, it will cause buffer 

underrun and create stalling events. If the buffer level gets to large, it will waste the bandwidth 

and can create unfairness among the clients. So optimum value of buffer level is to be 

maintained by the adaptation algorithm to achieve high quality of experience. 

Multiple Clients: Total number of clients in a network also effect the user’s Quality of 

Experience. If there are multiple users in the same network, all the clients compete for bandwidth 

resource and it creates a bottleneck link in the network. The aim of adaptation algorithm should 

be to maintain fairness among the clients and to ensure that every client gets a fair share of the 

network. Otherwise, one user may suppress the performance of other clients by using higher slice 

of the bandwidth of a network by greedy approach. 
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1.7 MPEG DASH 

In April 2012, Moving Pictures Expert Group (MPEG) developed the standard protocol 

for HTTP based video streaming. The official name given to the protocol was Dynamic Adaptive 

Streaming over HTTP (DASH).  The protocol was revised in 2014 as an ISO standard. DASH 

enables the streaming of high quality media content by using existing HTTP infrastructure of the 

network. There are few other popular technologies for HTTP based adaptive streaming like 

Adobe HDS, Apple HLS, and MSS but they are vendor dependent and have limited support for 

other streaming servers. MPEG DASH has been declared as an International standard and it is 

vendor independent. 

1.7.1 Additional Attributes of DASH 

MPEG DASH is a standard protocol for adaptive video streaming over the Internet. It has 

a support for live video content, 360-degree videos and Video on Demand. Majority of 

commercial video players has a support for MPEG DASH. There are several key features of 

DASH, which makes it the most popular protocol for adaptive video streaming. Some important 

characteristics of DASH are as follows. 

Multiple parallel Streams: MPEG DASH has capability of adding multiple streams, which are 

switchable and adaptive. All the streams are synchronous to each other, which ensures seamless 

switching between the streams. For example, audio streams are available in different languages 

and client can switch to any language in the middle of the playback. Similarly subtitles for each 

audio stream can be added, which are switched automatically along with the audio stream. 

Multiple camera angles can be added, so that the client can get better viewing experience by 

switching the streams. 

Target Ad insertion: MPEG DASH gives the capability to insert the advertisements at precise 

locations in live and on-demand video content. An ad can be inserted at segment level either 

after one segment ends or at period level, at the end of one period. For example, in a live cricket 

match, ads can be added manually at the end of each over.  

Manifest File Compression: This feature enables DASH to reduce the size of the media 

presentation description file. It is performed by using template scheme to signal the URL of the 
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video segments. One of the main advantages of this feature is that it reduces the video start-up 

delay for the clients, as less time is required to download the MPD file. 

Manifest File Fragmentation: This is another key feature of MPEG DASH, which reduces the 

start-up delay for the playback. One large manifest file is partitioned into multiple smaller 

sunsets, so that only essential attributes of the file are sent at the start of the playback and rest of 

the parts can be sent periodically during the playback. 

Variable Duration segments: This is one of the most powerful features of MPEG DASH. This 

feature allows variable length of the video segments. This feature is very useful for live video 

streaming because in that case, content generation, video encoding and video streaming are all 

performed simultaneously. In live video streaming, there might be delay in the content 

generation process, which might increase the latency. Therefore variable segment duration 

allows smoothening the processes and delivering the content as soon as it reaches, without 

waiting for a complete length of the segment. The length of the next video segment can be 

notified to the client while sending the current video segment. 

Alternate base URLs: With the help of this feature, the same video content can be distributed to 

multiple servers or CDNs. These servers might be present at different geographical locations to 

globalize the distribution of the content. So that the client can switch to any one of the available 

servers which provides maximum throughput with minimum latency. Secondly, this feature can 

also help to shift the client on its prescribed CDN according to its subscription. It will allow in 

differentiating regular customers from premium customers, which can get more services. 

Support Multiple Encoders: MPEG DASH supports multiple encoders. The most widely used 

encoder for DASH is Advance Video Encoder (AVC, in which each representation layer is 

encoded separately. Apart from this, DASH also supports Scalable Video Coder (SVC), in which 

the lowest representation level is encoded as a base layer and all the successive layers are added 

to the base layer for the enhancement of video quality. DASH also has a support for Multiview 

Video Coding (MVC).  

Metrics for QoE: DASH has a well-defined set of Quality of Experience metrics for the analysis 

of experience of the user. These parameters may include start-up delay, average video quality, 

video quality transitions, current buffer status, stalling events, etc. The client records these 
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parameters and reports them to the server. These parameters help the server to analyze the 

viewing experience of the client during the playback. The adaptation algorithm adapts the video 

in order to maximize the viewing quality experience of the client. 

1.7.2 MPEG DASH Frameworks 

MPEG DASH has introduced three important frameworks. These variants include DASH 

with HTTP 1.1, DASH with Server Push and Web Sockets, and finally Server and Network 

Assisted DASH (SAND). The standard covers the technical details and working flow model of 

the video streaming process, however the adaptation algorithm is not part of the standard. Each 

of the above mentioned variants of DASH protocol are designed but are not limited for a specific 

scenario. In the coming paragraphs we will briefly describe technical aspects and applications of 

each of the above-mentioned variations of DASH protocol.  

1.7.2.1 DASH with HTTP1.1 

This is the first framework of MPEG DASH standard protocol, which was introduced in 

2012. This is the most popular and widely used protocol. This framework is based on HTTP 1.1, 

and uses persistent HTTP connections. There are multiple features, which make this a powerful 

framework. Multiple HTTP connections can be opened between the server and client to fetch the 

video segments in parallel. Secondly, it also supports pipelining of multiple video segments, 

which means that client can sequentially request multiple video segments, without waiting for 

the delivery of the previous video segments. This framework works best for on-demand video 

content.  

Although it is, still the most widely used protocol of DASH but it has certain limitations, 

which degrades the overall quality of experience of the user. Firstly, the complexity of the 

algorithm increases due to opening of multiple persistent HTTP connections for parallel fetching 

of video segments. It also consumes a lot of resources of the clients, which degrades the overall 

efficiency of the client. The second issue of this framework is that it does not takes any feedback 

from the network or the server load, as it is a client driven approach, so client is unaware of the 

current network conditions. It results in either unfairness among multiple clients in the network 

or it causes congestion in the network. Due to lack of support in the protocol, these issues must 

be tackled in the adaptation algorithm, which increases complexity of the algorithm. 
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1.7.2.2 DASH with Server Push and Web Sockets 

This is the second variant of MPEG DASH protocol. It is based on HTTP 2.0 web 

connection. It uses HTTP 2.0 features like Server Push and Web Sockets for enhancement of the 

performance of DASH. As mentioned before that, on HTTP 1.1 connection, the complexity of 

the algorithm increased. It also had more latency for live video streaming because the content is 

generated, encoded and streamed at the same time. Therefore, the previous version of DASH was 

not very efficient for live video streaming. 

HTTP/2 can be used to boost the performance of DASH for live video streaming by using 

its feature named as Server Push. In server Push, once the client establishes the connection with 

the server and, the server starts sending the resources to the client, which the client needs in the 

future, without waiting for its request. Therefore, those resources reach the client quicker and are 

stored in its local cache, so the client can fetch them when needed. This feature is used in DASH, 

the server starts sending future video segments to the client, which it needs in the future. It will 

decrease the start-up delay as well as latency, especially for live videos. 

The client needs to enable server push, in order to utilize this feature in DASH. There are 

three different push strategies for server push. The first one is NO-PUSH, in which the client 

does not allow server push, and only receives those resources that are requested by the client. 

Second is ALL-PUSH strategy in which the client allows to push all the video segments as soon 

as they are available. The last one is K-PUSH, in this strategy; the client allows next K number 

of segments to be pushed by the server without waiting for the request from the client. Therefore, 

this feature reduces the overall live latency of the video. 

1.7.2.3 Server and Network Assisted DASH (SAND) 

The last protocol used server capability to improve its performance for live video 

streaming, but it was still unaware of the current network conditions. In December 2016, MPEG 

introduced a variant of DASH named as Server and Network Assisted DASH (SAND), in which 

the client will be aware of its current network conditions, the state of the server and about also 

about other clients in the network. This protocol defines standard message format and exchange 

protocol, which can be exchanged between the servers, network operators and the clients to in 

order to enhance the overall performance of the video streaming process. 
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The SAND allows better coordination between all the entities of the network, which can 

help in the enhancement of performance in video streaming by intelligent caching based on the 

feedback from the DASH clients. It will also help in optimizing the performance of the servers. 

The clients will be able to get better user experience based on the network information and it will 

improve fairness in the network. 

There are four differ different types of network entities in the network, as defined in 

SAND. The first one is DASH Clients, which are streaming the video. The second is Regular 

Network Elements (RNE), which are unaware of the DASH traffic. Thirdly, DASH Aware 

Network Elements (DANE), which have the intelligence to read the DASH message and may 

prioritize, parse or modify the message. Lastly, Metrics Server, which are also aware of DASH 

messages and are responsible of receiving metrics from the clients. 

  There are four categories of defined messages that are exchanged in the SAND. And in 

every category there is a set of messages which can be used to exchange the information in the 

SAND. This defines the overall mechanism and workflow process that is used in SAND, to make 

it server assisted and network aware DASH architecture. This is the not fully implemented yet, 

as it depends upon multiple network entities and requires interaction from each stage in the 

network.  

1.8 Leading Commercial DASH Players 

Netflix and Hulu are most popular commercial DASH players [12]. Both of them provide 

subscription-based streaming services. They stream music, movies and other exclusive content to 

the users by streaming the content over the Internet. Netflix uses DASH protocol, whereas Hulu 

uses RTMP protocol for multimedia streaming over the Internet. However, each one of them 

have a different rate adaptation algorithm, which drives the video streaming process. Netflix and 

Hulu both rely on the third party infrastructure for video streaming. For the distribution of the 

multimedia content to their users all over the world, Netflix and Hulu utilize the services of 

Limelight, Level3 and Akamai CDNs. However, the management policies and CDN selection 

strategies of Netflix are quite different from that of Hulu. In the subsequent subsections, we will 

discuss the basic architecture and workflow process of Netflix and Hulu, and we will highlight 

some key points, which distinguish them from other common service providers. 
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1.8.1 Netflix Architecture 

In 2014, the total number of worldwide subscribers of Netflix were more than 48 million 

[13]. Netflix is mainly dependent on Amazon cloud for majority of its services. There are four 

key components of Netflix architecture, namely, Netflix Data Centers, Amazon cloud, CDNs and 

multimedia players. Figure 1.3 describes the basic architecture of Netflix. 

