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Abstract 

Due to advancements in technology, speech recognition has grown to be one of the most 

important aspects of human-computer interaction. In recent years, a tremendous amount of 

research has been conducted in the area of speech signal processing. Particularly, the subject 

of Automatic Speech Recognition (ASR) technology has seen an increase in interest. ASR 

started out with basic systems that could only recognize a handful of sounds, but it has now 

developed into complex systems that not only can understand but also corresponds to human 

speech with ease. Major languages have access to a wealth of ASR research, however low 

resource languages are still underrepresented in this area of study. The foundation of this 

research work is Automatic Speech Recognition, specifically for Pashto, a low resource 

language. The creation of low resource data repositories to evaluate the newest ASR trends 

specifically for Pashto is needed for current advancement in ASR technology. As a result of 

its successful implementation, native speakers may interact with computers via voice 

commands in their native languages and take full advantage of the digitization boom. 

Research in this field will benefit academics by expanding existing huge corpora and 

generating cutting-edge ASR models for languages with limited resources. This research will 

also aid in identifying current, significant ASR difficulties in practical settings. Additionally, 

it will highlight the present shortcomings in traditional ASR systems. Also, this work aims to 

implement ASR for low resource language Pashto by making use of Facebook's most recent 

algorithm, wav2vec2, which is quite latest in ASR trends in recent years. After successful 

development of dataset, we have trained and fine-tuned our model to the latest trend of ASR. 

Almost 66% output accuracy with 37% WER (word error rate) is obtained at the output end 

of our model, which is quite an achievement for a low resource ASR system. 
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Chapter 1 

 

INTRODUCTION 

 

Speech recognition in Artificial Intelligence (AI) is the method used to translate spoken language 

into written format. The technology processes audio data and transforms it into words that may 

be used in various enterprises using machine learning and neural networks. The task of 

automatically identifying and transcribing spoken utterances into text is known as Automatic 

Speech Recognition (ASR). For many programs that don't operate on computers, which are 

becoming more and more widespread and famous, speech is a natural interface for them. With 

the aid of speech recognition technology, computers can take spoken audio, analyze it, and 

produce text from given input audio signal, Fig 1 and Fig 2 

 

 

Figure 1: General ASR System Block diagram 
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Processing, interpreting, and understanding a speech signal has evolved into the key to many 

potent new technologies and techniques of communication, whether we are talking to robots, 

controlling digital devices, guiding the visually and audibly impaired or disable persons, or 

enabling hands-free technology. ASR plays a huge role in such advanced technologies. 

Applications that support speech have dramatically increased in popularity in recent years. This 

is because it can be easily integrated with a variety of domain applications and voice over control 

systems. However, producing efficient ASR systems typically involves vast amounts of speech-

to-text transcriptions in addition to sizable text corpora. languages with ample resources, such as 

English and Chinese, are generally free of this issue, where successful ASR implementations 

have been developed with excellent results [1]. 

 

 
 

Figure 2: Overview General ASR System  

 

Few studies are being done on some low-resource languages, such as regional Indian languages 
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[2]. Due to the accessibility of voice data in these languages, new trends and techniques for 

speech recognition tasks, including word2vec, deep learning end-to-end models, and traditional 

Hidden Markov model (HMM), have been tested [3]. However, only a few major languages are 

now supported by speech recognition technology. But regardless of voice data low resource 

languages are still far behind in ASR field. 

1.1 ASR for Low Resource Language 

ASR systems for low resource languages are available for a very few to none languages. The 

Pashto (ps) language also belongs to the very same category but it is supported by the Google 

Translation API's recognition engine for the Neural Machine Translation (NMT) model, however 

the Google Cloud Speech-to-Text domain does not have API support [4,5]. One can legitimately 

link Mozilla Common Voice to the most recent trend in creating ASR corpuses. Although Pashto 

has a population of around 50 million people worldwide [6, 15] who speak it in a variety of 

dialects, one could not locate it among the published languages, which is ironic given Common 

Voice's wonderful mission. 

This language is widely used in various regions of Asia (Afghanistan and Pakistan etc.)[7]. 

Pashto is a low resource language, despite having a large population of speakers. Research in 

language technologies like audio and natural language processing (NLP) is lacking or limited for 

Pashto. The Pashto automatic speech recognition systems that are now in use are either 

nonexistent or have only been trained on digit-only data. Raw text from different genres (types of 

documents), such as books, scientific or academic papers, emails, social media posts, etc., is 

insufficient. There are no dictionaries, dependency tree datasets, semantic databases (like 

WordNet), or other lexical, syntactic, or semantic resources for this language. Despite having a 

significant population, the Pushto language group has no such systems in place. As a result, the 

advancement in the application of ASR couldn't be fully utilized. 

There are very few financed projects that produce Pashto text and speech data. There isn't much 

work accessible to examine errors and increase accuracy in the existing limited work, which has 

a high word error rate. Thus, it is necessary to create a system of data preserving and data 

repositories for the language in order to address these problems. The objective of this research is 

to develop an automatic speech recognition system and first transcribed audio corpus for the 

Pashto language using latest ASR trends and technology. 
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Therefore, to achieve significant results for a robust Pashto ASR system, in this paper we worked 

on wav2vec 2.0 model which was developed in recent years and new to this industry. Its 

accuracy rate is said to be much more precise than any traditional ASR system. Thus, its 

implementation will open the door for low resource languages for advanced ASR systems and 

improvement in the related research areas. 

1.2 Problem Statements 

Speech based Hands Free Technology has become the key to many powerful new technologies 

but its limited use in Pushto language has minimized its exploiting on large scale. To exploit the 

full potential of speech recognition technology, a robust ASR model should be developed to 

create transcribed dataset along more accuracy of speech recognition as compared to traditional 

ASR systems for the low resource Pashto language.  

1.3 Objectives 

Following are the objectives of this research. 

• To create an Automatic Speech Recognition (ASR) system for low resource 

languages. 

• To create a transcribe dataset for Pashto language in the backdrop of word2vec and 

E2E deep learning models of speech technology. 

• Implementation of wav2vec model 

1.4 Area of Application 

The model can be applied to: 

• Pashto-speaking virtual assistants. 

• Voice-activated online banking. 

• Voice bio-metric and identification systems. 

• Online trading and E-commerce. 

• User-friendly public transportation. 
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• Subtitling the podcasts. 

• Applications in healthcare. 

• Home networks and appliances. 

 

1.5 Relevance to National needs: 

There is a need to develop advance ASR and compiled Pashto vocabulary. Such effort has 

multipurpose implications in the areas of health, industries, and law enforcement sectors. The 

huge fraction of Pashto language population needs to exploit the boom of speech digitization. To 

preserve the language digitization, make use of computer/smart devices easy and provide means 

to practice latest development in ASR creation of speech corpus for Pashto language is a primary 

task. Research in this area will not only help researchers to create large corpuses but also open 

the doors for native speakers to step in era of advance technology and ASR systems. 

1.6 Organization of thesis 

The thesis chapters are organized in seven chapters. Chapter 1 is brief introduction to ASR 

Systems and need for more work in this field particularly low resource languages. Chapter 2 

covers the summary of related work including literature review of some existing techniques. 

