
EFFORT ESTIMATION OF COMPONENT BASED SOFTWARE

DEVELOPMENT (CBSD) LIFECYCLE USING FUZZY LOGIC

By

Jahanzaib Khan

2010-NUST-MS PhD-CSE (E)-08

Submitted to the Department of Computer Engineering

In partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Software Engineering

Advisor:
Dr. Aasia Khanum

College of Electrical & Mechanical Engineering
National University of Science and Technology

2013

II

DECLARATION

I hereby declare that I have developed this thesis entirely on the basis of personal efforts under

the auspices, sincere guidance and supervision of Dr. Aasia Khanum. All the sources used in this

thesis have been cited. No portion of the work presented in this thesis has been submitted in

support of any application for any other degree of qualification to this or any other university or

institute of learning.

Jahanzaib Khan

III

ACKNOWLEDGEMENTS

First of all thanks to Almighty Allah, The most Merciful and The most Beneficent. It was

impossible to complete this work without His help.

 Then, I would like to express my most sincere appreciation to my supervisor Dr. Aasia Khanum,

for his continuous support, intellectual guidance and critical remarks during the whole period of

this work. I also thank to all the committee members for their acceptance to become the members

of guidance and evaluation committee of this thesis and sparing their precious time for reviewing

the manuscript.

My special thanks are for the survey participants who spent their time and shared their views and

experience. I would like to thank to Mr. Aslam Jarwar for his assistance in Java, for

implementation of the CBSD effort Estimation Model.

I would like to thank to my family for their continuous patience, understanding and emotional

support during these years.

IV

ABSTRACT
In this era, no one denies the importance of software reuse because software systems are growing

and becoming complex with every passing day. Component Based Software Development

(CBSD) emerged as a software creation approach with the concept of reusability. In this

approach, Software Components which are common among different software applications are

reused rather than being written from scratch for every application. CBSD technique is of keen

interest to researchers and practitioners as they hold promise to support the timely and cost

effective development of large-scale complex systems. It is becoming imperative that effort

involved in CBSD may be accurately estimated to attain maximum benefits of the approach.

Effort estimation is one of the major tasks in software project management. The literature shows

several efforts estimation models of CBSD but each model does have their own pros and cons.

Furthermore, different effort estimation models primarily focuses on the efforts involved in

component’s integration activities. Moreover, all phases of CBSD lifecycle are unaddressed by

existing effort estimation models. Thus, the need to estimate effort involved in CBSD lifecycle is

an ongoing challenge.

In this research focus is on the effort estimation of CBSD lifecycle with the help of Fuzzy Logic

approach. For the purpose, it was necessary to have a comprehensive CBSD lifecycle model

which can be made the basis of effort estimation in CBSD. Thus, first in this study a Circular

Process Model (CPM) for CBSD lifecycle is proposed. CPM contains the strengths and

weaknesses of the existing CBSD lifecycle models with the focus on rejuvenation of one phase

in subsequent phases of the lifecycle. CPM is also validated using the Process Quality

Measurement Model (PQMM) [19] and by comparing with the existing CBSD lifecycle process

model of Hazleen Iris et al [13]. Then, effort estimation model for CBSD lifecycle is proposed

on the basis of CPM. The proposed effort estimation models is also implemented and validated

with the help of a case study. Fuzzy logic is used in the implementation as it is more appropriate

when the systems are not suitable for analysis by conventional approach or when the available

data is uncertain, inaccurate or vague.

V

Table of Contents

DECLARATION ... II

ACKNOWLEDGEMENTS .. III

ABSTRACT ... IV

List of Figures ... VIII

List of Table .. IX

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. Component Based Software Development ... 1

1.2. Significance of Effort Estimation ... 1

1.3. Problem Statement .. 2

1.4. Problem Decomposition .. 2

1.5. Proposed Models ... 2

1.5.1. CBSD Lifecycle Model ... 2

1.5.2. CBSD Lifecycle Effort Estimation Model .. 3

1.6. Thesis Outline ... 3

CHAPTER 2 ... 5

LITERATURE REVIEW ... 5

2.1 Literature related to CBSD Lifecycle Model .. 5

2.1.1. EPIC, Cecilia Albert et al .. 5

2.1.2. Qureshi and Hussain ... 5

2.1.3. Sommerville .. 5

2.1.4. W Model, Kung-Kiu Lau et al .. 5

2.1.5. Jason H. Sharp et al ... 7

2.1.6. Classification Model, Gerald Kotonya et al .. 7

2.1.7. M. Morisio et al ... 7

2.1.8. Component-Based Software Development Process, EhsanKouroshfar et al. 7

2.1.9. MyCL Process Model, Hazleen Iris et al .. 7

2.1.10. AnasBassam AL-Badareen et al ... 8

2.1.11. Knot Model, Rajender Singh Chhillar et al ... 8

VI

2.1.12. Umbrella Model, Anurag Dixit et al ... 8

2.1.13. Y Model, Luiz Fernando Capretz ... 8

2.1.14. V Model, IvicaCrnkovic et al. ... 8

2.1.15. Elite Model, LataNautiyal et al. .. 9

2.1.16. X Model, Gill N. S. et al ... 9

2.2. Literature related to CBSD Effort Estimation Model. .. 9

2.2.1. SAIC Model .. 9

2.2.2. Stutuzke’s Model .. 9

2.2.3. Ellis’s Model ... 10

2.2.4. Aoyama’s Model ... 10

2.2.5. ABB Model ... 10

2.2.6. COCOTS Model ... 10

CHAPTER 3 : PROPOSED MODELS .. 12

3.1 Proposed Lifecycle Model .. 12

3.1.1. Domain Engineering ... 13

3.1.2. Requirement Analysis ... 13

3.1.3. Component Analysis ... 14

3.1.4. Component Assurance .. 14

3.1.5. Architectural Design ... 14

3.1.6. Component Integration ... 15

3.1.7. Deployment ... 15

3.1.8. Maintenance .. 15

3.2. Proposed Effort Estimation Model ... 17

3.2.1. Effort Parameters .. 18

3.2.2. Use of Fuzzy Logic ... 20

3.2.3. Application Development ... 26

CHAPTER 4 ... 28

VALIDATION .. 28

4.1 Validation of the Proposed Lifecycle Model .. 28

4.1.1. By Comparing with Existing Process Model .. 28

4.1.2. Using Process Quality Measurement Model (PQMM) ... 29

4.2. Validation of the Proposed CBSD Lifecycle Effort Estimation Model 31

4.2.1. Conducting a Survey/ Case Study ... 31

VII

4.2.2. By Measuring Specificity and Sensitivity ... 33

CHAPTER 5 ... 35

CONCLUSION AND FUTURE WORK ... 35

5.1. Conclusion .. 35

5.2. Future Work ... 36

Reference .. 37

APPENDIX – A: Survey ... 40

APPENDIX – B: Linguistic Variables ... 46

APPENDIX – C: Specificity and Sensitivity Calculations ... 48

APPENDIX – D: CPM Validation Matrix using PQMM. .. 49

APPENDIX – E: CPM Validation Calculations using PQMM. .. 52

VIII

List of Figures
Figure 1 : Idealized Circular Process Model ... 12
Figure 2 : Proposed Circular Process Model .. 13
Figure 3 : Timeline of Phases in CPM .. 15
Figure 4 : Chart of Membership Function for Testing Methodology Effort Parameter 23
Figure 5 : Chart of Membership Function for Success Criteria Effort Parameter 24
Figure 6 : Chart of Membership Function for Effort .. 24
Figure 7 : Front-end of the application ... 27
Figure 8 : PQMM Chart for CPM .. 29
Figure 9 : Lifecycle Activities Accuracy Graph of Industrial Survey .. 32
Figure 10 : Lifecycle Phases Accuracy Graph of Industrial Survey ... 33
Figure 11 : Specificity and Sensitivity Graphs ... 34
Figure 12 : Membership Function for Effort Parameters with Three Linguistic Terms Error! Bookmark
not defined.
Figure 13 : Membership Function for Effort Parameters with Two Linguistic Terms Error! Bookmark not
defined.

IX

List of Table
Table 1 : Strengths and Weaknesses of CBSD Process Models ... 7
Table 2 : Comparison of Existing CBSD Effort Estimation Models .. 11
Table 3: Proposed Circular Process Model (CPM) Phases ... 17
Table 4 : Identified Effort Parameters ... 19
Table 5 : Function Block (Sample of Unit Testing Activity of Components Provision Phase) 21
Table 6 : PQMM [19] Quality Attributes Values for CPM ... 30
Table 7: Activity-wise Accuracy Results of Industrial Survey ... 31
Table 8 : Phase-wise Accuracy Results of Industrial Survey ... 32
Table 9 : Specificity and Sensitivity Results .. 34

X

1

CHAPTER 1

 INTRODUCTION

1.1. Component Based Software Development

Traditionally, software products are built from the scratch, which requires tedious effort,

ample resources and plenty of time. As a result, products arrive late into market. This

approach works fine when the software products are small and simple. Today, software

products have become very large and complex which demands innovation in software

development field too. Accordingly, Component Based Software Development (CBSD)

emerged with the concept of software reuse and it is gaining high importance day by day

among software development organizations.

Software developers believe that many identical component(s) may be found or required by

the different software systems. Component Based Software Development (CBSD)

emphasizes the reuse of those identical components by avoiding the development again and

again from the scratch for every new system. CBSD offers several advantages over

traditional software development approaches; including flexibility in development, fast time-

to-market, better quality of software, parallel development and cheaper cost of the product.

1.2. Significance of Effort Estimation

Effort is the that specific time period, which consumed working on a project

 from its inception to completion.

In addition, Effort Estimation is the process of measuring or assessing the effort required for

the project. Effort Estimation is the most difficult and important activity in project

management. Without good effort estimate, it is almost impossible to devise an effective

planning for the software project.

Not only this, a proper effort estimation method is a requirement for Software Project

Planning Key Processing Area of CMM level 2. “Good estimation methods are available for

projects” is the requirement of “Integrated Software Management” Key Process Areas of

2

CMM level 3. Use of past estimation data for future projects is the requirement for

“Quantitative Process Management” KPA of CMM level 4.

1.3. Problem Statement

Effort estimation is an important job in management of a project. Not only this, effort

estimates are the input of every economic decision of the project carried out by the project

manager. Thus, accurate estimation of effort is very crucial for the successful completion of

project. If improper or unrealistic estimates were made the basis of a project then either

project will be challenged in one of the three aspects i.e. time, schedule and scope or it will

leads to failure.

