

Automatic Speech Recognition for low resource language (Pashto)

 using wav2vec Model

by

NS Jawaria Tahir

(00000318287)

Supervisor

Assoc Prof Shibli Nisar, PhD

A thesis submitted to the faculty of Electrical Engineering Department Military

College of Signals, National University of Sciences and Technology, Islamabad,

Pakistan as part of the requirements for the degree of MS in

Electrical Engineering

August

2023

Abstract

Due to advancements in technology, speech recognition has grown to be one of the most

important aspects of human-computer interaction. In recent years, a tremendous amount of

research has been conducted in the area of speech signal processing. Particularly, the subject

of Automatic Speech Recognition (ASR) technology has seen an increase in interest. ASR

started out with basic systems that could only recognize a handful of sounds, but it has now

developed into complex systems that not only can understand but also corresponds to human

speech with ease. Major languages have access to a wealth of ASR research, however low

resource languages are still underrepresented in this area of study. The foundation of this

research work is Automatic Speech Recognition, specifically for Pashto, a low resource

language. The creation of low resource data repositories to evaluate the newest ASR trends

specifically for Pashto is needed for current advancement in ASR technology. As a result of

its successful implementation, native speakers may interact with computers via voice

commands in their native languages and take full advantage of the digitization boom.

Research in this field will benefit academics by expanding existing huge corpora and

generating cutting-edge ASR models for languages with limited resources. This research will

also aid in identifying current, significant ASR difficulties in practical settings. Additionally,

it will highlight the present shortcomings in traditional ASR systems. Also, this work aims to

implement ASR for low resource language Pashto by making use of Facebook's most recent

algorithm, wav2vec2, which is quite latest in ASR trends in recent years. After successful

development of dataset, we have trained and fine-tuned our model to the latest trend of ASR.

Almost 66% output accuracy with 37% WER (word error rate) is obtained at the output end

of our model, which is quite an achievement for a low resource ASR system.

Copyright© 2023

by

Jawaria Tahir

iv

Declaration

I certify that the work “Automatic Speech Recognition for low resource language (Pashto)

using wav2vec Model” exhibited in this thesis has not been submitted in support of any

other award or educational qualification either at this institution or elsewhere.

v

 Acknowledgements

All praises to Almighty ALLAH who showered his blessing and enabled me to complete

such exploration work.

I would especially like to thank for an amazing support that my supervisors Assoc. Prof Shibli

Nisar, PhD and Asst. Prof Abdul Wakeel, PhD have been, throughout the course of my thesis.

They helped me a lot to able me in completing my MS Degree, they were all time readily

available for guidance and to help me throughout my thesis.

Lastly, I would like to show gratitude to my family for all their care, love and support

through my times of stress and excitement.

vi

Dedication

I dedicate my work to,

my parents and my husband who always encouraged my higher

education, for their prayers, love and motivation and sacrifices all

along.

my supervisors for their support and patience during all the phases of

my MS.

vii

Table of Contents

Abstract .. iii

Declaration ..iv

Acknowledgements .. v

Dedication ..vi

Table of Contents ...vii

List of Figures ...ix

List of Acronyms ...xi

INTRODUCTION ... 1

1.1 ASR for Low Resource Language.. 3

1.2 Problem Statements .. 4

1.3 Objectives... 4

1.4 Area of Application .. 4

1.5 Relevance to National needs: ... 5

1.6 Organization of thesis... 5

RELATED WORK .. 6

2.1 Literature Review ... 6

2.2 Work on various local languages ... 9

2.3 Work on low resource Pashto language ... 9

2.4 Limitations Of Existing Techniques... 12

2.5 Motivation For Proposed Work .. 12

TRADITIONAL ASR TECHNIQUES .. 14

3.1 HMM based ASR System .. 14

3.2 Drawbacks of HMM based ASR System ... 16

3.3 Drawbacks related to the implementation of Speech Recognition System .. 17

MODERN ASR .. 18

4.1 Growing Deep Learning ... 18

PROPOSED METHODOLOGY.. 26

WAV2VEC2.0/ XLSR MODEL ... 26

5.1 Wav2vec2.0.. 26

5.2 XLSR Wav2vec2.0 .. 37

SIMULATION AND RESULTS .. 39

6.1 Dataset ... 39

6.2 Word Error Rate (WER) .. 40

6.3 Implementation .. 42

6.4 Results ... 50

6.5 Output Comparisons .. 54

viii

6.6 Output Comparisons Analysis ... 56

CONCLUSION AND FUTURE WORK ... 57

7.1 Conclusion ... 57

7.2 Future Work ... 57

REFERENCES .. 59

ix

List of Figures

Figure 1: General ASR System Block diagram.

Figure 2: Overview General ASR System.

Figure 3: General LVCSR Architect.

Figure 4: General Architect for Deep Learning.

Figure 5: Available ASR For Various Local Languages.

Figure 6: Work Done For Pashto ASR.

Figure 7: General HMM Architect.

Figure 8: General Architect of modern ASR.

Figure 9: Supervised Learning.

Figure 10: Unsupervised Learning.

Figure 11: Seq-2-Seq Model.

Figure 12: General Architecture of Transformer.

Figure 13: General Architect of Transfer Learning (TL).

Figure 14: Transfer Learning Strategy.

Figure 15: General block diagram of wav2vec2 Model.

Figure 16: Working Steps of wav2vec Model.

Figure 17: wav2vec2 Model.

Figure 18: wav2vec2 Model Pre-Training.

Figure 19: wav2vec2 Model Fine-Tuning.

Figure 20: XLSR wav2vec2 Model.

Figure 21: Fine Tuning XLSR wav2vec2 Model.

Figure 22: List of Characters Removed.

x

Figure 23 (a, b): Compiled dataset.

Figure 24: Output Transcriptions.

Figure 25: Output Progress.

Figure 26: Bar Chart of Output Parameters.

Figure 27: HMM Based Pashto ASR Output [35].

Figure 28: Facebook wave2vec2 Low Resource Irish ASR Output [39].

Figure 29: Facebook (wav2vec2-large-xlsr-53) High Resource English ASR Output [38].

xi

List of Acronyms

Pashto ps

Automatic Speech Recognition ASR

National Language Processing NLP

Hidden Morkov Model HMM

Deep Learning DL

Neural Machine Translation NMT

Deep Neural Network DNN

Word Error Rate WER

1

Chapter 1

INTRODUCTION

Speech recognition in Artificial Intelligence (AI) is the method used to translate spoken language

into written format. The technology processes audio data and transforms it into words that may

be used in various enterprises using machine learning and neural networks. The task of

automatically identifying and transcribing spoken utterances into text is known as Automatic

Speech Recognition (ASR). For many programs that don't operate on computers, which are

becoming more and more widespread and famous, speech is a natural interface for them. With

the aid of speech recognition technology, computers can take spoken audio, analyze it, and

produce text from given input audio signal, Fig 1 and Fig 2

Figure 1: General ASR System Block diagram

2

Processing, interpreting, and understanding a speech signal has evolved into the key to many

potent new technologies and techniques of communication, whether we are talking to robots,

controlling digital devices, guiding the visually and audibly impaired or disable persons, or

enabling hands-free technology. ASR plays a huge role in such advanced technologies.

Applications that support speech have dramatically increased in popularity in recent years. This

is because it can be easily integrated with a variety of domain applications and voice over control

systems. However, producing efficient ASR systems typically involves vast amounts of speech-

to-text transcriptions in addition to sizable text corpora. languages with ample resources, such as

English and Chinese, are generally free of this issue, where successful ASR implementations

have been developed with excellent results [1].

Figure 2: Overview General ASR System

Few studies are being done on some low-resource languages, such as regional Indian languages

3

[2]. Due to the accessibility of voice data in these languages, new trends and techniques for

speech recognition tasks, including word2vec, deep learning end-to-end models, and traditional

Hidden Markov model (HMM), have been tested [3]. However, only a few major languages are

now supported by speech recognition technology. But regardless of voice data low resource

languages are still far behind in ASR field.

1.1 ASR for Low Resource Language

ASR systems for low resource languages are available for a very few to none languages. The

Pashto (ps) language also belongs to the very same category but it is supported by the Google

Translation API's recognition engine for the Neural Machine Translation (NMT) model, however

the Google Cloud Speech-to-Text domain does not have API support [4,5]. One can legitimately

link Mozilla Common Voice to the most recent trend in creating ASR corpuses. Although Pashto

has a population of around 50 million people worldwide [6, 15] who speak it in a variety of

dialects, one could not locate it among the published languages, which is ironic given Common

Voice's wonderful mission.

This language is widely used in various regions of Asia (Afghanistan and Pakistan etc.)[7].

Pashto is a low resource language, despite having a large population of speakers. Research in

language technologies like audio and natural language processing (NLP) is lacking or limited for

Pashto. The Pashto automatic speech recognition systems that are now in use are either

nonexistent or have only been trained on digit-only data. Raw text from different genres (types of

documents), such as books, scientific or academic papers, emails, social media posts, etc., is

insufficient. There are no dictionaries, dependency tree datasets, semantic databases (like

WordNet), or other lexical, syntactic, or semantic resources for this language. Despite having a

significant population, the Pushto language group has no such systems in place. As a result, the

advancement in the application of ASR couldn't be fully utilized.

