

Automated Conflicts Detection of Software Requirements

using Natural Language Processing

 Author

 Aleena Arshad

 FALL 2015-MS-15(CSE) 00000119838

 MS-15 (CSE)

 Supervisor

 Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

JULY, 2019

Automated Conflicts Detection of Software Requirements using Natural

Language Processing

Author

Aleena Arshad

FALL 2015-MS-15(CSE) 00000119838

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Software Engineering

Thesis Supervisor:

Dr. Wasi Haider Butt

Thesis Supervisor’s Signature:_____________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

JULY, 2019

i

DECLARATION

I certify that this research work titled “Automated Conflicts Detection in Software Requirements

using Natural Language Processing” is my own work under the supervision of Dr. Wasi Haider

Butt. The work has not been presented elsewhere for assessment. The material that has been used

from other sources it has been properly acknowledged / referred.

Signature of Student

Aleena Arshad

FALL 2015-MS-15(CSE) 00000119838

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the university.

Signature of Student

Aleena Arshad

FALL 2015-MS-15(CSE) 00000119838

Signature of Supervisor

iii

COPYRIGHT STATEMENT

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST College of E&ME. Details may be obtained by the

Librarian. This page must form part of any such copies made. Further copies (by any

process) may not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may

not be made available for use by third parties without the written permission of the College

of E&ME, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

ACKNOWLEDGEMENTS

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work at

every step and for every new thought which You setup in my mind to improve it. Indeed I could

have done nothing without Your priceless help and guidance. Whosoever helped me throughout

the course of my thesis, whether my parents or any other individual was Your will, so indeed none

be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking

and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Wasi Haider Butt for his help

throughout my thesis and also for Software Requirements Engineering (SRE) course which he has

taught me. I can safely say that I haven't learned any other engineering subject in such depth than

the ones which he has taught.

I would also like to thank my Guidance Committee Members Dr. Arslan Shaukat and Dr.

Usman Akram for being on my thesis guidance and evaluation committee. Their recommendations

are very valued for improvement of the work. I am also thankful to Abrar Ahmed, Imran Ahsan,

and Anum Amjad for their support and cooperation.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

v

Dedicated to my exceptional parents and adored siblings whose

tremendous support and cooperation led me to this wonderful

accomplishment

vi

ABSTRACT

Contradictory and inconsistent sentences in a set of requirements are known as conflicting

requirements. In the Requirements Engineering phase of Software Development Life Cycle

(SDLC) software requirements are gathered, analyzed, negotiated back and forth manually to come

to a final requirements specification document that is free from a known problem – conflicting

requirements. By automating conflict detection during requirements analysis phase, time, effort,

and resources can be saved in going back and forth and checking for conflicts manually. Natural

Language Processing (NLP) is a way to pre-process software requirements contextually before a

manual or automated model or algorithm can be applied on them. SLR (Systematic Literature

Review) has been performed to distinguish 23 papers published during 2009 to 2018. The idea is

to determine conflict detection models in software requirements using NLP. Furthermore, to

identify tools, models, and case studies that have been vital in conflict detection since 2009. We

have identified 10 tools, 23 models, and 14 case studies that have proposed conflict detection while

using NLP techniques. We gathered that there is no known automated conflict detection model in

software requirements using NLP techniques and contextual rules. Finally, we applied our

approach to our data set and achieved complete conflict detection by comparing manual and

automated testing.

Keywords: conflict detection, inconsistency detection, automated requirements analysis, Natural

Language Processing (NLP), software requirements

vii

TABLE OF CONTENTS

DECLARATION ... i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

COPYRIGHT STATEMENT.. iii

ACKNOWLEDGEMENTS ... iv

ABSTRACT ... vi

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

1. CHAPTER 1: INTRODUCTION.. 13

 Background Study ... 13

1.1.1 Conflict Detection in Software Requirements .. 13

1.1.2 Conflict Detection Using NLP Techniques .. 13

 Problem Statement .. 14

 Proposed Methodology .. 15

1.3.1 Research Contribution ... 15

 Thesis Organization .. 16

2. Chapter 2: Literature Review ... 19

2.1. Review Protocol .. 19

2.1.1. Categories Definition .. 19

2.1.2. Selection and Rejection Criteria .. 20

2.1.3. Search Process.. 21

2.1.4. Quality Assessment .. 23

2.1.5. Data Extraction and Synthesis ... 25

2.2. Research and Analysis ... 26

2.2.1. Conflict Detection Models and Algorithms ... 26

2.2.2. Conflict Detection Tools ... 27

2.2.3. Conflict Detection Specific Case Studies/Data Sets ... 29

2.3. Research Gaps .. 30

3. Chapter 3: Proposed Methodology .. 33

3.1. Targeted Problem .. 33

3.1.1. Requirements Engineering Phases ... 35

3.1.2. Detecting Conflicts during Requirements Analysis .. 36

3.2. Proposed Solution ... 37

4. Chapter 4: Implementation ... 40

4.1. Requirements Specification ... 40

4.2. NLP Pre-Processing Techniques .. 41

viii

4.3. Transformation Contextual Rules .. 42

4.3.1. Extracted Text Classification .. 42

4.3.2. Contextual Rules .. 43

4.4. Conflict Detection Architecture ... 45

5. Chapter 5: Verification and Validation... 48

5.1. CMS Requirements Data Set ... 48

5.1.1. Requirement Specification .. 48

5.1.2. Conflict Detection Algorithm.. 49

5.1.3. Conflict Detection Verification ... 54

5.2. PMRB Software Development QA Guidance Document .. 61

5.2.1. Requirement Specification .. 61

5.2.2. NLP Pre-Processing.. 62

5.2.3. Conflict Detection Verification ... 63

Chapter 6: Discussion and Limitation .. 73

6.1. Discussion .. 73

6.2. Limitations .. 74

Chapter 7: Conclusion and Future Work .. 76

REFERENCES ... 77

ix

LIST OF FIGURES

Figure 1.1: NLP Techniques ... 14

Figure 1.2: Conflict Detection Process.. 14

Figure 1.3: Research Flow .. 15

Figure 1.4: Thesis Outline... 17

Figure 2.1: Search Process .. 23

Figure 2.2: Selected Researches per Year .. 24

Figure 2.3: Selected Publishers per Year ... 24

Figure 3.1: The Software Development Life Cycle (SDLC) ... 33

Figure 3.2: All Stages of SDLC ... 34

Figure 3.3: Requirements Engineering Process ... 35

Figure 3.4: Iterative Requirement Engineering Process .. 36

Figure 3.5: Requirements Analysis Process.. 37

Figure 3.6: Commonly used NLP Techniques .. 38

Figure 4.1: Requirements Specification.. 40

Figure 4.2: NLP Pre-Processing Techniques used.. 41

Figure 4.3: Architecture of Automated Conflict Detection .. 45

Figure 5.1: Requirements Specification.. 49

Figure 5.2: Libraries used in Conflict Detection Algorithm .. 49

Figure 5.4: NLP Pre-Processing Techniques Part 2 ... 50

Figure 5.3: NLP Pre-Processing Techniques Part 1 ... 50

Figure 5.5: NLP Pre-Processing Techniques Part 3 ... 50

Figure 5.6: Classification of Labels Part 1 ... 51

Figure 5.7: Classification of Labels Part 2 ... 51

Figure 5.8: Processed Requirements List ... 52

Figure 5.9: Contextual Rules Part 1 ... 52

Figure 5.11: Contextual Rules Part 3 ... 53

Figure 5.10: Contextual Rules Part 2 ... 53

Figure 5.12: Automated Conflict Detection for R0 .. 54

Figure 5.13: Automated Conflict Detection for R1 .. 55

Figure 5.14: Automated Conflict Detection for R2 .. 55

Figure 5.15: Automated Conflict Detection for R3 .. 56

Figure 5.16: Automated Conflict Detection for R4 .. 56

Figure 5.17: Automated Conflict Detection for R5 .. 57

Figure 5.18: Automated Conflict Detection for R6 .. 57

Figure 5.19: Automated Conflict Detection for R7 .. 58

file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163649
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163667
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163668
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163669
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163670
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163671
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163673
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163674
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163675
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163676
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163677
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163678
file:///C:/Users/alena/Desktop/D-Day/Defense.3.docx%23_Toc16163680

