EFFORT ESTIMATION OF COMPONENT BASED SOFTWARE
DEVELOPMENT (CBSD) LIFECYCLE USING FUZZY LOGIC

By

Jahanzaib Khan
2010-NUST-MS PhD-CSE (E)-08

Submitted to the Department of Computer Engineering

In partial fulfillment of the requirements for the degree of

Master of Science
in
Computer Software Engineering

Advisor:
Dr. Aasia Khanum

College of Electrical & Mechanical Engineering
National University of Science and Technology
2013

DECLARATION

I hereby declare that I have developed this thesis entirely on the basis of personal efforts under
the auspices, sincere guidance and supervision of Dr. Aasia Khanum. All the sources used in this
thesis have been cited. No portion of the work presented in this thesis has been submitted in
support of any application for any other degree of qualification to this or any other university or

institute of learning.

Jahanzaib Khan

ACKNOWLEDGEMENTS

First of all thanks to Almighty Allah, The most Merciful and The most Beneficent. It was

impossible to complete this work without His help.

Then, I would like to express my most sincere appreciation to my supervisor Dr. Aasia Khanum,
for his continuous support, intellectual guidance and critical remarks during the whole period of
this work. I also thank to all the committee members for their acceptance to become the members
of guidance and evaluation committee of this thesis and sparing their precious time for reviewing

the manuscript.

My special thanks are for the survey participants who spent their time and shared their views and
experience. I would like to thank to Mr. Aslam Jarwar for his assistance in Java, for

implementation of the CBSD effort Estimation Model.

I would like to thank to my family for their continuous patience, understanding and emotional

support during these years.

ABSTRACT

In this era, no one denies the importance of software reuse because software systems are growing
and becoming complex with every passing day. Component Based Software Development
(CBSD) emerged as a software creation approach with the concept of reusability. In this
approach, Software Components which are common among different software applications are
reused rather than being written from scratch for every application. CBSD technique is of keen
interest to researchers and practitioners as they hold promise to support the timely and cost
effective development of large-scale complex systems. It is becoming imperative that effort

involved in CBSD may be accurately estimated to attain maximum benefits of the approach.

Effort estimation is one of the major tasks in software project management. The literature shows
several efforts estimation models of CBSD but each model does have their own pros and cons.
Furthermore, different effort estimation models primarily focuses on the efforts involved in
component’s integration activities. Moreover, all phases of CBSD lifecycle are unaddressed by
existing effort estimation models. Thus, the need to estimate effort involved in CBSD lifecycle is

an ongoing challenge.

In this research focus is on the effort estimation of CBSD lifecycle with the help of Fuzzy Logic
approach. For the purpose, it was necessary to have a comprehensive CBSD lifecycle model
which can be made the basis of effort estimation in CBSD. Thus, first in this study a Circular
Process Model (CPM) for CBSD lifecycle is proposed. CPM contains the strengths and
weaknesses of the existing CBSD lifecycle models with the focus on rejuvenation of one phase
in subsequent phases of the lifecycle. CPM is also validated using the Process Quality
Measurement Model (PQMM) [19] and by comparing with the existing CBSD lifecycle process
model of Hazleen Iris et al [13]. Then, effort estimation model for CBSD lifecycle is proposed
on the basis of CPM. The proposed effort estimation models is also implemented and validated
with the help of a case study. Fuzzy logic is used in the implementation as it is more appropriate
when the systems are not suitable for analysis by conventional approach or when the available

data is uncertain, inaccurate or vague.

Table of Contents

DECLARATION ..t teeete ettt et e ettt e e e e ettt e e e e e e e e bbbttt e e e e e s au bbb et e ee e e e e annbeeeeeeee e nssbeeeeeeeeaannneneeee snsneeeeeeeanan Il
ACKNOWLED GEMENTS ...t s st se st s e st st s eseseneneneneneeeeeeeene s i
A B S T R AT et a e nern seeeeeeeeeaeaeeeeeaens \Y)
I o) B T YRR Vil
LISt OF TABIE ettt ettt sttt ettt et e bt e bt e b bt e s sbe e be e reenre e IX
CHAPTER 1 ettt h e e h et b e et b e e a et s bt eat e bt s bt e st e bt e bt enbe st e es saeeneenbesaeenees 1
INTRODUCGCTION ..ottt sttt et ettt et et e bt et esbe s he e st e besaeeneesaeeseentebesbeensenseseeentenbesaes eeneeees 1
1.1. Component Based Software DevelopmEntcccerereeriierierinieene et 1
1.2. Significance of Effort ESHMAtIONc.ccovcuiiiiiiiiiiiieiieieeieereesieesee et 1
1.3, Problem StatemeENtcccecuiriiiriiieiierieesieesie ettt sttt st ste st sbe st e be et e et e e sbeesbeesreesaeesaeenaes 2
1.4, Problem DeCOmMPOSIION. ...cciiiiiieritieiiieeiiitesiee sttt ettt ste e st e esiaeesiteesbeessbeeesabeesaseesnsaesnsseesseesnseeen 2
1.5, PropoSed MOEIS.....cc.uiiiiiiiiiieieeee ettt et e sb e b e bt e bt e bt sre e saeesanesaneea 2
1.5.1. CBSD Lifecycle MOEL......c.oiieiiiiiiieiieeciee ettt ettt et e e tee v e b e eeaeessvaeennee s 2
1.5.2. CBSD Lifecycle Effort Estimation Model..........ccoocveviiiiieciienieiicieesee e 3

1.6, TheSiS OULINEeeviiiiiiiieie ettt sttt ettt et et e b e e b e e be e s bt e sbeesbeesbeesanesanenas 3

(O 5 12N Sl 1 2 PR 5
LITERATURE REVIEW ..ottt sttt ee ettt et et e st etesteeneesessesseensessesneensesseensesesseensans 5
2.1 Literature related to CBSD Lifecycle Modelcooirerieiininiiinieeneee e 5
2.1.1. EPIC, Cecilia AIDEIT €L @l.....evviiiiiiiiiiiiiiie et et e s eetva e eraaeesenns 5
2.1.2. Qureshi and HUSSAINocviiiiiiiiii ettt e e ettt e e eeate e e e ear e e e e eaaes 5
2.1.3. SOMIMETVIIIE ...ttt sttt sttt sae et sbe e nees 5
2.14. W Model, Kung-Kit Lau €t @lcccoeiiiiiiiiiiiiicis et 5
2.1.5. Jason H. Sharp €t al.........cociiiiiiiiiiicececeese ettt et nnees 7
2.1.6. Classification Model, Gerald Kotonya et al.........c.cccccvieviiiiiiiiiiieciiece e 7
2.1.7. LY LY (o) 5 (oI Y OSSP 7
2.1.8. Component-Based Software Development Process, EhsanKouroshfar etal. 7
2.1.9. MyCL Process Model, Hazleen Iris €t alcccoeviieiiiiieiieiiiecee e 7
2.1.10. AnasBassam AL-Badareen €t alccoocorieiiiiiiiiiieeee e 8
2.1.11. Knot Model, Rajender Singh Chhillar et al..........c..ccceeveiiiiiiiiiiiiie e 8

2.1.12. Umbrella Model, Anurag Dixit €t @lcccevieriiecriiiieiieieereeree e sre e ereereeste e eesenesenas 8
2.1.13. Y Model, Luiz Fernando Capretzccceceeiieriienienieiieeie et esieesee st eee e siee e 8
2.1.14. 'V Model, IVIcACINKOVIC €1 Al.......cciiviiiiiiiiiiiicieeee ettt e e 8
2.1.15. Elite Model, LataNautiyal €t al.ccceevciiiiiiiiiiieiiie ettt e 9
2.1.16. X Model, GIILN. S. €1 Al .eoiiiiiiiieiiiiie et e e e e e s e e s eaaareeeeesenas 9
2.2. Literature related to CBSD Effort Estimation Model.cccceeiiiniiniiniiniiiceieeeeeeeeeeeen 9
22,10 SALIC MOME]eiiieieciieieie ettt ettt sttt ettt s e e st e s e e seessesesseensensesseensanseensenns 9
2.2.2. STUtUZKE™S MOAEL ...ttt et 9
2.2.3. EILS™S IMOAEL ...ttt sttt ettt be e s bt e saaeebe e 10
224, A0Yama’s MOAECL......ccoiiiiiiieiiecieee ettt ettt ettt e e saesraesneeenneens 10
22,50 ABB MOGEL ...ttt ne e es 10
2.2.6. COCOTS MOEI ..ottt ettt ettt a e s ae st essaesseeseessenseensensesseensanses 10
CHAPTER 3 : PROPOSED MODELSooiiitiiit ettt sttt sttt sb st 12
3.1 Proposed Lifecycle MOdelcocuiiiiiiiiiieieseeeesee ettt s s e e 12
3.1.1. Domain ENGINEEIINGcccueeiiieriiiiiiiieeie ettt ettt ettt ettt e st e sete st e sateeteebeesneesseesnes 13
3.1.2. RequireMeNnt ANALYSIS......cccecvueriiriiriieriierieeseestesteeseesseeseesseesseesssessseasseesseessasssessssesssennns 13
3.1.3. COMPONENE ANALYSIS ..eiiiuvieiiiiiiiiieiiieeiieerteeertte e sttt e eteeestteesbeesbaeessseeasseeessseessseeasseeessseennses 14
3.1.4. COMPONETIL ASSUTAIICEeeeueveeenrieeeiiieeiieentteeeteeestteesteeasseeesaseessaeeasseesseeesssessnseesnnsessseesnses 14
3.1.5. ATChItECtUIal DESIZNeieuiviieiiiiiiiiecieeeee ettt ettt s e e et eetbeesbeeebaeesbeeessaeessaenns 14
3.1.6. Component INEEEIAtIONccceeuiriiriiieiieitieeie ettt ettt e seeesaeesbesbeebeebeeseenes 15
3.1.7. |57 0) (0} 7 102 8| SRS 15
3.1.8. IMAAINECTIANCEc.veeuteeteeteeeite et e et e et et e bt et tesetesateeateeste e beesbeesseeenbeenbeenseenseanseasseesasesnsesnseans 15
3.2. Proposed Effort Estimation MOdElcccoocuiiiiiiiiiiiiiieiiiee ettt e s 17
3.2.1. EfTOrt PAraQmetersc.coeeiieieieieie ettt sttt et ees 18
322 USE Of FUZZY LOZIC ..c.uiiiiiiiiiiiiieeieeteeteeee ettt 20
3.2.3. Application DeVEIOPMENtcccvivvieeiiiiieiieiie e ere ettt sresre e b e reesreesraeseneesseenns 26
(05 AN S 1 PRSP 28
VALIDATION ..ottt ettt ettt s sttt e e sttt e e e sttt e e s sabeeeesaataeessbteeesaabeeeesasteeessastaeesanseeeesanseeessass senssneesanss 28
4.1 Validation of the Proposed Lifecycle Modelcoceeveiirieieiinieieniniecneseee e 28
4.1.1. By Comparing with Existing Process Model...........ccccovevviiiriiinieniienieeieerecreereereeseee e 28
4.1.2. Using Process Quality Measurement Model (PQMM)........cccocieiiiiiiinieniiniecieeieeieeieane 29
4.2. Validation of the Proposed CBSD Lifecycle Effort Estimation Modelccccccoeceeninerniennenne. 31
4.2.1. Conducting a SUrvey/ Case StUAYcccverviiiiieiiieiieiereeste et sraeseneseveesre e 31

4.2.2. By Measuring Specificity and SenSItiVILY........cceeievriirieriieriiesiesieereereereereesseesseesseesenens 33

CHAPTER 5 ettt sttt et ettt e bt e s b e e e bt e eb e e she e s ae e e bt e saeesatesabesabe et sheesabesaeenaes 35
CONCLUSION AND FUTURE WORK ...ttt ettt sttt ettt sbe e s 35

5., CONCIUSION 1.ttt ettt ettt bt e sbe e e st e s bt e e bbeesateesabeesabe e e abeesabeesabeesabeeenane sbeesnses 35

