
Exchanging Data from Institutional Repositories

to the Semantic Web

by

Humaira Farid

(2010-NUST-MS PhD-CSE(E)-20)

Submitted to the Department of Computer Engineering in

fulfillment of the requirements for the degree of

Master of Science in Computer Software Engineering

Supervisor

Dr. Muhammad Younus Javed

College of Electrical & Mechanical Engineering,

National University of Sciences & Technology, Islamabad, Pakistan

MARCH 2013



ii



Declaration

I hereby declare that I have implemented this thesis completely on the basis of my
personal efforts under the guidance and supervision of Dr. Sharifullah Khan and
Dr. Muhammad Younus Javed. All the sources used in this thesis have been cited
and the contents of this thesis are not plagiarized. No portion of the work
presented in this thesis has been submitted in support of any application for any
other degree of qualification to this or any other university or institute of learning.

______________

Humaira Farid

iii



Approval

It is certified that the content and form of the thesis entitled “Exchanging Data
from Institutional Repositories to the Semantic Web” submitted by Hu-
maira Farid have been found satisfactory for the requirement of the degree.

Supervisor: Dr. Muhammad Younus Javed
Signature: _________________
Date: _________________

Committee Member: Dr. Sharifullah Khan
Signature: ________________
Date: ________________

Committee Member: Dr. Farooque Azam
Signature: _______________
Date: _______________

Committee Member: Dr. Asia Khanum
Signature: ______________
Date: ______________

iv



v



Acknowledgment

All praises are for Allah Almighty, the Most Gracious and Most Merciful, who gave
me strength to complete this task. Nothing could have been possible without His
blessings.

I would like to thank my supervisor Dr. Muhammad Younus Javed
whose supervision, support and guidance helped me a lot in completing the given
task. I would like to pay special thanks toDr. Sharifullah Khan for his continuous
technical and intellectual support, guidance and most important his precious time.
His cooperation leads me to this success. I would like to appreciate Dr. Asia
Khanum and Dr. Farooque Azam for serving on my committee.

I would like to admit that I owe all my achievements to my truly, sincere
and most loving parents, brothers, sisters and friends who mean the most to me,
and whose prayers have always been a source of determination for me. They have
always supported and encouraged me to do my best in all matters of life.

Humaira Farid

vi



Abstract

Internet and semantic web technologies have enabled academics to find online re-
search materials with increasing speed and accuracy. They have enabled academics
to make connections with each other. Whereas, institutional repositories (IRs) are
often built to serve a specific institution’s community of users. Mostly existing IRs
are using relational database schema for maintaining the metadata of their digital
contents. They might need to interact with other information systems that build to
manage institutional research activities. Thus, it is crucial to provide interoperabil-
ity and integration mechanisms to bridge the gap between the semantic web and
relational database worlds. To process the data in semantic context, a relational
database is transformed into ontology. The use of semantic web technologies in in-
tegrating the different IRs metadata enable ontology-facilitated sharing and reuse
of learning resources. They provide users access to a web of content which might
otherwise require discovering and exploring multiple websites or IRs.

The main promising feature of IRs is their flexible data models that can
be customized to arrange the digital documents in a repository according to the
organizational structure of an institute. The data model of an organization’s IR
is not directly converted into IR database schema, but the data model schema is
maintained as values in the comprehensive database schema of the IR. The schema
of IRs databases is nested schema i.e. a schema is embedded in another schema.
In other words, an IR database schema is not a normalized schema with respect to
the data model, so, it makes the transformation complicated and different from the
typical transformation tasks. A substantial amount of research has already been
done to transform a relational database into ontology. However, these systems are
only capable to transform a normalized relational database into ontology. They
cannot produce accurate results if they are applied on IR databases. After building
the ontologies, a key issue is to enable interoperability among different ontologies.

vii
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The proposed system first of all identifies the data model of an institute
from IR database and builds a normalized relational schema for the data model
of the institute. Then metadata of the repository is extracted to populate this
produced schema to build an intermediate database. Once we get a normalized re-
lational database, then relational to ontology transformation techniques are applied
on this intermediate database to transform it into ontology. After that, the system
transforms the instances from the generated ontology into corresponding data or
instances expressed in target ontology. The classes from both source and target
ontologies are extracted and simple mappings between these classes are generated
by the user. Then the individuals of these mapped classes are matched and proper
URIs are given to each individual. These individuals are linked with their respective
target ontology classes. Finally, an RDF, having individuals of the target ontology,
is generated.

The system has mainly three modules: (i) Metadata Extraction; (ii) Rela-
tion to Ontology Transformation; (iii) Ontology Alignment and Data Translation.
The distinguishing features of the proposed system are (i) identifying the data model
of an IR; (ii) extracting metadata of the repository; (iii) creating proper hierarchy of
parent and child classes of ontology to preserve the data model hierarchy, (iv) gen-
erating mappings between ontologies, and (v) transforming data or instances from
source ontology into corresponding data or instances expressed in target ontology.
The system has been implemented in Java language and Jena API is used for ontol-
ogy creation. Experimental results demonstrate that the transformation is correct
and the system preserves information capacity.
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Chapter 1

Introduction

1.1 Motivation

Internet and semantic web technologies have enabled academics to find online re-
search materials with increasing speed and accuracy. They have enabled academics
to make connections with each other. Semantic Web-based network of institutional
ontology-driven databases have been created to enable national discovery, network-
ing, and collaboration via information sharing about researchers and their activities
[5, 6, 7, 8, 9]. Institutional digital repositories are often built to serve a specific
institution’s community of users. They might need to interact with other informa-
tion systems that build to manage institutional research activities to help faculty,
researchers, and students for discovering common interests and make connections.

Mostly existing institutional repositories (IRs) e.g., DSpace1, EPrints2, In-
venio3 and Archimede4 are using relational database schema for maintaining the
metadata of their digital contents. Data management according to the relational
data model is expected to be prevalent in the next years because it is still an order
of magnitude faster than RDF data management [10]. The semantic web and re-
lational database worlds and their developed infrastructures are based on different
data models, semantics and query languages. Thus, it is crucial to provide interop-
erability and integration mechanisms to bridge the gap between the semantic web
and relational database worlds. To process the data in semantic context, a rela-

1http://www.dspace.org/
2http://www.eprints.org/
3http://invenio-software.org/
4http://www.bibl.ulaval.ca/archimede/index.en.html
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tional database is transformed into ontology. The fundamental goal of ontology
development is the creation of an environment that allows for the controlled sharing
and exchange of information among autonomous, heterogeneous data sources [11].
Ontology improves the availability of semantically rich content on the Web. The
semantic web technologies provide standard representations for meaningful linkage
across different sets of data. The Semantic Web Application (SWA) provides self-
describing data via shared ontologies which is also readable by machines and does
simple reasoning to categorize and find associations. The use of SWA in integrat-
ing the different institutional repositories metadata facilitates users’ search, access,
and retrieval of learning resources. The adoption and implementation of semantic
web technologies enable ontology-facilitated sharing and reuse of learning resources.
They provide users access to a web of content which might otherwise require dis-
covering and exploring multiple websites or institutional repositories [8, 9].

1.2 Problem Definition

The main promising feature of IRs is their flexible data models that can be cus-
tomized to arrange the digital documents in a repository according to the organi-
zational structure of an institute [12, 13]. The data model of an organization’s IR
is not directly converted into IR database schema, but the data model schema is
maintained as values in the comprehensive database schema of the IR. The schema
of IRs databases is nested schema i.e. a schema is embedded in another schema.
In other words, an IR database schema is not a normalized schema with respect
to the data model. Therefore an IR handles equally the IR data models of various
institutes without effecting its schema. As IRs are often built to serve a specific in-
stitution’s community of users, a key issue is to integrate the metadata of different
IRs into the semantic web-based network to help faculty, researchers, and students
for discovering common interests and make connections. As mostly existing insti-
tutional repositories (IRs) are using relational database schema for maintaining the
metadata of their digital contents, it is crucial to provide interoperability and in-
tegration mechanisms to bridge the gap between the semantic web and relational
database worlds. The adoption and implementation of semantic web technologies
enable ontology-facilitated sharing and reuse of learning resources.

A substantial amount of research has already been done to transform a rela-
tional database (i.e. schema and its data) into ontology [14, 15, 3, 2, 16, 4, 17, 18, 19].
However the existing transformation systems are only capable to transform a nor-
malized relational database into ontology. They cannot produce accurate result if
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they are applied on IR databases because their schema is nested schema not a nor-
malized schema. Since the data model is hidden in the IR database schema, it is
required to extract the data model from the IR database schema prior to transform-
ing it into ontology, so, it makes the transformation complicated and different from
the typical transformation tasks. Therefore, first of all it is essential to identify the
data model of an institute from IR database and to extract its metadata and then
to transform it into ontology.

After building the ontologies, a key issue is to enable interoperability among
different ontologies and to integrate them into the semantic web-based network.
Ontology interoperability is a key factor essential for aligning and integrating dis-
tributed ontological resources. It can be achieved by identifying or establishing
semantic correspondence between entities (i.e., classes and properties) among mul-
tiple ontologies.

1.3 Proposed Solution

In recognition of need for integrating the metadata of institutional repositories into
the semantic web, the system has been proposed and developed for integrating
the metadata of different IRs into the semantic web-based network to help faculty,
researchers, and students for discovering common interests and make connections.

The objective of this work is to publish metadata of institutional repositories
on the semantic web applications such as VIVO5 to enable sharing and reusing of
existing information. The proposed system first of all identifies the data model
of an institute from IR database and builds a normalized relational schema for
the data model of the institute. Then metadata of the repository is extracted to
populate this produced schema to build an intermediate database. After getting
a normalized relational database, relational to ontology transformation techniques
are applied on this intermediate database to transform it into ontology. After that
instances from the generated ontology are transformed into corresponding data or
instances expressed in target ontology. The classes from both source and target
ontologies are extracted and simple mappings between these classes are generated
by the user. Then the individuals of these mapped classes are matched and proper
URIs are given to each individual. These individuals are linked with their respective
VIVO classes. Finally, an RDF, having VIVO individuals, is generated. The system
has mainly three modules:

5http://vivoweb.org/
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a. Metadata Extraction

b. Relation to Ontology Transformation

c. Ontology Alignment and Data Translation

The distinguishing features of the proposed system are (i) identifying the data model
of an IR; (ii) extracting metadata of the repository; (iii) creating proper hierarchy of
parent and child classes of ontology to preserve the data model hierarchy, (iv) gen-
erating mappings between ontologies, and (v) transforming data or instances from
source ontology into corresponding data or instances expressed in target ontology.
The creation of database and ontology has been implemented in Java language and
Jena API respectively. Experimental results demonstrates that the transformation
is correct and the system preserves information capacity.

1.4 Thesis Outline

The rest of the thesis document is organized as follows: Chapter 2 describes the
background knowledge of institutional repositories, semantic web and linked data.
It describes the importance of Institutional Repositories (IRs), semantic web and
linked data. Chapter 3 provides literature review and critical analysis of the research
works that have been carried out in the field of metadata extraction, relation to
ontology transformation and ontology population in order to publish IRs metadata
on the semantic web.