x

Figure 5.20: Automated Conflict Detection for R8 .. 58

Figure 5.21: Automated Conflict Detection for R9 .. 59

Figure 5.22: Requirements Specification .. 62

Figure 5.23: Processed Requirements List ... 63

Figure 5.24: Automated Conflict Detection for R0 .. 64

Figure 5.25: Automated Conflict Detection for R1 .. 64

Figure 5.26: Automated Conflict Detection for R2 .. 65

Figure 5.27: Automated Conflict Detection for R3 .. 65

Figure 5.28: Automated Conflict Detection for R4 .. 66

Figure 5.29: Automated Conflict Detection for R5, R6, R7, and R8 .. 66

Figure 5.30: Automated Conflict Detection for R9 .. 67

Figure 5.31: Automated Conflict Detection for R10 .. 67

Figure 5.32: Automated Conflict Detection for R11 .. 68

Figure 5.33: Accuracy, Recall, and Precision Score Interpretation for Results 71

xi

LIST OF TABLES

Table 2.1: Details of research works per database ... 20

Table 2.2: Details of search terms and search results .. 22

Table 2.3: Data Extraction and Synthesis .. 25

Table 2.4: Conflict Detection Models and Algorithms ... 27

Table 2.5: Conflict Detection Tools .. 28

Table 2.6: Conflict Detection specific Case Studies/Data Sets ... 29

Table 2.7: Comparison of Selected Researches .. 30

Table 4.1: Contextual Rules .. 43

Table 5.1: Automated Testing Results for CS1 .. 59

Table 5.2: Manual Testing Results for CS1 .. 60

Table 5.3: Automated Testing Results for CS2 .. 68

Table 5.4: Manual Testing Results for CS2 .. 69

Table 5.5: Comparison of Automated Vs Manual Testing for CS2 ... 70

12

Chapter 1

 Introduction

13

1. CHAPTER 1: INTRODUCTION

This chapter offers a detailed introduction of our research. Section 1.1 discusses the

background study, Section 1.2 presents the problem statement, Section 1.3 gives proposed

methodology in, and Section 1.4 contains thesis organization.

 Background Study

The purpose of providing the background study is to introduce the main concepts used in

this research. The concepts involved are; 1) Conflict detection in software requirements, and 2)

Conflict detection using NLP techniques. The details of the following are given in subsequent

sections.

1.1.1 Conflict Detection in Software Requirements

Gathering requirements can be a long and arduous task in the Software Development Life

Cycle (SDLC), and this task can result in errors that can be a cause of worry later on.

Understanding the root cause of false requirements is a necessity in order to avoid adverse effects

of eliciting and incorporating wrong requirements that can ultimately hinder the progress of an

efficient software project. The analysis and detection of conflicts in the requirements phase are

one of the most critical tasks in requirements engineering [1].

1.1.2 Conflict Detection Using NLP Techniques

Requirement elicitation and analysis is one of the main step in the development of a

product. Usually this involves a list of reasons that can hinder proper and efficient requirements

elicitation, analysis and specification. One of the issues faced is conflict emergence between

requirements’ documents. If the requirements are not processed and issues not found and corrected,

the base of a product starts as hollow. For software requirements, there have been methods and

techniques introduced and adapted over the years to weed out the conflicts, inconsistencies, and

ambiguities amongst other issues. One of the most commonly used technique is Natural Language

14

Processing (NLP) on a set of requirements. NLP is done on any set of requirements using a number

of pre-processing techniques as shown in Figure 1.1 [2].

In order to find conflicts in software requirements, a set of rules are applied in an order of

hierarchy of loops, rules and parameters to find out the requirements that can have conflict amongst

them. This completes the conflict detection architecture of our targeted problem’s solution.

Figure 1.2: Conflict Detection Process

 Problem Statement

Due to the growing complexity of products, it has become vital to find out issues in

software requirements at an early stage. Detecting conflicts has become difficult in parallel.

Moreover, hidden conflicts can cause issues in all the leading steps in a products’ development

lifecycle. To avoid these problems, conflicts must be found at the requirements engineering phase.

Without a proper method to evaluate requirements or a set of rules to identify general categories

of conflicts in requirements, the problem statement becomes moot. So, in order to detect in

software requirements, we have proposed a set of rules using the Natural Language Processing

(NLP) to detect conflicts in a set of requirements by a method of comparison. This has led to the

results being a collective findings of “Yes” and “No” in terms of conflicts between the compared

requirements.

Figure 1.1: NLP Techniques

15

 Proposed Methodology

The entire research is done in a systematic way. Flow of the research is shown in Figure

1.3. First of all, we identify the problem, then we propose a solution to the identified problem.

Then, we carry out a comprehensive systematic literature review which becomes the foundation

of the proposed solution. Researches related to the proposed solution are analyzed and compared.

Figure 1.3: Research Flow

1.3.1 Research Contribution

Contributions from this research work are two-fold i.e. finding all the existing tools,

methods and algorithms used in the detection of conflicts in software requirements and devising a

set of rules using NLP to detect conflicts in a set of software requirements. Detailed set of

contributions of the proposed approach are as follows:

 We have researched and collected existing tools, techniques, models, and algorithms and

specific conflict detection case studies or data sets.

 We have further researched the use of NLP techniques most common to finding specific

issues in software requirements.

 We have worked on an algorithm that uses these common NLP techniques and applied

them during multiples phases of our algorithm to detect conflicts in our data set of software

requirements.

 We have proposed an algorithm based approach in order to obtain our results.

16

The main artifact produced during this approach is a complete set of rules to compare

processed requirements to detect conflicts. Other artifacts in the development phase include using

NLP techniques after the requirements are read and stored in a matrix and again during the

comparison phase of our development. The entire development is done using Python on the

PyCharm Educational Setup with the Natural Language Toolkit (NLTK). We have provided

validation of our proposed work using manual testing and automated testing of the requirements

and comparing the results of both. We have used a set of local requirements for training and a

Quality Assurance document to test out our proposed algorithm.

 Thesis Organization

Organization of the thesis is represented in Figure 1.4. Chapter 1: Introduction offers a

brief introduction containing the background study, problem statement, research contribution and

thesis organization. Chapter 2: Literature Review provides the detailed literature review

highlighting the work done in the domain of software requirements analysis and NLP. Chapter 3:

Proposed Methodology covers the details of proposed methodology used for identification of

problem. Chapter 4: Implementation presents the detailed implementation regarding the

proposed algorithm. Chapter 5: Validation provides the validation performed for our proposed

methodology using two important case studies. From the two case studies selected, one is for

training of data and the second is for testing of our proposed algorithm. Chapter 6: Discussion

And Limitation contains a brief discussion on the work done and also contains the limitations to

our research. Chapter 7: Conclusion And Future Work concludes the research and recommends

a future work for the research.

17

Chapter 1
Introduction

Chapter 2
Literature

Review

Chapter 3
Proposed

Methodology

Chapter 4
Implementation

Chapter 5
Conclusion and

Future Work

Chapter 6
Discussion and

Limitation

Chapter 5
Validation

Figure 1.4: Thesis Outline

18

Chapter 2

 Literature Review

19

2. Chapter 2: Literature Review

This chapter presents the literature review carried out for the research. Section 2.1 discusses

the review protocol, Section 2.2 presents the results obtained from the review protocol and Section

2.3 highlights the research gaps which form the foundation of our research.

2.1. Review Protocol

We carried out the review protocol development for our study, based on already defined

Systematic Literature Review by Kitchenham [3]. This review protocol demonstrates the category

definition, criteria of selection and rejection, assessment of quality, extraction of data and the

mechanism used for data synthesis. The details of these elements are given in following

subsections.

2.1.1. Categories Definition

We define three categories to simplify the data extraction and synthesis process. The

description of each category is given below.

Software Requirements: This category sets the start of research collection for our study. This

included software requirements and the issues found in requirements during elicitation, analysis

or specifications phase of requirements phase in the development lifecycle of a product.

Conflict Detection: This category deals with all the studies that focused on conflict detection in

software requirements. This includes all the software requirements based studies that focused on

finding conflicts. Conflict detection alone in software specific requirements were not quite enough,

so any set of requirement for any product that focused on conflict detection was included to start

with a database of studies.

