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ABSTRACT 

Digital audio, videos and images corresponds to huge amount of data. The storage and 

transmission of this data requires significant amount of bandwidth and memory respectively. 

Compressing this digital data is a field which has been researched upon for decades. Many 

state of the art compression algorithms have been proposed to cater the storage and 

transmission requirements of digital data. Aiming at the digital image compression, Discrete 

Cosine Transform is a widely used transform to explore the frequencies present in a digital 

image. During the quantization step the less significant frequencies are discarded and only the 

more important frequencies are retained. This quantization results in the reduced 

representation of the image hence compression is achieved. The image reconstructed from 

this reduced frequency set is an approximation of the original image and hence it results in 

lossy image compression. Lately, a significant amount of research work has been conducted 

based on the use of neural networks for image compression. This thesis presents a detailed 

literature review to thoroughly analyze the existing literature and methods. In this thesis we 

target a deep neural network that can estimate the most important DCT coefficients for an 

image and then we utilize these most significant DCT Coefficients for the classification task. 

The estimation of DCT coefficients is targeted by a Multi-Layered Perceptron (MLP) model 

and a Deep Convolutional Neural Network (DCNN) model. The experimentation showed 

promising results and revealed that MLP models have relatively lower error rate between 

actual and predicted results, as compared to DCNN models. Later on, MNIST image dataset 

is applied to the proposed deep learning models for the prediction of its most significant DCT 

coefficients and the predicted results are then used for digits classification. The experimental 

results support the DCT based digits classification with an accuracy of 95%, which is quiet 

promising. In future, the proposed technique also leverages the use of compressed images for 

tackling different image classification and regression problems. Moreover, the proposed deep 

neural networks can be further generalized to support videos and color representations. 

 

 

Keywords: Image Compression, lossy compression, DCT, Deep Learning, CNN, MLP. 
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CHAPTER 1: INTRODUCTION 

This chapter contains a brief introduction of the research performed. The problem 

statement along with some background study is elaborated in Section 1.1. Classification 

problem is specified in Section 1.2. Section 1.3 includes the proposed methodology and 

Section 1.4 provides a brief overview to our research contribution. Lastly, the thesis 

organization is stated in Section 1.5. 

1.1. Problem Statement 

In this thesis, we have targeted the lossy compression of digital images; by extracting 

the most important Discrete Cosine Transform (DCT) coefficients, with the help of deep 

neural networks. We also target, to take advantage of these reduced representations to 

classify images from the standard dataset i.e. MNIST data set with the help of deep neural 

network. Classification based on these reduced representation helps in decreasing the size and 

training time of our deep neural networks. Moreover, these deep neural networks show 

promising results on the classification task. Some background related to our work is given as 

follow: 

1.1.1. Image Compression 

With the advancement in communication technology the use of images and videos has 

increased which thus elevated the importance of image and video compression. Visual 

information collected from images needs to be stored and transmitted. But these visual data 

files are so enormous that their transmission and storage requires considerably large 

bandwidth and huge storage capacity. This is where image compression comes into play. The 

process of image compression is intended to provide a compact representation of an image. 

That is, to reduce the transmission and storage requirements by reducing the size of the data 

without losing any significant visual information. Almost all the digital images have some 

kind of redundancy in its data, it may be repeating pattern or repeating pixel values across the 

image. Reducing or eliminating one or more of these redundancies results in image 

compression. The three types of data redundancies exploited in image compression are: Inter 

Pixel Redundancy (Spatial redundancy), Coding Redundancy and Psycho Visual 

Redundancy. The Inter pixel redundancy also known as spatial redundancy assumes that 

the neighboring pixel values can predict the value of any given pixel and that the pixel values 
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are highly correlated. The image is said to have coding redundancy, if more codes are used 

than absolute necessary ones needed to represent each color. In Psychovisual redundancy; 

the limitation of human eye, to distinguish all the different colors in the image, is exploited. 

That is, every pixel value or luminance value in the digital image can’t be comprehended by 

human perception. 

An image compression system consists of a coder (compressor) and decoder 

(decompressor) as shown in Figure 1. Basically, image compression can be of two types: 

lossy and lossless compression. In lossy image compression, original image (I) is first 

compressed and during the compression phase some of the less important data is neglected. 

So, when the data is decompressed after transmission, we get an image (I’) which is a closer 

approximation of the original image. Examples of lossy compression techniques include 

JPEG, Fractal compression, Transform coding and Vector quantization. While on the other 

hand, in lossless image compression no data or visual information is lost during the 

compression phase and an exact replica (I’) of the original image (I) is retrieved after 

decompression. Examples of lossless compression techniques include: Run Length Encoding 

(RLE), Huffman Encoding and Delta Encoding.  

 

Figure 1: Image Compression Process 

1.1.2. Discrete Cosine Transform (DCT) 

Aiming at the digital image compression, Discrete Cosine Transform is a widely used 

transform to explore the frequencies present in a digital image. It was originally proposed by 

Ahmed et al [4]. DCT is mostly used either as a single algorithm or in combination with other 

compressors in multistage compressors like JPEG [3]. The DCT works by separating images 

into parts of differing frequencies. It is during the quantization step, where the compression 

occurs, the less significant frequencies (high frequency DCT Coefficients) are discarded and 

only the more important frequencies (low frequency DCT coefficients) are retained. The 

information about the pixels of the images is stored in these DCT coefficients. This 

quantization results in the reduced representation of the image hence compression is 
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achieved. The image reconstructed from this reduced frequency set is an approximation of the 

original image and hence it results in lossy image compression.  

The DCT has the capability to represent most of visually substantial data of an image 

in just few coefficients. The DCT coefficients can be classified into “DC” and “AC” 

coefficients. The coefficient placed at the top left corner is the DC coefficient having zero 

frequency and gives the mean intensity of an image. All the remaining coefficients are known 

as AC coefficients and have non-zero frequencies. The coefficients organized in a zigzag 

manner (shown in Figure 2) carries information in the declining order. That is, the DC 

coefficient contains the most significant visual information about an image and is of high 

importance and the last AC coefficient traversed, following the zigzag pattern, have 

negligible visual information and is of least importance. Therefore, to accomplish 

compression; the DCT coefficients that are of no importance and lies at the end of the block 

are truncated.  

 

Figure 2: ZigZag Pattern 

The DCT equation computing the uth and vth entry of the DCT of an image is shown in 

Equation-1. Since, cosine functions are used in the DCT, so the output matrix depends on the 

vertical, diagonal and horizontal frequencies. A sample image and its corresponding DCT 

image are shown in Figure 3-4. 