By keeping in view the importance of effort estimation it is necessary that a comprehensive

rule based model is developed which estimates lifecycle effort in CBSD at acceptable

accuracy level.

1.4. Problem Decomposition

To devise an effective solution, problem statement is decomposed in following tasks:

• To develop an Enhanced CBSD Lifecycle Model.

• To Enhance Effort Parameters.

• Preparation of a Rule Based Model that incorporates approximate/uncertain input

parameters with high accuracy.

• Implementation of Model.

• Testing and validation

1.5. Proposed Models

1.5.1. CBSD Lifecycle Model

CBSD not only differs from traditional software development approaches in terms of

advantages and disadvantages, but also with respect to its lifecycle process. Lifecycle

process is the course of activities that produces a new product, and continues through its

maintenance. Software lifecycle is a vague concept [8] and in the case of CBSD there is

3

no universally agreed upon lifecycle process that can be carried out. Several attempts

have been made to define an effective process model for CBSD, and all the proposed

approaches have their own tradeoffs. Even the IEEE Std. 1517 [20] which deals with

software reuse process does not enforce single lifecycle to follow, rather it just tells a

minimum set of requirements a software lifecycle must have.

In general however, rejuvenation of one phase of the process in subsequent phases, which

is inevitable in CBSD, still needs to be addressed. In this study, we proposed a Circular

Process Model (CPM) for CBSD lifecycle whose main focus is to incorporate the

rejuvenation of one lifecycle phase in later phases of the lifecycle. Efforts were also made

for the validation the proposed CBSD CPM Lifecycle using the PQMM [19] and by

comparing with existing CBSD lifecycle process model of Hazleen Iris et al [13].

1.5.2. CBSD Lifecycle Effort Estimation Model

An estimation model defines precisely which values are needed & how these values can

be used to compute the effort. Component Based Software development effort estimation

requires integration activities to also be considered as opposed to traditional software

development which focuses only on development activities. Literature shows that several

efforts have been made to estimate the CBSD process effort [23], which are discussed in

chapter-2. Despite, no attempt is made towards the effort estimation of complete lifecycle

of CBSD. [23].

In this study we also proposed a complete lifecycle effort estimation model for CBSD

using Fuzzy Logic. This model is developed with enriched effort parameter/ effort drivers

for each activity/phase of the proposed Circular Process Model (CPM) of CBSD

lifecycle. The effort parameters are fuzzified using Fuzzy Logic. Comprehensive fuzzy

rule base is prepared to produce a crisp effort value of the lifecycle. The application for

the proposed effort estimation is prepared in Java Language. Fuzzy Logic is implemented

using Fuzzy Control Language [22].

1.6. Thesis Outline

The rest of the thesis is structured as follows. Chapter 2 presents a literature review for CBSD

lifecycle Process Models and CBSD Effort Estimation Models. Initially, CBSD and its well

known lifecycle Process Models with their strength and weaknesses are discussed. Secondly, the

4

efforts carried out by different researchers in estimating the CBSD effort are discussed. At last,

the need for Effort Estimation model of complete lifecycle of CBSD is discussed.

Chapter 3 discussed the proposed models and their implementation. Both models i.e. proposed

Lifecycle Circular Process Model (CPM) of CBSD and proposed effort estimation model of

CBSD, are discussed separately in detail. Activities/Phases of proposed CPM are discussed with

their execution timeline in the process. Output and rejuvenation of each phase also shown with

the help of figures and tables. For effort estimation model of CBSD, identified effort parameters

with their fuzzy membership functions are explained. Rule formation of Fuzzy Rule Base also

highlighted. Categorization of effort parameters in each activity of proposed CPM is also shown.

Chapter 4 includes validation of the both proposed models. CPM lifecycle process model is

validated in two ways: First, by comparing with existing lifecycle process model of Hazleen et

al[13]. Second, using Process Quality Measurement Model (PQMM) [19]. Proposed Effort

Estimation Model is also validated in two ways: First, by a survey research conducted to refine

and validate the model. It describes a brief justification for the research method and details about

case study design with research questions, data collection and analysis methods.

Chapter 5 gives a short summary of the study and emphasizes the contributions of the model. It

further states limitations of the model such as needs of additional quality attribute definitions and

deficiencies of some present quality attributes. The propositions for overcoming the limitations

and the development of a tool for making the measurement easier are given as future study.

5

CHAPTER 2

 LITERATURE REVIEW

2.1 Literature related to CBSD Lifecycle Model

Despite CBSD novelty in comparison to traditional software development approach, lot of

work has been done on the process of CBSD. Brief description of literature reviewed is given

below:

2.1.1. EPIC, Cecilia Albert et al

Evolutionary Process for Integrating COTS-Based Systems (EPIC) approach is adapted

from Rational Unified Process (RUP) [9]. It rewrites managerial, engineering and

acquisition activities to control COTS market in better way [1]. It is a risk-based spiral

approach whose phases are same as those of RUP.

2.1.2. Qureshi and Hussain

Process model of Qureshi and Hussain [2] is inclined towards Object Oriented Software

development lifecycle. Component Repository is the main contribution of this model but

there are no guidelines regarding the addition of components in the repository.

Furthermore, when components will be added in the repository is also unclear.

2.1.3. Sommerville

Sommerville proposed sequential lifecycle process model [3], [9] in which components

are searched before design; and then modification of requirements will be carried out. In

this fashion, design and requirements are based on the components in hand.

2.1.4. W Model, Kung-Kiu Lau et al

Kung-Kiu Lau et al propose W-Model [12] which is mainly focused on Verification and

Validation Software Development. They argue that V&V is necessary in both lifecycles

6

i.e. Component development lifecycle and Component Based in Component

Development and Component Based Software Development Lifecycle. In this model

repository and maintenance phases are not included.

Model Name/ Authors Strengths/Main Focus Weaknesses

EPIC, Cecilia Albert et
al.[1]

• Risk-based
• Disciplined
• Spiral-engineering
• Facilitate organizations to make and

maintain COTS solutions

• Across the life of a large or complex
project, many solutions– often
overlapping–are created and retired in
response to new technology, new
components, and new operational needs.

Qureshi and Hussain[2] • Central Repository • Not revealed when and how components
will be added into repository

Sommerville[3] • Component Searching before design
• Reusability

• Phases like Domain Engineering and
Maintenance are missing

W Model, Kung-Kiu Lau
et al [12]

• Verification and Validation for both
lifecycles i.e. Component lifecycle and
CBSD lifecycle.

• Maintenance and Deployment phases are
missing.

• Repository Missing

Jason H. Sharp et al[18]
• Dual Life cycle Model
• Design Science based recommendations
• Reusability

• Maintenance and Deployment phases are
missing.

• Repository Missing

Classification Model,
Gerald Kotonya et al[4]

• CBSEnet Knowledgebase.
• Management
• Short term and long term objectives

• Only Short term objectives are focused.

M. Morisio et al [14] • Vendor involvement throughout lifecycle
• Bi-directional information flow.

• Covers only development (i.e. No
maintenance).

• Unit Testing in reduced activities
Component-Based
Software Development
Process(CBSDP),
EhsanKouroshfar et al[17]

• Comprehensive stages and task process
patterns

• Generic
• Not all stage process patterns are

mandatory.

MyCL Process Model,
Hazleen Iris et al[13] • Simplicity • No unit testing

• Several included processes not described

AnasBassam AL-Badareen
et al [16]

• Reusability
• Central Repository
• Empirical Validation
• Systematic Framework
• Discuss Dual Lifecycle

• Maintenance discussed separately and not
in development-with-reuse lifecycle.

• Only deals with in-house development

Knot Model, Rajender
Singh Chhillar et al [5]

• Reusability[5]
• Easy Planning [5]
• Requirements clear [5]
• No complexity of software applications[5]
• Reduces risk and development time[5]
• Reduces cost[5]
• Applicable on larger & complex systems[5]

• Selecting a right component is difficult[5]
• Reservoir may be huge or difficult to

manage[5]

Umbrella Model, Anurag
Dixit et al[8] • Verification or Testing • Costly and time consuming due to testing or

verification in each phase

Y Model, Luiz Fernando
Capretz [7]

• Reusability[5]
• Solving by analogy[5]
• Follows both top down and bottom up

approach[5]

• Iteration and overlapping during process[5]
• Does not define a component model

V Model, IvicaCrnkovic et
al[10]

• Verification and Validation
• Supports Unit Test and System Test.
• Central Repository

• No Domain Engineering
• No System Deployment.

7

Elite Model, LataNautiyal
et al [11]

• Reusability
• Testing or Verification

• Unit Testing is missing
• Design/Architecture Phase is missing

X Model, Gill N. S. et al
[6]

• Reusability[5]
• Clear requirements[5]
• Suitable for large systems[5]

• Increases complexity[5]
• No risk analysis[5]
• Increase cost[5]

Table 1 : Strengths and Weaknesses of CBSD Process Models

2.1.5. Jason H. Sharp et al

Jason H. Sharp et al [18] proposed lifecycle model with design science based

recommendations. They discussed phases of component development and system

development separately. They did not include the domain analysis phase in system

development lifecycle.

2.1.6. Classification Model, Gerald Kotonya et al

Gerald Kotonya et al proposed Classification lifecycle Model for CBSD [4], [2] whose

center of attention is CBSEnet knowledge Base. In this model both short and long term

objectives are discussed but it addresses only short term objectives.

2.1.7. M. Morisio et al

M. Morisio et al [14] proposed COTS lifecycle model in which emphasis is put on the

involvement of vendor throughout the lifecycle. In this study new activities and roles are

identified related to vendor. Limitations of the model are that it only focuses on

development phase. Maintenance phase is also missing.

2.1.8. Component-Based Software Development Process, EhsanKouroshfar et al.

Ehsan Kouroshfar et al [17] proposed Component Basedd Software Development Process

(CBSDP). It is a generic process derived by reviewing seven CBSD based methodologies

like FORM, RUP and CORBA etc. One limitation in the process is that all the activities

are not mandatory due to its generic nature; thus, difficult to implement.

2.1.9. MyCL Process Model, Hazleen Iris et al

MyCL Process Model was proposed by Hazleen Iris et al [13]. It is an attempt to make

the lifecycle process very simple, but in doing so several phases or process have lost

necessary detail. Furthermore, requirements and architecture become fixed before

component selection. Unit testing is also eliminated in this model.

