
Noise Constrained Incremental Least Mean Square Algorithm

Author
Usman Hameed

00000203922

Supervisor
Dr. Sajid Gul Khawaja

Co-Supervisor
Dr. Omer Bin Saeed

MASTERS

in

COMPUTER ENGINEERING

Department of Computer Engineering

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES & TECHNOLOGY

ISLAMABAD

August, 2019



Noise Constrained Incremental Least Mean Square

Algorithm

Author

Usman Hameed

00000203922

A thesis submitted in partial fulfillment of the requirements

for the degree of MS

in the

Computer Engineering

Thesis Supervisor: Dr. Sajid Gul Khawaja

Thesis Supervisor’s Signature:

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES & TECHNOLOGY

ISLAMABAD

August, 2019

ii



Declaration

I hereby certify that I have developed this thesis titled as ”Noise Constrained Incremental

Least Mean Square” entirely on the basis of my personal efforts under the sincere guidance

of my supervisor Dr. Sajid. Gul. Khawaja All of the sources used in this thesis have

been cited and contents of this thesis have not been plagiarized. No portion of the work

presented in this thesis has been submitted in support of any application for any other

degree of qualification to this or any other university or institute of learning.

Signature of Student

Usman Hameed

00000203922

iii



Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

Usman Hameed

00000203922

Signature of Supervisor

Dr. Sajid Gul Khawaja

iv



Copyright Statement

• Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Library of NUST College of E&ME. Details may

be obtained by the Librarian. This page must form part of any such copies made.

Further copies (by any process) may not be made without the permission (in writing)

of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the College of E&ME, which will prescribe the terms and conditions of

any such agreement.

• Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

v



.

In dedication

To my father Abdul Hameed Tahir:

for encouraging and supporting me to achieve this daunting task.

To my mother Mrs. Hameed Tahir:

for making me be who I am.

vi



Acknowledgments

I am thankful to my Creator ALMIGHTY ALLAH Who gave me an opportunity to use

best of my knowledge and encouraged me to carry out this work. Without His blessings I

wouldn’t have achieved this accomplishment. Whosoever guided me throughout the course

of my thesis, whether my parents or any other individual was His will, so indeed none be

worthy of praise but Him.

I owe my deepest gratitude to my thesis supervisor, Dr. Sajid Gul Khawaja for his

patient guidance, motivation and appreciation throughout this work. My deep gratitude

goes to him for showing endless faith in me. I am much esteemed to have worked under

his supervision.

I am also highly obliged and grateful to my thesis co-supervisor Dr. Omer Bin Saeed

and committee members Dr. Shoab Ahmad Khan and Dr. Usman Akram for their

valuable feedback in this research work.

I am grateful to my parents for their prayers and moral support. Their wish to see me

achieve greater heights in my education and career has motivated me

I express my gratitude to my friends for actively encouraging me and for all the support

they had provided during the course of this study. Additionally I would like to express

my gratitude towards everyone who provided me assistance in any stage of this thesis

accomplishment.

vii



Abstract

We proposed a noise constrained based distributed adaptive estimation algorithm for wire-

less sensor network, based on the incremental scheme. The Least Mean Square (LMS)

Algorithm’s cost function is modified by using noise variance on every nodes, and noise-

variance’s knowledge is used for estimation the parameter of interest. This modification

result to improve convergence speed of the algorithm keeping the steady mean square error

minimized. Theoretical Mean and Steady State Analysis are performed for the convergence

of the algorithm and steady state mean square error. In Mean analysis the step size limit

of the proposed algorithm define, and in steady state analysis the steady state mean square

error define. Under different scenarios experimental results show the superiority of the

proposed Noise Constrained Incremental LMS over non-constrained ILMS.

Key Words: Adaptive distributed algorithm, Least Mean Square, Noise Constraint,

Incremental distributed scheme, Steady State Analysis, Mean Analysis
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Chapter 1

Introduction

1.1 Wireless Sensors Networks(WSNs)

Wireless sensors network consist a group of dedicated sensing nodes which are spatially

dispersed. These dedicated nodes measure information and monitor the real time envi-

ronmental physical condition. The sensing node collect some information from the envi-

ronment. These information could effect by some sort of noise which are present in the

environment. Different type of noise model used in the wireless sensor network such as

Gaussian Noise, Laplacian Noise, Uniform Noise, Exponential noise etc. Additive White

Gaussian Noise(AWGN) is the common type of noise which effects wireless sensor network.

AWGN is common noise which effect every real time stochastic system. This noise is

additive which means it add the system model, and the white means it effect the all possible

frequencies of the system and constant noise add in a system and Gaussian shows, it follow

the normal distribution.

The AWGN model is simple and due to this we easily observe the underlying behavior

of the system. AWGN produced through the different environment changes and weather

condition.It also comes though natural noise such as vibration changes and thermal vi-

bration. In wireless sensor Network, there are two network models used, Centralized and

distributed Network.
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Figure 1.1: Information flow in WSNs

Centralized Network

In centralized wireless sensor network the all sensing nodes collects information individually

from the environment and then send their information to the central processing node for

processing the information and estimated the desired result as shown in fig 1.2. When

estimation complete on the central nodes then the results send back to the all nodes in the

network. Due to manage huge amount of data and communicating between the nodes a

powerful central processor is required for the Centralized network. Therefor communication

overhead increased for the large network (more than 1000 sensors).