𝑓(𝑢, 𝑣) = (
2

𝑁
)

−
1

2  𝐶(𝑢)𝐶(𝑣) ∑ ∑ 𝑓(x, y) cos [
(2x+1)𝑢π

2N
]N−1

v=0
𝑁−1
𝑢=0 cos [

(2y+1)𝑣π

2N
]             (1)  
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Where C(𝑢), C(𝑣) = {
1

√2
          𝑖𝑓  𝑢, 𝑣 = 0 

1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                           (2) 

  

     Figure 3: Pepper Image                                             Figure 4: DCT of Pepper Image  

 

When desired the reconstruction of the image through decompression is done using Inverse 

Discrete Cosine Transform (IDCT). The 2D IDCT of an image is given by Equation-3:  

𝑓(𝑥, 𝑦) = (
2

𝑁
)

−
1

2  𝐶(𝑥)𝐶(𝑦) ∑ ∑ 𝑓(u, v) cos [
(2u+1)𝑥π

2N
]N−1

y=0
𝑁−1
𝑥=0 cos [

(2v+1)𝑦π

2N
]               

(3)  

Where C(𝑥), C(𝑦) = {
1

√2
          𝑖𝑓  𝑥, 𝑦 = 0 

1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                             (4) 

 

1.1.3. Neural Networks 

The inspiration for neural networks also known as artificial neural networks (ANNs) 

[2–4] comes from the way the calculations are performed and related decisions are being 

made by the human brain. We try to use artificial neurons to mimic the working of human 

nervous system. Biological neurons possess some computational ability and strength 

therefore; to imitate the actions of biological neurons each artificial neuron is also equipped 

with some computational strength. Many input signals can be taken in by an artificial neuron 

just like biological neuron and then a single output signal is produced based on an internal 

weighting system. An artificial neuron is depicted figuratively in Figure 5. 
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Figure 5: Structure of Artificial Neural Network 

Here𝑋1, 𝑋2, . . . ,X𝑛 represents the 𝑛 number of input signals which are multiplied with the 

respective connected weights shown in circles before reaching the transfer function 

represented by sigma. The weights are denoted by 𝑊1, W2, . . . , W𝑛. The output of the 

artificial neuron is generated by adding the product of all these inputs and weights and 

sending them to an activation function. ANN setup is created by connecting all these artificial 

neurons with each other similar to that of biological neurons which are part of our human 

nervous system. 

With the advancement of neural network’s structure and with further enhancement in the 

processing power, capabilities and strength of CPU; many researchers are attracted from 

numerous scientific fields of study to explore neural networks and their abilities to solve 

several difficulties that are encountered in the different fields of clustering, pattern 

recognition, function approx, prediction, categorization, optimization, and many more. The 

applications of neural networks include text classification and categorization, image 

recognition, name entity recognition, speech recognition and many more. Typical problems 

of using a NN include higher training time and higher computational complexity. Moreover, 

the black box nature is also a well known problem of neural networks. Another problem 

related to neural networks is the need for large and label dataset.   

The neural networks tend to have good performance in non-linear capacity [2]. It has 

been proved that the multi-layered neural network can accurately approximate to any linear 

or nonlinear function. Neural network can be utilized to approximate to the continuous 

quantity, because any continuous quantity can be express by the combinations of linear and 

nonlinear function. Other than conventional algorithms [13] many ANNs are also being 

explored, developed and used to handle the problem we were facing during the compression 

of still images [5–12]. The goal was to design and build systems that utilize least possible 
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computational resources and attain high compression ratios without compromising the quality 

of reproduced images. 

Deep Neural Networks are neural networks with several interconnected hidden layers 

between output and input layers as shown in Figure 6. Nonlinear relationships which are 

very complex can easily be modeled by these DNNs very efficiently. The high-level abstract 

depiction of the data can be easily learnt by DNNs and they can also extract highly variant 

features of inputs with the help of these extra layers of the DNNs. Convolutional Neural 

Networks (CNN) is a type of DNN that are specifically designed to deal with the visual data 

such as images and videos. CNNs are very similar to other DNN; they have neurons, weights, 

biases, activation functions just like any ordinary DNN except that the CNN makes this 

assumption that the inputs to these networks are images. This is the reason why CNN do 

better than traditional NN because the Convolutional layers in CNN utilizes the inherent 

features of images. The applications of CNNs include but are not limited to Facial 

Recognition, image recognition, video analysis, drug discovery and semantic parsing (NLP). 

The major drawback of using CNN is that they are computationally more expensive than 

many classic neural networks and needs a huge amount of image data for its training. 

 

Figure 6: Structure of Deep Neural Network 

1.2. Classification Problem 

In Machine Learning (ML), classification is a process in which the machine learns to 

predict or identify the classes (labels) of unseen observations, based on the labeled input 

given to it, using some learning algorithm. The classification process is shown in Figure 7. 

Examples of classification include: handwriting recognition, Prediction of Chronic diseases 

in patients, Speech recognition, Stock Market Forecasting, Sentiment Analysis. A number of 
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learning algorithms has been introduced and used for the classification task. Different 

algorithms perform well in different scenarios based on the nature of data available and 

depending on the application. Classification algorithms commonly used in machine learning 

are Naïve Bayes classifier, Support Vector Machines (SVM), Random Forest, K- Nearest 

Neighbor, Decision Trees, Apriori Algorithm and last but not the least Artificial Neural 

Networks. Here we are going to discuss classification via neural networks and why it has 

performed impressively in real world applications. The three main reasons that set apart 

neural networks from the rest of the classification algorithms are: its ability to perform well 

on continuous valued inputs and outputs, its high tolerance to noisy data or outliers and its 

ability to deal with complex relations between variables. Moreover, its powerful tuning 

features helps in preventing over-fitting and under-fitting as well. 

 

Figure 7: Classification Process 

1.3. Proposed Methodology 

In this thesis, we have targeted the problem of lossy image compression and proposed 

a deep neural network based solution for it. We have developed two types of deep neural 

networks; Multi layered Perceptron (MLP) and Convolutional Neural Network (MLP). These 

neural networks tend to achieve image compression by extracting most important DCT 

coefficients of images. The inputs to these networks are gray scale images whereas; the 

outputs from these models are important DCT coefficients. Different compression rates are 

achieved by varying the number of most significant DCT coefficients at the output layer. A 
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flow diagram which depicts the proposed methodology for the extraction of most important 

DCT coefficients from images is shown in Figure 8. 

We have also tried to target the classification of images via neural networks using 

these reduced representations.  We have explored the existing literature to highlight how 

neural networks are increasingly being examined and considered as possible solutions to 

problems and how the concept of neural network is shaping up the area of image 

compression. 

