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Abstract 

Designing and fabrication of mobile security platform is a relatively new development in 

security conscious world. These mobile security platforms are being developed keeping in view 

their employment environment. In general, these platforms perform two main tasks, first is the 

basic task of mapping the environment in which it will operate as well as self localization and 

thereafter navigation in that particular environment, second is the specific security task of 

surveillance. Mapping and localization has become one of the mainstream research areas in 

mobile robotics and is generally performed using simultaneous localization & mapping (SLAM) 

algorithms. These SLAM algorithm are broadly classified in three categories, first is based on 

calculation methods like Kalman Filter or the particle filter, hybrid comprising of both filters and 

graph-based, second is based on sensors like vision, range measurement devices and odometry, 

third is based on structure like online SLAM and full SLAM. Surveillance task is performed by 

assessment algorithms supported by different sensors like acoustic, vibration, passive infrared, 

microwave, optical, ultrasonic and vision.  

This work focuses on mapping and localization part of a mobile security platform which has 

to be employed in an unknown indoor environment. In this context, an in-depth study has been 

carried out on SLAM algorithms developed to-date along with different sensors available. Visual 

SLAM algorithm is tested with latest ZED stereo camera in an unknown indoor environment for 

its use in mobile security platform. 

 

 

Key Words: Mobile Security Platform, SLAM, vSLAM,  Stereo Camera.  
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CHAPTER 1: INTRODUCTION 

The research work presented in this dissertation is about selecting a SLAM algorithm and 

testing it with a sensor in an unknown indoor environment for its further use in Mobile Security 

Platform. The thesis has been organized into chapters. Chapter 1 develops a background about 

different categories of mobile security platforms, SLAM algorithms and sensors available. 

Chapter 2 presents literature review of relevant researches as regards to this thesis. Chapter 3 

presents comparative study and analysis as regards to this thesis. Chapter 4 is about selection of 

suitable SLAM algorithm/ sensor and its testing. Chapter 5 which is also the last chapter, 

concludes this thesis.  

1.1 Background, Scope and Motivation 

Post 9/11 world has witnessed the rise of a global phenomenon of security consciousness. 

Pakistan, having a geo-strategic importance and being the only Islamic country having nuclear 

arsenal, also have security related concerns regarding its sensitive installations. These 

installations are manned/ monitored round the clock owing to sensitive nature and prevalent 

security situation. Prolonged and isolated duties at these sensitive installations put a heavy toll on 

employed manpower. Technological advancement in recent past has addressed the security 

related concerns with automated surveillance incorporating intelligent robots. Dedicated man-

based monitoring system can be strengthened with use of automated surveillance incorporating 

intelligent robots. Robots can be used both in passive and active surveillance role, latter involve 

the complexities.  

During the last fifteen years, mobile platforms have been developed worldwide 

incorporating different techniques for performing the security related tasks. A mobile security 

platform is a mobile robot designed to navigate autonomously in an unidentified environment for 

performing surveillance tasks. It generally performs three tasks, 1st task is mapping the 

environment in which it will operate along with self localization, 2nd task is of surveillance i.e. 

people/ object detection, 3rd task is to communicate the information acquired through a viable 

media. Fusion of these tasks in a single mobile security platform poses a considerable challenge. 

Furthermore, basic task of mapping and localization is accomplished using techniques like 

SLAM, odometry, vSLAM, VO. Similarly, specific task of surveillance is performed using 
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techniques like template matching, color based, part/ shape based etc. Performance analysis of 

these techniques used to perform basic task of a mobile security platform in an indoor 

environment is still a challengeable task. 

1.2 Evolution of Mobile Security Platform 

History of developing mobile robots dates back to mid 20th century. Various mobile 

robots have been developed to-date for security related application in indoor and outdoor 

environments. 

1.2.1 Mobile Detection Assessment Response System (MDARS) Program 

Aim of MDARS program was to develop a robotic system that would be able to look 

over storage areas. Research prototypes developed under MDARS program were named as 

ROBART.  

ROBART I (1980–1982) was able to detect an intruder only. 

ROBART II (1982–1992) was able to detect along with assessment aim of eliminating 

the nuisance alarm. Sensors incorporated in ROBART II were acoustic, vibration, passive 

infrared,  microwave, optical, ultrasonic, and video. 

ROBART III (1992-2010) focused on generating response by passive IR, microwave, 

LIDAR and vision sensors. 

  

Figure 1.1 ROBART II and ROBART III 
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Most advanced robotic security system under this program was MDARS Exterior 

platform. Sensors incorporated in this design include FMCW radar and FLIR camera.  

 

Figure 1.2 MDARS Exterior Platform 

1.2.2 Team of Robotic Agents for Surveillance (2000) 

 This robotic system was designed for security and surveillance tasks. It consisted of two 

types of robotic agents; ranger and scouts. Ranger was a heavy duty platform used to transport 

scouts which were small mobile sensor platforms. Ranger communicated with scouts which 

observed the area of interest.  

 

Figure 1.3 Team of Robotic Agents 
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1.2.3 RoboGaurd (2001)   

It was a semi-autonomous mobile security device having cameras and sensors which 

navigated in the area and sent video streams to human watch guards.  

 

Figure 1.4 RoboGaurd 

1.2.4 Robotic Security Guard (2004)   

It was designed for surveillance of indoor environments. This robot was able to keep 

watch over a given area, identify persons and forward sensory details.  

 

Figure 1.5 Robotic Security Guard 
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1.2.5 Mobile Autonomous Robotic Vehicle for Indoor Navigation (MARVIN) (2004)   

MARVIN was planned to act as a security robot in indoor environments. Speech 

recognition and speech synthesis software was embedded in the robot and could show emotional 

states.   

 

Figure 1.6 MARVIN 

1.2.6 Airport Night Surveillance Expert Robot (ANSER) (2005) 

It consisted of a UGV having a GPS module for patrolling at airports.  It needed 

supervision of human.  It was used for localization and navigation purpose.  

 

 

Figure 1.7 ANSER 
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1.2.7 Multisensory Robotic Platform (2010)  

It was developed to navigate in the indoor environment autonomously and perform 

surveillance tasks. Sensors incorporated in the robotic platform (PeopleBot) included monocular 

camera, a laser scanner, and an RFID device.  