There are very few financed projects that produce Pashto text and speech data. There isn't much

work accessible to examine errors and increase accuracy in the existing limited work, which has

a high word error rate. Thus, it is necessary to create a system of data preserving and data

repositories for the language in order to address these problems. The objective of this research is

to develop an automatic speech recognition system and first transcribed audio corpus for the

Pashto language using latest ASR trends and technology.

4

Therefore, to achieve significant results for a robust Pashto ASR system, in this paper we worked

on wav2vec 2.0 model which was developed in recent years and new to this industry. Its

accuracy rate is said to be much more precise than any traditional ASR system. Thus, its

implementation will open the door for low resource languages for advanced ASR systems and

improvement in the related research areas.

1.2 Problem Statements

Speech based Hands Free Technology has become the key to many powerful new technologies

but its limited use in Pushto language has minimized its exploiting on large scale. To exploit the

full potential of speech recognition technology, a robust ASR model should be developed to

create transcribed dataset along more accuracy of speech recognition as compared to traditional

ASR systems for the low resource Pashto language.

1.3 Objectives

Following are the objectives of this research.

• To create an Automatic Speech Recognition (ASR) system for low resource

languages.

• To create a transcribe dataset for Pashto language in the backdrop of word2vec and

E2E deep learning models of speech technology.

• Implementation of wav2vec model

1.4 Area of Application

The model can be applied to:

• Pashto-speaking virtual assistants.

• Voice-activated online banking.

• Voice bio-metric and identification systems.

• Online trading and E-commerce.

• User-friendly public transportation.

5

• Subtitling the podcasts.

• Applications in healthcare.

• Home networks and appliances.

1.5 Relevance to National needs:

There is a need to develop advance ASR and compiled Pashto vocabulary. Such effort has

multipurpose implications in the areas of health, industries, and law enforcement sectors. The

huge fraction of Pashto language population needs to exploit the boom of speech digitization. To

preserve the language digitization, make use of computer/smart devices easy and provide means

to practice latest development in ASR creation of speech corpus for Pashto language is a primary

task. Research in this area will not only help researchers to create large corpuses but also open

the doors for native speakers to step in era of advance technology and ASR systems.

1.6 Organization of thesis

The thesis chapters are organized in seven chapters. Chapter 1 is brief introduction to ASR

Systems and need for more work in this field particularly low resource languages. Chapter 2

covers the summary of related work including literature review of some existing techniques.

Chapter 3 describes the traditional methodology used for ASR systems and their drawbacks and

loop holes are also briefly discussed in this chapter. Chapter 4 presents the modern ASR

techniques. Chapter 5 covers the proposed system model. Chapter 6 discuss the simulation

parameters, new findings and results. Chapter 7 presents the conclusion and future work in the

field of advance ASR and Speech technology.

6

Chapter 2

RELATED WORK

2.1 Literature Review

Speech recognition has progressed from recognizing a single word or just a couple of syllables to

an entire language. Certainly, a lot has changed since the turn of the 20th century. As shown in

Table 1, since the beginning of 1900s researchers already paved their way towards the modern

speech recognition. In 1922, Radio Rex, the first toy to employ speech recognition, was

developed. Basically, the initial speech recognition technologies prioritized numbers above

words. IBM unveiled "Shoebox", a voice arithmetic device which could comprehend and reply to

16 English words.

Table 1: Overview Speech Technology Trends

Year System Type Size

1922 Radio Rex Frequency

 Detector

1 x word

1962 Shoe Box Isolated Word

recognition

system

16 x word

1971-1976 HARPY

(CMU)

Connected

speech

1000 x

word

1980-1990 HMM

(Hidden Markov Model)

Statistical based

on Markov

chain

1K x word

1992-2002 LVCSR

(Large Vocabulary

Continuous Recognition)

LVCSR based

1K x word

7

2006-2022 Deep Learning DNN based 1Mn x

word

Later in mid 1900s, Harpy speech recognition was introduced which is based on finite state beam

search system. Speech recognition vocabularies increased from a few hundred to several

thousand words in the 1980s. One of the innovations was a statistical technique called "Hidden

Markov Model (HMM)". Instead, relying just on words and searching for sound patterns, the

HMM calculated the likelihood of the unknown sounds actually being words [9,12,17,32,35,36].

HMM is considered as an important and main traditional method for calculations and predictions

in most of the speech recognition systems. Next Chapter 4 is totally based on HMM, so here we

are skipping its details.

Figure 3: General LVCSR Architect

8

Researchers then shifted their interest towards HMM based Very Large Continuous Speech

Recognition (LVCSR) systems [35], Fig 3 shows the general architect of LVCSR system. This

system process the input audio signal by utilizing a huge language vocabolary unit to recognize

the words in the input audio signal [36].

Given the extensive vocabulary size which is up to almost 100,000 words and phrases, it is

impossible to evaluate every word combination directly, and the other issue in the system

includes identification of the most likely word sequence from input signal as the word boundary

information is not available in continuous speech, thus more computation difficulties are

observed in this system.

The era of 2000s shifted the research path towards Machine Learning (ML), Deep Learning

(DL) and Artificial Intelligence (AI).A variety of architectures that can create solutions forh

several problems are implemented to represent Deep Learning. Speech Recognition using DL

algorithems are now much efficient as compared to other ASR techniques as Deep learning

approaches can be adjusted for transcribing in noisy situations as well as customized languages,

accents, and dialects. Fig 4 represents general architect of Deep Learning.

Figure 4: General Architect for Deep Learning

9

2.2 Work on various local languages

Due to the lack of resources like transcribed datasets, lexicons, or phonetic dictionaries,

developing an ASR system for local languages is rather a difficult undertaking. Local

languages including Punjabi [8,9,10], Gujrati [11], Urdu [12,13,14,15,16], Hindi

[17,18,19,20], Marathi [21], Arabic [22,23], and Bengali [24] have had some recent work

done on them, Fig 5. To the best of our knowledge very little or no work has been done for

the Pashto speech recognition system including dataset [25].

Figure 5: Available ASR For Various Local Languages

2.3 Work on low resource Pashto language

The establishment of an automatic voice recognition system for Pashto was done using a

small Pashto vocabulary speech corpus [26]. Also, in another research a Pashto Spoken

Digits database for automatic speech recognition was developed and Sony PCM-M 10 linear

10

recorder was used to make the recordings, which were done in a silent setting, Fig 6. Mel

Frequency Cepstral Coefficients (MFCC) were employed as a feature vector, and a classifier

based on linear discriminant analysis (LDA) was used to categorize the data [27].

Figure 6: Work Done For Pashto ASR

Another study showed the development of database and ASR of isolated Pashto spoken

digits from Sefer (0) to Naha (9). For recording purposes, a Sony PCM-M 10 linear recorder

was used, and Mel Frequency Cepstral Coefficients (MFCC) was employed to extract speech

features. To the best of the author's knowledge, the K Nearest Neighbor (K-NN) classifier

was used for the first time in Pashto to categorize speech features. The evaluation of the

experimental results yields an overall average recognition accuracy of 76.8% [28].

11

 The SCALE (Summer Camp for Applied Language Exploration) 2015 workshop on

"Speech-to-text-translation for low-resource languages" summarized the progress of the

LVCSR system as a component of the Pashto speech-translation system [29]. Without

requiring manual pronunciations for every word in the training data, the researchers have

attempted to examine two ways for bridging the performance gap between the grapheme and

the phonetic approaches.

 The first method relies on memorizing letter-to-sound rules from a limited number of Pashto

manual pronunciations, whereas the second method relies on a hybrid phoneme/grapheme

representation for recognition. Researchers demonstrate that both strategies outperform a

comprehensive phonetic system using experimental results on spoken colloquial Pashto while

only requiring manual pronunciations for a small subset of the words in the acoustic training

data [30].

In the recent years, research work for ASR is shifted towards more advance methodologies

like combination of HMM and MFCC, various AI algorithms. Table 3 shows some of the

modern research stream for ASR systems.

Table 3: Prominent Related Work

S

No

Research Work Main

Technology

Year

1 Unsupervised automatic speech recognition: A review [33]. MFCC, HMM,

GMM

2022

2 Self-supervised end to end ASR, for low resource L2

Swedish [34].

wav2vec 2021

3 Development of a large vocabulary for Pashto language

automatic speech recognition system [35].

HMM, MFCC 2022

4 Development of a large vocabulary Urdu automatic speech

recognition system and error analysis methodology [36].

HMM, MFCC 2020

5 Wav2vec 2.0: A framework for self-supervised learning of

speech representations [37].

wav2vec 2020

6 Pashto speech recognition with limited pronunciation

lexicon [15].

HMM 2010

12

7 Deep speech 2: End-to-end speech recognition in English

and Mandarin. [1].

HMM, DNN 2016

8 An ASR System for Spontaneous Urdu Speech [13] HMM 2010

2.4 Limitations Of Existing Techniques

 For low resource languages existing techniques show certain limitations which are as

follows:

• Environmental factors.

• Background noise.

• Accents and style of speaking.

• Nonsense errors.

• Spelling errors.

• Multiple detections.

• Homonyms.

• Unavailability of proper dataset for low-resource languages.

• Training Requirement of large corpus.

• Mandatary manual supervision for the creation of linguistic model for identification of

specific terminologies and recognition of different accents and dialects.

• Additional acoustic model for detection of repeating patterns.

• Tuning of acoustic unit parameters for the control of noise factors, echoes and quality.

• Pre-requisite manually created phonetic dictionary for the implementation.