 

Figure 8: Proposed Methodology for the Extraction of Important DCT Coefficients 

1.4. Research Contribution 

The major contributions made by this research are as follow:  

 Extracting the most important DCT coefficients via Deep Neural Networks 

 Using these most important DCT coefficients for Digital Image compression 

 Using the most important DCCT Coefficients for the classification of standard datasets  

 We have developed Multi-Layered Perceptron and Deep Convolutional Neural Network 

that can predict the most important DCT coefficients of images. 
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We have assessed the performance of our proposed work mainly by using 3 state of the art 

image quality quantification methods; “Peak Signal to Noise Ratio (PSNR), Structural 

Similarity Index (SSIM) and Mean Squared Error (MSE)”, on 3 standard gray scale images; 

Tank, Baboon and Lena. 

1.5. Thesis Organization 

This Thesis document contains 5 chapters. Chapter 1 presents the problem statement, 

related background, Classification Problem, Proposed Methodology, Research Contribution 

and Thesis organization. In Chapter 2 provides detailed literature review highlighting the 

application of neural networks in the area of image compression. Chapter 3 includes the 

implementation details and experimental results of the proposed deep neural networks for the 

extraction of most important DCT Coefficients. Chapter 4 discusses image classification via 

reduced representation. In the final chapter the summary of our work is presented and a 

discussion on the future work is carried out. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter presents research work conducted in the area of Image compression 

using neural networks. After a brief literature review of work conducted in this area we 

enlightened the research gaps that we found in previous works. 

2.1. Related Work 

Huge streams of images are expected to be produced daily in the emerging field of 

digital imaging. The size of these images can be an issue considering two particular 

scenarios: considering transmission time or required bandwidth capability and storage 

capacity required by these huge streams of visual data. Since, most of the social media 

platforms such as; Facebook, Instagram and Whatsapp etc mainly rely on video/image 

storage and transmission.  As we know that the area of image compression has been 

researched for decades and significant advances are achieved in the form of reducing storage 

cost and transmission time. But the continuous improvement in the quality of digital images 

and the resulting rise in the sizes of images have led researchers to continuously consider the 

possibility of further reducing the size of digital images for better communication and 

storage. Even if an image can be compressed into half of its original size without 

compromising the image quality then, transmission time will be improved by 100% and the 

storage cost would be reduced by 50%. One thing to be kept in mind, that in order to 

successfully attain image compression the quality of the image should not be compromised. 

Numerous researches have been carried out to discover and tackle the image 

compression problems using NN. Many image processing problems have been tackled using 

Neural Networks [1]. The first ever use of Neural Networks for targeting image compression 

problem has been recorded in the following papers [2, 3].Image compression techniques 

employed using neural networks are presented in [2, 4].  

The basic and the most essential NN that is based on a single structure model have been 

elaborated in [5]. It contains a logistic transfer function and has 3-layers used to attain image 

compression. In [6-8] different parallel architectures have been suggested for image 

compression through neural networks. The basic goal is compression of different fragments of 

the images (i.e. as per complexity factor defined) using several neural networks which are 

placed in parallel manner to achieve the maximum compression ratio and quality of remodeled 
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image. In [9] to enhance the quality of image compression, authors have suggested an 

approach which works with single structured network and uses novel normalization function. 

In [10] an ANN has been explained that shed light on calculation of discrete cosine transform 

which is used in compression of images. A comparison of various neural network architectures 

has been provided for image compression for instance vector quantization that make up for a 

neural network in [11, 12].  

 Recently, competitive performances have been achieved using deep learning for 

image compression; lossless and lossy compression. A general framework was proposed by 

Toderici et al [13] for achieving lossy compression in images. The architecture was based on 

de-Convolutional Long Short Term Memory and Convolutional networks. Moreover, another 

neural network was also proposed by Toderici [14] that has competitive performance in 

compressing images of arbitrary sizes. Compressive auto-encoders were proposed by Theis et 

al. [15]. These auto-encoders for continuous relaxation, upper-bounds the discrete entropy 

rate and uses a smooth approximation of the rounding function. For replacing rounding 

quantization with additive uniform noise and for joint non-linearity, GDN was used by Ball et 

al [16]. A compression method based on content weight-age was proposed by Li et al. [17]. 

Moreover, state-of-the-art results were achieved by lossless compression methods proposed 

by van den Oord [19] and Theis [18]. 

Compressing images using Neural Networks can be categorized into three 

approaches. The first approach is to train an NN to achieve image compression by using 

relatively limited number of neurons in the hidden layers. The unprocessed image pixels are 

used as input to these NN and the output of these Neural Networks form the compressed 

image based on the output from hidden neurons and associated weights. The compression 

ratio (CR) is the ratio between the size of the original and compressed image. And the 

compression error is the difference between the decompressed and original image. Neural 

Networks using the first mechanism but with different alterations were presented in [20–28]. 

Second, self-organizing map (SOM) networks can be used to achieve image compression as 

reported in [4, 29–31]. “It is based on selecting a limited number of code words to 

approximate the distribution of the input vectors of the original image. The index of these 

code words produces the compression”. The third and final approach to achieve image 

compression via Neural Networks is by estimating the coefficients of image transformation  

such as discrete cosine transform (DCT) and wavelet transform  [3, 32–34]. 
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 In this thesis, the final approach is followed but a new methodology is proposed. A 

lot of research has been performed for approximation of compression/decompression 

components of images in which internal data representations have been generated using ANN. 

Numerous training images are used as input (input/output sets) to train these networks, the 

goal is the approximation of conforming compression decompression algorithm efficiently, 

and structure it in a way so that it can be used for large dataset for testing. With the assistance 

of learning algorithm rigorous training has been performed to attain this goal. The progression 

of training is categorized by the comparison of the given output and the predicted output and 

adjusting all the weights contributing to this comparison. In this research work backward 

propagation has been used to train ANN. Back propagation can define as supervised learning 

mechanism which is best fit for networks having a feed-forward mechanism [35]. Feed-

forward network mechanism represents a Perceptron network with multi-layers in which 

outputs generated from neurons passed to the following except for prior layer, due to which 

information flow is unidirectional and no responding feedback loops. Back propagation 

phenomenon refers to “back propagation for errors” which means that the error generated on 

output nodes are circulated backward toward inner nodes to attain the desired output. Hence 

error gradient with the assistance of adjustable weights is calculated through back propagation.  

Gradient descent mechanism uses this gradient to adjust weights and to reduce the error rate. 

Thus, back propagation is a procedure which is responsible of computation of gradient and 

their adjustment to gradient descent algorithm.   