8

2.1.10. AnasBassam AL-Badareen et al

AnasBassam Al-Badareen et al [16] in their research focused on reusability and proposed

two lifecycle processes i.e. build-for-reuse and build- by-reuse. They discuss in detail the

transfer of build-for-reuse process to build-by-reuse process. Central repository is also

focused in this study. This model treats maintenance process separately, which should be

part of the lifecycle. One limitation is that this model only deals in-house development.

2.1.11. Knot Model, Rajender Singh Chhillar et al

Knot Model [5] was proposed by Rajender Singh Chhillar et al. In each phase of this

model risk analysis and feedback is focused which ultimately improves the quality of the

system. Reusability and estimation is also used in each phase to reduce the cost. In

addition, the developed Component Based Software System (CBSS) is also present in

pool for utilization. Limitations of this model are huge repository size and difficulty in

selecting the right component.

2.1.12. Umbrella Model, Anurag Dixit et al

Umbrella Model [8] was proposed by Anurag Dixit et al. This model mainly revolves

around testing or verification. Authors argue that testing or verification must be included

as an ongoing process throughout lifecycle. In this model testing or verification phase

overlaps and repeats in every phase.

2.1.13. Y Model, Luiz Fernando Capretz

Y Model [7] was proposed by Luiz Fernando Capretz. This model supports iteration and

overlapping, if required. Furthermore, it permits both top-down and bottom-up approach

of software development. However, definition of component model is overlooked by this

model.

2.1.14. V Model, IvicaCrnkovic et al.

V Model for CBSD [10] was proposed by Ivica Crnkovic et al. This model is an

adaptation of V Model which is widely used in the industry for traditional software

developments. This model also focuses on verification and validation. However, steps

like Domain Engineering and system deployment are missing.

9

2.1.15. Elite Model, LataNautiyal et al.

Elite Model [11] proposed by Lata Nautiyal et al. also mainly concentrate on testing or

verification as continuous activities. During development and maintenance, this model

promotes software reusability.

2.1.16. X Model, Gill N. S. et al

X Model [6, 11, 5] is proposed by Gill N. S. et al. Focus of this model is also software

reusability. This model is best for large software developments it is quite complex and

has overlapping activities. This model ignores feedback and risk analysis.

2.2. Literature related to CBSD Effort Estimation Model.

Literature shows that despite CBSD approach novelty several effort estimation models have

been proposed. A great work has been conducted regarding the consolidation of literature on

CBSD Effort Estimation models in [23]. In this work effort models are divided into three

categories on the basis of their modeling techniques. Following effort estimation models are

discussed in [23].

2.2.1. SAIC Model

It is developed in the early 1990s at the Science Applications International Corporation

(SAIC), California [23, 26]. Focus of this model is the end-user cost of adopting a

particular component into a larger system.

Estimated Cost = Licensing Cost × No. of Required License + Training Cost + Glue

Code Cost

The weakness of this model is that it does not consider the component searching and

selecting efforts. Some of the important cost factors covered by SAIC model are licensing

and training costs. This model also not provides details of determining the effort of glue

code development [23, 27].

2.2.2. Stutuzke’s Model

This model concentrates on the volatility cost which is one of the major factors in cost of

using software component [23, 27, 28]. The rate of component’s version release by its

vendor is called component volatility.

10

 EAC = Component Volatility × Architectural Coupling × Interface Size (Cost of

Screening + Change Cost). This model only focuses on volatility and ignores other

important cost drivers. Furthermore, this model has not been implemented [23,29].

2.2.3. Ellis’s Model

This model mainly focuses on component integration phase and used 17 cost drivers to

calculate effort. This model is implemented and calibrated but calibrated data set is not

publically available.

2.2.4. Aoyama’s Model

This model is based on some suppositions. For example, Aoyama completely neglects

unit testing and consider effort of CBSD system testing tantamount to traditional software

development system testing. However, in reality CBSD testing demands extra effort and

time than traditional software testing demands [23, 30, 31]. Similarly, Unit testing may

simply not be neglected in CBSD.

2.2.5. ABB Model

This model is based on GQM (goal-question-metrics) approach. This model may be used

to decide that whether or not the CBSD approach followed because it provides the

economic analysis of CBSD [23].

2.2.6. COCOTS Model

It is the most inclusive effort estimation model of CBSD. It is modeled as an extension of

COCOMO-II. This model is basically divided in three steps: First it calculates the

assessment effort, then tailoring effort and finally integration effort. All three are

combined to calculate the total effort involved. The focus of this model is the integration

activities. This model is based on two things: the source code of the COTS is not

available to developer and the future evolution of the COTS is not under the control of

develop [23].

11

Model Name Focus Point Weak Points
SIAC Model End-user cost of adopting

Licensing and training
costs

• Does not consider the component searching
and selecting efforts

• Do not provide details of determining the
effort of glue code development[27]

Stutzke’s Model Volatility Cost • Ignores other important cost drivers
• Not been implemented.[29]

Ellis’s Model -Component integration
phase and 17 cost drivers

• Calibrated data set is not publically available

Aoyama’s Model Economic model • Neglects unit testing
ABB Model Economic model -Ignores other important cost drivers
COCOTS Integration activities -Ignores other important cost drivers.

Table 2 : Comparison of Existing CBSD Effort Estimation Models

12

CHAPTER 3 : PROPOSED MODELS

3.1 Proposed Lifecycle Model

The CPM model is derived by embracing the strengths of the reviewed process models and

eliminating their weaknesses. The main focus of this model is to address the rejuvenation of

earlier phase(s) during the execution of subsequent phase(s), which is certain in CBSD. CPM

comprises eight phases which are further divided into seventeen activities as shown in Table

3.

In an idealized CBSD process one phase follows another, as shown in Figure 1. Phases start

from Domain Engineering and continue till Maintenance, in clockwise direction. In Idealized

CBSD process no phase repeat itself as all phases execute sequentially. But this is the case

which one can only dream of. For instance, what happens when required components are not

available in Component Assurance phase? Does the development team not change the

requirement(s)? If this is the case then we are admitting that requirement analysis step will

be revisit after component assurance. This is mainly focused in our proposed CPM.

Figure 1 : Idealized Circular Process Model

13

In CPM, as shown in Figure 2, phases are represented with circles. The inner most circle

represents the Domain Engineering phase and the outer most represents the maintenance

phase. Phases in the proposed model are executed in clockwise direction from Domain

Engineering to Maintenance. Outermost circle in each phase represents the currently

executing phase while inner circles in a phase express that they may re-occur during the

executing phase.

Figure 2 : Proposed Circular Process Model

3.1.1. Domain Engineering

In Domain Engineering identical areas across different applications in a domain are

recognized as having common understanding on the basis of application domain analysis

[7]. Domain Engineering is the also an important phase of IEEE Std. 1517 which

specifies cross project processes. Cross project processes facilitate software reuse in

CBSD.

At the end of this phase expert judgment is required for the decision that whether the

specified requirements can be accomplished using CBSD approach? If not then it would

be wise to adapt traditional approach. It is fact that this decision is very daunting and only

an expert may decide it.

3.1.2. Requirement Analysis

In Requirement Analysis, software requirements are first elicited and then specified. The

final outcome of this phase is requirement specification document. This phase is not one-

14

time activity, especially in CBSD where it may untill the successful completion of the

component assurance phase (See Figure 2).

3.1.3. Component Analysis

Component Analysis phase encompasses the process of identification of components

from the specified requirements and then specification of the identified components. In

this phase, requirement specification document is reviewed for component identification

and specification. Outcome of this phase is requisites component specification document.

At the end of this phase another decision is required and another test of expert’s abilities

is demanded. Here, expert decided on the basis of his experience and identified

components whether component development from scratch is better or use of COTS

would be beneficial? This decision is necessary because if we plunge directly into the

next phase, .i.e. Component Assurance, then it would be very difficult to meet the

schedule. It is so because Component Assurance is a time consuming activity and if

Components are unavailable then all the exercise of this phase will be futile.

3.1.4. Component Assurance

This phase is an important and distinct phase of CBSD lifecycle. It is distinct because

major activities of this phase are not the part of traditional software development

approach. In this phase requisite components are searched from the repository. If one

fails in finding the requisite component then Requirement Analysis phase is re-executed

that in turn re-calls Component Analysis phase. This phenomenon is shown in Figure 2

and Figure 3. Component assurance phase continues till all required components become

available. At the end of this phase, the development team has all the requisite

components in hand.

3.1.5. Architectural Design

At this stage, final requirements and requisite components are in developers’ hands so it

is the right time to design architecture of the application. In this phase, component

interactions are analyzed to shape the software architecture. Output of this phase is

System Architecture description.

15

3.1.6. Component Integration

In Component Integration phase components are integrated one by one into the system.

After integration of each component, system is tested to ensure the smooth functioning.

To accomplish the task of component integration new code is required, which works as

interface between the component and the system under development. This new code is

called Glue Code [15].

3.1.7. Deployment

Deployment is the process of transferring the system to the customer in a fashion that

customer feels comfortable with the product; and may be able to enjoy the maximum

benefits from it. To ensure successful deployment, training and documentation must be a

provided to customer [7].

3.1.8. Maintenance

Maintenance is a system support activity which ensures smooth running of the system

and increases product’s lifetime. As far as CBSD is concerned, maintenance may be

required because of two reasons. First, change in requirement and second, component up-

gradation. Change in requirements is also very common cause of maintenance in

traditional software but maintenance due to component up-gradation is specific to

Component Based Software Systems. It may occur due to the availability of new version

of the utilized components in market which need to be replaced.

Figure 3 : Timeline of Phases in CPM

16

Phases Activities Description Output
Domain
Engineering

Domain Engineering It is a process which provides understanding
regarding the application domain and help in taking
the decision of following CBSD or Traditional
approach.

Common
Processes of
Application
Domain

17

Table 3: Proposed Circular Process Model (CPM) Phases

3.2. Proposed Effort Estimation Model

A software estimation model defines precisely which values are needed & how these values

can be used to compute the effort. In the proposed CBSD lifecycle Effort Estimation model

we used proposed CBSD Lifecycle Circular Process Model (CPM). This model has 17

1st Decision: CBSD or Traditional

Requirement
Analysis

Requirement
Assessment

It is a comprehensive activity which deals with
finalization of requirements with consultation of
end-user and domain experts, and refinement of
requirements for specification.

System
Requirements
Specification
(SRS)
Document Requirement

Specification
It is the process of preparing requirement
specification document from the requirements
finalized in requirement assessment activity.

Component
Analysis

Component
Identification

It deals with determining required components, by
analyzing the requirement specification document.