 

Fig.  1.3: Netflix Architecture [12] 

The first and the most important component of the Netflix architecture is Netflix data 

centers. The basic responsibility of the Netflix data centers in to register the new users and to 

collect their payment information. After that process is completed, the user is redirected to one of 

the amazon cloud servers, which hosts the movies. Apart from, the main server, which is 

responsible for sign up process, all other servers are hosted by amazon. Each amazon server has 

a different set of responsibilities, which includes, CDN routing, logging, log analysis, DRM, 

mobile support, etc. 

The third component of Netflix infrastructure is CDNs. Netflix have engaged three CDNs 

for the distribution of their content across the world. These servers include Akamai, Level-3 and 

Limelight. The basic function of these CDNs is to deliver high quality multimedia content to the 

end users. The same content is stored in all the CDNs, with same quality. 
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The last component of the architecture is multimedia player. Netflix have employed 

Silverlight player for online multimedia streaming to the end users. These players download the 

content, decode it and then it is played for the user. These players are responsible for playing the 

content on Desktop PCs, laptops, tablets, mobile phones and on other devices like Roku, Wii, 

etc. 

Now we will describe the detailed and sequential flow of the video streaming process on 

Netflix. The first step to start the video streaming over the Internet is to open the Netflix website 

in the web browser. After that, Microsoft Silverlight application plug-in is downloaded on the 

client’s web browser, and the user authentication process is initiated. After the verification of the 

user, the user is redirected to one of the Amazon cloud server, which hosts the movies.  

Once the client clicks on its desired movie icon to play that movie, the player makes a 

request to the host server to fetch the manifest file for that movie. Netflix generates client-

specific manifest files according to the user capabilities and subscriptions. These files store the 

metadata, which control and drive the video streaming process for a specific client. Netflix uses 

SSL connection to deliver the manifest file to the client. Manifest file includes the information 

about available CDNs, preferred CDN, video chunk size, audio/video segment URLs, available 

representation levels, trickplay information etc. 

Netflix uses a chunk size of 4 seconds. Initially, the player downloads the video segments 

frequently to fill up the buffer and then the periodic download goes on along with the playback. 

The video player keeps on sending the periodic logs and feedback messages to the control server 

throughout the playback phase. Netflix uses trickplay interval of 4 seconds and supports the 

functions like pause, play, rewind, forward and random. Thumbnails of the video are 

downloaded and added as periodic snapshots for the trickplay. The specifications of these 

thumbnails are mentioned in the manifest file. 

The user specific manifest file of a particular video enlists the available CDNs as well as 

preferred CDN for that user. Preferred CDN for a particular user remains the same, irrespective 

of the type of video played, or the geographical location of the user. Netflix assigns a particular 

CDN to the user and it is kept as its preferred CDN for several days for all type of videos. A user 

keeps getting video from its preferred CDN and does not switch to the next CDN when the 
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bandwidth decreases. When the bandwidth is decreased, it starts downgrading the bitrate of the 

video and shifts to lower representation levels. When the bandwidth is dropped up to a certain 

point that, the playback stops, then Netflix switches to the next CDN in the list. When the client 

requests a manifest file from the server, it also sends its device capabilities like the screen 

resolution and the file format supported, to the server. The server generated a manifest file for 

the user according to its device capabilities. Netflix offers HD videos in 14 different 

representation levels and SD videos in 12 different representation levels.  

1.8.2 Hulu Architecture 

Hulu is another popular OTT service provider. Unlike Netflix, Hulu provides 

subscription as well as free services. Its subscription-based services include HD videos, and the 

support for video streaming on multiple devices, whereas the free services offer SD videos for 

desktop PCs. Hulu utilizes Akamai services for the execution of their operations. One of the key 

features of Hulu is advertisement. A short video ad is played before the main video. Figure 1.4 

describes the basic architecture of Hulu. 

 

Fig.  1.4: Hulu Architecture [12] 

When a client clicks on an icon to play a particular video, firstly, HTML page of that 

video is opened, and then the client connects to the server s.hulu.com to download the manifest 

file of that video. The manifest file includes the details like available CDNs, available bitrates 

etc. Hulu has also employed the same three CDNs as of Netflix. The client checks the hostname 

of its preferred CDN from the manifest file and then connects to its particular CDN by using 

DNS hostname resolution, and starts the video streaming. The client also sends periodic 

feedback reports to the control server. These logs include status of the client’s device, current 
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bitrate of the video, current amount of memory utilized, total number of frames dropped, current 

bandwidth, number of buffer underrun events occurred, etc. This information is sent to one 

central control server in the US. 

Either Hulu uses Real-time Messaging Protocol (RTMP) protocol or RTMP tunneled 

over HTTP (RTMPT) for video streaming over the Internet. Akamai and Limelight CDNs use 

RTMPT protocol whereas Level-3 CDN uses RTMP protocol for video streaming over the 

internet. Huluplus, which is a subscription-based service of Hulu, uses adaptive streaming over 

HTTP for video streaming on mobile phone devices. Hulu uses one CDN for a particular video 

and usually switches to another CDN for the next video. The CDN selection strategies of Hulu 

and Netflix are almost similar. Hulu also stays on the same CDN as long as the video stalling 

event occurs and then switches to the next CDN.  

Hulu sends the manifest files to the client in encrypted format. Manifest file includes 

metadata and corresponding information of a video for a specific client, like available CDNs, 

preferred CDN, total number of bitrates available etc. The preferred CDN for a client can be 

different each time the client requests a video. Hulu randomly assigns a preferred CDN to a 

client irrespective of the type of video, client ID, time or current network conditions. The stats 

show that level3 is the most preferred CDN of Hulu.  

1.9 Thesis Contributions 

We have thoroughly studied the HTTP based streaming strategies, commercial DASH 

players and research contributions of the authors in this area. We have investigated the research 

challenges and key issues that are the clients face in different network conditions. Finally, we 

have developed a rate adaptation algorithm, which provides the solution to most of the 

investigated problems. 

We have developed two variants of our proposed algorithm, named as SHANZ 

Adaptation Algorithm. The first one is SHANZ-I Algorithm, based on HTTP 1.1 protocol. This 

algorithm maintains the balance between stability and efficiency of the algorithm by using a 

feedback control mechanism. We have also used a randomized delay to avoid the bandwidth 

overestimation problem in multiple clients’ scenario. Some of the important attributes are listed 

below. 
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 Higher Efficiency of the algorithm at lower Bitrates 

 Better stability of the algorithm at higher Bitrates 

 Balance between stability and efficiency of the algorithm 

 Stability ensured even in drastic network conditions. 

  Bandwidth overestimation problem resolved 

 Better Fairness among the clients 

We have also proposed HTTP 2 based SHAN-II Algorithm, which is mainly aimed for 

live video streaming where the latency of the video is the major challenge. The key features of 

the algorithm are highlighted below. 

 Minimum latency 

 Minimum startup delay 

 Computationally efficient 

 Less Memory consumption 

 Maintains the balance between efficiency and stability of the algorithm. 

 Minimal Video Stalling events 

Our proposed algorithms are efficient even in drastic network conditions, and maintains 

the higher quality of experience. The algorithms have achieved better results when compared 

with other algorithms. Detailed Explanation of our proposed algorithm is given in chapter 3. 
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CHAPTER 2:  LITERATURE REVIEW 

There is a long road of evolution from UDP based video streaming algorithms to existing 

HTTP based dynamic adaptive streaming (HAS) algorithms. Adaptation algorithms can be 

classified into four broad categories, namely Client-based adaptation, Server-based adaptation, 

Network-assisted adaptation and Hybrid adaptation schemes. A comprehensive survey of 

adaptive video streaming techniques is performed in [14], [15]. Adaptation Algorithms and 

service architectures of most of the commercial content service providers is unknown. There are 

many factors, which contribute the overall performance and QoE of these CSPs. [16] analyses 

service architectures of Netflix and Hulu. Author stated that both of them are dependent on third 

party infrastructure to deliver the video content. 

The performance of HAS depends upon numerous factors. Some of the parameters 

contribute to enhance the performance of HAS system while others contribute in downgrading 

the overall performance. It is important to have a thorough understanding of, how each parameter 

effects the HAS system. Multiple contributions have been made in this area of research. [17] 

Claimed that frequent switches in video quality downgrades the overall Quality of Experience of 

the user. They suggested that there should be least number of video quality switches in the 

playback. They also claimed that smooth adaptation has a better user experience than quick 

adaptation, which means that incremental downgrade of video quality should be preferred rather 

than one switch of a higher magnitude. However, they claimed that abrupt switch in upgrade of 

video quality can perceive higher QoE rather than a smooth upgrade. Finally, they deduced that 

that higher average quality at the end of video is also perceived as higher QoE for the user. 

There are numerous work carried out for the comparison of performance of existing HAS 

based solutions. In [18] authors used vehicular environment to compare DASH, HLS, MSS and 

HDS. After the comparison of results, they found that MSS outperformed other solution in 

vehicular environment, with having higher average video quality with minimum number of video 

quality oscillations. 

In [19] authors compared the adaptive and non-adaptive video streaming in vehicular 

mobile devices and claimed that when the bandwidth of the networks fall, with the help of 
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adaptation stalling events can be reduced to 80% in comparison to non-adaptive streaming. They 

also analyzed the effect of change on the size of threshold buffer size and video segment size, on 

the stalling events. They deduced that in vehicular devices, the optimum value of threshold 

buffer size is of 6 seconds, and further increase of buffer size will give rise to initial delay. They 

also found that large target buffer would also consume more memory, which is a vital resource in 

vehicular mobility. After the analysis effect of change in video segment size, they concluded that 

smaller segment sizes are efficient for quick adaptation of video quality but they also increase 

the overhead for encoding the video. On the other hand, using larger video segments decrease the 

capability of the client for quick adaptation, in the case of change in the bandwidth of the 

network, so it can lead to more stalling events. They suggested balancing the tradeoff by using 

longer buffer threshold value, which means more video segments would be stored in the buffer, 

before the playback of the video starts.  

Adaptation Algorithms can be classified into 4 broad categories, based on their working 

mechanism. These categories include Server-based Adaptation Algorithms, Client-based 

Adaptation Algorithms, Network-Assisted Adaptation Algorithms and Finally Hybrid 

Algorithms. Client-based algorithms are those algorithms where the adaptation module is run on 

the client node. On the other hand, in Server-based adaptation algorithms, the adaptation module 

is run on the server. In Network-Assisted Adaptation algorithms, networks send the information 

about the current state of the network, which is used for the adaptation of video quality of clients. 

Finally, Hybrid algorithms are those adaptation algorithms, which work by using two or more 

above-mentioned approaches. Each class of the above mentioned algorithms have its advantages 

and disadvantages. However, the most dominant category is of client-based adaptation algorithm, 

as the majority of the research has been conducted in this area. In the preceding subsections, we 

will discuss the research contributions made in each of the mentioned categories of adaptation 

algorithms. 