2.5 Motivation For Proposed Work

Limitations of existing techniques leads us to the proposed model (details in chapter 5) as it

claims to surpass almost all the limitations faced during the implementation of existing

techniques. Our proposed model (wav2vec2.0) is capable of training on 5 to 7 hours of data

(small dataset) and outperforms the existing techniques who needs a proper continuous data set

of hundreds of hours.

13

 This AI based model is based on self-learning and do not require any manual supervision or

language model for its performance. Also, it creates a dictionary of its own after self-learning.

Additionally, it can also accurately transcribe in noisy environment and is capable of

understanding the dialects, accents and multiple languages at the same time. Our model claims

more accuracy with low word error rate (WER) as compared to the existing techniques. General

comparison of proposed model and existing traditional models is given below:

Table 4: Comparison Proposed Model Vs. Existing Traditional Models

Models

Used

Transcribed

Audio Data

Required

Lexicon

(Phonetic

Dictionary)

Language

Model

Computational

Power

Approach

Used

Accuracy

Our

Proposed

Model

(wav2vec2.0)

5 Hours

Not

Required

Not

Required

Low

Self

Supervised

66%

Existing

Traditional

Models

[35]

100 Hours

Required

Required

Very

High

Supervised

64 %

14

Chapter 3

TRADITIONAL ASR TECHNIQUES

Automatic Speech Recognition (ASR) converts spoken words into written transcriptions.

Traditional techniques used for speech recognition are mostly based on probability and

prediction methods. Very popular technique is pipeline system of Hidden Markov Model of

Markov chains.

3.1 HMM based ASR System

As a time-based structure, speech signal can be recorded as a series of spectral vectors that span

the audio frequency range. The raw speech signal can be considered as a piecewise stationary

signal or a short time stationary signal. And Hidden Markov Model (HMM)not only supports but

offers a straightforward foundation for creating such time-based models. General Architect for

HMM based ASR is shown in Fig 7.

Figure 7: General HMM Architect

15

Raw audio signal is provided to the input end and after probabilistic computations of the system

desired text output is achieved. Let’s discuss the working of HMM ASR by its unit-by-unit

breakdown.

• Acoustic Model:

This unit is probabilistic in nature as it uses Gaussian Mixture Model (GMM) to find the

probability distribution of incoming phones and HMM for calculating transition

probability. In simple words, it basically detects the repeating and recurring patterns in

the input sound streams. After detection of such repeating patterns, this unit clusters

them into small coherent sub units, which are then fed to decoder unit for further

processing.

• Language Model:

Language Model is also probabilistic in nature as it computes the probability of sequence

of words in the given signal. This model also improves the accuracy of acoustic model

by providing a huge linguistic knowledge as reference.

• Lexical Model:

Lexical Model is basically a phonetic dictionary with pronunciations. Extracted and

identified phones are overlapped with the data of lexicon with a statistical manner and

spoken words are predicted.

• Feature Extraction:

This unit extracts features from the raw audio signal. Extraction process is mostly

executed by the combination of different mathematical techniques including Discrete

Cosine Transform (DCT), Fast Fourier Transform (FFT) and Mel-Frequency warping,

resulting in the discrete features in MFCC (Mel-Frequency Cepstral Coefficients)

format.

• Decoder Unit:

This unit receives the output of feature extractor, combined output of Acoustic, Lexical

16

and Language models respectively and further process the data for training and

decoding. Researchers use different approaches, algorithms and techniques for training

and decoding purpose. Finally transcribed output texts are achieved at the output end

after its processing from scoring toolset in the decoder unit.

3.2 Drawbacks of HMM based ASR System

There are certain loop holes in traditional ASR systems. Some significant drawbacks are listed

below:

• Complex statistical computations.

• They make significant, potentially unfounded assumptions on the independent and

stationary nature of the observations and states.

• HMMs are also constrained and insufficient since they can only accurately represent

linear and discrete relationships between the observations and the states.

• Evident manual supervision is required by the system in the form of providing huge

lexicon dictionaries and data vocabularies.

• Increased word error rate and precision issues.

• Significant time consumption

• Implementation of various cascaded techniques requiring more memory space.

• Less optimized method.

• HMM frequently uses a lot of unstructured parameters.

• Positional data are not taken into account.

• It has No memory; higher orders have some memory but do not explicitly use positional

data.

• Handles insertions and deletions poorly.

• Environmental factors.

• Background noise.

• Accents and Style of speaking.

• Nonsense errors.

• Spelling errors.

17

• Multiple detections.

• Homonyms (Words with same spellings or same pronunciations).

• Unavailability of proper dataset for low-resource languages.

• Training Requirement of large corpus.

• Mandatary manual supervision for the creation of linguistic model.

• Additional acoustic model for detection of repeating patterns.

3.3 Drawbacks related to the implementation of Speech Recognition System

The following are some of the difficulties in creating and implementing voice recognition

pipelines in real-world settings:

• It is challenging for developers to utilize the speech recognition technology at various

time due to lack of tools and kits that provide state-of-the-art ASR models.

• There are few customization options that let programmers adjust for jargon particular to a

given domain and situation, as well as for numerous languages, dialects, and accents so

that their applications understand and sound like them.

• Abundant real time restrictions related to the deployment and installments of these

systems.

• Time consumption for system’s computation is a headache for real time users of the

speech technology.

18

Chapter 4

MODERN ASR

Modern ASR systems are based on deep learning encoder-decoder architectures that process the

input audio via a cascade of convolutional layers in order to produce a compact vector. The

decoder then uses the input from the encoded vector to produce a string of characters. Fig 8

shows general architect of modern ASR.

Figure 8: General Architect of modern ASR.

4.1 Growing Deep Learning

Deep learning techniques are very vast and trendy. Significant benefit of using DL is that the

data pre-processing which is generally involved with machine learning is eliminated with deep

learning. These algorithms can handle text and visual data that is unstructured and automate

19

feature extraction, reducing the need for manual supervision. We can choose which DL

technique are best suited to fulfil our requirements. Table 5 represents a brief overview of

various DL techniques.

Table 5: Growing Deep Learning (DL)

DL Techniques Overview

Supervised Learning [9,12,17]

Unlabeled data => Label => Train

Self-Supervise Learning [3]

Isolated Word Recognition System

Seq-2-Seq Model

RNN based Seq-2-Seq [42]

Convert seqs of Type-A to seqs of Type B.

Transformers

Transformers XL [41]

Compute representations of input and output without

using sequence-aligned RNNs or convolution

Google BERT [40]

Bidirectional Encoder Representations from

Transformers

Wav2vec2.0

XLSR wav2vec [37,38]

Convolution+ Quantization + Transformers

• Supervised Learning:

It is distinguished by the way it trains algorithms to accurately classify data outcomes

using labelled datasets. In most cases, supervised machine learning is used to categorize

20

data or generate predictions [9,12,17]. Because labeled or tagged data is required,

supervised machine learning uses a lot more resources and manual aid, Fig 9.

Figure 9: Supervised Learning

• Unsupervised / Self Supervised Learning:

In the self-supervised learning process, an algorithm trains itself to learn, pre-process and

differentiate the input components, also known as Pretext learning or predictive learning.

By automatically creating the labels, the unsupervised problem is converted into a

supervised problem and thus eliminating the need for manual aid [3], Fig 10. Un-

supervised learning is typically used to analyze dataset relationships.

21

Figure 10: Unsupervised Learning

Table 6: Brief comparison between Supervised and Unsupervised learning

Machine Learning

Type / System

Input

Form

Computational

Complexity level

Output

Accuracy

Unsupervised

Learning [9,12,17]

Labelled Higher Computation

Complexity

Less Accuracy Rate

Supervised

Learning [3]

Unlabeled Simpler

Computations

Higher Accuracy

Rate

Table 6, highlights the general difference between the working of both machine learning

algorithms, supervised and unsupervised learning systems respectively.

22

• Seq-2-SeqModel:

In National Language Processing (NLP), sequences of Type A are transformed into

sequences of Type B using sequence-to-sequence models. For instance, translating

sentences from one language to another is a sequence-to-sequence problem.

From 2014 on-words, Recurrent Neural Network (RNN) based sequence-to-sequence

models have gained a lot of popularity, Fig 11. The majority of data in today's world is in

the form of sequences; these sequences can be audio, text, video, or number sequences

[42].

Figure 11: Seq-2-SeqModel

• Transformers:

An innovative DL model called The Transformer in NLP tries to tackle sequence-to-

sequence problems while skillfully managing long-range dependencies. Transforming

input sequences into output sequences is referred to as "transduction" in this context. The

23

goal of Transformer is to handle input and output relationships with complete attention

and recurrence [41].

Figure 12: General Architecture of Transformer

Several identical encoders and decoders are layered on top of one another to form the

encoder and decoder blocks and both blocks have equal number of stack units.

The first encoder receives the input sequence's word embedding. These are then modified

and transmitted to the following encoder. According to the diagram below, Fig 12, every

decoder in the decoder-stack receives the output from the final encoder in the encoder

stack. The Transformer is the first transduction model to calculate representations of its

input and output purely utilizing self-attention without the use of convolution or

sequence-aligned RNN.

24

Only text strings of a certain length can be handled by attention. Before being entered as

input into the system, the text must be divided into a certain number of segments or

chunks. Context is messed up by this text chunking. For instance, if a sentence is broken

down from the middle, a lot of contexts is lost.