5.2 FUTUIE WOTK .ttt ettt sttt sttt et e e e b e b e e bt e b sesane 36
RETEIEINCE ...ttt et b e s bt e s bt e s at e e ae e eat e e at e e a e e e te e be e be e be e bt bt eabeebeebeerean 37
AP PEN DX = AL SUIVEY ittt et e e e e e e e e s ————————————————————————taaara—. s 40
APPENDIX — B: LINGUISTIC Variables ..cccee ittt ettt e e tree e e e e e narn e e e e e e e e et aaeeas 46
APPENDIX — C: Specificity and Sensitivity Calculations..........cccceiiiiiiiiniien e 48
APPENDIX — D: CPM Validation Matrix using PQMM.ccooiiiiiiiiiiiieeeiee ettt eiee e svre e e svee e e v e s 49
APPENDIX — E: CPM Validation Calculations using PQMM.cccoiiiiiiiiie ittt 52

Vil

Figure 1 :
Figure 2 :
Figure 3 :
Figure 4 :
Figure 5 :
Figure 6 :
Figure 7 :
Figure 8 :
Figure 9 :
Figure 10
Figure 11
Figure 12

List of Figures
Idealized Circular Process MOdel..........oouiiiiiiiiiiiieiieeieeeeee ettt 12
Proposed Circular Process MOdelc.c.oviieeiiiiiieieninieienene sttt 13
Timeline of Phases in CPMcooiiiiiiiiiiiiiiiieeee ettt 15
Chart of Membership Function for Testing Methodology Effort Parameter.........cc..ccoccceeeenneene 23
Chart of Membership Function for Success Criteria Effort Parameterccooceevvvevienienennnnene 24
Chart of Membership Function for EffOrtccocviiiiiniiiiiiiiec e 24

Front-end of the applicationccceeiieiiiiiiiiiieee ettt 27

PQMM Chart fOr CPMcocuiiiiiiierieenee sttt sttt sttt ste bt b sbeesaeesbeesaaeseaesanesnsesans 29
Lifecycle Activities Accuracy Graph of Industrial SUIVEYcovcvvevviiiiiiiiniieenieeceeeiee e 32
: Lifecycle Phases Accuracy Graph of Industrial SUrveyccocveeveeneenieniniiiceceeeeeee 33
: Specificity and Sensitivity GTAPRScciriereririeiereeeeese e s s see e 34

: Membership Function for Effort Parameters with Three Linguistic Terms Error! Bookmark

not defined.

Figure 13
defined.

: Membership Function for Effort Parameters with Two Linguistic Terms Error! Bookmark not

Vil

List of Table

Table 1 : Strengths and Weaknesses of CBSD Process ModelSeevveerierienienieniinienieeie et sieeseesieeneees 7
Table 2 : Comparison of Existing CBSD Effort Estimation Modelscccocueeveieiniiiniieiniennieesnieenieens 11
Table 3: Proposed Circular Process Model (CPM) Phases.........cccovveeeninineenininieeneeeee e 17
Table 4 : Identified Effort PArameters..........cocvvciieiiieriierieereenieseesee sttt saee s e sase e 19
Table 5 : Function Block (Sample of Unit Testing Activity of Components Provision Phase).................. 21
Table 6 : PQMM [19] Quality Attributes Values for CPMcocoiiiiiiiiiiiieeeeeeeeeeeee e 30
Table 7: Activity-wise Accuracy Results of Industrial SUIVEY.......cevvvirviiriiiiririieieeeeeree e 31
Table 8 : Phase-wise Accuracy Results of Industrial SUIVEYcocceivciiiiiiiiiiiiiieccec e 32
Table 9 : Specificity and Sensitivity RESUILSccceviririeriiieieneieese e e 34

CHAPTER 1

INTRODUCTION

1.1. Component Based Software Development

Traditionally, software products are built from the scratch, which requires tedious effort,
ample resources and plenty of time. As a result, products arrive late into market. This
approach works fine when the software products are small and simple. Today, software
products have become very large and complex which demands innovation in software
development field too. Accordingly, Component Based Software Development (CBSD)
emerged with the concept of software reuse and it is gaining high importance day by day

among software development organizations.

Software developers believe that many identical component(s) may be found or required by
the different software systems. Component Based Software Development (CBSD)
emphasizes the reuse of those identical components by avoiding the development again and
again from the scratch for every new system. CBSD offers several advantages over
traditional software development approaches; including flexibility in development, fast time-

to-market, better quality of software, parallel development and cheaper cost of the product.
1.2. Significance of Effort Estimation
Effort is the that specific time period, which consumed working on a project
from its inception to completion.

In addition, Effort Estimation is the process of measuring or assessing the effort required for
the project. Effort Estimation is the most difficult and important activity in project
management. Without good effort estimate, it is almost impossible to devise an effective

planning for the software project.

Not only this, a proper effort estimation method is a requirement for Software Project
Planning Key Processing Area of CMM level 2. “Good estimation methods are available for

projects” is the requirement of “Integrated Software Management” Key Process Areas of

CMM level 3. Use of past estimation data for future projects is the requirement for

“Quantitative Process Management” KPA of CMM level 4.
1.3. Problem Statement

Effort estimation is an important job in management of a project. Not only this, effort
estimates are the input of every economic decision of the project carried out by the project
manager. Thus, accurate estimation of effort is very crucial for the successful completion of
project. If improper or unrealistic estimates were made the basis of a project then either
project will be challenged in one of the three aspects i.e. time, schedule and scope or it will

leads to failure.

By keeping in view the importance of effort estimation it is necessary that a comprehensive
rule based model is developed which estimates lifecycle effort in CBSD at acceptable

accuracy level.

1.4. Problem Decomposition

To devise an effective solution, problem statement is decomposed in following tasks:
e To develop an Enhanced CBSD Lifecycle Model.
e To Enhance Effort Parameters.

e Preparation of a Rule Based Model that incorporates approximate/uncertain input

parameters with high accuracy.
e Implementation of Model.

e Testing and validation

1.5. Proposed Models
1.5.1. CBSD Lifecycle Model

CBSD not only differs from traditional software development approaches in terms of
advantages and disadvantages, but also with respect to its lifecycle process. Lifecycle
process is the course of activities that produces a new product, and continues through its

maintenance. Software lifecycle is a vague concept [8] and in the case of CBSD there is

no universally agreed upon lifecycle process that can be carried out. Several attempts
have been made to define an effective process model for CBSD, and all the proposed
approaches have their own tradeoffs. Even the IEEE Std. 1517 [20] which deals with
software reuse process does not enforce single lifecycle to follow, rather it just tells a

minimum set of requirements a software lifecycle must have.

In general however, rejuvenation of one phase of the process in subsequent phases, which
is inevitable in CBSD, still needs to be addressed. In this study, we proposed a Circular
Process Model (CPM) for CBSD lifecycle whose main focus is to incorporate the
rejuvenation of one lifecycle phase in later phases of the lifecycle. Efforts were also made
for the validation the proposed CBSD CPM Lifecycle using the PQMM [19] and by

comparing with existing CBSD lifecycle process model of Hazleen Iris et al [13].
1.5.2.CBSD L.ifecycle Effort Estimation Model

An estimation model defines precisely which values are needed & how these values can
be used to compute the effort. Component Based Software development effort estimation
requires integration activities to also be considered as opposed to traditional software
development which focuses only on development activities. Literature shows that several
efforts have been made to estimate the CBSD process effort [23], which are discussed in
chapter-2. Despite, no attempt is made towards the effort estimation of complete lifecycle

of CBSD. [23].

In this study we also proposed a complete lifecycle effort estimation model for CBSD
using Fuzzy Logic. This model is developed with enriched effort parameter/ effort drivers
for each activity/phase of the proposed Circular Process Model (CPM) of CBSD
lifecycle. The effort parameters are fuzzified using Fuzzy Logic. Comprehensive fuzzy
rule base is prepared to produce a crisp effort value of the lifecycle. The application for
the proposed effort estimation is prepared in Java Language. Fuzzy Logic is implemented

using Fuzzy Control Language [22].

1.6. Thesis Outline

The rest of the thesis is structured as follows. Chapter 2 presents a literature review for CBSD

lifecycle Process Models and CBSD Effort Estimation Models. Initially, CBSD and its well

known lifecycle Process Models with their strength and weaknesses are discussed. Secondly, the

3

efforts carried out by different researchers in estimating the CBSD effort are discussed. At last,

the need for Effort Estimation model of complete lifecycle of CBSD is discussed.

Chapter 3 discussed the proposed models and their implementation. Both models i.e. proposed
Lifecycle Circular Process Model (CPM) of CBSD and proposed effort estimation model of
CBSD, are discussed separately in detail. Activities/Phases of proposed CPM are discussed with
their execution timeline in the process. Output and rejuvenation of each phase also shown with
the help of figures and tables. For effort estimation model of CBSD, identified effort parameters
with their fuzzy membership functions are explained. Rule formation of Fuzzy Rule Base also

highlighted. Categorization of effort parameters in each activity of proposed CPM is also shown.

Chapter 4 includes validation of the both proposed models. CPM lifecycle process model is
validated in two ways: First, by comparing with existing lifecycle process model of Hazleen et
al[13]. Second, using Process Quality Measurement Model (PQMM) [19]. Proposed Effort
Estimation Model is also validated in two ways: First, by a survey research conducted to refine
and validate the model. It describes a brief justification for the research method and details about

case study design with research questions, data collection and analysis methods.

Chapter 5 gives a short summary of the study and emphasizes the contributions of the model. It
further states limitations of the model such as needs of additional quality attribute definitions and
deficiencies of some present quality attributes. The propositions for overcoming the limitations

and the development of a tool for making the measurement easier are given as future study.

CHAPTER 2

LITERATURE REVIEW

2.1Literature related to CBSD Lifecycle Model

Despite CBSD novelty in comparison to traditional software development approach, lot of
work has been done on the process of CBSD. Brief description of literature reviewed is given

below:
2.1.1. EPIC, Cecilia Albert et al

Evolutionary Process for Integrating COTS-Based Systems (EPIC) approach is adapted
from Rational Unified Process (RUP) [9]. It rewrites managerial, engineering and
acquisition activities to control COTS market in better way [1]. It is a risk-based spiral

approach whose phases are same as those of RUP.
2.1.2. Qureshi and Hussain

Process model of Qureshi and Hussain [2] is inclined towards Object Oriented Software
development lifecycle. Component Repository is the main contribution of this model but
there are no guidelines regarding the addition of components in the repository.

Furthermore, when components will be added in the repository is also unclear.
2.1.3. Sommerville

Sommerville proposed sequential lifecycle process model [3], [9] in which components
are searched before design; and then modification of requirements will be carried out. In

this fashion, design and requirements are based on the components in hand.
2.1.4. W Model, Kung-Kiu Lau et al

Kung-Kiu Lau et al propose W-Model [12] which is mainly focused on Verification and
Validation Software Development. They argue that V&V is necessary in both lifecycles

i.e. Component

Development and Component Based Software Development Lifecycle.

repository and maintenance phases are not included.

development lifecycle and Component

Based in Component

In this model

Model Name/ Authors

Strengths/Main Focus

Weaknesses

EPIC, Cecilia Albert et
al.[1]

o Risk-based

e Disciplined

e Spiral-engineering

e Facilitate organizations to make and
maintain COTS solutions

Across the life of a large or complex
project, many solutions— often
overlapping—are created and retired in
response to new technology, new
components, and new operational needs.

Qureshi and Hussain[2]

Central Repository

Not revealed when and how components
will be added into repository

Sommerville[3]

Component Searching before design
Reusability

Phases like Domain Engineering and
Maintenance are missing

W Model, Kung-Kiu Lau
etal [12]

Verification and Validation for both
lifecycles i.e. Component lifecycle and
CBSD lifecycle.

Maintenance and Deployment phases are
missing.
Repository Missing

Jason H. Sharp et al[18]

Dual Life cycle Model
Design Science based recommendations
Reusability

Maintenance and Deployment phases are
missing.
Repository Missing

Classification Model,
Gerald Kotonya et al[4]

e CBSEnet Knowledgebase.
e Management
e Short term and long term objectives

Only Short term objectives are focused.

M. Morisio et al [14]

e Vendor involvement throughout lifecycle
e Bi-directional information flow.