2.1 Server-based Adaptation Algorithms 

Although majority of the work for adaptation of video quality in HAS, is done on the 

client side, but, still there is some work on control and optimization of server for the better 
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adaptation of video quality. In [20] authors revealed that “Block Sending Algorithm” is used by 

YouTube as an application control flow mechanism.  

 [21] proposed a mechanism for limiting the rate of video traffic on the server with the 

help of TCP congestion widow. They resolved the problem of network congestion and packet 

loss. They proposed a mechanism on server to limit the upper bound of TCP congestion window, 

by using phenomena called Trickle, which is a function of RTT and the rate of streaming. They 

evaluated their work on YouTube data centers and found that their algorithm reduced the average 

rate of packet loss of TCP by 43%, and RTT by 28%.  

Authors [22] implemented Server-side adaptation algorithm, in which they propose a 

bitrate shaper to be deployed at the gateway of the network which controls the bitrate switching 

to increase stability and fairness. In server-side techniques, adaptation algorithm is implemented 

on the server, which increases its overhead and complexity as server saves the state of every 

client. 

In [23] the authors proposed an algorithm, which controls the flow of packets to the 

clients by phenomena called ‘Zippy Pacing’. They regulate the segments in such a way that it 

reaches the client just when they need. It helps the server in load balancing. The segments are 

transmitted immediately initially until the buffer of the client is filled up to a certain limit, after 

that point the server starts delaying the packets. It also avoids the wastage of bandwidth in case 

of the client stops or switches the playback without finishing the buffered video. The algorithm 

improved the overall performance of the server and helped the clients to utilize the network 

bandwidth efficiently. 

Another area of research, which in getting popular in the research community of adaptive 

video streaming industry is the use of Multipath TCP (MPTCP) [24]. Although this is an 

emerging area of research and very less work is done in this field, still there are few people who 

have contributed in using MPTCP for HAS. [25-27] are some of the major contributions in using 

MPTCP for HAS, in these works they can have analyzed the performance of the clients by 

adding the cross layer scheduler, which prioritize the video streams of different channels 

according to the requirements of the user. [27] developed the analytical framework which finds 
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the best access channel for video streaming in heterogeneous networks. They used Forward Error 

Correction coding scheme to minimize the end-to-end delay and the rate packet loss. 

2.2 Network-Assisted Adaptation Algorithms 

Author [28] evaluated Network-assisted adaptation algorithms, which require active 

interaction between client and the network. They compared three categories of network-assisted 

strategies. Firstly, Bandwidth Reservation approach, which assigns a dedicated slice of the 

bandwidth to a bunch of video. Secondly, Bitrate Guidance approach in which Network 

Controller (NC) computes the optimal bitrate for the client and then client requests the video at 

that bitrate and finally, Bitrate Guidance with Bandwidth Reservation approach is the 

combination of the two approaches in which NC computes the bitrate for the client and assigns a 

bandwidth slice. They examined that bitrate guidance provides better fairness whereas bitrate 

allocation provide better average video quality.  

In [29] authors proposed a traffic shaping mechanism in the network by adding a bitrate 

manager on the default gateway of the home network. They resolved the problem of video 

instability and unfairness among clients, in the case when multiple video streams are flowing 

through the network. They used Microsoft Smooth Streaming Player for the validation of their 

work. They claimed that the stability of the videos increased and there were lesser video quality 

oscillations. The authors also claimed that the fairness amongst the clients was improved, when 

they share a bottleneck link of the network. 

Authors proposed a DASH system for bandwidth measurement named as QDASH [30]. 

One proxy node was in the network just before the server, which tells the maximum video 

quality level a client can support, in the current network conditions. Available bandwidth was 

computed by using RTTs. Another proxy node was installed on the client side, which tells the 

client the most suitable quality level under current network conditions. They deduced that the 

clients prefer gradual adaptation of video quality rather than a sudden change, which effects 

negatively on user’s quality of experience. 

In [31] authors proposed a network based framework for the video traffic in the cellular 

networks. The framework distinguishes the DASH video traffic from other traffic and it allocates 

the resources to the DASH clients according to the user requirements. The resource-allocation 
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framework maximizes the stability of the video. It also distributes the network resources among 

DASH clients in such a way that it maintains the level of fairness between them. 

2.3 Client-based Adaptation Algorithms 

The major contribution of research in HAS is done in client-side adaptation algorithms. 

Client-side algorithms are more efficient because they do not require any modification on the 

server or network as all the adaptation logic is run on the client. The client-based video 

streaming algorithms drive the streaming session by adjusting the video quality based on current 

or past network conditions and some supporting parameters. Current available throughput from 

the source server is considered as the most important criteria for predicting the future behavior of 

the network. Client-based algorithms use three different approaches for the adaptation of video 

streaming. These approaches include bandwidth-based adaptation, buffer-based adaptation and 

finally time-based adaptation techniques. Some of the algorithms may overlap in two different 

techniques by using a hybrid approach, but majority of them use one of the above approach as 

their main driving force. 

2.3.1 Bandwidth based Adaptation Algorithms 

These algorithms use current or past throughput of the network to predict the future 

behavior of the network, and adapt the video quality accordingly. It is the most commonly used 

approach. These algorithms select the next video segment with representation whose bit rate is 

best matches with the predicted future throughput of the network [32]. The most common way to 

compute the bandwidth is by using TCP congestion window. Some of the algorithms use this 

instantaneous bandwidth to predict the future video segments. There is high fluctuation in the 

instantaneous bandwidth of the network, which will cause unwanted oscillations in the video 

quality. So most of the algorithms use some averaging technique to minimize the effect of 

outliers in the prediction. 

PANDA algorithm [33] reduces the stability issues in the bottleneck link by 

implementing probe and adapt principle for the adaptation of the bitrate based on average data 

rate available. This principle is similar to congestion control mechanism of TCP but it works at 

the Application Layer. 
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FESTIVE algorithm [34] was proposed to improve stability, efficiency and fairness of the 

video, among multiple DASH clients sharing a bottleneck link. Bandwidth estimation 

randomized scheduler and delayed update mechanisms were used in this algorithm to achieve the 

desired goal. They developed the algorithm as open source media framework to test it on 

multiple commercial players and identified several root causes on performance degradation.  

The authors in [35] proposed an adaptation algorithm which used smoothed measurement 

of throughput by AIMD, the algorithm used step-wise up and aggressive down switching 

approach for the adaptation of video quality. The algorithm worked without requiring any prior 

information from the transport layer like RTT etc. The stepwise approach was used to probe the 

spare capacity of the network and if found, the algorithm adapted to the higher representation of 

the video. They claimed that the probing method was efficient to use spare capacity of the 

network and for avoiding congestion in the network. 

Author in [36] have developed a control system for adaptive video streaming. The system 

consists of two controllers. One of the controllers is at the client side and the other one is at the 

server side. The controller selects the representation level of the next video segment based on the 

bandwidth estimation. The authors claimed that their system improves the QoE of the user. 

In [35] authors introduced a rate adaptation algorithm which uses segment fetch time 

(SFT) to detect the changes in the bandwidth of the network and to detect the congestion in the 

network. They used SFT to decide the bit rate of the next video segment to download. The 

authors also extended their work in [37] to compare the sequential and parallel segment fetching 

mechanisms. They compared expected segment fetch time with the actual segment fetch time, to 

detect the current state of the network, and based on these parameters, they computed the bitrate 

of the next video chunks to download. 

2.3.2 Buffer-based Adaptation Algorithm 

These algorithms use current buffer occupancy level and rate of change in buffer level of 

the client to predict the representation level of the next video segment. Either the rate map of 

buffer is directly used as a decision factor [38, 39] or threshold values of the buffer level are used 

to make bounded regions [40, 41].   



 

27 

 

In [42] authors proposed buffer-based adaptation algorithm called BIEB algorithm for 

scalable video codec (SVC). In BIEB algorithm, the client fills the buffer with the base layer to 

stabilize the video playback. Before it downloads the enhancement layers. The algorithm 

maximizes the video quality and reduces video quality switches and playback interruptions. 

However, the algorithm does not considers stalling events or video quality oscillations during the 

peak hours, when the cross traffic exists in the network. 

AMBA+ algorithm [43] uses precomputed buffer maps to find buffering probability for 

each representation of the segment and selects the highest possible representation having 

buffering probability less than a certain threshold value. The authors claimed that algorithm 

proved computationally efficient and stable, preventing video quality oscillations. 

Author [44] Proposed an online buffer based control algorithm named as BOLA, by using 

utility maximization problem. Utility increases with increase in average bitrate and decreases 

when rebuffing events occur. It also provides the opportunity to set the weights to each of the 

key metrics, average video quality and rebuffing event by setting an explicit knob. Author 

claimed that BOLA achieved higher utility than other offline algorithms like ELASTIC and 

PANDA.  

Author [39] proposed a rate adaptation algorithm, which selects the bitrate for the video 

segments based on the current buffer status of the client. The algorithm only takes one parameter 

as an input, i.e. buffer status of the client. The algorithm does not take into account other factor 

like current bandwidth or status of the network to optimize the QoE of the user.   

In [45] authors proposed a buffer based mechanism to improve the QoE of the user by 

minimizing the video quality switches and playback interruptions. They have also proposed an 

online buffer-based controller by using control theory. The controller computes the bitrate of 

each video segment to be requested, based on the buffer status of the client. The authors claimed 

that their algorithm has showed the better results as compared to other similar works. 

2.3.3 Time-based Adaptation Algorithm 

This category of algorithms use Segment Download Time (SDT) as a parameter to find 

the best representation for next video segment. SDT is defined, as the time consumed when the 
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request was made to download a certain segment, until the moment it was completely 

downloaded in the buffer of the client. SDT depends upon two main factors; one of the factors is 

available throughput and second is size of the segment to be downloaded. These algorithms aim 

to download those video segments whose SDT synchronize with their Segment Playback Time to 

ensure that the segment is completely downloaded before their playback time arise. 

SARA Algorithm [46] takes segment size into account for deciding the next bitrate.  

They modified the MPD file to add segment size of each segment. Weights are assigned to each 

segment, which are proportional to its segment size. Client decides the next segment to download 

by considering segment weights, buffer status and available bandwidth. 

Authors [35] use the ratio of Segment Playout Time and Segment Download Time for a 

segment k, for the adaptation of the video quality. They proposed that if this ratio is higher than a 

certain threshold value, then a higher representation will be selected for that video segment, and 

if the ratio is lower than a certain threshold value, then the lower representation will be selected. 

Since this algorithm depends upon instantaneous values of SDT and its payback time, it suffers 

from unwanted video quality oscillations.  

In another approach, the authors [47] used a normal distribution of segment download 

time (SDT) and introduced analytical model of the play-out buffer. The model calculated 

rebuffering probabilities for each representation and the representation having the minimum 

probability, was selected for next video segment. This normal distribution depends upon multiple 

segments, so it was smooth and more resistive to the outliers.  