The aim of this thesis is to develop a deep neural network that can estimate the most  

important DCT coefficients of images and utilize these reduced representations of images for 

the classification of images. Moreover, we also tend to reduce the storage cost and attain 

better decompressed image quality.   
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Chapter 3 

Implementation and Results  
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CHAPTER 3: IMPLEMENTATION & RESULTS 

3.1. Introduction 

In this chapter, we have presented two deep neural networks architectures that are 

employed for extracting the most important DCT Coefficients of gray scale images. The two 

types of DNN used are: Multi-Layered Perceptron (MLP) and Deep Convolutional Network 

(CNN).  These most significant DCT coefficients are used as a reduced representation of the 

image and hence compression is achieved. We also propose two architectures respectively 

that are able to regenerate approximations of the original images from these reduced 

representations  

3.2. MLP for Extracting the Most Important DCT Coefficients 

 Multi-Layered Perceptron (MLP) is one of the two types of deep neural networks 

used for the extraction of DCT coefficients. Four different MLP models are designed and 

trained to achieve different compression ratios of 1/2, 1/4, 1/8 and another to achieve non-

compressed results. Each of the four MLPs consists of six hidden layers, the first three layers 

acts as an encoder, whereas, the later three layers acts as a decoder. The output layer consists 

of a varying number of neurons. The architecture of the four MLPs used is shown in Figure 

9. 

 
 

Figure 9: The architecture of the proposed MLPs 

The dataset consisting of 30 gray scale images has been used for the training of MLP 

models. These images were divided into blocks of 8 x 8 and then the neural network was 

trained on these blocks of images. These blocks statistically co-related and hence can be 
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extended to large number of images. The pixel value of the images falls in the range between 

0 and 255.In order to validate the proposed technique, the dataset has been divided into two 

parts i.e. training and testing, 80% of the data has been used for the former purpose and 20% 

for the latter. A normalizing function f1 is applied to normalize the pixels values of the 

images between the range of 0 and 1. The pixel values for a grey scale image are usually 

between 0 and 255. Since, the desired output of the network is always known in case of 

supervised learning. So, in our case the most important DCT coefficients are used as labels. 

Moreover, a normalizing function f2 is applied to normalize the values of DCT coefficients 

between the range of -1 and 1. DNN’s input layer is fed with these normalized blocks of 

original images; each pixel is corresponded by a separate neuron in input layer of DNN; that 

is, the total number of neurons in the input layer is 8 x 8 (64). The output layer predicts the 

value of the most important DCT coefficients. Four different estimates of most significant 

DCT coefficients i.e. 6, 15, 28 and 64, were used as a label for the given training set of 

images.   The stopping criterion for the neural networks is 500 epochs. With the help of 

inverse normalization function 𝑓2−1 we can restore the dynamic and wide range of predicted 

DCT coefficients. 

3.2.1. Activation Functions 

In order to understand what activation functions do, we need to understand the 

functionality of an artificial neuron. Neurons calculate the weighted sum of their inputs adds 

a bias to it and make the decision of whether they should be fired or not. The value of Y can 

range from +inf to – inf, and the neuron cannot bound the value. Then how is the decision of 

whether to fire or not made? This is where activation functions come into play. There are 

numerous kinds of activation functions, namely: linear function, a sigmoid function, tanh 

function, and ReLU etc. However, the selection of these activation functions varies from case 

to case. In our case, we have used two different activation functions i.e. ReLU and tanh. 

3.2.1.1 Rectified Linear Units or ReLU 

ReLU makes sure that the output does not become a negative value. So, when z is 

greater than zero the output stays z, and if it does below zero the output stays zero. Moreover, 

it is also used when there are numerous output possibilities. In our case, ReLU is used for 

going from the input layer to the hidden layer.  

(𝑧) = max (0, 𝑧) 
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What gives ReLU an edge is that it does not activate the entire set of neurons at once. E.g. 

when a negative input is received it will be converted into zero, and the neuron will not get 

activated. In other words, at a given point in time a few neurons will be active and hence 

ReLU helps in making the artificial neural network sparse and hence increases its efficiency. 

3.2.1.2 Tanh Function 

Tanh function is used to bind the output in a range (-1, 1). In our case, we use it in the 

output layer to predict the normalized values of DCT coefficients.  

f(z) = tanh(z).  

We find the hyperbolic tangent of z and return it. The tanh function is used when we have 

regression problem at hand, i.e. just like our example where we to predict the normalized 

values of DCT coefficients. Since the values of DCT in frequency domain ranges from 

positive to negative that is why we opted for tanh at the output layer.  

3.2.2. Optimization 

Usually, forward propagation and backward propagation techniques are used as error 

functions or weight optimization. But in our case, we use the Adaptive moment estimation 

technique. However, we use the following technique for optimization. 

3.2.2.1 Adam 

Since 2014, a special optimization algorithm in the shape of Adam (Adaptive Moment 

Estimation) for deep neural networks is present. Adam is one of the best methods that are 

used to calculate adaptive learning rates for every parameter. It computes the adaptive 

learning rates for all the parameters. Apart from storing the exponentially decaying averages 

of previously squared gradients, for instance, RMSporp and Adadelta, it also keeps 

something similar to momentum. If momentum is thought of like a ball going down a slope, 

Adam can be termed as a heavy ball having friction and hence providing us with flat minima. 

 

3.2.3. Loss Function 

In machine learning, ‘loss functions’ are a group of objective functions that are 

minimized. A loss function determines how good the results of the prediction models are and 

how close the predicted output and actual output is. The target for the neural networks was to 

produce coefficients with little error. 
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3.2.3.1 Mean Absolute Error 

“Mean Absolute Error (MAE) is a loss function used for regression models. MAE is 

the sum of absolute differences between our desired and actual variables. So it measures the 

average magnitude of errors in a set of predictions, without considering their directions”. The 

range is also 0 to ∞. We have used MAE here instead of mean squared error, Since MAE is 

more robust to outliers and a single high value can not affect the results. 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦𝑝

𝑖
|𝑛

𝑖=1

𝑛
 

3.2.4. Models’ Accuracies 

Since our proposed methodology is tackling a regression problem. MAE metrics is 

used for measuring the accuracy and loss of the models i.e. the lower the mean absolute error 

between the targeted and actual results the higher the accuracy and the lower the loss. The 

epoch vs mean absolute error graphs for the four models have been presented in the Figures 

10-13. It is clear from the graphs, that MLP model with compression ratio of 1/2 has lower 

mean absolute error of 0.0014 and 0.00085 on both train and test data respectively, as 

compared to other three Models. 

