

Declaration

I, Muhammad Murtaz Amir Naqvi declare that thesis titled "A Framework for

Android Malware Recognition and Classification" and the task presented in this

research are my own work. This research has not been presented anywhere else for

assessment purposes. The research taken from other sources has been acknowl-

edged and referred properly.

Muhammad Murtaz Amir Naqvi,

172537

i

Copyright Notice

• Copyright in text of the thesis rests with the college student author. Copies

(by any process) either completely, or of extracts, could be made only relat-

ing with instructions distributed by the writer and lodged in the Library of

CEME, NUST. Details could be obtained by the Librarian. This site must

form part of such copies produced. Further copies (by any process) might

not be made without the permission (on paper) of the writer.

• The ownership of any intellectual property rights which might be described

in this thesis is vested in CEME, NUST, at the mercy of any prior agreement

to the contrary, and might not be made designed for use by third celebrations

without the created permission of CEME, which will prescribe the conditions

and conditions of such agreement.

• More info on the conditions less than which disclosures and exploitation

might take place is obtainable from the Library of CEME, NUST, Rawalpindi.

ii

Dedicated to my exceptional parents whose tremendous support

and cooperation led me to this wonderful accomplishment.

iii

Acknowledgments

I am thankful to my Superlative cherisher and sustainer to have got guided me

throughout this just work at every stage and for each new thought that you setup

in my own mind to boost it. Indeed, I possibly could have done nothing at all

without Your priceless assistance and help. Whosoever helped me through the

entire span of my thesis, whether my any or parents other specific was Your will,

so non-e be worthy of praise but You indeed.

I actually is profusely thankful to my beloved parents who raised me when We

were not with the capacity of jogging and continued to aid me throughout atlanta

divorce attorneys department of my entire life.

I would like expressing special because of my supervisor Dr also. Saad Rehman

for his help throughout my thesis and for all your classes which he has trained

me during expert coursework. I can properly state that I haven’t discovered any

other engineering subject matter in such depth compared to the types which he

has trained.

I’d like to pay special because of Brig also. Muhammad Mr and Abbas. Hassan

Azwar for his tremendous cooperation and support. Each right time I acquired

stuck in something, he developed the answer. Without his help I wouldn’t have

already been able to full my thesis. We appreciate his assistance and patience

iv

through the entire whole thesis.

I’d like to thank Dr also. Ali Dr and Hassan. Farhan Riaz to be on my thesis

evaluation and guidance committee. Finally, I’d like expressing my gratitude to all

or any the individuals and institutions specifically C4I Directorate Pakistan Army

General Mind Quarters Rawalpindi, which funded my research and approved the

full total results after numerous evaluations.

v

Abstract

The android platform is that the fastest growing hand-held OS package. And it’s

really become the foremost appealing and practical objective of malevolent appli-

cations. Android malware growth has been increasing significantly in conjunction

with increasing the guiltiness and variety of their developing techniques. Mobile

malware is usually pernicious and therefore, on the increase, therefore having a

trusted and quick detection system is very important to the users. Subtle Android

malware make use of detection shunning ways to cover their malicious actions from

analysis tools. In this evaluation, a brand-new recognition and characterization

program for investigation significant deviations within the network behavior of a

smart-phone program is proposed. The many objective of the proposed program

is to protect mobile gadget users and cellular infrastructure companies from ma-

licious applications through the use of simply nine visitors feature measurements.

The proposed program isn’t solely prepared to take notice of the malicious or

masquerading apps, however could also determine them as general malware or

particular malware (i.e. adware) on a mobile gadget. The proposed methodol-

ogy demonstrated the common precision 94% a tagged dataset of mobile malware

visitors with a whole lot of applications contains benign and twelve very differ-

ent groups of each adware and general malware. Recent substantial evaluation

on machine learning algorithms evaluate options from mischievous program and

vi

use those choices to catalogue and find out unidentified malicious applications.

This research condenses the progression of malware recognition techniques backed

machine learning algorithms devoted to the Android Os’s.

Keywords: Xgboost, Adwares, Malwares, Andriod, Smart Phones, Operating Sys-

tem, Framework, Network

vii

Contents

1 Introduction 1

1.1 Contribution . 4

1.2 Thesis Organization . 5

2 Literature Review 7

2.1 Existing Techniques . 7

2.2 Datasets Evaluation . 15

2.2.1 Summary . 17

3 Proposed Methodology 19

3.1 Introduction . 19

3.2 Dataset . 20

3.2.1 Benign Dataset . 20

3.2.2 Malware Dataset . 21

3.3 Feature Extraction . 22

3.4 Proposed framework . 24

3.4.1 Dataset Loading . 26

viii

Contents

3.4.2 Preprocessing . 27

3.4.3 Dataset Splitting . 27

3.4.4 Model Training . 28

3.4.5 Parameter Tuning . 29

3.4.6 Model Saving . 32

4 Experimentation 33

4.1 Experimental Setup . 33

4.2 Results . 34

4.2.1 Test Dataset . 34

4.2.2 Passive Analysis of Live Traffic 36

5 Conclusion and Future Work 38

5.1 Conclusion . 38

5.2 Future Work . 39

References 40

ix

List of Figures

3.1 Droidkin [25] based apps similarity detection 23

3.2 List of All Features. 24

3.3 Dataset Generation Overview. 25

3.4 Purposed Framework. 26

3.5 CART classification about liking of a computer game X. 28

3.6 Example of the tree ensemble. 29

3.7 Feature Importance Score. 30

3.8 Tunable XGBoost Hyperparameters. 32

4.1 Purposed Framework. 37

x

List of Tables

2.1 Comparison between previous datasets 17

3.1 Dataset Details . 26

3.2 Parmeters and there optimal value 31

4.1 Dataset Details . 34

4.2 Detailed Accuracy by Class . 35

4.3 Confustion Matrix . 36

xi

List of Abbreviations and

Symbols

Abbreviations

APT Advance Persistence Threat

Xgboost Extreme Gradient Boosting

CNN Convolutional Neural Network

KNN K Nearest Neighbors

WEKA Waikato Environment for Knowledge Analysis

TCP Transmission Control Protocol

UDP User Datagram Protocol

CIC Canadian Institute of Cyber Security

ML Machine Learning

DM Data Mining

PC Personal Computer

xii

List of Tables

SC Smart Computers

ANN Artificial Neural Networks

RMA Rich Mobile Applications

HIDS Host-Based Intrusion Detection System

xiii

Chapter 1

Introduction

In this technological era of whizz and efficacy everyone is more inclined towards

user friendly portable devices. Smartphones emerged as a state of art facility to

serve the purpose. Their powerful sensing, socializing and networking abilities

make them unbeatable and stronghold of user’s attraction. Additionally many

surveys have validated their popularity repeatedly. Furthermore, Smartphones

popularity lies in users’ interest in Rich Mobile Applications (RMA). Everyone is

more dependent on apps like Maps navigation, Food delivery etc. which deliver

immersive and interactive users experiences (Knoernschild, 2016). "Technology

and thinking will shift to a point where the experience will connect people with

hundreds of edge devices", Gartner technology trends for 2019 [1]

With the light there comes the darkness, Cyber threats played a vital role to

curse this blessing but failed to affect their increasing popularity. "As global

cybercrime is estimated to cost $600 billion in 2018, the preferred choice of access

for a majority of the world’s population is a mobile device", McAfee Mobile Threat

Report Q1, 2018. Though we bought technology home, but we must be aware of

associated threats. "As we use technology to speed up the transfer of information,

1

Chapter 1: Introduction

it creates amazing opportunity and potentially greater risk", AON Cybersecurity

report 2019 [2]. Increase in the fame of Smartphones have made them vulnerable

to many malicious activities also made them open to many privacy and security

treats. The renowned Anti-Virus company McAfee recently shared the mobile

malware stats in McAfee Mobile Threat Report Q1, 2018. It says, "McAfee Labs

detected over 16 million mobile malware infestations in the third quarter of 2017

alone, nearly doubling the number we saw a year earlier" [3].