Natural Language Processing Techniques: Further categories include the use of Natural

Language Processing (NLP) techniques in detection of conflicts in software requirements

irrespective of a specific industry. This includes all studies that make the use of one or more

techniques of NLP on a set of requirements to focus on conflict detection.

20

2.1.2. Selection and Rejection Criteria

The standard and benchmark for the inclusion and exclusion of this study are declared by

using seven parameters. These factors defined to certify the validness of the responses of our

questions. The studies that do not comply with and do not fulfill these six parameters are not

considered. Selection parameters for research works are given below:

1. Subject Relevance: We selected only those papers that dealt with conflict detection in

requirements and NLP. Further selection was done on the basis of the responses of the

research questions that we asked for. Furthermore, we rejected unrelated research studies

that did not include both conflict detection and NLP in them.

2. 2009-2018: We ensured the collection of the latest studies by opting for those studies which

lie in the years 2009 to 2018, and by not considering those researches that lie outside of

our selected time range.

3. Publishers: Primarily four famous scientific databases were used, which are IEEE, ACM,

ELSEVIER, and SPRINGER; to ensure the inclusion of authentic and state of the art

research works we opted for those papers which have been brought forward by the

specified publishers. Details are given in Table 2.1.

4. Result-oriented: The studies that we opted for are model/algorithm oriented with focus on

NLP.

5. Redundancy: We rejected redundant research studies and only most outstanding one of

them was used.

6. Valid models/algorithms used: Selected researches that proposed algorithms or used

existing models for conflict detection.

Table 2.1: Details of research works per database

Sr.#
Scientific

Database
Type

Selected Research

Works
No. of Researches

1 IEEE

Journal 0 0

Conference [4-12] 9

2 SPRINGER Journal 0 0

21

Conference 0 0

3 ELSEVIER

Journal [13-16] 4

Conference [17, 18] 2

4 ACM

Journal 0 0

Conference [19-26] 8

2.1.3. Search Process

The selection and rejection criteria depicts that we have opted for four prime databases of

publication (i.e. ACM, IEEE, Springer and Elsevier) to perform the systematic literature review

process. We used “2009–2018” year-filter on all the search terms to get the searches put out during

2009–2018, merely. Some of the search terms included (e.g. Conflict detection, software

requirements, inconsistency detection, automated requirement analysis, requirement analysis, and

NLP) as mentioned in Table 2.2. We used the “AND” operator to accomplish the possible

investigation outcomes necessary for our study. We followed the search process flow diagram as

illustrated in Figure 2.1.

1. Identification: We specified multiple search expressions in four scientific

databases and got about 36, 563 results.

2. Screening: We excluded 35,060 studies in the screening process because their

KWs did not comply with our criteria. Plus, out of 1,503 we excluded 400 further studies

because their title did not comply with our criteria

3. Eligibility: We considered 1,103 researches and by accessing their full text and by

reading their abstracts and results we discarded 978 researches because they did not match

with our selection and rejection criteria. For example., [27] presented an article based on

our keywords but the study was incomprehensible, existing of a single page only and in no

way could contribute to our research. We rejected this study because it did not meet our

eligibility criteria of validation mentioned in Section 2.1.5

4. We performed a thorough qualitative and quantitative study of 122 researches by

extracting their data and synthesizing it later for our research questions. After detailed

22

examination of our 122 papers we rejected 99 studies which did not fulfill our merit

quantitative and qualitative criteria.

5. Included: We finally included remaining 23 papers because they fully comply with

our set criteria for selection and rejection.

6. The details of selected research studies as per the publishers.

Table 2.2: Details of search terms and search results

Search Terms Operator IEEE ACM SPRINGER ELSEVIER

Conflict, software

requirements
AND 124 107 2,397 7,483

Inconsistency,

software

requirements

AND 60 65 607 2,858

Automated

requirement

analysis

AND 480 475 4,907 9,362

Natural language

processing,

requirement

analysis

AND 74 71 2,010 4,497

Natural language

processing, conflict

detection, software

requirement

AND 0 0 130 159

Natural language

processing,

inconsistency

detection, software

requirement

AND 0 0 46 109

23

IEEE
740

SPRINGER
10,637

ACM
718

ELSEVIER
24,468

Rejection on the basis of Keywords (35,060)

Rejection on the basis of Title (400)

Rejection on the basis of Abstract (600)

Rejection on the basis of Overall study (378)

Detailed study of 122 researches

Selected
researches

23

Rejected
researches 99

Figure 2.1: Search Process

2.1.4. Quality Assessment

We established the quality assessment criteria for understanding the importance of our

result from the selected research studies. These criteria also help to define the trustworthiness of

each research work we have selected and its fundamental discoveries:

1. The data evaluation of the researches is free from the ambiguous statements and relies on the

solid facts and theoretical discerning.

2. Selected researches have been validated using appropriate validation techniques and approaches

e.g. validation on some website or using case studies etc.

3. Tools information that has been used to perform different activities that helped us to validate

our findings is provided.

24

4. We have clearly and logically prepared and sorted the research by focusing on themes or ideas

rather than the authors.

5. Uniqueness of the study is another important feature. Therefore, we have only included those

research studies that are published in at least one of the following four well-known and

internationally recognized scientific databases which are: ACM, SPRINGER, IEEE, and

ELSEVIER. Details are shown in Figure 2.2 and Figure 2.3.

Figure 2.2: Selected Researches per Year

Figure 2.3: Selected Publishers per Year

During our data extraction and synthesis phase, quality of research studies reduced due to

our constraints on research and specific keywords. We found that by the time last studies relative

to our study were combined, the scientific library Springer produced zero studies as shown in

Figure 2.3.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Conference Journal

0

2

4

6

8

10

IEEE ACM SPRINGER ELSEVIER

Conference Journal

25

2.1.5. Data Extraction and Synthesis

Table 2.3 shows the data extraction and synthesis performed for our nominated researches

to attain the answers of our research questions. After the data extraction, we conducted an inclusive

analysis on requirements, conflict detection, and NLP.

Table 2.3 contains the details of data extraction and synthesis. We have defined some

parameters, from serial number 2 to 6 for data extraction, from which we extracted the details of

each selected research study to make sure that it conforms to our selection and rejection criteria.

We have defined some parameters, from serial number 7 to 9 for data synthesis, considering these

parameters we have performed detailed investigation of each selected research study. Each

selected research study has been studied and investigated in detail in order to assign it to the

equivalent category. Each selected research study has been studied intensively in order to extract

the correct information regarding the models/algorithms, tools, and data sets as defined in serial

number 7 to 9 respectively.

Table 2.3: Data Extraction and Synthesis

Sr. # Descriptions Details

1 Bibliographic information
Author, Title, Publication Year, Publisher, Type of

Research (Journal/Conference)

Data Extraction

2 Overview Main objective of the selected paper

3 Results Results acquired from the selected paper

4 Data Collection Qualitative and quantitative method used

5 Assumptions To validate the outcome

6 Validation Manual and Automated testing comparison

Data Synthesis

7 Model/Algorithm selection Models and Algorithms used for conflict detection

26

8 Tool Selection Tools used for conflict detection

9 Case study/Data set Requirements data set for conflict detection

2.2. Research and Analysis

We have determined this Systematic Literature from 23 significant research studies and

then we organized the selected researches into three pre-defined categories (Section 2.1.1). This

was done to acknowledge the relevant research work.

2.2.1. Conflict Detection Models and Algorithms

The data extracted to answer this question shows that machine learning, ontology based,

AND Aspect Oriented Requirements Engineering (AORE) based models and algorithms have been

cited by both journals and conferences while semantic and graphic analysis based models and

algorithms have been used in conferences only.

In this research question, we have looked at the models and algorithms from the selected

papers to find a correlation in the types of models and algorithms that have been used until now

and have been used commonly. The studies using machine learning techniques were papers [9, 14,

23]. In papers [8, 10, 15, 17], ontology based models were used to detect conflicts, inconsistencies

and other lexical issues in requirements. Mostly, machine learning models with regression

modeling and ontology based models were used with few using comparative studies and graph

analyses and semantic based models to find conflicts in requirements. The remaining papers [13,

16, 19, 25] used AORE modeling to match requirements to detect conflicts in them. Details of

extracted data is shown in Table 2.4.