Chapter 3 describes the traditional methodology used for ASR systems and their drawbacks and 

loop holes are also briefly discussed in this chapter. Chapter 4 presents the modern ASR 

techniques. Chapter 5 covers the proposed system model. Chapter 6 discuss the simulation 

parameters, new findings and results. Chapter 7 presents the conclusion and future work in the 

field of advance ASR and Speech technology. 
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Chapter 2 

 

RELATED WORK 

2.1 Literature Review 

Speech recognition has progressed from recognizing a single word or just a couple of syllables to 

an entire language. Certainly, a lot has changed since the turn of the 20th century. As shown in 

Table 1, since the beginning of 1900s researchers already paved their way towards the modern 

speech recognition. In 1922, Radio Rex, the first toy to employ speech recognition, was 

developed. Basically, the initial speech recognition technologies prioritized numbers above 

words. IBM unveiled "Shoebox", a voice arithmetic device which could comprehend and reply to 

16 English words. 

Table 1: Overview Speech Technology Trends 

Year System Type Size 

1922 Radio Rex Frequency 

 Detector 

1 x word 

 

1962 Shoe Box Isolated Word 

recognition 

system 

16 x word 

 

1971-1976 HARPY 

(CMU) 

Connected 

speech 

1000 x 

word 

 

1980-1990 HMM 

(Hidden Markov Model) 

Statistical based  

on Markov 

chain 

1K x word 

 

1992-2002 LVCSR 

(Large Vocabulary 

Continuous Recognition)  

LVCSR based 

 

1K x word 
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2006-2022 Deep Learning DNN based 1Mn x 

word 

 

Later in mid 1900s, Harpy speech recognition was introduced which is based on finite state beam 

search system. Speech recognition vocabularies increased from a few hundred to several 

thousand words in the 1980s. One of the innovations was a statistical technique called "Hidden 

Markov Model (HMM)". Instead, relying just on words and searching for sound patterns, the 

HMM calculated the likelihood of the unknown sounds actually being words [9,12,17,32,35,36]. 

HMM is considered as an important and main traditional method for calculations and predictions 

in most of the speech recognition systems. Next Chapter 4 is totally based on HMM, so here we 

are skipping its details. 

Figure 3: General LVCSR Architect 
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Researchers then shifted their interest towards HMM based Very Large Continuous Speech 

Recognition (LVCSR) systems [35], Fig 3 shows the general architect of LVCSR system. This 

system process the input audio signal by utilizing a huge language vocabolary unit to recognize 

the words in the input audio signal [36]. 

Given the extensive vocabulary size which is up to almost 100,000 words and phrases, it is 

impossible to evaluate every word combination directly, and the other issue in the system 

includes identification of the most likely word sequence from input signal as the word boundary 

information is not available in continuous speech, thus more computation difficulties are 

observed in this system. 

The era of 2000s shifted the research path towards Machine Learning  (ML), Deep Learning 

(DL) and Artificial Intelligence (AI).A variety of architectures that can create solutions forh 

several problems are implemented to represent Deep Learning. Speech Recognition using DL 

algorithems are now much efficient as compared to other ASR techniques as Deep learning 

approaches can be adjusted for transcribing in noisy situations as well as customized languages, 

accents, and dialects. Fig 4 represents general architect of Deep Learning. 

 

Figure 4: General Architect for Deep Learning 
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2.2 Work on various local languages 

 

Due to the lack of resources like transcribed datasets, lexicons, or phonetic dictionaries, 

developing an ASR system for local languages is rather a difficult undertaking. Local 

languages including Punjabi [8,9,10], Gujrati [11], Urdu [12,13,14,15,16], Hindi 

[17,18,19,20], Marathi [21], Arabic [22,23], and Bengali [24] have had some recent work 

done on them, Fig 5. To the best of our knowledge very little or no work has been done for 

the Pashto speech recognition system including dataset [25]. 

 

Figure 5: Available ASR For Various Local Languages 

 

2.3 Work on low resource Pashto language 

The establishment of an automatic voice recognition system for Pashto was done using a 

small Pashto vocabulary speech corpus [26]. Also, in another research a Pashto Spoken 

Digits database for automatic speech recognition was developed and Sony PCM-M 10 linear 
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recorder was used to make the recordings, which were done in a silent setting, Fig 6. Mel 

Frequency Cepstral Coefficients (MFCC) were employed as a feature vector, and a classifier 

based on linear discriminant analysis (LDA) was used to categorize the data [27]. 

 

 

 

Figure 6: Work Done For Pashto ASR 

 

Another study showed the development of database and ASR of isolated Pashto spoken 

digits from Sefer (0) to Naha (9). For recording purposes, a Sony PCM-M 10 linear recorder 

was used, and Mel Frequency Cepstral Coefficients (MFCC) was employed to extract speech 

features. To the best of the author's knowledge, the K Nearest Neighbor (K-NN) classifier 

was used for the first time in Pashto to categorize speech features. The evaluation of the 

experimental results yields an overall average recognition accuracy of 76.8% [28]. 
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 The SCALE (Summer Camp for Applied Language Exploration) 2015 workshop on 

"Speech-to-text-translation for low-resource languages" summarized the progress of the 

LVCSR system as a component of the Pashto speech-translation system [29]. Without 

requiring manual pronunciations for every word in the training data, the researchers have 

attempted to examine two ways for bridging the performance gap between the grapheme and 

the phonetic approaches. 

 The first method relies on memorizing letter-to-sound rules from a limited number of Pashto 

manual pronunciations, whereas the second method relies on a hybrid phoneme/grapheme 

representation for recognition. Researchers demonstrate that both strategies outperform a 

comprehensive phonetic system using experimental results on spoken colloquial Pashto while 

only requiring manual pronunciations for a small subset of the words in the acoustic training 

data [30]. 

In the recent years, research work for ASR is shifted towards more advance methodologies 

like combination of HMM and MFCC, various AI algorithms. Table 3 shows some of the 

modern research stream for ASR systems.  

 

Table 3: Prominent Related Work 

 

S 

No 

Research Work Main 

Technology 

Year 

1 Unsupervised automatic speech recognition: A review [33]. MFCC, HMM, 

GMM 

2022 

2 Self-supervised end to end ASR, for low resource L2 

Swedish [34]. 

  

wav2vec 2021 

3 Development of a large vocabulary for Pashto language 

automatic speech recognition system [35]. 

  

HMM, MFCC 2022 

4 Development of a large vocabulary Urdu automatic speech 

recognition system and error analysis methodology [36]. 

  

HMM, MFCC 2020 

5 Wav2vec 2.0: A framework for self-supervised learning of 

speech representations [37].  

wav2vec 2020 

6 Pashto speech recognition with limited pronunciation 

lexicon [15]. 

  

HMM 2010 
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7 Deep speech 2: End-to-end speech recognition in English 

and Mandarin. [1]. 

  

HMM, DNN 2016 

8 An ASR System for Spontaneous Urdu Speech [13]  HMM 2010 

 

2.4 Limitations Of Existing Techniques 

  For low resource languages existing techniques show certain limitations which are as 

follows: 

• Environmental factors. 

• Background noise. 

• Accents and style of speaking. 

• Nonsense errors. 

• Spelling errors. 

• Multiple detections. 

• Homonyms. 

• Unavailability of proper dataset for low-resource languages.  

• Training Requirement of large corpus. 

• Mandatary manual supervision for the creation of linguistic model for identification of 

specific terminologies and recognition of different accents and dialects. 

• Additional acoustic model for detection of repeating patterns. 

• Tuning of acoustic unit parameters for the control of noise factors, echoes and quality.  

• Pre-requisite manually created phonetic dictionary for the implementation. 

 

2.5 Motivation For Proposed Work 

Limitations of existing techniques leads us to the proposed model (details in chapter 5) as it 

claims to surpass almost all the limitations faced during the implementation of existing 

techniques. Our proposed model (wav2vec2.0) is capable of training on 5 to 7 hours of data 

(small dataset) and outperforms the existing techniques who needs a proper continuous data set 

of hundreds of hours.  
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   This AI based model is based on self-learning and do not require any manual supervision or 

language model for its performance. Also, it creates a dictionary of its own after self-learning. 