The threats are not only limited to single users but also affecting the organizations

by compromising their data and with cybercrimes. Currently the organizations

are moving towards the defensive measure more rapidly. Based on M-Trends

2019, FIRE EYE Report: "From October 1, 2017, to September 30, 2018, the

global median dwell time was 78 days. That means attackers are operating for

just under three months, on average, before they are detected. That’s roughly a

quarter of the global median dwell time of 101 days in last year’s report - a modest

improvement." [4] This is a clear indication of awareness regarding cyberthreats

within organizations. The report further adds on and concludes: "Organizations

are getting better at detecting breaches quickly. Over the past eight years, dwell

times have decreased significantly - from a median dwell time of 416 days in 2011

to 78 days in 2018" [4].

Building on this the victims are not limited to organizations, in fact it goes beyond,

and countries are into Cyber Wars. The latest report by FireEye named, World

War C based on best selling book and a Hollywood movie, it states: "Serious

cyber-attacks are unlikely to be motiveless", said Martin Libicki, Senior Scientist

at RAND Corp. "Countries carry them out to achieve certain ends, which tend to

reflect their broader strategic goals. The relationship between the means chosen

2

Chapter 1: Introduction

and their goals will look rational and reasonable to them if not necessarily to us."

[5]

Main reason behind Android Malwares is the opensource Android platform. The

app store, Google play is most vulnerable platform. "In 2017 we saw an increase in

malicious banking Trojans, such as the Android/Marcher malware, that take ad-

vantage of the auto install vulnerabilities in the Android platform". "It victimized

millions of Google Play users by impersonating legitimate apps for video players,

Flash players, games, and system utilities", says the McAfee Mobile Threat Re-

port Q1, 2018. Mobile phones are known to be key to your digital environment.

It includes your personal information, children’s inheritance and everything con-

nected. Due to immensely high market share, Android platform is always targeted.

Whether they are banking trojans or cryptocurrency scams, your android phone

is vulnerable to threats.

Criminal quest for money makes the android malware more appealing to them.

"Cyber criminals load malicious code onto retailers’ websites to steal shoppers’

credit card details, with 4,800+ unique websites compromised on average every

month" [3], says the 2019 Internet Security Threat Report. Android also allows

its user to extend functionalists by allowing third party applications. This fea-

ture although is very attractive and useful but it also allows certian applications

which are malicious in nature and can be damaging. "One of the most significant

campaigns discovered by McAfee in late 2017 and in early in 2018 was Android

Grabos. Grabos, a campaign that pushes unwanted apps on unsuspecting users

is commonly known as pay-per download scam. In total, 144 apps on Google

Play were identified and taken down. An estimated that 17.5 million global smart

phone devices downloaded apps from the campaign before they were taken down."

3

Chapter 1: Introduction

Says the Mobile Malware report 2019 by McAfee.

Moving towards the detection and prevention techniques. In literature, previously

analysis is done in the form of static, dynamic or a combination of both static and

dynamic to detect and analyze Android malware. Comparatively, dynamic anal-

ysis is weaker than static as it only investigates the code which is being executed.

As a result, to correctly assess whether an application can exhibit malicious be-

havior, dynamic analysis needs to execute a fairly significant portion of the paths

through the program. For this we need to do the analysis of code and a test-

case generation is to be done. This all can have as much as 70x overhead, to

extract path constraints. In contrast, static analysis can efficiently analyze all

the code in the application, but it is inherently imprecise, meaning that it may

miss malicious behavior (false negatives) or falsely detect malicious behavior (false

positives). The loss of precision is a cost of an analysis that can scale to an entire

program, which often requires the analysis to make trade-offs that reduce pre-

cision in terms of context-sensitivity, flow-sensitivity or pointer disambiguation.

Such imprecise analyses can make it difficult to accurately disambiguate malicious

applications from benign ones as they may have similar behaviors superficially.

Dynamic analyses are generally more precise than static analyses and can pro-

vide more information, but dynamic analyses need specific inputs to cause the

application to execute the suspicious code.

1.1 Contribution

Our contribution to make the Cyber world a safer place is in the form of this

research which propose a detection model for Android platform and serves as

Android Malware Detection framework. It is a network traffic-based framework

4

Chapter 1: Introduction

which operates on new feature set to enhance the efficiency of traffic classifier.

Our proposed detection method not only detect unknown Malwares but also it

can label the type of Malwares. It demonstrates this by characterizing benign,

adware and apps, with the efficient use of 76 network flow based features. To

serve the purpose we used a labeled data of mobile Malware traffic with six lac

instances including benign and malicious apps of 12 different malware families

[6]. CIC flowmeter is used to capture network traffic and develop a versatile

dataset [7]. The research work is organized hierarchically, firstly literature review

is done by discussing the previous work and techniques used in malware detection

for Android platform. Building on it further, all the techniques are discussed in

this thesis and their performance was analyzed using software platform, WEKA

[8]. Eventually, best possible machine learning based algorithm, XGBOOST [9]

is chosen. Its performance was tested on publicly available CIC Dataset after

the pre-processing. Pre-processing part is also explained in experimental section

below. Lastly the thesis discusses the obtained results of malware detection and

conclusion.

1.2 Thesis Organization

The research work in this document is divided into four basic parts i.e. Intro-

duction, Background, Literature review, Proposed method and Experimentation

setup along with results. Each part is explained in detail in the respective chapters.

Chapter 1 provides an overview of cyber threats related to Android Malwares. This

section demonstrates the need of cybersecurity for Android platform by referring

to the stats provided by major surveys and cyber security reports.

5

Chapter 1: Introduction

Chapter 2 provides a comprehensive Literature review of the research topic. All

the renowned detection methods are referred, and a compact literature analysis

of various techniques is done thoroughly. The explanation of attacks and risks

associated are main deliverable of this section.

Chapter 3 propose a dynamic and versatile detection system for Android platform.

The framework is evaluated for performance by different experimentation. Overall

flow diagram of deployment and results related to every technique are included.

The feature selection part is mainly focused with the deliverable of 76 selected

features and the full data set is explained in detail. In this section, results are

verified, and graphs are included for a clear comparison. Fundamentals of used

algorithm is discussed in terms of its effectiveness.

Chapter 4 gives details about experimental setup and of testing is provided in this

chapter. This chapter talks about results on testing data by evaluating different

metrics. Also, test setup for live traffic is also given in this chapter.

Chapter 5 Finally, this chapter discuss about the contribution of this research also

highlights some limitations and discuss about some future aspects.