27

Table 2.4: Conflict Detection Models and Algorithms

Sr. # Conflict Detection Models
No. of

References
References Identification

1

Machine Learning

(Regression Linear Model, Multi-

Sentence Modelling of

Requirements, K-means)

3 [9, 14, 23]

2

Ontology-based

(OWL, Generalized Upper Model,

Domain Ontologies, Ontology of

Uncertainty)

4 [8, 10, 15, 17]

3

Data Models

(Semantic Data Models, Verb-

centric General Semantic Model)

2 [10, 26]

4

AOP

UML Models, OMG Models

(MDA), Theme/Doc Approach,

KAOS

4 [13, 16, 19, 25]

5 Graph Analysis 1 [4]

6 Study-based 2 [22, 25]

7 Self-Proposed 5 [7, 18, 23, 24, 26]

8 Formal Method 1 [20]

9 Algebric Models 1 [21]

2.2.2. Conflict Detection Tools

This part of our paper presents the tools that were found to be used along with models and

algorithms in detection of conflicts and inconsistencies in software requirements. Tools used were

collected from the selected 23 research papers for our study as shown in Table 2.5.

28

Tools used in the selected studies have been selected on the basis of their usage for

extracting and analyzing conflicts or inconsistencies in requirements. Tools selected belong to both

the research and public sector. Most of the tools are automated (without much focus on conflicts

or specific use of NLP) like Algebraic Grammar Graph, GATE, cTAKES, Open NLP, ReVerb,

GUITAR, SEMIOS, and SAT-Analyzer. Manual tools include: text based retrieval system and

ReqWiki. The only tool that is semi-automated is the Drools Expert. The tools are also categorized

as analyzing tools, extracting tools, or both in the Knowledge category. Most of the tools like

GATE, Open NLP, and Stanford Core NLP are JAVA based Natural Language Processing Tools.

Table 2.5: Conflict Detection Tools

Sr. # Conflict Detection Tools Research Identification

1 Drools Expert [23]

2 Text Based Retrieval System [18]

3
General Architecture for Text

Engineering (GATE)
[23]

4 Algebric Grammar Graph (AGG) [19]

5 cTAKES [21]

6 ReVerb [17]

7
Goal-Use case Integration Tool for

Analysis of Requirements (GUITAR)
[8]

8 SEMIOS [9]

9 ReqWiki [25]

10 SAT-Analyzer [12]

29

2.2.3. Conflict Detection Specific Case Studies/Data Sets

The third research question relative to our study is the collection of specific data sets and

case studies that were used in the selected papers. This section includes a variety of categories

from public repositories of data to industry-specific requirements as shown in Table 2.6.

From the selected 23 researches, a total of 14 studies focused on data sets whereas others

had proposed models and algorithms or focused mainly on a collection of tools and models for

comparison or proposed algorithms related to their study.

Table 2.6: Conflict Detection specific Case Studies/Data Sets

Sr.# Case Study / Data Set
No. of

References

Research

Identification

1 PROMISE Repository 2 [4, 23]

2

Industry Specific

(Italian aerospace and defense company, Clinical

notes, Automotive specifications from Mercedes-

Benz car development, Slot machine, Confidential

aeronautic and automobile data,

Telecommunication Company)

6
[6, 9, 13, 21,

24, 28]

3

Program/System Specific

(Remote Patient Monitoring System (RPMS),

Mozilla & MP- a business application, ATM

system & Complaint System in banks, hostel

management system & Coach tour management

system)

5 [10, 12, 14, 19]

4 Online Data Collection 1 [17]

5 Own Data Set 1 [5]

30

2.3. Research Gaps

This section discusses the research gaps encountered and their possible solutions. We have

collected 23 researches after an extensive screening process to look for researches that provide

automated conflict detection for software requirements. The selected studies have varying test

cases from software requirements, some are industry specific while others have used random

sentences as test cases. The studies also show how few have focused on the use of tools altogether.

Table 2.7 provides an analytical view of the comparison of all 23 researches.

The gap found in our selected studies is that there is no research that worked on conflict

detection using NLP and rule based model nor proposed an automated approach that combines

both our research criteria. However, there are two semi-automated [4, 26] approaches and two

automated approaches: one is a tool [8] and the other is focused on analyzing LTL patterns using

NLP [5].

Table 2.7: Comparison of Selected Researches

S

Sr.#

R
es

ea
rc

h

T
o
o
l

S
u

p
p

o
rt

Model

L
a
n

g
u

a
g
e

 S
p

ec
if

ic
a
ti

o
n

C
o
n

fl
ic

t

S
p

ec
if

ic
a
ti

o
n

Types of

Target

C
a
se

 S
tu

d
y

Im
p

le
m

en
ta

ti
o
n

Developed Proposed

1 [13]   -     

2 [20]   -     

3 [23]  -      

4 [26]  -      

5 [25]   -     

6 [11]   -     

7 [19]        

8 [21]   -     

9 [6]  -      

10 [5]   -     

31

11 [8]   -     

12 [9]   -     

13 [18]  -      

14 [4]  - -     

15 [7]  -      

16 [24]   -     

17 [10]   -     

18 [28]   -     

19 [17]  -      

20 [16]  -      

21 [14]   -     

22 [15]   -     

23 [12]  -      

32

Chapter 3

 Proposed Methodology

33

3. Chapter 3: Proposed Methodology

This chapter contains details of the proposed methodology. Section 3.1 discusses the

targeted problem and Section 3.2 provides detailed proposed solution.

3.1. Targeted Problem

Requirements elicitation is a step in the Software Development Lifecycle (SDLC). In fact,

it is the first phase of the software development lifecycle through which quality software can be

developed according to the customers’ need and handed over to them in any given time [29] as

shown in Figure 3.1.

The Software Development
Life Cycle (SDLC)

Figure 3.1: The Software Development Life Cycle (SDLC)

34

Figure 3.1 shows the five major phases of the SDLC. In detail, there are seven major

phases in the SDLC starting from planning, requirements, design, development, testing,

deployment, and maintenance as shown in Figure 3.2.

Planning

Testing

Requirements

Development

Maintenance

Deployment Design

SDLC

Figure 3.2: All Stages of SDLC

The basic purpose of requirements elicitation is to extract requirements of every scope from

the client and then to process those given requirements into a well-developed requirements

specification document which is then passed off to the next step and becomes the basis of a baseline

upon which all further phases are completed and the eventual software product developed. Usually,

this phase requires the longest time to complete because of the requirement engineers’ going back

and forth with the clients’ or the requirement team from the clients’ end to sort out all requirements

before they can be closed off and passed on to the next phase as a final requirements specification

document. This is done to weed out problems that may arise due to human error such as ambiguity

35

in meaning, conflict and inconsistency in needs, or incompatible priorities of multiples

stakeholders. We have focused on the inconsistent and conflicting requirements during the

requirements analysis step in the requirements engineering phase. Figure 3.3 shows all the steps

in a requirements engineering phase.

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

Requirements
Validation

Requirements
Document

Agreed
Requirements

Clients Input

Figure 3.3: Requirements Engineering Process

3.1.1. Requirements Engineering Phases

In the requirements engineering phase, all steps are iterative. Most importantly, at the

center is the requirements analysis step in which requirements analysts read the gathered set of

requirements, highlight problems, and discuss them in requirements review meetings [30]. This is

time consuming manual process with countless resources being utilized again and again. We have

focused on the requirements analysis, an iterative step of requirements engineering from the

36

software development life cycle to elaborate on a solution which is automated in detecting conflicts

while using the traditional methods of contextual rules, but automated.

Requirements
Elicitation

Requirements
Analysis

Requirements
Negotiation

Requirements
Document Draft

Requirements
Problem

Requirements
Document

Sign Off

Figure 3.4: Iterative Requirement Engineering Process

3.1.2. Detecting Conflicts during Requirements Analysis

In any product development, a concise and true requirements document is vital before the

development phases can commence. In requirements engineering, one of the steps is the

consistency checking and conflict detection of requirements to solve contradictory requirements

issue which can later on impact the development of a software product. The quality of the

requirements phase effects the overall quality of the subsequent phases and hence, the software

37

product. Having a good software requirements specification (SRS) document is essential to a good

final product.