Additionally, it can also accurately transcribe in noisy environment and is capable of 

understanding the dialects, accents and multiple languages at the same time. Our model claims 

more accuracy with low word error rate (WER) as compared to the existing techniques. General 

comparison of proposed model and existing traditional models is given below: 

 

Table 4: Comparison Proposed Model Vs. Existing Traditional Models 

 

Models 

Used 

Transcribed 

Audio Data 

Required 

Lexicon 

(Phonetic 

Dictionary) 

Language 

Model 

Computational 

Power 

Approach 

Used 

Accuracy 

Our 

Proposed 

Model 

(wav2vec2.0) 

 

 

5 Hours 

 

Not 

Required 

 

Not 

Required 

 

 

Low 

 

Self 

Supervised 

 

66% 

 

Existing 

Traditional 

Models 

[35] 

 

 

100 Hours 

 

Required 

 

Required 

 

Very 

High 

 

 

Supervised 

 

64 % 
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Chapter 3 

 

TRADITIONAL ASR TECHNIQUES 

Automatic Speech Recognition (ASR) converts spoken words into written transcriptions. 

Traditional techniques used for speech recognition are mostly based on probability and 

prediction methods. Very popular technique is pipeline system of Hidden Markov Model of 

Markov chains.  

3.1 HMM based ASR System 

As a time-based structure, speech signal can be recorded as a series of spectral vectors that span 

the audio frequency range. The raw speech signal can be considered as a piecewise stationary 

signal or a short time stationary signal. And Hidden Markov Model (HMM)not only supports but 

offers a straightforward foundation for creating such time-based models. General Architect for 

HMM based ASR is shown in Fig 7. 

 

Figure 7: General HMM Architect 



15 
 

 

 

Raw audio signal is provided to the input end and after probabilistic computations of the system 

desired text output is achieved. Let’s discuss the working of HMM ASR by its unit-by-unit 

breakdown. 

• Acoustic Model: 

This unit is probabilistic in nature as it uses Gaussian Mixture Model (GMM) to find the 

probability distribution of incoming phones and HMM for calculating transition 

probability. In simple words, it basically detects the repeating and recurring patterns in 

the input sound streams. After detection of such repeating patterns, this unit clusters 

them into small coherent sub units, which are then fed to decoder unit for further 

processing. 

 

• Language Model: 

Language Model is also probabilistic in nature as it computes the probability of sequence 

of words in the given signal. This model also improves the accuracy of acoustic model 

by providing a huge linguistic knowledge as reference. 

 

• Lexical Model: 

Lexical Model is basically a phonetic dictionary with pronunciations. Extracted and 

identified phones are overlapped with the data of lexicon with a statistical manner and 

spoken words are predicted. 

 

• Feature Extraction: 

This unit extracts features from the raw audio signal. Extraction process is mostly 

executed by the combination of different mathematical techniques including Discrete 

Cosine Transform (DCT), Fast Fourier Transform (FFT) and Mel-Frequency warping, 

resulting in the discrete features in MFCC (Mel-Frequency Cepstral Coefficients) 

format. 

 

• Decoder Unit: 

This unit receives the output of feature extractor, combined output of Acoustic, Lexical 
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and Language models respectively and further process the data for training and 

decoding. Researchers use different approaches, algorithms and techniques for training 

and decoding purpose. Finally transcribed output texts are achieved at the output end 

after its processing from scoring toolset in the decoder unit. 

3.2 Drawbacks of HMM based ASR System 

There are certain loop holes in traditional ASR systems. Some significant drawbacks are listed 

below: 

• Complex statistical computations. 

• They make significant, potentially unfounded assumptions on the independent and 

stationary nature of the observations and states. 

• HMMs are also constrained and insufficient since they can only accurately represent 

linear and discrete relationships between the observations and the states. 

• Evident manual supervision is required by the system in the form of providing huge 

lexicon dictionaries and data vocabularies. 

• Increased word error rate and precision issues. 

• Significant time consumption  

• Implementation of various cascaded techniques requiring more memory space. 

• Less optimized method. 

• HMM frequently uses a lot of unstructured parameters. 

• Positional data are not taken into account. 

• It has No memory; higher orders have some memory but do not explicitly use positional 

data. 

• Handles insertions and deletions poorly. 

• Environmental factors. 

• Background noise. 

• Accents and Style of speaking. 

• Nonsense errors. 

• Spelling errors. 
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• Multiple detections. 

• Homonyms (Words with same spellings or same pronunciations). 

• Unavailability of proper dataset for low-resource languages.  

• Training Requirement of large corpus. 

• Mandatary manual supervision for the creation of linguistic model. 

• Additional acoustic model for detection of repeating patterns. 

 

3.3 Drawbacks related to the implementation of Speech Recognition System 

The following are some of the difficulties in creating and implementing voice recognition 

pipelines in real-world settings: 

• It is challenging for developers to utilize the speech recognition technology at various 

time due to lack of tools and kits that provide state-of-the-art ASR models. 

• There are few customization options that let programmers adjust for jargon particular to a 

given domain and situation, as well as for numerous languages, dialects, and accents so 

that their applications understand and sound like them. 

• Abundant real time restrictions related to the deployment and installments of these 

systems. 

• Time consumption for system’s computation is a headache for real time users of the 

speech technology.    
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Chapter 4 

 

MODERN ASR 

 

Modern ASR systems are based on deep learning encoder-decoder architectures that process the 

input audio via a cascade of convolutional layers in order to produce a compact vector. The 

decoder then uses the input from the encoded vector to produce a string of characters. Fig 8 

shows general architect of modern ASR. 

 

 

 

Figure 8: General Architect of modern ASR. 

4.1 Growing Deep Learning 

 

Deep learning techniques are very vast and trendy. Significant benefit of using DL is that the 

data pre-processing which is generally involved with machine learning is eliminated with deep 

learning. These algorithms can handle text and visual data that is unstructured and automate 
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feature extraction, reducing the need for manual supervision. We can choose which DL 

technique are best suited to fulfil our requirements. Table 5 represents a brief overview of 

various DL techniques. 

Table 5: Growing Deep Learning (DL) 

 

DL Techniques Overview 

 

 

Supervised Learning [9,12,17] 

 

 

Unlabeled data => Label => Train 

 

Self-Supervise Learning [3] 

 

 

Isolated Word Recognition System 

 

Seq-2-Seq Model 

RNN based Seq-2-Seq [42] 

 

 

Convert seqs of Type-A to seqs of Type B. 

 

Transformers 

Transformers XL [41] 

 

 

Compute representations of input and output without 

using sequence-aligned RNNs or convolution 

 

 

Google BERT [40] 

 

Bidirectional Encoder Representations from 

Transformers 

Wav2vec2.0 

XLSR wav2vec [37,38] 

 

Convolution+ Quantization + Transformers 

 

 

• Supervised Learning: 

 

It is distinguished by the way it trains algorithms to accurately classify data outcomes 

using labelled datasets. In most cases, supervised machine learning is used to categorize 
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data or generate predictions [9,12,17]. Because labeled or tagged data is required, 

supervised machine learning uses a lot more resources and manual aid, Fig 9. 

 

 

Figure 9: Supervised Learning 

 

 

• Unsupervised / Self Supervised Learning: 

 

In the self-supervised learning process, an algorithm trains itself to learn, pre-process and 

differentiate the input components, also known as Pretext learning or predictive learning. 

By automatically creating the labels, the unsupervised problem is converted into a 

supervised problem and thus eliminating the need for manual aid [3], Fig 10. Un-

supervised learning is typically used to analyze dataset relationships. 
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Figure 10: Unsupervised Learning 

 

Table 6: Brief comparison between Supervised and Unsupervised learning 

 

Machine Learning 

Type / System 

 

Input 

Form 

Computational 

Complexity level 

Output 

Accuracy 

Unsupervised 

Learning [9,12,17] 

Labelled Higher Computation 

Complexity 

 

Less Accuracy Rate 

Supervised 

Learning [3] 

Unlabeled Simpler 

Computations 

Higher Accuracy 

Rate 

 

Table 6, highlights the general difference between the working of both machine learning 

algorithms, supervised and unsupervised learning systems respectively. 
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• Seq-2-SeqModel: 

In National Language Processing (NLP), sequences of Type A are transformed into 

sequences of Type B using sequence-to-sequence models. For instance, translating 

sentences from one language to another is a sequence-to-sequence problem. 