Therefore, the text is divided without regard for the phrase or any other semantic

boundaries. Transformer-XL offers its remedy. The hidden state computed for the prior

state as an additional context for the current segment during the training phase of

Transformer-XL. Transformer-XL's recurrence technique handles the drawbacks of using

a fixed-length context.

• Transfer Learning

Transfer learning (TL) is a machine learning (ML) research subject that focuses on using

information learned while completing one job to complete another that is associated. For

instance, the skills acquired while learning to identify simpler type of transport vehicles

could be used when attempting to identify heavier ones. Fig 13 shows the general

architect of Transfer Learning.

 In Transfer learning, pre-trained models are frequently used as the foundation for deep

learning tasks in computer vision and Natural Language Processing (NLP) because they

save both time and money compared to developing neural network models from scratch

and because they perform vastly better on related tasks. Fig 14 shows the strategy flow

diagram of transfer learning (TL) [43].

25

Figure 13: General Architect of Transfer Learning (TL)

.

Figure 14: Transfer Learning Strategy

26

Chapter 5

PROPOSED METHODOLOGY

WAV2VEC2.0/ XLSR MODEL

5.1 Wav2vec2.0

Wav2vec is a pretrained automatic speech recognition (ASR) model, a relatively novel idea in

this industry that Facebook team Alexei Baevski, Michael Auli, and Alex Conneaut published in

September 2020. Facebook AI showed Wav2Vec2 using the English ASR dataset LibriSpeech.

Itis a uniqueness is reflected by its self-supervised training nature. Fig 15 shows general block

diagram of the model.

Figure 15: General block diagram of wav2vec2 Model

Pre-training a model using unlabeled data, which is always more accessible, is now possible with

this method of training. This AI essentially trains the model not only to understand the

distinction between original speech instances and modified phones, but also frequently performs

27

this task hundreds of times for each second of audio, and forecasts the proper audio advanced in

milliseconds. Fig:16 shows the general block diagram working steps of this Facebook AI.

Figure 16: Working Steps of wav2vec Model

Feature Encoder:

 As shown in Fig 17, this algorithm receives the audio input signal X which is fed to a

multilayer convolution encoder Z. i.e.- many hidden layers of Convolution Neural Network

28

(CNN). Components of this encoder includes temporal convolution blocks, Normalization layer

and Gaussian Error Linear Unit (GELU) activation function respectively.

Figure 17: wav2vec2 Model

This encoder is essentially a feature extractor that converts the raw input signal X into a

sequence of continuous audio signal vectors using a few convolutions, a GELU activation

function that assigns input weights based on their probability under a gaussian distribution, and

normalization to achieve zero mean and unit variance. Therefore, this encoder yields the

Sequence of Latent Speech representations Z for T time steps.

29

Z = Z1, Z2, …, ZT. (1)

In simple words the CNN-based Feature Encoder, with its convolutional layers, GELU

activation, and normalization, is designed to learn hierarchical representations from the raw

audio signals. The convolutional filters capture local patterns, the GELU activation introduces

non-linearity, and the normalization helps in normalizing the representations. The resulting small

continuous speech vectors can then be fed into subsequent layers or models for further

processing or downstream tasks such as quantization, speech recognition or speaker

identification.

Quantization Model:

 Now these continuous audio vectors are digitized via quantization unit Q, yielding quantized

audio vectors. To attain these quantized vectors, Apply the quantization model. For its

implementation create a bunch of groups / codebooks and create a matrix e of size RxV,

representing the input data in the quantization model.

 e∈ RV ×d/G (2)

the parameters are defined below:

• G = Number of groups / codebooks

• V = Number of entries / members in the group.

• d = Dimensions

• R = Total number of samples or instances in the dataset

 In order to construct quantized vectors, for every iteration, select an entry / row randomly from

every matrix, and then integrate the resulting concatenated vectors e1, . . . , eG as a single vector

Rd. Now apply linear transformation on vector R d and obtain f- dimensional matrix vector R f,

which will give us the quantized vectors as we have only finite options to choose for each

iteration.

q ∈ R f (3)

Model will take the feature encoder output latent speech representations Z and multiplied them

with a matrix and turned them into a bunch of logits. In simple words, we are correcting the size

of Z by mapping it on l logits (i.e. Z → l).

30

Therefore, size of Z corresponds to the number of choices we have. So, first we will choose the

group G, then a member / entry V in that group to yield the logits, which is given below:

l ∈ RG×V = logits (4)

Now the Gumbel SoftMax function will model the logits and convert the vectors into continuous

probability distribution and models the randomness or noise factor. Therefore, probability of

choosing group g and member v is given by SoftMax function as:

P(g,v) = [exp ((lg,v + nv) / τ)] / [∑ 𝒆𝒙𝒑 (𝒗
𝒌=𝟏 (lg,k + nk) / τ)] (5)

Where,

• τ = non-negative temperature parameter

• n = -log(-log(u)) = Gumbel Noise

• u = uniform samples

So probability of selecting ith option is given by the ratio of exponential of modified logits and

the sum of exponential of all the modified logits. Here τ, the non-negative temperature parameter

and by increasing its value, distribution gets prominently smoother. In forward route (from

encoder to transformer), we choose the concatenated vectors e1, . . . , eG
 by looking the

probabilities obtained using equation (5) the selecting the maximum or argmax to get the choice

(codeword i) to make i.e. choose the ith row of the matrix.

i = arg maxj P(g, j) (6)

Now after all the iterations, quantized vectors are obtained.

 Q = q1,q2,…, qT (7)

Q represents the finite quantized audio vectors of Latent Speech representations for T time steps.

Masking:

 Now some of these quantized vectors are masked via masking filter and a new sequence of

these vectors is fed to the input of transformer layer.

Transformer Unit:

31

 Working of Transformer unit is as follows:

• Positional encodings are added to the input features using the convolution layer as a

positional encoder, in order to incorporate the temporal information of the audio

stream. The relative positions of the audio segments are disclosed by these encodings.

• Transformer Encoder has a stack of transformer encoder layers fig 12, receives the

input features and their positional encodings after that. Multi-head self-attention

systems and position-wise completely coupled feed-forward networks make up each

encoder layer.

• Multi Head Self Attention: Each input feature vector can attend to every other vector

in the sequence thanks to the self-attention mechanism, which captures contextual

relationships. Different forms of relationships are captured using a variety of attention

heads.

• Feed-forward Networks: The transformer then independently applies position-wise

fully connected feed-forward networks to each feature vector following the self-

attention phase. The representations are improved and changed as a result of this

process.

• Output: The transformer encoder's ultimate output is a series of high-level

contextualized representations, each of which contains data on the related input feature

vector and its context.

 C = c1, c2, …, cT (8)

C represents the Context Representation of capturing information from the sequence. Now this

completes the pre-training loop. Basically, the multiple CNN layers and transformer constitute

the training unit, Fig 18.

Loss Function and Pre-Training:

 A significant contrastive loss L is observed at transformer output due to masking factors in the

previous step. Now to back-propagate (from loss function to quantized vectors) to the derivative

of the loss function obtained, we will approximate it with SoftMax and true gradient of the

32

Gumbel SoftMax outputs will smooth the distribution and choose discrete groups and codebook

entries in an absolutely distinguishable manner.

Figure 18: wav2vec2 Model pre-training

Pre-training involves completing a contrastive assignment Lm that asks you to choose the real

quantized latent speech representation for particular masked given time step from among a

variety of distractor signals. To encourage the model to employ the codebook entries equally

frequently, a codebook diversity loss Ld is added with a tuned hyperparameter α.

33

L = Lm + αLd (9)

where ,

• Lm = Contrastive Loss

• Ld = Diversity Loss

• α = Hyperparameter.

Contrastive Loss:

 By encouraging the model to give the real representation qt, a higher similarity score than the

distractors q~, this Contrastive Loss function Lm aims to increase the model's capacity to

recognize the correct quantized latent speech representation from the available options.

The loss Lm is calculated using the contrastive loss equation by dividing the negative logarithm

of the sum of the exponential similarity scores between the context representation ct and the

candidate representations q~ by k scaling factor. The importance of the representations with

greater similarity scores is increased using the exponential function. Equation is given by:

Lm = -log [(exp (sim(ct + qt) / k)) / ∑ (q~ ∼Qt) (exp (sim(ct + q~) / k))] (10)

Where,

• ct = output of the context network

• qt = true quantized latent speech representation at the masked time step T.

• q~ = set of candidate representations, which includes the true representation q t and k

distractors.

• k = scaling / temperature parameter. k parameter regulates how sharp the similarity

scores are.The similarity scores are sharper for higher values of k and smoother for lower

values.

• sim(a,b) = The cosine similarity between two vectors a and b is represented by the

function sim(a, b). In this instance, it is calculated as the vectors' dot products divided by

34

their magnitudes. The resulting similarity value ranges from -1 to 1. To assess how

similar two vectors are, the cosine similarity is frequently utilized.

Diversity Loss:

 In order to promote the equitable use of the quantized codebook representations in each of the

G codebooks, the diversity loss Ld was introduced. This is implemented by increasing the

entropy of the averaged SoftMax distribution (l) over the entries for each codebook ¯Pg (This

distribution indicates the probability of selecting each entry in the codebook) over a batch of

utterances. The diversity loss Ld is calculated as the negative sum of the entropy H, as given

below:

Ld =
𝟏

𝑮𝑽
 ∑ −𝑮

𝒈=𝟏 H(¯Pg) =
𝟏

𝑮𝑽
 ∑𝒈=𝟏

𝑮 ∑ ¯𝑷 𝑮𝑽
𝒗=𝟏 g,v log ¯Pg,v (11)

Where,

• G = Number of groups / codebooks

• V = Number of entries / members in the group.