Chapter 4 describes the proposed system in detail by describing the com-
plete architecture of the proposed system including IRs metadata extraction, ontol-
ogy creation and population of target ontology. Chapter 5 provides details about
the proposed system’s design, implementation and evaluation. It provides details of
the datasets, metrics and measures which are used for system evaluation and results
comparison. Chapter 6 finally concludes the work done in this thesis. It describes
research contribution and defines future work of the thesis.



Chapter 2

Background Studies

2.1 Institutional Repository

An Institutional Repository (IR) is an online locus for harvesting, preserving, and
propagating the information in digital form for the intellectual output of an institu-
tion. According to Lynch [20], institutional repository provides a set of services for
the management, preservation and distribution of digital materials created by the
organization and its members.

Repositories provide services to faculty, administrators and researchers to
preserve and manage research and other creative research materials. They pre-
vent the universities and research institutions from losing their valuable information
by providing new and important information sources. They enable institutions to
preserve and maintain their digital material and enable them for interaction and
collaboration among users in the organizations. The advantages of institutional
repositories are not only for institutions and their members but they are also bene-
ficial to other research community.

2.1.1 Institutional Repository Software

Many research institutions are building repositories and sharing the descriptions of
their research activities and contents. Several softwares are available for building
institutional repositories. According to the Registry of Open Access Repositories

5
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Figure 2.1: Usage of Open Access Repository Software - Worldwide

(ROAR)1, there are 3,340 and as per the Directory of Open Access Repositories
(OpenDOAR)2, there are 2,253 institutional repositories in the world. Most of these
repositories are build either by DSpace or Eprints which are free and open source
softwares. DSpace has an obvious edge over other available open source institutional
repository softwares. The Ranking Web of World Repositories3 published in January
2013, provided by Webometrics4, presents that DSpace is deployed in 46 repositories
among the top 100 listed repositories. The OpenDOAR statistics demonstrates that
the DSpace is the most widely used open source institutional repository software
worldwide, that is shown in Figure 2.1.

2.1.2 DSpace

DSpace[21] is an open source software which developed by MIT-Libraries (USA),
in collaboration with HP-Labs (USA), in March 2002. It is used to store, index
and preserve the research material of an institute in digital format. The research
materials and publications are maintained in a repository to give users greater visi-
bility and accessibility over time. Users can also customize DSpace according to the
specific needs of an organization. DSpace software provides more permanent and
shareable digital archiving and supports a wide variety of artifacts. These artifacts
may include books, theses, and digital items, research materials, etc. DSpace was
developed as an easy to use, customizable service that could maintain, preserve, and
share faculty materials in digital formats. It manages and distributes digital items
which are made up of digital files. It provides services for locating and retrieving
the items by indexing and searching associated metadata. It supports the long-term
preservation of the digital material [13].

1http://roar.eprints.org/
2http://www.opendoar.org/
3http://repositories.webometrics.info/en/top_Inst
4http://repositories.webometrics.info
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Figure 2.2: Data Model of DSpace

2.1.2.1 Data Model of DSpace

The data is organized in DSpace according to the structure of the organization
using the DSpace system. As shown in the Figure 2.2, each DSpace site is divided
into communities. These communities can be further divided into sub-communities.
They reflect the institute structure of college, school, department, laboratory, or
research center.

Collections come under the hierarchy of communities. The related con-
tent are grouped under these collections. Each collection contains items, which are
the basic archival elements of the archive. Each item has only one owning collec-
tion. Items are further divided into bitstreams which are organized into bundles.
These are ordinary computer files. Every bitstream has one associated Bitstream
Format.

2.1.2.2 Database Structure of DSpace

DSpace uses a relational database to store the metadata of digital items and other
information regarding e-people, authorization, workflows, indices, etc. DSpace has
defined a database schema for its flexible data model, as shown in Figure 2.3. Re-
cently, some features specific to PostgreSQL5 and Oracle6 are used by the browse
indices, but after modifying some code any standard SQL database can be used.
After modification of the required code, DSpace would function properly with any

5http://www.postgresql.org/
6http:// www.oracle.com/database/
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Figure 2.3: Core DSpace Model

other database back-end.

2.1.2.3 Repository’s Metadata

Metadata provides detailed description about a digital item. Many metadata stan-
dards are designed for archival and library domains e.g. Dublin Core (DC), Data
Documentation Initiative (DDI), XML Organic Bibliographic Information Schema
(XOBIS), Metadata Encoding and Transmission Standard (METS), MAchine Read-
able Cataloging (MARC), Encoded Archival Description (EAD), Metadata Object
Description Schema (MODS), etc.

DC is a most popular metadata standard which provides a set of basic el-
ements to describe a digital item. In qualified DC, these basic elements are further
described by their qualifiers. For example, a basic element “dc.contributor” can be
a creator, advisor, author, etc., therefore, its qualifiers are “dc.contributor.creator”,
“dc.contributor.advisor”, “dc.contributor.author”, etc. The pre-configured meta-
data standard with the DSpace source code is qualified DC which is used by MIT
Libraries7. However, multiple metadata schemas, like DC, METS, MODS, MARC,
can also be used for describing an item. Communities and collections have some
simple metadata for describing their name and some other details. This simple
descriptive metadata held within DSpace’s relational schema.

7http://dspace.org/technology/metadata.html]



9

2.2 Semantic Web

The Semantic Web (SW) is an extension of the current Web, also referred to as Web
3.0. In SW information is given well-defined meaning which has enabled computers
and people to work in cooperation. SW is a web of data which provides associated
meaning with data and enables data sharing and reuse across SW applications,
enterprises and communities [22]. It allows more advanced processing for facilitating
scientific communication.

SW has enabled the best possible use of the material available on the Web
by developing a set of interconnecting standards. These standards are used for
structuring, encoding, and sharing data. The core technology used in the SW is
the Resource Description Framework (RDF). RDF is used to create a linked data
system by integrating new and existing data on the web.

SW makes the right information easier to find and share among research
community. It facilitates the researchers in finding scholarly material which accel-
erates the scientific discovery and sharing.

2.2.1 Ontology

Ontology is used to resolve the semantic heterogeneity. It is used to represent
the data explicitly at a higher level of abstraction. It provides interoperability
which is used for interaction between information systems from different sources.
Ontology based integration employs ontologies instead of conceptual schemas and
therefore, correspondences between source databases and one or more ontologies
have to be defined. Ontology creates artifacts which can be shared among different
applications. Ontologies can be extended according to the specific domains and
applications. These are used with different reasoning engines and semantics of their
languages are specified to facilitate this reasoning. Inference and reasoning takes
the core stage in ontology integration approaches. However, a database technology
is still more powerful than ontology for storing large-scale data sets. Therefore, the
use of ontology is not proposed as an alternative for database. Whereas, the idea of
the ontology is to support semantic interoperability between programs exchanging
data. W3C has standardized several languages to define ontologies to achieve the
goal of semantic interoperability. These standards can be used to define common
vocabularies and structures for different applications. RDF is a prominent example
which is considered as the basis for building the semantic web. In RDF, triples are
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<rdf:RDF
xmlns:rdf="http://www.w3.org/2000/02/12-rdf-syntax-ns#"
xmlns:feature="http://www.linkeddata.com/cloth-feature#">
<rdf:Description rdf:about="http://www.linkeddata.com/clothe#shirt">

<feature:color rdf:resource="http://www.linkeddata.com/color#white"/>
</rdf:Description>

</rdf:RDF>

Figure 2.4: An RDF statement

Figure 2.5: The simple RDF graph describing the color

used to represent any kind of information. Each triple states a subject-property-
object relationship [23]. Web Ontology Language (OWL) is another prominent
example for defining and instantiating web ontologies. The mostly considered variant
of OWL is based on a Description Logic [24].

2.2.2 Resource Description Framework

Resource Description Framework (RDF) is used for representing the information in
SW [22]. RDF uses triples to represent information, it makes statement about
resource in the form of triple which states a subject-predicate-object relation-
ship.

2.2.2.1 The RDF Statement (Triple)

The Figure 2.4 shows an RDF statement, also known as RDF triple. The triple
breaks the statement into three parts: the subject, predicate and object. The Figure
2.5 illustrates these terms in the form of a simple RDF graph. In this graph:

• T-shirt is a Subject

• Color is a Predicate (also called property)

• white is an Object
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2.2.3 RDF Schema

RDF Schema (RDFS) is basically used for augmenting the RDF by adding different
constructs. These may include classes, properties, class hierarchies, property hierar-
chies, domain and range. For modeling these constructs the standard vocabulary is
used e.g. rdfs:Class, rdfs:Property, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range,
rdfs:domain, etc.

2.2.4 Web Ontology Language

The Web Ontology Language (OWL) is a language which is to define and instantiate
ontologies. It is used for capturing knowledge in a machine understandable way.
An OWL may include the description about ontology classes, properties and their
instances. OWL is a stronger language which has greater machine interpretability
than RDF. An rdf:RDF element is a root of an OWL document because all OWL
documents are basically RDF documents. The owl:Ontology element serves as a
container for metadata about the ontology and identifies the current document as an
ontology. It gives a better representation for semantics of information by providing
richer set of constructs. These construct are used in building ontologies.

The richer set of constructs are provided by OWL for modeling the informa-
tion. These construct are used in building ontologies which represent semantics in
more effective way. Three different OWL variants are used to model the information.
These variants are:

• OWL Full: It provides maximum expressiveness without any syntactic bounds.
OWL Full includes all OWL constructs and their combination with RDF and
RDFS. However, OWL Full does not provide the efficient reasoning.

• OWL Lite: It is a sub-language of OWL. It provides simple constraints and
constructs. These constructs are used for classifying the hierarchy in ontolo-
gies. The OWL Lite provides a very restricted and minimum expressivity.
However, it is most easier variant for both users and developers.

• OWL DL: It is a subset of OWL Full. It is more expressive than OWL
Lite but still less expressive than OWL Full. It supports high expressiveness
without providing syntactic freedom. OWL DL supports the efficient reasoning
as compare to OWL Full.
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(a) Mapping (b) Transformation

Figure 2.6: Difference between mapping and transformation [1]

2.3 Relational database to Ontology Transformation

The difference between transformation and mapping is explained by Astrova in [1].
The mapping process assumes that both a relational database and an ontology exist.
It produces a set of correspondences between source relational database and target
ontology. Therefore, both relational database and ontology are used as input in
mapping process. The output of this process is a set of correspondences which pro-
vides links between the constructs of relational database and ontology. Whereas, in
case of transformation only a relational database exists. The transformation process
produces a new ontology from the relational database. Therefore, the transforma-
tion process takes only a relational database as input. The output of this process
is an ontology. Figure 2.6 illustrates the difference between transformation and
mapping.