6

Chapter 2

Literature Review

This chapter provides literature review and basic trends in the field of Android

Malware detection. This chapter is divided into two main parts:

• Existing techniques

• Datasets Evaluation

2.1 Existing Techniques

Lot of research has been done in the are of malware recognition and characteriza-

tion using features based on network traffic. In this sector 1st efforts was offered

by Iland et al. in 2011 [10], in this research writers shown a light-weight strategy

of discovering Google android malware and personal privacy breaches of consumer,

through the network visitors evaluation. The writers carried out a series of man-

aged tests. They initial produced the virtualized Google android products with

a legitimate E-commerce thrid party application, and mocked consumer data,

such as get in touch with data, accounts security passwords, internet browser

background, and credit cards info and contaminated them with eighteen malware

7

Chapter 2: Literature Review

examples; Then this research did an anlysis of the gathered network traffic for

finding any leakage of user data and any attempts of accessing C&C (Command

and Control Center); Lastly, for abnormal behavior classifciation of any malware

they purposed two methods: 1) blacklisting of IP and DNS 2) Pattern matching

and purposed 4 features which are flag of HTTP header, GET request, POST re-

quest pattern and content, POST request well structured identifiers. Nevertheless

the proposed techniques have got many flaws. Initial, the blacklisting technique

greatly depends on stationary malware behavior which needs regular upgrading

over period. Also, efficient detection of complicated malwares such as fast-flux

and botnet are even harder. The pattern matching techniques also need data in

clear so it was not effective of encrypted traffic.

In 2012 Kuhnel and Meyer [11] proposed a malware detection technique by usage of

a sensing application. This technique includes 30 families of malwares belonging to

Android platform. These families was divided into four types RAT (Remote Access

Tool), HTTP based, SMS based and Calls based. Also, a filtering component was

added which works on user space of Architecture of Android which was used for

network analysis and was controllable by the sensor app. The sensing app was also

able to inform about malicious traffic, listing of events of the database, sending of

blocked SMS and blocking preference changes. The achieved an accuracy of 95%

this research claimed that by filtering outgoing and ingoing traffic they can detect

malicious activities.

Tenenboim et al in 2013 [12], put forwarded a network traffic behavior analysis

framework for detection of a new set of malwares present of Android app store

having a unique feature of self-updating. This research also gives an analysis of

available signature based, dynamic and static techniques on these malwares and

8

Chapter 2: Literature Review

concluded that they are not effective. As a representative model they defined a

specific pattern of the traffic generated by these malware applications and com-

pared them with normal traffic patterns by using machine learning. They used

nine features from there pervious [13] having five fixed intervals for calculation of

minimum, maximum, average and standard deviation values the feature includes

application concurrent connection count, count of TCP and UDP packets sent

and received and count of TCP segments received. Their evolution was based on

15 applications having two version first version was real benign applications and

second version includes repacked applications after injection of malware code of

5 real malware apps and 10 self-generated Trojans. There experimental results

concluded that within 5 minutes they are able to identify malicious apps [12].

Dai et al. [14] in the same year, offered a brand new automated network pro-

filer based on HTTP for uncovering Google android applications. The authors

mentioned that, large number of applications based on HTTP/HTTPS are ap-

pearing every day, traditional technique of visitors category are no longer helpful

for visitors evaluation. In this task, they initial installed hundreds Google android

applications in a virtual environment and gathered the network traffic footprints.

After that for extraction of fingerprints of apps, they suggested and created a

light- weight method that can break the demand to "technique", "question" that

can become break up to key-values and "web page" that can end up being damaged

into "web page parts" and "filename". There are two restrictions of this suggested

technique. Initial the program requirements a consumer seeds route when login

can be included and secondly it cannot identify applications which possess no

unique traffic behavior and usage of the same support system.

Researchers, Arora et al. [15] purposed a Google android malware recognition

9

Chapter 2: Literature Review

technique based on network traffic features evaluation. For their experimental

setup they setup a virtual Android environment having a public ip. For their

dataset they consider 13 malware applications and captured there traffic. Sixteen

features was selected based on their prior research. The features are average num-

ber of bytes sent, average packet size and average flow duration. After applying

feature reduction out of 16, 7 features were selected the features are average count

of packets sent, average count of packets received and average count of bytes re-

ceived. In the test and evaluation section they divided their dataset to 3 dangerous

amounts of Malware (high, moderate and low). The classifier proposed properly

classified 45 of 48 instances of network samples with a precision of around 95%.

The major deficiencies of this extensive research was the small size of dataset as

well as not a broad range of malwares was considered.

Likewise, Shabtai et al. [16] presented a great recognition technique which uses

network patterns of application for malware detection. The research purposed a

novel model which was based on feature set like bytes of data send or received, state

of network, mode of send or receive, total amount of time and last active or mod-

ification time in minutes also with aggregation functions like average, minimum,

maximum and standard deviation, for representation of certain traffic features of

each App. Also, they purposed a semi-automated ML model which can detect any

deviations from normal app behavior. For evaluating there purposed model they

selected 5 real malware applications along with 10 self-generated malware appli-

cations. For benign behavior analysis, original applications with no malware code

injected were used and for the harmful purpose, applications with malware code

injected was used. The results showed that particular classes of applications can

become discovered by particular visitor’s patterns. They also realized after that

after starting execution, malware with self-updating capability possess different

10

Chapter 2: Literature Review

diagnosable visitors patterns for a few minutes [16].

For improving Android abilities to tackle malicious attacks as well as APT (Ad-

vanced Persistent Threats) attacks. Li et al. [17] introduced a monitoring system

based of network traffic. Visitors monitoring, visitor’s anomaly acknowledgement,

response digesting, and cloud storage space were the four main components of this

system. In general the methodology was composed of following steps 1) Protocol

parsing, 2) Extraction of features (Identification of the procedure, network con-

nection start time, network connection end time, flow upward, down downward,

src IP, dest IP , protocol, src port and dest port), 3) SVM as a classifier, 4) classi-

fication of network patterns to find unusual patterns, 5) through the relationship

evaluation correlate the traffic with source application. The experimental results

depicted that the system is effective in identifying Android malware with a low

false positive rate.

Carrasquillo et al. [18] in 2014 conducted a study having focus on network based

malware detection system. The study presented a combination of both signature

based and network flows based traffic analysis. This research aim was to work on

andriod platform on an VPN (virtual private network). The main motivation was

providing a system that can generate alarms and visual analytics of any malicious

activities for user and network administrator. This framework used an open source

tool known as SNORT for signature matching and CISCO NETFLOW for network

based detection. Following features was proposed by this framework source and

destination IP address, source and destination port, packet size, sum of payload

and time info.

An effective method for identification and classification of malwares was proposed

by Wang et al. [19] in 2016. This method was the combination of traffic analysis

11

Chapter 2: Literature Review

and ML algorithm based analysis. The method proposed, was focused on user

experience, so to minimize resources usage, as Android devices are not resource

intensive, they performed all the analysis on a server which was receiving all the

mirrored traffic generated from Android apps, connected to a particular wireless

access point. The authors used C4.5 decision tree based machine learning model

and they achieved an accuracy of 98.2% and 99.7%, with FP rates of 5.1% and

1.9% respectively. In 2017, a study [20] shows that how a better accuracy and

processing time can be achieved by prioritizing features extracted from network

traffic. They deduced that how a minimum number of features can give better

results. They presented that an accuracy of 85% to 100% can be achieved by

just using 9 features out 22 features. Also, these reduced features can save a

considerable amount of time in testing and training of the dataset. There results

depicted that time reduced for testing of 230 apps was from 25.1 seconds to 17.3

seconds and for training of 300 apps it was 11.7 seconds to 5.8 seconds.