• H(¯Pg) = It illustrates the averaged SoftMax distribution's entropy. The uncertainty or

randomness in a probability distribution is measured by entropy. Entropy maximization

facilitates a more uniform distribution, which promotes the equitable utilization of

codebook entries.

• ¯Pg = It depicts the gth codebook's averaged SoftMax distribution over the entries. The

likelihood of choosing each entry in the codebook is represented by this distribution.

This loss encourages the model to use every entry in each codebook equally by maximizing

entropy, encouraging variation in the choice of quantized representations. A balanced use of the

quantized codebook is supported by this loss in order to prevent the model from favoring

particular codebook entries or representations, increasing the diversity of the quantized

representations and enhancing the overall performance of the quantization model.

Fine-Tuning:

 The previously trained network is topped with a single linear layer for fine-tuning, which

involves the training of the model on labelled audio data for subsequent tasks including voice

35

recognition, speech interpretation, and audio categorization’s exhibits substantial advancements

above prior state-of-the-art outcomes in speaker/language identification, voice translation, and

speech recognition. Following the adjustments, the model effectively recognizes, categorizes,

and translates the desired input, Fig 19.

Figure 19: wav2vec2 Model Fine-Tuning

36

Decoding:

 Once the transformer yields the output sequence, model starts to predicts the masked vectors.

Now this process results in the output in chunks form. These letter chunks are then classified by

Contrastive Task layer into respective output tokens. In the final step, these tokens are combined

with Connectionist Temporal Classification (CTC) algorithm to constitute the final text

transcriptions.

Generally, in CTC algorithm, the input consists of a series of observations, while the outputs

may also include blank outputs along the series of labels. Because there are far more

observations than labels, training is a challenging task. For instance, different time slices can

correspond to a particular phoneme, can exist in spoken sounds. CTC forecast a probability

distribution for each time step since there is uncertainty about the observed sequence's alignment

with the goal labels. The continuous output of a CTC network, is adjusted during training to

represent the likelihood of a label.

CTC does not try to learn timings and boundaries of words. If the only difference between two

label sequences is how they align, blanks are not taken into account. There is an effective

forward-backward algorithm for scoring, which is a non-trivial process given the variety of ways

equivalent label sequences might occur. The neural network parameters can then be updated

using the back-propagation technique using CTC scores.

To train recurrent neural networks (RNNs) like LSTM (Long Short-Term Memory) networks to

handle sequence problems where the time is uncertain, Connectionist Temporal Classification

(CTC) is a form of neural network output and it is associated with scoring function which is

establishing a grade or score to evaluate the performance of the output. Therefore, in this way

Word Error Rate (WER) is minimized and accurate results are received at the output end.

37

5.2 XLSR Wav2vec2.0

There is a multilingual wav2vec2 variant known as XLSR. Cross-lingual speech representations,

or XLSR for short, refers to the model's capacity to acquire speech representations that are

applicable to several different languages. Fig 20 highlights the model ability to work on multiple

languages. This single, multilingual speech recognition model competes favorably with a number

of potent standalone models.

Figure 20: XLSR wav2vec2 Model

The model was trained on labelled audio data for subsequent tasks such as voice recognition,

speech interpretation, and audio categorization. This approach shows significant improvements

over previous state-of-the-art results in speaker/language identification, voice translation, and

speech recognition. The previously trained network is reinforced with a single linear layer for

38

fine-tuning. As a result, the model XLSR gains the capacity to bridge discrete tokens between

languages. The model successfully recognizes, classifies, and translates the desired input after

the adjustments. Fig 21 elaborates the self-supervised pre-training from unlabeled dataset to the

fine-tuning of the model.

Figure 21: Fine Tuning XLSR wav2vec2 Model

39

Chapter 6

SIMULATION AND RESULTS

6.1 Dataset

ASR Implementation takes a sizable dataset, recorded from numerous speakers, to build a

speaker-independent speech recognition system. The total duration of these recordings is roughly

100 hours. Approximately 5000 Pashto transcribed audio files with 70% male and 30 female

audio representation. Participants belongs to various districts in Pakistan's Khyber Pakhtunkhwa

province.

Written data was read aloud by transcribers and recorded in order to obtain transcribed audio

recording data. Our study after listening to these recordings shows that we need approx. 10,000

words to complete an hour of recording. As a result, a substantial amount of textual information

was needed to finish the recording work, and it was gathered from several sources. To gather

textual information, Pashto literary works, blogs, and news websites were utilized. The

information gathered came from current affairs, blog posts, documentaries, and articles that were

featured in various newspapers.

A portion of the information was gathered through Facebook, a social media platform, in the

form of posts and short tales. To create the input, this data had to be filtered and polished

because it was in hundreds of lines.

The data that was gathered contained numerous errors or unrelated information. It included

punctuation special characters and other symbols that are not a part of spoken language and

cannot be recorded or trained, such as ",.,*, and @. These characters will be either deleted from

the database or replaced with spaces while coding. Fig 22 shows the list of characters generating

errors.

40

Figure 22: List of Characters Removed

Participants recorded the audio files using the built-in software on their mobile devices. The

participants had the option of selecting the gadget. Since the goal was to collect actual data, there

was no dedicated lab setting for recording. Participants were not given any specific instructions

other than to read as accurately as they could. Recording process was done in a very careful

manner so that the speaker's speech shouldn't be replaced by noise thus minimizing errors and

the noise factor was also normal. Depending on the participant's situation, several sampling rates

were used for each recording. Later, all audio data was converted to a 16 kHz sampling rate,

stereo channel format. Fig 22 represents some of the screen shots of compiled data set. After

couple of training sessions, we successfully refined 5 to 7 hours of our dataset to 1000 audio files

to train the model.

6.2 Word Error Rate (WER)

This statistic is used to gauge the output error of a voice recognition system. Three options for a

word could exist during the recognition process. First off, a different word can be used in its

place. This is referred to as "substitution". Second, it can be removed but not changed in any

way. In the third place, a new word is added. The three different sorts of problems mentioned

above raise the WER. The WER formula is given by:

WER = (S + D + I)/100 (12)

41

In this case, S represents the substitution, D represents the deletion and I represent the Insertion.

If the WER is 40%, it indicates that 4 words out of every 10 are added, removed, or replaced.

Another possibility is that 3 words are substituted and 1 is either removed or added, among other

conceivable combinations. It is feasible to achieve WER greater than 100% in this manner.

Figure 23(a): Compiled dataset

Figure 23(b): Compiled dataset

42

6.3 Implementation

We can develop and run Python code in our browser using Colab, which is also known as the

"Colaboratory". we can develop and run code in an interactive setting known as a Colab

notebook. From our Google Drive account, including spreadsheets, Github, and many other

places. Also, we can upload our own data into Colab notebooks.

 By only a few lines of code, we can use Colab to import an image dataset, train an image

classifier on it, and subsequently evaluate the model. No matter how powerful our system is, we

can take advantage of Google technology, such as GPUs (Graphical Processing Units) and TPUs

(Tensor Processing units), by using Colab, which run code on Google's server infrastructure.

Therefore, we will implement Hugging face wav2vec2.0 model in colab by following these

steps:

• First of all, we will mount our google drive to colab directories.

• Install Dataset , Transformer, and all the required liberaries including torchaudio (library

of audio and signal processing), jiwer (a quick and easy Python package for measuring

the word error rate (WER) along with the evaluation of an autonomous speech

recognition system), librosa (to deal with audio and music-related studies), numba (to

support numpy), and huggingface_hub transformers datasets.

• Import Python packages like torch , (for tensor computation and strong GPU

acceleration), NumPy (to deal with numbers) , pandas (a python module that offers

quick, adaptable, and powerful data structures to work with labelled data), re (Using a

string and a regular expression pattern, the search is performed within the string), json (A

specified format called JavaScript Object Notation (JSON) is frequently used to transmit

data as text across a network), random (for generation of random numbers),

huggingface_hub (for interaction with hugging face), IPhython.display (for swift

execution of a single line of Python code and for standard interpretation), random (built-

in package that produces random numerals), and display, HTML (to open and read

HTML files).

43

• Now load the data parameters, class labels voice data and evaluation metrices from the

dataset. A float array representing the unprocessed waveform of the speech signal is what

the speech model wav2vec2.0 uses to represent the signal. Since the wav2vec2 model

was trained using Connectionist Temporal Classification (CTC),

Wav2Vec2CTCTokenizer class must be used to decode the model output.

• For this purpose, use transformer to create the wav2vec2CTCTokenizer (for input

tokens), wav2vec2ForCTC (for building the model by given inputs, specifying the model

architecture and fine-tuning tasks), class Training Arguments (to set several options,

including the outcome directory, testing and scoring method, and learning frequency),

Trainer (machine learning and computational intelligence-based training facility),

wav2vec2FeatureExtractor and wav2vec2Processor.

• Now load the required data class (solely envisioned to retain and hold data values that

needs to be transferred among several components of a system) and field function (to

give extra information like default parameters and testing guidelines) from data classes.