2.4 Hybrid Adaptation Algorithms 

ELASTIC algorithm [48] was proposed to avoid unfairness in the bandwidth utilization 

due to ON-OFF patterns in the steady state in multiple clients scenario, which avoids ON-OFF 

pattern by using Feedback Control Theory. Authors claimed that ELASTIC achieved higher 

fairness then PANDA when competing with greedy TCP flow. 

The authors proposed SVAA algorithm [40], which used feedback control mechanism to 

select the representation of the video segment having bitrate which matches the estimated 

throughput multiplied with buffer-based factor Fk. This factor is a product of three sub-factors, 
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which are the size of buffer, rate of change in buffer and its chunk size. SVAA drops its video 

quality, if its buffer level drops half of its target value. This algorithm uses hybrid approach as it 

uses available bandwidth as well as its buffer occupancy level to make its decision of adaptation 

of the video. 

The authors in [49] presented a client side rate adaptation algorithm based on the control 

theory. The proposed MPC algorithm that decides the appropriate bitrate of the next video chunk 

by using the current buffer status of the client as well as available throughput. The authors 

claimed that their algorithm has outperformed other similar algorithms. 

In [50], the authors presented an algorithm that performs stateful prediction of the 

throughput. They analyzed the large dataset, provided by a commercial provider in China and 

claimed that the sessions having common attributes like its geographical location or network 

channel, have a similar network layer throughput. However, at client level the throughput might 

not be similar because of its dependency on many other factors as well. The algorithm also 

accurately computed the initial startup delay of the video. The algorithm managed to give 40% 

better results of prediction of bandwidth than other similar algorithms. 

The authors proposed SQUAD algorithm [51] which used which enhanced the average 

video quality and minimize the oscillation of video quality by using throughput as well as buffer 

level. They used a perimeter of spectrum in their quality of experience metrics, which was 

defined as deviation of current video quality from average video quality. When the algorithm 

was compared with others, it showed better QoE with lesser video quality oscillations. 

Authors in [52] proposed SDN based QFF framework to improve the fairness among 

multiple clients sharing the same network. QFF enhances the fairness based on two parameters, 

i.e. current condition of the network and screen resolution of the client’s device. Clients are 

connected to the SDN controller, which is responsible for the enhancement of QoE and fairness 

among the clients. However, the framework does not consider any other information, like the 

buffer status of the clients, which might cause buffer underruns. Moreover, it only works on 

limited number of clients and increases the latency of the video, which may negatively affect the 

performance of the clients.  
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CHAPTER 3: PROPOSED METHODOLOGY 

In this chapter, we will explain the methodology of our proposed adaptation algorithms 

named as SHANZ-I Algorithm and SHANZ-II Algorithm. SHANZ-I is based on HTTP 1.1 

protocol, whereas SHANZ-II algorithm utilizes HTTP 2 protocol, and it is mainly aimed for live 

video streaming with minimum latency and startup delay. Following subsections explain both the 

variants of our proposed algorithm in detail. 

3.1 SHANZ-I Algorithm 

The basic principle of SHANZ-I Algorithm is to improve the Quality of Experience of 

the user by using feedback control mechanism and dynamic step up function, which act as an 

explicit knob to optimize the efficiency and stability of the algorithm. Secondly, we have also 

resolved bandwidth overestimation issue occurred in multiple clients’ scenario by using 

randomized download delay, which has also enhanced the fairness of the algorithm among 

multiple clients. 

Whenever client starts online video streaming session, it establishes a TCP connection 

with the server and requests to download the Media Presentation Description File (MPD) file of 

a particular video from the server, which contains all the information about that video like total 

number of available Representations levels, video segment duration etc. The client starts 

requesting video segments from the server according to available bandwidth. Client runs the 

adaptation algorithm to compute the next video representation index for every segment and 

requests the server accordingly. 

3.1.1 Estimated Weighted Throughput 

To calculate the bitrate for the next representation index, adaptation algorithm need to 

compute estimated throughput (𝑛
 𝑒𝑠𝑡) of each segment but due to sharp changes in the bandwidth, 

instantaneous throughput is not a better option, as it will increase instability of the video. So 

Weighted Estimated Throughput (𝑛+1
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

) is used instead of instantaneous throughput. 

Weighted Estimated Throughput is computed by taking weighted average of the estimated 

throughput of the last ten segments. Highest weight is assigned to the most recent segment. The 
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symbol (𝑤) is the weight assigned to a particular video segment, as described in Equation 3.1 

below. 

𝑛+1
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

=
1

∑ 𝑘𝑤𝑘=10
𝑘=1

 𝑤𝑛−9
𝑒𝑠𝑡 + 2𝑤𝑛−8

𝑒𝑠𝑡 + 3𝑤𝑛−7
𝑒𝑠𝑡  + .   .  . + 9𝑤𝑛−1

𝑒𝑠𝑡 + 10𝑤𝑛
𝑒𝑠𝑡 (3.1) 

 

3.1.2 Stability Function 

The next step is to calculate the stability of the video, which depends upon video quality 

oscillations. Stability (defines the function, where defines the number of video quality 

switches in the last 30 seconds. is the regulating factor for smoothness, having an empirical 

value of 0.15. Equation 2 describes the stability function. 

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 () =
1

𝑒αƞ (3.2) 

Stability function drops exponentially, with the increase of number of video quality 

switches in a unit time. Figure 3.1 describes the behavior of stability function with respect to 

video quality switches. 

 

Fig.  3.1: Stability function graph 
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3.1.3 SHANZ-I Algorithm Pseudo Code 

 The algorithm takes current segment index (n), current buffer index (cur), current 

Representation index (𝑛
𝑖 ), and Estimated Throughput at current segment index (𝑛

 𝑒𝑠𝑡) as input 

parameters, and performs the computation to return the Next Representation Index (𝑛+1
𝑖 ), and 

Next Segment Delay (
𝑑𝑒𝑙𝑎𝑦

) as an output. Table 3.1 describes the pseudo code of our proposed 

algorithm named as SHANZ-I adaptation algorithm. 

TABLE 3.1: SHANZ-I ALGORITHM PSEUDO CODE 

SHANZ-I Adaptation Algorithm 

Data: 

n: Video segment index 

𝐧
𝐢
: ith Representation level for nth segment 

cur: Current buffer level

min: Minimum buffer level 

max: Maximum buffer level 

opt: Optimum buffer level 

rand: Random buffer level  

: Stability function

Dynamic Step-up Function

𝑛+1
𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅

: Weighted Throughput of last 20 seconds

𝑩𝒂𝒗𝒈
𝒊 :Average Bitrate at Representation index i 

: Video quality switches in last 30 seconds 

: Throughput threshold 

α: Regulating factor 

Input: 

n, 𝒏
𝒊
 , 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 , 𝑩𝒏

𝒂𝒗𝒈
, cur 

Constant: 


𝒐𝒑𝒕

= ( 
𝒎𝒊𝒏

+ 
𝒎𝒂𝒙

 )/𝟐; 

Initialization: 

 = max (𝒏
𝒊  , ƞ); 

 = 𝟏 / еα 
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if( 0 ≤ n ≤ 
𝒎𝒊𝒏

 ) 

⌊fastStart = 𝐭𝐫𝐮𝐞; 

else 

⌊fastStart = 𝐟𝐚𝐥𝐬𝐞; 

if(  (𝒏
𝒊 > 𝒏

𝒎𝒊𝒏)&& ((𝑩𝒂𝒗𝒈
𝒊 >  . 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅) || ( (! 𝒇𝒂𝒔𝒕𝑺𝒕𝒂𝒓𝒕) &&  (

𝒄𝒖𝒓
< 

𝒎𝒊𝒏
) )) 

⌊𝒏+𝟏
𝒊 = 𝒏

𝒊 − 𝟏;
ƞ + +;                 

 

else if ( (𝑩𝒂𝒗𝒈
𝒊+𝟏 <  . 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅) && (𝒏

𝒊 < 𝒏
𝒎𝒂𝒙) && (𝒇𝒂𝒔𝒕𝑺𝒕𝒂𝒓𝒕 || 

𝒄𝒖𝒓
>


𝒎𝒊𝒏

) && ( > 𝟎. 𝟓) ) 

⌊
 
 
 
 
 
 

𝐢𝐟(counter )

⌊
𝐧+𝟏

𝐢 = 𝐧
𝐢 + 𝟏;

ƞ + +;    
  𝐜𝐨𝐮𝐧𝐭𝐞𝐫 = 𝟎;            

𝐞𝐥𝐬𝐞                      
⌊𝐜𝐨𝐮𝐧𝐭𝐞𝐫 + +;      

 

else if( < 𝟎. 𝟓)  

⌊𝒏+𝟏
𝒊 = 𝒏

𝒊  ; 

else if ( cur > max ) 

⌊


𝒓𝒂𝒏𝒅
= 𝒓𝒂𝒏𝒅( 

𝒐𝒑𝒕
 ,

𝒎𝒂𝒙
) ; 


𝒅𝒆𝒍𝒂𝒚

= 
𝒄𝒖𝒓𝒓

− 
𝒓𝒂𝒏𝒅

 ;          
 

Output: 

𝒏+𝟏
𝒊  ,

𝒅𝒆𝒍𝒂𝒚
 

 

 

3.1.4 Fast start phase 

The algorithm starts in the Fast Start Phase, and remains in that phase for first 10 

segments, so that the buffer can quickly fill up to the level of min. When the algorithm is in this 

phase, it can also increase its video quality, if the bandwidth is available even though its buffer 

level is below the value of min. It helps the client to minimize the startup delay of the video. 
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3.1.5 Video quality Quality Increment Function 

For better efficiency and stability of the video, algorithm passes through multiple 

checkpoints before increasing the representation index of the video. First condition to upgrade 

the video quality is that its Current Representation Index (𝑛
𝑖 ) should be less than highest 

Representation Index of the video (𝑛
𝑚𝑎𝑥). The client can get the information of available 

representations by downloading the MPD file of the video from the server.  

The second condition to fulfill for upgradation of video quality is that the current value of 

stability function should be greater than 0.5, which means that the algorithm will not upgrade the 

video quality if more than 4 video quality switches have already occurred within last 30 seconds. 

This factor avoids the unnecessary video quality oscillations when the bandwidth is fluctuating. 

The third criteria to fulfill in order for the upgradation of representation index is that 

either the algorithm should be in Fast Start phase or the current buffer level of the algorithm 

should be greater than min. This factor avoids the upgrade if the buffer level of the client is less 

than a certain threshold value.  