A relational model is used for implementing the relational database. This
model includes constructs which specifies tables, columns, data types, and other con-
straints and semantics of the relational database. Whereas, an ontological model
is used for implementing an ontology. The constructs of an ontological model are
used to specify ontology classes, data types, properties, inheritance, and other se-
mantics. Transformation of relational databases into ontologies is based on a set
of rules. These rules are used to specify the mappings between the constructs of
the relational model and the ontological model. For example, a table of relational
database is mapped to a ontology class, a column of a table is mapped to a data
type property of respective ontology class, etc.

2.4 Semantic Web Application

The semantic web technologies provide standard representations for meaningful link-
age across different sets of data. The Semantic Web Application (SWA) allows data
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to be shared and reused across applications by providing a common framework.
SWA provides self-describing data via shared ontologies which is also readable by
machines and does simple reasoning to categorize and find associations.

The use of SWA in integrating the different institutional repositories meta-
data facilitates users’ search, access, and retrieval of learning resources. The adop-
tion and implementation of semantic web technologies enable ontology-facilitated
sharing and reuse of learning resources.

2.4.1 VIVO

VIVO provides a semantic web-based network of institutional ontology-driven databases.
It enables networking, national discovery, and collaboration by sharing the informa-
tion about researchers and their activities. The VIVO project was started at Cor-
nell University and further developed by an National Institutes of Health8 funded
consortium, it is now being established as an open-source project with community
participation from around the world.

The results are clustered into different categories e.g. activities, people,
organization, events, publications, etc. These categories are used by search engine of
VIVO. VIVO is populated with detailed profiles of faculty and researchers including
information such as publications, teaching, service, and professional affiliations. Bi-
directional hyperlinks are presented by each page in VIVO which provide users
access to a web of content which might otherwise require discovering and exploring
different websites or institutional repositories [8, 9]. VIVO also provides:

• information about research and researchers - their scholarly works, research
interests, and organizational relationships.

• an expressive ontology and tools for managing the ontology.

• a platform for using the ontology to create and manage linked open data for
scholarship and discovery.

• a platform for connecting scholars, communities, and campuses using linked
open data.

• a support for students to find appropriate research projects and advisors

8http://www.nih.gov/
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By the end of 2012, over 20 countries and 50 organizations provide information
in VIVO format on more than one million researchers and research staff, including
publications, research resources, events, funding, courses taught, and other scholarly
activity.

2.4.1.1 VIVO Ontology

VIVO produces Resource Description Framework (RDF) triples formatted accord-
ing to a published ontology so that information can be exchanged, aggregated and
searched by others on the web through standard protocols. An ontology communi-
cates the meaning of these RDF triples by defining types (classes) and the relation-
ships between them (properties); the VIVO ontology is a unified, formal, and explicit
specification of information about researchers, organizations, and the activities and
relationships that link them together. The VIVO ontology concentrates on model-
ing scientists in the rich context of their activities, organizations and the products
of their research rather than the knowledge in any single domain of science. A key
issue in building the VIVO ontology is how to link to external controlled vocabu-
laries in a standard way and enabling interoperability among different ontologies.
Since heterogeneous ontologies have been developed in different contexts, ontol-
ogy interoperability is a key factor essential for aligning and integrating distributed
ontological resources. Ontology interoperability can be achieved by identifying or
establishing semantic correspondence between entities (i.e., classes and properties)
among multiple ontologies [25].

2.5 Ontology Interoperability

In the SW ontologies play a very important role. They are key elements in many
applications. These application may use for retrieving information, searching and
composing web services. It is required for combining distributed and heterogeneous
ontologies which enables people and software agents to work in a more smooth and
collaborative way. Therefore, it is important to enable interoperability among dif-
ferent ontologies. If the interoperating applications are used to share the ontologies,
they enable the exchange of data both on syntactic and semantic level.
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2.5.1 Ontology Interoperability Techniques

Ontologies have emerged as the best means for explicitly describing semantics and
contexts of data to be shared among different organizations and information sys-
tems. A key challenging issue in building the Semantic Web is to allow the inter-
operability among these different ontologies. This issue can be handled by ontology
mapping, alignment, merging, translation, transformation and data translation pro-
cesses [26].

2.5.1.1 Ontology Mapping/Matching

Ontology Mapping is the process of identifying correspondences and relationships
among entities of different ontologies. The mapping process only produces a set of
correspondings without modifying the ontologies.

2.5.1.2 Ontology Alignment

Ontology alignment is the process of describing a semantic bridge between two (or
more) ontologies through a set of matches between them. It makes these ontologies
consistent and coherent with one and another. In other words, the output of the
matching process is alignment.

2.5.1.3 Ontology Merging

Ontology merging takes place once the mappings between the two ontologies are
identified, the mapped or aligned concepts are merged into a single one. This pro-
cess creates a new ontology from source ontologies without modifying existing on-
tologies.

2.5.1.4 Ontology Translation

It is the process which converts an ontology from one language to another without
altering the ontology semantics.
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2.5.1.5 Ontology Transformation

Ontology transformation is the process which changes the structure of an ontology
for presenting the entities of an ontology according to the entities of another ontol-
ogy. It slightly modifies the semantics of an ontology for making it appropriate for
different purposes.

2.5.1.6 Ontology Data Translation

It is the process of transforming instances or data from one ontology into corre-
sponding instances or data presented in target ontology.

2.6 Ontology Learning

Ontology learning is the process of constructing, evolving or integrating an ontology.
This process can be performed by using the following approaches:

• Integration of existing ontologies by identifying the similarities among ontolo-
gies. This can be done by:

– creating a single ontology by merging of different ontologies, and

– establishing links among ontologies and enabling them to share and reuse
their information by using alignment,

• Constructing a new ontology.

• Extending or evolving an existing ontology

• Specialization of a generic ontology according to a specific domain.

The ontology learning involves the population and enrichment of an ontology. The
ontology learning requires to resolve inconsistencies introduced by population and
enrichment tasks.
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2.6.1 Ontology population

It is the process of adding new instances into the concepts of an existing ontology.
It does not extend ontology by adding new concepts and properties. Therefore, it
does not modify the structure of an ontology so, the non-taxonomic and hierarchical
relations remain unaltered.

2.6.2 Ontology enrichment

This process extends an ontology by adding new concepts and properties. Therefore,
it modifies the structure of an ontology. Mostly the existing domain knowledge is
insufficient to explain the extracted information. Ontology enrichment plays an
important role for extending the background and domain knowledge which provides
the better explanation of extracted information and its semantics.

2.6.3 Inconsistency resolution

The tasks of ontology population and enrichment introduce some inconsistencies
in an ontology. Ontology will be populated with the redundant instances if it is
populated without checking whether that instance is already existing in the ontology.
Therefore, consistency maintenance is an important process in ontology learning
which eliminates the redundant instances. This can be performed automatically by
instance matching or domain expert can also perform this task.



Chapter 3

Literature Survey

3.1 Related Work

The task of transforming DSpace database to a local ontology and its mapping and
translation for populating data in VIVO can be generally divided in three steps.

a. Extracting Repository’s Metadata

b. Relation to Ontology Transformation

c. Ontology Alignment and Data Translation

Moreover, the work needs to evaluate the methodology to verify that information is
not lost and preserved during the transformation.

Therefore the survey is divided in to three categories.

a. Metadata Extraction: In this category a literature review of the research works
is provided which has been carried out in the field of metadata extraction.

b. Relation to Ontology Transformation: The papers in this category discuss
how to build ontology from relational database. Existing methodologies build
ontology from DDL scripts or relational tables (i.e., from metadata).

c. Ontology Alignment and Data Translation: In this category a literature review
of the research works is provided which has been carried out in the field of
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ontology alignment and population in order to publish data on the semantic
web.

3.1.1 Metadata Extraction

There are various techniques exist that extract metadata from deep web, static web
and legacy databases using reverse engineering techniques.

The techniques proposed by [27, 19] build a conceptual model (i.e., extended
entity-relationship diagram) from database tables. The techniques are suitable for
data sources which have little descriptions about the fields in their tables and they
have no description for keys. Maatuk et al. [28] present an approach to semantic
enrichment for relational DataBase Migration (DBM). In this technique necessary
data semantics about a given relational database (RDB) are extracted and enhanced
to produce Relational Schema Representation (RSR). The RSR constructs are then
classified to develop a Canonical Data Model (CDM), which provides a description
of the existing RDB’s implicit and explicit semantics. The generated CDM is a
sound source of semantics and is a well organized data model, which facilitates
an integrated approach to DataBase Migration (DBM). Gherabi et al. [29] also
proposed a similar solution for migrating relational database into Web semantic. It
takes an existing RDB as input, and extracts its metadata representation (MTRDB).
Then a CDM is generated based on this extracted MTRDB. Finally, the structure
of the classification scheme in the CDM model is converted into OWL ontology.

Nagy et al. [30] present a method for extraction of data from tables. They
transform the tables into a relational database which is accessible by both SQL
and SPARQL for relational tables and RDF triple stores respectively. They pri-
marily focused on large statistical information sites. These sites are generated from
databases without having direct access to the back-end databases. Kappel et al.
[31] proposed a process for lifting metamodels into ontologies for the purpose of
integrating modeling languages semantically. In this way, the concepts hidden by
these modeling languages are represented explicitly by transforming a metamodel
into an ontology.
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Figure 3.1: Relational.OWL Ontology

3.1.2 Relation to Ontology Transformation

A substantial amount of research has already been done in the field of relational to
ontology transformation and many approaches are available. Due to the large scope
and amount of related work, some significant existing solutions are discussed in this
section.

Relational.OWL [14] is a most popular and dominant work in the genera-
tion of a database schema ontology. The ontology used by Relational.OWL is shown
in Figure 3.1. It defines four classes Database, Table, Column and PrimaryKey. The
instances of these classes and their relationships can represent the schema structure
of any relational database. It transforms every relation and attribute in a rela-
tional model into corresponding instance of meta-classes Table and Column respec-
tively. OWL properties are defined to describe the relationship among these classes,
such as the hasColumn property connecting instances of the Table and Column
classes and the references property describing foreign key links. This representation
of components and relationships is called Relational.OWL. owl:equivalentClass or
owl:equivalentProperty relationships can be used to link Relational.OWL with the
similar representations based on RDF or OWL. Every tuple of a relation is viewed
as an instance of a schema representation class, while tuple values are viewed as
values of properties-instances of the Column class. This lack of separation among
classes, properties and individuals makes the produced ontology OWL Full. Re-
lational.OWL is also used in other tools and approaches (e.g. ROSEX [15] and
DataMaster[3]).
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Figure 3.2: An architecture of RDB2ONT tool [2]

DataMaster [3] is developed as a plug-in for Protégé1. The novelty of
DataMaster is to offer two alternative modeling versions of Relational.OWL that
manage to stay within the syntactic bounds of OWL DL by providing the separa-
tion among classes, properties and individual. One alternative modeling version the
schema representation layer of Relational.OWL is completely omitted and by that
means database relations and attributes are translated to OWL classes and prop-
erties respectively. hasXSDType property is attached to the Column class. In the
second alternative, data representation layer is missing and ColumnType class and
hasColumnType property is defined that relates Column instance to ColumnType
instance.