Necessity
 Checking

Consistency and
Completeness

Checking

Feasibility
Checking

Conflicting and
Incomplete

Requirements

Unnecessary
Requirements

Infeasible
Requirements

Figure 3.5: Requirements Analysis Process

3.2. Proposed Solution

We have proposed an automated algorithm based on Natural Language Processing (NLP)

techniques. NLP techniques include contextual rule-based commands like Parts of Speech (PoS)

tagging, word tokenization, lemmatization, and stop word removal amongst many others. NLP

techniques can be used by importing Natural Language Processing Toolkit (NLTK), which is the

most generally used toolkit available and can be used on various platforms.

Our work starts off with inputting a series of lines together in a joint thread of text,

separated by full-stops. In order to separate each requirement as an individual sentence, first of the

NLP technique is used- that is sentence tokenization. This is followed by splitting the complete

38

text into a separate line for each requirement. This way we get a list of requirements. Eventually

we want to compare each requirement against every other requirement so as to form an RxR matrix

of comparisons that is the end result of our algorithm. After slitting the requirements into a separate

line for each requirement, we have used tokenization to separate each word which translate into

an array of items in every row. This will help us extract unnecessary words that can be ignored

like the pronouns and the articles. Another NLP technique being used is the Chunker Parser which

is programmed to sort out a series of tokenized words for each requirement, relative to our

algorithm, on which we have applied our series of contextual rules of comparison to detect conflict

eventually.

We have focused on going back and forth with NLP techniques to fully isolate context

from each requirement after careful isolation of the requirement itself. Normally, NLP techniques

are used in a sequence but our algorithm requires a lot of going back and forth for the eventual use

of contextual rules, something that has made our algorithm successful and automated.

Tokenization

Sentence
Splitting

Parts-of-
Speech
Tagging

Chunking

Stemming

Lemmetization

Stop Word
Removal

Natural Language Pre-
Processing Techniques

Figure 3.6: Commonly used NLP Techniques

39

Chapter 4

 Implementation

40

4. Chapter 4: Implementation

In this chapter we present the implementation phase of our work which contains the use of

NLP techniques, followed by contextual rules application and eventual RxR matrix mapping of

detected conflicts. Firstly pre-processing on input set of requirements is discussed in Section 4.2.

This is followed by discussion of application of Automated Contextual Rules in Section 4.3. Then

the complete architecture of our automated conflict detection is discussed in Section 4.4.

4.1. Requirements Specification

The first part of selection of our requirements is based upon the structure of the sentence.

We propose an approach that extracts chunks from each requirement based on the position of noun

and verb in the sentence, for this, we have specific requirements that make up a clause instead of

a phrase to have inclusion of both the noun and the verb. Another requirement specification is the

written voice of the sentence from two categories: Active Vs Passive Voice. These requirement

specifications are necessary for the logical extraction of processed data from the input

requirements which will later on be indexed in an RxR matrix for comparison and then yielding

the results that will determine if there exists a conflict between two requirements. The flow of

requirements specification is shown in Figure 4.1

Figure 4.1: Requirements Specification

End

Clause

Active
Voice

Sentence Discarded

Selected
Requirement

Transformation
PV -> AV

YES

YES

NO

NO

41

4.2. NLP Pre-Processing Techniques

We have used a self-provided data set of ten software requirements from a Course

Management System (CMS) as our training data set. The requirements are stored in a list directly.

This is then followed by pre-processing techniques of NLP to extract contextual data which is to

be used for contextual rule analysis later on. Figure 4.2 shows the specific techniques used during

the pre-processing step of our model.

Requirements Input

Stop Words
Removal

Text Lowercase

Sentence Separator

Word Tokenization

Line Splitting

Parts-of-Speech
Tagging

Chunker Parsing

Tokenization

Figure 4.2: NLP Pre-Processing Techniques used

42

Figure 4.2 shows the first leg of our algorithm, where after the input requirements are

stored, a series of NLP pre-processing techniques are applied to extract the contextual data we

need for our eventual conflict detection. Details of the used NLP techniques are explained below:

Stop Words Removal: It includes taking text as input and removing stop words like

articles: “The, a, an, in” pronouns, “he, she, and it” or helping words from the text by using

stopwords.word(). The resultant text is a string of words that make up the context of the text.

Text Lowercase: This includes taking text and converting any or all uppercase words into

smaller case words in the text by using text.lower(). This is done to avoid using different indexes

for the same word. Text lowercase is a part of word tokenization and stemming to convert a given

word to its root form.

Sentence Tokenization: Sentence tokenization is done to separate text into a number of

indexes which is equal to the number of sentences present in the original input text corpus by using

sent.tokenize().

Word Tokenization: This is done to extract tokens from string of characters (text) by using

tokenize.word() method. It splits words based on white space and punctuation and results in a

tokenized word.

Parts-of-Speech (PoS) Tagging: It includes reading text and then assigning parts of speech

to each tokenized word by using pos_tag(). Each word is displayed separately along with its part

of speech such as: verb, noun, adjective, etc.

Chunking Parser: It includes chunking together words based on a series of rules parsed to

it. PoS tagging is usually followed by Chunker parsing where the PoS tagged words are passed to

the Chunker function to add more structure to the already processed tokenized words.

4.3. Transformation Contextual Rules

In this section, we have explained the automated text classification into three labels and

then application of contextual rules that are applied on our NLP pre-processed text extracted after

performing a series of NLP techniques.

4.3.1. Extracted Text Classification

Mapping the extracted words from each requirements into a series of labels, we identify

Subject, Action, and Object. We have set these three labels against each extracted word based on

43

the Chunking Parser technique in the last step of using NLP techniques. This provides us with a

set of labels for each requirement, against which later on, we will compare every other requirement.

Setting labels identifies the different PoS tagged words from each requirement.

4.3.2. Contextual Rules

We have developed a set of contextual rules based on identified words against labels. We

have classified labels such as: Subject, Action, and Object for each extracted word from our data

set of requirements. For our approach, we focus only on the direct conflict that occurs for these

three specified labels.

Table 4.1: Contextual Rules

Rule # Contextual Rules
Conflict Detection

(Conflict/No Conflict)

Rule 1

Subject = Subject

No Conflict Action = Action

Object = Object

Rule 2

Subject = Subject

Conflict Action ≠ Action

Object = Object

Rule 3

Subject = Subject

No Conflict Action = Action

Object ≠ Object

Rule 4 Subject = Subject No Conflict

44

Action ≠ Action

Object ≠ Object

Rule 5

Subject ≠ Subject

Conflict Action = Action

Object = Object

Rule 6

Subject ≠ Subject

No Conflict Action ≠ Action

Object = Object

Rule 7

Subject ≠ Subject

No Conflict Action = Action

Object ≠ Object

Rule 8

Subject ≠ Subject

No Conflict Action ≠ Action

Object ≠ Object

In Table 4.1, we have presented the 8 contextual rules that will automate the conflict

detection on our selected requirements data set, with the initial modeling applied beforehand.

These rules are developed on the basis of extracted context set against the three identified labels

of Subject, Action, and Object. In this way of extracting only the informational text from a

requirement, we lose the possibility of Mis-identifying context. Mis-identified text against a large

45

set of labels or without labels can change the context of a requirement during comparison modeling

and the conflict is improperly identified or not identified at all.

4.4. Conflict Detection Architecture

Complete architecture of our automated conflict detection is described in detail in Figure

4.3. We have implemented an automated conflict detection architecture based on algorithm based

test case idea. This conflict detection architecture fully automates the conflict detection process in

the Requirements Engineering phase in the SDLC by providing automated comparison of test case.

Our conflict detection architecture is composed of three main components which are NLP

techniques, Extracted words labeling and classification, and Contextual Rules application. Details

of each component in a flow are described below.

NLP Pre-processing
Techniques

Label Classification

Contextual Rules

Main

Main

Main

Test Case
Input

RxR Comparison
 Matrix

Conflict Detection Architecture

Figure 4.3: Architecture of Automated Conflict Detection

46

Test Case Input: Test cases are a set of requirements fed into the input variable “text”

directly as a series of sentences that will be separated afterwards.

NLP Pre-processing: Starting from main sequence, the pre-input test case is split and

separated into R number of lines per requirement. This is followed by a series of NLP pre-

processing techniques as presented in Figure 4.2.

Label Classification: NLP pre-processing on test case is followed by label classification

on the resultant extracted words from each test case requirement. This will be vital during the

conflict detection contextual rules because label classification is done to arrange the words in a set

sequence.