Fourth condition to be fulfilled is that, average bitrate of the next representation index 

𝐵𝑎𝑣𝑔
𝑖+1 should be less than the factor,  . 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑, which is the current stability value, multiplied 

by weighted throughput for last 20 seconds. This threshold keeps on getting aggressive as the 

value of stability function decrease So as the stability decrease, higher value of estimated 

throughput will be required in order to upgrade the video quality, which means algorithm will 

further reduce unwanted video quality oscillations. 

3.1.6 Dynamic Step-up Function 

Each time algorithms fulfills all four of the above conditions, it will increment the value 

of a counter. The algorithm will finally update the Representation Index o when the value of 

counter becomes equal to the value of a Dynamic Step-up Function (). Dynamic Step-up 

function is defined as maximum of the value of Current Representation Index (𝑛
𝑖  ) and total 

number of video quality switches in last 30 seconds ( ƞ), as described in Equation 3.3. 

Dynamic Step-up Function () = max (𝑛
𝑖  , ƞ)           (3.3) 
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There are two main advantages of using a dynamic step-up function. Firstly, step-up 

function acts as dynamic knob to control the efficiency and stability of the algorithm. It linearly 

increases the time delay for updating the quality level with the increase of Representation Index. 

At lower quality levels the efficiency is the main priority of the algorithm because there is no use 

of delaying the update, when the bandwidth is available, it quickly increments the quality level. 

However, as the Representation Index increase algorithm keeps on increasing the delay to 

increment the video quality and increases the stability of the algorithm at higher quality levels.  

Secondly, Step-up function also maximize the stability of the algorithm even at lower 

network bandwidth and in the state of network congestion. If the available bandwidth is low and 

there are frequent switches even at lower bitrate, step-up function will take the maximum of the 

value of Representation level (𝑛
𝑖  ) and number of video quality switches per unit time ( ƞ), and 

will use that value as time delay to increase the quality level.  

Finally, the case when Stability of the algorithm is less than a threshold value of 0.5, and 

the algorithm is unable to increase its Representation Index, it will keep the Current 

Representation Index of the video. 

3.1.7 Video Quality Decrement Function 

The foremost condition to decrement the video quality is that Current Representation 

Index (𝑛
𝑖 ) should be greater than Lowest Representation Index of the video (𝑛

𝑚𝑖𝑛). If the 

above condition is true, the algorithm will decrement the video quality if either one of the next 

two conditions is true. 

Firstly, if the algorithm is not in fast start phase, its Representation Index will be 

decremented if its current buffer level (
𝑐𝑢𝑟

) is less than the threshold value of 
𝑚𝑖𝑛

. This 

condition will prevent the client from buffer underrun or stalling events.  Secondly, the algorithm 

will decrement the video quality when Average bitrate at Current Representation Index (𝐵𝑎𝑣𝑔
𝑖 ) is 

greater than a certain threshold value () of Weighted Estimated Throughput (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑). This 

means that available throughput is not enough to stream the video at current representation index 

so the algorithm will downgrade the video quality to avoid playback interruption. 
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3.1.8 Randomized Download Delay 

When the current buffer level of the client (
𝑐𝑢𝑟

), becomes greater than the maximum 

buffer level max, the algorithm will stop the download of subsequent segments for a random time 

period until the buffer level reaches a threshold value of (
𝑟𝑎𝑛𝑑

), which is calculated by random 

function from a minimum range of   
𝑜𝑝𝑡

 and a maximum range of 
𝑚𝑎𝑥

, as described in 

Equation 4. 

Random Buffer Level (
𝑟𝑎𝑛𝑑

) = 𝑟𝑎𝑛𝑑 (
𝑜𝑝𝑡

 ,
𝑚𝑎𝑥

)     (3.4) 

Randomized download delay also resolves the bandwidth overestimation problem in 

multiple clients. Bandwidth overestimation occurs due to non-overlapping of on-off patterns of 

the clients. So due to randomized download delay, there can be partial overlapping in the on-off 

pattern of the clients. Therefore, it will increase the fairness of the algorithm by eliminating any 

chances of biasness among the clients. 

3.1.9 Finalization 

The adaptation algorithm resides on the client and its function is to drive the process of 

video streaming in such a way that it maximizes the overall quality of experience of the user. For 

every next video segment, the adaptation algorithm is run on the client and it passes through the 

each of the above-mentioned stages. The next video segment is selected according to the 

conditions mentioned in the algorithm. After that process, the adaptation algorithm returns the 

next representation index and time delay to the client and the client makes that request to the 

server accordingly. The process keeps on repeating until the playback is finished. 

3.2 SHANZ-II Algorithm 

The second variant of our proposed algorithm is SHANZ-II, which is based on HTTP/2 

protocol. This algorithm utilizes the key features of HTTP/2 to address the key issues of HTTP 

1.1 based algorithms. The algorithm is mainly aimed for live streaming videos, where the main 

challenge is to cope with the latency of the video. The algorithm ensures the seamless live video 

streaming, with minimum startup delay and latency. Some of the key differences between HTTP 

1.1 and HTTP are highlighted in the next subsection. After the comparison of two protocols, our 

proposed algorithm is explained in the subsequent subsections. 
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3.2.1 Comparison of HTTP 1.1 and HTTP/2 

Some of the main challenges in HTTP 1.1 were higher latency, higher startup delay and 

higher memory consumptions. Thanks to HTTP/2 protocol, which has addressed these issues. 

Three main key features of HTTP/2 are dedicated header compression scheme (HPACK), server 

push and HTTP streams. HTTP/2 has resolved some of the biggest issues of HTTP 1.1, i.e. 

higher latency and higher memory consumption.  

In HTTP 1.1, only supported unidirectional flow of data at a certain time, in one 

connection. So, to speed up the process one of the solutions was pipelining, but it resulted in 

head of the line blocking. Another solution was to open multiple connection between server and 

client, but this solution results is large consumption of resources. HTTP/2 offers the solution by 

introducing multiplexing of multiple streams in one HTTP connection. Each stream is a bi-

directional and independent sequence of frames that are exchanged between the server and client, 

in a single http2 connection. Each stream has its unique Stream ID. Each stream has a priority 

number, which defines its significance. So the streams with higher priority are sent first. If one 

stream is dependent on another stream, it can be signaled by using a priority tree. Priority of the 

streams can be changed at the run time to give higher priority to the resources, which the client 

requires urgently. 

HTTP is a stateless protocol, which means that each http request a lot of prior 

information so that the server can process the request. It includes a lot of redundant metadata, 

cookies, headers and prior request information. The number of objects on a webpage are 

increasing exponentially, so a large number of http requests are made to load these objects. Due 

to redundant information sent in each http request, size of the message becomes so large that it 

may exceed the initial TCP congestion window. This slows down the download of resources. 

HTTP2 provides a secure header compression mechanism called HPACK. HPACK compress the 

headers by using a static dictionary, which includes the list of common headers, a dynamic 

dictionary and static Huffman coding. HPACK is a secure header compression mechanism and it 

avoids the breaching of data. 

The third and the most powerful feature of http2 is Server Push. When the client 

establishes a connection with the server and starts requesting the resources, there are certain 
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resources, which the client will definitely request in the future. Therefore, instead of waiting for 

the client to make a request, the server speeds up the process by sending the resources to the 

client in advance. This mechanism is known as server push. The pushed resources are added to 

cache of the client, from where they can be retrieved by the client. The server can only push the 

resources when a client explicitly allows the server push. The server can notify the client about 

the resources to be pushed in the future by a PUSH_PROMISE message. A client can terminate a 

pushed stream by sending RST_STREAM message to the server. 

 3.2.2 HTTP/2 for Adaptive Video Streaming 

HTTP2 was released in the mid of 2015. It is relatively a new protocol, so there is very 

less contribution in use of http2 for adaptive video streaming. Majority of the commercial 

players are still running on http1.1. One of the reason might be that http2 is not compatible with 

http1.1, as http2 is a binary protocol unlike http1.1. Although http2 is not fully used for adaptive 

video streaming, but it can be a future for efficient video streaming in the future. 

HTTP2 can be used to resolve some of the key issues of adaptive video streaming. 

HTTP2 features like multiple streams, header compression and server push can be used to 

decrease the overall latency and startup delay of the videos. Live latency is one of the biggest 

issues in live video streaming. Live latency is defined as the amount of time delay occurred 

between the actual happening of live event and the moment its video reach the client and is ready 

to be played. One of the reasons for high latency is because of the number of RTTs required for 

downloading each video segment. Firstly, client makes the request to the server for a video 

segment, then the server responds by sending the video segment, and finally, the client 

acknowledges the server about the received video segment. A lot of time and bandwidth is lost 

during this process. 

One of the solutions to decrease the latency could be to increase the size of the segment, 

so that lesser number of requests are generated per unit time of video streaming, so lesser 

number of RTTs and less latency. However, this solution has two major disadvantages. Firstly, it 

will increase the size of the packet, which means one video segment will be transmitted by 

splitting it into multiple packets, which might further increase the latency of the video. Secondly, 

by using larger segment size, the efficiency of the algorithm will be decreased, because it will 
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take more time to respond to a change in the network. Therefore, a better solution is required to 

address the problem of latency. As mentioned earlier, http2 is the solution for many challenges 

that were faced in adaptive video streaming due to lack of efficiency of http1.1. 

3.2.2 Goals and Challenges of SHANZ-II Algorithm 

One of the most important features of http2 is server push. This feature can play a vital 

role in the enhancement of the performance of the algorithm by reducing the latency of the 

video. An optimal push strategy is required to get the maximum benefit from this feature. Push 

strategy defines which video segments should be pushed, what is the criteria to push the video 

segments, How many segments should be pushed at a time. These parameters will decide the 

overall performance of the algorithm. 

When the server will start pushing the video segments, it will only push the segments of a 

certain representation level, so the client cannot adapt to the changes in the bandwidth while the 

server is pushing the segments. The client will either accept the pushed segments and will wait 

until all the segments are received or it will cancel the stream that is pushing the video segments, 

by sending a RST_STREAM message to the server. So, a dynamic mechanism is required which 

can decide what is the best time to allow the server push and what are the ideal number of 

segments to be pushed at a time. Server push feature should be used in such a way that it does 

not effect on the efficiency of the algorithm, and the algorithm should still be quick to respond to 

any change in the network. 