 

Figure-10: MAE vs Epoch for MLP model estimating 10% DCT Coefficients 
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Figure-11: MAE vs Epoch for MLP model estimating 25% DCT Coefficients 

 

 

Figure-12: MAE vs Epoch for MLP model estimating 45% DCT Coefficients 
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Figure-13: MAE vs Epoch for MLP model estimating 100% DCT Coefficients 

 

3.2.5. Performance and Evaluation Criterion 

The results from the above 4 MLP models were validated for image quality 

assessment. The results of the above DNN models i.e. Most important DCT coefficients, at 

the output layer were de-normalized first using an inverse normalization function 𝑓2−1 . 

Then the image data was transformed back from frequency domain to spatial domain using 

inverse DCT function (idct2). 

 The quality of the reconstructed image is then measured using three state of the art methods 

PSNR (Peak Signal to Noise Ratio), SSIM (Structural Similarity Index) and IMMSE (Mean 

Squared Error). “The PSNR is used here to measure the error between original and 

reconstructed image”. PSNR is given by: 

𝑃𝑆𝑁𝑅 =  10 log10
2552

𝑀𝑆𝐸
𝑑𝐵                              

“The SSIM is used to measure the structural similarity between reconstructed and original 

image”. It is given by: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
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The value of SSIM lies between 0 and 1, where 1 represents identical images. The IMMSE is 

used to calculate the mean squared error between reconstructed and original image and is 

given by:  

MSE =
1

𝑁
∑(xi−  x

′
i)

2

𝑁

𝑖=1

 

Table 1-3 depicts the SSIM, PSNR and IMMSE achieved by a standard gray scale images 

Tank, Baboon and Lena respectively, compressed at different ratios by MLP models. The 

decompressed images are evaluated for subjective quality. Figures 14-17 show original 

images and their respective reconstructed images at different CRs. 

 

Table 1: Quality quantification of reconstructed image resulting from MLPs at different CR (Tank) 

 

 

 

 

 

 

 

 

Table 2: Quality quantification of reconstructed image resulting from MLPs at different CR (Baboon) 

 

 

 

 

 

 

 

 

                              MLP Models  

DCT 

Coefficients 

PSNR SSIM IMMSE 

10% 30.039 0.713 64.44 

25% 31.958 0.807 41.43 

45% 34.033 0.876 25.69 

100% 34.004 0.874 25.86 

                              MLP Models  

DCT 

Coefficients 

PSNR SSIM IMMSE 

10% 27.122 0.594 91.14 

25% 28.402 0.720 83.94 

45% 30.107 0.826 63.45 

100% 31.328 0.835 60.30 
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Table 3: Quality quantification of reconstructed image resulting from MLPs at different CR (Lena) 
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Figure 14: (i) Actual Image Tank (ii) Actual Image Baboon (iii) Actual Image Lena 
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Figure 15: Tank Image (i) Reconstructed Image From the 10% DCT coefficients  estimated by MLP Model (ii) 

Reconstructed Image From the 25% DCT coefficients  estimated by MLP (iii) Reconstructed Image From the 

45% DCT coefficients  estimated by MLP (iv) Reconstructed Image From the 100% DCT coefficients  

estimated by MLP 

                              MLP Models  

DCT 

Coefficients 

PSNR SSIM IMMSE 

10% 29.085 0.771 66.92 

25% 30.490 0.871 53.90 

45% 32.776 0.916 34.48 

100% 33.012 0.924 27.84 
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Figure 16: Baboon Image (i) Reconstructed Image From the 10% DCT coefficients  estimated by MLP Model 

(ii) Reconstructed Image From the 25% DCT coefficients  estimated by MLP (iii) Reconstructed Image From 

the 45% DCT coefficients  estimated by MLP (iv) Reconstructed Image From the 100% DCT coefficients  

estimated by MLP 
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Figure 17: Lena Image (i) Reconstructed Image From the 10% DCT coefficients  estimated by MLP Model (ii) 

Reconstructed Image From the 25% DCT coefficients  estimated by MLP (iii) Reconstructed Image From the 

45% DCT coefficients  estimated by MLP (iv) Reconstructed Image From the 100% DCT coefficients  

estimated by MLP 

 

3.3. CNN for Extracting the Most Important DCT Coefficients 

The other type of deep neural network used for image compression in our proposed 

framework is Convolutional Neural Network (CNN). To get compression rates of 1/2, 1/4, 

1/8 and a non-compressed output, four different deep CNN are developed and trained. Here 

also the CNNs developed, consisted of six hidden layers, working as auto-encoder neural 

networks. Moreover, the output layer neurons are adjusted accordingly to get higher and 

higher compression rates. The deep Convolutional Neural Networks’ architecture, developed 

for image compression, is shown in Figure 18. The dataset consisting of 30 gray scale 

images has been used for the training of MLP models. These images were divided into blocks 

of 8 x 8 and then the neural network was trained on these blocks of images.  
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Figure 18: The architecture of the proposed DCNNs 

These blocks are statistically co-related and hence can be extended to large number of 

images. The pixel value of the images falls in the range between 0 and 255.In order to 

validate the proposed technique, the dataset has been divided into two parts i.e. training and 

testing, 80% of the data has been used for the former purpose and 20% for the latter. A 

normalizing function f1 is applied to normalize the pixels values of the images between the 

range of 0 and 1. The pixel values for a grey scale image are usually between 0 and 255. In 

our case the most important DCT coefficients are used as labels. Moreover, a normalizing 

function f2 is applied to normalize the values of DCT coefficients between the range of -1 

and 1. DNN’s input layer is fed with these normalized blocks of original images; each pixel is 

corresponded by a separate neuron in input layer of DNN; that is, the total number of neurons 

in the input layer are 8 x 8 (64). The output layer predicts the value of the most important 

DCT coefficients. Four different estimates of most significant DCT coefficients i.e. 6 (3x3), 

15 (5x5), 28 (7x7) and 64 (8x8), were used as a label for the given training set of images.   

The stopping criterion for the neural networks is 500 epochs. With the help of inverse 

normalization function 𝑓2−1 we can restore the dynamic and wide range of predicted DCT 

coefficients. 

3.3.1. Activation Functions 

In our case, we have used two different activation functions i.e. ReLU and tanh. 

3.3.1.1 Rectified Linear Units or ReLU 

ReLU makes sure that the output does not become a negative value. So, when z is 

greater than zero the output stays z, and if it does below zero the output stays zero. Moreover, 

it is also used when there are numerous output possibilities.  
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In our case, ReLU is used for going from the input layer to the hidden layer.  

(𝑧) = max (0, 𝑧) 

What gives ReLU an edge is that it does not activate the entire set of neurons at once. E.g. 

when a negative input is received it will be converted into zero, and the neuron will not get 

activated. In other words, at a given point in time a few neurons will be active and hence 

ReLU helps in making the artificial neural network sparse and hence increases its efficiency. 