Contextual Rules: The final step is the application of a set of contextual rules on the

extracted set of labeled and extracted words from the initial test case. The rules defined in Table

4.1 are applied against a matrix of RxR where each requirement is compared against every other

requirement to detect conflicts according to the contextual rule set.

After successful flow of functions, the architecture gives an RxR matrix with results such

as “Conflict” or “No Conflict” for each requirement against every other. For ease of showing, we

have worked to display the resultant RxR matrix as a series of sentences displaying the end result

for every comparison made between the test case requirements.

47

Chapter 5

 Validation

48

5. Chapter 5: Verification and Validation

In this chapter, the applicability and validity of our proposed approach is presented with

the help of a CMS based requirements data set used as our test case along with a manual and

automated testing comparison. Section 5.1 presents the case study used for training of our

algorithm and Section 5.2 presents the case study chosen for our test case.

5.1. CMS Requirements Data Set

The data set for our research and implementation has been explained and validated using

four sections. Section 5.1.1 covers the requirement specification of our CMS requirements specific

to software requirements. Section 5.1.2 presents the NLP techniques pre-processing on our data

set using the NLTK in the tool PyCharm, Classification of extracted words into set labels, and the

last step of contextual rules application on the classified and extracted use case. Lastly, the

resultant automated conflict detection verification is presented in 2 parts in Section 5.1.3. The

Section 5.1.3.1 presents the automated conflict detection and the Section 5.1.3.2 presents the

manual conflict detection respectively. Section 5.1.3.3 gives a comparison analysis of both testing

methods used in our approach.

5.1.1. Requirement Specification

The purpose of our study is the detection of conflicts in software requirements during the

Requirements Engineering phase of SDLC [29]. To validate our study, we have chosen ten

software requirements from a Course Management System. The requirements are selected on a

basis of requirement specifications that fit our criteria as shown in Figure 5.1.

49

Figure 5.1: Requirements Specification

Figure 5.1 shows the carefully selected requirements based on the requirements

specification set for the requirements that will be used as test case in our approach.

5.1.2. Conflict Detection Algorithm

In this section, we have discussed the complete flow of our architecture along with the

models, techniques and processes used. Figure 4.3 shows the flow process of our conflict detection

algorithm. In Section 5.1.2.1 the NLP techniques pre-processing on our data set using the NLTK

in the tool PyCharm are discussed. Section 5.1.2.2 discusses the classification of extracted words

into set labels. In section 5.1.2.3 the last step of contextual rules application on the classified and

extracted use case is discussed.

5.1.2.1. NLP Pre-Processing Techniques

Starting off, we used the libraries from the Natural Language Tool Kit (NLTK) in the

PyCharm setup as shown in Figure 5.2. This section presents the all-around of NLP techniques in

our implementation phase of our study as shown in Figure 5.3, Figure 5.4, and Figure 5.5.

Figure 5.2: Libraries used in Conflict Detection Algorithm

50

Figure 5.3 presents the use of NLP techniques: stop words removal, lowercase transition, and

tokenization. These are the pre-processing steps from our NLP selected techniques that are

performed on the whole sentence. Figure 5.4 then presents the splitting of input sentences into

new lines as a pretext to storing our test cases into a matrix. Finally, Figure 5.5 presents the altered

chunkParser that is performed on the data to extract our final test cases.

Figure 5.4: NLP Pre-Processing Techniques Part 1

Figure 5.3: NLP Pre-Processing Techniques Part 2

Figure 5.5: NLP Pre-Processing Techniques Part 3

51

5.1.2.2. Classification of Labels

NLP pre-processing on our data set is followed by classification of labels. This step of the

algorithm also deals with excess of extracted words that don’t meet our standard set of three-

specific set of word and can cause problem during comparison phase of the algorithm in the flow

of our architecture. Figure 5.6 and Figure 5.7 present the steps used for this step.

Figure 5.6: Classification of Labels Part 1

Figure 5.7: Classification of Labels Part 2

52

5.1.2.3. Contextual Rules

Following NLP pre-processing and classification of labels, we get a new list of processed

requirements, as shown in Figure 5.8.

Figure 5.8: Processed Requirements List

Following the transformation of test cases into our required set of requirements, we applied

a series of contextual rules on the resultant list of strings. We discussed earlier about having set

three labels for classification, and following this, the rules were devised on the basis of 23 which

came to a total of 8 sets of rules as shown in Table 4.1. Further showing the steps in our algorithm,

Figure 5.9, Figure 5.10, and Figure 5.11 show the coded format of applying conditional

contextual rules.

Figure 5.9: Contextual Rules Part 1

53

Figure 5.11: Contextual Rules Part 2

Figure 5.10: Contextual Rules Part 3

54

5.1.3. Conflict Detection Verification

For verification of our algorithm, we have devised two-standard testing verification. First

we evaluated the use case and manually calculated the conflicts amongst each requirement which

are explained in Section 5.1.3.1. After the complete of our algorithm was achieved and conflicts

detected in an automated manner, we saved those results, which are explained in Section 5.1.3.2.

The comparison of both our testing methods is further evaluated, compared, and explained in

Section 5.1.3.3.

5.1.3.1. Automated Results

When the comparison is performed on the final set of processed requirements, we get a

direct display of sentences presenting whether there is a conflict between RxR. Figure 5.12,

Figure 5.13, Figure 5.14, Figure 5.16, Figure 5.16, Figure 5.17, Figure 5.18, Figure 5.19, Figure

5.20, Figure 5.21 show the automated results that we have achieved for all ten specified

requirements as our test case.

Figure 5.12: Automated Conflict Detection for R0

55

Figure 5.13: Automated Conflict Detection for R1

Figure 5.14: Automated Conflict Detection for R2

56

Figure 5.16: Automated Conflict Detection for R3

Figure 5.15: Automated Conflict Detection for R4

57

Figure 5.17: Automated Conflict Detection for R5

Figure 5.18: Automated Conflict Detection for R6

58

Figure 5.19: Automated Conflict Detection for R7

Figure 5.20: Automated Conflict Detection for R8

59

Figure 5.21: Automated Conflict Detection for R9

These are automated results, according to which there are 2 conflicts in total out of ten

requirements as our test case, the detection based on comparisons is shown in Table 5.1.

Table 5.1: Automated Testing Results for CS1

 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

R0 NC NC NC NC NC NC NC NC NC NC

R1 NC NC NC NC NC NC NC NC NC NC

R2 NC NC NC NC NC NC NC NC NC NC

R3 NC NC NC NC C NC NC NC NC NC

R4 NC NC NC C NC NC NC NC NC NC

R5 NC NC NC NC NC NC NC NC NC NC

R6 NC NC NC NC NC NC NC NC NC NC

R7 NC NC NC NC NC NC NC NC NC NC

R8 NC NC NC NC NC NC NC NC NC NC

R9 NC NC NC NC NC NC NC NC NC NC

60

5.1.3.2. Manual Results

For verification of our proposed automated model for conflict detection, we also worked

on manual testing as a way of comparison between the limited parameters of our test cases. Table

5.2 presents the results of manual testing done on the initial requirements chosen as test case for

our model.

Table 5.2: Manual Testing Results for CS1

 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

R0 NC NC NC NC NC NC NC NC NC NC

R1 NC NC NC NC NC NC NC NC NC NC

R2 NC NC NC NC NC NC NC NC NC NC

R3 NC NC NC NC C NC NC NC NC NC

R4 NC NC NC C NC NC NC NC NC NC

R5 NC NC NC NC NC NC NC NC NC NC

R6 NC NC NC NC NC NC NC NC NC NC

R7 NC NC NC NC NC NC NC NC NC NC

R8 NC NC NC NC NC NC NC NC NC NC

R9 NC NC NC NC NC NC NC NC NC NC

As this is our training set of requirements, the results for automated and manual testing is

exactly the same and thus, gives 100% accuracy.

5.1.3.3. Verification and Comparison of Results

When the automated and manual test results are compared, there is a 100% correct match

in comparison. Overall, out of a test case of ten requirements, performing RxR comparison against

each requirement against every other requirement as shown and highlighted in Table 5.2 we have

61

found two cases of conflicts. Further details regarding these test results is discussed in Chapter 6

and Chapter 7.