Distributed Network

In distributed network the sensing node collect data and share their information to the

neighboring node as shown in fig 1.3. In this network no central processor used the nodes

direct communicate to the others nodes. The main objective of this network is the estima-

tion is accurate on each node in the network.

In centralized network when the central node fail then the whole network collapse but

as compared to this the distributed network robust to node failure. Large communication

overhead saved at the cost of signal processing at sensors, battery power used optimally

for sub-optimal but acceptable results. The nodes depend exclusively on their local infor-
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Figure 1.2: Centralized Network

mation and relationships with their instant neighbors in the distributed solution. There is

a significant reduction in the quantity of processing and communication [2]-[3].

1.2 Distributed Processing

Distributed Processing is the extraction of data from distributed nodes over the geographic

area. The sensing node could collect the noisy information associated with some param-

eter of interest. In distributed processing there are two schemes of cooperation used for

communicating between the nodes.

A) Incremental Scheme

B) Diffusion Scheme

3



Figure 1.3: Distributed Network

1.2.1 Incremental Scheme

In incremental Scheme the node collect information from the environment and send their

estimation result to the adjacent node. Sequential manner follow from the flow of informa-

tion between nodes over the whole network.

1.2.2 Diffusion Scheme

In Diffusion Scheme the sensing nodes collect information from the environment and send

their estimation result to the all node of the network follow some network topology. In

Diffusion scheme, excessive communication done between the nodes.

In our research we work on the Distributed network because it robust to node failure. By

using incremental scheme for cooperation between the nodes the Communication overhead

reduced.
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Figure 1.4: Cooperation schemes a) Incremental b) diffusion

1.3 Real Time Application of the Wireless Sensor Net-

work

1.3.1 Temperature Sensing

We take an example of wireless sensor network where the nodes collect local temperature

from the environment. every node monitor temperature Ti and the objective of the network

is to approach the average temperature of the whole network. The node follow some specific

manner for communicating the neighbouring nodes [4][5]), The outcome of the combination

is a new measurement of these nodes, following is the mathematical model is applied on

every node.

x1(i)← α1x1(i− 1) + α2x2(i− 1) + α5x5(i− 1) (node 1)

Due to this the nodes present in the network slowly approach the average temperature T

of the network.
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Figure 1.5: Temperature Sensing In a Distributed Network [1].

1.3.2 Monitoring Chemical concentration

In another example where some source diffuse some chemical to the environment and the

sensing nodes collect this information and try to estimate the concentration of this chemical

in air or in water (see figure. 1.6).

Figure 1.6: Monitoring Chemical Concentration by using diffusion Scheme[1].

This diffusion model are translated into a diffusion equation which is given below:

∂c(x,t)
∂t

= θ1
∂2c(x,t)
∂x2

+ θ2
∂c(x,t)
∂x

+ θ3c(x, t) + u(x, t)

where c(x,t) refers to chemical concentration at some location x in time t [6], [7] .

The foundation of future control networks and data communication will be such dis-
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tributed networks connecting laptops, PCs, sensors, actuators and cell phones. Applications

range from sensor networks to agricultural accuracy, target location, environmental moni-

toring, management of disaster relief, smart spaces and medical applications [2], [7] - [8], (

[4] [5], and [9]).

We see different real time application that are translated into some mathematical model.

These model can be adaptive or non-adaptive. In WSNs most commonly adaptive model

used for estimation of some the parameter of interest.

1.4 Least Mean Square (LMS) Model

LMS model is commonly used adaptive algorithm in most of the research. The basic idea

behind of this algorithm is that the estimated weights approach to the optimum weights of

the actual output. The wights update through stochastic gradient descent algorithm. In

this algorithm the error feed back to the adaptive system for optimum value convergence

given in fig 1.7.

The gradient descent method given below: wi = wi−1 + αE(J(w))

Where wi is the updated weights, wi−1 is the previous weights, α show the fixed and

variable step size of the LMS algorithm and J(w) show the cost function of the LMS

algorithm.

1.5 Background

All the past researches use adaptive algorithm which make use of unconstrained parameters.

However, the NCLMS algorithm used constrained parameters but all nodes converge with

same steady state estimation and the NCDLMS worth on diffusion network and more

computations occur because every node handles the whole network nodes parameters. So

7



Figure 1.7: Adaptive LMS Model

we work on Incremental scheme in which node communicate to the next adjacent neighbor

and all nodes collaborate in cyclic pattern.

1.6 Problem Statement

This brings us to the problem statement of my thesis which is:

”Derive and Analyze a Noise Constrained Least Mean Square Algorithm based on the

Incremental scheme for a distributed Wireless Sensor Network.”

In the current era a lot of research has been carried out on the development of adaptive

algorithms which can be applied on distributed networks to extract meaningful information

of parameters which are of interest. In our research, we plan to work on adaptive LMS

algorithm to limit the parameter noise variance in distributed network by using incremen-

tal strategy. The noise variance is not required in Wiener solution (theory perspectives)

but there are some benefits for understanding the adaptive solution. Robbins-Monro ap-

proach is used to minimized the error for noise variance constraint. After applying NCLMS

algorithm in incremental distributed network, we work on analysis part, and extensive sim-

ulation performed which will compare our algorithm with other adaptive algorithms.
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1.7 Aims and Objective

Aims and objectives of the research are as follows:

• Detailed analysis and comparison of different methodologies proposed for distributed

network.

• Identification and tracking of noisy linear FIR channel.

• Effect of variable step size in adaptive algorithm for estimation of noise parameter

• Overcome the trade off between convergence speed and state state mean square error

of the adaptive algorithm.