 

Figure 1.8 Multisensory Robotic Platform 

1.3 Indoor Mobile Robots  

Mobile robots are available commercially for indoor application. Some of them are listed 

below:-  

1.3.1 Khepera IV 

The Khepera IV robot is the latest version of this series designed for flat surfaces and 

generally used for research in the field of Navigation, Artificial Intelligence, Control, and Real-

Time Programming. Sensors incorporated in Khepera IV are encoders, inertial measurement unit 
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(IMU), infra red (IR) proximity sensors, ambient light sensors,  ultrasonic sensors. It offers 

integration with GNU C/C++ compilers. 

 

Figure 1.9 Khepra IV 

1.3.2 Ridgeback Robot 

It is an omnidirectional robot designed for carrying high loads in a constrained 

environment. Sensors incorporated in Ridgeback Robot are inertial measurement unit (IMU), 

laser range finders, and light detection and ranging (LiDAR). It offers integration with ROS and 

Gazebo.  

 

Figure 1.10 Ridgeback Omnidirectional Robot 
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1.3.3 Boxer Mobile Robot 

It is  intended for robotic solutions and generally used for research. Sensors incorporated 

in Boxer Mobile Robot are encoders, front-facing stereo camera, light detection and ranging 

(LiDAR) and sound detection and ranging (SONAR). It offers integration with ROS. 

 

Figure 1.11 Boxer Mobile Robot 

1.3.4 TurtleBot3 Robot 

It is a robot designed for robotic solutions. Sensor incorporated in TurtleBot3 is inertial 

measurement unit (IMU) having gyroscope, accelerometer and magnetometer. It offers 

integration with ROS. 

 

Figure 1.12 TurtleBot3 Robot 
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1.3.5 Mobile Base Apollo 

It is a middle sized robotic base robot designed to move autonomously in public places 

and can execute mapping function and autonomous navigation. Sensors incorporated in Mobile 

Base Apollo are depth camera, ultrasonic sensors and LiDAR. It offers integration with ROS and 

provided with SDK to develop third party applications including iOS / Android. 

 

Figure 1.13 Mobile Base Apollo 

 

1.4 SLAM 

Initial work on SLAM was carried out by Smith, Self and Cheeseman. Based on their 

work, Hugh Durrant-Whyte and John J. Leonard developed SLAM. In SLAM, map of unknown 

environment is built by the robot and navigation is carried out using map simultaneously.  

SLAM consists of a number of steps; Landmark extraction, data association, state 

estimation, state update and landmark update. 
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Figure 1.14 SLAM Process 
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The architecture of a SLAM system is given below: -  

 

Figure 1.15 SLAM Architecture 

1.4.1 Classes of SLAM 

1.4.1.1 Feature based SLAM 

In this SLAM, landmarks and environment model is known which used to estimate the 

robot path and the map [1]. There are four different techniques to the state estimation [2]: 

extended Kalman filter (EKF), information extended filter (IEF), particles filter (PF), and 

optimization techniques (graph based) [3]. 

1.4.1.2 Pose based SLAM 

In this SLAM, landmark positions are ignored and estimation is carried out of robot state 

trajectory only. Path estimation is carried out by optimization techniques [4], information [5], 

and particles filtering methods [6]. 

1.4.1.3 Appearance based SLAM 

Metric information and the landmark positions are not used in this SLAM; instead only 

visual images are utilized to recognize the place. It is very common that these appearance 

techniques are used complementary to any metric SLAM method to detect loop closures [7]. 

1.4.2 SLAM Challenges 

SLAM is mainly popular for indoor applications due to non usage of GPS application and 

its major challenges include: representation of the map, the correspondence problem, uncertainty 
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management, computational complexity and consistency. Detail of SLAM challenges for long 

term autonomy is as under:- 

 Robustness. SLAM system failure can be of two types i.e. algorithmic and hardware 

related. Algorithmic failure may occur during data association or due to perceptual 

aliasing in which same sensor signature is obtained from different sensors. SLAM 

systems (in particular, the data association modules) require extensive parameter tuning 

in order to work correctly for a given scenario. Basic assumption that the world is static is 

used in most SLAM methods whereas in real the world has dynamic behavior. Hardware 

related failure is associated with sensor failures.   

 Scalability. For long term application, the size of the factor graph grows with the passage 

of time which requires high memory and more computational time. Therefore, SLAM 

application in long term remains a challenge.    

1.5 Visual SLAM  

SLAM with only visual input is termed as vSLAM.  vSLAM has higher technical 

difficulty in comparison to other range sensors. Tracking and mapping (TAM) term is used in 

vSLAM in which tracking is done with every frame and mapping is carried out at a certain time 

interval.  

1.5.1 Basic Elements of vSLAM 

vSLAM has three basic modules; Initialization, Tracking, Mapping and two additional 

modules; Relocalization and Global Optimization. Detail of each is as under:- 

 Initialization. Global coordinate system is defined in this module and a certain 

portion of area is constructed as map in the global coordinate system. 

 Tracking. In this module, camera pose of the image is estimated with respect to map 

by tracking of constructed map in the image.   

 Mapping. In this module, camera view unknown regions and initial map is expanded.  

 Relocalization. This module caters for tracking failure due to any disturbance by 

computing camera pose again with respect to map.  
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 Global Map Optimization. This is performed to suppress the accumulative 

estimation error in the map. Loop closing is a technique to acquire the reference 

information and loop detection is done for obtaining geometrically consistent map.  

1.5.2 vSLAM Challenges 

 vSLAM faces some problems in practical situations which are described below:-.  

 Purely Rotational Motion. Purely rotational motion creates problem when mapping 

with monocular camera based vSLAM, however, RGB-D vSLAM can handle this issue.   

 Map Initialization. Accurate estimation in vSLAM depends on map initialization. 

Baseline should be wide in order to obtain an accurate initial map. However, ideal camera 

motion is difficult in practical scenarios.  

 Intrinsic Camera Parameters Estimation.  Most vSLAM algorithms assume known 

intrinsic camera parameters. This requires calibration of camera before vSLAM 

applications.  

 Rolling Shutter Distortion. Camera pose estimation is difficult to rolling shutter 

distortion.  

 Scale Ambiguity. Absolute scale information is required with monocular vSLAM 

applications. Human body parts are used in general to determine the absolute scale based 

on assumption of small size of body parts.  