Then load the functions like Any (for true/false conditions), Dict (also called dictionary

representing a data structure of non-homogenous {key: value} pair), List (for holding

several elements in a single parameter), Optional (an argument with default value) and

Union (yields a set with all the values from the initial set as well as from the provided

one) from the object’s type analyzing and errors anticipating module named typing.

• Now login to hugging face account and load the audio and transcriptions files of dataset

from the google drive.

• Wav2vec2Processor usually aids with normalization the data. To set up the trainer we

further need to process the data, we will use data collector (tool for building interlinked

computation pipelines) to build a batch. Padding and random masking can also be done

where required to even out the data lengths for processing.

• This data collator applies distinct padding functions to input and labels for their

subsequent interpretations. Since audio input and output are of distinct modes and should

not be handled by the same padding function.

• Therefore, input and labels are returned in PyTorch tensors (a multidimensional matrix or

array with only one data type's members) format by the tokenizer.

44

• Similar to the conventional data collators, the labels' tokens are padded with -100 so that

they are not included in the calculation of the loss. And then in this way refined batch

(script file) will be obtained.

• Now to get a sense of the transcriptions, creating a little function that displays a few

random samples from the collection. The function will create an HTML file called

"data.html" that contains a table with the samples from the dataset that were chosen at

random.

• Numerous unusual symbols (like.'?: etc.) are present in the transcribed data. Due to the

fact that voice segments do not actually correlate to a distinct sound unit, it is

considerably more difficult to classify these special symbols without any reference from a

standard language framework.

• Additionally, they do not play any vital role to comprehend the meaning of a speech

signal. Here we will just normalize the written content and eliminate all the symbols that

do not add up to the semantics of a word and cannot actually be represented by a

conventional voice. In order to remove them, firstly create an array of the characters to be

removed.

• Now convert this array in a list and create a pattern by using regular expression (RegEx, a

string of characters that creates a search pattern) i.e., regex filter for the list.

• Remove the special characters by mapping them with regex pattern and refined batch will

be returned in its output.

• Now apply the Extract function (extract required data and form new function), which

tends to integrate all the transcription strings in the batch and yields a new single

concatenated string.

• By applying list function, a set of distinctive characters from the new string will be

formed, which is then assigned to the vocab variable.

• Therefore, extract function will return a dictionary of concatenated string set list (all_test)

and variable vocab containing list of all the unique characters.

• As an input, function prepare_dataset receives a data batch, which is often a portion of

the total dataset, and passes the audio data from batch to wav2vec2processor's processor

object.

45

• Now that the audio data has been tokenized and subjected to feature extraction, the

processor transforms the unprocessed voice data into input parameters appropriate for the

Wav2Vec2 model involving the sampling rate.

• Here, we extracted the first element of the batched output to obtain a single input value as

the processed features are normally returned as a batched output (each component of the

batched output corresponds to a single sample in the input batch).

• Therefore, the model can now receive this particular input value without any failure. Now

apply the length function which will determine the length of the input values, which is

then allocated to batch. When the process of training or evaluation starts, this length

information will be helpful.

• To process the transcribed data, the code then calls processor to use the processor as a

target processor.

• Each audio sample in the batch has a written text linked to it, which is stored in the batch

field and here those linked transcripts are tokenized and transformed into model-

compatible input Identities.

• Finally, batch receives the processed input Identities. To calculate the loss and metrics

during training or evaluation, these labels will be used. The input values, their lengths,

and label fields are now included in the updated batch that the function returns.

• Now by comparing the model's predictions to the labels, the compute metrics function

determines how well the model performed in the evaluation phase of the training process.

• Basically, the anticipated logits are extracted from the pred object. These logits show the

probability that the model estimates for each input token in the sequence.

• For each place in the input sequence, the token index with the highest probability is

determined using the argmax function in this case. The estimated token Identities

constitute as an outcome.

• The CTC (Connectionist Temporal Classification) loss function is extensively employed

in ASR programs. Some input sequence tokens may be designated as padding tokens

during training and excluded from the loss calculation.

• These padding tokens are frequently represented in the training data by a particular token

ID, which is commonly -100. To maintain consistency and an accurate assessment of the

46

model's performance, code is basically substituting the padding token ID for -100 in the

label token IDs. The situations where labels weren't taken into account during training,

this step will also deal with it.

• The predicted token IDs are subsequently transformed back into their appropriate text

representations by the processor. We get the finalized transcriptions as a result. In order

to create their corresponding text representations, the label token IDs are decoded.

• Then, it is made sure that distinct tokens are not clustered together during decoding with

the aid of argument statement.

• The word error rate between the reference transcriptions and the predicted transcriptions

is calculated by the object wer_metric. The WER metric calculates the difference in

word-level errors between the reference and forecasted texts. The function then generates

a dictionary that contains the calculated Word Error Rate.

• Now the code eliminates special characters from the training and test datasets

respectively prior to generate a vocabulary based on the dataset’s distinctive components

and saves it as a JSON file to be deployed while training the ASR model.

• The Wav2Vec2CTCTokenizer class is now initialized, and code loads the tokenizer from

the provided directory.

• The tokenizer can be configured using parameters (unknown, padding, and spaces) to

alter the special tokens it returns.

• The name of the repository where the tokenizer will be pushed into the Hugging Face

Model Hub is represented by the string value "wav2vec2-large-xls-r-300m-pashto-colab-

test-6" in a variable. Here through the Model Hub, the tokenizer is posted and made

accessible to the general public.

• Now Wav2Vec2FeatureExtractor object is initialized. The Wav2Vec2 model processes

the feature vectors that are generated by the feature extractor from audio signals.

• The given parameters define the feature size (one), the sampling rate (16000 Hz) of the

audio, the padding value (zero), the option to normalize the audio features, and the option

to return attention masks paired with the features.

• After that, the Wav2Vec2Processor object is initialized. To preprocess the audio and text

data for training or inference, the processor combines the feature extractor and tokenizer.

47

• The previously constructed feature_extractor object is set as the feature_extractor

parameter, and the previously generated tokenizer is set as the tokenizer parameter.

• Now the dataset's first element, common_voice_train, is printed. It shows the related

metadata for the initial data sample, which often include details like the location of the

audio file, the text of the transcription, and other pertinent information.

• Then it prints the first data sample's audio file path, accesses the audio field in the

metadata dictionary, and obtains the value corresponding to the path key.

• After the path values, sample's audio, related to metadata is printed, and the metadata

dictionary's audio field is accessed and its contents are highlighted. The sample rate,

duration, and other pertinent parameters of the audio file may also be included in this.

• The train audio files are loaded and converted into the Audio data type with a preset

sampling rate of 16000 Hz using the casting procedure.

• Repeating the same procedure then with test audio files. And after that, the first sample’s

audio waveform is acquired at the set sampling rate (16000 Hz).

• A random number is generated that falls between 0 and the length of the

common_voice_train dataset minus 1. It is applied to the dataset to choose a random

index.

• Then it displays the "transcription" field from the common_voice_train dataset's

randomly chosen data sample. The associated text transcription for that specific audio

sample is also shown.

• It creates an audio widget that can play the audio waveform using the IPython Audio

function by using the audio waveform data and the given16000 Hz sample frequency.

The audio sample will be played on its execution.

• It outputs the intended text transcription for the audio sample that was chosen at random

and then it displays the audio waveform array's shape for the audio sample that was

chosen at random.

• The number of audio channels and the duration of the audio waveform are both disclosed.

Then it indicates the number of samples per second in the audio waveform and the

sampling rate of the randomly chosen audio sample.

• The sampling rate in this instance is 16000 Hz.

48

• The datasets of training and testing are preprocessed and then system creates a data

collator to prepare the data for training. After that it loads the WER measure, for the

process of evaluation.

• The model that was pretrained is finally loaded. It consists of a modified / fine-tuned

Wav2Vec2 Farsi (Persian) language model.

• The dropout probability for the model's attention layers is set to 0.1, which means that

10% of the attention weights will be set at random to 0 during training to avoid over-

fitting (when training data is more than testing data).

• By randomly zeroing out 10% of the hidden units during training, the model's dropout

probability for hidden layers, which is set at 0.1, helps to regularize the model.

• Since there will be no dropout applied to the feature projections, the dropout probability

for the feature projection layer is set to 0.0.

• The likelihood of masking specific time steps in the input during training is set to 0.05. In

order to encourage the model to develop robust representations, on average 5% of the

input time steps will be substituted with a masking token.

• The layer-drop probability is set to 0.1, which means that 10% of the model layers will be

dropped at random during training and skipped during forward pass. This can also be

regarded as regularization method.

• By ignoring the mismatched widths, the model will be able to deal with input sequences

of different lengths during inference and training phases. When dealing with audio inputs

of varying length, it will be quite be helpful.

• As a result, "mean" is selected as the reduction method for the CTC loss computation. It

indicates that the total loss will be calculated by averaging the loss numbers at different

time steps.

• Then it defines the ID of the padding token in the processor's tokenizer. By doing so, it

guarantees that the model understands how to deal with padding tokens throughout both

training and inference.

• Now set the arguments for the training to be used.

49

• We can adjust a number of training process variables, including batch size, learning rate,

assessment approach, and logging frequency, among others, by defining these training

arguments.

• For this purpose, first defines where the trained model and other training material will be

saved in the output directory.

• To maximize training effectiveness, organize the training instances by input sequence

lengths that are similar.