1.8 Structure of the thesis

This chapter briefly introduces the problem tackled in the thesis. The rest of the thesis is

structured in the following fashion:

Chapter 2 discusses some of the previous LMS algorithm techniques used over dis-

tributed network and some noise-constrained algorithm.

Chapter 3 understand the problem formulation over the distributed network using in-

cremental technique for node communication and presents the proposed algorithm which

use noise parameter for estimation

Chapter 4 in this chapter whole analysis present to check the stability of the proposed

algorithm.Three type of analysis perform i.e. mean analysis, transient state and steady

state analysis

Chapter 5 All simulation done in this chapter.

Finally the thesis is concluded in Chapter 6. Furthermore, guidelines and future

prospects for the proposed algorithm and analysis part have also been highlighted in this

9



chapter.
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Chapter 2

Literature review

We start this chapter by using of stochastic- gradient method to develop the theory of

adaptive network. These method derive from steepest-descent solution by replacing the

gradient vector and Hessian matrix with some approximation.Different approximation helps

to build different algorithm with performance and some degree of complexity. The resultant

algorithm called stochastic-gradient algorithms.

There are two main purpose by using stochastic-gradient algorithm. First they avoid

to use the exact signal statistics such as co-variances matrix, but this method achieve

this feature by using learning mechanism that enable them to measure this type of signal

statistics. Second this method own a tracking mechanism. These two main reason are

behind the wide spread of this method.There are following stochastic-gradient algorithms,

but our main focus on just least mean square most of the research circulate around this

concept.

1. The Least mean Square(LMS) algorithm.

2. The affine projection algorithm(APA).

3. The recursive least-square algorithm(RLS).

4. The Normalized Least mean Square(NLMS) algorithm.

We focus on least mean square(LMS) in our research. The LMS is a class of adaptive

filter in which tap weights updates through stochastic gradient descent algorithm and meet

the real or actual values. As compare with error which is the difference between actual and

estimated values the wights updates. The basic objective of this algorithm to predict the

11



desired signal by using information of the actual values and error. The LMS algorithm was

invented in 1960.

In [10] first time work on step size of LMS algorithm. The basic LMS has fixed step size

and in this research the variable step size introduced. When mean square error increased

the step size decreased and when mean-square error decreased the step size increased. Due

to this the Variable step size least mean square(VSSLMS) perform better as compared to

previous LMS algorithm.The complete algorithm derived and presented. The mean and

mean-square analysis performed for the robustness of the algorithm with theory results

compared with simulation results.

In [11] worked on modified step size. when large step size used the convergence speed

increased but mean-square error also increased therefor three step size used for conver-

gence of the algorithm.Three different feedback system introduced with gradient descent of

different steps size. The proposed algorithm obtain low mean-square error and fast conver-

gence.This system is used for multi user detection but due to this the hardware complexity

of the detector increased.

In [12] worked on constrained adaptive algorithm for finite impulse response channel

estimation. The channel noise variance is used in the gradient descent algorithm. The Lan-

grange and Robbin-Munro method is used to reduced the conventional mean-square error

and minimized the effect of noise information in the basic gradient descent algorithm. The

resulting algorithm was a variable step size (VSS) and called Noise constrained Least Mean

Square(NCLMS) algorithm. This algorithm worked better all previous VSS algorithm.

In [13] worked on error Nonlinearities of adaptive algorithm and developed a unified

approach for transient analysis. They presented the new performance result without re-

striction of regression data are Gaussian or not. The complete energy conservation relation

derived for the adaptive algorithm with avoiding the explicit recursion of weigh error vec-
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tors.

In [1] adaptive algorithm research enhanced and apply the adaptive algorithm over

distributed network.The incremental scheme used for communication between the nodes

over adaptive network where each nodes pass their information to the adjacent neighbors.

The proposed algorithm enforce the problem of linear estimation in cooperative fashion

where each nodes pas information throughout the network.The mean and steady state

analysis performed and robustness of the performed algorithm subjected through theory

nad simulation results.

In [14] the previous ILMS algorithm updates and used diffusion scheme for cooperation

between the nodes. In diffusion scheme we see the whole network as a single unit. The

advancement of this network the transient analysis presented and learning curve derived.

In [15] presented distributed LMS for Consensus-Based-In Network adaptive processing.

In this work the wireless Network sensor used for the online parameter estimation and

tracking of non stationary signals.

In [16] presented new variation in previous adaptive algorithm over distributed network.

In this work the fixed step size converted into variable step size (VSS). These techniques

apply both incremental and diffusion fashion. The proposed algorithm works better then

previous algorithm.The simulation results presented and compare with Incremental Least

Mean Square (ILMS) and Diffusion Least Mean Square (DLMS).The proposed algorithm

shown that VSSLMS with adaptive combiners provides a simplified solution than that of

the Diffusion LMS algorithm.

In [17] efficient adaptive combination strategy used for distributed estimation over dif-

fusion network.To derive the proposed adaptive combiner the concept of minimum variance

unbiased estimation was used in a systematic way. The complete mean and mean square

analysis performed to check the stability and robustness of the algorithm. The theoretical

13



analysis show the better approximation of practical performance.

In [18] addressed the problem of reliability of observation in distributed adaptive net-

work. Then we propose a new distributed incremental LMS algorithm which consider the

reliability of observation.Two phases included in the proposed algorithm a training phase

estimating phase. In first phase every nodes estimated the observation noise variance and

unknown parameter; and in second phase according to its observation noise variance the

step-size parameter for each node is adjusted. Finally the proposed algorithm improves the

performance of distributed incremental least mean square(DILMS).