1.6 Sensors 

 Sensors are classified as exteroceptive and proprioceptive. Exteroceptive sensors include 

IR sensors, ultrasonic sensors, LiDAR, SONAR and camera (computer vision) sensors. Infrared 

and ultrasonic distance sensors are small and cheap, however, are prone to cross-talk between 

sensors. LIDAR sensors are accurate, however, are expensive. SONAR has accuracy issues. One 

advantage of vision based systems is their ability to register 3D information, however, have 

issues with regards to accuracy, calibration and the nature of the measurements. Proprioceptive 

sensors include encoders, accelerometers, gyroscopes which have cumulative error issues due to 

inherent noise.  
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 In the last ten years, there is a clear tendency for using vision as the sensor for solving 

SLAM problem.  The main reason is that cameras are able to estimate range with the 

introduction of depth cameras.    
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CHAPTER 2 : LITERATURE REVIEW 

2.1 SLAM 

Durrant Whyte and Bailey in their two surveys [8, 9] reviewed the first 20 years of the 

SLAM problem and this is termed as the classical age (1986-2004). Main probabilistic 

formulations for SLAM, including approaches based on Extended Kalman Filters, Rao- 

Blackwellised Particle Filters, and maximum likelihood estimation were introduced in this age. It 

delineated the basic challenges connected to efficiency and robust data association. Subsequent 

period is termed as algorithmic-analysis age (2004-2015), and is partially covered by 

Dissanayake et al. in [10]. Fundamental properties of SLAM, including observability, 

convergence, and consistency were studied in this age. Key role of sparsity towards efficient 

SLAM solvers was also understood, and the main open-source SLAM libraries were developed. 

Latest period is termed as robust-perception age (2016-to-date), which is characterized by key 

requirements of robust performance, high level understanding, resource awareness and task 

driven perception. 

Year Topic Reference 

2006 Probabilistic approaches and data 

association 

Durrant Whyte and Bailey 

[8,9] 

2008 Filtering approaches Aulinas et al. [11] 

2011 SLAM back-end Grisetti et al. [12] 

2011 Observability, consistency and 

convergence 

Dissanayake et al. [10] 

2012 Visual Odometry Scaramuzza and Fraundofer 

[13, 14] 

2016 Multi Robot SLAM Saeedi et al. [15] 

2016 Visual place recognition Lowry et al. [16] 

2016 SLAM in the Handbook of Robotics Stachiness et at. [17] 

2016 Theoretical Aspects Haung and Dissanayake [18] 

Table 2.1 Surveying the Surveys and Tutorials 
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2.2 vSLAM 

2.2.1 Feature Based Methods 

2.2.1.1 MonoSLAM (2003) 

In MonoSLAM, camera motion and 3D structure of an unknown environment are 

simultaneously estimated using an extended Kalman filter (EKF). MonoSLAM computational 

cost increases in proportion to the size of an environment; hence, it is difficult to achieve real-

time computation in large environments. 

2.2.1.2 Parallel Tracking and Mapping PTAM (2007) 

PTAM method separated the tracking and the mapping into different threads on CPU 

which enabled handling of thousands of feature points in the map. Closed-loop detection and 

pose-graph optimization is used before bundle adjustment in order to overcome local minimum 

problem in bundle adjustment. 

2.2.1.3 ORB SLAM (2015) 

 It includes multi-threaded tracking, mapping, and closed-loop detection, and the map is 

optimized using pose-graph optimization and bundle adjustment. ORB-SLAM can use 

monocular, stereo and RGB-D cameras.  

 

 

 

        MonoSLAM     PTAM        ORB SLAM 

  

           2003       2007     2015 

Figure 2.1 Feature Based Methods 

  

 Sequential Tracking and 

Mapping 

 Extended Kalman Filter 

Based Optimization 

 Parallel Tracking and 

Mapping 

 Bundle Adjustment  

Based Optimization 

 Parallel Tracking, Mapping 

and Loop Closure Detection 

 Pose Graph Optimization and 

Bundle Adjustment  Based 

Optimization 
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2.2.2 Direct Methods 

2.2.2.1 Direct Tracking and Mapping DTAM (2011) 

 Stereo measurement performs map initialization. 

 Estimation of camera motion is done using synthetic view generation from the 

reconstructed map. 

 Estimation of depth information is done and thereafter optimization carried out.   

2.2.2.2 Large Scale Direct SLAM (2014) 

 Initial depth values for each pixel are random values. 

 Estimation of camera motion is done using synthetic view generation from the 

reconstructed map. 

 Only high intensity areas are reconstructed. 

 Geometrically consistent map is obtained by 7 DoF pose-graph optimization. 

2.2.2.3 Semi Direct Visual Odometry SVO and Direct Sparse Odometry DSO (2015) 

In SVO, tracking is done by feature point matching and the mapping is done by the direct 

method. DSO is a fully direct method and focus on local geometric consistency only, hence, is   

not a vSLAM rather VO. 

SVO, DVO         LSD SLAM               DTAM 

        Sparse                   Dense 

           2003       2007     2015 

Figure 2.2 Direct Methods 
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 Method Map 

Density 

Global 

Optimization 

Loop 

Closure 

MonoSLAM Feature Sparse No No 

PTAM Feature Sparse Yes No 

ORB SLAM Feature Sparse Yes Yes 

DTAM Direct Dense No No 

LSDSLAM Direct Semi Dense Yes Yes 

SVO Semi Direct Sparse No No 

DSO Direct Sparse No No 

KinectFusion RGB-D Dense No No 

Dense Visual SLAM RGB-D Dense Yes Yes 

ElasticFusion RGB-D Dense Yes Yes 

SLAM++ RGB-D Dense Yes Yes 

Table 2.2 vSLAM Algorithms 

Author Type of Sensing 

Device 

Core of the Solution 

Davison (2003) Monocular camera MonoSLAM (EKF)  

Nister et al.(2004) Stereo or monocular 

cameras 

Visual odometry 

Saez and Escolano (2006) Stereo camera Global Entropy Minimization 

Algorithm 

Mouragnon et al.(2006) Monocular camera Visual odometry + Local 

bundle adjustment 

Klein and Murray (2007) Monocular camera Parallel Tracking and Mapping 

(Visual odometry + Bundle 

Adjustment) 

Ho and Newman (2007) Monocular camera and 

laser 

Delayed state formulation 

Clemente et al.(2007) Monocular camera Hierarchical map + EKF 
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Lemaire et al.(2007) Stereo or monocular 

cameras 

EKF 

Milford (2008) Monocular camera RatSLAM (models of the 

rodent hippocampus) 

Scaramuzza and Siegwart 

(2008) 

Omnidirectional 

camera 

Visual odometry 

Eade and Drummond 

(2008) 

Monocular camera GraphSLAM 

Paz et al. (2008) Stereo camera Conditionally independent 

divide and conquer (EKF) 

Angeli et al. (2008) Monocular camera EKF 

Cummins and Newman 

(2008) 

Monocular camera 

mounted on a pan-tilt 

Fast Appearance Based 

Mapping (FAB-MAP) 

Pinies and Tardos (2008) Monocular camera Conditionally independent 

local maps (EKF) 

Konolige et al. (2009) Stereo camera + IMU Visual odometry + sparse 

bundle adjustment 

Williams (2009) Monocular camera Hierarchical map + EKF + 

Visual odometry 

Kaess and Dellaert (2010) Multi-camera rig Expectation maximization + 

Standard bundle adjustment 

Botterill et al. (2010) Monocular camera Odometria visual + Bag of 

words 

Mei et al. (2010) Stereo camera Visual odometry + Relative 

bundle adjustment + FAB-

MAP 

Table 2.3 vSLAM Algorithms [19] 
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CHAPTER 3: COMPARATIVE STUDY 

Various SLAM and vSLAM algorithms were reviewed in Chapter 2. This chapter 

presents a comparative study of various SLAM algorithms. 