• The batch size per device (GPU) for training is set. In this scenario, one training sample

will be processed by each GPU each batch.

• The amount of gradient accumulation steps is then specified here. Gradients are gathered

over a number of steps, and then back-propagation is used to update the model's

parameters. In this case, gradients are accumulated up until the update.

• Now the training's evaluation procedure is set. In this instance, evaluation is carried out at

predetermined intervals determined by evaluation steps.

• Here we are setting epochs value, as it will conclude how many training epochs (passes

of the dataset) will be made in total.

• In order to speed up training and use less memory, system supports the mixed-precision

training, which uses lower precision (float16) for some computations.

• Now set some parameters including save step (how frequently the model checkpoints are

saved during training), evaluation steps (the number of evaluations on the validation

dataset will be carried out while training), logging steps (the number of times that

training metrics and other data will be logged), learning rate (optimizer rate which

regulates the step size while updating the model's parameters during training) and warm

up steps (the number of steps for the learning rate scheduler).

• Now restricts the total number of stored checkpoints to be kept to two. Up to the given

limit, only the most recent checkpoints will be retained.

• The training pipeline will be built up with the proper model, data collator, training

arguments, evaluation dataset, and tokenizer by initializing the Trainer object.

• The Trainer object offers ways to train the model, assess its effectiveness, and store

checkpoints as we go.

50

• In order to load the trained model, handle the input data, provide estimations, and

contrast them with the transcription of the actual events, we will start the training process.

• Configure the trainer and train the model on specified dataset. In parallel, system will

push all the related files to Hugging Face Model Hub.

• Using the repository where the model was pushed, load the optimized model from the

Hugging Face Model Hub along with appropriate processor (tokenizer and feature

extractor) for the model.

• Now the loaded processor is used to process the incoming audio data from the

common_voice_test dataset's first sample.

• The processed input values are returned as a dictionary of PyTorch tensors.

• Now the system will run the loaded model with the input values that have been processed

through it to produce the anticipated logits.

• By moving the argmax down the last dimension of the logit’s tensor, the predicted token

IDs are extracted.

• The predictions for the first sample are retrieved using the [0] indexing.

• Now the expected transcription is obtained by utilizing the processor's decode technique

to decode the predicted token IDs.

• And lastly, system displays the ground truth reference transcription from the

common_voice_test dataset.

6.4 Results

For the low resource language Pashto, we have built the dataset and applied the wav2vec2 model

successfully. After fine-tuning the model, we obtained findings that were about 66% accurate

over all. The word mistake rate, which is around 37% (WER reduces with time and training), is

used to assess the system's performance. The mapping between the training data set and the test

data set yields very clear results.

Despite the fact our WER for audio chunks and short lengths of speech is relatively comparable

to published work in Pashto, the lower the error rate, the more precise this model will be with

this volume of data. WER is calculated in accordance with all test data utterances. In order to

51

lower WER, we noticed multiple data transcriptions and discovered that some mistakes were

complex words rather than reading errors. Results are shown below:

Figure 24(a): Output Transcriptions

Figure 24(b): Output Transcriptions

52

Figure 25: Output Progress

53

Figure 26: Bar Chart of Output Parameters

54

6.5 Output Comparisons

Comparison of our low resource wav2vec2.0 Pashto output results with the output of the

traditional Pashto ASR system as well as wave2vec2.0 high resource (English) and low resource

(Irish) languages is made to validate the effectiveness of the proposed result Fig 27,28,29 shows

the output results of HMM based traditional Pashto ASR system, wave2vec2.0 low resource Irish

ASR system and wave2vec2.0 high resource English ASR system respectively. Detailed

comparison analysis is concluded in section 6.6 below.

Figure 27: HMM Based Pashto ASR Output [35]

Figure 28: Facebook wave2vec2 Low Resource Irish ASR Output [39]

55

Figure 29: Facebook (wav2vec2-large-xlsr-53) High Resource English ASR Output [38]

56

6.6 Output Comparisons Analysis

 Here, at this point we can observe that our proposed model wav2vec2.0 outperforms the

traditional HMM Pashto ASR (64% accuracy and 35% WER using 100 hour of audio dataset for

training) in terms of accuracy 66% and successfully achieved WER of 37% (using approximately

5 hours of training data). By comparing our output results with the output of the same model

(wav2vec2.0) with other low resource language (Irish) ASR system, we find out that our

accuracy and WER is very promising and outstanding as compared to it, i.e.,50% WER. Also,

comparison of our model wav2vec2.0 with the same model (wav2vec2.0) with high resource

language (English) ASR system, we find out that WER is approximately 35%. Therefore, we can

say that the proposed model yields very satisfying output results which can get more better and

precise with further fine-tuning of model and additional refining of dataset.

Table 7: Comparison Analysis

Model

Vs.

Output

HMM

Traditional

Model

(Low Resource

Pashto

100 hours)

Proposed Model

Wav2vec2.0

(Low Resource

Pashto

5-7 hours)

Wav2vec2.0

(Low Resource

Irish)

Wav2vec2.0

(High Resource

English)

WER

(Word Error

Rate)

35.5%

(64% Accuracy)

37%

(66% Accuracy)

50%

35%

57

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

 Our prediction can undoubtedly be used to identify the transcription for sentence chunks / short

phrases, but it is not yet 100% perfect. Although, accuracy rate of 66% with 37% of WER is

achieved successfully. For short length audio inputs, the model outperforms the traditional ASR

pipelines with accurate transcriptions exhibiting high accuracy rate with low WER. The model's

overall performance can certainly be enhanced by giving it more time to train, spending more

effort on data preparation, and especially by utilizing a language model for decoding. Adding

more varied information, such as Pashto literature, prose, and tales in data set will be beneficial.

We also make available to the general public our work for comparing input speech and

recognized output speech. Given that Pashto is the second-most widely used temporary language

in Pakistan, there is a lot more room for speech recognition research in this language. Future

research will ultimately aim to create a trustworthy and precise Pashto speech recognition system

for a range of linguistic and acoustic circumstances.

7.2 Future Work

 For a variety of speech-related applications like keyword identification and acoustic event

recognition, wav2vec offers superior audio data representations. The use of AI to proactively

identify and identify harmful information and protect users on internet platforms may be

improved with more research in this area. However, the wider ramifications of this study are

connected to teams at Facebook AI and the larger AI community's pursuit of self-supervised

training methods. We have contributed our bit to this endeavor by optimizing the wav2vec model

for Pashto, a low resource language. Self-supervision is advancing research in practically every

area of the science, not only speech. Through continued accessible collaborative science, we can

58

move closer to a time when unlabeled training data is the norm rather than the exception. The

aim of this research is to create and enhance speech recognition-based systems, as well as to

grow the attention of researchers in this area of study. ASR for low-resource Pashto is thus

simply a first step towards the creation of more sophisticated Pashto applications and technology.

Our next target for the future is to more fine-tune and train our model for the achievement of

higher accuracy with lower WER along with more optimization and robustness. Further make

this system applicable for real time.

59

REFERENCES

[1] Deep speech 2: End-to-end speech recognition in English and Mandarin, 33rd

International Conference on Machine Learning, ICML 2016.

[2] https://arxiv.org/pdf/2102.04889v1.pdf

[3] Combining Spectral and Self-Supervised Features for Low Resource Speech Recognition

and Translation Apr 2022 https://arxiv.org/pdf/2204.02470v2.pdf

[4] https://cloud.google.com/speech-to-text/docs/languages

[5] https://cloud.google.com/translate/docs/languages

[6] https://en.wikipedia.org/wiki/Pashtuns#:~:text=The%20total%20population%20

 of%20the, census%20in%20Afghanistan%20since%201979

[7] https://reader.elsevier.com/reader/sd/pii/S2405844020302176token=EF94929A98

 D4C66D088F6F745A569B1878E48669B5E7AAC7A8034E92EB58A3E4B1B0C

 4010FDFCD21B821EF2D2EC99F1F&originRegion=eu-west 1&origin Creation

[8] M. Dua, R.K. Aggarwal, V. Kadyan, S. Dua, Punjabi automatic speech recognition using

HTK, IJCSI Int. J. Comput. Sci. Issues 9 (4) (2012), 1694-0814.

[9] K. Sharma, P. Singh, Speech recognition of Punjabi numerals using synergic HMM and

DTW approach, Indian J. Sci. Technol. 8 (27) (2015).

[10] Y. Kumar, N. Singh, An automatic spontaneous live speech recognition system for

Punjabi language corpus, Int. J. CTA 9 (20) (2016) 9575–9595

[11] H.B. Chauhan, B.A. Tanawala, Comparative study of MFCC and LPC algorithms for

Gujrati isolated word recognition, Int. J. Innovat. Res. Comput. Commun. Eng. 3 (2)

(2015) 822–826.

[12] J. Ashraf, N. Iqbal, N.S. Khattak, A.M. Zaidi, March. Speaker independent Urdu speech

recognition using HMM, in: Informatics and Systems (INFOS), 2010 the 7 th International

Conference on, IEEE, 2010, pp. 1–5.

[13] A.A. Raza, S. Hussain, H. Sarfraz, I. Ullah, Z. Sarfraz, An ASR system for spontaneous

Urdu speech, Proc. Orient. COCOSDA (2010) 24–25.