Covers only development (i.e. No
maintenance).
Unit Testing in reduced activities

Component-Based
Software Development

e Comprehensive stages and task process

Generic
Not all stage process patterns are

Process(CBSDP), patterns mandatory.
EhsanKouroshfar et al[17]
MyCL Process Model, No unit testing

Hazleen Iris et al[13]

e Simplicity

Several included processes not described

AnasBassam AL-Badareen
etal [16]

Reusability

Central Repository
Empirical Validation
Systematic Framework
Discuss Dual Lifecycle

Maintenance discussed separately and not
in development-with-reuse lifecycle.
Only deals with in-house development

Knot Model, Rajender
Singh Chhillar et al [5]

Reusability[5]

Easy Planning [5]

Requirements clear [5]

No complexity of software applications[5]
Reduces risk and development time[5]
Reduces cost[5]

Applicable on larger & complex systems[5]

Selecting a right component is difficult[5]
Reservoir may be huge or difficult to
manage[5]

Umbrella Model, Anurag
Dixit et al[8]

e Verification or Testing

Costly and time consuming due to testing or
verification in each phase

Y Model, Luiz Fernando
Capretz [7]

e Reusability[5]

e Solving by analogy[5]

e Follows both top down and bottom up
approach[5]

Iteration and overlapping during process[5]
Does not define a component model

V Model, IvicaCrnkovic et
al[10]

e Verification and Validation
e Supports Unit Test and System Test.
e Central Repository

No Domain Engineering
No System Deployment.

Elite Model, LataNautiyal
etal [11]

Reusability
Testing or Verification

Unit Testing is missing
Design/Architecture Phase is missing

X Model, Gill N. S. et al

(6]

Increases complexity[5]
Clear requirements[5] No risk analysis[5]
Suitable for large systems[5] Increase cost[5]

[]
[]
e Reusability[5]
[]
[]

Table 1 : Strengths and Weaknesses of CBSD Process Models
2.1.5. Jason H. Sharp et al

Jason H. Sharp et al [18] proposed lifecycle model with design science based
recommendations. They discussed phases of component development and system
development separately. They did not include the domain analysis phase in system

development lifecycle.
2.1.6. Classification Model, Gerald Kotonya et al

Gerald Kotonya et al proposed Classification lifecycle Model for CBSD [4], [2] whose
center of attention is CBSEnet knowledge Base. In this model both short and long term

objectives are discussed but it addresses only short term objectives.
2.1.7. M. Morisio et al

M. Morisio et al [14] proposed COTS lifecycle model in which emphasis is put on the
involvement of vendor throughout the lifecycle. In this study new activities and roles are
identified related to vendor. Limitations of the model are that it only focuses on

development phase. Maintenance phase is also missing.
2.1.8. Component-Based Software Development Process, EhsanKouroshfar et al.

Ehsan Kouroshfar et al [17] proposed Component Basedd Software Development Process
(CBSDP). It is a generic process derived by reviewing seven CBSD based methodologies
like FORM, RUP and CORBA etc. One limitation in the process is that all the activities

are not mandatory due to its generic nature; thus, difficult to implement.
2.1.9. MyCL Process Model, Hazleen Iris et al

MyCL Process Model was proposed by Hazleen Iris et al [13]. It is an attempt to make
the lifecycle process very simple, but in doing so several phases or process have lost
necessary detail. Furthermore, requirements and architecture become fixed before

component selection. Unit testing is also eliminated in this model.

2.1.10. AnasBassam AL-Badareen et al

AnasBassam Al-Badareen et al [16] in their research focused on reusability and proposed
two lifecycle processes i.e. build-for-reuse and build- by-reuse. They discuss in detail the
transfer of build-for-reuse process to build-by-reuse process. Central repository is also
focused in this study. This model treats maintenance process separately, which should be

part of the lifecycle. One limitation is that this model only deals in-house development.
2.1.11. Knot Model, Rajender Singh Chhillar et al

Knot Model [5] was proposed by Rajender Singh Chhillar et al. In each phase of this
model risk analysis and feedback is focused which ultimately improves the quality of the
system. Reusability and estimation is also used in each phase to reduce the cost. In
addition, the developed Component Based Software System (CBSS) is also present in
pool for utilization. Limitations of this model are huge repository size and difficulty in

selecting the right component.
2.1.12. Umbrella Model, Anurag Dixit et al

Umbrella Model [8] was proposed by Anurag Dixit et al. This model mainly revolves
around testing or verification. Authors argue that testing or verification must be included
as an ongoing process throughout lifecycle. In this model testing or verification phase

overlaps and repeats in every phase.
2.1.13. Y Model, Luiz Fernando Capretz

Y Model [7] was proposed by Luiz Fernando Capretz. This model supports iteration and
overlapping, if required. Furthermore, it permits both top-down and bottom-up approach
of software development. However, definition of component model is overlooked by this

model.
2.1.14. V Model, lvicaCrnkovic et al.

V Model for CBSD [10] was proposed by Ivica Crnkovic et al. This model is an
adaptation of V Model which is widely used in the industry for traditional software
developments. This model also focuses on verification and validation. However, steps

like Domain Engineering and system deployment are missing.

2.1.15. Elite Model, LataNautiyal et al.

Elite Model [11] proposed by Lata Nautiyal et al. also mainly concentrate on testing or
verification as continuous activities. During development and maintenance, this model

promotes software reusability.
2.1.16. X Model, Gill N. S. et al

X Model [6, 11, 5] is proposed by Gill N. S. et al. Focus of this model is also software
reusability. This model is best for large software developments it is quite complex and

has overlapping activities. This model ignores feedback and risk analysis.
2.2. Literature related to CBSD Effort Estimation Model.

Literature shows that despite CBSD approach novelty several effort estimation models have
been proposed. A great work has been conducted regarding the consolidation of literature on
CBSD Effort Estimation models in [23]. In this work effort models are divided into three
categories on the basis of their modeling techniques. Following effort estimation models are

discussed in [23].
2.2.1. SAIC Model

It is developed in the early 1990s at the Science Applications International Corporation
(SAIC), California [23, 26]. Focus of this model is the end-user cost of adopting a

particular component into a larger system.

Estimated Cost = Licensing Cost x No. of Required License + Training Cost + Glue

Code Cost

The weakness of this model is that it does not consider the component searching and
selecting efforts. Some of the important cost factors covered by SAIC model are licensing
and training costs. This model also not provides details of determining the effort of glue

code development [23, 27].
2.2.2. Stutuzke’s Model

This model concentrates on the volatility cost which is one of the major factors in cost of
using software component [23, 27, 28]. The rate of component’s version release by its

vendor is called component volatility.

EAC = Component Volatility x Architectural Coupling x Interface Size (Cost of
Screening + Change Cost). This model only focuses on volatility and ignores other

important cost drivers. Furthermore, this model has not been implemented [23,29].
2.2.3. Ellis’s Model

This model mainly focuses on component integration phase and used 17 cost drivers to
calculate effort. This model is implemented and calibrated but calibrated data set is not

publically available.
2.2.4. Aoyama’s Model

This model is based on some suppositions. For example, Aoyama completely neglects
unit testing and consider effort of CBSD system testing tantamount to traditional software
development system testing. However, in reality CBSD testing demands extra effort and
time than traditional software testing demands [23, 30, 31]. Similarly, Unit testing may

simply not be neglected in CBSD.
2.2.5. ABB Model

This model is based on GQM (goal-question-metrics) approach. This model may be used
to decide that whether or not the CBSD approach followed because it provides the
economic analysis of CBSD [23].

2.2.6. COCOTS Model

It is the most inclusive effort estimation model of CBSD. It is modeled as an extension of
COCOMO-II. This model is basically divided in three steps: First it calculates the
assessment effort, then tailoring effort and finally integration effort. All three are
combined to calculate the total effort involved. The focus of this model is the integration
activities. This model is based on two things: the source code of the COTS is not
available to developer and the future evolution of the COTS is not under the control of

develop [23].

10

Model Name

Focus Point

Weak Points

STIAC Model

End-user cost of adopting
Licensing and training
costs

eDoes not consider the component searching
and selecting efforts

eDo not provide details of determining the
effort of glue code development[27]

Stutzke’s Model

Volatility Cost

eIlgnores other important cost drivers
eNot been implemented.[29]

Ellis’s Model

-Component integration
phase and 17 cost drivers

eCalibrated data set is not publically available

Aoyama’s Model

Economic model

eNeglects unit testing

ABB Model

Economic model

-Ignores other important cost drivers

COCOTS

Integration activities

-Ignores other important cost drivers.

Table 2 : Comparison of Existing CBSD Effort Estimation Models

11

CHAPTER 3 : PROPOSED MODELS

3.1Proposed Lifecycle Model

The CPM model is derived by embracing the strengths of the reviewed process models and
eliminating their weaknesses. The main focus of this model is to address the rejuvenation of
earlier phase(s) during the execution of subsequent phase(s), which is certain in CBSD. CPM
comprises eight phases which are further divided into seventeen activities as shown in Table
3.

In an idealized CBSD process one phase follows another, as shown in Figure 1. Phases start
from Domain Engineering and continue till Maintenance, in clockwise direction. In Idealized
CBSD process no phase repeat itself as all phases execute sequentially. But this is the case
which one can only dream of. For instance, what happens when required components are not
available in Component Assurance phase? Does the development team not change the
requirement(s)? If this is the case then we are admitting that requirement analysis step will

be revisit after component assurance. This is mainly focused in our proposed CPM.

CBSEor
Tradional?
1

Domain Engineering

]

Maintenance

Requirement Analysis
Deployment

Component Analysis

Integration

Component Assurance

Architectural Design

Figure 1 : Idealized Circular Process Model

12

In CPM, as shown in Figure 2, phases are represented with circles. The inner most circle
represents the Domain Engineering phase and the outer most represents the maintenance
phase. Phases in the proposed model are executed in clockwise direction from Domain
Engineering to Maintenance. Outermost circle in each phase represents the currently
executing phase while inner circles in a phase express that they may re-occur during the

executing phase.

Figure 2 : Proposed Circular Process Model
3.1.1. Domain Engineering

In Domain Engineering identical areas across different applications in a domain are
recognized as having common understanding on the basis of application domain analysis
[7]. Domain Engineering is the also an important phase of IEEE Std. 1517 which
specifies cross project processes. Cross project processes facilitate software reuse in
CBSD.

At the end of this phase expert judgment is required for the decision that whether the
specified requirements can be accomplished using CBSD approach? If not then it would
be wise to adapt traditional approach. It is fact that this decision is very daunting and only

an expert may decide it.
3.1.2. Requirement Analysis

In Requirement Analysis, software requirements are first elicited and then specified. The

final outcome of this phase is requirement specification document. This phase is not one-

13

time activity, especially in CBSD where it may untill the successful completion of the

component assurance phase (See Figure 2).
3.1.3. Component Analysis

Component Analysis phase encompasses the process of identification of components
from the specified requirements and then specification of the identified components. In
this phase, requirement specification document is reviewed for component identification
and specification. Outcome of this phase is requisites component specification document.
At the end of this phase another decision is required and another test of expert’s abilities
is demanded. Here, expert decided on the basis of his experience and identified
components whether component development from scratch is better or use of COTS
would be beneficial? This decision is necessary because if we plunge directly into the
next phase, .i.e. Component Assurance, then it would be very difficult to meet the
schedule. It is so because Component Assurance is a time consuming activity and if

Components are unavailable then all the exercise of this phase will be futile.
3.1.4. Component Assurance

This phase is an important and distinct phase of CBSD lifecycle. It is distinct because
major activities of this phase are not the part of traditional software development
approach. In this phase requisite components are searched from the repository. If one
fails in finding the requisite component then Requirement Analysis phase is re-executed
that in turn re-calls Component Analysis phase. This phenomenon is shown in Figure 2
and Figure 3. Component assurance phase continues till all required components become
available. At the end of this phase, the development team has all the requisite

components in hand.
3.1.5. Architectural Design

At this stage, final requirements and requisite components are in developers’ hands so it
is the right time to design architecture of the application. In this phase, component
interactions are analyzed to shape the software architecture. Output of this phase is

System Architecture description.