Besides study on Android malware analysis, the review was done on previous

work associated with network traffic analysis. In this regard a study conducted

by Karagiannis et al. [21] in 2005 known as BLINC. BLINC was a multilayer

classification of transport layer based behavior of the host. It was one of the

pioneer attempt to association of host with apps instead of characterization of

flows by application. This association worked on three standards: (1) Network -

src and dest IP’s and ports characteristics analysis, (2) Social - get src & dest IP’s,

(3) Application - getting flows addition information which includes average packet

size and transport layer info. Following applications was studied in this research

gaming, data transfer, P2P, web, streaming, mail, chat and network management.

The authors done this study in a dark mode to avoid any privacy issue which

means that no payload access, no port number access and nothing other than the

12

Chapter 2: Literature Review

provided information by collectors of current flow. A graphical representation of

these patterns was presented. BLINC showed a classification of 80 to 90% of traffic

with an accuracy of 95%.

Nguyen & Armitage [22] later in 2008, wrote a survey on the techniques which

are using machine learning for traffic classification of internet traffic. This survey

recorded papers from 2004 to early 2007. 18 significant papers was selected and

discussed. The discussion includes following: (1) importance of operational net-

work IP traffic classification, (2) Port and payload based classification limitations,

(3) Classification accuracy metrics, (4) in operational IP networks what are key

requirements for implication of ML based classifiers. Their research showed that

for offline analysis most of the ML algorithms such as Decision Trees, Auto Class,

Navie based etc. resulted in an accuracy of up to 95%. Also, they emphasis on

the important of ML traffic classification problems and highlighted that a lot of

new research can be done in this area.

A recent study done in 2016 by Bartos et al. [23] presented a novel technique in-

volving supervised ML techniques for malware classification. This research didn’t

consider flows individually instead they are grouped in bags having similar flows

grouped in each bag. Also, a robust technique was presented that combined the

learning of representation process to learning of classifier process. A large corpo-

rate network was deployed and real time monitoring of HTTP traffic was carried

out. There dataset includes 15M samples overall containing 43k samples belonging

to malicious traffic. This system was able to detect unseen and new samples of

malware traffic with precision on 90% means that out of 10, 9 alerts was malicious.

Habibi Lashkari et al. [7] in 2016, presented there work of classification of VPN

and Non VPN traffic using time based network features. They proposed a flow

13

Chapter 2: Literature Review

based classification method for characterization of encrypted and VPN traffic by

using time based features. Additionally, they reduced the features set to reduce

computational cost. Also, they released a dataset of there work which includes

14 different classes of encrypted and VPN traffic 7 from each category. The time

based features used in this research was based on TCP and UDP flows. They

achieved an accuracy of above 80%.

One more research in this regard was classification of Tor and Non Tor traffic

based on time based features extracted from UDP and TCP flows was presented

by Arash Habibi Lashkar el al. [24]. There contribution includes a feature set to

classify and identify Tor traffic. In this research they concluded that only they

have managed to classify Tor traffic using these time based features. Also, they

researched on the optimal length of the flow for up to the mark classification

they proposed that 15s is the optimal number for the length. Additionally, they

compiled and published a label dataset in this regard this dataset have 8 different

classes in relation to 8 different traffic captured including VOIP, P2P, file transfer,

video streaming, audio streaming, mail, chat and browsing. They achieved an

precision of about 80%.

Iman Sharafaldin el al. [25] [26], presented there work of using UDP and TCP

flows based features for classification of intrusion attacks. They generated a new

Intrusion detection dataset known as CICIDS2017 the dataset includes 13 classes

of updated attacks and covers all necessary criteria of an IDS dataset. The dataset

includes more than 80 features extracted from CICFlowMeter. This research also

analyzed these dataset of different ML classifiers and presented a high precision.

14

Chapter 2: Literature Review

2.2 Datasets Evaluation

This sections gives a comparative analysis of some of previous publicly available

datasets of Android malwares and how the dataset used in this research is com-

prehensive and reliable for testing and validation of Android Malware detection

systems.

The first dataset is known as Genome project [27]. Can be considered as a pi-

oneer attempt in providing a publicly available dataset resleased in 2012. 1260

malware samples was included in this dataset, collected in a period of 2010 to

2011 from different lenders of Android malwares. Static analysis was performed

in this project for defining behaviors of malwares. They evaluated the activation,

installation and payload of the samples. The method was all about static analysis

of API calls, malicious source code and permission lists. The dataset was also used

on a real Android device for testing the effectiveness of already present malware

detection tools and anti viruses.

After Genome project [27] Drebin [28] dataset was introduced in 2014. This

dataset comprises of samples taken from 20 malware families and 123,453 be-

nign samples taken in time period of 2010 to 2012. They evaluated there dataset

by building a classification model extracted from static features. The features set

comprises of permissions requested, components of hardware, Application com-

ponents, network addresses (Disassembled code was used for extraction), filtered

intents (used permissions,manifest files and restricted API calls was used for ex-

traction).

The HCRL lab [29], presented four malwares dataset related to Android. These

dataset includes: 1) AndroTracker 2) SAPIMMDS 3) Andro-Dumpsys 4) Andro-

15

Chapter 2: Literature Review

Profiler. In these datasets AndroTracker dataset [30] was released in 2015. This

dataset includes malware apps developed by the same creator and a certificate

specific to a creator was used to develop malware apps each certificate had a

unique key associated with it. They also presented a classifier which was based on

similarity associated with each developer and features which are static in nature

such as API calls which are suspicious, important permissions and intent.

SAPIMMDS [31] dataset released by the KISA (Korea Internet Security Agency)

comprises of 906 malware instances from 13 malware categories and benign samples

with count of 1776 taken from a period of March to December 2014. They used

memory dumps techniques from bytecode of application for extracting API calls

patterns of suspicious API calls. These API calls pattern was used to distinguish

benign and malware traffic in this dataset.

Andro-Dumpsys dataset [32] released in 2016, presented a correlation of intent

based attributes with malware centric attributes for purpose of classification. 1776

benign instances and 906 malware instances was include in this dataset. The

feature vector of this dataset includes certificates serial numbers, call sequences of

suspicious API calls, grants of permissions, intents and system commands used to

execute forged files. They used memory dump techniques for profiling of patterns

with respect to opcode and bytecode relationships. The implemented classification

and detection on server where they calculated correlation of similarity between

APK request and there feature set.

In dataset Andro-Profiler 2016 [33], In this research authors used an emulator to

run malicions applications and during execution they done behaviour profiling by

analyzing system calls and logs. A hybrid malware detection system based on

client server model was main contribution of this research.

16

Chapter 2: Literature Review

Table 2.1: Comparison between previous datasets

Ref. Dataset Benign Samples Malware Samples Static / Dynamic Features Remarks

[27] Genome Project 1,260 1260 Static
Static features can

be tricked.

[28] Drebin 123,453 5,560 Static
Reasonable samples but

still uses static features.

[30] AndroTracker 51,179 4,554 Static
Good sample but

static features.

[31] SAPIMMDS 906 1776 Static
Static features can

be tricked.

[32] Andro-Dumpsys 906 1776 Static
Static features can

be tricked.

[33] Andro-Profiler 643 8840 Dynamic
Less samples also

uses emulator.

Another dataset known as Kharon dataset [34] presented in 2016, this dataset

used AndroBlare tool1 on a Android device having 7 malicious apps installed on

it. The tool tracked traffic flows between system objects including files, sockets

and processes. They provided a graph readable to humans of each malware apps.

A detailed documentation of the behavioral analysis was included in this dataset.

A part for above datasets AMD [35] is also a publicly available dataset presented

in 2017. The dataset contains malware samples belonging to 4 categories and

71 families of malware was included. For evaluation they prioritized malicious

components of malwares.