From 2014 on-words, Recurrent Neural Network (RNN) based sequence-to-sequence 

models have gained a lot of popularity, Fig 11. The majority of data in today's world is in 

the form of sequences; these sequences can be audio, text, video, or number sequences 

[42]. 

 
 

Figure 11: Seq-2-SeqModel 

 

 

• Transformers: 

An innovative DL model called The Transformer in NLP tries to tackle sequence-to-

sequence problems while skillfully managing long-range dependencies. Transforming 

input sequences into output sequences is referred to as "transduction" in this context. The 
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goal of Transformer is to handle input and output relationships with complete attention 

and recurrence [41]. 

 

 
 

Figure 12: General Architecture of Transformer 

 

Several identical encoders and decoders are layered on top of one another to form the 

encoder and decoder blocks and both blocks have equal number of stack units. 

The first encoder receives the input sequence's word embedding. These are then modified 

and transmitted to the following encoder. According to the diagram below, Fig 12, every 

decoder in the decoder-stack receives the output from the final encoder in the encoder 

stack. The Transformer is the first transduction model to calculate representations of its 

input and output purely utilizing self-attention without the use of convolution or 

sequence-aligned RNN. 



24 
 

 

 

 

Only text strings of a certain length can be handled by attention. Before being entered as 

input into the system, the text must be divided into a certain number of segments or 

chunks. Context is messed up by this text chunking. For instance, if a sentence is broken 

down from the middle, a lot of contexts is lost.  

 

Therefore, the text is divided without regard for the phrase or any other semantic 

boundaries. Transformer-XL offers its remedy. The hidden state computed for the prior 

state as an additional context for the current segment during the training phase of 

Transformer-XL. Transformer-XL's recurrence technique handles the drawbacks of using 

a fixed-length context. 

 

• Transfer Learning 

 

Transfer learning (TL) is a machine learning (ML) research subject that focuses on using 

information learned while completing one job to complete another that is associated. For 

instance, the skills acquired while learning to identify simpler type of transport vehicles 

could be used when attempting to identify heavier ones. Fig 13 shows the general 

architect of Transfer Learning. 

 

 In Transfer learning, pre-trained models are frequently used as the foundation for deep 

learning tasks in computer vision and Natural Language Processing (NLP) because they 

save both time and money compared to developing neural network models from scratch 

and because they perform vastly better on related tasks. Fig 14 shows the strategy flow 

diagram of transfer learning (TL) [43]. 
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Figure 13: General Architect of Transfer Learning (TL) 

. 

 

 

Figure 14: Transfer Learning Strategy 
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Chapter 5 

PROPOSED METHODOLOGY 

WAV2VEC2.0/ XLSR MODEL 

 

5.1 Wav2vec2.0 

Wav2vec is a pretrained automatic speech recognition (ASR) model, a relatively novel idea in 

this industry that Facebook team Alexei Baevski, Michael Auli, and Alex Conneaut published in 

September 2020. Facebook AI showed Wav2Vec2 using the English ASR dataset LibriSpeech. 

Itis a uniqueness is reflected by its self-supervised training nature. Fig 15 shows general block 

diagram of the model. 

 

 

Figure 15: General block diagram of wav2vec2 Model 

 

Pre-training a model using unlabeled data, which is always more accessible, is now possible with 

this method of training. This AI essentially trains the model not only to understand the 

distinction between original speech instances and modified phones, but also frequently performs 
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this task hundreds of times for each second of audio, and forecasts the proper audio advanced in 

milliseconds. Fig:16 shows the general block diagram working steps of this Facebook AI. 

 

Figure 16: Working Steps of wav2vec Model 

 

Feature Encoder: 

   As shown in Fig 17, this algorithm receives the audio input signal X which is fed to a 

multilayer convolution encoder Z. i.e.- many hidden layers of Convolution Neural Network 
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(CNN). Components of this encoder includes temporal convolution blocks, Normalization layer 

and Gaussian Error Linear Unit (GELU) activation function respectively. 

 

Figure 17: wav2vec2 Model 

 

This encoder is essentially a feature extractor that converts the raw input signal X into a 

sequence of continuous audio signal vectors using a few convolutions, a GELU activation 

function that assigns input weights based on their probability under a gaussian distribution, and 

normalization to achieve zero mean and unit variance. Therefore, this encoder yields the 

Sequence of Latent Speech representations Z for T time steps.  
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Z = Z1, Z2, …, ZT.         (1) 

In simple words the CNN-based Feature Encoder, with its convolutional layers, GELU 

activation, and normalization, is designed to learn hierarchical representations from the raw 

audio signals. The convolutional filters capture local patterns, the GELU activation introduces 

non-linearity, and the normalization helps in normalizing the representations. The resulting small 

continuous speech vectors can then be fed into subsequent layers or models for further 

processing or downstream tasks such as quantization, speech recognition or speaker 

identification. 

 

Quantization Model:  

   Now these continuous audio vectors are digitized via quantization unit Q, yielding quantized 

audio vectors. To attain these quantized vectors, Apply the quantization model. For its 

implementation create a bunch of groups / codebooks and create a matrix e of size RxV, 

representing the input data in the quantization model.  

                 e∈ RV ×d/G         (2) 

the parameters are defined below:  

• G = Number of groups / codebooks 

• V = Number of entries / members in the group. 

• d = Dimensions 

• R = Total number of samples or instances in the dataset 

 

   In order to construct quantized vectors, for every iteration, select an entry / row randomly from 

every matrix, and then integrate the resulting concatenated vectors e1, . . . , eG as a single vector  

Rd. Now apply linear transformation on vector R d and obtain f- dimensional matrix vector R f, 

which will give us the quantized vectors as we have only finite options to choose for each 

iteration. 

q ∈ R f           (3)  

Model will take the feature encoder output latent speech representations Z and multiplied them 

with a matrix and turned them into a bunch of logits. In simple words, we are correcting the size 

of Z by mapping it on l logits (i.e. Z → l). 
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Therefore, size of Z corresponds to the number of choices we have. So, first we will choose the 

group G, then a member / entry V in that group to yield the logits, which is given below: 

l ∈ RG×V = logits                  (4) 

Now the Gumbel SoftMax function will model the logits and convert the vectors into continuous 

probability distribution and models the randomness or noise factor. Therefore, probability of 

choosing group g and member v is given by SoftMax function as:  

 

P(g,v) = [ exp (( lg,v + nv) / τ )] / [ ∑ 𝒆𝒙𝒑 (𝒗
𝒌=𝟏  ( lg,k + nk) / τ )]    (5) 

 

Where, 

• τ = non-negative temperature parameter 

• n = -log(-log(u)) = Gumbel Noise 

• u = uniform samples  

 

So probability of selecting ith option is given by the ratio of exponential of modified logits and 

the sum of exponential of all the modified logits. Here τ, the non-negative temperature parameter 

and by increasing its value, distribution gets prominently smoother. In forward route (from 

encoder to transformer), we choose the concatenated vectors e1, . . . , eG
 by looking the 

probabilities obtained using equation (5) the selecting the maximum or argmax to get the choice 

(codeword i ) to make i.e. choose the ith row of the matrix. 

i = arg maxj  P(g, j)          (6) 

Now after all the iterations, quantized vectors are obtained. 

  Q = q1,q2,…, qT         (7) 

Q represents the finite quantized audio vectors of Latent Speech representations for T time steps.  

 

Masking:  

   Now some of these quantized vectors are masked via masking filter and a new sequence of 

these vectors is fed to the input of transformer layer. 