3.1 Comparative Study I – Evaluation of the Modern Visual SLAM 

Methods [20] 

  In this study of 2015, comparative analysis of four recent vSLAM algorithms (ORB 

SLAM, Open RatSLAM, LSD-SLAM and L-SLAM) was carried out. Comparison was done on 

virtual server of Amazon EC2 with Intel Xeon CPU 2.4GHz, 8 GB RAM and sensor used was 

monocular camera. Algorithms were tested using subset of TUM RGB benchmark dataset [21].  

3.1.1 SLAM Algorithms Overview 

 Table 3.1 gives the overview of SLAM algorithms compared in this study. 

Algorithm Core Estimated Values Used 

Information 

Main Contribution Assumptions 

ORB-

SLAM 

 Camera transformation 

(by feature matching 

error minimization); 

 3d feature position; 

RGB image  Usage of ORB as 

environment 

features; 

 Robot movement 

between 2 

consecutive frames 

is relatively small. 

RatSLAM  Robot position and 

orientation (by Pose 

Cell Network); 

 Visual odometry 

(optionally); 

 RGB 

image; 

 Odometry; 

 First biological-

inspired SLAM; 

 Excitatory links 

weight matrix has 

Gaussian 

distribution. 

LSD-

SLAM 

 Camera transformation 

(by photometric error 

minimization); 

 Inverse depth map (by 

pixelwise Kalman 

filter); 

RGB image  Tracking structure 

of environment; 

 Monocular 

camera is the only 

sensor; 

 Inverse depth is 

Gaussian; 

 Noises are 

Gaussian; 

Table 3.1 vSLAM Algorithms Overview [20] 
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3.1.2 Results and Conclusions 

 Dataset 

Median (m) Mean (m) Standard Deviation 

(m) 

LSD ORB Rat LSD ORB Rat LSD ORB Rat 

fr1_desk 0.75 

(7%) 

0.05 1.21 0.75 0.05 1.12 X 0.02 0.22 

fr1_room 0.05 

(-) 

0.19 

(87%) 

0.97 

(93%) 

0.05 0.18 0.95 0 0.12 0.06 

fr1_xyz 0.17 

(93%) 

0.04 0.22 0.26 0.05 0.22 0.18 0.03 0.01 

fr2_desk 0.43 

(7%) 

0.74 2.56 

(93%) 

0.43 0.76 2.56 X 0.09 0.01 

fr2_pioneer_slam2 0.55 

(7%) 

0.24 1.62 0.55 0.62 1.62 X 0.62 0.006 

fr3_large_cabinet 0.80 

(20%) 

1.75 

(40%) 

1.88 0.71 1.75 1.88 0.14 0.07 0.001 

fr3_long_office_house

hold 

0.54 

(-) 

1.11 1.38 0.54 1.10 1.26 0.22 0.02 0.25 

Table 3.2 RMSE Comparison in the TUM RGB-D Benchmark [20]  

 Stable tracking was not obtained during the testing of vSLAM algorithms with TUM 

RGB-D dataset and trajectory error was high. 

 Robust results were not generated. Preprocessing is required in ORB SLAM, slow 

processing in RatSLAM, tweaking done on LSD-SLAM (non deterministic behavior). 

 RMSE values do not support any of vSLAM algorithms for practical application. 

3.2 Comparative Study II - Comparative Analysis of ROS-based Monocular 

SLAM Methods for Indoor Navigation [22] 

 In this study of 2016, comparative analysis of four recent vSLAM algorithms (ORB 

SLAM [22], REgularized MOnocular Depth Estimation REMODE SLAM [23], LSD-SLAM 

[24] and Dense Piecewise Planar Tracking and Mapping DPPTAM [25]) was carried out. 

Unmanned Ground Vehicle (UGV) having a wide-angle full HD webcam and a USB WideCam 

F1005 was used in an indoor office environment having light colored walls.  
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Vision System Configuration of 

UGV prototype 

Genius WideCam F100 Camera 

Parameter Configuration  Parameter Configuration  

Processor Intel CoreTM i3-4160 

CPU @ 3.60GHz x 4 

Image Sensor 1080p Full HD pixel 

CMOS 

GPU GeForce GT 740M Video resolution  VGA/720P HD/1080p 

FHD 

RAM 8 GB Interface  USB 2.0 

Camera Genius WideCam F100 Image Resolution 12MP, 1920x1080, 

128x720, 640x480 

OS Linux Frame rates up to 30fps 

ROS Jade Turtle Lens  120 degrees 

Driver ROS usb_cam webcam Shutter  Rolling shutter 

Table 3.3 Characteristics of UGV Hardware [22]  

3.2.1 SLAM Algorithms Overview 

 Table 3.4 gives the overview of four SLAM algorithms compared in this study. 

Parameter ORB-SLAM REMODE LSD-SLAM DPPTAM 

Type of method Feature-based Feature-based Direct Direct 

CUDA-enabled No Yes No No 

Separate odometry 

module 

No (Built-in) Yes (SVO) No (Built-in) No (Built-in) 

Camera trajectory 

module 

Yes  No Yes No  

Visualization Built-in ROS/RViz Built-in ROS/RViz 

Noise level Low Middle High Low 

Visual odometry 

quality 

Good Good Poor Poor  

Table 3.4 vSLAM Algorithms Overview [22] 
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3.2.2 Observations and Conclusions 

 Only ORB SLAM was able to reconstruct closed-loop UGV trajectory.   

 Results for indoor environment are approximately same for feature-based and direct 

vSLAM methods. 

 Corners and other features were detected by almost all vSLAM methods. 

 vSLAM methods tested showed poor results in detection of light colored walls of indoor 

environment. 