ROSEX [15] also uses a little modified version of the Relational.OWL on-
tology to transform the relational schema of a database as an OWL ontology. It
extracts the Data Source Ontology from the relational database schema. The gen-
erated database schema ontology is mapped to a domain-specific ontology. It is
generated automatically by reverse engineering the database schema. This mapping
is used to translate SPARQL queries expressed over the domain ontology to SQL
queries expressed over the relational database.

Another similar approach to Relational.OWL is Relational DataBase-
1Protégé is a free and open-source Ontology Editor from Stanford University
(http://protege.stanford.edu/)
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Figure 3.3: Application Architecture

to-ONTology (RDB2ONT) [2] that produces a new database schema OWL on-
tology. It provides a framework for the semantic interoperability between rela-
tional databases by generating OWL Database Ontologies. They describe relational
database systems in a standardized way in OWL. In the generated ontology the
schema of the underlying database systems can be presented at various levels of
abstractions. There are two main components, (a) the OWL Builder, (b) the OWL
Writer. OWL Builder builds an internal common model by extracting the schema
and constraints from the relational database and generates then an OWL ontology.
The generated ontology is created as an instance of the OWLRDBO. OWL Writer is
in charge for writing these ontologies to the output file. It provides the flexibility to
choose namespace URIs for these ontologies. A framework is presented in Figure 3.2.
Two databases are used; (a) Databasej, and (b) Databasek, described by database
ontologies; OWL Database Ontologyj and OWL Database Ontologyk respectively.
These ontologies are automatically generated. The domain experts create domain
ontologies, which describe the concepts, properties, and their semantic relationships.
The defined classes and properties follow the same meta-modeling paradigm as in
Relational.OWL, but the attempt to model relational schema constraints as OWL
constraints is erroneous. The contents of a relation represent relational schema con-
straints and these constraints are translated by applying them on the schema-level
OWL classes, however, this effort is unsuccessful to avoid OWL Full.

D2RQ [16] is one of the most prominent tools which generates domain-
specific RDFS ontology by exporting the contents of a relational database. A
declarative custom mapping is specified for describing mappings between relational
database schema and RDFS ontology. User can also modify the automatically gen-
erated mapping. It considers non-RDF relational databases as virtual RDF graphs.
These virtual graphs can be accesses and queried using RDQL. The architecture of
D2RQ usage scenario is shown in Figure 3.3. Non-RDF legacy application is used to
maintain a relational database. The database content can be accessed via an RDF
application by using D2RQ. The engine that uses D2RQ mappings to translate re-
quests from external applications to SQL queries on the relational database is called
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Figure 3.4: R2O Transformation System

D2R Server [4]. D2R Server is in charge for publishing the relational databases con-
tent on the SW. A declarative mapping generated by D2RQ is used to map database
content to RDF. The mapping specifies the way to identify resources and to generate
property values from database content.

OpenLink Virtuoso Universal Server is an integration platform that
offers an RDF view over a relational database with its RDF Views feature [17].
Virtuoso RDF Views depict existing relational data as virtual RDF graphs. These
graphs are created without physically regenerating the relational data as RDF data
sets. Virtuoso Server supports both automatic and manual operation modes. In
the former, an RDFS ontology is created using the common transformation rules.
Latter on a mapping expressed in the proprietary Virtuoso Meta-Schema language
is manually defined. Complex mapping cases can also be covered by this mapping.
Virtuoso’s mapping language allows assigning any subset of a relation to an RDFS
class. The pattern of the generated URIs can also be defined by using this mapping
language.

Another prominent work in RDFS extraction from relational schema isR2O
[19]. R2O transformation system comprises two parts, as depicted in Figure 3.4. In
the first part entities, attributes, keys and cardinalities are identified. The cardinal-
ities are then used to identify super-classes and subclasses. In the second part, five
transformation rules are designed which cover all types of relations. After analyz-
ing extracted relations, ontology is created by using designed transformation rules.
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These rules are designed for primary, secondary, weak secondary and sub-type rela-
tions. All attributes, keys, hierarchies and cardinalities are also converted to OWL
ontology. But R2O only handles issues in transforming metadata to ontology, it
does not’t transform database contents.

3.1.3 Ontology Alignment and Data Translation

COMA++ [32] is a tool for matching schemas to determine similarities between
them. It uses different characteristics of schemas for identifying these similarities.
These characteristics may include the names of the schema elements and their data
types, structural information, etc. Instance-based matching has been proposed for
COMA++ in [33]. It supports different sources such as relational schemas, XML
and ontologies for importing instance data. Different parsers has been used for
parsing schemas and the instance data from different sources. The same generic data
representation is used for representing different instance data. Two instance-based
matchers are used in this approach. These matchers are content and constraint based
matchers which use several linguistic approaches and constraints. They generate
similarity matrices which are combined for deriving a mapping between schema
elements.

Araujo et al. [34] proposed a tool, SERIMI2, which interlinks the datasets
published in the Linked Data Cloud. It focuses in the instance matching problem
over RDF data and matches instances between a source and a target data sets
without prior knowledge of the data, domain or schema of these data sets. This
solution is composed of two phases: the selection phase and the disambiguation
phase. It uses existing string matching algorithms for solving the selection phase. A
new function of similarity is used during the disambiguation phase, which operates
even without having any direct ontology alignment between the source and target
data sets.

An ontology based information extraction system, BOEMIE (Bootstrapping
Ontology Evolution with Multimedia Information Extraction)3, has been developed
for extracting objects automatically from various media types such as images, video,
audio, text, etc [35]. BOEMIE also proposed ontology population methodology.
Castano et al. [36] developed an instance matching component HMatch(I) of the
HMatch 2.0 ontology matching suite [37]. This component is developed in the frame-
work of the BOEMIE project which provides instance level matching techniques for

2https://github.com/samuraraujo/SERIMI-RDF-Interlinking
3Funded by the European Commission, see http://www.boemie.org
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supporting ontology population tasks. It supports both syntactic and semantic ap-
proaches for instance matching. It also has a capability for identifying featuring
and non-featuring properties. It applies statistical techniques for learning informa-
tion about featuring properties. These featuring properties highly contribute for
identifying individuals.

Knoblock et al. [38] developed a web application, Karma4, which allows
users to integrate data from various sources. Data can be extracted from relational
databases, XML files or CSV files and this data can be published in different for-
mats i.e. CSV or RDF. Conditional Random Fields (CRF) [39] are used for learning
semantic types and the relationships among the source’s schema elements are iden-
tified by using Steiner tree algorithm. RDF generated by the Karma can be loaded
into VIVO by creating proper URIs according to the VIVO ontology. An initial
mappings are generated semi-automatically which can be refined and modified by
users.

3.2 Critical Analysis

The existing metadata extraction techniques [27, 19, 28, 29, 30, 40, 31] are domain
and application oriented and apply reverse engineering techniques for extracting
data. They cannot be applied in different domains and applications.

The existing relation to ontology transformation systems [1, 41, 42, 19, 43,
15, 14, 3, 4] cannot produce accurate result if they are applied on an IR database
because its schema is nested. IR database relation cannot be mapped to RDFS
class because RDFS class has to be created for data model entities which are at-
tributes of relations. Therefore, it is required to extract the data model from the
IR database schema prior to transforming it into ontology. The existing transfor-
mation systems are capable to transform a normalized relational database, however,
DataMaster [3] and D2R server [4] are not creating proper hierarchy of parent and
child classes so they are not able to preserve the IR data model hierarchy. R2O
[19], DM-2-OWL [43] and ROSEX [15] are not populating ontology with instances
from the database. Astrova [1], DB2OWL [42], DM-2-OWL [43], RDBToOnto [41],
ROSEX [15], DataMaster [3] and D2R server [4] are not handling the multivalued
attributes appropriately during transformation which can cause loss of information
while integrating into other ontologies.

4https://github.com/InformationIntegrationGroup/Web-Karma-Public
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Engmann et al.[33] proposed technique for instance matching which does
not populate ontology with new instances. Araujo et al. [34] proposed a tool which
links instances without populating ontology. However, Castano et al. [36] developed
a instance based matching component which is used for ontology population but this
is a domain specific approach which cannot be applied in any other domain. The
most related technique is proposed by Knoblock et al. [38] but it does not allow
to extract data from ontologies. It uses relational databases, XML files and CSV
files for data extraction. It requires user intervention for generating mappings which
makes it more time consuming and error-prone task.



Chapter 4

Proposed Methodology

4.1 Introduction

The proposed system has been designed for integrating the institutional repositories
metadata into the semantic web by transforming them into ontology. The proposed
approach extracts the metadata, creates a normalized intermediate database and
transforms it into ontology. After that instances from the generated ontology are
transformed into corresponding data or instances expressed in target ontology. The
classes from both source and target ontologies are extracted and simple mappings
between these classes are generated by the user. Then the individuals of these
mapped classes are matched and proper URIs are given to each individual. These
individuals are linked with their respective VIVO classes. Finally, an RDF, having
VIVO individuals, is generated. The proposed system is divided into three main
modules:

a. Metadata Extraction,

b. Relation to Ontology Transformation

c. Ontology Alignment and Data Translation.

The main components of the system are shown in Figure 4.1. The key inputs and
outputs of these components are shown in Figure .

27



28

Figure 4.1: Main Components of the Proposed System

4.2 Metadata Extraction

In this module a normalized schema of an IR data model and its data is obtained
by extracting metadata from the nested schema of an IR database. This module
comprises three sub-modules as discussed below.

4.2.1 Identification of Data Model (IDM):

DSpace maintains the Data Model (DM) information of an institute in its database.
In this component, data is extracted from DSpace database to identify the specific
DM of an institute. DM contains a set of communities CM and a set of collections
CL and CLiεCL. Every CLi is a set of items Ij. Ij is a basic archival element of
a repository. A community can be a main community CMmi

or a sub-community
CMsi

. So CM is (i) CMm and CMmi
εCMm; and (ii) CM s and CMsi

εCM s. CLi
is subsumed by either CM si

or CMmi
. The detailed procedure is described in Al-

gorithm 4.1. The component extracts the identifier of an item (i.e. document) from
the item table. Then the names of its respective collection and parent communities
are identified. The process is repeated for all the items. In this way the names of
communities, sub-communities and their respective collections are identified.