Requisite
Components
Specification
Document

Component
Specification

In this identified components are completely
specified (i.e. interfaces, member functions etc.) to
have clear idea of needed components

2nd Decision: Build Vs. Buy

Component
Assurance

Component
Searching

Needed components are searched first in
organization’s internal repository then from external
vendor’s repository (if not found in internal
repository).

Requisite
Components
(COTS)

Component
Selection

Best components are selected from the components
found (if more than one) in search activity.

Component
Acquisition

Process of acquiring selected components from the
vendor, if not present in organization’s internal
repository.

Tailoring To set component for apply irrespective of
integrated system [15].

Unit Test Ensure component functioning in isolation after
component tailoring.

Architectural
Design

Component
Architectural
Comprehension

Each component’s architecture is realized in detail
to ensure best possible architecture.

System
Architecture

Application Design System Architecture is finalized on the basis of
available components.

Integration

Component
Adaptation

Each component is adapted for integration into the
system by writing glue code.

Component
Based Software
System(CBSS) Integration Test Ensure that system works well after integration of

each component.

Deployment

Deployment Kit
Preparation

User manual, training guide or other relevant
material is prepared to ensure user understandability
of the product alongwith preparation of executable
copy of the product.

User Manual,
Training Guide

Maintenance Substitution Required if new version of COTS is available. Component
Based Software
System(CBSS)

Evolution Required when new/change requirements are
demanded.

18

activities and 08 phases. Effort parameters/drivers are identified for each activity from

Domain Engineering to Maintenance. Bottom-up approach of effort estimation is used.

Effort for each activity is estimated on the bases of identified effort parameters using Fuzzy

Logic. Then, combined effort of all activities is calculated to obtain the Lifecycle effort.

It is pertinent to mention here that crisp value is achieved for all activities and total lifecycle

effort. Unit of effort may have different meanings for different organizations. For example,

an ‘ideal hour’ for an organization may be the time spent on development activities while for

other organizations it may be the time of development activities plus other parallel activities

like meetings, presentations, internet surfing etc related to project. Let’s discuss the

implementation of the proposed model in detail.

3.2.1. Effort Parameters
Effort Parameters / Effort drivers are those factors which are related with any aspect of

the project and affect the Effort in any respect, till project completion.

These effort parameters are actually the basic units which help in estimating the effort.

Different effort estimation models have utilized different number of effort parameters for

their effort estimation. For example, COCOMO-II has 17 effort/cost drivers with five

scale factors [24]. Similarly, COCOTS, an extension of COCOMO-II model, [15] have

different number of effort parameters.

In this study, 64 effort parameters are used, which are categorized under activities, phases

and lifecycle. Out of these 64 effort parameters, 07 parameters are taken from COCOTS

model [15], 03 parameters are taken from scale factors of COCOMO-II [15], 02

Parameters are taken from [25]. COCOTS parameters are used under the activities of

Component Acquiring and Component Tailoring. Complete list of Effort parameters

under activities/phases is shown in table 4.

19

Table 4 : Identified Effort Parameters

CPM
Phases

CPM
Activities

Effort Parameters
Activity Level Phase Level Lifecycle Level

Domain
Engineering

Domain
Engineering

NOADA - No. of available Domain
Applications

• OC-
Organization
Culture [25]

• PM-Process
Maturity[24]

• LS-

Leadership
Skills[25]

• TC- Team
Cohesion [24]

• SC-

Stakeholder
Cohesion

• TSK- Team

Skills

• TE- Team
Experience

• TSZ- Team
Size

• TC- Team
Consistency

• PS-Project
Size

• PC-Project
Complexity

• PP-Project
Precedence
[24]

• UOST-Use of
Standard
Tools

• RW- Rework

Requirement
Analysis

Assess

NORS - No. of Requirement Sources LOEUI-
Level of
End-User
Interest

OD - Organizational Diversity
UD - User Diversity

Specify

NOFR - No. of FRs
NONFR - No. of NFRs
NOC - No. of Constraints
RC - Requirement Clarity

Component
Analysis

Identification

NOFR - No. of FRs RT –
Reuse Type NONFR - No. of NFRs

Specification

NOIC - No. of Identified Components
NOII - No. of Identified Interfaces
NOIMF - No. of Identified Member
functions
COH - Cohesion

Component
Provision

Search

RS - Repository Size NOIC-
No of
Identified
Components

SS - Search Strategy
Select

NOFR - No. of FRs
NONFR - No. of NFRs
NOADA - No. of available domain
applications

Acquire

ACPTD - COTS Supplier Provided
Training and Documentation[15]
ACSEW - COTS Supplier Product
Extension Willingness[15]
ACPPS - COTS Supplier Product
Support[15]

Tailoring

NOPTBS - No. of Parameters to be
Specified[15]
IGS - Input/GUI screen[15]
ORL - Output report layout[15]
SPS - Security protocols set-up[15]

Unit Test

TM - Testing Methodology
SC - Success Criteria

Architectura
l Design

Component
Interaction

NOCF - No. of Components Fashioned

CAM - Components Architectural
mismatch
NOIAMF - No of Interfaces and
Membership Functions
IC - Interface Complexity
Cou –Coupling

Application RF - Requirements Flexibility

20

Design SF - Schedule Flexibility

RA - Resources Availability

Integration Adaptation

FP - Function Points
NOIAMF - No of Interfaces and
Membership Functions
AC - Architectural Constraints

Integration
Testing

TM - Testing Methodology
 SC - Success criteria
Deployment Document. /

User Training

NOSTBD - No of Sites to be Deployed
TE - Targeted End-user
UMDC - User Manual/ Documentation
Comprehensiveness

Maintenance Substitution NOCTBR - No. of Components to be
substitute.

Evolution SOC - Size of Change

3.2.2. Use of Fuzzy Logic
For the implementation of the effort estimation we used Fuzzy Logic because it is based

on intuition and judgment and does not require any mathematical model. Furthermore,

Fuzzy Logic provides smooth transition between members and nonmembers. Fuzzy

Logic is also comparatively simple, fast and adaptive. Moreover, it is less sensitive to

system fluctuation.

In implementing the proposed model we used and open source Fuzzy Logic Library

jFuzzyLogic 2.1. It uses Fuzzy Control Language (FCL). The theory of Fuzzy Logic in

the application of control is named Fuzzy Control. The Fuzzy Control is emerging as a

technology that can enhance the capabilities of industrial automation. [22]. Fuzzy Control

Language FCL is defined by IEC 1331 part 7 [21].

3.2.2.1. Function Blocks
A Function Block is a FCL program which is used to keep the Fuzzy Control Logic.

Function Block specifies I/O parameters, declarations and fuzzy rule base. Function

Blocks defined in Fuzzy Control Language FCL can be used in Programs and

Function Blocks written in any of the languages [22].

In this study, for implementing the model we define a Function Block for each

activity of the proposed CPM lifecycle model. Function Block for the Unit Testing

activity of Component Provision phase is shown below:

21

Table 5 : Function Block (Sample of Unit Testing Activity of Components Provision Phase)

FUNCTION_BLOCK componentProvisionUnitTesting

VAR_INPUT
 tm : REAL; // Effort Parameter Testing Methodology.
 sc: REAL; // Effort Parameter Success Criteria
 noic : REAL; // Effort Parameter No. of Identified Components.
END_VAR

VAR_OUTPUT
 effort : REAL; // Estimated Effort Variable
END_VAR

FUZZIFY tm
 TERM whitebox := (0, 1) (4, 0) ;
 TERM glassbox := (1, 0) (4,1) (6,1) (9,0);
 TERM blackbox := (6, 0) (9, 1);
END_FUZZIFY

FUZZIFY sc
 TERM acceptableerrors := (0, 1) (1, 1) (3,0) ;
 TERM errorfree := (7,0) (9,1);
END_FUZZIFY

FUZZIFY noic
 TERM few := (0, 1) (4, 0) ;
 TERM average := (1, 0) (4,1) (6,1) (9,0);
 TERM many := (6, 0) (9, 1);
END_FUZZIFY

DEFUZZIFY effort
 TERM low := (0,0) (5,1) (10,0);
 TERM medium := (10,0) (15,1) (20,0);
 TERM high := (20,0) (25,1) (30,0);
 METHOD : COG;
 DEFAULT := 0;
END_DEFUZZIFY

RULEBLOCK No1
 AND : MIN;
 ACT : MIN;
 ACCU : MAX;

RULE 1 :
IF tm IS whitebox AND sc IS acceptableerrors AND noic IS few THEN
effort IS medium;
RULE 2 :
IF tm IS whitebox AND sc IS acceptableerrors AND noic IS average THEN
effort IS medium;
RULE 3 :
IF tm IS whitebox AND sc IS acceptableerrors AND noic IS many THEN
effort IS high;
RULE 4 :

22

IF tm IS whitebox AND sc IS errorfree AND noic IS few THEN effort IS
high;
RULE 5 :
IF tm IS whitebox AND sc IS errorfree AND noic IS average THEN effort
IS high;
RULE 6 :
IF tm IS whitebox AND sc IS errorfree AND noic IS many THEN effort IS
high;
RULE 7 :
IF tm IS glassbox AND sc IS acceptableerrors AND noic IS few THEN
effort IS low;
RULE 8 :
IF tm IS glassbox AND sc IS acceptableerrors AND noic IS average THEN
effort IS medium;
RULE 9 :
IF tm IS glassbox AND sc IS acceptableerrors AND noic IS many THEN
effort IS medium;
RULE 10 :
IF tm IS glassbox AND sc IS errorfree AND noic IS few THEN effort IS
medium;
RULE 11 :
IF tm IS glassbox AND sc IS errorfree AND noic IS average THEN effort
IS medium;
RULE 12 :
IF tm IS glassbox AND sc IS errorfree AND noic IS many THEN effort IS
high;
RULE 13 :
IF tm IS blackbox AND sc IS acceptableerrors AND noic IS few THEN
effort IS low;
RULE 14 :
IF tm IS blackbox AND sc IS acceptableerrors AND noic IS average THEN
effort IS low;
RULE 15 :
IF tm IS blackbox AND sc IS acceptableerrors AND noic IS many THEN
effort IS medium;
RULE 16 :
IF tm IS blackbox AND sc IS errorfree AND noic IS few THEN effort IS
medium;
RULE 17 :
IF tm IS blackbox AND sc IS errorfree AND noic IS average THEN effort
IS medium;
RULE 18 :
IF tm IS blackbox AND sc IS errorfree AND noic IS many THEN effort IS
high;
END_RULEBLOCK
END_FUNCTION_BLOCK

• Definition of the FUNCTION BLOCK

FUNCTION_BLOCK componentProvisionUnitTesting

• Definition of Input and output variables (only REAL is implemented yet in FCL)