A summary of all previous datasets available is given in Table.

2.2.1 Summary

In summary, the above mentioned shows different approaches for Android mal-

ware dataset creation by different researchers. But, these dataset contains a lot

17

Chapter 2: Literature Review

of deficiencies. These dataset lack a present of diverse malware categories and

families also they lack a good amount of malware samples. Also, in general mal-

ware doesn’t depict there true behaviors if not installed of a real android device

although most of dataset contains some dynamic features but the real problem

is that for capturing samples these datasets used an emulator or a virtual ma-

chine which most of advance malwares can detect and change their behavior after

detection.

Malton [36] presented that, simulating android malware on real devices can result

in overcoming of many anti emulator techniques and enable to get real behavioral

analysis of malwares. Many malware applications are emulator sensitive they need

user interaction to get activated if these malwares detect emulator they change

their behavior accordingly. Moreover he mentioned that a complete dataset for

malware detection should contains both static and dynamic features. However,

the above mentioned datasets doesn’t have a board set of features which are dis-

crete features like network, battery, memory usage, memory dump and permission

also continuous features like logs, system calls and API calls. Also there should

be a balance between benign instances and malware instances for a trustworthy

research. A high accuracy score will not be valid if distribution is not valid. As

depicted in paper [6], the distribution of benign apps and malware apps according

to Symantec is 80% to 20% in real world scenario.

To conclude briefly according to SISTR (Internet Security Threat Report) [37] all

the dataset listed above fall short in aspects of real user interaction and real phone

installation also a vast categories of malware are not considered in these dataset.

Also, there is no balance between malware samples and benign samples.

18

Chapter 3

Proposed Methodology

This chapter provides a detailed overview of the proposed method. The chapter

is organized in the following parts.

• Introduction

• Dataset

• Feature Extraction

• Proposed framework

3.1 Introduction

This work targets the classification of Android Malware based on certain network

traffic characteristics. The Malwares are divided into three general categories i.e.

Benign, Adware’s and General Malwares. The network characteristics are based

on TCP and UDP flows which results in 76 features which will be discussed in next

section. The network characteristics for above malware categories are accumulated

in a dataset which gives enough data for classification purposes.

19

Chapter 3: Proposed Methodology

The classification further consist of training and testing phases. During the first

phase Xgboost was trained on 80% of dataset. Before using Xgboost some data

cleansing is performed. After dataset cleansing dataset are fed into the Xgboost

and after rigorously training, it is able to identify the Benign, Adwares and General

Malwares which an accuracy of 94%.

3.2 Dataset

Android Malware are smart now they are now able to detect an occurrence of sig-

nature based malware detection and they change their conduct to avoid them. To

overcome this a dataset is needed which is dynamic in nature for that a dataset set

is used which is based on network based features of different malwares categories.

AAGM2017 [6] is a dataset publicly available by CIC (Canadian Institute of Cyber

Security). The dataset includes 1900 applications installed of a real smartphones

with real user interaction was recorded in a semi automated way. The dataset

includes three categories each category is analyzed below.

3.2.1 Benign Dataset

This category includes a collection of 1527 non malicious or benign apps collected

in a time span of 2015 to 2016 from Google Play Store. Most popular apps were

collected from different categories (i.e. top free, top new). These 1527 apps were

then analyzed with Anti Virus (AV) items in Virustotal web assistance [38], 27 of

these apps were not flagged as benign category by more than two Anti Virus (AV)

items so these apps were dropped giving us 1500 benign apps.

20

Chapter 3: Proposed Methodology

3.2.2 Malware Dataset

This category comprises of a collection of 400 malware applications which are

divided into two categories adware and general malware having 250 and 150 ap-

plications respectively. The first category adware comprises of following adware

malwares families.

• Airpush: Shows unwanted ads on user device. The purpose is to steal infor-

mation.

• Dowgin: It is an advertisement library which also seeks for stealing user

information.

• Kemoge: Designed for enable a backdoor in Android devices. This adware

use repackaging to show itself as popular apps. This adware can also be

called a hybrid of botnet.

• Mobidash: Display ads for compromising user information.

• Shuanet: Similar to Kemoge, Shuanet also use back dooring to take over a

user device. An Antivirus company Lookout found out that Kemoge and

Shuanet have a lot of code similarity of 71 percent to 82 percent for building

their versions of the auto-rooting [39].

The following households have been chosen for the apps:

• AVpass: Designed as a injection in the guise of a Clock app.

• FakeAV: Tricks the user to buy a full version of the software for removing

infections which really doesn’t exists.

• FakeFlash/FakePlayer:A Flash app which directs user to a site.

21

Chapter 3: Proposed Methodology

• GGtracker: For information stealing by using SMS also sending SMS to

premier account.

• Penetho: A fake tool for infecting user device claiming to crack WIFI pass-

words. by using email attachment, fake updates, external mass media and

infected documents the malware can infect user computer also [40].

Further, for analysing diversity between different classes of apps an analysis was

done to find out relation between each malware categories (adware, general mal-

ware, and benign). The analysis shows that there is a weak relationship between

these categories also if only malware categories is consider it also depicts a week

relationship. Fig. 3.1 shows an overview of the analysis. This shows that dataset

is diverse which is an important data point for balancing data for further analysis.

For more diversity the dataset was embedded with network captures of local net-

work comprising of Android application traffic of different categories of application

i.e. non malicious and malicious apps.

3.3 Feature Extraction

The Dataset provided by Canadian Institute of Cyber Security contains pcaps of

Bengin, Adware and Malware traffic. For extracting the feature vector, we used

CICFlowMeter [24] which is a a flow features extraction software designed by

CIC. CICFlowMeter is an opensource tool developed in java and expandable for

implementation of some new features. Overall, 76 extracted having 600k instances

of traffic flows using the CICFlowMeter. These was categorized in Behavior based,

Byte based, Packet based, and Time based. Moreover, features like source port,

22

Chapter 3: Proposed Methodology

Figure 3.1: Droidkin [25] based apps similarity detection

destination port, Source IP, and Destination IP was removed from list of features.

A list of all the features extracted is given in Fig. 3.2. A Bash script was written

to accomplish this task. The script takes a patch of folder containing pcap’s and

fed it to CICFlowMeter to generate a csv files containing flows. CSV’s files of

different categories was then put together and labeled according. Weka was used

to perform some data cleansing on these combined CSV’s to remove instances

having NULL values. The output dataset with all three categories contains more

600k instances each having 76 features. The feature extraction process is depicted

in Fig. 3.3. Also, a detailed breakdown of all instances of dataset with respect to

classes are given in Table. 3.1.

23

Chapter 3: Proposed Methodology

Figure 3.2: List of All Features.

3.4 Proposed framework

The complete framework is shown in Fig. 3.4 in the form of a block diagram.

The proposed methodology consists of two parts Training and Predicting. The

Training process consists of following steps.

1. Firstly, Labeled dataset gets loaded. The dataset is in a csv file having 600k

instances and 76 features.

2. Data is then preprocessed to remove any unwanted values.

3. Then data is divided into Training set and Testing set. Validation set is a

sub part of training set.

4. Xgboost model is trained on training dataset with default parameters. Also,

parameter tuning is performed to get best parameters for training set for

which cross validation of 10 folds is done.

24

Chapter 3: Proposed Methodology

Figure 3.3: Dataset Generation Overview.

5. The generated model from above setup is then subjected to Test set. Accu-

racy on testing set is recorded in this setup.