14

3.1.6. Component Integration

In Component Integration phase components are integrated one by one into the system.
After integration of each component, system is tested to ensure the smooth functioning.
To accomplish the task of component integration new code is required, which works as
interface between the component and the system under development. This new code is

called Glue Code [15].
3.1.7. Deployment

Deployment is the process of transferring the system to the customer in a fashion that
customer feels comfortable with the product; and may be able to enjoy the maximum
benefits from it. To ensure successful deployment, training and documentation must be a

provided to customer [7].
3.1.8. Maintenance

Maintenance is a system support activity which ensures smooth running of the system
and increases product’s lifetime. As far as CBSD is concerned, maintenance may be
required because of two reasons. First, change in requirement and second, component up-
gradation. Change in requirements is also very common cause of maintenance in
traditional software but maintenance due to component up-gradation is specific to
Component Based Software Systems. It may occur due to the availability of new version

of the utilized components in market which need to be replaced.

Maintanance
Daploymant
Integration
Architectural Design

ComponentAssurance

Lifecycle Phases

ComponentAnalysis

Requirement Anzlysis

Domain Enginasring

m Actual Time
m Rejuvenation Time

Figure 3 : Timeline of Phases in CPM

15

Phases Activities Description Output
Domain Domain Engineering | It is a process which provides understanding Common
Engineering regarding the application domain and help in taking | Processes of

the decision of following CBSD or Traditional Application
approach. Domain

16

1* Decision: CBSD or Traditional

Requirement It is a comprehensive activity which deals with | System
Assessment finalization of requirements with consultation of Requirements
Requirement end-user and domain experts, and refinement of Specification
Analysis requirements for specification. (SRS)
Requirement It is the process of preparing requirement Document
Specification specification document from the requirements
finalized in requirement assessment activity.
Component It deals with determining required components, by Requisite
Component | Identification analyzing the requirement specification document. Components
Analysis Component In this identified components are completely Specification
Specification specified (i.e. interfaces, member functions etc.) to | Document
have clear idea of needed components
2" Decision: Build Vs. Buy
Component Needed components are searched first in Requisite
Searching organization’s internal repository then from external Components
Component vendor’s repository (if not found in internal (COTS)
Assurance repository).
Component Best components are selected from the components
Selection found (if more than one) in search activity.
Component Process of acquiring selected components from the
Acquisition vendor, if not present in organization’s internal
repository.
Tailoring To set component for apply irrespective of
integrated system [15].
Unit Test Ensure component functioning in isolation after
component tailoring.
Component Each component’s architecture is realized in detail System
Architectural | Architectural to ensure best possible architecture. Architecture
Design Comprehension
Application Design | System Architecture is finalized on the basis of
available components.
Component Each component is adapted for integration into the | Component
Integration Adaptation system by writing glue code. Based Software
Integration Test Ensure that system works well after integration of System(CBSS)
each component.
Deployment Kit User manual, training guide or other relevant User Manual,
Deployment | Preparation material is prepared to ensure user understandability Training Guide
of the product alongwith preparation of executable
copy of the product.
Maintenance | Substitution Required if new version of COTS is available. Component
Evolution Required when new/change requirements are Based Software
demanded. System(CBSS)

Table 3: Proposed Circular Process Model (CPM) Phases

3.2. Proposed Effort Estimation Model

A software estimation model defines precisely which values are needed & how these values
can be used to compute the effort. In the proposed CBSD lifecycle Effort Estimation model
we used proposed CBSD Lifecycle Circular Process Model (CPM). This model has 17

17

activities and 08 phases. Effort parameters/drivers are identified for each activity from
Domain Engineering to Maintenance. Bottom-up approach of effort estimation is used.
Effort for each activity is estimated on the bases of identified effort parameters using Fuzzy

Logic. Then, combined effort of all activities is calculated to obtain the Lifecycle effort.

It is pertinent to mention here that crisp value is achieved for all activities and total lifecycle
effort. Unit of effort may have different meanings for different organizations. For example,
an ‘ideal hour’ for an organization may be the time spent on development activities while for
other organizations it may be the time of development activities plus other parallel activities
like meetings, presentations, internet surfing etc related to project. Let’s discuss the

implementation of the proposed model in detail.

3.2.1. Effort Parameters
Effort Parameters / Effort drivers are those factors which are related with any aspect of

the project and affect the Effort in any respect, till project completion.

These effort parameters are actually the basic units which help in estimating the effort.
Different effort estimation models have utilized different number of effort parameters for
their effort estimation. For example, COCOMO-II has 17 effort/cost drivers with five
scale factors [24]. Similarly, COCOTS, an extension of COCOMO-II model, [15] have

different number of effort parameters.

In this study, 64 effort parameters are used, which are categorized under activities, phases
and lifecycle. Out of these 64 effort parameters, 07 parameters are taken from COCOTS
model [15], 03 parameters are taken from scale factors of COCOMO-II [15], 02
Parameters are taken from [25]. COCOTS parameters are used under the activities of
Component Acquiring and Component Tailoring. Complete list of Effort parameters

under activities/phases is shown in table 4.

18

Table 4 : Identified Effort Parameters

CPM CPM Effort Parameters
Phases Activities Activity Level Phase Level | Lifecycle Level
Domain Domain | NOADA - No. of available Domain e OC-
Engineering Engineering | Applications Organization
Requirement Assess | NORS - No. of Requirement Sources LOEUI- Culture [25]
Analysis - izati i i Level of
y OD Orgam%atlor'lal Diversity EndUser o PM-Process
UD - User Diversity Interest Maturity[24]
Specify | NOFR - No. of FRs
NONFR - No. of NFRs e LS- .
NOC - No. of Constraints ISdli?lclle[r;gp
RC - Requirement Clarity e
Component Identification | NOFR - No. of FRs RT -
Analysis NONFR - No. of NFRs Reuse Type | ¢ TC- Team
Specification | NOIC - No. of Identified Components Cohesion [24]
NOII - No. of Identified Interfaces
NOIMEF - No. of Identified Member * 8C-
functions Stakeholder
COH - Cohesion Cohesion
Compgnent Search | RS - Repository Size NOIC- e TSK- Team
Provision SS - Search Strategy No Of Skills
Select | NOFR - No. of FRs Identified
Components
NONFR - No. of NFRs e TE- Tgam
NOADA - No. of available domain Experience
applications
Acquire | ACPTD - COTS Supplier Provided * TSZ- Team
Training and Documentation[15] Size
ACSEW - COTS Supplier Product
Extension Willingness[15] ¢ TC- Team
ACPPS - COTS Supplier Product Consistency
Support[15]]
Tailoring | NOPTBS - No. of Parameters to be * PS-Project
Specified[15] Size
IGS - Input/GUI screen[15] PCProtect
e PC-Projec
ORL - Outp'ut report layout[15] Complexity
SPS - Security protocols set-up[15]
Unit Test | TM - Testing Methodology e PP-Project
SC - Success Criteria Precedence
Architectura Component | NOCF - No. of Components Fashioned [24]
1 Design Interaction | CAM - Components Architectural
mismatch e UOST-Use of
NOIAMEF - No of Interfaces and ?tanldard
Membership Functions 0018
IC - Interfac.e Complexity o RW- Rework
Cou —Coupling
Application | RF - Requirements Flexibility

19

Design | SF - Schedule Flexibility
RA - Resources Availability

Integration Adaptation | FP - Function Points

NOIAMF - No of Interfaces and
Membership Functions
AC - Architectural Constraints

Integration | TM - Testing Methodology
Testing | SC - Success criteria

Deployment Document. / | NOSTBD - No of Sites to be Deployed
User Training | TE - Targeted End-user

UMDC - User Manual/ Documentation
Comprehensiveness

Maintenance Substitution | NOCTBR - No. of Components to be
substitute.

Evolution | SOC - Size of Change

3.2.2. Use of Fuzzy Logic
For the implementation of the effort estimation we used Fuzzy Logic because it is based

on intuition and judgment and does not require any mathematical model. Furthermore,
Fuzzy Logic provides smooth transition between members and nonmembers. Fuzzy
Logic is also comparatively simple, fast and adaptive. Moreover, it is less sensitive to

system fluctuation.

In implementing the proposed model we used and open source Fuzzy Logic Library
jFuzzyLogic 2.1. It uses Fuzzy Control Language (FCL). The theory of Fuzzy Logic in
the application of control is named Fuzzy Control. The Fuzzy Control is emerging as a
technology that can enhance the capabilities of industrial automation. [22]. Fuzzy Control

Language FCL is defined by IEC 1331 part 7 [21].

3.2.2.1. Function Blocks
A Function Block is a FCL program which is used to keep the Fuzzy Control Logic.

Function Block specifies I/O parameters, declarations and fuzzy rule base. Function
Blocks defined in Fuzzy Control Language FCL can be used in Programs and

Function Blocks written in any of the languages [22].

In this study, for implementing the model we define a Function Block for each
activity of the proposed CPM lifecycle model. Function Block for the Unit Testing

activity of Component Provision phase is shown below:

20

Table 5 : Function Block (Sample of Unit Testing Activity of Components Provision Phase)

FUNCTION_BLOCK componentProvisionUnitTesting

VAR_INPUT
tm : REAL; // Effort Parameter Testing Methodology.
sc: REAL; // Effort Parameter Success Criteria

noic : REAL; // Effort Parameter No. of ldentified Components.
END_VAR

VAR_OUTPUT
effort : REAL; // Estimated Effort Variable
END_ VAR

FUZZIFY tm
TERM whitebox := (0, 1) (4, 0) ;
TERM glassbox := (1, 0) (4,1) (6,1) (9,0);
TERM blackbox := (6, 0) (9, 1);
END_FUZZIFY

FUZZIFY sc
TERM acceptableerrors := (0, 1) (1, 1) (3,0) ;
TERM errorfree := (7,0) (9,1);

END_FUZZIFY

FUZZIFY noic
TERM few := (0, 1) (4, 0) ;
TERM average := (1, 0) (4,1) (6,1) (9,0);
TERM many := (6, 0) (9, 1);

END_FUZZIFY

DEFUZZIFY effort
TERM low := (0,0) (5,1) (10,0);
TERM medium := (10,0) (15,1) (20,0);
TERM high := (20,0) (25,1) (30,0);
METHOD : COG;
DEFAULT := 0O;

END DEFUZZIFY

RULEBLOCK Nol

AND - MIN;

ACT - MIN;

ACCU : MAX;
RULE 1 :

IF tm 1S whitebox AND sc IS acceptableerrors AND noic IS few THEN
effort 1S medium;

RULE 2 :

IF tm IS whitebox AND sc IS acceptableerrors AND noic IS average THEN
effort IS medium;

RULE 3 :

IF tm IS whitebox AND sc IS acceptableerrors AND noic IS many THEN
effort IS high;

RULE 4 :

21

IF tm 1S whitebox AND sc IS errorfree AND noic IS few THEN effort 1S
high;

RULE 5 :

IF tm 1S whitebox AND sc IS errorfree AND noic IS average THEN effort
IS high;

RULE 6 :

IF tm IS whitebox AND sc IS errorfree AND noic IS many THEN effort IS
high;

RULE 7 :

IF tm 1S glassbhox AND sc IS acceptableerrors AND noic IS few THEN
effort 1S low;

RULE 8 :

IF tm IS glassbox AND sc IS acceptableerrors AND noic IS average THEN
effort 1S medium;

RULE 9 :

IF tm 1S glassbox AND sc IS acceptableerrors AND noic IS many THEN
effort 1S medium;

RULE 10 :

IF tm 1S glassbox AND sc IS errorfree AND noic IS few THEN effort 1S
medium;

RULE 11 :

IF tm 1S glassbox AND sc IS errorfree AND noic IS average THEN effort
IS medium;

RULE 12 :

IF tm 1S glassbhox AND sc IS errorfree AND noic IS many THEN effort IS
high;

RULE 13 :

IF tm 1S blackbox AND sc 1S acceptableerrors AND noic IS few THEN
effort 1S low;

RULE 14 :

IF tm 1S blackbox AND sc IS acceptableerrors AND noic IS average THEN
effort 1S low;

RULE 15 :

IF tm 1S blackbox AND sc IS acceptableerrors AND noic 1S many THEN
effort 1S medium;