Let E (DM) denotes the set of all entities of some DSpace data model DM
and EiεE (DM). The category ofEi is identified, such that ∀Ei ε (CMm ∨ CMs ∨ CL ).
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Figure 4.2: Main components of the proposed system with their key inputs and
outputs
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Figure 4.3: Work flow of data model identification

Two properties, hasChild and hasParent, are defined for explaining conditions.
Following rules are used to identify correct category of Ei:

Rule 1: Ei is a main community CMmi
iff (i) Ei is a subsumer and (ii) Ei is not

a subsumee. It means that the entity Ei has no parent but it has child(ren), such
that

EiεCMm ⇐⇒ ¬ (Ei u ∀hasChild.⊥) ∧ (Ei u ∀hasParent.⊥)

Rule 2: Ei is a sub-community CM si
iff (i) Ei is a subsumer and (ii) Ei is also

a subsumee. It means that the entity Ei has both parent and child(ren), such that

EiεCMs ⇐⇒ ¬ (Ei u ∀hasChild.⊥) ∧ ¬ (Ei u ∀hasParent.⊥)

Rule 3: Ei is a collection CLi iff (i) Ei is not a subsumer, (ii) Ei is a subsumee
and (iii) Ei is not an empty set, it contains all items owned by CLi. It means that
the entity Ei has a parent but it has no child(ren), such that

EiεCL⇐⇒ (Ei u ∀hasChild.⊥) ∧ ¬ (Ei u ∀hasParent.⊥) ∧ (Ei 6= ∅)

The detailed process of the component is described in Algorithm 4.1 and
its work flow is shown in Figure 4.2. These identified entities and their relationship
represent the data model of an institute, as shown in Figure 4.8.

4.2.2 Building Schema:

In building of schema (BS), the extracted data model is used for creating the schema
of an intermediate database. Attributes of the intermediate database relations are
extracted from the DSpace Database. Following rules are used for SB:
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Algorithm 4.1 Identifying DSpace Data model
1. START

2. INPUT: DSpace Database

3. VAR : item_ids,parent_communities : ArrayList; exists:Boolean

4. item_ids ← Get item IDs from item table;

5. FOR i ← 0 to i < item_ids.size

6. id ← item_ids[i], col_id ← Get item’s owning Collection ID

7. col_name ← Get Collection Name from collection table

8. exists ← search Item in intermediate database

9. IF item exists in intermediate database THEN

10. i ← i+1; //no need to get its hierarchy, search next item

11. Go to step 6

12. END IF

13. com_id ← Get CommunityID from community2collection table

14. com_name ← Get CommunityName from community table

15. parent_communities ← Get all its Parent Communities

16. Create DataModel using above extracted information

17.END FOR

18.OUTPUT: DSpace Data Model

19.END

Rule 4: A database relation RCMmi
is created for each EiεCMm.

Rule 5: A child relation RCMsi
of respective parent relation RCMmi

is created for
EiεCMs.

Rule 6: If any sub-community CMsj
of CMsi

exists, a child relation RCMsj
of

RCMsi
is created for CMsj

.

Rule 7: A database relation RCLi
is created for each EiεCL. RCLi

is created as a
child relation of its parent entity.

Rule 8: Attributes atts of the relation RCLi
are created from metadata of the item

Ij that is extracted from the contents of the metadatafieldregistry table of DSpace
Database.

The detailed process of the this component is described in Algorithm 4.2
and its work flow is shown in Figure 4.3.
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Algorithm 4.2 Building Schema of Intermediate Database
1. START

2. INPUT: DSpace Database, DSpace Data Model

3. VAR : communities : ArrayList; exists : Boolean;

4. communities ← Get Communities from identified data model

5. FOR i ← 0 to i < communities.size

6. com ← communities[i];

7. exists ← search table in intermediate database

8. IF table exists in database THEN

9. i ← i+1; //search next community name

10. Go to step 6

11. END IF

12. Create table against that community

13.END FOR

14exists ← search table in intermediate database against collection

15.IF table does not exist THEN

16. Create table against that collection

17.END IF

18.metadata_fields ← Get Metadata Fields

19.Create attributes against extracted Metadata Fields

20.OUTPUT: Intermediate Database Schema

21.END

Figure 4.4: Work flow of intermediate database schema building
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Figure 4.5: Work flow of intermediate database population

4.2.3 Populating Intermediate Database:

In populating intermediate database (PID), data is extracted from DSpace database
and populated in the intermediate database by using following rules:

Rule 9: In relations RCMm and RCMs , the extracted item identifier is inserted.

Rule 10: The values of the attributes atts of a relation RCLi
are extracted from

the contents of the table: metadatavalue of DSpace database for each item.

Rule 11: If an attribute is found multivalued, then a weak primary relation RMVi

is created as a child relation of RCMmi
by the BS component in the intermediate

database. PID component populates the new relation with appropriate extracted
data.

Rule 12: If an attribute is found complex attribute1, then a weak secondary
relation RCMVi

is created as a child relation of RCMmi
by the BS component in the

intermediate database. PID component populates the new relation with
appropriate extracted data.

The detailed process of the component is described in Algorithm 4.3 and
its work flow is shown in Figure 4.4.

1An attribute that is both composite and multivalued.
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Algorithm 4.3 Populating Intermediate Database
1. START

2. INPUT: DSpace Database

3. VAR : tables, values : ArrayList; multivalued : Boolean;

4. tables ← Get all tables of intermediate database;

5. FOR i ← 0 to i < tables.size

6. table ← tables[i];

7. values ← Get MetadataValues of the item;

8. FOR j ← 0 to j < values.size

9. value ← values[j];

10. multivalued ← check whether its is Multivalued Attribute

11. IF it is multivalued attribute THEN

12. Call SchemaBuilding module to create table

13. END IF

14. Insert extracted data in the table

15. END FOR

16.END FOR

17.OUTPUT: Intermediate Database

18.END

4.3 Relation to Ontology Transformation

In this module, the intermediate database is transformed into ontology by using
basic translation rules. Let R represents the relations where RiεR, X represents the
total attributes of the relation Ri and Y represents the non-key attributes of the
relation Ri. The following rules are used for this transformation:

Rule 1: For a relation Ri, an ontology class Ci is created, if any of the following
conditions satisfied (i) Ri does not contain any foreign key FKi, and (ii) the
primary key of Ri does not contain key of any other relation, such that
PKi u FKi = ∅.

Rule 2: If two relations Ri and Rj have their primary keys linked with a foreign
key constraint (PKi = FKi), they are mapped to two OWL classes Ci and Cj
respectively, the one being a super-class of the other. rdfs:subClassOf is added to
respective class.

Rule 3: OWL class Ci is created for a relation Ri and rdfs:subClassOf is added, if
it fulfills the following criteria (i) FKi ⊂ PKi means the primary key of Ri is a
composite key and contains key(s) of any other relation(s); and (ii) ∃Y εX − PKi

means Ri has non-key attributes.
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Figure 4.6: Work flow of relation to ontology transformation

Rule 4: OWL class is not created for Ri, if it fulfills the following criteria (i)
FKi ⊂ PKi means the primary key of Ri is a composite key and contains key(s) of
any other relation(s); and (ii) | X − PKi |= 0, it means Ri has not any non-key
attribute. The primary key of Ri which is not a foreign key is mapped to a
DatatypeProperty and added to the class which has been created for its parent
relation. The primary key of Ri which is also a foreign key is discarded as it has
already been mapped to the functional DatatypeProperty in the parent relation.

Rule 5: An OWL DatatypeProperty Pi is created for non key attribute att of a
relation Ri.

Rule 6: A functional DatatypeProperty Pi with minCardinality restriction of 1 is
created for primary key attribute PKi of a relation Ri.

Rule 7: For each foreign key FKi of a relation Ri, an ObjectProperty Pi is
created. Let a relation Ri (i.e. child relation) refer to a relation Rj (i.e. parent
relation) and Ci and Cj are their corresponding classes. The domain of
ObjectProperty is specified as Domain of Pi = Ci and the range is specified as
Range of Pi = Cj and allValuesFrom restriction is applied to the property.

Rule 8: For every tuple Ri [ti], the value of an attribute att maps to a value of the
property Pi.

The detailed process of the module is described in Algorithm 4.4 and main
work flow of this transformation is shown in Figure 4.5.
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Algorithm 4.4 Relation to Ontology Transformation
1. START

2. INPUT: Intermediate Database

3. VAR : entities, attributes : ArrayList<String>; entity, att, parent_entity : String; i, j : Integer;

4. entities ← IdentifyEntities();

5. FOR i ← 0 to i < entities.size

6. entity ← entities[i];

7. attributes ← GetAttributes(entity);

8. FOR j ← 0 to j < attributes.size

9. att ← attributes[j];

10. IF att is Primary Key THEN

11. Create FunctionalDatatype Property

12. ELSE IF att is Foreign Key THEN

13. Create FunctionalObject Property

14. ELSE

15. Create Datatype Property

16. END IF

17. value ← GetAttributeValue(att);

18. Create Class Instance

19. END FOR

20. IF PrimaryKey is linked with ForeignKey constraint THEN

21. parent_entity ← Get Parent Entity

22. Add subClassOf <parent_entity> Property

23.END FOR

24.OUTPUT: Ontology

25.END
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4.4 Ontology Alignment and Transformation

In this module, an RDF has been generated which contains the individuals of VIVO
ontology classes. This module takes two ontologies as its input, one is the source
ontology which is generated from the DSpace database and another is VIVO ontology
(i.e. target ontology). The classes from both ontologies are extracted and simple
mappings between these classes are generated by the user. Then the individuals of
these mapped classes are matched and proper URIs are given to each individual.
These individuals are linked with their respective VIVO classes. Finally, an RDF,
having VIVO individuals, is generated. This module comprises three sub-modules
as discussed below.

4.4.1 Resource Mappings (RM)

The mapping process only produces a set of correspondings without modifying the
ontologies which is then used for ontology alignment and merging.

Definition 1: Given two ontologies O1 (i.e., source ontology) and O2 (i.e.,
target ontology). RM generates an alignment A between the concepts of these two
ontologies. Let C1 and C2 be the concepts of O1 and O2 respectively such that
C1i ε C1 and C2j ε C2. A is a pair of (C1i, C2j) which means that C1i ≡ C2j.

System extracts all the classes (i.e. C1, C2) from both source and target
ontologies (i.e. O1 and O2 respectively). User selects appropriate classes & system
generates simple alignment between the concepts of generated ontology O1 and the
VIVO ontology O2.

4.4.2 Instance Matching (IM)

In this step, system attempts to match the instances of mapped concepts by using
generated alignment A.

Definition 2: Let instance matching (IM) is a triple (I1k, I2l, R), where I1k ε I1
and I1 are the instances of C1i, I2l ε I2 and I2 are the instances of C2j and R is
a relation between instances I1k and I2l. R is taken from the set {≡, ⊥, } for
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equivalence and disjointness respectively. IM gives I1k the same URI as I2l, if
(I1k, I2l, ≡).

System compares the instances I1 of C1i with the existing instances I2 of
C2j. If I1k matched with I2l, then it means that these two instances are equivalent.
Therefore, it creates the triple (I1k, I2l, ≡) which shows that I1k ≡ I2l. Then
I1k is given the URI of the I2l, which identifies the two as the same instance. For
example, I1k is an instance of author class (i.e., C1i) which is mapped to the person
class (i.e., C2j). C2j has the same author (i.e., I2l). Therefore, instead of creating
new instance of C2j, the URI of I2l has been given to I1k.

If I1k is not matched with any instance of C2j, then it means that these
two instances are disjoint. Therefore, it creates the triple (I1k, I2l, ⊥) which shows
that I1k⊥I2l. Then, Resource Linkage (RL) process gives a proper VIVO URI to
I1k.

4.4.3 Resource Linkage (RL)

In this step, system gives a proper VIVO URI to all unmatched instances and links
the new data with existing data in VIVO.