[14] H. Ali, A. Jianwei, K. Iqbal, Automatic speech recognition of Urdu digits with optimal

classification approach, Int. J. Comput. Appl. 118 (9) (2015).

https://arxiv.org/pdf/2102.04889v1.pdf
https://cloud.google.com/speech-to-text/docs/languages
https://reader.elsevier.com/reader/sd/pii/S2405844020302176token=EF94929A98
https://reader.elsevier.com/reader/sd/pii/S2405844020302176?token=EF94929A98D4C66D088F6F745A569B1878E48669B5E7AAC7A8034E92EB
https://reader.elsevier.com/reader/sd/pii/S2405844020302176?token=EF94929A98D4C66D088F6F745A569B1878E48669B5E7AAC7A8034E92EB58A3E4B1B0C4010FDFCD21B821EF2D2EC99F1F&originRegion=eu-west-1&originCreation=20220107142641
https://reader.elsevier.com/reader/sd/pii/S2405844020302176?token=EF94929A98D4C66D088F6F745A569B1878E48669B5E7AAC7A8034E92EB58A3E4B1B0C4010FDFCD21B821EF2D2EC99F1F&originRegion=eu-west-1&originCreation=20220107142641
https://reader.elsevier.com/reader/sd/pii/S2405844020302176?token=EF94929A98D4C66D088F6F745A569B1878E48669B5E7AAC7A8034E92EB58A3E4B1B0C4010FDFCD21B821EF2D2EC99F1F&originRegion=eu-west-1&originCreation=20220107142641

60

[15] Rohit Prasad et al. “Pashto speech recognition with limited pronunciation lexicon”. In:

IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE,2010.

[16] M. Qasim, S. Nawaz, S. Hussain, T. Habib, Urdu speech recognition system for district

names of Pakistan: development, challenges, and solutions, in: Coordination and

Standardization of Speech Databases and Assessment Techniques (O-COCOSDA), 2016.

[17] S. Sinha, S.S. Agrawal, A. Jain, Continuous density Hidden Markov Model for Hindi

speech recognition, GSTF J. Comput. 3 (2) (2018).

[18] A. Sharma, M.C. Shrotriya, O. Farooq, Z.A. Abbasi, Hybrid wavelet based LPC features

for Hindi speech recognition, Int. J. Inf. Commun. Technol. 1 (3-4) (2008)373–381.

[19] S. Ranjan, Exploring the discrete wavelet transform as a tool for Hindi speech

recognition, Int. J. Comput. Theor. Eng. 2 (4) (2010) 642

[20] K. Kumar, R.K. Aggarwal, A. Jain, A Hindi speech recognition system for connected

words using HTK, Int. J. Comput. Syst. Eng. 1 (1) (2012) 25–32.

[21] S. Kayte, M. Mundada, D.C. Kayte, Implementation of Marathi language speech

databases for large dictionary, IOSR J. VLSI Signal Process. 5 (2015) 40–45e.

[22] N. Hammami, M. Bedda, N. Farah, Probabilistic classification based on Gaussian copula

for speech recognition: application to Spoken Arabic digits, in: Signal Processing:

Algorithms, Architectures, Arrangements, and Applications (SPA), 2013, IEEE, 2013.

[23] M. Hassine, L. Boussaid, H. Massouad, Hybrid techniques for Arabic Letter recognition,

Int. J. Intell. Inf. Syst. 4 (1) (2015) 27–34.

[24] G. Muhammad, Y.A. Alotaibi, M.N. Huda, Automatic speech recognition for Bangla

digits, in: Computers and Information Technology, 2009. ICCIT'09. 12th International

Conference on, IEEE, 2009, December, pp. 379–383.

[25] Z. Ali, A.W. Abbas, T.M. Thasleema, B. Uddin, T. Raaz, S.A.R. Abid, Database

development and automatic speech recognition of isolated Pashto spoken digits using

MFCC and k-NN, Int. J. Speech Technol. 18 (2) (2015) 271–275.

[26] file:///C:/Users/MAJORS~1/AppData/Local/Temp/06330501.pdf.

[27] https://www.uetpeshawar.edu.pk/TRP-G/Dr.Nasir-Ahmad

TRP/Conferences/2012/Pashto%20Spoken%20Digits%20Database%20for%20the%20

Automatic%20Speech%20Recognition%20Research.pdf.

61

[28] https://www.dline.info/jcl/fulltext/v5n2/3.pdf.

[29] 1706.00321.pdf (arxiv.org).

[30] Pashto speech recognition with limited pronunciation lexicon - MOAM.INFO or Pashto

speech recognition with limited pronunciation lexicon | IEEE Conference Publication |

IEEE Xplore.

[31] Irfan Ahmed, The development of isolated words Pashto automatic speech recognition

system,18th ICAC, IEEE. 2012.

[32] Asadullah, Automatic Urdu Speech Recognition using Hidden Markov Model, 2016

International Conference on Image, Vision and Computing (ICIVC). 2016.

[33] Hanan Aldarmaki, Asad Ullah, Nazar Zaki, Unsupervised automatic speech recognition:

A review, Speech Communication, 2022, DOI: 10.48550/arXiv.2106.04897.

[34] Ragheb Al-Ghezi, Yaroslav Getman, Aku Rouhe, Raili Hilden, Mikko Kurimo, Self-

supervised end to end ASR, for low resource L2 Swedish, INTERSPEECH, 2021.

[35] Muhammad Rehman Gul, Shibli Nisar, Muhammad Tariq, Development of a large

vocabulary for Pashto language automatic speech recognition system, 2022.

[36] Adnan Ali, Muhammad Ali Tahir, Hassan Nazeer Chaudhry, Development of a large

vocabulary Urdu automatic speech recognition system and error analysis methodology,

2020.

[37] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli, Wav2vec 2.0: A

framework for self-supervised learning of speech representations, 2020.

[38] https://huggingface.co/patrickvonplaten/wav2vec2-common_voice-tr-demo-dist

[39] https://github.com/jimregan/wav2vec2-sprint/blob/main/irish/fine-tune-xlsr-wav2vec2-

on-irish-asr-with-transformers.ipynb

[40] https://cloud.google.com/ai-platform/training/docs/algorithms/bert-start

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, Illia Polosukhin, Attention is all you need, arXiv:1706.03762v5.

[42] Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Sequence to sequence learning with neural

networks.

[43] F. Zhuang, A Comprehensive Survey on Transfer Learning, IEEE, 2021.

https://arxiv.org/search/cs?searchtype=author&query=Vaswani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Parmar%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Jones%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Gomez%2C+A+N
https://arxiv.org/search/cs?searchtype=author&query=Gomez%2C+A+N
https://arxiv.org/search/cs?searchtype=author&query=Kaiser%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Polosukhin%2C+I

62

[44] W.Han,Z.Zhang, Y.Zhang, J.Yu, C.-C.Chiu, J. Qin, A.Gulati, R. Pang, and Y. Wu.

Contextnet: Improving convolutional neural networks for automatic speech recognition

with global context. arXiv, 2020.

[45] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax.

arXiv, abs/1611.01144, 2016.

[46] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search.

IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, Jan. 2011.

[47] D. Jiang, X. Lei, W. Li, N. Luo, Y. Hu, W. Zou, and X. Li. Improving transformer-based

speech recognition using unsupervised pre-training. arXiv, abs/1910.09932, 2019.

[48] J. Kahn et al. Libri-light: A benchmark for asr with limited or no supervision. In Proc. of

ICASSP, 2020.

[49] K. Kawakami, L. Wang, C. Dyer, P. Blunsom, and A. van den Oord. Learning robust and

multilingual speech representations. arXiv, 2020.

[50] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Proc. of ICLR,

2015.

[51] A. Laptev, R. Korostik, A. Svischev, A. Andrusenko, I. Medennikov, and S. Rybin. You

do not need more data: Improving end-to-end speech recognition by text-to-speech data

augmentation. arXiv, abs/2005.07157, 2020.

[52] M. P. Lewis, G. F. Simon, and C. D. Fennig. Ethnologue: Languages of the world,

nineteenth edition. Online version: http://www.ethnologue.com, 2016.

[53] A. H. Liu, T. Tu, H. yi Lee, and L. shan Lee. Towards unsupervised speech recognition

and synthesis with quantized speech representation learning. arXiv, 2019.

[54] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,

and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692, 2019.

[55] C. Lüscher, E. Beck, K. Irie, M. Kitza, W. Michel, A. Zeyer, R. Schlüter, and H. Ney.

Rwth asr systems for librispeech: Hybrid vs attention. In Interspeech 2019, 2019.

[56] C. J. Maddison, D. Tarlow, and T. Minka. A* sampling. In Advances in Neural

Information Processing Systems, pages 3086–3094, 2014.

63

[57] I. Misra and L. van der Maaten. Self-supervised learning of pretext-invariant

representations. arXiv, 2019.

[58] A. Mohamed, D. Okhonko, and L. Zettlemoyer. Transformers with convolutional context

for ASR. arXiv, abs/1904.11660, 2019.

[59] M. Ott, S. Edunov, D. Grangier, and M. Auli. Scaling neural machine translation. In Proc.

of WMT, 2018.

[60] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli.

fairseq: Afast, extensible toolkit for sequence modeling. In Proc. of NAACL System

Demonstrations, 2019.

[61] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: an asr corpus based on

public domain audio books. In Proc. of ICASSP, pages 5206–5210. IEEE, 2015.

[62] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le.

Specaugment: A simple data augmentation method for automatic speech recognition. In

Proc. of Interspeech, 2019