3.2.3 Proposed Algorithm 

We have proposed SHANZ-II algorithm, which utilizes HTTP/2 features to boost its 

performance. The algorithm minimizes the start-up delay and latency of live streaming and on-

demand videos. SHANZ-II algorithm is an advancement of SHANZ-I rate adaptation algorithm, 

it extends the basic logic of the prior algorithm. Dynamic step-up function, stability function and 

Randomized download function of SHANZ-II algorithm are similar to that of SHANZ-I 

algorithm.  Table 3.2 below describes the pseudo code of the proposed algorithm, named as 

SHANZ-II Rate Adaptation Algorithm. 
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TABLE 3.2: SHANZ-II ALGORITHM PSEUDO CODE 

SHANZ-II Adaptation Algorithm 

Data: 

n: Video segment index                                 𝐧
𝐢
: ith Representation level for nth segment 

: Stability function                                                              :Dynamic Step-up Function 

: Video quality switches in last 30 seconds                        : Throughput threshold       

𝑩𝒂𝒗𝒈
𝒊 :Average Bitrate at Representation index i                  α: Regulating factor 

𝑛+1
𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅

: Weighted Throughput of last 20 seconds

𝑷𝒖𝒔𝒉𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒔(𝒌):Allow the server to push next k number of segments. 

cur, min, max, opt, rand }: Current, Min, Max, Optimum, Random buffer level  

Input: 

n, 𝒏
𝒊
 , 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 , 𝑩𝒏

𝒂𝒗𝒈
, cur 

Constant: 


𝒐𝒑𝒕

= ( 
𝒎𝒊𝒏

+ 
𝒎𝒂𝒙

 )/𝟐; 

Initialization: 

 = max (𝒏
𝒊  , ƞ); 

 = 𝟏 / еα 

if( 0 ≤ n ≤ 
𝒎𝒊𝒏

 ) 

⌊𝐟𝐚𝐬𝐭𝐒𝐭𝐚𝐫𝐭 = true; 

else 

⌊𝐟𝐚𝐬𝐭𝐒𝐭𝐚𝐫𝐭 = false; 

 

if ( (𝒏
𝒊 > 𝒏

𝒎𝒊𝒏)&& ( ! 𝒇𝒂𝒔𝒕𝑺𝒕𝒂𝒓𝒕)&&  (
𝒄𝒖𝒓

< 
𝒎𝒊𝒏

) ) 

⌊
 
 
 
 
 
 
𝒊𝒇(𝑩𝒂𝒗𝒈

𝒊 >  . 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅)

⌊𝒏+𝟏
𝒊 = 𝒏

𝒊 − 𝟏;
ƞ + +;

          

𝒆𝒍𝒔𝒆                                   

⌊
𝒔𝒆𝒓𝒗𝒆𝒓𝑷𝒖𝒔𝒉 = 𝒕𝒓𝒖𝒆;
𝒑𝒖𝒔𝒉𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒔(𝒌);
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else if ( (𝒏
𝒊 < 𝒏

𝒎𝒂𝒙) && (( 
𝒄𝒖𝒓

> 
𝒎𝒊𝒏

) || ((𝒇𝒂𝒔𝒕𝑺𝒕𝒂𝒓𝒕)  )) 

⌊
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒊𝒇(𝐜𝒐𝒖𝒏𝒕𝒆𝒓 < )                                   

⌊
 
 
 𝒏+𝟏

𝒊 = 𝒏
𝒊 ;                                         

𝒔𝒆𝒓𝒗𝒆𝒓𝑷𝒖𝒔𝒉 = 𝒕𝒓𝒖𝒆;                       
𝒑𝒖𝒔𝒉𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒔(− 𝒄𝒐𝒖𝒏𝒕𝒆𝒓);
𝒄𝒐𝒖𝒏𝒕𝒆𝒓 + +;                                      

      

𝒆𝒍𝒔𝒆 𝒊𝒇((𝒄𝒐𝒖𝒏𝒕𝒆𝒓 ))                                      

      

⌊
 
 
 
 
 
 
 
 
 
 
𝒊𝒇 ((𝑩𝒂𝒗𝒈

𝒊+𝟏 >  . 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅) || ( < 𝟎. 𝟓) )

⌊
𝒏+𝟏

𝒊 = 𝒏
𝒊 ;

𝒔𝒆𝒓𝒗𝒆𝒓𝑷𝒖𝒔𝒉 = 𝒕𝒓𝒖𝒆;
𝒑𝒖𝒔𝒉𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒔(𝒌);

                           

𝒆𝒍𝒔𝒆 𝒊𝒇 (𝑩𝒂𝒗𝒈
𝒊+𝟏 <  . 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅)

⌊
 
 
 
𝒊𝒇( > 𝟎. 𝟓)                      

⌊
𝒏+𝟏

𝒊 = 𝒏
𝒊 + 𝟏;

ƞ + +;     
  𝒄𝒐𝒖𝒏𝒕𝒆𝒓 = 𝟎;             

   

 

 

𝒆𝒍𝒔𝒆 𝒊𝒇 ( cur > max ) 

⌊


𝒓𝒂𝒏𝒅
= 𝒓𝒂𝒏𝒅( 

𝒐𝒑𝒕
 ,

𝒎𝒂𝒙
) ; 


𝒅𝒆𝒍𝒂𝒚

= 
𝒄𝒖𝒓𝒓

− 
𝒓𝒂𝒏𝒅

 ;          
 

Output: 

𝒏+𝟏
𝒊  ,

𝒅𝒆𝒍𝒂𝒚
 

 

3.2.4 Server Push 

SHANZ-II algorithm uses server push feature of HTTP/2 to minimize the start-up delay 

and latency of the video. With server-push feature, the server sends the future resources to the 

clients even before the client requests. The server sends those resources, which are most likely to 

be requested by the client in the future. This phenomenon can be used in video streaming, and 

the client can allow the server to push the future video segments in advance. However, server-

push can have one drawback. Once the server is pushing the video segments, the client can no 

longer adapt to the changes in the network, because the server will only push video segments of 

one representation level. So, efficiency of the algorithm may decrease. Therefore, a mechanism 



 

42 

 

is required in order to use this feature in such a way that latency and start-up delay of the video is 

minimized without compromising on the efficiency of the rate adaptation algorithm.  

We have developed an intelligent and efficient control mechanism in our proposed 

algorithm to use server-push feature. The client will only allow the server to push limited number 

of video segments under certain conditions. There are 3 moments, when the client will allow the 

server to push the video segments. We will explain each of them in the preceding paragraphs. 

 Firstly, when the buffer level of the client drops less than 
𝑚𝑖𝑛

, if the available 

throughput is less than a certain threshold value  . 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑, the algorithm will decrease its 

quality level. However, if the buffer level is less than 
𝑚𝑖𝑛

, and the available throughput is 

higher than a certain threshold value  . 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑, the client will enable server push feature for 

next k number of segments. The value of k can be set according to the video segment length and 

minimum buffer threshold value. By allowing server push feature, the buffer vale will quickly 

increase, so the chances of video stalling are minimized. The server will push the segments from 

the current representation level of the client. 

The second and third point to allow server push occur when the client is either in fast 

start phase or when the buffer value of the client is greater than 
𝑚𝑖𝑛

. The algorithm uses the 

same dynamic step-up function as in SHANZ-I. On each representation level, the client waits for 

certain number of segments , before upgrading its video quality. This number of segments are 

defined by the dynamic step-up function. The client upgrades its representation level when the 

value of 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is greater than . But, if the value of counter is less than , it means the client 

will not upgrade the video quality for a certain number of segments, and the available throughput 

is greater than average throughput required for current representation level. The client will allow 

server push for next  − 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 number of video segments. On this condition, it is obvious 

that the client will stay on its current representation level; unless the value of counter increases 

the value of , therefore the server push feature is enabled by the client to reduce the latency of 

the video. 

Finally, the client will also allow server push when the value of counter is also greater 

than , but either the value of stability  is less than 0.5 or the average throughput required for 
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the next representation level is less than the available throughput. At this point, the client will 

stay at its current representation level and it will enable server push for next k number of video 

segments. The server will push next k video segments from the current representation level. 

The sever push feature reduces the latency of the video, which is one of the main 

challenges in the live video streaming. This feature will smoothen the video streaming process 

and enhance the overall quality of experience of the user by minimizing the start-up delay, 

latency and stalling events of the video. 

3.2.5 Header Compression 

HTTP2 provides a secure header compression mechanism called HPACK. HPACK 

compress the headers by using a static dictionary, which includes the list of common headers, a 

dynamic dictionary and static Huffman coding. HPACK is a secure header compression 

mechanism and it avoids the breaching of data. This feature also reduces the latency of the video, 

because it reduces the overhead, which is cause due to redundant information sent over the 

network. With the help of header compression, the bandwidth consumption is also decreased 

because it saves the extra number of bytes sent over the network. 

3.2.5 Multiplexing of Streams 

HTTP/2  allows multiplexing of multiple streams in one HTTP connection. Each stream 

is a bi-directional and independent sequence of frames that are exchanged between the server and 

client, in a single http2 connection. Each stream has its unique Stream ID. Each stream has a 

priority number, which defines its significance. So the streams with higher priority are sent first. 

If one stream is dependent on another stream, it can be signaled by using a priority tree. Priority 

of the streams can be changed at the run time to give higher priority to the resources, which the 

client requires urgently. With the help of this feature, multiple streams can be sent on single 

HTTP connection, which will enhance the performance of the algorithm. 

3.2.6 Alternate Service 

 HTTP/2 has the alternate service capability, which can be offered by the servers to the 

clients. Server can utilize this service to redirect the client to another server that might be at a 

different geographical location. Servers can offer Alternate service to the clients for multiple 
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reasons like load balancing or they can redirect their clients to a server, which is at a closer 

distance from the client and has lesser latency. Alternate service can be used by the server for the 

segmentation of the clients into multiple groups, and offering services according to their 

geographical locations, capabilities or subscriptions. 

The server offered via alternate service may have a different protocol configuration and 

may have security issues. The client needs to authenticate the alternate server offered before 

switching to that server. Alternate service also has a freshness lifetime, after which the alternate 

service is invalidated and origin server revalidates the alternate service with a new freshness 

time. Alternate service is a transparent service. The application layer of the client is unaware of 

the server switching mechanism. The client can discover the alternate service that is associated 

with the origin server by multiple ways are many mechanisms by which the client can discover 

the alternate service.  

Alternate service is an efficient HTTP/2 feature, which can be utilized for the 

enhancement of QoE. There might be the case that the client in Pakistan is using a global DNS 

server address, which resides in US instead of using a local DNS server. In this case, DNS may 

redirect the client to its closest CDN in the US. So there will be a high latency for that CDN 

because of its large geographical distance from the client. The server can diagnose this problem 

and can offer an alternate service to the client. In HTTP/2 header, alternate service message is 

sent to the client along with the address of alternate servers. The client can use the alternate 

service for switching to the server, which offers maximum throughput with minimum latency.  