Definition 3: Let instance matching is a triple (I1k, I2l, R), where I1k ε I1 and
I1 are the instances of C1i, I2l ε I2 and I2 are the instances of C2j and R is a
relation between instances I1k and I2l. R is taken from the set {≡, ⊥, } for
equivalence and disjointness respectively. RL creates new instances of C2j,
∀ (I1k, I2l, ⊥) and links them with the existing data.

If I1k is not matched with any instance of C2j, RL process gives a proper
VIVO URI to I1k. URIs are arbitrarily generated by the system according to VIVO
Namespace. System compares these URIs with the URIs already in VIVO and
provides surety about their uniqueness. After that system links the new data with
existing data in VIVO.

For example, I1k is an instance of Publication class (i.e., C1i) which is
mapped to the Conference Paper class (i.e., C2j). I1k does not already exist in
C2j, RL process gives a proper VIVO URI to I1k and checks whether the author of
I1k already exists in person class (i.e., C2j). If the author (i.e. I2l) already exists
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Figure 4.7: Work flow of ontology alignment and data translation

in C2j, then RL process links publication I1k with author I2l by vivo:linkedAuthor
property. In this way an existing individual in VIVO can have more data added to
it. For example, new publication can be linked to existing author or an organization
can have more sub or super organizations added to it, etc. The rank of every author
has also been maintained properly. Complete class hierarchy has been maintained
by identifying and linking super and sub-classes. For example, when system maps
a new organization, it extracts full organizational hierarchy from source ontology to
sort out its super and sub-organizations. vivo:subOrganizationWithin property has
been added to respective class.

At the end of this module, system creates an RDF that contains individuals
in VIVO format. After this step all data has a proper VIVO URI and is ready for
import into VIVO. The main activities and processes of this module is shown in
Figure 4.7.

4.5 Walkthrough Example

A DSpace data model of an institute, shown in Figure 4.8, is considered as an
example to demonstrate the proposed system. The data model contains one main
community, eight sub-communities, ten collections and One hundred items. The
relevant relations of DSpace database schema is shown in Table 4.1. The schema
illustrates that DSpace database maintains the data model information in auxiliary
relations. The contents of the relations are used for the creation of the intermediate
database of a specific data model of an institute.
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Figure 4.8: DSpace data model of an institute

Table 4.1: A relevant portion of DSpace Database Schema

Relation Foreign Key
item (item_id, submitter_id, in_archive ,
withdrawn, owning_collection)

owning_collection referring to collection_id
in collection

collection (collection_id, name,
short_description, submitter)

Nil

community2collection (id, community_id,
collection_id)

community_id referring to community_id in
community, collection_id referring to
collection_id in collection

community (community_id, name,
short_description)

Nil

community2community (id,
parent_comm_id, child_comm_id)

parent_comm_id and child_comm_id
referring to community_id in community

metadatafieldregistry (metadata_field_id,
element, qualifier, scope_note)

Nil

metadatavalue (metadata_value_id,
item_id, metadata_field_id, text_value)

item_id referring to item_id in item,
metadata_field_id referring to
metadata_field_id metadatafieldregistry
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Figure 4.9: Identified Data Model after applying DMI process

4.5.1 Metadata Extraction

In the first module of the system, an intermediate database is created. This work is
done in three steps. Figures 4.9, 4.10 and 4.11 illustrate these steps. Each figure is
divided into two parts, the left side of a figure depicts the schema of DSpace database
and the right side represents corresponding extracted information. In these figures
rectangles and ellipses represent relations and their attributes respectively. The
values of their respective attributes are represented by arrays.

In the first step, all items are extracted and then for every item its owning
collection and parent communities are identified. The step is demonstrated graph-
ically in Figure 4.9. For example, an item having item_id 21 is extracted. After
that its corresponding collection having collection_id 12 is extracted, the name
of this collection: Conference Proceedings is identified. Conferenc Proceedings
is appeared in Publications community and Publications is identified as a sub-
community of Dept. of computing which is contained in community: SEECS. The
identified attribute values build a hierarchy of the data model as shown in Figure
4.9. The procedure is repeated for all the items and finally the complete data model
is identified as shown earlier in Figure 4.8.

In the second step, an intermediate database schema is created for identified
data model using the extracted information. Database relations are created for every
collection, community and sub-community; and multivalued attribute if exists. This
step is demonstrated graphically in Figure 4.10. A relation, conference_proceedings,
has been created for the identified collection name Conference Proceedings in the
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Figure 4.10: Extracted intermediate schema after applying Schema Building rules

Figure 4.11: Intermediate Database after Schema Population

intermediate database. Attributes of this relation are extracted from the DSpace
database table: metadatafieldregistry. In order to extract attributes, first of
all identifiers of metadata fields, i.e. metadata_field_id are extracted from the
metadatavalue table for all items. The values ofmetadata_field_id, (i.e.3, 3, 3, 39, 64)
are extracted from the metadatavalue table for item having identifier: item_id
21. The corresponding attributes for these identifiers are extracted from table:
metadatafieldregistry. In the extracted identifier values, 3 is repeating three
times. The qualifier for metadata_field_id value 3 is author. So author is con-
sidered as a multivalued attribute and thus a separate relation is created for this
attribute. The same process is repeated for all the identifier values. However they
are not multivalued, so they are considered as attributes of the created relation:
conference_proceedings.
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Figure 4.12: Generated Relational Database of above DSpace Structure

In the final step, item metadata is extracted from the DSpace database and
populated in the intermediate database. The graphical illustration of the step is
shown in Figure 4.11. On the right side of the figure, the created two relations:
author and conference_proceedings are shown. The values of their attributed are
extracted from DSpace database table: metadatavalue. The corresponding values
of the attributes: name, publisher, and title (i.e. Humaira Farid, Sharifullah Khan,
Younas Javed, IJCSEA, Data Exchange) are extracted through the identified values
of metadata_field_id, (i.e.3, 3, 3, 39, 64) in table metadatavalue. After applying
the first module of the system on this example, an intermediate database, having
23 relations (tables), is created as shown in Figure 4.12.

4.5.2 Relation to Ontology Transformation

In the second module, an ontology is created against the intermediate database
by using transformation rules, defined in Section 4.3. The ontology created for
the given DSpace data model is shown in Figure 4.13. In this ontology, OWL
class seecs_5 has been created for the main community SEECS, and sub-classes
are created for every sub-community, collection and multivalued attributes, such
as dept_of_computing_7, conference_proceedings_12 and author_seecs respec-
tively. A functional datatype property has been created for the primary key (i.e., id)
of the intermediate database relation seecs_5. Similarly functional object property
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Figure 4.13: Graphical representation of the generated ontology

with cardinality restriction 1 has been created for the foreign key (i.e., id) that is
also defined as a primary key in table dept_of_computing_7. Since primary key
is linked with a foreign key constraint (i.e., PK=FK), so dept_of_computing_7
has been made as a sub-class of seecs_5.

4.5.3 Ontology Alignment and Data Translation

In last module, instances from created ontology is translated into corresponding data
or instances expressed in VIVO ontology. The RDF is generated which contains the
individuals of VIVO ontology classes. This RDF is then imported into VIVO. This
work has been done in four steps. In the first step, all the classes from both source
and target ontologies are extracted. Then user selects appropriate classes from
both ontologies and system generates simple mappings between these classes. For
example, following mappings are generated:

• author → Person

• dept. of computing → AcademicDepartment

• conference proceedings → ConferencePaper

Here, an author class is mapped on the person class. dept. of computing is mapped
on the AcademicDepartment class which is sub-class of Organization in VIVO ontol-
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Figure 4.14: Example of Ontology Mapping

ogy. conference proceedings is mapped on ConferencePaper which has three super-
classes, Article, Document and InformationResource. Example is shown in Figure
4.14.

In the second step, instances of the mapped classes are matched. If the
individual already exists, then the matched input is given the same URI as the
individual in VIVO matching it. For example, conference paper has an author:
Humaira Farid. This name has been searched in the Person class. VIVO person
class has an individual having the same name. System gets URI of that individual
which is http://localhost:8080/vivo/individual/n3119. That author is given the same
URI. and corresponding publication has been added and linked to that author.

In the third step, a proper VIVO URI has been given to all unmatched data.
The matched input entities that are compared in Instance Matching process are then
linked with the new data. For example, according to the VIVO Namespace, system
generated new VIVO URI for conference paper which is http://localhost:8080/vivo/individual/n17460.
dept. of computing is given the URI: http://localhost:8080/vivo/individual/n16164 ,
and added as the sub-organization of SEECS. After that, this paper has been linked
with its authors and corresponding organization. This paper has three authors:
Humaira Farid, Sharifullah Khan and Muhammad Younus Javed, having URIs
http://localhost:8080/vivo/individual/n3119, http://localhost:8080/vivo/individual/n6613
and http://localhost:8080/vivo/individual/n6616 respectively. The corresponding
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<rdf:Description rdf:about="http://localhost:8080/vivo/individual/n13120">
<vivo:authorRank rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</vivo:authorRank>
<vivo:linkedInformationResource rdf:resource="http://localhost:8080/vivo/individual/n17460"/>
<vivo:linkedAuthor rdf:resource="http://localhost:8080/vivo/individual/n3119"/>
<rdf:type rdf:resource="http://vivoweb.org/ontology/core#Authorship"/>

</rdf:Description>
<rdf:Description rdf:about="http://localhost:8080/vivo/individual/n17352">
<vivo:authorRank rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</vivo:authorRank>
<vivo:linkedInformationResource rdf:resource="http://localhost:8080/vivo/individual/n17460"/>
<vivo:linkedAuthor rdf:resource="http://localhost:8080/vivo/individual/n6613"/>
<rdf:type rdf:resource="http://vivoweb.org/ontology/core#Authorship"/>

</rdf:Description>
<rdf:Description rdf:about="http://localhost:8080/vivo/individual/n13611">
<vivo:authorRank rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</vivo:authorRank>
<vivo:linkedInformationResource rdf:resource="http://localhost:8080/vivo/individual/n17460"/>
<vivo:linkedAuthor rdf:resource="http://localhost:8080/vivo/individual/n6616"/>
<rdf:type rdf:resource="http://vivoweb.org/ontology/core#Authorship"/>

</rdf:Description>
<rdf:Description rdf:about="http://localhost:8080/vivo/individual/n18098">
<vivo:linkedInformationResource rdf:resource="http://localhost:8080/vivo/individual/n17460"/>
<vivo:linkedAuthor rdf:resource="http://localhost:8080/vivo/individual/n16164"/>
<rdf:type rdf:resource="http://vivoweb.org/ontology/core#Authorship"/>

</rdf:Description>

Figure 4.15: Individual entities for every linked author in RDF

<rdf:Description rdf:about="http://localhost:8080/vivo/individual/n17460">
<rdfs:label>Data Exchange</rdfs:label>
<vivo:informationResourceInAuthorship rdf:resource="http://localhost:8080/vivo/individual/n13120"/>
<vivo:informationResourceInAuthorship rdf:resource="http://localhost:8080/vivo/individual/n17352"/>
<vivo:informationResourceInAuthorship rdf:resource="http://localhost:8080/vivo/individual/n13611"/>
<vivo:informationResourceInAuthorship rdf:resource="http://localhost:8080/vivo/individual/n18098"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
<rdf:type rdf:resource="http://vivoweb.org/ontology/core#InformationResource"/>
<rdf:type rdf:resource="http://purl.org/ontology/bibo/Document"/>
<rdf:type rdf:resource="http://purl.org/ontology/bibo/Article"/>
<rdf:type rdf:resource="http://vivoweb.org/ontology/core#ConferencePaper"/>

</rdf:Description>

Figure 4.16: Publication with corresponding linked entities in RDF

organization is dept. of computing having URI http://localhost:8080/vivo/individual/n16164.
For every author separate entity is added in which publication, organization and au-
thors are linked with each other.