In [19] works shows the effect of noise variances used in the diffusion least mean square

algorithm(DLMS). they used the noise variance and change the step size into variable form.

the mean and steady state analysis performed to show the robustness of the algorithm. The

proposed algorithm worked better when the noise information not available at the sensing

nodes.The comparison performed between DLMS, VSSDLMS and purposed NCDLMS and

simulation show that the resulting algorithm worked better.

In [20] proposed the transient analysis of the Incremental combination of two least mean

square(LMS) algorithm.In this work the previous proposed combiner redesigned to improve

the overall combination performance.

In [21] proposed constrained algorithm over adaptive distribution network using dif-

fusion scheme. Complete mean and mean square analysis performed. The mean square

analysis lead to the transient and steady state analysis where the steady state error cater

fall. Theoretical and simulation results compared. This work compared with past DLMS,

and purposed algorithm worked better in both convergence and steady state error.

In [22] proposed a variable step size diffusion least mean square. They change the step

size presented in previous DLMS into variable form. The complete analysis performed.

And te results was better from DLMS algorithm.

14



In [23] proposed improved LMS system for time varying application by using hybrid

variable and fixed step size. The algorithm worked better then previous non hybrid system.

In [24] improved the least mean square(LMS) and normalized least mean square(NLMS)

algorithm by improving convergence speed and stability of both algorithm.

In [25] addresses the performance of LMS algorithm by changing step size and apply

on different iterations. This paper basically a performance analysis of lMs algorithm in

changing scenarios.

In [26] proposed a multi rate least mean square algorithm and compare the performance

of proposed algorithm with past multi rate LMS algorithm.

In [27] proposed a adaptive algorithm over distributed network which lean and track

the non stationary data by using diffusion scheme for cooperation between the sensing

nodes.Laplacian Regularized (LR) LMS and diffusion adaptation LR LMS used when a

similarity found on the sensing nodes and can be utilized for the respective distributed and

centralized cases.

In [28] presented a unified analysis approach for the variable step size algorithm. In past

many variable step size algorithm presented but there was a drawback that is the analysis

not performed in closed form. The complete mean square analysis performed ehich leads

the steady state and transient analysis. The simulation and theory analysis compared all

the VSS adaptive algorithm

2.1 Summary of the Literature Review

This is a summary of our literature review which shows that different researcher works on

different aspects. Either they have worked on distributed network , constrained and step

size. We works on all three aspects. Our algorithm is noise constrained and apply over

distributed adaptive algorithm using incremental scheme and having variable step size.

15



Algorithm Date Distributed Network Constrained Step Size(α)

NCLMS 2001 No constrained variable

ILMS 2007 Yes using Incremental Scheme Non- Constrained fixed

DLMS 2008 Yes using Diffusion Scheme Non- Constrained fixed

NCDLMS 2013 Yes using Diffusion Scheme Constrained Variable

VSS LMS analysis 2017 No Both Variable

Diffusion LMS analysis 2018 Yes using Diffusion Scheme Non-Constrained Fixed

Proposed NCILMS 2019 Yes using Incremental Scheme Constrained variable

Table 2.1: Summary Of The Literature Review
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Chapter 3

Proposed Methodology

There have been a lot of work in literature on incremental scheme in order to solve the

problem of estimation over distributed adaptive network. In this scheme the cost function

is decoupled with the cost function of the other nodes in the network.By using adaptive

algorithm to minimize the cost function based on incremental scheme [1].

Figure 3.1: Adaptive network of N nodes.

3.1 Problem Statement

Let us consider a distributed network of N sensor nodes communicating with each other

using the incremental scheme to estimate a parameter w0 of size (M × 1) as shown in

Fig 3.1. In the incremental scheme, each node k updates its estimate using the estimate

from node (k-1) and then passes it on to node (k+1). Each node collects data and uses

17



a regression vector xk of size (1×M) which helps in scalar measurement of yk
(i) that are

related by:

yik = xikw0 + nk (i) (3.1)

where nk is zero mean stationary Gaussian noise with variance σ2
nk

. The scalar mea-

surement and the regression vector that are collected from each nodes are transformed to

a matrix form.

X = colx1, x2, ...., xN(N ×M) (3.2)

Y = coly1, y2, ...., yN(N × 1) (3.3)

The information of xk and yk is used to estimate w0 with an iterative update wik at node

K. By assuming that every kth node communicates and shares information only with their

neighbor at every time instant i. The objective of the adaptive algorithm is to minimize

the cost function given by

Jk(w) = E[(yk − xkw)2] (3.4)

w is the estimated weight of optimum weight w0. The gradient decent algorithm is

given as:

wi = wi−1 − µ
σ

σw
Jk(w) (3.5)

after solving above equation its simplifies by:
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wi = wi−1 − µ(Ry,xk −Rxkwi−1) (3.6)

where Ry,x is cross-correlation between yk and xk, and Rxk is auto-correlation of xk. A

more better solution for estimation of wk in [29] and simply incremental LMS algorithm is

given by:

Φ
(i)
0 = wi−1 (3.7)

Φik = Φik−1 + µxk,i(y
i
k − xkΦik−1]) (3.8)

wi = ΦiN (3.9)

where Φ is intermediate updates of weight which are passed through one sensor node

to the next immediate neighbor following the incremental scheme.