 

Transformer Unit:  
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   Working of Transformer unit is as follows: 

• Positional encodings are added to the input features using the convolution layer as a 

positional encoder, in order to incorporate the temporal information of the audio 

stream. The relative positions of the audio segments are disclosed by these encodings. 

• Transformer Encoder has a stack of transformer encoder layers fig 12, receives the 

input features and their positional encodings after that. Multi-head self-attention 

systems and position-wise completely coupled feed-forward networks make up each 

encoder layer.  

• Multi Head Self Attention: Each input feature vector can attend to every other vector 

in the sequence thanks to the self-attention mechanism, which captures contextual 

relationships. Different forms of relationships are captured using a variety of attention 

heads. 

• Feed-forward Networks: The transformer then independently applies position-wise 

fully connected feed-forward networks to each feature vector following the self-

attention phase. The representations are improved and changed as a result of this 

process. 

 

• Output: The transformer encoder's ultimate output is a series of high-level 

contextualized representations, each of which contains data on the related input feature 

vector and its context. 

 C = c1, c2, …, cT          (8)     

C represents the Context Representation of capturing information from the sequence. Now this 

completes the pre-training loop. Basically, the multiple CNN layers and transformer constitute 

the training unit, Fig 18. 

 

Loss Function and Pre-Training: 

   A significant contrastive loss L is observed at transformer output due to masking factors in the 

previous step. Now to back-propagate (from loss function to quantized vectors) to the derivative 

of the loss function obtained, we will approximate it with SoftMax and true gradient of the 
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Gumbel SoftMax outputs will smooth the distribution and choose discrete groups and codebook 

entries in an absolutely distinguishable manner.  

 

 

Figure 18: wav2vec2 Model pre-training 

 

 

Pre-training involves completing a contrastive assignment Lm that asks you to choose the real 

quantized latent speech representation for particular masked given time step from among a 

variety of distractor signals. To encourage the model to employ the codebook entries equally 

frequently, a codebook diversity loss Ld is added with a tuned hyperparameter α. 
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L = Lm + αLd         (9) 

where , 

• Lm = Contrastive Loss 

• Ld = Diversity Loss  

• α = Hyperparameter. 

 

Contrastive Loss: 

    By encouraging the model to give the real representation qt, a higher similarity score than the 

distractors q~, this Contrastive Loss function Lm aims to increase the model's capacity to 

recognize the correct quantized latent speech representation from the available options.  

 

The loss Lm is calculated using the contrastive loss equation by dividing the negative logarithm 

of the sum of the exponential similarity scores between the context representation ct and the 

candidate representations q~ by k scaling factor. The importance of the representations with 

greater similarity scores is increased using the exponential function. Equation is given by: 

 

Lm = -log [ (exp (sim( ct + qt) / k )) / ∑ (q~ ∼Qt)  (exp (sim( ct + q~) / k ))]      (10) 
 

 

Where, 

• ct = output of the context network 

• qt = true quantized latent speech representation at the masked time step T. 

• q~ = set of candidate representations, which includes the true representation q t and k 

distractors. 

• k = scaling / temperature parameter. k parameter regulates how sharp the similarity 

scores are.The similarity scores are sharper for higher values of k and smoother for lower 

values. 

• sim(a,b) = The cosine similarity between two vectors a and b is represented by the 

function sim(a, b). In this instance, it is calculated as the vectors' dot products divided by 
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their magnitudes. The resulting similarity value ranges from -1 to 1. To assess how 

similar two vectors are, the cosine similarity is frequently utilized. 

 

Diversity Loss: 

   In order to promote the equitable use of the quantized codebook representations in each of the 

G codebooks, the diversity loss Ld was introduced. This is implemented by increasing the 

entropy of the averaged SoftMax distribution (l) over the entries for each codebook ¯Pg (This 

distribution indicates the probability of selecting each entry in the codebook)  over a batch of 

utterances. The diversity loss Ld is calculated as the negative sum of the entropy H, as given 

below: 

Ld =    
𝟏

𝑮𝑽
 ∑ −𝑮

𝒈=𝟏  H(¯Pg) =  
𝟏

𝑮𝑽
  ∑𝒈=𝟏

𝑮   ∑ ¯𝑷 𝑮𝑽
𝒗=𝟏 g,v  log ¯Pg,v   (11) 

Where, 

• G = Number of groups / codebooks 

• V = Number of entries / members in the group. 

• H(¯Pg) = It illustrates the averaged SoftMax distribution's entropy. The uncertainty or 

randomness in a probability distribution is measured by entropy. Entropy maximization 

facilitates a more uniform distribution, which promotes the equitable utilization of 

codebook entries. 

• ¯Pg = It depicts the gth codebook's averaged SoftMax distribution over the entries. The 

likelihood of choosing each entry in the codebook is represented by this distribution. 

 

This loss encourages the model to use every entry in each codebook equally by maximizing 

entropy, encouraging variation in the choice of quantized representations. A balanced use of the 

quantized codebook is supported by this loss in order to prevent the model from favoring 

particular codebook entries or representations, increasing the diversity of the quantized 

representations and enhancing the overall performance of the quantization model. 

 

Fine-Tuning: 

   The previously trained network is topped with a single linear layer for fine-tuning, which 

involves the training of the model on labelled audio data for subsequent tasks including voice 
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recognition, speech interpretation, and audio categorization’s exhibits substantial advancements 

above prior state-of-the-art outcomes in speaker/language identification, voice translation, and 

speech recognition. Following the adjustments, the model effectively recognizes, categorizes, 

and translates the desired input, Fig 19. 

 

 

Figure 19: wav2vec2 Model Fine-Tuning 

 



36 
 

 

 

Decoding: 

 

   Once the transformer yields the output sequence, model starts to predicts the masked vectors. 

Now this process results in the output in chunks form. These letter chunks are then classified by 

Contrastive Task layer into respective output tokens. In the final step, these tokens are combined 

with Connectionist Temporal Classification (CTC) algorithm to constitute the final text 

transcriptions. 

 

Generally, in CTC algorithm, the input consists of a series of observations, while the outputs 

may also include blank outputs along the series of labels. Because there are far more 

observations than labels, training is a challenging task. For instance, different time slices can 

correspond to a particular phoneme, can exist in spoken sounds. CTC forecast a probability 

distribution for each time step since there is uncertainty about the observed sequence's alignment 

with the goal labels. The continuous output of a CTC network, is adjusted during training to 

represent the likelihood of a label.  

 

CTC does not try to learn timings and boundaries of words. If the only difference between two 

label sequences is how they align, blanks are not taken into account. There is an effective 

forward-backward algorithm for scoring, which is a non-trivial process given the variety of ways 

equivalent label sequences might occur. The neural network parameters can then be updated 

using the back-propagation technique using CTC scores. 

 

To train recurrent neural networks (RNNs) like LSTM (Long Short-Term Memory) networks to 

handle sequence problems where the time is uncertain, Connectionist Temporal Classification 

(CTC) is a form of neural network output and it is associated with scoring function which is 

establishing a grade or score to evaluate the performance of the output. Therefore, in this way 

Word Error Rate (WER) is minimized and accurate results are received at the output end.  
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5.2 XLSR Wav2vec2.0 

There is a multilingual wav2vec2 variant known as XLSR. Cross-lingual speech representations, 

or XLSR for short, refers to the model's capacity to acquire speech representations that are 

applicable to several different languages. Fig 20 highlights the model ability to work on multiple 

languages. This single, multilingual speech recognition model competes favorably with a number 

of potent standalone models. 