RULE 16 :

IF tm 1S blackbox AND sc IS errorfree AND noic IS few THEN effort IS
medium;

RULE 17 :

IF tm 1S blackbox AND sc IS errorfree AND noic IS average THEN effort
IS medium;

RULE 18 :

IF tm 1S blackbox AND sc IS errorfree AND noic IS many THEN effort IS
high;

END_RULEBLOCK

END_FUNCT ION_BLOCK

Definition of the FUNCTION BLOCK

FUNCTION_BLOCK componentProvisionUnitTesting

Definition of Input and output variables (only REAL is implemented yet in FCL)

VAR _INPUT
tm - REAL; // Effort Parameter Testing Methodology.
sc: REAL; // Effort Parameter Success Criteria

22

noic : REAL; // Effort Parameter No. of ldentified Components.
END_VAR

VAR_OUTPUT
effort : REAL; // Estimated Effort Variable

END_VAR

Fuzzification of input variables. Each input variable is defined in FUZZIFY block. In
each block Linguistic Terms of that input variable is defines along with membership

function. Each term is composed by a name and a membership function. E.g.:

FUZZIFY tm
TERM whitebox :
TERM glassbox :
TERM blackbox :
END_FUZZIFY

Three linguistic terms are used to define the Testing Methodology(tm) input variable. For

©, 1) (4, 0 ;
@, 0 (4,1 (6,1) (9,0);
6, 0 (9, 1);

instance term whitebox uses a piece-wise linear membership function defined by points
x 0=0,y O0=1andx 1=4,y 1=0.Same membership functions are chosen for No. of

Identified Components (noic) input variable

=
=
7]
=
)
=
£
@
=

|l hlackbox & glasshox & whitebnxl

Figure 4 : Chart of Membership Function for Testing Methodology Effort Parameter

Similarly, Success Criteria variable fuzzify block is define:

FUZZIFY sc
TERM acceptableerrors := (0, 1) (1, 1) (3,0) ;
TERM errorfree := (7,0) (9,1);

END_FUZZIFY

23

=
=
7]
_
@
=
E
)
=

|i errorfree & acceptableerrnrsl

Figure 5 : Chart of Membership Function for Success Criteria Effort Parameter

Defuzzification of output variable. Output variable are defined in DEFUZZIFY block.

We have only one output variable in the proposed model that is Effort. Defuzzification is

show below:
DEFUZZIFY effort
TERM lIow := (0,0) (5,1) (10,0);
TERM medium := (10,0) (15,1) (20,0);
TERM high := (20,0) (25,1) (30,0);
METHOD : COG;
DEFAULT := 0O;
END_DEFUZZIFY
effort
1.00
(=1
= 075
B
2 050
E
ah
= 0254
0.00 : : . :
o 5 10 15 20 25

X

Figure 6 : Chart of Membership Function for Effort

30

24

Parameters METHOD in DEFUZZIFY block denotes defuzzification method. In the
proposed model ‘Center of gravity’ is opted for defuzzification and set DEFAULT value

to ‘0’ if no rule executes:

METHOD : COG;
DEFAULT := O;

Define Rules using a RULEBLOCK. First some parameters are defined. For the proposed
model minimum is used for AND. Used Activation (ACT) method is also minimum

while used Accumulation (ACCU) method is maximum :

RULEBLOCK Nol

AND : MIN;
ACT : MIN;
ACCU : MAX;

Then following 18 rules are defined in this RULEBLOCK. The Cartesian product of
input variable’s membership function in each activity is adapted, to prepare rules, for

maximum coverage of inputs and better estimation.

RULE 1 :

IF tm 1S whitebox AND sc IS acceptableerrors AND noic IS few THEN
effort 1S medium;

RULE 2 :

IF tm 1S whitebox AND sc IS acceptableerrors AND noic IS average THEN
effort 1S medium;

RULE 3 :

IF tm 1S whitebox AND sc IS acceptableerrors AND noic IS many THEN
effort IS high;

RULE 4 :

IF tm IS whitebox AND sc IS errorfree AND noic IS few THEN effort IS
high;

RULE 5 :

IF tm 1S whitebox AND sc IS errorfree AND noic IS average THEN effort
IS high;

RULE 6 :

IF tm 1S whitebox AND sc IS errorfree AND noic IS many THEN effort IS
high;

RULE 7 :

IF tm 1S glassbox AND sc IS acceptableerrors AND noic IS few THEN
effort 1S low;

RULE 8 :

IF tm 1S glassbox AND sc IS acceptableerrors AND noic IS average THEN
effort 1S medium;

RULE 9 :

25

IF tm 1S glassbox
effort 1S medium;
RULE 10 :

IF tm 1S glassbox
medium;

RULE 11 :

IF tm 1S glassbox
IS medium;

RULE 12 :

IF tm 1S glassbox
high;

RULE 13 :

IF tm IS blackbox
effort IS low;
RULE 14 :

IF tm IS blackbox
effort IS low;
RULE 15 :

IF tm IS blackbox
effort IS medium;
RULE 16 :

IF tm IS blackbox
medium;

RULE 17 :

IF tm IS blackbox
IS medium;

RULE 18 :

IF tm IS blackbox
high;

END_RULEBLOCK

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

acceptableerrors AND noic 1S many THEN

IS few THEN effort IS

errorfree AND noic

errorfree AND noic IS average THEN effort

errorfree AND noic IS many THEN effort IS

acceptableerrors AND noic IS few THEN

acceptableerrors AND noic IS average THEN

acceptableerrors AND noic 1S many THEN

IS few THEN effort IS

errorfree AND noic

errorfree AND noic IS average THEN effort

errorfree AND noic IS many THEN effort IS

3.2.3. Application Development

As discussed in previous section that for Fuzzy Logic implementation Fuzzy Control

Language is used. Similarly, for the development of application front-end Java language

is used. The IDE used for the application development is Eclipse Helios.

26

<) CBSE Effort Estimatic

Domain Engineering

rNo. of Comp. Prepared

Req. Analysis ())

Req. Analysis (Specify)

Few Normal

Cross Cutting Parameters
Total Lifecyele Effort

Comp. Analysis (Identify)

Comp. Analysis (Specify) [&OMPp. Architectural Mismatch

Comp. Provision (Search) L

Comp. Provision (Select) Lq‘w Aver‘ane Hi;h
Comp. Provision (Acquire) | Np_ of Interfaces & Membership Functions

Comp. Provision (Tailoring) . —

Comp. Provision (Unit Test) ' ' '
Ar Eng. Comp. Interation Fow Normal e
Ar Eng. Appliation Design rinterface CompIeXity

Integration (Ad) E vy
Integration (Integration Test) La‘w uve;gue Hi;]h
Deployment (DocsiTrianing) -Cuupling
; s — L)
Maintenane (Evolution) ' i
Minimum Maximum

Membership

Arch. Eng. (Comp. Interaction):15.000000000000037

125 150
%

25 &0 75 100

& Valug & effort15.00 (CenterOfGravity) & high & low & medium

Figure 7 : Front-end of the application

176 200 225 260 275 300

In application each lifecycle activity is shown separately with its specific effort

parameters as input variables. Slider Control is used to adjust the inputs. Separated

Estimated effort graph are also shown for each activity. For example, in Domain

Engineering Phase only one effort parameter ‘No. of Available Domain Applications’ is

identified.

27

CHAPTER 4

VALIDATION

4.1 Validation of the Proposed Lifecycle Model
4.1.1.By Comparing with Existing Process Model

Without comparison it is difficult to say that one thing is better than the other. We chose
a state-of-art model, the MyCL Process Model [13] for comparison as this model is also

based on integrating the strengths and removing the weaknesses of the existing models.

In MyCL Process Model requirements are finalized at Requirement Analysis phase, as in
Waterfall Model, and in component development phase, components are adapted or
engineered to comply with requirements. There is no recourse to requirement analysis
phase if the requisite component did not found. Only provided thing is developing
component from scratch which is not the essence of CBSD. This is not the case in the
proposed circular lifecycle model. In circular lifecycle model you can build new

component, or you can modify your requirements, as desired.

Architectural Design phase is placed before Component Selection phase, which does not
suits CBSD because when you don’t have selected component in hands how you can
have a frozen architecture? Second there is also no recourse to architectural design phase
if the components assumed in architecture did not satisfy the architecture. This problem is
resolved by circular model in which architectural design phase is placed after component

Assurance phase.

Again, in MyCL process Unit test is removed from the lifecycle by stating “‘removing
unit testing from the development lifecycle. This removal is obvious, as the system is no
longer built from scratch, but from composed components.””[13] In Circular Lifecycle

28

Model Unit test is included because component tailoring is required which is to set the
component to be used irrespective of the integrating system [15]. Thus, unit test is

necessary.

Complexity
Attractive 10—
Interaction”

‘oupling

Undoability . Failure Avoidance

In /alidity /

|).ut\a.I|(I|t\, — _ - Restoration
Checking -
Existencein L/ | — } _| Restoration

Documents Effectiveness

Functinal
" "ITUsage
Understandability g
Access Auditability —— Density

Data Exchangeability

Figure8: PQMM Chart for CPM
4.1.2.Using Process Quality Measurement Model (PQMM)

We have validated the proposed circular lifecycle model using Process Quality
Measurement Model (PQMM) of Guceglioglu et al [19]. The PQMM provides a set of
quality metrics that can be used to evaluate static quality of a software development
process. Each of these metrics lies in value between 0 and 1. We have used a subset of
these metrics for process evaluation, using only those metrics that were relevant to the
process and could be calculated from the process definitions. Table3 shows the metrics
(with definitions re-phrased or adapted from [19]).

It can be seen that only failure avoidance attribute of the process requires improvement.
Overall validation, however, shows that the model efficiently fulfills PQMM
characteristics, implying that the model is very much maintainable, reliable, functional

and usable. Model assessment according to PQMM is illustrated in Figure 8.

29

Table 6 : PQMM [19] Quality Attributes Values for CPM*

Quality Quality Sub- Metric Explanation
Characteristic Attribute
S
Value
Maintainability | Analyzability | Complexity Obtained by subtracting the normalized
number of decision points in the process from
1, such that higher the obtained value, lesser
the complexity and thereby better the
analyzability. 0.9
Coupling Examines interactions between process flow
and other organizational processes. Obtained
by subtracting the number of interactions from
1 so that higher the obtained value, lesser the
complexity and thereby better the
analyzability. 1.0
Reliability Fault Failure Here term failure means user-based mistakes
Tolerance Avoidance which can be avoided using techniques like
reviews, inspections and checkpoints 0.3
Recoverability | Restoration Activities restoration is required when an
abnormal event occurs. It investigates
activities and their status of recorded and
unrecorded.
0.8
Restoration It examines efficiency of restoring recorded
Effectiveness | activities. 0.8
Functionality IT Based IT Usage Use of IT applications in the process activities
Functionality is examined. 0.8
IT Density It is the ratio between documents in which IT
applications are used with the total no of
documents in the process. 1.0
Interoperabilit | Data This investigates the usage of data received No
y Exchange from the interacted process. Interact
ability ion
Security Access This attributes identify the person who have
Auditability access to data source for audit purpose.
0.7
Usability Understandabi | Functional In this level of staff’s understanding of
lity Understanda | process activities is assessed.
bility 1.0
Learnability Existence in | This attributes checks the presence of process
Document activities in documents. 1.0
Operability Input It is the examination of implementation of
Validity input parameter checking in process activities
Checking 0.6
Undoability In this undoability of the recorded process
activities is examined after they are
completed. 0.8
Attractiveness | Attractive Utilization of prepared documents in the
Interaction process activities is examined. 0.8

30

4.2.Validation of the Proposed CBSD L.ifecycle Effort Estimation Model
4.2.1. Conducting a Survey/ Case Study

The proposed CBSD Lifecycle Effort Estimation Model is validated by conducting an
industrial survey (Attached at Appendix-A). Survey is designed on the basis of Effort
Parameters/Drivers used in the proposed model. Around 48 questions were asked by the
participants. Questions were arranged in CPM lifecycle phases and activities.

Participants were asked to answer on the basis of their experience.