3.1.1 Proposed Changes In the Incremental Least Mean Square

Algorithm

• The step size µ used in ILMS algorithm defined by (3.8) and (3.9) are fixed.

• This leads to trade-off between speed and steady-state error.

• Introducing a constraint in cost function, by improving this trade-off at the cost of

increased computational complexity.

• This conversion helps adaptive algorithm to converge faster while keeping the steady

state error minimized.

The above-mentioned derivation leads us to a noise constrained algorithm which is
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presented in the next section.

3.2 Proposed Noise Constraint Incremental Least Mean

Square Algorithm

In this section we discuss our proposed noise constrained least mean square algorithm

(NCLMS) which makes use of derivation from previous section. Let us consider the follow-

ing equation

yik = wT0 x
i
k + nk (3.10)

where xk is zero mean stationary input process with co-variance R = E[xkx
T
k ] and nk is

also a zero mean stationary noise with variance σ2
n. Both nk and xk are uncorrelated.

The cost function can be decompose as:

J(w) =
N∑
k=1

Jk(w) (3.11)

and each Jk(w) is given by:

Jk(w) = E |yk − wTxk|2 (3.12)

3.2.1 Modified Cost Function

Now consider a constrained minimization problem that incorporates the knowledge of noise

variance σ2
n. We need to minimize Jk(w) over w subject to constrained J(w) = σn, the
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Lagrangian for this problem is:

Jk1(w, λ) = Jk(w) + λ(Jk(w)− σ2
n) (3.13)

Where λ is Lagrangian multiplier. The critical value of k(w, λ) are (w, λ):w=wo.

There is no fair critical value of w because critical λ is not unique so this is a potential

problem for an adaptive algorithm. To avoid this problem we subtract λσ2
n from (3.13) to

get augmented Lagrangian [12] resulting in the following equation.

Jk2(w, λ) = Jk(w) + γλ(Jk(w)− σ2
n)− γλ2 (3.14)

where γ is just constant term, now the unique critical value for Jk2(w, λ) is (w, λ) = (w0, 0).

Keeping in view the equation 3.12 the cost function comes out to be:

Jk2(w, y, x, λ) = Jk(w, y, x) + γλ(Jk(w, y, x)− σ2
n)− γλ2 (3.15)

we consider a training sequences of xk, yk which is provided to every node. In such cases

a better solution of root finding algorithm for extracting critical values (wo,0) is Robbin-

Monro(RM) algorithm [30].

wik+1 = wik + α
σ

σw
J(w, y, x, λ) (3.16)

λk+1 = λk − β
σ

σλk
J(w, y, x, λ) (3.17)

where α and β are just positive step size and negative and positive sign of the partial

derivative terms chose to stable the values of (wo,0) of the system.

By solving the partial derivative of (3.16) and (3.17) we get:
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σ

σw
Jk2 = (2 + 2γλ)(yk − wTxk)(xk) (3.18)

σ

σλk
Jk2 = γ((yk − wTxk)2 − σ2

n)− 2γλk (3.19)

Now substituting the partial derivatives terms (3.19) and (3.18) in equation (3.16) and

(3.17) we get:

wk+1 = wk + α(1 + γλk)(yk − wTxk)xk (3.20)

λk+1 = λk(1− β) +
β

2
((yk − wTxk)− σ2

n) (3.21)

Using this constrained knowledge in (3.7) we have a better practical adaptive solution

shown below:

εi0 = εi−1 (3.22)

εik = εik−1 + αkx
∗
k,i(d

i
k − xk,iεik−1) (3.23)

αk = α(1 + γλik) (3.24)

λik = (1− β)λik−1 +
β

2

(
e2
k(i)− σ2

n,k

)
(3.25)

εi = εiN (3.26)

When compared this algorithm with ILMS , where step size αk is not a fixed value, it

changes with every instant of time i and every kth node. Moreover, (3.23) has an extra

term of Lagrange multiplier whose value changes from node to node according to (3.25).

Thus to conclude the proposed NCILMS algorithm is mathematically shown in equations
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(3.22) to (3.26).
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Chapter 4

Analysis Of the Proposed Algorithm

In the previous section we derive a Noise Constraint Incremental Least Mean Square Al-

gorithm, Now we addresses the stability and robustness of the algorithm through some

analysis. Theoretical analysis are performed for the convergence of the algorithm and

steady state mean square error. The analysis show the robustness of the algorithm and

check stability in different scenario. Two type of analysis performed in our work.

• Mean Analysis

• Steady State Analysis

In mean analysis the step size limit of our proposed algorithm defined.

In steady state analysis the steady state mean square error equation derived, and due to

this equation we check the robustness of the proposed algorithm by comparing theoretical

and simulation results of steady mean square error.

To find the actual value of the system the following equation used. In this equation the

optimum weights is used for finding the true observation.

yk(i) = xk,iw
0 + nk(i) (4.1)

In the above equation nk(i) show noise with noise variance σn,k, This linear model is shown

in eq (4.1) are used in many real time application [6],[31],[32], [33], [34]. The following

analysis also handle non stationary data where wo change with respect to time ([32],[35]).
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4.1 Mean Analysis

In order to check the stability of the algorithm mean analysis is carried out and we inter-

ested in mean square deviation (MSD) [28] and data realization vectors in (3.2) and (3.3).