3.3.1.2 Tanh Function 

Tanh function is used to bind the output in a range (-1, 1). In our case, we use it in the 

output layer to predict the normalized values of DCT coefficients.  

f(z) = tanh(z).  

We find the hyperbolic tangent of z and return it. The tanh function is used when we have 

regression problem at hand, i.e. just like our example where we to predict the normalized 

values of DCT coefficients. Since the values of DCT in frequency domain ranges from 

positive to negative that is why we opted for tanh at the output layer.  

3.3.2. Optimization 

In our case, we use the Adaptive moment estimation technique.  

3.3.2.1 Adam 

Since 2014, a special optimization algorithm in the shape of Adam (Adaptive Moment 

Estimation) for deep neural networks is present. Adam is one of the best methods that are 

used to calculate adaptive learning rates for every parameter. It computes the adaptive 

learning rates for all the parameters. Apart from storing the exponentially decaying averages 

of previously squared gradients, for instance, RMSporp and Adadelta, it also keeps 

something similar to momentum. If momentum is thought of like a ball going down a slope, 

Adam can be termed as a heavy ball having friction and hence providing us with flat minima. 

 

3.3.3. Loss Function 

“A loss function is a measure of how good a prediction model does in terms of being 

able to predict the expected outcome”. Since, the target for the neural networks was to 

produce DCT coefficients with little error. So in our case, MAE is used as loss function. 
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3.3.3.1 Mean Absolute Error 

We have used MAE here instead of mean squared error, Since MAE is more robust to 

outliers and a single high value can not affect the results. 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦𝑝

𝑖
|𝑛

𝑖=1

𝑛
 

3.3.4. Models’ Accuracies 

Four DCNN models were designed and tested to achieve different compression rates. 

The four different CNN models estimates different number of DCT coefficients at the output 

layer. The epoch vs mean absolute error graphs for the four models have been presented in 

the Figures 19-22. It is clear from the graphs, that the DCNN model with compression ratio 

of 1/2 has lower mean absolute error of 0.0050 and 0.0040 on both train and test data 

respectively, as compared to other three Models. 

 

 

Figure 19: Mean Absolute Error vs Epoch for DCNN model estimating 10% DCT Coefficients 
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Figure 20: Mean Absolute Error vs Epoch for DCNN model estimating 25% DCT Coefficients 

 

 

Figure 21: Mean Absolute Error vs Epoch for DCNN model estimating 45% DCT Coefficients 
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Figure 22: Mean Absolute Error vs Epoch for DCNN model estimating 100% DCT Coefficients 

 

3.3.5. Performance and Evaluation Criterion 

Since the main goal of the proposed methodology is to achieve high compression 

rates using deep neural networks without compromising the quality of the images. So, the 

results from the above 4 DCNN models were assessed for image quality. The results of the 

above DCNN models i.e. DCT coefficients, at the output layer were de-normalized first using 

an inverse normalization function 𝑓2−1 . Then the image data was then transformed back 

from frequency domain to spatial domain using inverse DCT function (idct2). The quality of 

the reconstructed image is then measured using three state of the art methods PSNR (Peak 

Signal to Noise Ratio), SSIM (Structural Similarity Index) and IMMSE (Mean Squared 

Error). 

Table 4-6 depicts the SSIM, PSNR and IMMSE achieved by a standard gray scale images 

Tank, Baboon and Lena respectively, compressed at different ratios by MLP models. The 

decompressed images are evaluated for subjective quality. Figures 23-26 show original 

images and their respective reconstructed images. 
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Table 4: Quality quantification of reconstructed image resulting from DCNNs at different CR (Tank) 

 

 

 

 

 

 

 

 

 

 

 
Table 5: Quality quantification of reconstructed image resulting from DCNNs at different CR (Baboon) 

 

 

 

 

 

 

 

 

 

 

 
Table 6: Quality quantification of reconstructed image resulting from DCNNs at different CR (Lena) 

 

 

 

 

 

 

 

 

 

                              DCNN Models  

DCT 

Coefficients 

PSNR SSIM IMMSE 

10% 28.817 0.667 85.39 

25% 29.755 0.718 68.79 

45% 29.461 0.702 73.61 

100% 29.338 0.692 75.73 

                              DCNN Models  

DCT 

Coefficients 

PSNR SSIM IMMSE 

10% 26.362 0.540 150.29 

25% 26.926 0.606 131.98 

45% 26.853 0.591 134.19 

100% 26.863 0.594 133.89 

                              DCNN Models  

DCT 

Coefficients 

PSNR SSIM IMMSE 

10% 25.485 0.709 94.44 

25% 26.691 0.775 82.81 

45% 28.105 0.749 76.70 

100% 29.278 0.744 79.40 
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Figure 23: (i) Actual Image Tank (ii) Actual Image Baboon (iii) Actual Image Lena 
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Figure 24: Tank Image (i) Reconstructed Image From the 10% DCT coefficients  estimated by DCNN Model 

(ii) Reconstructed Image From the 25% DCT coefficients  estimated by DCNN (iii) Reconstructed Image From 

the 45% DCT coefficients  estimated by DCNN (iv) Reconstructed Image From the 100% DCT coefficients  

estimated by DCNN 
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Figure 25: Baboon Image (i) Reconstructed Image From the 10% DCT coefficients  estimated by DCNN 

Model (ii) Reconstructed Image From the 25% DCT coefficients  estimated by DCNN (iii) Reconstructed Image 

From the 45% DCT coefficients  estimated by DCNN (iv) Reconstructed Image From the 100% DCT 
coefficients  estimated by DCNN 
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Figure 26: Lena Image (i) Reconstructed Image From the 10% DCT coefficients  estimated by DCNN Model 

(ii) Reconstructed Image From the 25% DCT coefficients  estimated by DCNN (iii) Reconstructed Image From 

the 45% DCT coefficients  estimated by DCNN (iv) Reconstructed Image From the 100% DCT coefficients  

estimated by DCNN 

3.4. Analysis 

The results prove that the MLP models are relatively better than DCNN models for 

image compression. The lowest Test MAE achieved among MLP models is ‘0.00085’. 

Whereas, the lowest test MAE achieved among DCNN models is ‘0.0040’. Moreover, the 

MAE values of other MLP models are also lower than the DCNN. This means that the error 

between actual and predicted results is low in MLP models. On the other hand, the quality of 

the image tends to decrease as we increase the compression ratio in both types of DNN. But 

the quality of the images reconstructed from the output of the MLP models is also 

significantly better than the DCNN models. The highest PSNR and SSIM values observed in 

DNN models were ‘34.03’ and ‘0.876’ respectively, whereas, the highest PSNR and SSIM 

values recorded in DCNN models were ’29.46’ and ‘0.718’. This indicates that although both 

DNNs gives good results for image compression, but MLPs are more suited for image 

compression. It was also observed that the quality of images starts declining as the 

compression rate exceeds a limit of 2:1. The higher the compression ratio the lower will be 

the quality of the image. 