Alternate service can boost the performance of the video streaming when used 

effectively. However, it is an additional feature of HTTP/2 and it is not mandatory for the server 

or client to use this feature. This feature might have some security issues, so it is up to the client 

to make sure that the alternate server is under the association of original server. Some additional 

security check mechanism should be created to ensure the authenticity of the alternate server.  
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CHAPTER 4: EXPERIMENTAL SETUP AND RESULTS 

4.1 Experimental Setup 

For implementation and experimental verification of our proposed algorithm, we have 

used Advanced Network Simulator tool ns-3.[53] This tool helps us to test our algorithm by 

using state of the art protocols and network infrastructure. To test our algorithm in a realistic 

network environment, we have used building model of ns-3 to create a building of 10 rooms in a 

single floor. All the rooms are of same dimensions and adjacent to each other arranged in two 

rows in the order of 5x2. Each room has width and height of 10 meters and a length of 20 meters. 

The rooms are in residential building model having external walls of concrete with windows.  

For evaluation of our algorithm, we have used an open-source movie Big Buck Bunny 

[54] as a test video. The video is encoded in MPEG DASH format, containing 10 representation 

levels. The video is available in 6 different segment sizes but for the experimental setup, we have 

used video with segment size of 2 seconds. Total duration of the video is 9 minutes and 56 

seconds, and contains 298 segments in total. The Table 4.1 below shows the remaining attributes 

of the dataset. 

TABLE 4.1.  DATASET ATTRIBUTES 

Representation Level Bitrate Resolution 

0 89283 bps 89 Kbps 320x240 

1 221600 bps 221 Kbps 480x360 

2 396126 bps 396 Kbps 480x360 

3 595491 bps 595 Kbps 854x480 

4 1032682 bps 1.0 Mbps 1280x720 

5 1546902 bps 1.5 Mbps 1280x720 

6 2133691 bps 2.1 Mbps 1920x1080 

7 3078587 bps 3.0 Mbps 1920x1080 

8 3526922 bps 3.5 Mbps 1920x1080 

9 4219897 bps 4.2 Mbps 1920x1080 

 



 

46 

 

The server was positioned in the first room at coordinates (5, 5, 5) and Access point was 

placed at the coordinates (25, 20, 5). Wi-Fi protocol IEEE 802.11n was used to connect clients 

with the server via access point. The clients positioned were randomly inside the building. The 

remaining parameters for the configuration setup were set as mentioned in [55].  

Bandwidth of the link between server and access point is set to 10 Mbps. Number of 

clients can be specified before the start of simulation. Each client connects with the server one 

after another, after a constant time interval of 5 seconds and starts downloading the video 

segments, according to its rate adaptation algorithm. The simulation stops once all the clients 

have completed the playback of the video. 

4.2 Experimental Results 

For evaluation of our proposed algorithm, we have compared our algorithm with three 

state of the art algorithms namely, FESTIVE [34], PANDA [33], and TOBASCO/AAASH [41]. 

Every experiment was carried out 10 times for each test case and the average results were taken. 

For the evaluation of our proposed algorithm (SHANZ), the value of minimum buffer 

level (min) was set to 10, maximum buffer level (max) was set to 40, for computing weighted 

average throughput the value of weight (w) was set as 0.1, and finally, the value of Throughput 

threshold () was set to 0.85. 

For every experiment, we have evaluated the performance of the algorithm by comparing 

its QoE metrics with other algorithms. QoE metrics consists of 6 parameters namely, Total 

number of playback interruptions or video stalling events, average playback video quality, total 

number of video quality transitions, average playback buffer size, and finally, stability of the 

video.  

4.2.1 Single Client Scenario 

In the first scenario, algorithms were tested on a single client with no background traffic 

and the link speed was set to 10 Mbps. In this case, a client was located at a random location 

inside the building. Once the client connects with the server, it starts downloading the video 

segments according to its adaptation algorithm. The simulation stops once the client has 

completely played the video. 
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All the algorithms show similar performance in single client scenario except AAASH 

algorithm, which has the lowest average video quality. Maximum value of Average Video 

Quality of 9 was shown by our proposed algorithm (SHANZ-I) with average buffer level of 31 

seconds. None of the algorithms showed stalling event during the simulation. QoE metrics for 

each of the five adaptation algorithms is shown in Table 4.2. 

TABLE 4.2.  QOE METRICS FOR SINGLE CLIENT SCENARIO 

QoE Metrics FESTIVE PANDA AAASH SHANZ-I SHANZ-II 

Playback Interruptions 0 0 0 0 0 

Avg. Video Quality 7 8 4 8 8 

Video Quality Transitions 9 5 6 9 9 

Avg. Buffer Size 28 28 32 31 33 

Figure 4.1 shows the graph of average playback video quality during the simulation in 

single client scenario for five adaptation algorithms. As the graph shows, SHANZ-I and 

SHANZ-II algorithms were most responsive to adaptation especially at lower bitrates.  

 

Fig.  4.1: Average Video Quality for single client scenario 
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Another perimeter to evaluate the performance of adaptation algorithms is stability. We 

have defined the stability function (earlier, which depends upon number of video quality 

switches in a unit time. Figure 4.2 shows stability index of the algorithms. All the algorithms 

show similar stability graph for single client scenario. SHANZ-I and SHANZ-II algorithm 

showed the minimum stability value of 0.55 and reached back to its maximum value.  

 

Fig.  4.2: Stability Index for single client scenario 

 

4.2.2 Multiple Clients Scenario 

In the second phase of experiment, we tested our algorithms with 5 clients. In this case, 

the link speed between server and access point was set to of 10 Mbps. Each client connected to 

the server to start the playback, after a constant time interval of 5 seconds.  

Table 4.3 shows QoE metrics of FESTIVE algorithm, with 5 clients. The results show 

that clients 1 and 5 have the lowest average video quality along with multiple playback 

interruptions. While other three clients have comparatively higher average quality level, but 

experienced huge number of video quality switches. 
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TABLE 4.3.  QOE METRICS OF FESTIVE ALGORITHM WITH 5 CLIENTS 

FESTIVE QoE  Metrics Client 1 Client 2 Client 3 Client 4 Client 5 

Playback Interruptions 13 0 0 0 8 

Avg. Video Quality 1 5 6 6 1 

Video Quality Transitions 36 55 64 62 40 

Avg. Buffer Size 23 27 26 27 23 

Results of QoE metrics of PANDA adaptation algorithm are shown in Table 4.4. There 

are comparatively lesser number of video quality transitions than FESTIVE but the shifts are 

large and sudden, not step wise. Secondly, there are fewer stalling events as compared to 

previous algorithm. Average buffer size of the clients of PANDA is almost similar to clients of 

FESTIVE algorithm.  

TABLE 4.4.  QOE METRICS OF PANDA ALGORITHM WITH 5 CLIENTS 

PANDA QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 

Playback Interruptions 0 4 0 1 0 

Avg. Video Quality 5 1 6 2 7 

Video Quality Transitions 11 24 19 19 17 

Avg. Buffer Size 27 22 27 25 26 

Table 4.5 shows the results of AAASH algorithm for 5 clients, the clients of AAASH 

algorithm has underperformed with least average video quality level size amongst all five 

algorithms, but has also shown least number of video quality transitions and without playback 

interruption.  

TABLE 4.5.  QOE METRICS OF AAASH ALGORITHM WITH 5 CLIENTS 

AAASH QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 

Playback Interruptions 0 0 0 0 0 

Avg. Video Quality 4 3 3 3 3 

Video Quality Transitions 5 4 4 4 4 

Avg. Buffer Size 30 32 31 32 31 

Table 4.6 describes the results of SHANZ-I algorithm. It has shown better fairness 

amongst its clients, with higher average playback quality as compared to other algorithms. All 
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the clients played the video without any playback interruption. Finally, it has also shown lesser 

number of video quality transitions as compared to FESTIVE and PANDA.  

TABLE 4.6.  QOE METRICS OF SHANZ-I ALGORITHM WITH 5 CLIENTS 

SHANZ QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 

Playback Interruptions 0 0 0 0 0 

Avg. Video Quality 4 6 5 6 4 

Video Quality Transitions 9 10 13 11 10 

Avg. Buffer Size 27 32 31 33 26 

 

Table 4.7 describes the results of SHANZ-II algorithm. The algorithm achieved better 

fairness amongst its clients, with higher average playback quality as compared to other 

algorithms. It has also shown lesser number of video quality transitions as compared to 

FESTIVE and PANDA. 

TABLE 4.7:QOE METRICS OF SHANZ-II ALGORITHM WITH 5 CLIENTS 

The graphs below from Figure 4.3 to Figure 4.7 show, the Average playback video 

quality of five algorithms in 5 clients scenario. AAASH and PANDA has lower average video 

quality overall, with PANDA having steepest video quality fluctuations. FESTIVE has the 

largest number of video quality transitions. SHANZ-I and SHANZ-II algorithm showed higher 

average representation index with better stability as compared to other three algorithms. 

Figure 4.3 shows the average playback video quality of FESTIVE algorithm, as the graph 

shows FESTIVE has highest video quality oscillations with least stability. It also showed 

unfairness amongst its clients. 

SHANZ QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 

Playback Interruptions 0 0 0 0 0 

Avg. Video Quality 5 6 5 5 6 

Video Quality Transitions 8 9 10 8 7 

Avg. Buffer Size 33 30 29 32 30 
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Fig.  4.3: Average video quality of FESTIVE for 5 clients scenario 

Figure 4.4 shows the average playback video quality of PANDA algorithm. PANDA 

showed the sharp oscillations in the video quality, with minimum stability. It also showed 

unfairness amongst its clients. 

 

Fig.  4.4: Average video quality of PANDA for 5 clients scenario 
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Figure 4.5 shows the average playback video quality of TOBASCO algorithm, as the 

graph shows that it has achieved better stability and fairness among the clients but has the least 

average playback quality level. TOBASCO algorithm has underutilized the bandwidth link. 

 

Fig.  4.5: Average video quality of TOBASCO for 5 clients scenario 

Figure 4.6 shows the average playback video quality of SHANZ-I adaptation algorithm. 

It has achieved higher average playback quality level with better stability. It also achieved better 

fairness amongst its client. All the clients played the video without any playback interruptions. 
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Fig.  4.6: Average video quality of SHANZ-I for 5 clients scenario 

Figure 4.7 shows the average playback video quality of SHANZ-II adaptation algorithm. 

It has achieved higher average playback quality level with better stability. All the clients played 

the video without any playback interruptions. It also achieved better fairness amongst its client.  

 

Fig.  4.7: Average video quality of SHANZ-II for 5 clients scenario 
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Figures from 4.8 to 4.12 below show the graph of video stability index of the algorithms. 

FESTIVE algorithm is the least stable algorithm, with highest fluctuations. PANDA algorithm 

also showed least stability with highest amplitude of video quality oscillations. PANDA showed 

sudden drop in its stability index due to sharp fluctuations in video quality. AAASH was the 

most stable algorithm due to underutilization of the link. Stability index of SHANZ-I algorithm, 

also kept on showing continuous minor fluctuations, but overall its stability is better as compared 

to other algorithms. SHANZ-II algorithm was the most stable algorithm when compared with 

other algorithms.  