Subtracting wo from equation (3.23) we get:

ϕk+1 = (I − αkxkxTk )ϕk − αknkxk (4.2)

Applying the expectation operator on (3.25), (3.24) and (4.2) equations. In (4.2), when

we apply the data assumption, we can separate Φk from other variables. After these changes

the term further simplifies and which is given below:

E[ϕk+1] = [I − αkR]ϕk (4.3)

E[αk] = α(1 + γλk) (4.4)

E[λk+1] = (1− β)λk +
β

2
Jk (4.5)

where Jk = E[e2
k]-σ

2
n.

From [1] we noticed that the incremental LMS algorithm is stable when weights are in

the unit circle[36]. Therefor Lagrange multiplier effect the stability of the algorithm. In

this case algorithm is stable when each node holds the given term:

(IM − αk(1 + γ E[λk])Rx,k)→ 0, n→∞ (4.6)

which holds true if

0 < αk <
2

(1 + γNCE [λk,i]) θmax (Rx,k)
, 1 ≤ k ≤ N (4.7)
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where θmax shows the maximum eigenvalues of Rx,k. The step size limit depends on

the stability of the λk we use all parameters arbitrary and usually its depends on signal to

noise ratio (SNR)

4.2 Mean Square Analysis

The mean square analysis follows a specific learning behavior for the curve. This analysis

leads to the two main analysis, transient and steady state analysis. By starting this analysis

we take some terms which used in the further analysis. We define some weights error which

shown as given below

Φi
k = w0 − ϕik(wight− error − vector − at− time− i) (4.8)

ea,k(i) = xk,iΦ
i
k−1(a− priori− error) (4.9)

ep,k(i) = xk,iΦ
i
k(a− posteriori− error) (4.10)

ek(i) = dk(i)− xk,iΦi
k−1(output− error) (4.11)

ek(i) = yk(i)− xk,iΦik−1 = xk,iw
0 + nk(i) = ea,k(i) + nk(i) (4.12)

Hence,E|ek(i)|2 = E|ea,k(i)|2 + σ2
n,k , so that evaluating E|ea,k(i)|2 is useful for evaluating

E|ek(i)|2 .

ηk = E||Φ(i)k−1||2(MSD) (4.13)

Ψk = E|ea,k(i)|2(EMSE) (4.14)
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ηk = E||Φi
k−1||2I , Ψk = E|ea,k(i)|2Ru,k

(4.15)

e
∑
a,k(i) = xk,i

∑
Φi
k−1ande

∑
p,k(i) = xk,i

∑
Φi
k (4.16)

when apply the expectation operation on the variable step size equations the resultant is

given by:

E[λk] = (1− β)E[λk−1] +
β

2
(E[e2

k − σ2
k]) (4.17)

αik = α(1 + γλ
′

k) (4.18)

Φi
k−1,Φ

i
k, e

∑
a,k(i), e

∑
p,k(i) (4.19)

Φi
k = Φi

k−1 − αkxk,iek(i) (4.20)

Multiplying the previous equation from the left by xk, i
∑

gives

xk,i
∑

Φi
k = xk,i

∑
Φi
k−1 − αk||xk,i||2∑ek(i) (4.21)

so that from the definitions (4.16)

e
∑
p,k(i) = e

∑
a,k(i)− αk||xk,i||

2∑ek (4.22)

and, subsequently

ek(i) =
1

αk

(e
∑
a,k(i)− e

∑
p,k(i))

||xk,i||2∑ (4.23)
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Substituting (4.23) into (4.20) and rearranging terms,

||Φi
k||2∑ +

|e
∑
a,k(i)|2

||xk,i||2∑ = ||Φi
k−1||2∑ +

|e
∑
p,k(i)|2

||xk,i||2∑ (4.24)

||Φi
k||2∑ = ||Φi

k−1||2∑ − αke
∑
a,kek − αkeke

∑
a,k + α2

k||xk||2∑.|ek|2 (4.25)

Using (4.12) and taking expectation of both sides gives:

E||Φi
k||2∑ = E||Φi

k−1||2∑−αkEe
∑
a,kek−αkEeke

∑
a,k+α

2
kσ

2
n,kE||xk||2∑+α2

kE||xk||2∑.|ea,k|2 (4.26)

E||Φi
k||2∑ =E||Φi

k−1||2∑
− αkEΦ∗

k−1

∑
x∗kxkΦk−1

− αkEΦ∗
k−1x

∗
kxk
∑

Φk−1

+ α2
kσ

2
n,kE||xk||2∑ + α2

kEΦ∗
k−1

∑
x∗kxkΦk−1

(4.27)

Now, given that ||x||2A + ||x||2B = ||x||2A+B , the previous equation can be rewritten more

compactly as

E||Φk||2∑ = E(||Φk||2∑′ ) + α2
kσ

2
n,kE||xk||2∑ (4.28)

in terms of stochastic weighting matrix

′∑
=
∑
−αk(x∗kxk

∑
+
∑

x∗kxk) + α2
k||xk||2∑x∗kxk (4.29)
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Invoking the independence of the regression data xk allows us to write

E(||Φk||2∑′ ) = E(||Φk||2E∑′ ) (4.30)

So that (4.28) and (4.29) become

E||Φi
k||2∑ = E||Φi

k−1||∑” + α2
kσ

2
n,kE||xk||2∑ (4.31)

where
∑” = E

∑′
is given by

′∑
=
∑
−αkE(x∗kxk

∑
+
∑

x∗kxk) + α2
kE||xk||2∑x∗kxk (4.32)

and
∑” is now deterministic matrix.