Twelve (12) participants from different organizations (public and private sectors)
participated in the survey. The answers provided by the experts are then analyzed and

combined percentage of accurate answer is calculated which is shown in following table:

Table 7: Activity-wise Accuracy Results of Industrial Survey

Activities Accuracy %

Domain Engineering 85.83
Assess 80.56
Specity 87.50
Identification 86.67
Specification 81.04
Search 77.50
Select 80.28
Acquire 86.11
Tailoring 88.13
Unit Test 84.58
Component Interaction 83.33
Application Design 88.89
Adaptation 83.33
Integration Testing 76.25
Documentation / Training 90.28
Substitution 91.67
Evolution 91.67

Survey results analysis shows that the proposed model have the average accuracy
between 80% - 90%. On the basis of these results we may say that the proposed model is
able to estimate the effort with 80% - 90% accuracy. Better results can be achieved by
repeatedly using the model during the project lifecycle because as we proceed into the

project more accurate estimate is available.

31

Lifecycle Activities

100.00
80.00
60.00
40.00
20.00

0.00

Accuracy Percentage

Figure 9 : Lifecycle Activities Accuracy Graph of Industrial Survey

It revealed while conducting survey that some questions asked in survey might not be
interpreted as author desires by the participants; otherwise results may be more accurate.
It was likely because the author was not present with participants to attain the purposeful

results.

Table 8 : Phase-wise Accuracy Results of Industrial Survey

Phase Accuracy %

Domain Engineering 85.83
Requirement Analysis 84.52
Component Analysis 82.92
Component Provision 83.99
Architectural Design 85.42
Integration 80.50
Deployment 90.28
Maintenance 91.67

For instance, Question No. 1: what effort (low, medium, high) would be required if No.
of available domain applications would be (many, normal, few)? Some experts may
consider that ‘No. of available domain applications’ effort parameters is in-directly
proportional to Effort because if many domain applications are available then availability

of the component will be high thus effort required will be very low.

32

On the other hand, some experts may be of the view that ‘No. of available domain
application’ effort parameter is directly proportional to the effort because if many domain
applications are available then effort required in Domain Engineering phase would be
high. Author modeled, second view in the proposed model because the question was

asked specific to the Domain Engineering Phase/activity.

Accuracy Graph of Lifecycle Phases
100.00

Q

o

8 80.00 -
g

o 60.00 —
b

&

P 40.00 —
o

< 2000 —
3

g

< 0.00

% & & ,\a,\O“\) o & Q;i\(’e'
& & & & N @ \\@ &
& & & & & & & &
& § & & N
& & & & &

Figure 10 : Lifecycle Phases Accuracy Graph of Industrial Survey

4.2.2. By Measuring Specificity and Sensitivity

Measurement of the survey answer is subject to random variation. Because when same
question answered multiple times by multiple participants the answer may vary. This
variation might be due to variation in the question understanding or in the participants.
Therefore, it is necessary to measure the surveys answers as precisely as possible in order
to validate the proposed effort estimation model. Random wvariation is indirectly
proportion to the precision of the measurement. It means that if random variation
decreases then precision of the measurement will increase. Thus, Specificity and

Sensitivity measurement is used to decrease the variation in survey answers.

33

Table 9 : Specificity and Sensitivity Results

Phase Specificity | Sensitivity
Domain Engineering #DIV/0! 1
Requirement Analysis 0.5 0
Component Analysis 0.5 #DIV/0!
Component Provision | 0.6666667 0
Architectural Design 1 0
Integration 0.5 0
Deployment 1| #DIV/0!
Maintenance 1 #DIV/0!
Complete Lifecycle 0.962963 | 0.6315789

Specificity and Sensitivity was measured by analyzing the right/wrong answers and

clear/ambiguous questions. Here right/wrong answers means the accuracy of answers of

the survey participants, while clear/ ambiguous means the question which may be

interpreted as clear or ambiguous by the participants. Example of Clear/ambiguous

question is given in section 2.4.1.

Detail Calculation of the Specificity and Sensitivity is shown in Appendix- C while

results and result graph are shown in Table 9 and Figure 11, respectively.

000000000
OFRMNWEUOI~00WR—

I I | I | | E B Specificity

B Sensitivity

Figure 11 : Specificity and Sensitivity Graphs

34

CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter comprises of two sections: the first section discusses the concluding notes of the

presented work while the second section discusses the recommendations for future work.

5.1. Conclusion
Effort Estimation is considered a very crucial and difficult activity of the Project Management.

Poor estimates may lead to project failure or undesirable results. Like traditional software
development approach, Effort Estimation for Component Based Software Development is also a
challenging activity. Literature reviewed in thesis shows that focus of the researcher in the field
of CBSD effort estimation remained towards integration centric activities, while other phase(s)

of lifecycle remained unaddressed.

The work presented in this thesis is the first step towards estimating complete lifecycle effort of
Component Based Software Development. For the purpose, Fuzzy Logic approach is used. It was
ensured that each aspect of CBSD lifecycle must be covered thus Circular Lifecycle Process
Model of CBSD is proposed. This model is also validated to ensure that accurate estimates can
be achieved. For each activity of the proposed Circular Process Model, effort parameters were
identified. These effort parameters are the factors which directly or indirectly affect the effort.
Each effort parameters is fuzzified using membership function. An enriched Fuzzy rule base
was prepared to provide maximum input coverage and precise estimation. This effort estimation
model is also validated by conducting an industrial survey and then by measuring specificity and

sensitivity of the survey results.
In this thesis following objectives were achieved:

- A comprehensive CBSD lifecycle process model is proposed.
- The CPM model is validated using Process Quality Measurement Model (PQMM)
[19] and by comparing with process model of Hazleen Aris et al [13].

35

- A complete lifecycle effort estimation model for CBSD is also proposed which is
a first step towards estimating CBSD lifecycle effort.

- Proposed Estimation model is also validated by conducting a industrial survey.
5.2. Future Work

Avenues towards perfection remains always open. Following are a few suggestions to extend or

improve this work:

- Proposed CBSD Life-Cycle Effort Estimation model presently has 64 effort
parameters which may be enriched to achieve more specific results.
- This model is formulated using Fuzzy Logic; which can be optimized for more

accurate results.

36

REFERENCES

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[11]

[12]

Cecilia Albert and Lisa Brownsword, Evolutionary Process for Integrating COTS-Based
Systems (EPIC): An overview, Technical Report CMU/SEI-2002-TR-009 ESC-TR-2002-
009, July, 2002.

K. Kaur and H. Singh. Candidate process models for component based software
development. Journal of Software Engineering, 4(1):16-29, 2010.

Ian Sommervilee, Software Engineering, 7th Edition, Pearson Education.

G. Kotonya, I. Sommerville, and S. Hall. Towards a classification model for component-
based software engineering research. In Proc. 29th EUROMICRO Conference, pages 43—-52.
IEEE Computer Society, 2003.

Rajender Singh Chhillar, ParveenKajla, A New Knot Model for Component Based Software
Development, International Journal of Computer Science Issues Vol: 8 Issue: 3 Pp.: 480-484,
2011.

Gill N. S. and Tomar P., “X Model: A New Component- Based Model”, MR International
Journal of Engineering and Technology, Vol. 1, No. 1 & 2, pp. 1-9, , 2008

Luiz Fernando Capretz, " Y: A new Component-Based Software Life Cycle Model ",
Journals of Computer Sciencel (1) : pp.76-82, 2005.

Anurag Dixit and P.C. Sexna, "Umbrella: A new Component- Based Software Development
Model", International Conference on Computer Engineering and Applications IPCSIT,
Singapore, vol.2, 2011.

Kuljit Kaur et al, "Towards a suitable and systematic approach for Component Based
Software Engineering", World Academy of Science, Engineering and Technology, 27, 2007.
Ivica Crnkovic, component Based Development Process and Component Life Cycle, 27th
International Conference on I.T Interfaces, IEEE, Caretat, Croatia, 2005

Lata Nautiyal et al, "Elite: A New Component-Based Software Development Model", Int. J.
Computer Technology & Applications, Vol 3 (1), 119-124, JAN-FEB, 2012.

Kung-Kiu Lau et al, “The W Model for Component-based Software Development”,
EUROMICRO-SEAA 2011: 47-50.

37

[14]

[15]

[16]

[17]

[18]

[19]

(21]
[22]

(23]

[24]

[25]

[26]

Hazleen Aris and Siti Salwah Salim, “The Development of a Simplified Process Model for
CBSD”, The International Arab Journal of Information Technology, Vol. 4, No. 2, April
2007.

M. Morisio et al, "COTS-based software development: Processes and open issues” The
Journal of Systems and Software 61, 189-199, 2002.

Chris Abts, M.S. et al, “COCOTS: A COTS Software Integration Lifecycle Cost Model -
Model Overview and Preliminary Data Collection Findings”, USC Center for Software
Engineering, 2000.

AnasBassam AL-Badareen,et al, “Reusable Software Component Life Cycle”, International
Journal of Computers, Issue 2, Volume 5, 2011.

Ehsan Kouroshfar et al, “Process Patterns for Component-Based Software Development”,
G.A. Lewis, 1. Poernomo, and C. Hofmeister (Eds.): CBSE 2009, LNCS 5582, pp. 54-68,
2009.

Jason H. Sharp and Sherry D. Ryan, “Component-Based Software Development: Life Cycles
and Design Science-Based Recommendations”, Proc CONISAR, v2 (Washington DC), 2009
A.Selcuk Guceglioglu et al, “The Application of a New Process Quality Measurement Model
for Software Process Improvement Initiatives ", IEEE 11th International Conference on
Quality Software, 2011.

IEEE 1517, Standard for Information Technology—Software Life Cycle Processes—Reuse
Processes, IEEE, Piscataway, N.J., 1999.

http:// www.sourceforge.net.

International Electro-technical Commission (IEC), Technical Committee No. 65: Industrial
Process Measurement and Control, Sub-Committee 65 B: Devices, IEC 1131 -
Programmable Controllers, Part 7 - Fuzzy Control Programming, Committee Draft CD 1.0
(Rel. 19 Jan 97)

T. Wijayasiriwardhane, R. Lai, K.C. Kang, “Effort estimation of component-based software
development — a survey”, The Institution of Engineering and Technology, IET Software,
2011, Vol. 5, Iss. 2, pp. 216-228

T.N.Sharma, “Analysis of Software Cost Estimation using COCOMO II”, International
Journal of Scientific & Engineering Research Volume 2, Issue 6, ISSN 2229-551, June-2011.
Khaled Hamdan et al, “The Influence of Culture and Leadership on Cost Estimation”, UAE
University, Al Ain, UAE and University of Sunderland, Sunderland, UK.

Karpowich, M., Sanders, T., Verge, R.: ‘An economic analysis model for determining the

custom versus commercial software tradeoffs,” in Gulledge, T.R., Hutzler, W.P. (Eds):

38

(28]

[29]

[30]

[31]

‘Analytical methods in software engineering economics’, (Springer-Verlag, 1993), pp. 237-
252.

Abts, C., Boehm, B.W.: ‘COTS software integration cost modeling study’ (Centre for
Systems and Software Engineering, University = of Southern California),
http://sunset.usc.edu/csse/ TECHRPTS/1998/usccse98-520/usccse98-520.pdf, accessed
August 2008

Abts, C., Boehm, B.W., Clark, E.B.: ‘COCOTS: a COTS software integration lifecycle cost
model — model overview and preliminary data collection findings’. Proc. 11th European
Software Control and Metrics Conf. and Third Software Certification Programme in Europe,
(ESCOM — SCOPE 2000), Munich, Germany, 2000, pp. 325-333

Abts, C.: ‘Extending the COCOMO 1II software cost model to estimate effort and schedule for
software systems using commercial-off-theshelf (COTS) software components: the COCOTS
model’. PhD thesis, University of Southern California, 2004

Minkiewicz, A.F.: ‘Are software COTS solutions an affordable alternative’. Proc. Aerospace
Conf., Piscataway, NJ, March 2004, pp. 4073—4082

Mahmood, S., Lai, R., Kim, Y.S., Kim, J.H., Park, S.C., Oh, H.S.: ‘A survey of component
based system quality assurance and assessment’, Inf. Softw. Technol., 2005, 47, (10), pp.
693-707.