In the last step, an RDF having VIVO individuals are generated. For ex-
ample, Figure 4.15 shows the separate individual entities for every linked author in
RDF. New conference paper has been added and linked with corresponding entities
as shown in Figure 4.16.



Chapter 5

System Design and Implementation

5.1 Introduction

In this chapter, the details of design and implementation of the proposed system
are discussed. In design, different classes are created. These classes represent the
functions and attributes which are used in implementation. The implementation
has been started by extracting an IR metadata which is then transformed into
ontology. Ontology has been created using Jena-2.6.4 Ontology API. Then instances
of that ontology are matched and translated into the VIVO ontology. A front end
application has been developed in NetBeans IDE 7.1.2 for the implementation of
the system.

5.2 Design and Implementation

The design model is the refinement of requirement model with respect to the im-
plementation environment. The most important part of design model is to define
all the objects and classes in the system. Class diagram is used to represent the
different relationship among different classes as shown in Figure 5.1.

This section presents prototype for the proposed system and underlines
following three major components.

a. Metadata Extraction

47
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Figure 5.1: Class Diagram
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Figure 5.2: Sequence Diagram for Data Model Identification

b. Relation to Ontology Transformation

c. Ontology Alignment and Data Translation

Detail of each component and subsequent sub components are given below. The de-
scription will cover the challenges faced during the implementation of these modules.

5.2.1 Metadata Extraction

In this module a normalized schema of an IR data model and its data is obtained
by extracting metadata from the nested schema of an IR database. The System
has been implemented using Java language. This component has been divided into
three sub components.

a. Identification Data Model (IDM)
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Figure 5.3: Sequence Diagram for Schema Building

b. Building Schema (BS)

c. Population of Intermediate Database (PID)

Sequence diagrams are used to represent the sequence of activities of each compo-
nent. A sequence diagram is a kind of interaction diagram which shows interaction
among processes and the order in which they interact with each other.

First of all a data model of an institutional repository (IR) is identified.
For that purpose, the identifier of an item is extracted from the item table. Then
the names of its respective collection and parent communities are identified. The
process is repeated for all the items. The sequence diagram shown in Figure 5.2,
depicts the sequence of messages exchanged between the objects required to identify
the data model of an IR. In this way the names of communities, sub-communities
and their respective collections are identified. These identified entities and their
relationship represent the data model of an institute.

Secondly, the extracted data model is used for creating the schema of an
intermediate database. Attributes of the intermediate database relations are ex-
tracted from the DSpace Database. The sequence diagram for building the schema
of intermediate database is shown in Figure 5.3.
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Figure 5.4: Sequence Diagram for Intermediate Database Population

In the final step, data is extracted from DSpace database and populated in
the intermediate database, the detailed process is shown in Figure 5.4.

5.2.2 Relation to Ontology Transformation

The intermediate database is the transformed into ontology. Jena Ontology API is
used for creating ontology. Jena is an open source Java API. This API is used to
create and manipulate RDF graphs. Object classes are used to represent graphs,
properties, resources, and literals. In Jena, a graph is called a model and is repre-
sented by the Model interface.

The sequence diagram shown in Figure 5.5, depicts the objects and classes
involved in this transformation and the sequence of messages exchanged between
the objects required to carry out the functionality of this scenario.

5.2.3 Ontology Alignment and Data Translation

Created Ontology is then mapped and merged into the VIVO Ontology. VIVO is
storing data in MySQL database by using Jena SDB, but it is not in a relational for-
mat so it cannot be easily browsed or queried using SQL tools. SDB is a component
of Jena for RDF storage and it also supports SPARQL queries. VIVO stores all of its
triples in named graphs. The quads table is where it stores these triples, along with
a column indicating what named graph each triple is stored in. The values in the
quads table key into the nodes table. Attempting to write to the database directly
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Figure 5.5: Sequence Diagram for Relation to Ontology Transformation
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Figure 5.6: Sequence Diagram for Resource Mapping

or querying it is cumbersome and it requires knowledge and expertise is writing
SPARQL queries. VIVO has been queried by using the Jena Model API with SDB.
SDB 1.3.3 library is used in implementation. SDB loads and queries data based on
the unit of a Store. The Store object has all the information for formatting, loading
and accessing an SDB database. One database or table space is one Store. Store
objects are made via the static method of the StoreFactory class. SDBConnection
wraps the underlying database connection, as well as providing logging operations.
The SDBFactory is used to create Jena Model backed by an SDB store.

For that purpose, classes from both ontologies are extracted and mappings
are generated. After that, instances of mapped classes are matched and proper
URIs are assigned to every matched and unmatched instances. Instances are linked
with each other and RDF in VIVO format is generated which is then imported into
VIVO. This component is divided into three sub components:

a. Resource Mapping

b. Instance Matching

c. Resource Linkage

In first step, system extracts all the classes from both source and target jena models.
User selects appropriate classes and system generates simple mappings between the
generated ontology and the VIVO ontology, the detailed procedure is shown in
Figure 5.6.
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Figure 5.7: Sequence Diagram for Instance Matching

In the second step, system attempts to match incoming data with data al-
ready in VIVO. System evaluates the information against the existing VIVO system
looking for links and equivalent entities. It compares the individuals of mapped
classes. If the individual already exists, then the matched input is given the same
URI as the individual in VIVO matching it. The sequence diagram for this step is
shown in Figure 5.7.

In the final step, system gives a proper VIVO URI to all unmatched data.
URIs are arbitrarily generated by the system. System compares these URIs with the
URIs already in VIVO and provides surety about their uniqueness. After that the
matched input entities that are compared in Instance Matching process, are linked
with the new data. Complete class hierarchy has been maintained by identifying
and linking super and sub-classes. In this way an existing individual in VIVO can
have more data added to it. For example, new publication can be linked to existing
author or an organization can have more sub or super organizations added to it, etc.
The sequence diagram for this step is shown in Figure 5.8.
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Figure 5.8: Sequence Diagram for Resource Linkage



Chapter 6

System Evaluation

6.1 Introduction

In this chapter, the results of the proposed system are evaluated. First the opera-
tional goals of the proposed transformation system are explained then the specifica-
tions of the data sets are provided. These data sets are used for the evaluation of the
proposed system. Later, it is prove that the transformation is information capacity
preserving and correct by comparing it with existing techniques. The chapter is
important because it verifies the correctness of the proposed system.

6.2 Transformation Process and its Evaluation

In transformation systems, correctness is based on information capacity. A correct
and lossless transformation ensures that all data in a source model is represented in
the target model. The evaluation criteria for the lossless and correct transformation
is defined:

a. Preservation of information capacity: This criterion finds out whether
the source model (i.e., relational database) is completely transformed into the
target model (i.e., ontology).

b. Correct identification and transformation of data: The correctness of
the transformation is evaluated by this criterion. It is significant to find the
quality of the built ontology.
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6.2.1 Operational Goals

Every transformation system has different goals and operational requirements which
should be identified explicitly. These goals should be analyzed carefully to check the
correctness of the system and to prevent from occasional errors and misconceptions.
Therefore, a collection of operational goals are identified for developing correctness
criteria. Table 6.1 shows the main operational goals that are defined for measuring
the quality and correctness of the generated ontology. G2, G4 and G7 are the most
important rules in defined case. G2 is related to the preservation of DSpace data
model hierarchy, this goal is important to identify the complete hierarchy of DSpace
item. G4 emphasis on the use of multivalued property rules. According to these
rules, a relation that has not any non-key attribute and has a composite primary
key containing a foreign key referencing a parent relation should be translated to
a datatype property with domain the class that corresponds to the parent relation.
In the proposed transformation G4 is also important because if it is not achieved
then it can cause a loss of information while populating VIVO with generated on-
tology instances. The generated ontology must be populated with instances from
the database, therefore, it also important to achieve G7. The several transforma-
tion techniques are examined which have been proposed in the literature. Table
6.2 shows the different techniques and the goals which they identified and achieved.
Table 6.2 shows that only proposed system has achieved all the identified operational
goals which proved that the correctness criteria has been achieved by the proposed
system. In the next sections, the correctness and accuracy of the proposed system
has been proved through (i) mathematical proof, (ii) experimental results and (ii)
comparison of results with gold standard ontology and also with existing systems.

6.2.2 Data Sets Specifications

For the evaluation of of the proposed system, three data sets are used:

a. Data Set from DSpace@MIT:Massachusetts Institute of Technology (MIT)
is a private research university located in Cambridge, Massachusetts, United
States. Institutional repository is built at MIT for preserving, sharing, and
searching digital research materials. Some portion of MIT’s DSpace database
is harvested for evaluation purpose. This data set includes 3 main communi-
ties, 10 sub-communities, 18 collections and 2,242 items. These items contain
37,032 metadata values.
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Table 6.1: The main operational goals

Gaol Description

G1: Building standard ontology by using
default heuristic rules

Some default rules are used for building
ontology (i.e., an OWL class for every relation,
OWL datatype properties for non-foreign key
attributes, OWL object properties for foreign
key attributes and respective OWL class
individual for a relation tuple).

G2: Preserving DSpace data model
hierarchy

Hierarchy rules are used to preserve the DSpace
data model. Such rules identify hierarchies of
classes in the relational schema. rdfs:subClassOf
is added to respective class.

G3: Handling weak entities properly
during transformation

These rules are used to identify weak entities
and their corresponding owner entities. Such
relations are still mapped to OWL classes.

G4: Handling multivalued attributes
properly during transformation

These rules are used to identify relations that
act as multivalued attributes. This kind of rules
often assume that a relation that has a
composite primary key containing a foreign key
referencing a parent relation can be translated
to a datatype property with domain the class
that corresponds to the parent relation.

G5: Exploiting additional schema
constraints

These constraints include restrictions on not null
and unique attributes and domain constraints.
These are usually mapped to appropriate OWL
cardinality axioms and global (rdfs:range
axioms) or local universal quantification axioms
(e.g. an owl:allValuesFrom axiom).

G6: Defining correspondences between
SQL datatypes and XML Schema Types

These rules are used to define correspondences
between SQL datatypes and XML Schema
Types, which are typically used as datatypes in
RDF and OWL.