Ex∗kxk = Rx,k, E||xk||2∑ = Tr(Rx,k

∑
), andE||xk||2∑x∗kxk (4.33)

In [32] paper, we assume Gaussian data for simplicity. Thus, assume that the xk arise from

a circular Gaussian distribution and introduce the eigen decomposition Rx,k = XkΛkX
∗
k ,

where Λk is unitary and is a diagonal matrix with the eigenvalues of Rx,k. Introduce further

the transformed quantities

Φk = X∗
kΦk, φk−1 = X∗

kΦk−1, xk = xkXk∑
= X∗

k

∑
Xk,

∑” = X∗
k

∑”Xk

Since Xk is unitary, we have that φk = X∗
kΦk and φk−1 = X∗

kΦk−1 , so that (4.2) and (4.32)

can be rewritten in the equivalent forms

E||Φi
k||

2∑ = E||Φi
k−1||∑” + α2

kσ
2
n,kE||xk||2∑ (4.34)
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”∑
=
∑
− αkE(x∗

kxk

∑
+
∑

x∗
kxk) + α2

kE||xk||2∑x∗
kxk (4.35)

The moments we need to evaluate are now E||xk||2∑, E(x∗
kxk)andE||xk||2∑x∗

kxk. The first

two moments are straightforward since

E||xk||2∑ = Tr(Λk

∑
), andE(x∗

kxk) = Λk (4.36)

The third moment is given for Gaussian regressors by [32]

E||xk||2∑x∗
kxk = ΛkTr(

∑
Λk) + γΛk

∑
Λk (4.37)

where γ = 1 for circular complex data and γ = 2 for real data. Substituting (4.36) and

(4.37) into the variance relation (4.2), (4.35) leads to

E||Φi
k||

2∑ = E||Φi
k−1||∑” + α2

kσ
2
n,kTr(Λk

∑
) (4.38)

”∑
=
∑
− αkΛk

∑
+
∑

Λk + α2
kΛkTr(

∑
Λk) + γΛk

∑
Λk (4.39)

σ = diag(
∑

), σ
′
= diag(

∑′

) ,λk = diag(Λk)

where the diag() notation will be used in two ways: Λ = diag(λ) is a diagonal matrix

whose entries are those of the vector λ , λ = diag(Λ) and is a vector containing the main

diagonal of Λ .

Using the diagonal notation, expression (4.39) can be rewritten in terms of (σ, λk) as‘

σ′ = (I − 2αkΛk + γα2
kΛ

2
k)σ + α2

k(λ
T
k )λk = Fkσ (4.40)
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where Fk is defined by

Fk = I − 2αkΛk + γα2
kΛk + α2

kλkλ
T
k (4.41)

Moreover,gk = µ2
kσ

2
n,k(λ

T
k expression (4.38) becomes

E||Φi
k||

2
σk

= E||Φi

k−1||Fkσk
+ gkσk (4.42)

E||Φi

1||2σ1
= E||Φi

N ||F1σ1
+ g1σ1

E||Φi

2||2σ2
= E||Φi

1||F2σ2
+ g2σ2

E||Φi

k−2||2σk−2
= E||Φi

k−3||Fk−2σk−2
+ gk−2σk−2

E||Φi

N ||2σN
= E||Φi

N−1||FNσN
+ gNσN

(4.43)

Choosing σk−2 = Fk−2σk−2, we could write ||Φi
k−1||2σk−1

in term of ||Φi
k−2||2σk−2

as follow:

E||Φi

k−2||2Fk−1σk−1
= E||Φi

k−3||Fk−2Fk−1σk−1
+ gk−2Fk−1σk−2 (4.44)

E||Φi

k−1||2σk−1 = E||Φi

k−3||Fk−2Fk−1σk−1
+ gk−2Fk−1σk−1 + gk−1σk−1 (4.45)
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for node k − 1 the same iteration we get:

E||Φi

k−1||2σk−1
= E||Φi

k−3||Fk....FNF1....Fk−1σk−1

+ gkFk+1....FNF1....Fk−1σk−1

+ gk+1Fk+2....FNF1....Fk−1σk−1

.

.

.

+ gk−2Fk−1σk−1 + gk−1σk−1

(4.46)

(4.46) by defining Πk,l as follows:

Πk,l = Fk+l−1Fk+l....FNF1....Fk−1l = 1, 2, 3, ...N (4.47)

So:

E||Φi

k−1||2σk−1
= E||Φi

k−1||Πk,lσk−1
+ akσk (4.48)

where:

ak = gkΠk,2 + gk+1Πk,3 + ...+ gk−2Πk,N + gk−1 (4.49)

where gk = α2
kσ

2
n,kλ

T
k

4.3 Steady State Analysis

The mean square analysis follows a specific learning behavior for the curve that leads to the

steady-state mean squared error. This error is defined through two different terms Mean

Square Deviation (MSD) and Excess Mean Square Error (EMSE), depending on what value
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is chosen for the weighting matrix.