 Robustness of vSLAM ROS based monocular methods is questionable. 

3.3 Comparative Study III - Comparison of ROS based Visual SLAM 

Methods in Homogeneous Indoor Environment [27] 

In this study of 2017, comparative analysis of five SLAM algorithms (Hector SLAM, 

monocular ORB SLAM, monocular Dense Piecewise Planar Tracking and Mapping DPPTAM, 

stereo ZEDfu, Real-Time Appearance-Based Mapping RTAB-Map with Kinect 2.0 Depth 

Sensor) was carried out. Unmanned ground vehicle (UGV) equipped with computing system 

having following specifications and sensors were used in a tapped indoor office environment 

having light colored walls. 

Parameters Configuration 

UGV hardware  

Processor Intel Core i3-416 CPU @ 3.60GHz x 4 

GPU GeForce GT 740M 

RAM 8 GB 

Sensors  

LIDAR HOKUYO UTM-30LXa 

Camera Basler acA2000-50gc GigEb 

Stereo camera Stereolabs ZED cameraac 

RGB-D sensor Microsoft Kinect 2.0d 

Software  

OS Ubuntu 14.04 

ROS Indigo Igloo 

Table 3.5 Configuration of UGV Hardware[27] 



24 
 

3.3.1 SLAM Algorithms Overview and Results 

 Table 3.6 gives the overview of SLAM algorithms compared in this study. 

Parameter ORB-SLAM DPPTAM ZEDfu 
RTAM-

Map 

Visualization Built-in ROS/RViz Built-in Built-in 

CUDA No No Yes No 

Odometry No No Yes Yes 

Trajectory Yes Yes No No 

Noise level Low Low Low Middle 

3D map 

quality 
Low Average Good Good 

3D map type Sparse Dense Dense Dense 

Odometry 

quality (Max. 

deviation) 

Good 

(0.43m) 

Poor  

(4.26m) 

Good 

(0.32m) 

Good 

(0.67m) 

Table 3.6 SLAM Algorithms Overview [27] 

 Trajectory deviation of different SLAM methods used in this study is as under:- 

 

Figure 3.1 Comparison of Trajectories (in meters) of different SLAM Methods [27] 
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SLAM 

method 

Sensors Average 

deviation, m 

Maximal 

deviation, m 

Hector SLAM 2D LIDAR 0.11 0.18 

ORB-SLAM Monocular Camera 0.19 0.43 

DPPTAM Monocular Camera 2.05 4.26 

ZEDfu Stereo ZED camera 0.14 0.32 

RTAB-Map 
Kinect 2.0 depth 

sensor 
0.42 0.67 

Table 3.7 Trajectory Deviations of different SLAM Methods [27] 

3.3.2 Observations and Recommendations 

 Estimation of absolute scale of the map cannot be done by monocular SLAM algorithms; 

hence, localization is not possible. Size of the map objects can be verified by ground truth 

or by estimating the displacement value of camera. 

 Robustness of ORB SLAM is greater than DPPTAM in indoor environments. 

 ORB SLAM is recommended for applications requiring high performance. 

 DPPTAM is recommended for building a dense area map of obstacles and the 

environment having fewer features provided hardware has high performance power. 

 Stereo cameras and RGB-D sensors have similar resource consumption. 

 Stereo camera should be used for building a map with high depth. 

 RBD-D sensor is recommended for use in colorless walls or mirrors. 

3.4 Comparative Study IV - Comparison of Various SLAM Systems for 

Mobile Robot in an Indoor Environment [28] 

In this study of 2018, comparative analysis of following eleven SLAM algorithms with 

different sensors was carried out. 
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Year System Sensor 

2007 GMapping 2D Lidar 

2007 Parallel Tracking and Mapping 

(PTAM) 

mono 

2011 Hector SLAM 2D Lidar 

2014 Semi-direct Visual Odometry (SVO) mono 

2014 Large Scale Direct monocular SLAM 

(LSD SLAM) 

mono 

2014 Real-Time Appearance-Based Mapping 

(RTAB map) 

stereo 

2015 ORB SLAM mono, stereo 

2015 Dense Piecewise Parallel Tracking and 

Mapping (DPPTAM) 

Mono 

2016 Direct Sparse Odometry (DSO) Mono 

2016 Cartographer 2D Lidar 

2017 Stereo Parallel Tracking and Mapping 

(S-PTAM) 

stereo 

Table 3.8 SLAM Systems (ROS based) [28] 
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Hardware configuration of Labcar platform was as under:- 

 Parameters  Configuration 

 Chassis  4WD Traxxas # 74076 

 Hardware  Jetson TX 1 

 Processor 

 GPU 

 RAM 

 Quad ARM A57 

 NVIDIA Maxwell 

 4 GB 

 Sensors   

 Lidar 

 Camera 

 Stereo camera 

 Hokuyo UTM-30LX 

 Basler acA1300-200uc 

 ZED camera 

 Software   

 Jetpack 

 OS 

 ROS 

 3.1 

 Ubuntu 16.04 

 Kinetic Kame 

Table 3.9 Configuration of Labcar Platform [28] 

Hardware configuration of ground station was as under:- 

Parameters Configuration 

Processor 

 GPU 

 RAM 

 Intel Core i7 6500U 

 NVIDIA GeForce GTX 950M 

12 GB 

Software Configuration 

OS 

ROS 

 Ubuntu 16.04 

Kinetic Kame 

Table 3.10 Configuration of Ground Station [28]  
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3.4.1 Results 

 

Figure 3.2 Maps generated by Various SLAM Methods [28] 
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Absolute trajectory error of various SLAM systems based on Hector SLAM trajectory is 

as under:-  

System RMSE 

(m) 

Mean 

(m) 

Median 

(m) 

Std. 

(m) 

Min (m) Max 

(m) 

Cartographer 0.024 0.017 0.013 0.021 0.001 0.07 

LSD SLAM 0.301 0.277 0.262 0.117 0.08 0.553 

ORB SLAM 

(mono) 
0.166 0.159 0.164 0.047 0.047 0.257 

DSO 0.459 0.403 0.419 0.219 0.007 0.764 

ZEDfu 0.726 0.631 0.692 0.358 0.002 1.323 

RTAB map 0.163 0.138 0.110 0.085 0.004 0.349 

ORB SLAM 

(stereo) 
0.190 0.151 0.102 0.115 0.004 0.414 

S-PTAM (no 

loop cl.) 
0.338 0.268 0.244 0.206 0.001 0.768 

S-PTAM (loop 

cl.) 
0.295 0.257 0.242 0.145 0.006 1.119 

Table 3.11 Absolute Trajectory Error of Various SLAM Systems [28] 

3.4.2 Discussion 

 UGV localization and mapping was accurate in Hector SLAM and Cartographer. 