5.2. PMRB Software Development QA Guidance Document

We have used a the PMRB Software Development QA Guidance document develop by the

US Environmental Protection Agency [31] as our case study to verify our research study and

proposed approach.. In the implementation phase, the pre-processing and application of contextual

rules is the same as Section 5.1.2.1, Section 5.1.2.2, and Section 5.1.2.3. The resultant comparison

varies on the basis of extracted words and the comparison between requirements in the RxR table.

For this case study, Section 5.2.1 presents the requirements specification of the PMRB

Software Development QA Guidance document’s sub-part of the “Software Delivery Terms and

Conditions” as our second set of requirements test case. Section 5.2.2 presents the set of extracted

words after NLP pre-processing and before the application of results. Section 5.2.3 presents the

testing methods, results, and the verification of results by comparison. Furthermore, Section

5.2.3.1 presents the automated results performed on the new test cases, and Section 5.2.3.2 presents

the manually testing and results on the requirements. Finally, Section 5.2.3.3 gives a comparison

analysis of both testing methods to verify the results in our approach.

5.2.1. Requirement Specification

The case study chosen is from the US Environmental Protection Agency’s Office of

Research and Development (ORD), and furthermore, the specific set of requirements is from the

specific part “Software Delivery and Terms” part of the QA document. The requirements chosen

correlate in terms of structure to our training requirements data set and are 12 in number with sub-

requirements that are taken into consideration for the testing and verification. Figure 5.22 shows

the requirements specification from our selected case study.

62

Figure 5.22: Requirements Specification

5.2.2. NLP Pre-Processing

Following the application of NLP Pre-processing and list indexing as explained in Section

5.1.2.1 and Section 5.1.2.2, we get a set of extracted words as our processed test case as shown in

Figure 5.23.

63

Figure 5.23: Processed Requirements List

Following the transformation of initial raw test cases into processed set of extracted words

as requirements, we applied a set of contextual rules as shown in Section 5.1.2.3. However, as the

case study is in its raw form with conflicts in terms of syntax, structure and logic to the

requirements displayed in the specific document, our approach has produced varying results. The

case study does not entirely adjust to our approach which has resulted in lacking automated results

as shown in the following sections.

5.2.3. Conflict Detection Verification

For verification, we have performed two-step testing: automated testing as done using our

proposed approach for conflict detection, and manual testing of the true conflicts in the set of

requirements. Section 5.2.3.1 presents the automated testing, Section 5.2.3.2 presents the manual

testing method, and Section 5.2.3.3 presents the verification and comparison of both testing

methods on the test cases.

5.2.3.1. Automated Results

When the comparison is performed on the final set of processed requirements, we get a

direct display of sentences presenting whether there is a conflict between RxR. For the processed

test cases where not enough words are classified in labels for our processed list of requirements,

the model does not pick them up and the comparison is shown as null, this is done to avoid Mis-

identifying conflicts on the basis of their indexing in lists.

64

Following Figures shows the automated results that we have achieved for all eleven

specific requirements.

Figure 5.24: Automated Conflict Detection for R0

Figure 5.25: Automated Conflict Detection for R1

65

Figure 5.26: Automated Conflict Detection for R2

Figure 5.27: Automated Conflict Detection for R3

66

Figure 5.28: Automated Conflict Detection for R4

Figure 5.29: Automated Conflict Detection for R5, R6, R7, and R8

As shown in Figure 5.29, the comparison matrix for requirements that have not enough

contextually extracted words is left to 0. We have set the baseline for extracted words to be three

in order to satisfy the classification labelling of Subject, Action, and Object which is the pre-lude

to our comparison matrix.

67

Figure 5.30: Automated Conflict Detection for R9

Figure 5.31: Automated Conflict Detection for R10

68

Figure 5.32: Automated Conflict Detection for R11

For Figure 5.30, Figure 5.31, and Figure 5.32, the contradiction comparison follows, as

shown above. Detected Conflicts found through automated testing are shown in Table 5.3:

Automated Testing Results for CS2.

Table 5.3: Automated Testing Results for CS2

 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

R0 NC NC NC NC NC NC NC NC NC NC C NC

R1 NC NC NC NC NC NC NC NC NC NC NC NC

R2 NC NC NC NC NC NC NC NC NC NC NC NC

R3 NC NC NC NC NC NC NC NC NC NC NC NC

R4 NC NC NC NC NC NC NC NC NC NC NC NC

R5 NC NC NC NC NC NC NC NC NC NC NC NC

R6 NC NC NC NC NC NC NC NC NC NC NC NC

R7 NC NC NC NC NC NC NC NC NC NC NC NC

R8 NC NC NC NC NC NC NC NC NC NC NC NC

69

R9 NC NC NC NC NC NC NC NC NC NC NC NC

R10 C NC NC NC NC NC NC NC NC NC NC NC

R11 NC NC NC NC NC NC NC NC NC NC NC NC

5.2.3.2. Manual Results

For verification of our proposed automated model for conflict detection, we also worked

on manual testing as a way of comparison between the limited parameters of our test cases. Table

5.4 presents the results of manual testing done on the case study chosen.

Table 5.4: Manual Testing Results for CS2

 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

R0 NC NC NC NC NC NC NC NC NC NC C C

R1 NC NC NC NC NC NC NC NC NC NC NC NC

R2 NC NC NC NC NC NC NC NC NC NC NC NC

R3 NC NC NC NC NC NC NC NC NC NC NC NC

R4 NC NC NC NC NC NC NC NC NC NC NC NC

R5 NC NC NC NC NC NC NC NC NC NC NC NC

R6 NC NC NC NC NC NC NC NC NC NC NC NC

R7 NC NC NC NC NC NC NC NC NC NC NC NC

R8 NC NC NC NC NC NC NC NC NC NC NC NC

R9 NC NC NC NC NC NC NC NC NC NC NC NC

R10 C NC NC NC NC NC NC NC NC NC NC C

R11 C NC NC NC NC NC NC NC NC NC C NC

70

From the manual testing, we have found 6 conflicts based on RxR matrix’s 12x12

comparisons which equals to a total of 144 comparisons.

5.2.3.3. Verification and Comparison of Results

In Section 5.2.3.2, the model displayed two correct conflict detections as shown in Table

5.4. After performing a comparison on the two testing methods, we get 2 correctly detected

conflicts from our automated approach, out of 6 known conflicts as shown in Table 5.5.

Table 5.5: Comparison of Automated Vs Manual Testing for CS2

 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

R0 NC NC NC NC NC NC NC NC NC NC C C

R1 NC NC NC NC NC NC NC NC NC NC NC NC

R2 NC NC NC NC NC NC NC NC NC NC NC NC

R3 NC NC NC NC NC NC NC NC NC NC NC NC

R4 NC NC NC NC NC NC NC NC NC NC NC NC

R5 NC NC NC NC NC NC NC NC NC NC NC NC

R6 NC NC NC NC NC NC NC NC NC NC NC NC

R7 NC NC NC NC NC NC NC NC NC NC NC NC

R8 NC NC NC NC NC NC NC NC NC NC NC NC

R9 NC NC NC NC NC NC NC NC NC NC NC NC

R10 C NC NC NC NC NC NC NC NC NC NC C

R11 C NC NC NC NC NC NC NC NC NC C NC

In Table 5.5, green shows the correctly detected conflicts, and red shows the Mis-identified

conflicts in automated as compared to the manual testing method. This presents our results in terms

of Accuracy, Recall, and Precision [32] as shown in Figure 5.33 as follows:

71

Figure 5.33: Accuracy, Recall, and Precision Score Interpretation for Results

 Accuracy:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Accuracy = (2 + 138) / (2 + 138 + 0 + 4)

Accuracy = 0.97

Based on Figure 5.33, the accuracy of our approach based on the given metrics is 0.97 or

97%.

 Recall

Recall = (TP) / (TP + FN)

Recall = (2) / (2 + 4)

Recall = 0.33

Based on Figure 5.33, the recall of our approach based on the given metrics is 0.33 or 33%.

 Precision

Precision = (TP) / (TP + FP)

Precision = (2) / (2 + 0)

Precision = 1

Based on Figure 5.33, the precision of our approach is 1, or 100%. High precision relates

to low false positive rate [32], which in our approach comes to 100%. This is mainly

because our method is bound by contextual rules and cannot Mis-identify non-conflicts.