3.5. Summary 

This In this chapter, the architectures of the DNN models were presented and the 

results produced by the proposed DNNs have been presented in terms of accuracy and Mean 

absolute error. Different graphs have also been provided to assist the reader with a visual 

illustration of the performance of the different models. Moreover, the quality of the resulting 

output is quantified with the help of different methods and a comparative analysis of the 

quality of the different models is carried out.   
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Chapter 4 

Classification via the Most Important  

DCT Coefficients  
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CHAPTER 4: CLASSIFICATION VIA MOST IMPORTANT DCT 

COEFFICIENTS 

4.1. Introduction 

In this chapter, the application of the proposed methodology has been discussed. The 

chapter also discusses the use of compressed images for classification purpose.  The famous 

MNIST image dataset is first compressed using the proposed DNN models (Tailored to 

MNIST dataset). The compressed data is then used for digits recognition using classifier. The 

chapter also presents the architecture of the two classifiers being used for the classification of 

digits. 

4.2. Dataset 

The famous MNIST (Modified National Institute of Standards and Technology 

database) image dataset consisting 70,000 gray scale images of handwritten digits has been 

used. The dimension of the images was 28 x 28. The pixel value of the images falls in the 

range between 0 and 255. 

4.3. Validation 

In order to validate the classification models, the dataset has been divided into two 

parts i.e. training and testing, 60,000 of the images has been used for the former purpose and 

10,000 for the latter.  

4.4. Components of Classifier 

4.4.1. Activation Functions 

In our case, we have used two different activation functions i.e. tanh and softmax. Tanh is 

used because the input was in the range (-1, 1). And as we need multiple probabilities at the 

output layer of the classifier to know which class has the highest probability. Softmax is used 

to squash the matrix into output probabilities that sum to one.  

4.4.2. Optimizer 

We have used SGD optimizer. Stochastic gradient descent also known as SGD optimizer is 

an iterative method for optimizing a differentiable objective function. SGD does away with 
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redundant computations by performing one update at a time, as compared to batch gradient. 

That is why they are much faster than other optimizers. Frequent updates are performed by 

SGD with a high variance that causes the objective function to fluctuate heavily. 

4.4.3. Loss Function 

Categorical cross entropy is used in our case since we are dealing with multi class 

classification task. “Cross-entropy loss, or log loss, measures the performance of a 

classification model whose output is a probability value between 0 and 1. Cross-entropy loss 

increases as the predicted probability diverges from the actual label. A perfect model would 

have a log loss of 0”. 

− ∑ 𝑦𝑜, 𝑐𝑙𝑜𝑔(𝑝𝑜, 𝑐)

𝑀

𝑐=1

 

 “M - number of classes (dog, cat, fish) ,log - the natural log ,y - binary indicator (0 or 1) if 

class label c is the correct classification for observation o,p - predicted probability 

observation o is of class c”. 

4.5. Classifiers 

For the classification purpose two types of classifiers were developed; MLP 

classifiers and CNN Classifiers. The MLP classifiers deal with the compressed MNIST data 

resulting from proposed MLP models and perform the digits recognition task on compressed 

images. On the other hand, the CNN classifiers deal with the compressed MNIST image data 

resulting from proposed DCNN models for image compression and carries out the digits 

classification task on the given data. Overall, the CNN classifiers perform better than the 

MLP classifiers for the given digits classification task and has better accuracies. 

 

4.5.1. MLP Classifiers 

Since, the outputs from the proposed MLP models are used as input to our classifiers. 

Four different estimates of DCT coefficients i.e. 15, 28, 45 and 66 out of total 784, were fed 

as an input to the four different MLP classifiers. Since the DCT coefficients to be used at the 

input layer were predicted by a MLP model, therefore, the input will be in a one dimensional 

form. The value of the DCT coefficients lies in the range from -1 to 1. And as we know that 
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the desired output is always known in case of supervised learning. So, in this case the actual 

labels of the MNIST dataset are used as a label for the given training set of compressed 

images. The range of the labels is from 0 to 9.  The stopping criterion for the classifiers is 50 

epochs with a batch size of ‘32’. The four classification models were designed and trained 

independently to assess the affect of different compression ratios on digits recognition. Each 

of the four MLP classifiers consists of 3 layers; input, hidden and output layer. The number 

of neurons at the output layer are 10 i.e. 10 classes. The architecture of the four MLP 

classifiers used is shown in Figure 27. 

 

 

Figure 27: The architecture of the MLP Classifiers 

 

4.5.1.1 Model Accuracies 

The accuracy of the four MLP classifier models is shown in Figures 28-31. It is clear from 

the graphs, that the lower the compression of the input images the higher the accuracy of the 

classification model. The model with 66 DCT coefficients i.e. CR=1/12, at the input layer has 

a better classification rate of 88% among the four classification models. 
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Figure 28: Accuracy vs Epoch for training and Validation data on MLP Classifier with 15 DCT Coefficients at 

the input Layer 

 

 

Figure 29: Accuracy vs Epoch for training and Validation data on MLP Classifier with 28 DCT Coefficients at 

the input Layer 
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Figure 30: Accuracy vs Epoch for training and Validation data on MLP Classifier with 45 DCT Coefficients at 

the input Layer 

 

 

Figure 31: Accuracy vs Epoch for training and Validation data on MLP Classifier with 66 DCT Coefficients at 

the input Layer 
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4.5.2. CNN Classifier 

Since, the outputs from the proposed DCNN models are used as input to our 

classifiers. Four different estimates of DCT coefficients i.e. 15, 28, 45 and 66 out of total 784, 

were fed as an input to the four different CNN classifiers. Since the DCT coefficients to be 

used at the input layer were predicted by a DCNN models, therefore, the input will be in a 

two dimensional form. The value of the DCT coefficients lies in the range from -1 to 1. And 

as we know that the desired output is always known in case of supervised learning. So, in this 

case the actual labels of the MNIST dataset are used as a label for the given training set of 

compressed images. The range of the labels is from 0 to 9.  The stopping criterion for the 

classifiers is 50 epochs with a batch size of ‘32’. The four classification models were 

designed and trained independently to assess the affect of different compression ratios on 

digits recognition. Each of the four CNN classifiers consists of 5 layers; input layer, three 

hidden layers and output layer. The number of neurons at the output layer are 10 i.e. 10  

classes. The architecture of the four CNN classifiers used is shown in Figure 32. 