 

Figure 20: XLSR wav2vec2 Model 

 

The model was trained on labelled audio data for subsequent tasks such as voice recognition, 

speech interpretation, and audio categorization. This approach shows significant improvements 

over previous state-of-the-art results in speaker/language identification, voice translation, and 

speech recognition. The previously trained network is reinforced with a single linear layer for 
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fine-tuning. As a result, the model XLSR gains the capacity to bridge discrete tokens between 

languages. The model successfully recognizes, classifies, and translates the desired input after 

the adjustments. Fig 21 elaborates the self-supervised pre-training from unlabeled dataset to the 

fine-tuning of the model. 

 

 

 
 

 

Figure 21: Fine Tuning XLSR wav2vec2 Model 
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Chapter 6 
 

SIMULATION AND RESULTS 

 

6.1 Dataset 

ASR Implementation takes a sizable dataset, recorded from numerous speakers, to build a 

speaker-independent speech recognition system. The total duration of these recordings is roughly 

100 hours. Approximately 5000 Pashto transcribed audio files with 70% male and 30 female 

audio representation. Participants belongs to various districts in Pakistan's Khyber Pakhtunkhwa 

province. 

 

Written data was read aloud by transcribers and recorded in order to obtain transcribed audio 

recording data. Our study after listening to these recordings shows that we need approx. 10,000 

words to complete an hour of recording. As a result, a substantial amount of textual information 

was needed to finish the recording work, and it was gathered from several sources. To gather 

textual information, Pashto literary works, blogs, and news websites were utilized. The 

information gathered came from current affairs, blog posts, documentaries, and articles that were 

featured in various newspapers. 

 

A portion of the information was gathered through Facebook, a social media platform, in the 

form of posts and short tales. To create the input, this data had to be filtered and polished 

because it was in hundreds of lines. 

 

The data that was gathered contained numerous errors or unrelated information. It included 

punctuation special characters and other symbols that are not a part of spoken language and 

cannot be recorded or trained, such as ",.,*, and @. These characters will be either deleted from 

the database or replaced with spaces while coding. Fig 22 shows the list of characters generating 

errors. 
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Figure 22: List of Characters Removed  

 

Participants recorded the audio files using the built-in software on their mobile devices. The 

participants had the option of selecting the gadget. Since the goal was to collect actual data, there 

was no dedicated lab setting for recording. Participants were not given any specific instructions 

other than to read as accurately as they could. Recording process was done in a very careful 

manner so that the speaker's speech shouldn't be replaced by noise thus minimizing errors and 

the noise factor was also normal. Depending on the participant's situation, several sampling rates 

were used for each recording. Later, all audio data was converted to a 16 kHz sampling rate, 

stereo channel format. Fig 22 represents some of the screen shots of compiled data set. After 

couple of training sessions, we successfully refined 5 to 7 hours of our dataset to 1000 audio files 

to train the model. 

 

6.2 Word Error Rate (WER) 

 

This statistic is used to gauge the output error of a voice recognition system. Three options for a 

word could exist during the recognition process. First off, a different word can be used in its 

place. This is referred to as "substitution". Second, it can be removed but not changed in any 

way.  In the third place, a new word is added. The three different sorts of problems mentioned 

above raise the WER. The WER formula is given by: 

 

WER  = (S + D + I)/100         (12) 
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In this case, S represents the substitution, D represents the deletion and I represent the Insertion. 

If the WER is 40%, it indicates that 4 words out of every 10 are added, removed, or replaced. 

Another possibility is that 3 words are substituted and 1 is either removed or added, among other 

conceivable combinations. It is feasible to achieve WER greater than 100% in this manner. 

 

 

 

Figure 23(a): Compiled dataset 

 

 

Figure 23(b): Compiled dataset 
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6.3 Implementation 

 

We can develop and run Python code in our browser using Colab, which is also known as the 

"Colaboratory". we can develop and run code in an interactive setting known as a Colab 

notebook. From our Google Drive account, including spreadsheets, Github, and many other 

places. Also, we can upload our own data into Colab notebooks. 

 

 By only a few lines of code, we can use Colab to import an image dataset, train an image 

classifier on it, and subsequently evaluate the model. No matter how powerful our system is, we 

can take advantage of Google technology, such as GPUs (Graphical Processing Units) and TPUs 

(Tensor Processing units), by using Colab, which run code on Google's server infrastructure. 

Therefore, we will implement Hugging face wav2vec2.0 model in colab by following these 

steps: 

 

• First of all, we will mount our google drive to colab directories. 

• Install Dataset , Transformer, and all the required liberaries including torchaudio (library 

of audio and signal processing), jiwer (a quick and easy Python package for measuring 

the word error rate (WER) along with the evaluation of an autonomous speech 

recognition system), librosa (to deal with audio and music-related studies), numba (to 

support numpy), and huggingface_hub transformers datasets. 

• Import Python packages like torch , ( for tensor computation and strong GPU 

acceleration), NumPy  (to deal with numbers) , pandas (a python module that offers 

quick, adaptable, and powerful data structures  to work with labelled data), re (Using a 

string and a regular expression pattern, the search is performed within the string), json (A 

specified format called JavaScript Object Notation (JSON) is frequently used to transmit 

data as text across a network), random (for generation of random numbers), 

huggingface_hub (for interaction with hugging face), IPhython.display (for swift 

execution of  a single line of Python code and for standard interpretation), random (built-

in package that produces random numerals), and display, HTML (to open and read 

HTML files). 
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• Now load the data parameters, class labels voice data and evaluation metrices from the 

dataset. A float array representing the unprocessed waveform of the speech signal is what 

the speech model wav2vec2.0 uses to represent the signal. Since the wav2vec2 model 

was trained using Connectionist Temporal Classification (CTC), 

Wav2Vec2CTCTokenizer class must be used to decode the model output. 

• For this purpose, use transformer to create the wav2vec2CTCTokenizer (for input 

tokens), wav2vec2ForCTC (for building the model by given inputs, specifying the model 

architecture and fine-tuning tasks), class Training Arguments (to set several options, 

including the outcome directory, testing and scoring method, and learning frequency), 

Trainer (machine learning and computational intelligence-based training facility), 

wav2vec2FeatureExtractor and wav2vec2Processor. 

• Now load the required data class (solely envisioned to retain and hold data values that 

needs to be transferred among several components of a system) and field function (to 

give extra information like default parameters and testing guidelines) from data classes. 

Then load the functions like Any (for true/false conditions), Dict (also called dictionary 

representing a data structure of non-homogenous {key: value} pair), List (for holding 

several elements in a single parameter), Optional (an argument with default value) and 

Union (yields a set with all the values from the initial set as well as from the provided 

one) from the object’s type analyzing and errors anticipating module named typing. 

• Now login to hugging face account and load the audio and transcriptions files of dataset 

from the google drive. 

• Wav2vec2Processor usually aids with normalization the data. To set up the trainer we 

further need to process the data, we will use data collector (tool for building interlinked 

computation pipelines) to build a batch. Padding and random masking can also be done 

where required to even out the data lengths for processing. 

• This data collator applies distinct padding functions to input and labels for their 

subsequent interpretations. Since audio input and output are of distinct modes and should 

not be handled by the same padding function.  

• Therefore, input and labels are returned in PyTorch tensors (a multidimensional matrix or 

array with only one data type's members) format by the tokenizer. 
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• Similar to the conventional data collators, the labels' tokens are padded with -100 so that 

they are not included in the calculation of the loss. And then in this way refined batch 

(script file) will be obtained. 

• Now to get a sense of the transcriptions, creating a little function that displays a few 

random samples from the collection. The function will create an HTML file called 

"data.html" that contains a table with the samples from the dataset that were chosen at 

random. 

• Numerous unusual symbols (like.'?: etc.)  are present in the transcribed data. Due to the 

fact that voice segments do not actually correlate to a distinct sound unit, it is 

considerably more difficult to classify these special symbols without any reference from a 

standard language framework. 

• Additionally, they do not play any vital role to comprehend the meaning of a speech 

signal. Here we will just normalize the written content and eliminate all the symbols that 

do not add up to the semantics of a word and cannot actually be represented by a 

conventional voice. In order to remove them, firstly create an array of the characters to be 

removed. 