6. Above model is saved for Predicting purposes.

The Predicting consists of following setups.

1. Network traffic is captured from a network interface. This data traffic is

then subjected to a feature extraction program to get flows information.

2. Preprocessing is performed to remove any unwanted values.

3. This new data acts as an input to saved model for prediction.

4. The results are then analyzed and evaluated.

25

Chapter 3: Proposed Methodology

Table 3.1: Dataset Details

Data Type CSV

Classes 3

Total Instances 631,955

Benign Instances 471,597

Adware Instances 155,613

General Malware Instances 4745

Total Features 76

Each on above steps will be discussed in detail in coming sections.

Figure 3.4: Purposed Framework.

3.4.1 Dataset Loading

Dataset loading is the first step of proposed framework of malware classification

and detection. This step consists of following steps.

26

Chapter 3: Proposed Methodology

1. The dataset is loaded from csv file having more than 600k rows and 82

columns.

2. Source IP, Destination IP, Time stamp and some other features are dropped

due to their low significance for classification and detection purposes. This

narrow downs the feature set to 76 features.

3. A python library pandas was used for this purpose. Pandas loads the dataset

in data frames.

3.4.2 Preprocessing

Pre-processing includes following steps.

1. Loaded dataset is scanned for any instances having "NULL" values.

2. These instances are than removed for having an unbiased detection model.

3. Python library Pandas have a feature to remove "NULL" values which is

used for this purpose.

3.4.3 Dataset Splitting

Splitting of dataset involves below steps.

1. Preprocessed data is subjected to "train_test_split" function by scikit learn

library python.

2. A training set and testing set in ratio of 80% and 20% is obtained respec-

tively.

3. Validation set is a sub part of training set used for cross validation.

27

Chapter 3: Proposed Methodology

3.4.4 Model Training

Xgboost is the main algorithm in this research. Xgboost is known for its speed

and performance it’s an implementation of gradient boosted decision trees. It’s

has been used by many data scientist to provide state of the art results on many

machine learning problems. XGBOOST is an ensemble of decision tree. Tree

ensemble model is a combination of different classification and regression trees

known as CART. Fig. 3.5 provides a simple example of CART classification about

liking of a computer game X.

Figure 3.5: CART classification about liking of a computer game X.

Each member of family is classified into different leaves having a score assigned to

them. A CART is different from standard decision trees where each leave have a

decision value instead to this is CART real score is associated with every leave as

shown in Fig. 3.6

Also one decision tree is not accurate enough for a proper classification. So we

use ensemble of different trees and combine the results to get better accuracy.

Fig. 3.6 shows an example of the tree ensemble. The score predicted by each tree

28

Chapter 3: Proposed Methodology

Figure 3.6: Example of the tree ensemble.

is summed up for a final score. Mathematical representation of model is given in

Eq. 3.4.1

ŷi =
K∑

k=1
fk(xi), fk ∈ F (3.4.1)

Where K is representing number of trees, f is a function belonging to functional

space F, where F is set of all CARTs. So, the objective function can be defined as

Eq. 3.4.2

obj(θ) =
n∑
i

l(yi, ŷi) +
K∑

k=1
Ω(fk) (3.4.2)

Model training consists of below steps.

1. Training set is subject to Xgboost Model with default parameters.

2. Feature importance score shown in Fig. 3.7 is evaluated in this section.

3.4.5 Parameter Tuning

The most crucial step is parameter tuning XGBoost modelling is a easy task. But,

improving it takes a considerable amount of work and resources. XGBOOST uses

29

Chapter 3: Proposed Methodology

Figure 3.7: Feature Importance Score.

a variety of parameter. Parameter tuning is a key factor for improving the model.

In parameter tuning most crucial questions are set of parameter to tune? and the

optimal values for these parameters. The parameter choosen are given in Table.

3.2 parameter tuning involves below steps.

1. Firstly, select a range for a particular parameter.

2. Perform Grid Search by using Scikit learn library GridSearchCV method

on above range. This method also perform cross validation to reduce over

fitting.

3. GridSearchCV will provide best parameters based on evalution metric used.

In this case the metric is accuracy.

4. Repeat above step to analyze any enhancement in accuracy.

5. lastly, repeat for all other parameters.

A list of tune-able parameters with suggested ranges in given in Fig. 3.8.

30

Chapter 3: Proposed Methodology

Table 3.2: Parmeters and there optimal value

Parameters Optimal Value

learning_rate 0.05

max_depth 10

min_child_weight 1

Gamma 0

Subsample 0.85

colsample_bytree 0.9

scale_pos_weight 1

31

Chapter 3: Proposed Methodology

Figure 3.8: Tunable XGBoost Hyperparameters.

3.4.6 Model Saving

The last step for purposed methodology of "Andriod Malware Classification and

Detection" is saving the model generated after fine tuning of parameters. The

purpose of saving the model is for evalution purposed which is discussed in next

chapter. The model is saved in a dat file by using joblib module of scikit learn.

32

Chapter 4

Experimentation

This chapter provides the detailed discussion on the implementation and results

of the proposed technique. This chapter is divided into the following parts.

• Experimental Setup

• Results

4.1 Experimental Setup

The experimental setup consist of the standard data set which is the 20% of the

whole dataset. Also experimental setup includes testing on a copy of a live network

traffic to test its performance on local network. For experiments we used R620

server having 32 cores and 62 GB of RAM. The details of test dataset is given in

Table 4.1.

33

Chapter 4: Experimentation

Table 4.1: Dataset Details

Data Type CSV

Classes 3

Total Instances 126,391

Benign Instances 94,037

Adware Instances 31,391

General Malware Instances 963

Total Features 76

4.2 Results

Results section has been divided into two parts based on datasets. Firstly, results

are based on test dataset and secondly, the model is subjected to passive analysis

of live traffic. Each of them have been explained in the subsections below.

4.2.1 Test Dataset

The model is firstly tested on test dataset which is 20% of the complete dataset.

The details of test data is given in Table 4.1. Four common metrics, Accuracy

(Pr) or Positive Predictive, Recall (Rc) or Sensitivity Precision and False Positive

(FP) rate have already been chosen to evaluate the standard of the classification

procedure. The Pr is equal to the ratio of correctly classified instances (TP), let

us say X, in front of all the instances classified as X (TP+FP). Whereas the Rc

is usually add up to the ratio of properly classified instances (TP), why don’t we

say Y, before all Y situations (TP+FN).

34

Chapter 4: Experimentation

Table 4.2: Detailed Accuracy by Class

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.968 0.167 0.944 0.968 0.956 0.821 0.974 0.988 benign

0.841 0.032 0.896 0.841 0.868 0.827 0.976 0.941 adware

0.416 0.001 0.754 0.416 0.536 0.558 0.891 0.522 GeneralMalware

Pr = TP

TP + FP
(4.2.1)

Rc = TP

TP + FN
(4.2.2)

Where the TP holds true Positive, FP is False Positive, and FN is the False Nega-

tive. In the assessment step we utilized the weighted normal of precision, accuracy

and recall to select the best mixture of data set and features.The weighted typical

of accuracy is calculated as:

WPr =
∑
Prc · (TPc+ FPc)

TP + FP + TN + FN
(4.2.3)

Where PrCi may be the precision of class Ci, TPCi + FPCi is the accurate number

of samples categorized as Ci, and TP + FP + T N + F N may be the final

number of samples. The weighted accuracy and recall is calculated following a

same procedure. Further results are depicted in paper published in [41]. Detailed

accuracy by class are show in Table 4.2.