E||Φk−1||2σk−1
= E||Φk−1||Πk,lσk−1

+ akσk (4.50)

By simplifying we obtain:

E||Φk−1||2(I−Πk,lσk−1)σk−1
= akσk−1 (4.51)

According to ηk = E||Φk−1||2q and ζk = E||Φk−1||2λk

ηk = ak(I − Πk,i)
−1q(MSD) (4.52)

Likewise, by choosing σk−1 that satisfies (I − Πk,i)σk−1 = λk, we can achieve an equation

for steady state EMSE quantity, i.e.,

ζk = ak(I − Πk,i)
−1λ(EMSE) (4.53)

(4.52)to(4.53) show the steady state behaviors of MSD and EMSE
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Chapter 5

Simulation Result

In this section we will discuss the experimentation that has been carried out for the testing

and validation of our proposed algorithm. We performed different simulations to check the

quality of the proposed NCILMS algorithm. The performance measure for comparison has

been taken as MSD. Moreover, the results have been calculated for different values of signal

to noise ratio (SNR).

In our network we take N equal to 20 and M equal to 5 . The constrained parame-

ter α,β, γ are random selected. λ is the Lagrangian operator.We use AWGN Model for

experimentation

There are two types of performance comparison that are considered.

• MSD: Mean Square Deviation

• EMSE: Excess Mean Square Error
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Figure 5.1: Observation noise power profile at each node.

we compare our results with non-constrained ILMS algorithm. The experimental setup

contains 20 nodes in the network and the length of unknown vector is kept at 5. The noise

at one node is independent to the other nodes so noise variance σn is different at every

node. In ILMS the step size has been fixed to 0.02. For the NCILMS algorithm, α, β, are

fixed at at 0.0027, 0.01 and 14.1 respectively.

Furthermore, initial Lagrange multiplier λ is fixed at 0.996. The simulation is carried

out at average SNR of 20db. The results have been recorded after 1000 iteration and 100

Monte Carlo runs. With respect to time/iteration i, the estimated weights w approach to

optimum weights w0 and the Lagrange multiplier λ approaches to zero.

Fig 5.2, 5.3 and 5.4 shows the comparative results of our algorithm against non-

constrained ILMS at SNR 10, 20 and 30 dB it can be seen from the graph that our proposed

algorithm outperforms the non-constrained ILMS algorithm.The proposed algorithm con-

verge faster as compared to the incremental least mean square algorithm keeping the steady

state mean square error same.
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Figure 5.2: MSD comparison of distributed ILMS with adaptive combin-
ers,NCILMS for a network of 20 nodes.

Figure 5.3: MSD comparison of distributed ILMS with adaptive combin-
ers,NCILMS for a network of 20 nodes.

Figure 5.4: MSD comparison of distributed ILMS with adaptive combin-
ers,NCILMS for a network of 20 nodes.

In figures 5.5 we use another performance measure excess mean square error (EMSE) of

proposed NCILMS algorithm with non-constrained ILMS algorithm at SNR 10db. It can
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be seen in this figure that performance of our proposed algorithm is better as compared to

ILMS algorithm.

Figure 5.5: EMSE comparison of distributed ILMS with adaptive combin-
ers,NCILMS for a network of 20 nodes at SNR 10db.

The performance of NCILMS improves at SNR 20db and 30db clearly shown in figure

5.6 and figure 5.7. The convergence rate is better than other ILMS algorithm.

Figure 5.6: EMSE comparison of distributed ILMS with adaptive combin-
ers,NCILMS for a network of 20 nodes at SNR 10db.
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Figure 5.7: EMSE comparison of distributed ILMS with adaptive combiners,
NCILMS for a network of 20 nodes at SNR 20db.

when taking the step size value large the convergence speed fast . but the steady state

mean square error maximize also. and when taking the values of step size small then the

convergence speed slow , but steady state mean square error minimize. Our proposed

algorithm works better in both situation as shown in fig. 5.8 and fig. 5.9 and overcome

this trade off by using noise variance in modified cost function.

Figure 5.8: MSD comparison of distributed ILMS with adaptive combiners,
NCILMS for a network of 20 nodes at SNR 20db using step size 0.01.
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Figure 5.9: MSD comparison of distributed ILMS with adaptive combiners,
NCILMS for a network of 20 nodes at SNR 20db using step size 0.001.

In table (5.1) the steady state mean square error of theory and simulation results shown.

This show that our algorithm is excellent in different scenario when the noise variance is

accurately measured. We clearly see the minor difference in the MSD values of simulation

results and the MSD values derived from the theoretical equation (4.52) which addresses

our proposed algorithm robustness.

SNR(dB) α β γ λ Sim(dB) Th(dB) equ(4.52)

20 0.01 0.01 14.1 0.9 -40.87 -40.84

30 0.01 0.01 10.3 1.7 -50.95 -50.77

30 0.001 0.01 14.1 0.98 -52.75 -52.74

20 0.01 0.01 12 1.9 -45.22 -44.32

Table 5.1: Comparison Between Theory And Simulation results of Steady State
Mean Square Error
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Chapter 6

Conclusion And Future Work

In this work we have proposed a noise constrained incremental least mean square algo-

rithm. The complete derivation of the algorithm is given in (3.2) and in order to check the

stability of the algorithm mean analysis has also been carried out.The step size on every

nodes has been derived and verify the step size by analysis. The steady state analysis com-

pleted derived and the results show in result section.The results indicate that our proposed

algorithm works better and its convergence rate is also faster as compared with previous

ILMS algorithm with the steady state mean square error minimized. Noise constrained

LMS algorithm is derived for WSN based on the incremental scheme. Mean analysis and

steady-state mean square analysis have been for the proposed algorithm. Simulation and

theory results found to be matching for the steady-state analysis

In future we perform complete mean square analysis for the algorithm, including learn-

ing behavior during the transient stage. we will perform the analysis where the noise

variance not accurately measure.
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