VAR_INPUT
 tm : REAL; // Effort Parameter Testing Methodology.
 sc: REAL; // Effort Parameter Success Criteria

23

 noic : REAL; // Effort Parameter No. of Identified Components.
END_VAR

VAR_OUTPUT
 effort : REAL; // Estimated Effort Variable
END_VAR

• Fuzzification of input variables. Each input variable is defined in FUZZIFY block. In

each block Linguistic Terms of that input variable is defines along with membership

function. Each term is composed by a name and a membership function. E.g.:

FUZZIFY tm
 TERM whitebox := (0, 1) (4, 0) ;
 TERM glassbox := (1, 0) (4,1) (6,1) (9,0);
 TERM blackbox := (6, 0) (9, 1);
END_FUZZIFY

Three linguistic terms are used to define the Testing Methodology(tm) input variable. For

instance term whitebox uses a piece-wise linear membership function defined by points

x_0 = 0, y_0 = 1 and x_1 = 4, y_1 = 0. Same membership functions are chosen for No. of

Identified Components (noic) input variable

Figure 4 : Chart of Membership Function for Testing Methodology Effort Parameter

Similarly, Success Criteria variable fuzzify block is define:

FUZZIFY sc
 TERM acceptableerrors := (0, 1) (1, 1) (3,0) ;
 TERM errorfree := (7,0) (9,1);
END_FUZZIFY

24

Figure 5 : Chart of Membership Function for Success Criteria Effort Parameter

• Defuzzification of output variable. Output variable are defined in DEFUZZIFY block.

We have only one output variable in the proposed model that is Effort. Defuzzification is

show below:

DEFUZZIFY effort
 TERM low := (0,0) (5,1) (10,0);
 TERM medium := (10,0) (15,1) (20,0);
 TERM high := (20,0) (25,1) (30,0);
 METHOD : COG;
 DEFAULT := 0;
END_DEFUZZIFY

Figure 6 : Chart of Membership Function for Effort

25

Parameters METHOD in DEFUZZIFY block denotes defuzzification method. In the

proposed model ‘Center of gravity’ is opted for defuzzification and set DEFAULT value

to ‘0’ if no rule executes:

METHOD : COG;

DEFAULT := 0;

• Define Rules using a RULEBLOCK. First some parameters are defined. For the proposed

model minimum is used for AND. Used Activation (ACT) method is also minimum

while used Accumulation (ACCU) method is maximum :

RULEBLOCK No1

AND : MIN;

ACT : MIN;

ACCU : MAX;

Then following 18 rules are defined in this RULEBLOCK. The Cartesian product of

input variable’s membership function in each activity is adapted, to prepare rules, for

maximum coverage of inputs and better estimation.

RULE 1 :
IF tm IS whitebox AND sc IS acceptableerrors AND noic IS few THEN
effort IS medium;
RULE 2 :
IF tm IS whitebox AND sc IS acceptableerrors AND noic IS average THEN
effort IS medium;
RULE 3 :
IF tm IS whitebox AND sc IS acceptableerrors AND noic IS many THEN
effort IS high;
RULE 4 :
IF tm IS whitebox AND sc IS errorfree AND noic IS few THEN effort IS
high;
RULE 5 :
IF tm IS whitebox AND sc IS errorfree AND noic IS average THEN effort
IS high;
RULE 6 :
IF tm IS whitebox AND sc IS errorfree AND noic IS many THEN effort IS
high;
RULE 7 :
IF tm IS glassbox AND sc IS acceptableerrors AND noic IS few THEN
effort IS low;
RULE 8 :
IF tm IS glassbox AND sc IS acceptableerrors AND noic IS average THEN
effort IS medium;
RULE 9 :

26

IF tm IS glassbox AND sc IS acceptableerrors AND noic IS many THEN
effort IS medium;
RULE 10 :
IF tm IS glassbox AND sc IS errorfree AND noic IS few THEN effort IS
medium;
RULE 11 :
IF tm IS glassbox AND sc IS errorfree AND noic IS average THEN effort
IS medium;
RULE 12 :
IF tm IS glassbox AND sc IS errorfree AND noic IS many THEN effort IS
high;
RULE 13 :
IF tm IS blackbox AND sc IS acceptableerrors AND noic IS few THEN
effort IS low;
RULE 14 :
IF tm IS blackbox AND sc IS acceptableerrors AND noic IS average THEN
effort IS low;
RULE 15 :
IF tm IS blackbox AND sc IS acceptableerrors AND noic IS many THEN
effort IS medium;
RULE 16 :
IF tm IS blackbox AND sc IS errorfree AND noic IS few THEN effort IS
medium;
RULE 17 :
IF tm IS blackbox AND sc IS errorfree AND noic IS average THEN effort
IS medium;
RULE 18 :
IF tm IS blackbox AND sc IS errorfree AND noic IS many THEN effort IS
high;
END_RULEBLOCK

3.2.3. Application Development

As discussed in previous section that for Fuzzy Logic implementation Fuzzy Control

Language is used. Similarly, for the development of application front-end Java language

is used. The IDE used for the application development is Eclipse Helios.

27

Figure 7 : Front-end of the application

In application each lifecycle activity is shown separately with its specific effort

parameters as input variables. Slider Control is used to adjust the inputs. Separated

Estimated effort graph are also shown for each activity. For example, in Domain

Engineering Phase only one effort parameter ‘No. of Available Domain Applications’ is

identified.

28

CHAPTER 4

VALIDATION

4.1 Validation of the Proposed Lifecycle Model

4.1.1. By Comparing with Existing Process Model

Without comparison it is difficult to say that one thing is better than the other. We chose

a state-of-art model, the MyCL Process Model [13] for comparison as this model is also

based on integrating the strengths and removing the weaknesses of the existing models.

In MyCL Process Model requirements are finalized at Requirement Analysis phase, as in

Waterfall Model, and in component development phase, components are adapted or

engineered to comply with requirements. There is no recourse to requirement analysis

phase if the requisite component did not found. Only provided thing is developing

component from scratch which is not the essence of CBSD. This is not the case in the

proposed circular lifecycle model. In circular lifecycle model you can build new

component, or you can modify your requirements, as desired.

Architectural Design phase is placed before Component Selection phase, which does not

suits CBSD because when you don’t have selected component in hands how you can

have a frozen architecture? Second there is also no recourse to architectural design phase

if the components assumed in architecture did not satisfy the architecture. This problem is

resolved by circular model in which architectural design phase is placed after component

Assurance phase.

Again, in MyCL process Unit test is removed from the lifecycle by stating “removing

unit testing from the development lifecycle. This removal is obvious, as the system is no

longer built from scratch, but from composed components.”[13] In Circular Lifecycle

29

Model Unit test is included because component tailoring is required which is to set the

component to be used irrespective of the integrating system [15]. Thus, unit test is

necessary.

Figure 8 : PQMM Chart for CPM

4.1.2. Using Process Quality Measurement Model (PQMM)

We have validated the proposed circular lifecycle model using Process Quality

Measurement Model (PQMM) of Guceglioglu et al [19]. The PQMM provides a set of

quality metrics that can be used to evaluate static quality of a software development

process. Each of these metrics lies in value between 0 and 1. We have used a subset of

these metrics for process evaluation, using only those metrics that were relevant to the

process and could be calculated from the process definitions. Table3 shows the metrics

(with definitions re-phrased or adapted from [19]).

It can be seen that only failure avoidance attribute of the process requires improvement.

Overall validation, however, shows that the model efficiently fulfills PQMM

characteristics, implying that the model is very much maintainable, reliable, functional

and usable. Model assessment according to PQMM is illustrated in Figure 8.

30

Table 6 : PQMM [19] Quality Attributes Values for CPM1

Quality
Characteristic

s

Quality Sub-
Attribute

Metric Explanation

Value
Maintainability

Analyzability Complexity Obtained by subtracting the normalized
number of decision points in the process from
1, such that higher the obtained value, lesser
the complexity and thereby better the
analyzability. 0.9

Coupling Examines interactions between process flow
and other organizational processes. Obtained
by subtracting the number of interactions from
1 so that higher the obtained value, lesser the
complexity and thereby better the
analyzability. 1.0

Reliability Fault
Tolerance

Failure
Avoidance

Here term failure means user-based mistakes
which can be avoided using techniques like
reviews, inspections and checkpoints 0.3

Recoverability Restoration Activities restoration is required when an
abnormal event occurs. It investigates
activities and their status of recorded and
unrecorded.
 0.8

Restoration
Effectiveness

It examines efficiency of restoring recorded
activities. 0.8

Functionality IT Based
Functionality

IT Usage Use of IT applications in the process activities
is examined. 0.8

IT Density It is the ratio between documents in which IT
applications are used with the total no of
documents in the process. 1.0

Interoperabilit
y

Data
Exchange
ability

This investigates the usage of data received
from the interacted process.

No
Interact

ion
Security Access

Auditability

This attributes identify the person who have
access to data source for audit purpose.

0.7
Usability Understandabi

lity
Functional
Understanda
bility

In this level of staff’s understanding of
process activities is assessed.

1.0
Learnability Existence in

Document
This attributes checks the presence of process
activities in documents. 1.0

Operability Input
Validity
Checking

It is the examination of implementation of
input parameter checking in process activities

0.6
Undoability In this undoability of the recorded process

activities is examined after they are
completed. 0.8

Attractiveness Attractive
Interaction

Utilization of prepared documents in the
process activities is examined. 0.8

31

4.2. Validation of the Proposed CBSD Lifecycle Effort Estimation Model

4.2.1. Conducting a Survey/ Case Study

The proposed CBSD Lifecycle Effort Estimation Model is validated by conducting an

industrial survey (Attached at Appendix-A). Survey is designed on the basis of Effort

Parameters/Drivers used in the proposed model. Around 48 questions were asked by the

participants. Questions were arranged in CPM lifecycle phases and activities.

Participants were asked to answer on the basis of their experience.

Twelve (12) participants from different organizations (public and private sectors)

participated in the survey. The answers provided by the experts are then analyzed and

combined percentage of accurate answer is calculated which is shown in following table:

Table 7: Activity-wise Accuracy Results of Industrial Survey

Activities Accuracy %
Domain Engineering 85.83
Assess 80.56
Specify 87.50
Identification 86.67
Specification 81.04
Search 77.50
Select 80.28
Acquire 86.11
Tailoring 88.13
Unit Test 84.58
Component Interaction 83.33
Application Design 88.89
Adaptation 83.33
Integration Testing 76.25
Documentation / Training 90.28
Substitution 91.67
Evolution 91.67

Survey results analysis shows that the proposed model have the average accuracy

between 80% - 90%. On the basis of these results we may say that the proposed model is

able to estimate the effort with 80% - 90% accuracy. Better results can be achieved by

repeatedly using the model during the project lifecycle because as we proceed into the

project more accurate estimate is available.