 

Fig.  4.8: Stability Index of FESTIVE for 5 clients scenario 
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Fig.  4.9. Stability Index of PANDA for 5 clients scenario 

 

Fig.  4.10: Stability Index of TOBASCO for 5 clients scenario 
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Fig.  4.11: Stability Index of SHANZ-I for 5 clients scenario 

 

Fig.  4.12: Stability Index of SHANZ-II in 5 clients scenario 
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4.2.3 Congested Network Scenario 

In the final stage of our experiment, we have tested the adaptation algorithms in network 

congestion under a bottleneck link. A constant background traffic was added to increase 

congestion in the network. In this scenario, number of clients increased to 7, and the results were 

compared. 

Table 4.8 shows QoE metrics of FESTIVE adaptation algorithm for 7 clients. With 

increase of congestion in the network, video quality oscillations of FESTIVE further increased. 

Client 2 faces maximum number of playback stalling events. Unfairness among the clients also 

increase with increase of network congestion. 

TABLE 4.8. QOE OF FESTIVE FOR CONGESTED NETWORK SCENARIO 

FESTIVE QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 

Playback Interruptions 1 12 3 1 2 3 1 

Avg. Video Quality 5 1 1 5 2 6 1 

Video Quality Transitions 42 38 37 51 35 61 40 

Avg. Buffer Size 27 24 23 27 24 28 22 

 

The results of PANDA algorithm for 7 clients scenario are shown in Table 4.9. Video 

quality shifts of PANDA increased, due to congestion in the network. However, its average 

video quality is still better than that of FESTIVE with lesser video quality shifts. 

TABLE 4.9. QOE OF PANDA FOR CONGESTED NETWORK SCENARIO 

PANDA QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 

Playback Interruptions 3 1 2 4 3 1 2 

Avg. Video Quality 2 6 3 4 7 2 2 

Video Quality Transitions 19 27 17 21 21 17 23 

Avg. Buffer Size 28 27 28 24 24 27 27 
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QoE metrics of AAASH is shown in Table 4.10. The performance of AAASH algorithm 

also decreased due to increased network congestion, as it was before. The stability of the 

algorithm has decreased due to more video quality oscillations. Some of the clients have also 

shown playback interruptions due to congestion in the network. 

TABLE 4.10. QOE OF AAASH FOR CONGESTED NETWORK SCENARIO 

AAASH QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 

Playback Interruptions 3 2 1 2 0 2 1 

Avg. Video Quality 3 2 2 4 3 1 0 

Video Quality 

Transitions 
3 5 4 5 5 7 6 

Avg. Buffer Size 29 31 27 28 31 30 29 

QoE of SHANZ-I for network congestion scenario is described in Table 4.11. Clients of 

SHANZ still have higher average video quality as compared to other adaptation algorithms. The 

algorithm showed better fairness and stability amongst the clients, as compared to other three 

algorithms, without any playback interruption. 

TABLE 4.11. QOE OF SHANZ-I ALGORITHM FOR CONGESTED NETWORK SCENARIO 

SHANZ QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 

Playback Interruptions 0 0 0 0 0 0 0 

Avg. Video Quality 6 5 4 4 3 4 3 

Video Quality 

Transitions 
11 8 8 11 7 9 10 

Avg. Buffer Size 30 27 29 27 29 28 26 

QoE of SHANZ-II algorithm for network congestion scenario is described in Table 4.12. 

Clients of SHANZ-II showed highest average video quality level as compared to other 

adaptation algorithms. Our proposed algorithm showed better fairness and stability amongst the 

clients, as compared to other three algorithms, without any playback interruption. 
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TABLE 4.12. QOE OF SHANZ-II ALGORITHM FOR CONGESTED NETWORK SCENARIO 

SHANZ QoE Metrics Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 

Playback Interruptions 0 0 0 0 0 0 0 

Avg. Video Quality 4 3 4 3 5 5 3 

Video Quality 

Transitions 
8 7 9 8 11 10 9 

Avg. Buffer Size 30 27 29 27 29 28 26 

Figures 4.13 to 4.17 show average video quality of the algorithms for congested network 

scenario. It shows that video quality oscillations are increased for all the algorithms. FESTIVE 

was most affected algorithm in this case, having highest number of video quality oscillations 

with least stability. PANDA algorithm still has the sharp fluctuations in the video quality. 

TOBASCO showed better stability but poor video quality. SHANZ-I and SHANZ-II algorithms 

still managed to maintain higher average video quality with lesser number of video quality 

oscillations, when compared with other algorithms.  

 

Fig.  4.13: Average Video Quality of FESTIVE for congested network scenario 
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Fig.  4.14: Average Video Quality of PANDA for congested network scenario 

 

 

Fig.  4.15: Average Video Quality of TOBASCO for congested network scenario 

0

1

2

3

4

5

6

7

8

9

10
0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0

8

1
1

7

1
2

6

1
3

5

1
4

4

1
5

3

1
6

2

1
7

1

1
8

0

1
8

9

1
9

8

2
0

7

2
1

6

2
2

5

2
3

4

2
4

3

2
5

2

2
6

1

2
7

0

2
7

9

2
8

8

2
9

7

V
id

e
o

 Q
u

al
it

y 
In

d
e

x

Video Segment Index

Average Video Quality

Panda Client 1 Panda Client 2 Panda Client 3 Panda Client 4
Panda Client 5 Panda Client 6 Panda Client 7

0

1

2

3

4

5

6

7

8

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0

8

1
1

7

1
2

6

1
3

5

1
4

4

1
5

3

1
6

2

1
7

1

1
8

0

1
8

9

1
9

8

2
0

7

2
1

6

2
2

5

2
3

4

2
4

3

2
5

2

2
6

1

2
7

0

2
7

9

2
8

8

2
9

7

V
id

e
o

 Q
u

al
it

y 
In

d
e

x

Video Segment Index

Average Video Quality

Tobasco Cient 1 Tobasco Cient 2 Tobasco Cient 3 Tobasco Cient 4

Tobasco Cient 5 Tobasco Cient 6 Tobasco Cient 7



 

61 

 

 

Fig.  4.16: Average Video Quality of SHANZ-I for congested network scenario 

 

 

Fig.  4.17: Average Video Quality of SHANZ-II for congested network scenario 
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Figures 4.18 to 4.22 shows the stability index of the adaptation algorithms in the 

congested network scenario. It shows that FESTIVE has the highest rate of oscillations with least 

stability. The instability of PANDA algorithm also decreased, with highest amplitude of video 

quality oscillations. TOBASCO algorithm was most stable algorithm because of underutilization 

of the link. Stability of SHANZ-I and SHANZ-II algorithm was also decreased, but it remained 

higher than its minimum threshold value of 0.54. Our proposed algorithms showed better 

stability in comparison to other algorithms. 

 

Fig.  4.18: Stability Index of FESTIVE for congested network scenario 
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Fig.  4.19: Stability Index of PANDA for congested network scenario 

 

 

Fig.  4.20: Stability Index of TOBASCO for congested network scenario 
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Fig.  4.21: Stability Index of SHANZ-I for congested network scenario 

 

 

Fig.  4.22: Stability Index of SHANZ-II for congested network scenario 
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4.2.4 Analysis of Results 

Experimental results verify that our proposed algorithm maintains a balance in its 

stability and efficiency even in drastic network conditions. SHANZ-I and SHANZ-II algorithms 

has achieved higher average quality level, with better stability in all the test cases with lesser 

number of video quality oscillations as compared to other algorithms. The algorithms has also 

maintained a level of fairness amongst its clients in all the test cases. The algorithm ensured 

seamless video streaming amongst all the clients in all the test cases, without any playback 

interruption. 

SHANZ-I algorithm maintained the balance between stability and efficiency of the 

algorithm. It achieved higher average playback quality level and also maintained its stability. 

SHANZ-II algorithm maintained the stability of the algorithm but also reduced the start-up delay 

and latency of the video by using server push mechanism. Both of the proposed algorithms 

maintained the level of fairness amongst their clients. 

After the comparison of our proposed algorithms with state of the art techniques in 

multiple test cases, our algorithms achieved better quality of experience metrics and 

outperformed other algorithms. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

MPEG DASH has become the standard protocol for HTTP based adaptive video 

streaming. With increase in the popularity of HAS, there has been a sharp increase in the video 

traffic over the Internet. When multiple clients compete for bandwidth in the same network, it 

creates a bottleneck link. This has led to more issues like unfairness and congestion in the 

network. This work presents a dynamic rate adaptation algorithm, which can evolve with 

changing network conditions to maintain the balance between stability and efficiency of the 

algorithm by adaptive step-up function and using a feedback control mechanism to maximize the 

stability function. The algorithm also managed to maintain fairness amongst the clients by 

introducing randomized delay to eliminate bandwidth overestimation issues. For the evaluation 

of our proposed algorithm, we used public available dataset named as “Big Buck Bunny”. This 

video was an animated video of mpeg dash format and consists of total duration of 9 minutes and 

56 seconds. The video segment size of the video was 2 seconds.  

The algorithm was evaluated in three different test cases and the results were compared 

with three other popular algorithms, namely, FESTIVE, PANDA and AAASH. In the first case, 

the algorithm was tested on a single client with the bandwidth of 10Mbps. In the second case, the 

algorithm was tested on 5 clients and in the third test case the algorithm was tested on 7 clients in 

network congestion scenario. For the analysis of quality metrics, different parameters were 

compared like, average video quality, total number of video stalling events, average buffer size, 

total number of buffering events and the stability of the video. After evaluation of the algorithm 

in multiple test cases, the results demonstrated that the algorithm outperformed other algorithms. 

The algorithm showed better stability of the video in all the test cases and achieved the highest 

average video quality as compared to other algorithms. Finally, our algorithm also managed to 

maintain fairness among the clients, while other algorithm showed lesser fairness in presence of 

multiple clients. 
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5.2 Future Work 

Increased video traffic over the internet has given rise to new research challenges. 

Video content over the internet consumes up to three quarters of the total bandwidth of the 

network. A large number of users in a same network watch videos on different 

heterogeneous platforms. It increases unfairness among the clients and results in congestion 

in the network. Therefore, an intelligent mechanism is required, which predict the future 

network state and react accordingly before the performance of the network degrades. 

Secondly, there should be a mechanism such that different network entities should interact 

with each other to give feedback about the current state of the network. A new framework of 

MPEG DASH named as SAND has given an excellent framework for intelligent and 

network aware video streaming. This framework can be used as a roadmap for building a 

new infrastructure for video streaming. Secondly, Media centric IOT is another research 

area, which requires the contribution for resolving challenges in efficient multimedia 

streaming in nodes, with using minimum computational power and bandwidth.  
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