Confusion matrix of test results is show in Table 4.3. The overall, accuracy

achieved is approximately 94%.

35

Chapter 4: Experimentation

Table 4.3: Confustion Matrix

a b c

90989 2940 108 a = benign

4970 26398 23 b = adware

446 116 401 c = GeneralMalware

4.2.2 Passive Analysis of Live Traffic

In this analysis passive analysis of live traffic was performed to detect the ability

of our model to real world traffic. An interface of our test setup R620 server,

which was receiving tap traffic of a mobile device having malicious and normal

apps. A copy of this traffic was subjected to CICFlowMeter for feature extraction

these feature after performing some preprocessing was given as an input to our

model. Our model performed the classification and the result was pooled by help

of a Web API. The designed Web UI shows the result of the classification in form

of counter and a pie chart. The overview of whole process is depicted in Fig. 4.1.

36

Chapter 4: Experimentation

Figure 4.1: Purposed Framework.

37

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this research, a machine learning based Android malware detection model is

purposed this model works on 76 features for effective classification of Android

malwares. Moreover, this framework uses TCP and UDP flows based features

which are divided into behavior based, time based, packet based and flow based.

The experimental analysis of purposed model depicts that purposed model have a

high accuracy of 94% having false positive rate of 0.08%. Also passive testing of

model on live traffic shows that, model is performing pretty well on live scenario

also. The purposed model is also speed efficient and exploit parallelism which is

good for handling high bandwidth of network traffic. The Algorithm used also 10x

less time in training and testing as compared to other Machine learning Algorithm.

38

Chapter 5: Conclusion and Future Work

5.2 Future Work

Although this scholarly study achieved its objectives, a true number of recom-

mendations for future studies have been identified. This section presents recom-

mendations for future works predicated on the discussed restrictions. Attackers

always make an effort to evade detection strategies by finding new methods to by-

pass such strategies. Although this ongoing function experimented on a multitude

of real-world malware households, it is beneficial to collect even more samples of

malware. This allows researchers to discover new attack and behaviours methods

of malware families. The development of a sophisticated version of the Google

android emulator would allow researchers to analyse even more malware samples

in much less time, with an increase of realistic results. The Google android emu-

lators absence some features when compared to real gadget, such as for example

IMEI, routing desk, timing attacks, sensory result, and serial number. Research

upon this presssing concern would benefit the study community later on.

39

References

[1] Gartner. Gartner top 10 strategic technology trends for 2019,

2019. URL https://www.gartner.com/smarterwithgartner/

gartner-top-10-strategic-technology-trends-for-2019/.

[2] Aon. Cyber security risk report, 2019. URL https://www.

aon.com/getmedia/4c27b255-c1d0-412f-b861-34c5cc14e604/Aon_

2019-Cyber-Security-Risk-Report.aspx.

[3] Macfee. Mobile threat report q1 2018, 2018. URL https://www.mcafee.com/

enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.

pdf.

[4] FIREEYE. M-trends, 2019. URL https://content.fireeye.com/

m-trends.

[5] FIREEYE. Annual threat reports, 2019. URL https://www.fireeye.com/

current-threats/annual-threat-report.html.

[6] Arash Habibi Lashkari, Andi Fitriah A.Kadir, Hugo Gonzalez, Kenneth Fon

Mbah, and Ali A. Ghorbani. Towards a network-based framework for android

malware detection and characterization. In 2017 15th Annual Conference on

40

https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://www.aon.com/getmedia/4c27b255-c1d0-412f-b861-34c5cc14e604/Aon_2019-Cyber-Security-Risk-Report.aspx
https://www.aon.com/getmedia/4c27b255-c1d0-412f-b861-34c5cc14e604/Aon_2019-Cyber-Security-Risk-Report.aspx
https://www.aon.com/getmedia/4c27b255-c1d0-412f-b861-34c5cc14e604/Aon_2019-Cyber-Security-Risk-Report.aspx
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://content.fireeye.com/m-trends
https://content.fireeye.com/m-trends
https://www.fireeye.com/current-threats/annual-threat-report.html
https://www.fireeye.com/current-threats/annual-threat-report.html

References

Privacy, Security and Trust (PST). IEEE, aug 2017. doi: 10.1109/pst.2017.

00035.

[7] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Mamun, and Ali

Ghorbani. Characterization of encrypted and vpn traffic using time-related

features. 02 2016. doi: 10.5220/0005740704070414.

[8] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. The weka data mining software: An update.

SIGKDD Explor. Newsl., 11(1):10–18, November 2009. ISSN 1931-0145. doi:

10.1145/1656274.1656278. URL http://doi.acm.org/10.1145/1656274.

1656278.

[9] Tianqi Chen and Carlos Guestrin. XGBoost. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining - KDD '16. ACM Press, 2016. doi: 10.1145/2939672.2939785.

[10] Danny Iland, Alexander Pucher, and Timm Schäuble. Detecting android

malware on network level. 2011.

[11] Marian Kuhnel. Detection of Traffic Initiated by Mobile Malware Targeting

Android Devices in 3GPP Networks. Dissertation, RWTH Aachen Univer-

sity, Aachen, 2017. URL http://publications.rwth-aachen.de/record/

697470. VerÃűffentlicht auf dem Publikationsserver der RWTH Aachen Uni-

versity; Dissertation, RWTH Aachen University, 2017.

[12] L. Tenenboim-Chekina, O. Barad, A. Shabtai, D. Mimran, L. Rokach,

B. Shapira, and Y. Elovici. Detecting application update attack on mobile de-

vices through network features. In 2013 IEEE Conference on Computer Com-

41

http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://publications.rwth-aachen.de/record/697470
http://publications.rwth-aachen.de/record/697470

References

munications Workshops (INFOCOM WKSHPS), pages 91–92, April 2013.

doi: 10.1109/INFCOMW.2013.6970755.

[13] Lena Chekina, Dudu Mimran, Lior Rokach, Yuval Elovici, and Bracha

Shapira. Detection of deviations in mobile applications network behavior.

CoRR, abs/1208.0564, 2012. URL http://arxiv.org/abs/1208.0564.

[14] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song. Networkprofiler:

Towards automatic fingerprinting of android apps. In 2013 Proceedings IEEE

INFOCOM, pages 809–817, April 2013. doi: 10.1109/INFCOM.2013.6566868.

[15] A. Arora, S. Garg, and S. K. Peddoju. Malware detection using network traffic

analysis in android based mobile devices. In 2014 Eighth International Con-

ference on Next Generation Mobile Apps, Services and Technologies, pages

66–71, Sep. 2014. doi: 10.1109/NGMAST.2014.57.

[16] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and

Y. Elovici. Mobile malware detection through analysis of deviations in ap-

plication network behavior. Computers & Security, 43:1 – 18, 2014. ISSN

0167-4048. doi: https://doi.org/10.1016/j.cose.2014.02.009. URL http:

//www.sciencedirect.com/science/article/pii/S0167404814000285.

[17] J. Li, L. Zhai, X. Zhang, and D. Quan. Research of android malware de-

tection based on network traffic monitoring. In 2014 9th IEEE Conference

on Industrial Electronics and Applications, pages 1739–1744, June 2014. doi:

10.1109/ICIEA.2014.6931449.

[18] Abimael Carrasquillo, Albert E Maldonado, Eric Santos, and Poster Ortiz-

Ubarri, Jose. Poster: Towards a framework for Âťnetwork-based malware

detection system. In 35th IEEE Symposium on Security and Privacy, 2014.