32

Figure 9 : Lifecycle Activities Accuracy Graph of Industrial Survey

It revealed while conducting survey that some questions asked in survey might not be

interpreted as author desires by the participants; otherwise results may be more accurate.

It was likely because the author was not present with participants to attain the purposeful

results.

Table 8 : Phase-wise Accuracy Results of Industrial Survey

Phase Accuracy %
Domain Engineering 85.83
Requirement Analysis 84.52
Component Analysis 82.92
Component Provision 83.99
Architectural Design 85.42
Integration 80.50
Deployment 90.28
Maintenance 91.67

For instance, Question No. 1: what effort (low, medium, high) would be required if No.

of available domain applications would be (many, normal, few)? Some experts may

consider that ‘No. of available domain applications’ effort parameters is in-directly

proportional to Effort because if many domain applications are available then availability

of the component will be high thus effort required will be very low.

33

On the other hand, some experts may be of the view that ‘No. of available domain

application’ effort parameter is directly proportional to the effort because if many domain

applications are available then effort required in Domain Engineering phase would be

high. Author modeled, second view in the proposed model because the question was

asked specific to the Domain Engineering Phase/activity.

Figure 10 : Lifecycle Phases Accuracy Graph of Industrial Survey

4.2.2. By Measuring Specificity and Sensitivity

Measurement of the survey answer is subject to random variation. Because when same

question answered multiple times by multiple participants the answer may vary. This

variation might be due to variation in the question understanding or in the participants.

Therefore, it is necessary to measure the surveys answers as precisely as possible in order

to validate the proposed effort estimation model. Random variation is indirectly

proportion to the precision of the measurement. It means that if random variation

decreases then precision of the measurement will increase. Thus, Specificity and

Sensitivity measurement is used to decrease the variation in survey answers.

34

Table 9 : Specificity and Sensitivity Results

Phase Specificity Sensitivity
Domain Engineering #DIV/0! 1
Requirement Analysis 0.5 0
Component Analysis 0.5 #DIV/0!
Component Provision 0.6666667 0
Architectural Design 1 0
Integration 0.5 0
Deployment 1 #DIV/0!
Maintenance 1 #DIV/0!
Complete Lifecycle 0.962963 0.6315789

Specificity and Sensitivity was measured by analyzing the right/wrong answers and

clear/ambiguous questions. Here right/wrong answers means the accuracy of answers of

the survey participants, while clear/ ambiguous means the question which may be

interpreted as clear or ambiguous by the participants. Example of Clear/ambiguous

question is given in section 2.4.1.

Detail Calculation of the Specificity and Sensitivity is shown in Appendix- C while

results and result graph are shown in Table 9 and Figure 11, respectively.

Figure 11 : Specificity and Sensitivity Graphs

35

CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter comprises of two sections: the first section discusses the concluding notes of the

presented work while the second section discusses the recommendations for future work.

5.1. Conclusion
Effort Estimation is considered a very crucial and difficult activity of the Project Management.

Poor estimates may lead to project failure or undesirable results. Like traditional software

development approach, Effort Estimation for Component Based Software Development is also a

challenging activity. Literature reviewed in thesis shows that focus of the researcher in the field

of CBSD effort estimation remained towards integration centric activities, while other phase(s)

of lifecycle remained unaddressed.

The work presented in this thesis is the first step towards estimating complete lifecycle effort of

Component Based Software Development. For the purpose, Fuzzy Logic approach is used. It was

ensured that each aspect of CBSD lifecycle must be covered thus Circular Lifecycle Process

Model of CBSD is proposed. This model is also validated to ensure that accurate estimates can

be achieved. For each activity of the proposed Circular Process Model, effort parameters were

identified. These effort parameters are the factors which directly or indirectly affect the effort.

Each effort parameters is fuzzified using membership function. An enriched Fuzzy rule base

was prepared to provide maximum input coverage and precise estimation. This effort estimation

model is also validated by conducting an industrial survey and then by measuring specificity and

sensitivity of the survey results.

In this thesis following objectives were achieved:

- A comprehensive CBSD lifecycle process model is proposed.

- The CPM model is validated using Process Quality Measurement Model (PQMM)

[19] and by comparing with process model of Hazleen Aris et al [13].

36

- A complete lifecycle effort estimation model for CBSD is also proposed which is

a first step towards estimating CBSD lifecycle effort.

- Proposed Estimation model is also validated by conducting a industrial survey.

5.2. Future Work

Avenues towards perfection remains always open. Following are a few suggestions to extend or

improve this work:

- Proposed CBSD Life-Cycle Effort Estimation model presently has 64 effort

parameters which may be enriched to achieve more specific results.

- This model is formulated using Fuzzy Logic; which can be optimized for more

accurate results.

37

REFERENCES

[1] Cecilia Albert and Lisa Brownsword, Evolutionary Process for Integrating COTS-Based

Systems (EPIC): An overview, Technical Report CMU/SEI-2002-TR-009 ESC-TR-2002-

009, July, 2002.

[2] K. Kaur and H. Singh. Candidate process models for component based software

development. Journal of Software Engineering, 4(1):16–29, 2010.

[3] Ian Sommervilee, Software Engineering, 7th Edition, Pearson Education.

[4] G. Kotonya, I. Sommerville, and S. Hall. Towards a classification model for component-

based software engineering research. In Proc. 29th EUROMICRO Conference, pages 43–52.

IEEE Computer Society, 2003.

[5] Rajender Singh Chhillar, ParveenKajla, A New Knot Model for Component Based Software

Development, International Journal of Computer Science Issues Vol: 8 Issue: 3 Pp.: 480-484,

2011.

[6] Gill N. S. and Tomar P., “X Model: A New Component- Based Model”, MR International

Journal of Engineering and Technology, Vol. 1, No. 1 & 2, pp. 1-9, , 2008

[7] Luiz Fernando Capretz, " Y: A new Component-Based Software Life Cycle Model ",

Journals of Computer Science1 (1) : pp.76-82, 2005.

[8] Anurag Dixit and P.C. Sexna, "Umbrella: A new Component- Based Software Development

Model", International Conference on Computer Engineering and Applications IPCSIT,

Singapore, vol.2, 2011.

[9] Kuljit Kaur et al, "Towards a suitable and systematic approach for Component Based

Software Engineering", World Academy of Science, Engineering and Technology, 27, 2007.

[10] Ivica Crnkovic, component Based Development Process and Component Life Cycle, 27th

International Conference on I.T Interfaces, IEEE, Caretat, Croatia, 2005

[11] Lata Nautiyal et al, "Elite: A New Component-Based Software Development Model", Int. J.

Computer Technology & Applications, Vol 3 (1), 119-124, JAN-FEB, 2012.

[12] Kung-Kiu Lau et al, “The W Model for Component-based Software Development”,

EUROMICRO-SEAA 2011: 47-50.

38

[13] Hazleen Aris and Siti Salwah Salim, “The Development of a Simplified Process Model for

CBSD”, The International Arab Journal of Information Technology, Vol. 4, No. 2, April

2007.

[14] M. Morisio et al, ”COTS-based software development: Processes and open issues” The

Journal of Systems and Software 61, 189–199, 2002.

[15] Chris Abts, M.S. et al, “COCOTS: A COTS Software Integration Lifecycle Cost Model -

Model Overview and Preliminary Data Collection Findings”, USC Center for Software

Engineering, 2000.

[16] AnasBassam AL-Badareen,et al, “Reusable Software Component Life Cycle”, International

Journal of Computers, Issue 2, Volume 5, 2011.

[17] Ehsan Kouroshfar et al, “Process Patterns for Component-Based Software Development”,

G.A. Lewis, I. Poernomo, and C. Hofmeister (Eds.): CBSE 2009, LNCS 5582, pp. 54–68,

2009.

[18] Jason H. Sharp and Sherry D. Ryan, “Component-Based Software Development: Life Cycles

and Design Science-Based Recommendations”, Proc CONISAR, v2 (Washington DC), 2009

[19] A.Selcuk Guceglioglu et al, “The Application of a New Process Quality Measurement Model

for Software Process Improvement Initiatives ", IEEE 11th International Conference on

Quality Software, 2011.

[20] IEEE 1517, Standard for Information Technology—Software Life Cycle Processes—Reuse

Processes, IEEE, Piscataway, N.J., 1999.

[21] http:// www.sourceforge.net.

[22] International Electro-technical Commission (IEC), Technical Committee No. 65: Industrial

Process Measurement and Control, Sub-Committee 65 B: Devices, IEC 1131 –

Programmable Controllers, Part 7 - Fuzzy Control Programming, Committee Draft CD 1.0

(Rel. 19 Jan 97)

[23] T. Wijayasiriwardhane, R. Lai, K.C. Kang, “Effort estimation of component-based software

development – a survey”, The Institution of Engineering and Technology, IET Software,

2011, Vol. 5, Iss. 2, pp. 216–228

[24] T.N.Sharma, “Analysis of Software Cost Estimation using COCOMO II”, International

Journal of Scientific & Engineering Research Volume 2, Issue 6, ISSN 2229-551, June-2011.

[25] Khaled Hamdan et al, “The Influence of Culture and Leadership on Cost Estimation”, UAE

University, Al Ain, UAE and University of Sunderland, Sunderland, UK.

[26] Karpowich, M., Sanders, T., Verge, R.: ‘An economic analysis model for determining the

custom versus commercial software tradeoffs,’ in Gulledge, T.R., Hutzler, W.P. (Eds):

39

‘Analytical methods in software engineering economics’, (Springer-Verlag, 1993), pp. 237–

252.