72

Chapter 6

Discussion and Limitation

73

Chapter 6: Discussion and Limitation

This chapter presents a detailed discussion and the limitations encountered in this research

work. Discussions are shown in Section 6.1 and limitations to the research are presented in Section

6.2.

6.1. Discussion

From this research, it has been analyzed that there is a limited approach to automating

conflict detection in software requirements during the Requirements Analysis step in

Requirements Engineering phase in the SDLC. Most of the work has been proposed with varying

data sets and is done manually. Our proposed approach is a first step towards automating conflict

detection in software requirements using NLP techniques and contextual rules.

The approach we have proposed examines processed test cases using our classification

labels and contextual rules which are based on a result of a technique of NLP, namely – Chunking.

The use of NLP was encouraged because of the NLP toolkits available and the flexibility of NLP

techniques. This motivated us to study NLP further and include it in our data extraction and

synthesis section of research as well. Motivation behind this work is to provide an automated

approach to conflict detection by extracting phrases from a sentence that can assist to conflict,

inconsistency or doubt. The test cases are thoroughly processed and the flow of the algorithm is

transparent so that their movement can be tracked as they are processed. The generated test cases

follow a pattern of words so that comparison can be made without any inconsistency.

Our approach is a proposed algorithm and the tool isn’t developed yet. But it is a step

forward in our research case study of conflict detection.

Our selected requirements for test case are medium complexity sentences in English. The

requirements were ten in number with varying degrees of length and structure. The purpose was

to determine the exact and concise sequence of phrases that could be extracted for comparison

analysis later on.

74

6.2. Limitations

As we have taken the first step towards automating conflict detection in software

requirements using NLP techniques and contextual rules based on NLP techniques, specifically,

extracted set of sequenced words from a requirement, there are a few limitation to our work. NLP

techniques are quite flexible but its limitations increase with increase in the complexity of

sentences. This in turn increases the pre-processing of test cases which becomes a project of its

own. This is our limitation in our approach.

75

Chapter 7

Future Work

76

Chapter 7: Conclusion and Future Work

The proposed research gives a way in the direction of detailing requirements efficiently

during the SDLC of a software project. Automated detection of conflicts in the early stages of

Requirements Engineering will allow testers and developers to develop the right project without

having to go back and forth to the early stages of SDLC. The proposed research makes use of the

existing techniques and toolkit of Natural Language Processing.

Future work of our research includes improving and extending this approach to include a

variety of requirements in terms of length and complexity. The applicability of turning this

approach into an automated tool is another possibility in our future work set.

77

REFERENCES

1. Urbieta, M., et al. Detecting Conflicts and Inconsistencies in Web Application Requirements. 2012.
Berlin, Heidelberg: Springer Berlin Heidelberg.

2. https://distilradar.com/2018/09/24/sentiment-analysis-using-lexalytics/.
3. Kitchenham, B.A. Systematic reviews. in 10th International Symposium on Software Metrics, 2004.

Proceedings. 2004.
4. Malhotra, R., et al. Analyzing and evaluating security features in software requirements. in 2016

International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH). 2016.
5. Nikora, A.P. and G. Balcom. Automated Identification of LTL Patterns in Natural Language

Requirements. in 2009 20th International Symposium on Software Reliability Engineering. 2009.
6. Ott, D. Defects in natural language requirement specifications at Mercedes-Benz: An investigation

using a combination of legacy data and expert opinion. in 2012 20th IEEE International
Requirements Engineering Conference (RE). 2012.

7. Khtira, A., A. Benlarabi, and B.E. Asri. Detecting feature duplication in natural language
specifications when evolving software product lines. in 2015 International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE). 2015.

8. Nguyen, T.H., J. Grundy, and M. Almorsy. GUITAR: An ontology-based automated requirements
analysis tool. in 2014 IEEE 22nd International Requirements Engineering Conference (RE). 2014.

9. Mezghani, M., J. Kang, and F. Sèdes. Industrial Requirements Classification for Redundancy and
Inconsistency Detection in SEMIOS. in 2018 IEEE 26th International Requirements Engineering
Conference (RE). 2018.

10. Herrera, J., et al. The Revealing Crosscutting Concerns in Textual Requirements Documents: An
Exploratory Study with Industry Systems. in 2012 26th Brazilian Symposium on Software
Engineering. 2012.

11. Sandhu, G. and S. Sikka. State-of-art practices to detect inconsistencies and ambiguities from
software requirements. in International Conference on Computing, Communication & Automation.
2015.

12. Arunthavanathan, A., et al. Support for traceability management of software artefacts using
Natural Language Processing. in 2016 Moratuwa Engineering Research Conference (MERCon).
2016.

13. Zambrano, A., J. Fabry, and S. Gordillo, Expressing aspectual interactions in requirements
engineering: Experiences, problems and solutions. Science of Computer Programming, 2012.
78(1): p. 65-92.

14. Binkley, D., et al., Increasing diversity: Natural language measures for software fault prediction.
Journal of Systems and Software, 2009. 82(11): p. 1793-1803.

15. Bateman, J.A., et al., A linguistic ontology of space for natural language processing. Artificial
Intelligence, 2010. 174(14): p. 1027-1071.

16. Chentouf, Z., Managing OAM&P requirement conflicts. Journal of King Saud University - Computer
and Information Sciences, 2014. 26(3): p. 296-307.

17. Dragos, V., Detection of contradictions by relation matching and uncertainty assessment. Procedia
Computer Science, 2017. 112: p. 71-80.

18. Matsumoto, Y., S. Shirai, and A. Ohnishi, A Method for Verifying Non-Functional Requirements.
Procedia Computer Science, 2017. 112: p. 157-166.

19. Phalnikar, R. and D. Jinwala, Analysis of Conflicting User Requirements in Web Applications Using
Graph Transformation. SIGSOFT Softw. Eng. Notes, 2015. 40(2): p. 1-7.

78

20. Sousa, T.C.d., et al., Automatic analysis of requirements consistency with the B method. SIGSOFT
Softw. Eng. Notes, 2010. 35(2): p. 1-4.

21. Perera, S., et al., Challenges in understanding clinical notes: why NLP engines fall short and where
background knowledge can help, in Proceedings of the 2013 international workshop on Data
management & analytics for healthcare. 2013, ACM: San Francisco, California, USA. p. 21-26.

22. Ahsan, I., et al., A comprehensive investigation of natural language processing techniques and
tools to generate automated test cases. 2017. p. 132:1-132:10.

23. Sharma, V.S., R.R. Ramnani, and S. Sengupta, A framework for identifying and analyzing non-
functional requirements from text, in Proceedings of the 4th International Workshop on Twin
Peaks of Requirements and Architecture. 2014, ACM: Hyderabad, India. p. 1-8.

24. Iren, D. and H.A. Reijers, Leveraging business process improvement with natural language
processing and organizational semantic knowledge, in Proceedings of the 2017 International
Conference on Software and System Process. 2017, ACM: Paris, France. p. 100-108.

25. Sateli, B., E. Angius, and R. Witte. ReqWiki Approach for Collaborative Software Requirements
Engineering with Integrated Text Analysis Support. in 2013 IEEE 37th Annual Computer Software
and Applications Conference. 2013.

26. Sengupta, S., et al., Verb-based Semantic Modelling and Analysis of Textual Requirements, in
Proceedings of the 8th India Software Engineering Conference. 2015, ACM: Bangalore, India. p.
30-39.

27. Pivatelli, J. and J.C.S.d.P. Leite, The clash between requirements volatility and software contracts,
in Proceedings of the 31st Brazilian Symposium on Software Engineering. 2017, ACM: Fortaleza,
CE, Brazil. p. 144-153.

28. Falessi, D., G. Cantone, and G. Canfora, A comprehensive characterization of NLP techniques for
identifying equivalent requirements, in Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. 2010, ACM: Bolzano-Bozen,
Italy. p. 1-10.

29. Sharma, M.K., A study of SDLC to develop well engineered software. 2017, 2017. 8(3): p. 4.
30. Kotonya, G. and I. Sommerville, Requirements Engineering: Processes and Techniques. 1998: Wiley

Publishing. 294.
31. Hall, E.S., "PMRB Software Development QA Guidance Document".
32. Joshi, R., "Accuracy, Recall, and Precision Score Interpretation".