39

APPENDIX - A: Survey

Survey—EFFORT ESTIMATION IN COMPONENT BASED SOFTWARE DEVELOPMENT

Introduction:

This survey is being carried out to acquire the expert opinion, regarding the effort estimation in
Component Based Software Development (CBSD). The information gathered in this survey will
help in validation of the CBSD Effort Estimation model. We'd like to know participant’s
experience regarding effort estimation in CBSD. Privacy and confidentiality of the participant
will be respected and taken seriously. It would take about 30 minutes.

Guidelines for filling the Survey:
¢ Questions are categorized in CBSD lifecycle phases/activities.

¢ Question must be answered in context to their phase/activity, mentioned in the survey.
e There is no right or wrong answer. Just answer on the basis of experience.
¢ One question may have multiple answers.

e To answer, tick () the appropriate box.

If you have any questions or concerns, please feel free to contact:-
Jahanzaib Khan,

NUST College of E&ME, Rawalpindi.

+ 092 — 0314 — 2096 931 or JzebKhanzada@yahoo.com

Participants Information

Personal Information

Name:

Designation:

Qualification:

Experience(in years)

Contact No:

Organization Information

Organization Name

No. of Employees

Type(Public/Private)

40

Organization Age

S#

Questions

Effort Required

High Medium

Low

Phase

-1: Domain Engineering

What Effort would be required if Number Of Available Domain Appli

cations would be:

Many

Normal

Few

Phase

-Il: Requirement Analysis (Sub — Activity-I : Requirement Assessment)

2

What Effort would be required if number of Requirement Sources would be:

Single

Multiple

What Effort would be required if Organizational Diversity(functional,

hierarchical etc) would be:

High

Medium

Low

What Effort would be required if End-User Diversity would be:

High

Medium

Low

Phase

-Il: Requirement Analysis (Sub — Activity-Il : Requirement Specification)

What Effort would be required if System’s Number of Functional Req

uirements would be:

Too Many

Average

Too Few

What Effort would be required if System’s Number of Non- Function

al Requirement would be:

Too Many

Average

Too Few

What Effort would be required if System’s Number of Constraints would be:

Many

Average

Few

What Effort would be required if the System Requirements are:

Lucid(Clear)

Obscure(Un-Clear)

Phase

-lll: Component Analysis (Sub — Activity-1 : Component Identification)

9

What Effort would be required if System’s Number of Functional Req

uirement would be:

Too Many

Average

Too Few

10

What would be the Effort required if System’s Number of Non- Functional Requirement would be:

Too Many

Average

Too Few

Phase

-Ill: Component Analysis (Sub — Activity- Il : Component Specification)

11

What would be the Effort required if Number of Identified Compone

nts from requirements are:

Many

Average

41

Few

12

What Effort would be required if Number of Identified Interfaces of

identified components would be:

Many

Average

Few

13

What would be the Effort required if Number of Identified Members

hip Functions would be:

Many

Average

Few

14

What would be the Effort required if Identified Component’s Cohesion is:

Minimum

Maximum

Phase

-IV: Component Provision (Sub — Activity- | : Component Search)

15

What would be the Effort required if Size of the repository used for component searching is :

Large

Medium

Small

16

What would be the Effort required if Strategy used for the component search is :

Top-Down

Bottom-Up

Phase

-IV: Component Provision (Sub — Activity- Il : Component Select)

17

What would be the Effort required if Component’s number of Functional Requirement would be:

Too Many

Average

Too Few

18

What would be the Effort required if Component’s number of Non- F

unctional Requirement would be:

Too Many

Average

Too Few

19

What would be the Effort required if number of available domain ap

plications would be:

Many

Normal

Few

Phase

-IV: Component Provision (Sub — Activity- Ill : Component Acquire) (Optional)

20

What would be the Effort required if Training/Documentation provided by Component’s Supplier is::

Satisfactory

Unsatisfactory

21

What would be the Effort required if Product Extension Willingness

of Component Supplier is:

High

Moderate

Low

22

What would be the Effort required if Support of component’s Supplier is:

Available

Un-Available

Phase

-IV: Component Provision (Sub — Activity- IV : Component Tailoring)

23

What would be the Effort required if component’s number of parameter to be specified are:

High

Normal

Low

42

24

What would be the Effort required if number of scripts required for the components are:

High

Normal

Low

25

What would be the Effort required if required number of reports/GUI screen for the components are:

High

Normal

Low

26

What Effort would be required if number of security levels/user profiles needed for components are:

High

Normal

Low

Phase-1V: Component Provision (Sub — Activity- V : Unit Testing)

27

What would be the Effort required if Testing Methodology used for component’s unit testing is:

White Box

Grey Box

Black Box

28

What would be the Effort required if Success Criteria of the testing is:

Error_free

With Acceptable_Errors

Phase

-V: Architectural Engineering (Sub — Activity- | : Component Interaction)

29

What would be the Effort required if number of Components prepared in phase-IV are:

Many

Normal

Few

30

What would be the Effort required if architectural mismatch among

prepared components is :

High

Average

Low

31

What Effort would be required if Component’s number of interfaces

or membership functions a

re:

Many

Normal

Few

32

What would be the Effort required if Component’s Interface Complexity is :

High

Average

Low

33

What would be the Effort required if Coupling among components is :

Minimum

Maximum

Phase

-V: Architectural Engineering (Sub — Activity- Il : Application Design)

34

What would be the Effort required if Requirement Flexibility in the project is :

Allowed

Not Allowed

35

What would be the Effort required if Schedule Flexibility for the project is :

Allowed

Not Allowed

43

36 What would be the Effort required if Resource Availability for the project is :

Ample

Adequate

Scanty

Phase-VI: Integration (Sub — Activity- | : Adaptation)

37 What would be the Effort required if number of Function Points are :

Many

Normal

Few

38 What would be the Effort required if Components number of interfaces or membership functions are :

Many

Normal

Few

39 What would be the Effort required if number of architectural constraints of the component are :

Many

Normal

Few

Phase-VI: Integration (Sub — Activity- Il : Integration Testing)

40 What would be the Effort required if Testing Methodology used for integration testing is:

White Box

Grey Box

Black Box

41 What would be the Effort required if Success Criteria of integration testing is:

Error_free

With Acceptable_Errors

Phase-VIl: Deployment (Sub — Activity- | : Documentation / User Training)

42 What would be the Effort required if required User Manual/ Documentation is :

Concise

Comprehensive

43 What would be the Effort required if number of sites , the system to be deployed are:

Many

Average

Few

44 What would be the Effort required if targeted End-user is:

Technical

Non-Technical

Phase-VIIl: Maintenance (Sub — Activity- | : Substitution)

45 What would be the Effort required if number of components to be replaced are:

Much
Average
Few
Phase-VIII: Maintenance (Sub — Activity-I | :Evolution)
46 What would be the Effort required if size of change is are:
High
Medium

Low

Just

two questions phase specific.

Requirement Analysis

47

What would be the Effort required interest of End-User in requirement analysis phase is:

High

Medium

Low

Com

ponent Analysis

48

What would be the Effort required if Reuse Type considered is:

WhiteBox

GreyBox

BlackBox

Thanks for your time and sharing your opinion.

45

APPENDIX - B: Linguistic Variables

Effort
S# Effort Parameters Low | Medium | High
Domain Engineering
1. ‘ NOADA - No. of available Domain Applications Few ‘ Normal ‘ Many
Requirement Analysis
2.| NORS - No. of Requirement Sources Single Multiple
3. | OD - Organizational Diversity Low Medium High
4.| UD - User Diversity Low Medium High
5.| NOFR - No. of FRs Too Few Average Too Many
6. | NONFR - No. of NFRs Too Few Average Too Many
7.1 NOC - No. of Constraints Few Average Many
8. | RC - Requirement Clarity Lucid - Obscure
9.| LOEUI - Level of End-User Interest Willing - Un-Willing
Component Analysis
10. | NOFR - No. of FRs Too Few Average Too Many
11.| NONEFR - No. of NFRs Too Few Average Too Many
12. | NOIC - No. of Identified Components Few Average Many
13. | NOII - No. of Identified Interfaces Few Average Many
14. | NOIMF - No. of Identified Member functions Few Average Many
15. | COH - Cohesion Maximum - Minimum
16. | RT - Reuse Type Blackbox Greybox Whitebox
Component Provision
17.| RS - Repository Size Small Medium Large
18. | SS - Search Strategy Top Down - Bottom Up
19.| NOEFR - No. of FRs Too Few Average Too Many
20. | NONFR - No. of NFRs Too Few Average Too Many
21. | NOADA - No. of available domain applications Few Normal Many
22. gg;’l;ll)el;t;(i)oi?gl]lppher Provided Training and Satisfactory) Unsatisfactory
23. Qﬁiigésgag]s Supplier Product Extension High Moderate Low
24. | ACPPS - COTS Supplier Product Support [15] Available - Unavailable
25. | NOPTBS - No. of Parameters to be Specified [15] Low Normal High
26. | IGS - input/GUI screen [15] Low Normal High
27.| ORL - output report layout [15] Low Normal High
28. | SPS - security protocols set-up [15] Low Normal High
29.| TM - Testing Methodology Blackbox Greybox Whitebox
30. | SC - Success Criteria Acceptable) Error Free
Errors

46

31. ‘ NOIC - No. of Identified Components Few Average Many
Architectural Design
32.| NOCF - No. of Components Fashioned Few Normal Many
33.| CAM - Components Architectural mismatch Low Average High
34. Iljlgllcltxll(\)/;l: - No of Interfaces and Membership Few Normal Many
35.| IC - Interface Complexity Low Average High
36. | Cou —Coupling Minimum - Maximum
37.| RF - Requirements Flexibility Allowed - Not-Allowed
38. | SF - Schedule Flexibility Allowed - Not-Allowed
39.| RA - Resources Availability Ample Adequate Scanty
Integration
40. | FP - Function Points Few Normal Many
41. Iljlgllcltxll(\)/;l: - No of Interfaces and Membership Few Normal Many
42.| AC - Architectural Constraints Few Normal Many
43.| TM - Testing Methodology Blackbox Greybox Whitebox
44.| SC - Success criteria Acceptable
- Error Free
Errors
45. | NOCF - No. of Components Fashioned Few Average Many
Deployment
46. | NOSTBD - No of Sites to be Deployed Few Average Many
47.| TE - Targeted End-user Technical - Non-Technical
48. | UMDC - User Manual/ Documentation . .
. Concise - Comprehensive
Comprehensiveness
Maintenance
49.| NOCTBR - No. of Components to be replaced Few Average Medium
50.| SOC - Size of Change Low Medium High
Cross-Cutting Parameters
51.| OC - Organization Culture [25] Good So So Bad
52.| PM - Process Maturity[24] Mature - Immature
53.| LS - Leadership Skills[25] Adroit Intermediate Novice
54.| TC - Team Cohesion [24] High Medium Low
55.] SC - Stakeholder Cohesion High Medium Low
56.| TSK - Team Skills Adroit Intermediate Novice
57.| TE - Team Experience Vast Sufficient Beginner
58.| TSZ - Team Size Large Medium Small
59.| TC - Team Consistency Low Medium High
60. | PS - Project Size Large Medium Small
61. | PC - Project Complexity Much Average Less
62.| PP - Project Precedence [24] High Medium Low
63. | UOST - Use of Standard Tools Yes - No
64.| RW — Rework Extensive - Slight

47

APPENDIX - C: Specificity and Sensitivity Calculations

Phase QSCIZZEH Aénlz;gt?sgs Total Specificity Sensitivity
Domain Engineering
Right Answer 0 1 1
Wrong Answer 0 0 0 #DIV/0! 1
Total 0 1 1
Requirement Analysis
Right Answer 3 0 3
Wrong Answer 3 1 4 0.5 0
Total 6 1 7
Component Analysis
Right Answer 3 0 3
Wrong Answer 3 0 3 0.5 #DIV/0!
Total 6 0 6
Component Provision
Right Answer 8 0 8
Wrong Answer 4 2 6| 0.6666667 0
Total 12 2 14
Architectural Design
Right Answer 5 0 5
Wrong Answer 0 3 3 1 0
Total 5 3
Integration
Right Answer 2 0 2
Wrong Answer 2 1 3 0.5 0
Total 4 1 5
Deployment
Right Answer 3 0 3
Wrong Answer 0 0 1 #DIV/0!
Total 3 0 3
Maintenance
Right Answer 2 0 2
Wrong Answer 0 0 0 1 #DIV/0!
Total 2 0 2
Complete Lifecycle
Right Answer 26 12 38
Wrong Answer 1 7 8 | 0.9629629 | 0.631578947
Total 27 19 46