42

http://arxiv.org/abs/1208.0564
http://www.sciencedirect.com/science/article/pii/S0167404814000285
http://www.sciencedirect.com/science/article/pii/S0167404814000285

References

[19] and Z. Chen, L. Zhang, Q. Yan, B. Yang, and L. Peng and. Trafficav: An

effective and explainable detection of mobile malware behavior using network

traffic. In 2016 IEEE/ACM 24th International Symposium on Quality of

Service (IWQoS), pages 1–6, June 2016. doi: 10.1109/IWQoS.2016.7590446.

[20] Anshul Arora and Sateesh K. Peddoju. Minimizing network traffic features

for android mobile malware detection. In Proceedings of the 18th Interna-

tional Conference on Distributed Computing and Networking, ICDCN ’17,

pages 32:1–32:10, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4839-

3. doi: 10.1145/3007748.3007763. URL http://doi.acm.org/10.1145/

3007748.3007763.

[21] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos.

Blinc: Multilevel traffic classification in the dark. In Proceedings of the 2005

Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, SIGCOMM ’05, pages 229–240, New York, NY,

USA, 2005. ACM. ISBN 1-59593-009-4. doi: 10.1145/1080091.1080119. URL

http://doi.acm.org/10.1145/1080091.1080119.

[22] T. T. T. Nguyen and G. Armitage. A survey of techniques for internet traffic

classification using machine learning. IEEE Communications Surveys Tuto-

rials, 10(4):56–76, Fourth 2008. ISSN 1553-877X. doi: 10.1109/SURV.2008.

080406.

[23] Karel Bartos, Michal Sofka, and Vojtech Franc. Optimized invari-

ant representation of network traffic for detecting unseen malware vari-

ants. In 25th USENIX Security Symposium (USENIX Security 16), pages

807–822, Austin, TX, 2016. USENIX Association. ISBN 978-1-931971-

43

http://doi.acm.org/10.1145/3007748.3007763
http://doi.acm.org/10.1145/3007748.3007763
http://doi.acm.org/10.1145/1080091.1080119

References

32-4. URL https://www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/bartos.

[24] Arash Habibi Lashkari., Gerard Draper Gil., Mohammad Saiful Islam Ma-

mun., and Ali A. Ghorbani. Characterization of tor traffic using time

based features. In Proceedings of the 3rd International Conference on In-

formation Systems Security and Privacy - Volume 1: ICISSP,, pages 253–

262. INSTICC, SciTePress, 2017. ISBN 978-989-758-209-7. doi: 10.5220/

0006105602530262.

[25] Iman Sharafaldin., Arash Habibi Lashkari., and Ali A. Ghorbani. Toward gen-

erating a new intrusion detection dataset and intrusion traffic characteriza-

tion. In Proceedings of the 4th International Conference on Information Sys-

tems Security and Privacy - Volume 1: ICISSP,, pages 108–116. INSTICC,

SciTePress, 2018. ISBN 978-989-758-282-0. doi: 10.5220/0006639801080116.

[26] H. Azwar, M. Murtaz, M. Siddique, and S. Rehman. Intrusion detection

in secure network for cybersecurity systems using machine learning and

data mining. In 2018 IEEE 5th International Conference on Engineering

Technologies and Applied Sciences (ICETAS), pages 1–9, Nov 2018. doi:

10.1109/ICETAS.2018.8629197.

[27] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and

evolution. In 2012 IEEE Symposium on Security and Privacy, pages 95–109,

May 2012. doi: 10.1109/SP.2012.16.

[28] Daniel Arp, Michael Spreitzenbarth, Malte HÃĳbner, Hugo Gascon, and Kon-

rad Rieck. Drebin: Effective and explainable detection of android malware in

your pocket. 02 2014. doi: 10.14722/ndss.2014.23247.

44

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/bartos
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/bartos

References

[29] HCLR. Hacking and countermeasure research lab, 2018. URL http:

//ocslab.hksecurity.net2018.http://ocslab.hksecurity.net.

[30] Hyunjae Kang, Jae wook Jang, Aziz Mohaisen, and Huy Kang Kim. Detect-

ing and classifying android malware using static analysis along with creator

information. International Journal of Distributed Sensor Networks, 11(6):

479174, jan 2015. doi: 10.1155/2015/479174.

[31] Jae wook Jang and Huy Kang Kim. Function-oriented mobile malware

analysis as first aid. Mobile Information Systems, 2016:1–11, 2016. doi:

10.1155/2016/6707524.

[32] Jae wook Jang, Hyunjae Kang, Jiyoung Woo, Aziz Mohaisen, and Huy Kang

Kim. Andro-dumpsys: Anti-malware system based on the similarity of mal-

ware creator and malware centric information. Computers & Security, 58:

125–138, may 2016. doi: 10.1016/j.cose.2015.12.005.

[33] Jae-wook Jang, Jaesung Yun, Aziz Mohaisen, Jiyoung Woo, and Huy Kang

Kim. Detecting and classifying method based on similarity matching of an-

droid malware behavior with profile. SpringerPlus, 5(1):273, Mar 2016. ISSN

2193-1801. doi: 10.1186/s40064-016-1861-x. URL https://doi.org/10.

1186/s40064-016-1861-x.

[34] Nicolas Kiss, Jean-Francois Lalande, Mourad Leslous, and Valérie Viet Triem

Tong. Kharon dataset: Android malware under a microscope. In The LASER

Workshop: Learning from Authoritative Security Experiment Results (LASER

2016), pages 1–12, San Jose, CA, 2016. USENIX Association. ISBN 978-

1-931971-35-5. URL https://www.usenix.org/conference/laser2016/

program/presentation/kiss.

45

http://ocslab.hksecurity.net 2018. http://ocslab.hksecurity.net.
http://ocslab.hksecurity.net 2018. http://ocslab.hksecurity.net.
https://doi.org/10.1186/s40064-016-1861-x
https://doi.org/10.1186/s40064-016-1861-x
https://www.usenix.org/conference/laser2016/program/presentation/kiss
https://www.usenix.org/conference/laser2016/program/presentation/kiss

References

[35] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. Deep

ground truth analysis of current android malware. In Michalis Polychron-

akis and Michael Meier, editors, Detection of Intrusions and Malware, and

Vulnerability Assessment, pages 252–276, Cham, 2017. Springer International

Publishing. ISBN 978-3-319-60876-1.

[36] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. Malton: To-

wards on-device non-invasive mobile malware analysis for art. 08 2017.

[37] Symantec. 2017 internet security threat report, November 2017. URL https:

//www.symantec.com/security-center/threat-report.

[38] Virus total, December 2016. URL https://www.virustotal.com/en/.

[39] Lookout discovers new trojanized adware, December 2016. URL https://

blog.lookout.com/blog/2015/11/04/trojanized-adware/.

[40] How to remove android penetho, December 2016. URL http://www.

solvusoft.com/en/malware/viruses/Android-penetho.

[41] M. Murtaz, H. Azwar, S. B. Ali, and S. Rehman. A framework for android

malware detection and classification. In 2018 IEEE 5th International Con-

ference on Engineering Technologies and Applied Sciences (ICETAS), pages

1–5, Nov 2018. doi: 10.1109/ICETAS.2018.8629270.

46

https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
https://www.virustotal.com/en/
https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
http://www.solvusoft.com/ en/malware/viruses/Android-penetho
http://www.solvusoft.com/ en/malware/viruses/Android-penetho