Gmapping was inaccurate. Cartographer is more robust to environmental changes. 

 Monocular PTAM, SVO, DPPTAM failed in tracking and could not handle scale 

ambiguity.  

 Monocular LSD SLAM, ORB SLAM, DSO with additional scale recovery module can be 

used for localization. 

 Stereo ZEDfu, RTAB-Map, ORB SLAM, S-PTAM provide metric information. 
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 RTAB-Map had better results for localization, however, tracking is lost close to indistinct 

walls 

 Stereo ORB SLAM is the most robust system. 
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CHAPTER 4 : ORB SLAM 2 AND ZED STEREO CAMERA 

Based on the comparative studies of Chapter 3, SLAM algorithm selected for use in mobile 

security platform is stereo ORB SLAM 2 and sensor selected is ZED stereo Camera. 

4.1  ORB SLAM 2 Overview 

ORB SLAM 2 is an improved version of ORB SLAM developed in 2015. Algorithmic 

structure of ORB SLAM is based on three threads, tracking, local mapping, loop closing and 

sensor used in monocular camera. 

 

Figure 4.1 ORB-SLAM Overview 

In tracking process, first task performed is of extracting ORB features from the image 

frame. Feature extraction method used is “Feature from Accelerated Segment Test” named as 

FAST in which edge features are found from the input image. After extracting features, 

descriptor is created using a method of “Binary Robust Independent Elementary Features” 

named as BRIEF. Localization of the camera is carried out by using each frame. Thereafter 

keyframes are selected which are used to build the map.  Most useful frames are used in ORB 

SLAM based on ‘survival of the fittest’ approach. Feature matching between chosen keyframe 

and previous keyframe gives the initial pose estimation on which optimization is carried out. . 
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Relocalization is done in case tracking is lost. Successful tracking step gives as camera pose 

estimation and an initial set of feature matches.   

Keyframes and map points after tracking process are used to build the map. Keyframes 

are placed in placed in a covisibility graph. Culling of keyframes is done to avoid unbounded 

growth of the graph. Similarly map points are also removed if they are observed by too few 

keyframes at a time.  

Loop closing is done in final thread to check whether this location has been visited or not. 

Loop closing is essential as it allows the system to update beliefs about the location and 

determine the drift accumulated while the loop was traversed.  

Sim3 is solved by the RANSAC (Random Sample Consensus) framework, and then Sim3 

is optimized by re-matching and g2o (General Graphic Optimization) to correct the pose of the 

current keyframe. 

 

Figure 4.2 ORB SLAM [29] 
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Algorithmic structure of ORB SLAM 2 is also based on three threads, tracking, local 

mapping, loop closing, however, in loop closing, bundle adjustment is performed. Furthermore, 

ORB SLAM 2 can be used with different sensors lile monoculara camera, stereo camera and 

RGB-D camera. 

 

Figure 4.3 ORB SLAM 2 [30] 

 

Figure 4.4 ORB-SLAM 2 Input Pre-processing [30] 
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4.2 ZED Camera Overview 

The ZED is a camera with dual lenses. It captures high-definition 3D video with a wide 

field of view and outputs two synchronized left and right video streams. 

Depth perception is the ability to determine distances between objects and see the world 

in three dimensions. Up until now, depth sensors have been limited to perceiving depth at short 

range and indoors, restricting their application to gesture control and body tracking. Using stereo 

vision, the ZED is the first universal depth sensor. The camera works indoors and outdoors, 

contrary to active sensors such as structured-light or time of flight. 

Using computer vision and stereo SLAM technology, the ZED also understands its 

position and orientation in space, offering full 6DOF positional tracking. In VR/AR, this means 

you can now walk around freely and the camera will track your movements anywhere. If you’re 

into robotics, you can now reliably determine your robot’s position, orientation, and velocity and 

make it navigate autonomously to the coordinates of your choice on a map. You can access 

6DOF motion tracking data through the ZED SDK or its plugins: Unity, ROS… 

Spatial mapping is the ability to capture a digital model of a scene or an object in the 

physical world. By merging the real world with the virtual world, it is possible to create 

convincing mixed reality experiences or robots that understand their environment. The ZED 

continuously scans its environment to reconstruct a 3D map of the real-world. It refines its 

understanding of the world by combining new depth and position data over time. Spatial 

mapping is available either through the ZEDfu application or the ZED SDK.  

Main specifications of ZED camera are as under:-  

 It has a dual camera of 4MP each. 

 It can capture 1080p HD video at 30 FPS. 

 It has a field of  view of 90° (H) x 60° (V) x 110° (D) max. 

 It has a stereo baseline of 120 mm. 

 It has a depth range of 0.5 - 20 m (1.64 to 65 ft) and depth format is 32 bit. 

 It has Electronic Synchronized Rolling Shutter. 
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 It has the technology of Real-time depth-based visual odometry and SLAM. 

 SDK System Requirements 

o Dual-core 2,3GHz or faster processor 

o 4 GB RAM or more 

o Nvidia GPU with compute capability > 3.0 

 

 

Figure 4.3 ZED Stereo Camera 

4.3 Configuration of Hardware and Software for ORB 2 SLAM Application 

 Hardware 

o Intel (R) Core TM i5-4210 CPU @ 1.70GHz 2.40 GHz 

o RAM 4 GB 

o 64 Bit Operating System 

o NVIDIA GEFORCE graphic card 

o ZED Stereo Camera 

 Software 

o Ubuntu 12.04, 14.04 and 16.04 
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o Pre-requisites 

 C ++11 or C++0x Compiler 

 Pangolin 

 OpenCV 

 Eigen3 

 DBOW and g2o 

o ZED camera ROS wrapper 

o ORB SLAM2 

4.4 Implemntation 

  ORB SLAM 2 algorithm was implemented with Ubuntu as under:- 

 In first case, ORB SLAM 2 was implemented with commercially available datasets i.e 

KITTI dataset and EuRoC. Examples used in this regard were of stereo camera. 

 ORB SLAM 2 was tested in ROS envionment by running stereo node. 

 In order to proces own sequences, ZED camera was installed. ZED installation guide is at 

Appendix A and B. 

  ORB SLAM 2 was integrated with ZED camera in order to implement SLAM algorithm 

with state of the art stereo camera.  