48

PQMM.

ix using

ion Matr

CPM Validat

APPENDIX -D

aav’

uonnjons sanbruyoay .
:EMBDQ couMSBE Te[rus 1o jurodyoayo nnanUM PaI101say !
N N ‘uonoddsur ‘Ma1Aa1 ON w MM@MM_OMM
HORMRSANS HOISIORQ | HORORINT Ie :cwmo wwmﬁwwwa pllep) ¢ ma<“ 910189
oN oN [IWUIS 10 JUIOA¥d9Y; arsoddl paloIsay '
‘Uonoddsur ‘MITAQI ON | UI POPIOOAY
1uawfodag UOISIOd(| uonoRIdNU] sanbruyoay [enuejA 19S)
o o Teqruars 10 jurods[ooyo UL DODIOAS PpaI0Isay :
N N ‘uonoadsur “Ma1Aa1 ON tpop gt
1531 uoneaboju] | UoISI™Q | UOnOBINU] Sunsoy alr pooIsoy _
ON ON : Ul papIoddy
JUAWNIO
HOUEIdRpY UOISIOd(| uondeIdU[sanbruyoay uor P
o : Teqruas 10 jurodooyo : PpaI0Isay !
ON ON o N yeyuswdduy
uonoadsur ‘ma1Aa1 ON w1 papIossy
ubisa@ UOISId(| UOmndRIAIU] MOTADI aav posoISey _
uoneoljddy ON ON Ul PopI0ody
sanbruyo9)
uolsusyaaduwo .
. .o._ c. UG 9 :EMB@Q couMSBE Teqrwis 10 jurodooyo w wohwoo PpaI0Isay !
IV 2 N N ‘uonoddsur ‘Ma1Aa1 ON t POp1009Y
So| Hu
1S9 1uN UoISId(| uonorIul Sunse) alL B _
ON ON : Ul popI0ody
Buriofre L UoISIoo(] | uonorIou] sanbru) SO
o o Teqruars 10 jurodsyooyo U DanI095 PpaI0Isay :
N N ‘uonoadsur “Ma1Aa1 ON tbop E!
auInboy UOISId(| UONIBINU] sanbuyod) SOY
acmcanoO .oZ ’ oN Te[ruis 1o jurodyoayo U1 popIoody paloisoy !
‘uor3oadsur ‘“MIIARI ON :
ol i UOISIOd UonoRIANU sanbugo3)
jusuodwo) on a .Ho Wl Teprwirs 10 jurodyooayo w mUMoo pa1031say !
N N ‘uonoadsur “ma1Aa1 ON tbop B!
Yo1€a3 UOISIOd(] | uonoRIdNU] sanbruyoay SOY
juauodwo) .oZ : ON Terwiis 10 jurodyosayo ur popIoosy pa10)say !
‘uonoadsur “Ma1Aa1 ON :
uoneoy19ads iAng uondeI] ST Nox: poIoISey _
jusuodwo) SA piing ON ul papI0oY
uolnreauspl UoISIa(| uonoeIu[sonbruyoo) popI0oay UOnRIOISIY
wauodwon oN oN Teqruas Jo jurodsyooyo JON oN '
‘uor3oadsur “MaIAI ON
uolyeoyoads G0N uonoRIAUY AOIAD SYUS poIOISOY _
1Uswalinbay 10 4SdD ON ur popIoday
JUBWISSASSY sanbruyo9)
UOISIOd(| uonoRIdNU] PapI03y UuonRINISTY
1Uswalinbay ON ON Jeprwirs 10 jurodyoayo JON oN \
‘uonoddsur ‘Ma1Aa1 ON
Burissuibuz UoISI3(| uonorISIU] sonbiuoo) Pop100ay UOTJBIO)SIY
urewoq ON ON Teqruas 10 jurodooyo 10N oN !
’ ‘uonoddsur ‘Ma1Ad1 ON
A
2 y 5 S 2|3
X =2 2 =] 5 o|S ©
[3) c @ © © >|C ®©
A = bt .% = S S5 S
£ 5 25 2 282§
o o ‘T > 5] o E|S T
O O < 14 o WL <

49

paynuap!

_ o3es() aremyyos nQQ<M alL _ Uuor)oRIAIU] 5q JouuEs sSurpuejsIopunsIwu poquaseq] sox
uonestjddy SOU'SUS ON 1oy mqsax | 2O SOHINOWIIP ON
ages) aIemijo uonoRINU poyhtopt s3urpueisiopunsiu
' 1 YOS . Qm_<) HoBIAL 9q j0ouuRd fpueisIopuns; paquosag SOA
uonestjddy ar'sdyd ON 1oy mqsax | O SCHINOWIIP ON
o3es) a1emijo enue UonoRIU 901mos s3urpueisiopunsIu
' N Yos ! W . HoBIM] Ble PIm fpueIsIopuns; paquosaq ON
uoneorjddy 180 ON HonoBION] ON 10 SQNNOLIIP ON
93es) aremyos UuonoBIANU] s3urpuejsiopunsiuu
' uoneonddy alL ' oN 1adojersq 10 SSAOLTID ON paquusag SOA
o3es() aremyyos juewnood uornoRIAIU] 901mos sSurpuejsIopunsIwu
_ uoneoddy Hone _ oN ered pm 10 sopnoggip oy | POHOSeA | SOA
AR jusurarduy UOT)OBISIU] ON : :
J3es) aremyos uonoBINU] 92.nos sSurpuejsiopunsiuu
' aav ' ’ Ble PIm : : paquosaq SOX
uoneorjddy ON UOTORIAN ON 10 SQN[NOLIIP ON
o3es() aremyos uonorINU] 901mos sSurpue)sIopunsIwu
' SOd ' ’ Ble ym . \ paquIdseg ON
uonesrjddy ON onoRINT] ON 1O SAMILIIP ON
o3es() aremyos UoT)oRIAIU] sSurpue)sIopunsIwu
' uoreonddy dl) ON 1odojans(g 10 SO ON paquosag SOA
93es) aremyos uondBINU] 92.nos sSurpuejsiopunsiuu
' SOY ' : Ble PIm : : paquosaq SOX
uoneorjddy ON UOTIORIAN ON 10 SQNNOLIIP ON
o3es) aremyos uonoRINU] 92Inos s3urpuejsiopunsiuu
' SO ' ’ ele(s . . paqLdsag ON
uoneorjddy ON woRIRISI] ON 10 SQN[NOLIIP ON
93es) aremyos uonoBINU] 921nos s3urpuejsiopunsiuu
' SOY ' : Ble PIm : : paquosaq SOX
uoneorjddy ON UOTIORIAN ON 10 SQN[NOLIIP ON
93es) aremyos uoroRIIU] s3urpuejsiopunsiuu
' woneonddy SOY ' oN 1adorarag 10 SOUNOLFIP ON paquosag | SOA
o3es) aremyos uonorINU] 92Inos s3urpuejsiopunsiuu
' SOY . : BlR PIIM : : paquusag SOA
uonedrddy ON UoRIRISI] ON 10 SONNOLJIP ON
JUSWNJ0(] uonoBIU[9o1mos sSurpuejsIopunsTuu
' agesn LI ON . : BlR PIIM : : paquusag ON
ON ON uonoRIAU] ON 10 SINNIYJIP ON
o3es) aremyos uonoRINU] 92Inos s3urpuejsiopunsiuu
' SUS . : BlR PIM : : paquusag SOA
uonedrddy ON UoRIRISI] ON 10 SONNOLJIP ON
JuUWNOO(] uonorINU] 901mos sSurpue)sIopunsIwu
' a8es) LI ON) : Ble(PIm : : paquosag ON
ON ON uonRIAN] ON 10 SaNNILYIP ON
JuWINOO(] UuoI)oRIAIU] sSurpuejsIopunsIwu
' a8es) L] ON oN , oN 1odxyg urewoq 10 SOLNOLFIP ON paquIvsaq ON
17 c = 2
= & L2 > 2 ° S |l ©
T G 2 b= & @ m — £ o= = o
55 & B £ 5 2 53 E3 85 g8
s a & T Q@ Q T > 3 S =25 g El X
et 5 §E3 gss s E3, 2833
S S 2
T O = Elow gk << D= nal£0

50

aav'al

‘SOASUSIO | o
fnpqeopupy | Y
a
av'alL'sdy | uonoemuy
Jo QATIORINY
Ajiqeopun
[enueN UoToRINU]
81130 o>.50§t
Ajiqeopun RV
dljo uonorINU]
Aniqeopun QATIORINY
juawndop uo
rreyuawordury uonorIUL
Jo QATIORINY
Aiqeopun
aav mo EOEON&D“CH
\ﬁ:_n_wO—uﬁD QAIdRINY
SOY Jo uonoerduy
Annqeopun QATIORINY
dlvLljo uonorIU[
Annqeopun QATIORINY
SOy Jo UoTnoRINU]
Aniqeopun QATORINY
SOy Jo uonorINU]
Aniqeopun QATORINY
SOy Jo UoToRINU]
Aniqeopun QATORINY
SOy Jo UoTnoRINU]
Annqeopun QANORINY
SOy Jo uonorINU]
Aniqeopun QATIORINY
0DI0%D uonorINU]
P vo d QATIRINY
10N oN
SYS Jo uonorINU]
Aniqeopun QATIORINY
DI099 uonoerduy
P @o d QATIORINY
10N ON
5PI093 uonoerduy
P @o d QATIORINY
10N oN
P
= S
=) =]
®© O ©
o o o
o] s Qo
c = ..m
) < E

51

APPENDIX - E: CPM Validation Calculations using PQMM.

Results | A B | Formula | Description [19]
) A = Number of decisions
Complexity 0.9 2 17 | X=1-A/B | B = Number of activities
) A = Number of interactions
Coupling 1.0 0 17 | X=1-A/B | B = Number of activities
- q A = Number of activities in which review, inspection, checkpoint or similar techniques are applied
Failure Avoidance 03| 5| 17| X=A/B_ | B=Numberof activities
- A = Number of activities which are recorded on paper or computerized environment

Restoration 08| 14| 17| X=A/B | B=Number of activities

Restoration A = Number of activities which can be restored

Effectiveness 0.8 14 17 X=A/B B = Number of total activities
A = Number of activities in which IT applications are used for preparation, deletion, updating or searching
purposes

IT Usage 0.8 14 17 | X=A/B | B =Number of activities
A = Number of forms, reports, archival records or similar other documents that are prepared, updated, deleted or

. searched by using IT applications

IT Density 1.0 6 6 X=A/B B = Number of forms, documents, archival records or similar other documents in the process
A = Number of activities in which no change is performed on the received data before using it (using the data as

Data o it has been transferred)

Exchangeability 0.0 0 0| X=A/B | B=Number of activities which have interactions with other processes

Access A = Number of activities which have access to the data and this access can be audited with its actor

Auditability 0.7 4 6| Xx=A/B | B=Number of activities which have accesses to the data sources

Functional A = Number of activities in which staff do not encounter difficulties in understanding the tasks to be performed,

Understandability 1.0| 17| 17| X=A/B | B =Numberofprocess activities

Existence in A = Number of activities which are described in the available documents,

Documents 1.0 17 17 X=A/B B = Number of activities

Input Validity A = Number of activities in which validity checking can be performed for input parameters

Checking 0.6 11 17 X=A/B B = Number of activities

.- A=Number of activities which can be undone,

Undoability 0.8 14 17| X=A/B | B= Number of total activities

Attractive A = Number of activities in which staff can prepare, delete or update forms, reports, archival records or similar

Interaction 0.8 14 17 X=A/B other documents with no difficulties

52

B = Number of total activities

53