• Now convert this array in a list and create a pattern by using regular expression (RegEx, a 

string of characters that creates a search pattern) i.e., regex filter for the list. 

• Remove the special characters by mapping them with regex pattern and refined batch will 

be returned in its output. 

•  Now apply the Extract function (extract required data and form new function), which 

tends to integrate all the transcription strings in the batch and yields a new single 

concatenated string.  

• By applying list function, a set of distinctive characters from the new string will be 

formed, which is then assigned to the vocab variable.  

• Therefore, extract function will return a dictionary of concatenated string set list (all_test) 

and variable vocab containing list of all the unique characters. 

• As an input, function prepare_dataset receives a data batch, which is often a portion of 

the total dataset, and passes the audio data from batch to wav2vec2processor's processor 

object. 
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•  Now that the audio data has been tokenized and subjected to feature extraction, the 

processor transforms the unprocessed voice data into input parameters appropriate for the 

Wav2Vec2 model involving the sampling rate.  

• Here, we extracted the first element of the batched output to obtain a single input value as 

the processed features are normally returned as a batched output (each component of the 

batched output corresponds to a single sample in the input batch).  

• Therefore, the model can now receive this particular input value without any failure. Now 

apply the length function which will determine the length of the input values, which is 

then allocated to batch. When the process of training or evaluation starts, this length 

information will be helpful. 

• To process the transcribed data, the code then calls processor to use the processor as a 

target processor.  

• Each audio sample in the batch has a written text linked to it, which is stored in the batch 

field and here those linked transcripts are tokenized and transformed into model-

compatible input Identities. 

•  Finally, batch receives the processed input Identities. To calculate the loss and metrics 

during training or evaluation, these labels will be used. The input values, their lengths, 

and label fields are now included in the updated batch that the function returns. 

• Now by comparing the model's predictions to the labels, the compute metrics function 

determines how well the model performed in the evaluation phase of the training process.  

• Basically, the anticipated logits are extracted from the pred object. These logits show the 

probability that the model estimates for each input token in the sequence. 

• For each place in the input sequence, the token index with the highest probability is 

determined using the argmax function in this case. The estimated token Identities 

constitute as an outcome. 

• The CTC (Connectionist Temporal Classification) loss function is extensively employed 

in ASR programs. Some input sequence tokens may be designated as padding tokens 

during training and excluded from the loss calculation.  

• These padding tokens are frequently represented in the training data by a particular token 

ID, which is commonly -100. To maintain consistency and an accurate assessment of the 
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model's performance, code is basically substituting the padding token ID for -100 in the 

label token IDs. The situations where labels weren't taken into account during training, 

this step will also deal with it. 

• The predicted token IDs are subsequently transformed back into their appropriate text 

representations by the processor. We get the finalized transcriptions as a result. In order 

to create their corresponding text representations, the label token IDs are decoded.  

• Then, it is made sure that distinct tokens are not clustered together during decoding with 

the aid of argument statement. 

• The word error rate between the reference transcriptions and the predicted transcriptions 

is calculated by the object wer_metric. The WER metric calculates the difference in 

word-level errors between the reference and forecasted texts. The function then generates 

a dictionary that contains the calculated Word Error Rate. 

• Now the code eliminates special characters from the training and test datasets 

respectively prior to generate a vocabulary based on the dataset’s distinctive components 

and saves it as a JSON file to be deployed while training the ASR model. 

• The Wav2Vec2CTCTokenizer class is now initialized, and code loads the tokenizer from 

the provided directory. 

•  The tokenizer can be configured using parameters (unknown, padding, and spaces) to 

alter the special tokens it returns. 

• The name of the repository where the tokenizer will be pushed into the Hugging Face 

Model Hub is represented by the string value "wav2vec2-large-xls-r-300m-pashto-colab-

test-6" in a variable. Here through the Model Hub, the tokenizer is posted and made 

accessible to the general public. 

• Now Wav2Vec2FeatureExtractor object is initialized. The Wav2Vec2 model processes 

the feature vectors that are generated by the feature extractor from audio signals.  

• The given parameters define the feature size (one), the sampling rate (16000 Hz) of the 

audio, the padding value (zero), the option to normalize the audio features, and the option 

to return attention masks paired with the features. 

• After that, the Wav2Vec2Processor object is initialized. To preprocess the audio and text 

data for training or inference, the processor combines the feature extractor and tokenizer.  
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• The previously constructed feature_extractor object is set as the feature_extractor 

parameter, and the previously generated tokenizer is set as the tokenizer parameter.  

• Now the dataset's first element, common_voice_train, is printed. It shows the related 

metadata for the initial data sample, which often include details like the location of the 

audio file, the text of the transcription, and other pertinent information. 

• Then it prints the first data sample's audio file path, accesses the audio field in the 

metadata dictionary, and obtains the value corresponding to the path key. 

•  After the path values, sample's audio, related to metadata is printed, and the metadata 

dictionary's audio field is accessed and its contents are highlighted. The sample rate, 

duration, and other pertinent parameters of the audio file may also be included in this. 

• The train audio files are loaded and converted into the Audio data type with a preset 

sampling rate of 16000 Hz using the casting procedure. 

•  Repeating the same procedure then with test audio files. And after that, the first sample’s 

audio waveform is acquired at the set sampling rate (16000 Hz). 

• A random number is generated that falls between 0 and the length of the 

common_voice_train dataset minus 1. It is applied to the dataset to choose a random 

index.  

• Then it displays the "transcription" field from the common_voice_train dataset's 

randomly chosen data sample. The associated text transcription for that specific audio 

sample is also shown. 

• It creates an audio widget that can play the audio waveform using the IPython Audio 

function by using the audio waveform data and the given16000 Hz sample frequency. 

The audio sample will be played on its execution. 

• It outputs the intended text transcription for the audio sample that was chosen at random 

and then it displays the audio waveform array's shape for the audio sample that was 

chosen at random.  

• The number of audio channels and the duration of the audio waveform are both disclosed. 

Then it indicates the number of samples per second in the audio waveform and the 

sampling rate of the randomly chosen audio sample.  

• The sampling rate in this instance is 16000 Hz. 
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• The datasets of training and testing are preprocessed and then system creates a data 

collator to prepare the data for training. After that it loads the WER measure, for the 

process of evaluation. 

• The model that was pretrained is finally loaded. It consists of a modified / fine-tuned 

Wav2Vec2 Farsi (Persian) language model.  

• The dropout probability for the model's attention layers is set to 0.1, which means that 

10% of the attention weights will be set at random to 0 during training to avoid over-

fitting (when training data is more than testing data). 

• By randomly zeroing out 10% of the hidden units during training, the model's dropout 

probability for hidden layers, which is set at 0.1, helps to regularize the model.  

• Since there will be no dropout applied to the feature projections, the dropout probability 

for the feature projection layer is set to 0.0.  

• The likelihood of masking specific time steps in the input during training is set to 0.05. In 

order to encourage the model to develop robust representations, on average 5% of the 

input time steps will be substituted with a masking token. 

• The layer-drop probability is set to 0.1, which means that 10% of the model layers will be 

dropped at random during training and skipped during forward pass. This can also be 

regarded as regularization method.  

• By ignoring the mismatched widths, the model will be able to deal with input sequences 

of different lengths during inference and training phases. When dealing with audio inputs 

of varying length, it will be quite be helpful. 

• As a result, "mean" is selected as the reduction method for the CTC loss computation. It 

indicates that the total loss will be calculated by averaging the loss numbers at different 

time steps. 

•  Then it defines the ID of the padding token in the processor's tokenizer. By doing so, it 

guarantees that the model understands how to deal with padding tokens throughout both 

training and inference. 