4.5 Discussion 

 Implementation of ORB SLAM 2 with ZED camera wass carried out successfully in 

static environment; however, issues were observed when implementing in dynamic environment. 

Observations with regards to implentation of ORB SLAM 2 with ZED camera in stereo mode are  

listed below:- 

 ZED camera failed in calculating depth of points more than 3m, however, settings was 

changed to not pick points more than 3 m while calculating depth. 
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 ZED camera was not able to pick some features of locations having shadows. Efforts 

were made to capture the scene with varying light conditions without any significant 

improvement.  

 ORB SLAM 2 reading from text format vocabulary (also containing invalid data) slows 

the process thus becomes time consuming. Text format vocabulary may be converted to 

binary format.  

 Each time ORB SLAM 2 is launched, there is a lengthy process due to its inability to 

save and load map. Methodology is required to be devised for saving and loading map. 

 Offline visualization of maps and mapping trajectories is not provided in ORB SLAM 2 

which needs to be provided in its improved version. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

This work focused on selection of SLAM algorithm for mobile security platform 

employment in an unknown indoor environment. SLAM algorithms has changed and improved 

since its initial work and focus in recent past has shifted to visual SLAM algorithms. Detailed 

review of different SLAM algorithms was carried out in this thesis. Furthermore comparative 

studies of vSLAM algorithms of last five years was also studies and analyzed to select a robust 

SLAM algorithm. Similarly sensors were analyzed keeping in view the indoor application of our 

thesis work. Selection of ORB SLAM 2 algorithm and ZED stereo camera was the outcome of 

the study. 

Efforts were made for practical implementation of our thesis work. SLAM was 

successfully implemented in static environment; however certain issues were observed with 

regards to ZED stereo camera hardware during implementation phase. Further experimentation 

with ZED stereo camera will elaborate its hardware related issues in detail. Similarly issues with 

regards to ORB SLAM 2 were observed which can be addressed in future work. Further work in 

this regard should be change of text format vocabulary to binary based vocabulary, saving/ 

loading of the map already made using algorithm, and offline visualization of the maps. ORB 

SLAM 2 with ZED stereo camera lacks robustness in dynamic environment.  

While concluding, it is pertinent to mention that this work is a baseline for selecting a 

SLAM algorithm to be used in mobile security platform. Certain improvements in the algorithm 

selected will help in its effective utilization for the proposed work. 
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APPENDIX A 

ZED Installation Guide 

On Linux, download the ZED SDK for Linux and launch the .run file from a terminal.  

 chmod +x ZED_SDK_Linux_*.run 

./ZED_SDK_Linux_*.run 

After the installation, download CUDA 9 or CUDA 10 (depending on the selected SDK 

installer) from NVIDIA website and install it on your system. 

Restart you computer to complete the installation. 

 Recommended specifications of the operating system are as under:- 

 Minimum Recommended Embedded 

Processor Dual-core 2,3GHz Quad-core 2,7GHz or 

faster 

Jetson TX1, TX2, 

Xavier 

RAM 4GB 8GB 8GB 

Graphics Card NVIDIA GPU* GTX1060 or higher TX1, TX2, Xavier 

USB port USB 3.0 USB 3.0 USB 3.0 

Operating System Windows 7, 8.1, 10, Ubuntu 16.04, 18.04 L4T 

On Linux, compiling an application with the ZED SDK requires a toolchain with GCC 

(5, 6) and CMake (3.5.0 minimum). To install both, type: 

sudo apt-get install build-essential cmake 
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APPENDIX B 

Getting Started with ROS 

The ZED ROS wrapper lets you use the ZED stereo cameras with ROS. It provides access 

to the following data: 

 Left and right rectified/unrectified images 

 Depth map 

 Colored 3D point cloud 

 Visual odometry: Position and orientation of the camera 

 Pose tracking: Position and orientation of the camera fixed and fused with IMU data (ZED-

M only) 

Installation 

 Pre-requisites 

 Ubuntu 16.04 

 ZED SDK and its CUDA dependency 

 ROS Kinetic 

Note: if you are using a ZED-M and want to visualize the IMU information using RVIZ, you 

will also need to install the RVIZ IMU plugin: 

$ sudo apt install ros-kinetic-rviz-imu-plugin 

 Build the Package 

zed_ros_wrapper is a catkin package. It depends on the following ROS packages: 

 tf2_ros 

 tf2_geometry_msgs 

 nav_msgs 

 roscpp 

 rosconsole 

 sensor_msgs 

https://www.stereolabs.com/developers/release/latest/
https://developer.nvidia.com/cuda-downloads
http://wiki.ros.org/kinetic/Installation/Ubuntu
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 stereo_msgs 

 image_transport 

 dynamic_reconfigure 

 nodelet 

 diagnostic_updater 

 urdf 

 message_generation 

 roslint 

 robot_state_publisher 

 message_runtime 

To install zed_ros_wrapper, open a bash terminal, clone the package from Github and build 

it: 

$ cd ~/catkin_ws/src/ #use your current catkin folder 

$ git clone https://github.com/stereolabs/zed-ros-wrapper.git 

$ cd .. 

$ catkin_make -DCMAKE_BUILD_TYPE=Release 

$ echo source $(pwd)/devel/setup.bash >> ~/.bashrc 

$ source ~/.bashrc 

 Starting the ZED node 

The ZED is available in ROS as a node that publishes its data to topics.  

Open a terminal and use roslaunch to start the ZED node: 

$ roslaunch zed_wrapper zed.launch 

      If you are using a ZED-M camera: 

$ roslaunch zed_wrapper zedm.launch 

 Displaying ZED data 

 Using RVIZ 
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RVIZ is a useful visualization tool in ROS. Using RVIZ, you can visualize the ZED left 

and right images, depth, point cloud, and 3D trajectory. 

Launch the ZED wrapper along with RVIZ using the following command: 

$ roslaunch zed_display_rviz display_zed.launch 

      If you are using a ZED-M camera, you can visualize additional information about IMU 

data using the following command: 

$ roslaunch zed_display_rviz display_zedm.launch 

 Dispalying Images 

The ZED node publishes both original and stereo rectified (aligned) left and right images. 