 

Figure 32: The architecture of the CNN Classifiers 

 

 

4.5.2.1 Model Accuracies 

The accuracy of the four CNN classification models is shown in Figures 33-36. The model 

with 45 DCT coefficients i.e. CR=1/17, at the input layer has a better classification rate of 

95% among the four classification models. 
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Figure 33: Accuracy vs Epoch for training and Validation data on CNN Classifier with 15 DCT Coefficients at 

the input Layer 

 

 

Figure 34: Accuracy vs Epoch for training and Validation data on CNN Classifier with 28 DCT Coefficients at 

the input Layer 
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Figure 35: Accuracy vs Epoch for training and Validation data on CNN Classifier with 45 DCT Coefficients at 

the input Layer 

 

 

Figure 36: Accuracy vs Epoch for training and Validation data on CNN Classifier with 66 DCT Coefficients at 

the input Layer 
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4.6. Confusion Matrix 

Once the classification Models were trained and validated. The classifiers were then 

tested on a test data of 5000 unseen compressed images, to deeply analyze the classification 

results of different models using confusion matrix. “A confusion matrix describes the 

performance of a classification model on a set of test data, for which the true values are 

known, in the form of a table”. The structure of a confusion matrix for multi-class 

classification problem is shown in Figure 37.  

 

Figure 37: Structure of Confusion Matrix (CM) for Multi Class Classification  

 

The confusion matrix reports the results in the form of True positive (TP), True Negative 

(TN), False Positive (FP) and False Negative (FN). The True positives and True Negatives 

are the classes that are correctly classified whereas; the False Positives and False Negatives 

are the misclassified classes. “In general, in a confusion matrix, the predicted classes are 

compared with the actual classes. Each column of the matrix represents the results of 

prediction for the corresponding class at that column, while each row represents the actual 

class”. The diagonal cells show the number of correct classifications i.e. ‘TP’, by the trained 

classifier; while the off diagonal cells in that given row and column represent the 

misclassified predictions i.e. ‘FN’ and ‘FP’. And all the other cells show the number of 

correct misclassification i.e. ‘TN’ for that particular class.  

4.6.1. MLP Classifiers Confusion Matrix 

Comparison of the confusion matrix (CM) for the given MLP classifiers on the 

unseen test data of 5000 compressed images of handwritten digits is shown in Figures 38-41.  
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Figure 38: CM for MLP-Classifier with 15 DCT Coefficients at the input Layer 
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Figure 39: CM for MLP-Classifier with 28 DCT Coefficients at the input Layer 

 

 

Figure 40: CM for MLP-Classifier with 45 DCT Coefficients at the input Layer 

 

 

Figure 41: CM for MLP-Classifier with 66 DCT Coefficients at the input Layer 
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4.6.2. CNN Classifiers Confusion Matrix 

Comparison of the confusion matrices (CM) for the CNN classifiers on the unseen 

test data of 5000 compressed images of handwritten digits is shown in Figures 42-45.  

 

Figure 42: CM of DCNN Classifier with 15 DCT Coefficients at the input Layer 

 

Figure 43: CM of DCNN Classifier with 28 DCT Coefficients at the input Layer 
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Figure 44: CM of DCNN Classifier with 45 DCT Coefficients at the input Layer 

 

Figure 45: CM of DCNN Classifier with 66 DCT Coefficients at the input Layer 
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4.7. Analysis 

            The results prove that the proposed methodology for image compression gives pretty 

good results when used for digits classification. The highest accuracy recorded among the 

CNN classifiers is of 95% by a classifier, where the compression ratio of the test images was 

17:1. Whereas, the highest accuracy achieved among MLP classifiers is 88%. Both the CNN 

and MLP classifiers performed well for the classification task.  

When we talk about the accuracy of a multi-class classification model, we mean the 

ratio of the sum of TP and TN to the sum of all the possible outcomes for that class and for 

all classes. As we analyze the above confusion matrices, we observe that the classification 

models perform well in recognizing the instances of all the ten classes accurately, except the 

test instances of class 8. 

 

4.8. Summary 

In this chapter, it is discussed how the MNIST image dataset can be compressed using 

the proposed methodology and how the resulting compressed images can be used for solving 

the classification problem. Moreover, to assist the reader with the visual illustration of the 

performance of different classifiers, multiple graphs have been provided. And the detailed 

analysis of the results is carried out using confusion matrices.  
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Chapter 5 

Conclusion and Future Work 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

This chapter deals with an overview of research conclusion covered in Section 5.1 

whereas future work is mentioned in section 5.2 

5.1. Conclusion 

 This research presents a Novel image compression methodology for gray scale images 

using deep neural architecture. The research was executed in three phases as follow: 

During the first phase, a comprehensive study of literature was performed to identify the 

different image compression techniques and the use of neural networks in the area of image 

compression. Over 34 studies were comprehensively reviewed during this process. Finally, it 

was concluded that very limited work is carried out for image compression in the DCT 

domain. And tackling this area using deep neural networks was a promising research issue. 

Moreover, another issues identified during the literature review was that the existing image 

compression techniques are computationally expensive.   

In the second phase, a methodology is proposed to execute the job of image compression 

using deep neural networks. Two types of deep neural networks were designed and tested for 

this purpose; MLP models and DCNN models. The use of RELUs and Tangent Sigmoid was 

advocated in these DNNs, since very simple functions can be used to realize these units. Then 

the performance of the proposed methodology was evaluated. Results showed that the 

performances of MLPs are relatively better than the CNNs. Moreover, the limited use of DCT 

coefficients for image compression has accelerated the training time of the network, the 

networks have become computationally inexpensive and have better learning characteristic. It 

has also been shown experimentally that the DNNs with a compression ratio of 4:1 were the 

most efficient and provided better results on unseen data. Hence, we can argue that the first 

25 percent DCT coefficients of an image contain the highest information and are the most 

important ones. 

In the final phase, a use case of the proposed methodology was identified and executed. The 

MNIST dataset was first compressed using proposed methodology and then that compressed 

data was used for classification task. The evaluation of the results showed that an accuracy of 

95% is achieved on the classification problem. Further analysis was performed using 

confusion matrix. It was concluded that the proposed methodology achieves high 
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compression without compromising the quality of the images, is computationally inexpensive 

and reduces storage cost. 

5.2. Future Work 

 Future work includes the further generalization of these deep neural networks in order 

to support images of high dimensions and colorful structure. Moreover, Future work on this 

research also leverages the use of compressed images from these DNNs to tackle different 

image classification and regression problems. In addition to that, compression of video data 

can also be achieved by extending these DNNs to video processing domain. 
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