• Now set the arguments for the training to be used.  
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• We can adjust a number of training process variables, including batch size, learning rate, 

assessment approach, and logging frequency, among others, by defining these training 

arguments. 

• For this purpose, first defines where the trained model and other training material will be 

saved in the output directory. 

•  To maximize training effectiveness, organize the training instances by input sequence 

lengths that are similar.  

• The batch size per device (GPU) for training is set. In this scenario, one training sample 

will be processed by each GPU each batch. 

• The amount of gradient accumulation steps is then specified here. Gradients are gathered 

over a number of steps, and then back-propagation is used to update the model's 

parameters. In this case, gradients are accumulated up until the update. 

• Now the training's evaluation procedure is set. In this instance, evaluation is carried out at 

predetermined intervals determined by evaluation steps. 

•  Here we are setting epochs value, as it will conclude how many training epochs (passes 

of the dataset) will be made in total.  

• In order to speed up training and use less memory, system supports the mixed-precision 

training, which uses lower precision (float16) for some computations. 

• Now set some parameters including save step (how frequently the model checkpoints are 

saved during training), evaluation steps (the number of evaluations on the validation 

dataset will be carried out while training), logging steps (the number of times that 

training metrics and other data will be logged), learning rate (optimizer rate which 

regulates the step size while updating the model's parameters during training) and warm 

up steps (the number of steps for the learning rate scheduler). 

• Now restricts the total number of stored checkpoints to be kept to two. Up to the given 

limit, only the most recent checkpoints will be retained. 

• The training pipeline will be built up with the proper model, data collator, training 

arguments, evaluation dataset, and tokenizer by initializing the Trainer object. 

• The Trainer object offers ways to train the model, assess its effectiveness, and store 

checkpoints as we go. 
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• In order to load the trained model, handle the input data, provide estimations, and 

contrast them with the transcription of the actual events, we will start the training process. 

• Configure the trainer and train the model on specified dataset. In parallel, system will 

push all the related files to Hugging Face Model Hub.  

• Using the repository where the model was pushed, load the optimized model from the 

Hugging Face Model Hub along with appropriate processor (tokenizer and feature 

extractor) for the model.  

• Now the loaded processor is used to process the incoming audio data from the 

common_voice_test dataset's first sample.  

• The processed input values are returned as a dictionary of PyTorch tensors. 

• Now the system will run the loaded model with the input values that have been processed 

through it to produce the anticipated logits. 

• By moving the argmax down the last dimension of the logit’s tensor, the predicted token 

IDs are extracted.  

• The predictions for the first sample are retrieved using the [0] indexing. 

• Now the expected transcription is obtained by utilizing the processor's decode technique 

to decode the predicted token IDs.  

• And lastly, system displays the ground truth reference transcription from the 

common_voice_test dataset. 

6.4 Results 

For the low resource language Pashto, we have built the dataset and applied the wav2vec2 model 

successfully. After fine-tuning the model, we obtained findings that were about 66% accurate 

over all. The word mistake rate, which is around 37% (WER reduces with time and training), is 

used to assess the system's performance. The mapping between the training data set and the test 

data set yields very clear results.  

Despite the fact our WER for audio chunks and short lengths of speech is relatively comparable 

to published work in Pashto, the lower the error rate, the more precise this model will be with 

this volume of data. WER is calculated in accordance with all test data utterances. In order to 
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lower WER, we noticed multiple data transcriptions and discovered that some mistakes were 

complex words rather than reading errors. Results are shown below: 

 

  

Figure 24(a): Output Transcriptions 
 

 

 

 
 

 

Figure 24(b): Output Transcriptions 
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Figure 25: Output Progress 
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Figure 26:  Bar Chart of Output Parameters 
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6.5 Output Comparisons 

Comparison of our low resource wav2vec2.0 Pashto output results with the output of the 

traditional Pashto ASR system as well as wave2vec2.0 high resource (English) and low resource 

(Irish) languages is made to validate the effectiveness of the proposed result Fig 27,28,29 shows 

the output results of HMM based traditional Pashto ASR system, wave2vec2.0 low resource Irish 

ASR system and wave2vec2.0 high resource English ASR system respectively. Detailed 

comparison analysis is concluded in section 6.6 below. 

 

Figure 27:  HMM Based Pashto ASR Output [35] 

 

 
 

Figure 28:  Facebook wave2vec2 Low Resource Irish ASR Output [39] 
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Figure 29:  Facebook (wav2vec2-large-xlsr-53) High Resource English ASR Output [38] 
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6.6 Output Comparisons Analysis 

 

   Here, at this point we can observe that our proposed model wav2vec2.0 outperforms the 

traditional HMM Pashto ASR (64% accuracy and 35% WER using 100 hour of audio dataset for 

training) in terms of accuracy 66% and successfully achieved WER of 37% (using approximately 

5 hours of training data). By comparing our output results with the output of the same model 

(wav2vec2.0) with other low resource language (Irish) ASR system, we find out that our 

accuracy and WER is very promising and outstanding as compared to it, i.e.,50% WER. Also, 

comparison of our model wav2vec2.0 with the same model (wav2vec2.0) with high resource 

language (English) ASR system, we find out that WER is approximately 35%. Therefore, we can 

say that the proposed model yields very satisfying output results which can get more better and 

precise with further fine-tuning of model and additional refining of dataset. 

 

 

Table 7: Comparison Analysis 

 

 

 

Model 

Vs.  

Output  

 

HMM 

Traditional 

Model 

(Low Resource 

Pashto 

100 hours) 

  

 

Proposed Model 

Wav2vec2.0 

(Low Resource 

Pashto  

5-7 hours) 

 

Wav2vec2.0 

 

(Low Resource 

Irish) 

 

Wav2vec2.0 

 

(High Resource 

English) 

 

WER 

 

(Word Error 

Rate) 

 

35.5% 

 

(64% Accuracy) 

 

37% 

 

(66% Accuracy) 

 

  

 

50% 

 

35% 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion 

 

   Our prediction can undoubtedly be used to identify the transcription for sentence chunks / short 

phrases, but it is not yet 100% perfect. Although, accuracy rate of 66% with 37% of WER is 

achieved successfully. For short length audio inputs, the model outperforms the traditional ASR 

pipelines with accurate transcriptions exhibiting   high accuracy rate with low WER. The model's 

overall performance can certainly be enhanced by giving it more time to train, spending more 

effort on data preparation, and especially by utilizing a language model for decoding. Adding 

more varied information, such as Pashto literature, prose, and tales in data set will be beneficial.  

We also make available to the general public our work for comparing input speech and 

recognized output speech. Given that Pashto is the second-most widely used temporary language 

in Pakistan, there is a lot more room for speech recognition research in this language. Future 

research will ultimately aim to create a trustworthy and precise Pashto speech recognition system 

for a range of linguistic and acoustic circumstances. 

 

7.2 Future Work 

 

   For a variety of speech-related applications like keyword identification and acoustic event 

recognition, wav2vec offers superior audio data representations. The use of AI to proactively 

identify and identify harmful information and protect users on internet platforms may be 

improved with more research in this area. However, the wider ramifications of this study are 

connected to teams at Facebook AI and the larger AI community's pursuit of self-supervised 

training methods. We have contributed our bit to this endeavor by optimizing the wav2vec model 

for Pashto, a low resource language. Self-supervision is advancing research in practically every 

area of the science, not only speech. Through continued accessible collaborative science, we can 
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move closer to a time when unlabeled training data is the norm rather than the exception. The 

aim of this research is to create and enhance speech recognition-based systems, as well as to 

grow the attention of researchers in this area of study. ASR for low-resource Pashto is thus 

simply a first step towards the creation of more sophisticated Pashto applications and technology. 

Our next target for the future is to more fine-tune and train our model for the achievement of 

higher accuracy with lower WER along with more optimization and robustness. Further make 

this system applicable for real time. 
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