In RVIZ, select a topic you and use the image preview mode. Here the list of the available image 

topics: 

/zed/zed_node/rgb/image_rect_color: Color rectified image (left sensor by default) 

/zed/zed_node/rgb/camera_info: Color camera calibration data 

/zed/zed_node/rgb_raw/image_raw_color: Color unrectified image (left sensor by default) 

/zed/zed_node/rgb_raw/camera_info: Unrectified color camera calibration data 

/zed/zed_node/right/image_rect_color: Right camera rectified image 

/zed/zed_node/right/camera_info: Right sensor calibration data 

/zed/zed_node/right_raw/image_raw_color: Right camera unrectified image 

/zed/zed_node/right_raw/camera_info: Unrectified right sensor calibration data 

/zed/zed_node/confidence/confidence_image: Confidence map as image 
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 Displaying Depth 

The depth map can be displayed in RVIZ with the following topic: 

/zed/zed_node/depth/depth_registered: 32-bit depth values in meters. RVIZ will normalize 

the depth map on 8-bit and display it as a grayscale depth image. 

 Dispalying Disparity 

The Disparity Image is available by subscribing to 

the /zed/zed_node/disparity/disparity_image topics. 

Launch the Disparity Viewer to visualize it: 

$ rosrun image_view disparity_view image:=/zed/zed_node/disparity/disparity_image 

 Dispalying The Point Cloud 

A 3D colored point cloud can be displayed in RVIZ with 

the zed/point_cloud/cloud_registered topic. 

Add it in RVIZ with point_cloud -> cloud -> PointCloud2. Note that displaying point 

clouds slows down RVIZ, so open a new instance if you want to display other topics. 

 Dispalying Position and Path 

The ZED position and orientation in space over time is published to the following topics: 

/zed/zed_node/odom: Odometry pose referred to odometry frame (only visual odometry is 

applied for ZED, visual-inertial for ZED-M) 

/zed/zed_node/pose: Camera pose referred to Map frame (complete data fusion algorithm is 

applied) 

/zed/zed_node/pose_with_covariance: Camera pose referred to Map frame with covariance 

/zed/zed_node/path_odom: The sequence of camera odometry poses in Map frame 

/zed/zed_node/path_map: The sequence of camera poses in Map frame 

Launching with Recorded SVO Video 

With the ZED, you can record and play back stereo video using the .svo file format. To 

record a sequence, open the ZED Explorer app and click on the REC button. 
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To launch the ROS wrapper with an SVO file, set an svo_file path launch parameter in 

the command line when starting the package: 

ZED: 

roslaunch zed_wrapper zed.launch svo_file:=/path/to/file.svo 

ZED-M: 

roslaunch zed_wrapper zedm.launch svo_file:=/path/to/file.svo 

Dynamic Reconfigure 

You can dynamically change many configuration parameters during the execution of the ZED 

node: 

 confidence_threshold: Sets a threshold that filters the values of the depth or the point 

cloud. With a confidence threshold set to 100, all depth values will be written in the depth 

and the point cloud. This is set to 80 by default, which removes the least accurate values. 

 auto_exposure: Enables/disables automatic gain and exposure 

 exposure: Sets camera exposure only if auto_exposure is false 

 gain: Set camera gain only if auto_exposure is false 

 mat_resize_factor: Sets the scale factor of the output images and depth map. Note that the 

camera will acquire data at the dimension set by the resolution parameter; images are 

resized before being sent to the user 

 max_depth: Sets the maximum depth range 

You can set the parameters using the command dynparam set, e.g.: 

$ rosrun dynamic_reconfigure dynparam set /zed/zed_node confidence 80 

…or you can use the GUI provided by the rqt stack: 

$ rosrun rqt_reconfigure rqt_reconfigure 

The ZED Node 

To start a ZED ROS node you can use the command line 



45 
 

 

$ roslaunch zed_wrapped zed.launch 

or 

$ roslaunch zed_wrapped zedm.launch 

if you own a ZED-M camera. 

The ZED node publishes data to the following topics: 

 Left camera 

/zed/zed_node/rgb/image_rect_color: Color rectified image (left RGB image by default) 

/zed/zed_node/rgb_raw/image_raw_color: Color unrectified image (left RGB image by default) 

/zed/zed_node/rgb/camera_info: Color camera calibration data 

/zed/zed_node/rgb_raw/camera_info: Color unrectified camera calibration data 

/zed/zed_node/left/image_rect_color: Left camera color rectified image 

/zed/zed_node/left_raw/image_raw_color: Left camera color unrectified image 

/zed/zed_node/left/camera_info: Left camera calibration data 

/zed/zed_node/left_raw/camera_info: Left unrectified camera calibration data 

 Right camera 

/zed/zed_node/right/image_rect_color: Color rectified right image 

/zed/zed_node/right_raw/image_raw_color: Color unrectified right image 

/zed/zed_node/right/camera_info: Right camera calibration data 

/zed/zed_node/right_raw/camera_info: Right unrectified camera calibration data 

 Stereo Pair 

/zed/zed_node/stereo/image_rect_color: stereo rectified pair images side-by-side 

/zed/zed_node/stereo_raw/image_raw_color: stereo unrectified pair images side-by-side 
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Note: to retrieve the camera parameters you can subscribe to the topics 

/zed/zed_node/left/camera_info, /zed/zed_node/right/camera_info,  

/zed/zed_node/left_raw/camera_infoand/zed/zed_node/right_raw/camera_info` 

 Depth and Point Cloud 

/zed/zed_node/depth/depth_registered: Depth map image registered on left image (32-bit float in 

meters by default) 

/zed/zed_node/depth/camera_info: Depth camera calibration data 

/zed/zed_node/point_cloud/cloud_registered: Registered color point cloud 

/zed/zed_node/confidence/confidence_image: Confidence image 

/zed/zed_node/confidence/confidence_map: Confidence image (floating point values) 

/zed/zed_node/disparity/disparity_image: Disparity image 

 Tracking 

/zed/zed_node/odom: Absolute 3D position and orientation relative to the Odometry frame (pure 

visual odometry for ZED, visual-inertial for ZED-M) 

/zed/zed_node/pose: Absolute 3D position and orientation relative to the Map frame (Sensor 

Fusion algorithm + SLAM) 

/zed/zed_node/pose_with_covariance: Camera pose referred to Map frame with covariance 

/zed/zed_node/path_odom: Sequence of camera odometry poses in Map frame 

/zed/zed_node/path_map: Sequence of camera poses in Map frame 

 Mapping 

/zed/zed_node/point_cloud/fused_cloud_registered: Fused color point cloud. Note: published 

only if mapping is enabled, see mapping/mapping_enabled parameter 

 Inertial Data 

/zed/zed_node/imu/data: Accelerometer, gyroscope, and orientation data in Earth frame 

/zed/zed_node/imu/data_raw: Accelerometer and gyroscope data in Earth frame 
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