[27] Abts, C., Boehm, B.W.: ‘COTS software integration cost modeling study’ (Centre for

Systems and Software Engineering, University of Southern California),

http://sunset.usc.edu/csse/TECHRPTS/1998/usccse98-520/usccse98-520.pdf, accessed

August 2008

[28] Abts, C., Boehm, B.W., Clark, E.B.: ‘COCOTS: a COTS software integration lifecycle cost

model – model overview and preliminary data collection findings’. Proc. 11th European

Software Control and Metrics Conf. and Third Software Certification Programme in Europe,

(ESCOM – SCOPE 2000), Munich, Germany, 2000, pp. 325–333

[29] Abts, C.: ‘Extending the COCOMO II software cost model to estimate effort and schedule for

software systems using commercial-off-theshelf (COTS) software components: the COCOTS

model’. PhD thesis, University of Southern California, 2004

[30] Minkiewicz, A.F.: ‘Are software COTS solutions an affordable alternative’. Proc. Aerospace

Conf., Piscataway, NJ, March 2004, pp. 4073–4082

[31] Mahmood, S., Lai, R., Kim, Y.S., Kim, J.H., Park, S.C., Oh, H.S.: ‘A survey of component

based system quality assurance and assessment’, Inf. Softw. Technol., 2005, 47, (10), pp.

693–707.

40

APPENDIX – A: Survey

Survey–EFFORT ESTIMATION IN COMPONENT BASED SOFTWARE DEVELOPMENT

Introduction:

This survey is being carried out to acquire the expert opinion, regarding the effort estimation in

Component Based Software Development (CBSD). The information gathered in this survey will

help in validation of the CBSD Effort Estimation model. We'd like to know participant’s

experience regarding effort estimation in CBSD. Privacy and confidentiality of the participant

will be respected and taken seriously. It would take about 30 minutes.

Guidelines for filling the Survey:
• Questions are categorized in CBSD lifecycle phases/activities.

• Question must be answered in context to their phase/activity, mentioned in the survey.

• There is no right or wrong answer. Just answer on the basis of experience.

• One question may have multiple answers.

• To answer, tick (√) the appropriate box.

If you have any questions or concerns, please feel free to contact:-
Jahanzaib Khan,
NUST College of E&ME, Rawalpindi.
+ 092 – 0314 – 2096 931 or JzebKhanzada@yahoo.com
__

Participants Information

Personal Information
Name:
Designation:
Qualification:
Experience(in years)
Contact No:

Organization Information
Organization Name
No. of Employees
Type(Public/Private)

41

Organization Age

 S# Questions Effort Required
High Medium Low

Phase‐I: Domain Engineering
1 What Effort would be required if Number Of Available Domain Applications would be:

Many
Normal

Few
Phase‐II: Requirement Analysis (Sub – Activity‐I : Requirement Assessment)
2 What Effort would be required if number of Requirement Sources would be:

Single
Multiple

3 What Effort would be required if Organizational Diversity(functional, hierarchical etc) would be:
High

Medium
Low

4 What Effort would be required if End‐User Diversity would be:
High

Medium
Low

Phase‐II: Requirement Analysis (Sub – Activity‐II : Requirement Specification)
5 What Effort would be required if System’s Number of Functional Requirements would be:

Too Many
Average
Too Few

6 What Effort would be required if System’s Number of Non‐ Functional Requirement would be:
Too Many
Average
Too Few

7 What Effort would be required if System’s Number of Constraints would be:
Many

Average
Few

8 What Effort would be required if the System Requirements are:
Lucid(Clear)

Obscure(Un‐Clear)
Phase‐III: Component Analysis (Sub – Activity‐I : Component Identification)
9 What Effort would be required if System’s Number of Functional Requirement would be:

Too Many
Average
Too Few

10 What would be the Effort required if System’s Number of Non‐ Functional Requirement would be:
Too Many
Average
Too Few

Phase‐III: Component Analysis (Sub – Activity‐ II : Component Specification)
11 What would be the Effort required if Number of Identified Components from requirements are:

Many
Average

42

Few
12 What Effort would be required if Number of Identified Interfaces of identified components would be:

Many
Average

Few
13 What would be the Effort required if Number of Identified Membership Functions would be:

Many
Average

Few
14 What would be the Effort required if Identified Component’s Cohesion is:

Minimum
Maximum

Phase‐IV: Component Provision (Sub – Activity‐ I : Component Search)
15 What would be the Effort required if Size of the repository used for component searching is :

Large
Medium

Small
16 What would be the Effort required if Strategy used for the component search is :

Top‐Down
Bottom‐Up

Phase‐IV: Component Provision (Sub – Activity‐ II : Component Select)
17 What would be the Effort required if Component’s number of Functional Requirement would be:

Too Many
Average
Too Few

18 What would be the Effort required if Component’s number of Non‐ Functional Requirement would be:
Too Many
Average
Too Few

19 What would be the Effort required if number of available domain applications would be:
Many

Normal
Few

Phase‐IV: Component Provision (Sub – Activity‐ III : Component Acquire) (Optional)
20 What would be the Effort required if Training/Documentation provided by Component’s Supplier is::

Satisfactory
Unsatisfactory

21 What would be the Effort required if Product Extension Willingness of Component Supplier is:
High

Moderate
Low

22 What would be the Effort required if Support of component’s Supplier is:
Available

Un‐Available
Phase‐IV: Component Provision (Sub – Activity‐ IV : Component Tailoring)
23 What would be the Effort required if component’s number of parameter to be specified are:

High
Normal

Low

43

24 What would be the Effort required if number of scripts required for the components are:
High

Normal
Low

25 What would be the Effort required if required number of reports/GUI screen for the components are:
High

Normal
Low

26 What Effort would be required if number of security levels/user profiles needed for components are:
High

Normal
Low

Phase‐IV: Component Provision (Sub – Activity‐ V : Unit Testing)
27 What would be the Effort required if Testing Methodology used for component’s unit testing is:

White Box
Grey Box
Black Box

28 What would be the Effort required if Success Criteria of the testing is:
Error_free

With Acceptable_Errors

Phase‐V: Architectural Engineering (Sub – Activity‐ I : Component Interaction)
29 What would be the Effort required if number of Components prepared in phase‐IV are:

Many
Normal

Few
30 What would be the Effort required if architectural mismatch among prepared components is :

High
Average

Low
31 What Effort would be required if Component’s number of interfaces or membership functions are :

Many
Normal

Few
32 What would be the Effort required if Component’s Interface Complexity is :

High
Average

Low
33 What would be the Effort required if Coupling among components is :

Minimum
Maximum

Phase‐V: Architectural Engineering (Sub – Activity‐ II : Application Design)
34 What would be the Effort required if Requirement Flexibility in the project is :

Allowed
Not Allowed

35 What would be the Effort required if Schedule Flexibility for the project is :
Allowed

Not Allowed

44

36 What would be the Effort required if Resource Availability for the project is :
Ample

Adequate
Scanty

Phase‐VI: Integration (Sub – Activity‐ I : Adaptation)
37 What would be the Effort required if number of Function Points are :

Many
Normal

Few
38 What would be the Effort required if Components number of interfaces or membership functions are :

Many
Normal

Few
39 What would be the Effort required if number of architectural constraints of the component are :

Many
Normal

Few
Phase‐VI: Integration (Sub – Activity‐ II : Integration Testing)
40 What would be the Effort required if Testing Methodology used for integration testing is:

White Box
Grey Box
Black Box

41 What would be the Effort required if Success Criteria of integration testing is:
Error_free

With Acceptable_Errors
Phase‐VII: Deployment (Sub – Activity‐ I : Documentation / User Training)
42 What would be the Effort required if required User Manual/ Documentation is :

Concise
Comprehensive

43 What would be the Effort required if number of sites , the system to be deployed are:
Many

Average
Few

44 What would be the Effort required if targeted End‐user is:
Technical

Non‐Technical
Phase‐VIII: Maintenance (Sub – Activity‐ I : Substitution)
45 What would be the Effort required if number of components to be replaced are:

Much
Average

Few
Phase‐VIII: Maintenance (Sub – Activity‐I I :Evolution)
46 What would be the Effort required if size of change is are:

High
Medium

Low

45

Just two questions phase specific.

Requirement Analysis
47 What would be the Effort required interest of End‐User in requirement analysis phase is:

High
Medium

Low
Component Analysis
48 What would be the Effort required if Reuse Type considered is:

WhiteBox
GreyBox
BlackBox

Thanks for your time and sharing your opinion.

46

APPENDIX – B: Linguistic Variables

S# Effort Parameters Effort
Low Medium High

Domain Engineering
1. NOADA - No. of available Domain Applications Few Normal Many

Requirement Analysis
2. NORS - No. of Requirement Sources Single Multiple
3. OD - Organizational Diversity Low Medium High
4. UD - User Diversity Low Medium High
5. NOFR - No. of FRs Too Few Average Too Many
6. NONFR - No. of NFRs Too Few Average Too Many
7. NOC - No. of Constraints Few Average Many
8. RC - Requirement Clarity Lucid - Obscure
9. LOEUI - Level of End-User Interest Willing - Un-Willing

Component Analysis
10. NOFR - No. of FRs Too Few Average Too Many
11. NONFR - No. of NFRs Too Few Average Too Many
12. NOIC - No. of Identified Components Few Average Many
13. NOII - No. of Identified Interfaces Few Average Many
14. NOIMF - No. of Identified Member functions Few Average Many
15. COH - Cohesion Maximum - Minimum
16. RT - Reuse Type Blackbox Greybox Whitebox

Component Provision
17. RS - Repository Size Small Medium Large
18. SS - Search Strategy Top Down - Bottom Up
19. NOFR - No. of FRs Too Few Average Too Many
20. NONFR - No. of NFRs Too Few Average Too Many
21. NOADA - No. of available domain applications Few Normal Many
22. ACPTD - COTS Supplier Provided Training and

Documentation[15] Satisfactory - Unsatisfactory

23. ACSEW - COTS Supplier Product Extension
Willingness [15] High Moderate Low

24. ACPPS - COTS Supplier Product Support [15] Available - Unavailable
25. NOPTBS - No. of Parameters to be Specified [15] Low Normal High
26. IGS - input/GUI screen [15] Low Normal High
27. ORL - output report layout [15] Low Normal High
28. SPS - security protocols set-up [15] Low Normal High
29. TM - Testing Methodology Blackbox Greybox Whitebox
30. SC - Success Criteria Acceptable

Errors - Error Free

47

31. NOIC - No. of Identified Components Few Average Many
Architectural Design

32. NOCF - No. of Components Fashioned Few Normal Many
33. CAM - Components Architectural mismatch Low Average High
34. NOIAMF - No of Interfaces and Membership

Functions Few Normal Many

35. IC - Interface Complexity Low Average High
36. Cou –Coupling Minimum - Maximum
37. RF - Requirements Flexibility Allowed - Not-Allowed
38. SF - Schedule Flexibility Allowed - Not-Allowed
39. RA - Resources Availability Ample Adequate Scanty

Integration
40. FP - Function Points Few Normal Many
41. NOIAMF - No of Interfaces and Membership

Functions Few Normal Many

42. AC - Architectural Constraints Few Normal Many
43. TM - Testing Methodology Blackbox Greybox Whitebox
44. SC - Success criteria Acceptable

Errors - Error Free

45. NOCF - No. of Components Fashioned Few Average Many
Deployment

46. NOSTBD - No of Sites to be Deployed Few Average Many
47. TE - Targeted End-user Technical - Non-Technical
48. UMDC - User Manual/ Documentation

Comprehensiveness Concise - Comprehensive

Maintenance
49. NOCTBR - No. of Components to be replaced Few Average Medium
50. SOC - Size of Change Low Medium High

Cross-Cutting Parameters
51. OC - Organization Culture [25] Good So So Bad
52. PM - Process Maturity[24] Mature - Immature
53. LS - Leadership Skills[25] Adroit Intermediate Novice
54. TC - Team Cohesion [24] High Medium Low
55. SC - Stakeholder Cohesion High Medium Low
56. TSK - Team Skills Adroit Intermediate Novice
57. TE - Team Experience Vast Sufficient Beginner
58. TSZ - Team Size Large Medium Small
59. TC - Team Consistency Low Medium High
60. PS - Project Size Large Medium Small
61. PC - Project Complexity Much Average Less
62. PP - Project Precedence [24] High Medium Low
63. UOST - Use of Standard Tools Yes - No
64. RW – Rework Extensive - Slight

48

APPENDIX – C: Specificity and Sensitivity Calculations

Phase Clear
Question

Ambiguous
Question Total Specificity Sensitivity

Domain Engineering
Right Answer 0 1 1

#DIV/0! 1 Wrong Answer 0 0 0
 Total 0 1 1

Requirement Analysis
Right Answer 3 0 3

0.5 0 Wrong Answer 3 1 4
 Total 6 1 7

Component Analysis
Right Answer 3 0 3

0.5 #DIV/0! Wrong Answer 3 0 3
 Total 6 0 6

Component Provision
Right Answer 8 0 8

0.6666667 0 Wrong Answer 4 2 6
 Total 12 2 14

Architectural Design
Right Answer 5 0 5

1 0 Wrong Answer 0 3 3
Total 5 3 8

Integration
Right Answer 2 0 2

0.5 0 Wrong Answer 2 1 3
 Total 4 1 5

Deployment
Right Answer 3 0 3

1 #DIV/0! Wrong Answer 0 0 0
 Total 3 0 3

Maintenance
Right Answer 2 0 2

1 #DIV/0! Wrong Answer 0 0 0
 Total 2 0 2

Complete Lifecycle
Right Answer 26 12 38

0.9629629 0.631578947Wrong Answer 1 7 8
 Total 27 19 46

49

APPENDIX – D: CPM Validation Matrix using PQMM.

D
om

ai
n

E
ng

in
ee

ri
ng

R
eq

ui
re

m
en

t
A

ss
es

sm
en

t

R
eq

ui
re

m
en

t
Sp

ec
ifi

ca
tio

n

C
om

po
ne

nt

Id
en

tif
ic

at
io

n

C
om

po
ne

nt

Sp
ec

ifi
ca

tio
n

C
om

po
ne

nt

Se
ar

ch

C
om

po
ne

nt

Se
le

ct
io

n

C
om

po
ne

nt

A
cq

ui
re

T
ai

lo
ri

ng

U
ni

t T
es

t

C
om

p.
 A

rc
h.

C

om
pr

eh
en

si
on

A
pp

lic
at

io
n

D
es

ig
n

A
da

pt
at

io
n

In
te

gr
at

io
n

T
es

t

D
ep

lo
ym

en
t

Su
bs

tit
ut

io
n

E
vo

lu
tio

n

Complexity

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

C
B

SE
 o

r
N

ot
?

N
o

D
ec

is
io

n

B
ui

ld
 V

S
B

uy
?

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

N
o

D
ec

is
io

n

Coupling

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

Failure
Avoidance*

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

re
vi

ew

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

re
vi

ew

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

te
st

in
g

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

re
vi

ew

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

te
st

in
g

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

N
o

re
vi

ew
, i

ns
pe

ct
io

n,

ch
ec

kp
oi

nt
 o

r s
im

ila
r

te
ch

ni
qu

es

Restoration N
ot

R

ec
or

de
d

N
ot

R

ec
or

de
d

R
ec

or
de

d
in

SR

S

N
ot

R

ec
or

de
d

R
ec

or
de

d
in

R

C
S

R
ec

or
de

d
in

R

C
S

R
ec

or
de

d
in

R

C
S

R
ec

or
de

d
in

R

C
S

R
ec

or
de

d
in

R

C
S

R
ec

or
de

d
in

TD

R
ec

or
de

d
in

R

C
S

R
ec

or
de

d
in

A

D
D

R
ec

or
de

d
in

Im

pl
em

en
ta

t
io

n
do

cu
m

en
t

R
ec

or
de

d
in

TD

R
ec

or
de

d
in

U

se
r M

an
ua

l

R
ec

or
de

d
in

ID

,R
C

S,
TD

,
A

D
D

R
ec

or
de

d
 in

SR

S,
ID

,
R

C
S,

TD

,A
D

D

Restoration
Effectiveness

N
o

R
es

to
ra

tio
n

N
o

R
es

to
ra

tio
n

R
es

to
re

d

N
o

R
es

to
ra

tio
n

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

R
es

to
re

d

Functional
Adequacy - - - - - - - - - - - - - - - - -

50

Functional
Completeness - - - - - - - - - - - - - - - - -

IT Usage

N
o

IT
 U

sa
ge

N
o

IT
 U

sa
ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

N
o

IT
 U

sa
ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

A
pp

lic
at

io
n

So
ftw

ar
e

U
sa

ge

IT Density

N
o

 D
oc

um
en

t

N
o

D

oc
um

en
t

SR
S

N
o

D

oc
um

en
t

R
C

S

R
C

S

R
C

S

R
C

S

R
C

S

TD

R
C

S

A
D

D

Im
pl

em
en

t
at

io
n

D
oc

um
en

t

TD

U
se

r
M

an
ua

l

R
C

S,
TD

,
A

D
D

SR
S,

R
C

S,

TD
,A

D
D

Computation
al Accuracy

- - - - - - - - - - - - - - - - -

Data
Exchange
ability

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

N
o

In
te

ra
ct

io
n

Access
Auditability D

om
ai

n
Ex

pe
rt

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

D
ev

el
op

er

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

D
ev

el
op

er

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

N

o
In

te
ra

ct
io

n
w

ith
 D

at
a

So
ur

ce

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

D
ev

el
op

er

N
o

In
te

ra
ct

io
n

w
ith

 D
at

a
So

ur
ce

Y
es

 b
ut

 A
ct

or

ca
nn

ot
 b

e
id

en
tif

ie
d

Y
es

 b
ut

 A
ct

or

ca
nn

ot
 b

e
id

en
tif

ie
d

Functinal
Understandab
ility

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

N
o

di
ff

ic
ul

tie
s o

r
m

is
un

de
rs

ta
nd

in
gs

Existence in
Documents D

es
cr

ib
ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

D
es

cr
ib

ed

Input Validity
Checking N

o

N
o

Y
es

N
o

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

51

Undoability N
ot

R

ec
or

de
d

N
ot

R

ec
or

de
d

U
nd

oa
bi

lit
y

of
 S

R
S

N
ot

R

ec
or

de
d

U
nd

oa
bi

lit
y

of
 R

C
S

U
nd

oa
bi

lit
y

of
 R

C
S

U
nd

oa
bi

lit
y

of
 R

C
S

U
nd

oa
bi

lit
y

of
 R

C
S

U
nd

oa
bi

lit
y

of
 R

C
S

U
nd

oa
bi

lit
y

of
 T

D

U
nd

oa
bi

lit
y

of
 R

C
S

U
nd

oa
bi

lit
y

of
 A

D
D

U
nd

oa
bi

lit
y

of

Im
pl

em
en

ta
ti

on
 d

oc
um

en
t

U
nd

oa
bi

lit
y

of
 T

D

U
nd

oa
bi

lit
y

of
 U

se
r

M
an

ua
l

U
nd

oa
bi

lit
y

of

R
C

S,
TD

,A
D

D

U
nd

oa
bi

lit
y

of
 S

R
S,

R
C

S,

TD
,A

D
D

Attractive
Interaction

N
o

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

N
o

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

N
o

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

A
ttr

ac
tiv

e
In

te
ra

ct
io

n

52

APPENDIX – E: CPM Validation Calculations using PQMM.

Results A B Formula Description [19]

Complexity 0.9 2 17 X=1-A/B
A = Number of decisions
B = Number of activities

Coupling 1.0 0 17 X=1-A/B
A = Number of interactions
B = Number of activities

Failure Avoidance 0.3 5 17 X=A/B
A = Number of activities in which review, inspection, checkpoint or similar techniques are applied
B = Number of activities

Restoration 0.8 14 17 X=A/B
A = Number of activities which are recorded on paper or computerized environment
B = Number of activities

Restoration
Effectiveness 0.8 14 17 X=A/B

A = Number of activities which can be restored
B = Number of total activities

IT Usage 0.8 14 17 X=A/B

A = Number of activities in which IT applications are used for preparation, deletion, updating or searching
purposes
B = Number of activities

IT Density 1.0 6 6 X=A/B

A = Number of forms, reports, archival records or similar other documents that are prepared, updated, deleted or
searched by using IT applications
B = Number of forms, documents, archival records or similar other documents in the process

Data
Exchangeability 0.0 0 0 X=A/B

A = Number of activities in which no change is performed on the received data before using it (using the data as
it has been transferred)
B = Number of activities which have interactions with other processes

Access
Auditability 0.7 4 6 X=A/B

A = Number of activities which have access to the data and this access can be audited with its actor
B = Number of activities which have accesses to the data sources

Functional
Understandability 1.0 17 17 X=A/B

A = Number of activities in which staff do not encounter difficulties in understanding the tasks to be performed,
B = Number of process activities

Existence in
Documents 1.0 17 17 X=A/B

A = Number of activities which are described in the available documents,
B = Number of activities

Input Validity
Checking 0.6 11 17 X=A/B

A = Number of activities in which validity checking can be performed for input parameters
B = Number of activities

Undoability 0.8 14 17 X=A/B
A=Number of activities which can be undone,
B= Number of total activities

Attractive
Interaction 0.8 14 17 X=A/B

A = Number of activities in which staff can prepare, delete or update forms, reports, archival records or similar
other documents with no difficulties

53

B = Number of total activities