G7: Populating ontology with instances
from the database

Created ontology is populated with instances
from the database.
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Table 6.2: Goals fulfilled by different approaches

Approach Goals

G1 G2 G3 G4 G5 G6 G7

Astrova (2007) [1] √ √ √ -
√

- √

DB2OWL [42, 44] √ √ - -
√ √ √

DM-2-OWL [43] √ √ - -
√ √ -

R2O [19] √ √ √ √ √
- -

RDBToOnto [41] √ √ - - - - √

ROSEX [15] √ √ √ - - - -

Data Master [3] √ - √ - - √ √

D2R Server [4] √ - √ - - - √

Proposed System √ √ √ √ √ √ √

b. Data Set from DSpace@SEECS: NUST School of Electrical Engineering
and Computer Science (SEECS) built institutional repository (SEECS-IR).
SEECS-IR is a digital archive of intellectual outputs created by its community
(students, faculty members, and research associates) working in academia and
different research projects. Initially they have archived reports of final year
projects of undergraduate students and theses/dissertations of postgraduate
students. The complete DSpace database is used for the evaluation of the pro-
posed system. This data set contains 1 main community, 14 sub-communities,
12 collections and 533 items. These items contain 10,132 metadata values.

c. Example Data Set: DSpace has been installed on local machine for the
testing purposes. This data set has been used as a walk through example for
explaining the proposed system. This data set contains 1 main community,
8 sub-communities, 10 collections and 100 items. These items contain 1,679
metadata values.

6.3 Mathematical Proof

On the basis of information capacity, the correctness of the proposed system is
evaluated. The mappings which preserves information capacity should completely
transform the source model into the target model. This target model should be
reversible so that it can be transformed back to the original source model [45]. The
following definitions have been taken from [45]:

Definition 1: Let A and B be sets. A mapping (binary relation) f : A→ B is
functional if for any a εA there exists at most one b εB such that f(a) = b;
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injective, if its inverse is functional; total, if it is defined on every element of A;
and surjective (onto) if its inverse is total. A functional, injective, total,
surjective mapping is a bijection.

Definition 2: An information capacity preserving mapping between the instances
of two schemas S1 and S2 is a total, injective function f : I(S1)→I(S2).

Definition 3: S2 dominates S1 through f , iff f : I(S1)→I(S2) is an information
capacity preserving mapping, such that S1� S2.

In the proposed system, DSpace database is a source model and ontology is
the target model. In the context of different transformation and integration tasks,
Miller et al. [45] identified a set of operational goals. According to these goals, the
operational goal of the proposed system is:

The target model (i.e., ontology) can be used to query and view the
source model (i.e., relational database).

To achieve this goal, a total function f : I(S1)→I(S2) is needed as defined above,
but it is also needed that f must not lose any information. An instance of S1

should uniquely determine an instance of S2, i.e., f should also be injective so that
its inverse f−1 is well defined. Therefore, f must be an information capacity
preserving mapping for achieving this goal, therefore, S1� S2.

6.3.1 Lemmas

Five lemmas are provided to show that the transformation is information capac-
ity preserving and is correct by adopting the evaluation technique of [45]. Before
defining the lemmas, some notations and concepts are defined which are used in
evaluation.

• Let T be a transformation, S1 be a source schema (i.e., DSpace database) and
S2 be a target schema (i.e., ontology). For transforming DSpace database into
Ontology, an intermediate database has been used so T is divided into two sub
transformations, T1 and T2. T1 is in charge of creating intermediate database
D from S1. T2 is responsible for transforming D into S2.
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• Let CMm, CMs, CL be sets which represent main communities, sub-communities
and collections of DSpace data model DM respectively. Let CLi be a set of
items owned by this collection.

• CLi = {Ij : Ij is an item owned by CLi}

• CL = {CLi : CLi is a collection}

• CM s = {CMsi
: CMsi

is a sub− community}

• CMm = {CMmi
: CMmi

is a main community}

• Only those communities, sub-communities and collections are transformed
which have items because if they do not have any item then there is no need
to create ontology classes without instances.

6.3.1.1 Lemma 1

Let E (DM) denotes the set of all entities of some DSpace data model DM and
Ei εE (DM). The categories of the entities are identified by the classification im-
posed on E (DM) by T1 . These categories are correct iff

∀Ei ε (CMm ∨ CMs ∨ CL )

Proof: T1 divides the E (DM), such that each entity Ei falls exactly into one
category. Two properties, hasChild and hasParent, have been defined for
explaining the conditions. Following cases are used to identify correct category of
Ei:

Case 1: Ei ε CMm ⇐⇒ ¬ (Ei u ∀hasChild.⊥ ) ∧ (Ei u ∀hasParent.⊥ )

Description: Ei is a CMmi
iff (i) Ei is a subsumer and (ii) Ei is not a

subsumee. It means that the entity Ei has no parent but it has child(ren).

Case 2: Ei ε CMs ⇐⇒ ¬ (Ei u ∀hasChild.⊥ ) ∧ ¬ (Ei u ∀hasParent.⊥ )

Description: Ei is a CM si
iff (i) Ei is a subsumer and (ii) Ei is also a

subsumee. It means that the entity Ei has both parent and child(ren).
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Figure 6.1: Lemma 1: Classification of Data Model entities

Case 3:
Ei ε CL⇐⇒ (Ei u ∀hasChild.⊥ ) ∧ ¬ (Ei u ∀hasParent.⊥ ) ∧ (Ei 6= ∅)

Description: Ei is a collection CLi iff (i) Ei is not a subsumer, (ii) Ei is a
subsumee and (iii) Ei is not an empty set, it contains all items owned by CLi. It
means that the entity Ei has a parent but it has no child(ren). Therefore, this
entity is a collection and it contains items.

Figure 6.1 shows the DSpace Data Model DM of the institute. It contains
19 entities and each entity falls exactly into one category. E1 has no parent but
it has children so it is main community CMm. Eight entities E2 − E9 have both
parents and children so these are sub-communities CM s. Remaining ten entities
E10 − E19 have parents but no children so these are collections CL. Therefore, the
categories are identified by the classification imposed on E (DM) by T1. So Ei is in
one of the categories induced by T 1.

6.3.1.2 Lemma 2

Relations R of intermediate database D are created and populated by T 1. T 1 is
correct and information capacity preserving transformation iff

a. primary relations RCMm of D are created for ∀Ei ε CMm, such that RCMm ⊆ R

b. subtype relations RCMs of D are created for ∀Ei ε CMS
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(a) Lemma 2(a): Primary relation for
main community

(b) Lemma 2(b): Subtype relations for sub-communities

(c) Lemma 2(c): Subtype relations for collections

Figure 6.2: Lemma 2: Intermediate database relations for DSpace entities

c. subtype relations RCL of D are created ∀Ei ε CL, and tuples of RCLi
are cre-

ated ∀Ii ε CLi

Therefore, RCMm t RCMs t RCL = R

Proof: This part of the transformation is total because

a. RCMmi
is created as a primary relation of intermediate database for each entity

Ei which comes under the category of main community. RCMmi
is a primary

relation because the primary key of this relation does not contain key of any
other relation. Therefore, ∀FKi ⊆ FK, ¬(FKi ⊂ PKi).

b. RCMsi
is created as a subtype relation of intermediate database for each entity

Ei which comes under the category of sub-community. RCMsi
is a subtype

relation because the primary key of RCMsi
is a foreign key of parent relation

such that PKi = FKi.
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c. RCLi
is created as a subtype relation of intermediate database for each entity

Ei which comes under the category of collection. The primary key of RCLi
is

a foreign key of parent relation such that PKi = FKi therefore these relations
are the subtype relations of the intermediate database. Attributes of the RCLi

are created for all non-multivalued metadata fields of item I i, which is owned
by CLi. Metadata values of these fields are mapped to the corresponding
attributes.

The relations of intermediate database are created for each DSpace entity, the ex-
ample is shown in Figure 6.2. There is only one main community so one primary
relation has been created (i.e., shown in Figure 6.2a). Eight subtype relations are
created for sub-communities and ten subtype relations are created for collections
(i.e., shown in Figure 6.2b and Figure 6.2c respectively).

The transformation is also injective since its inverse maps:

• all primary relations RCMm which do not have any parent relation back to
original main communities of DM ,

• all subtype relations RCMs which also have any subtype relation RCL back to
original collections of DM , and

• all subtype relations RCL which do not have any subtype relation RCL back
to original collections of DM and all non-multivalued metadata fields of item
I i along their values back to their original S1 tuples because proper hierar-
chy of collections, and all attributes along their values are maintained by the
transformation.

Therefore, this part of transformation is proved to be total and injective.

6.3.1.3 Lemma 3

Let A(Ij) denotes the set of multivalued attributes of item Ij. A(Ij) is further
divided into two subsets AC(Ij) and AS(Ij) which represent the set of complex at-
tributes and simple multivalued attributes respectively such that AC(Ij) ⊆ A(Ij)
and AS(Ij) ⊆ A(Ij). Here ACi

εAC(Ij) and ASi
εAS(Ij). T 1 is a correct transfor-

mation iff

a. weak primary relations Rcmv are created ∀ACi
ε Ij
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b. weak secondary relations Rsmv are created ∀ASi
ε Ij

Proof: This part of the transformation is total because

a. Rcmvi
is created as a weak primary relation of intermediate database for each

attribute ACi
which is a complex attribute of item Ij. Let X represents the

total attributes of the relation Rcmvi
and Y represents the non-key attributes.

Rcmvi
is a weak primary relation because it fulfills the following criteria (i) the

primary key of relation contains key of other relation, and (ii) the relation has
non-key attributes. Therefore, FKi ⊂ PKi ∧ ∃Y εX −PKi. Therefore, these
relations are the weak primary relations of intermediate database.

b. Rsmvi
is created as a weak secondary relation of intermediate database for

each attribute ASi
which is a simple multivalued attribute of item Ij. Let

X represents the total attributes of the relation Rsmvi
and Y represents the

non-key attributes. Rsmvi
is a weak primary relation because it fulfills the

following criteria (i) the primary key of relation contains key of other relation,
and (ii) the relation has not any non-key attribute. Therefore, FKi ⊂ PKi ∧ |
X − PKi |= 0. Therefore, these relations are the weak secondary relations of
intermediate database.

The transformation is also injective since its inverse, maps all weak primary relations
Rcmv and weak secondary relations Rcmv back to their original S1 tuples because all
attributes along their values are maintained by the transformation. Therefore, it is
concluded that this part of transformation is both total and injective, thus, it is
information capacity preserving transformation.

6.3.1.4 Lemma 4

Given the intermediate databaseD, the transformation T 2 is an information capacity
preserving transformation iff

a. OWL classes C are created ∀RCMmi
and tuples of RCMmi

are mapped to the
instances of Ci,

b. OWL sub-classes Cs are created ∀RCMsi
and ∀RCLi

, and tuples of RCMsi
and

RCLi
are mapped to the instances of their respective classes.

c. OWL sub-classes Ccmv are created ∀Rcmvi
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d. Datatype properties are created ∀Rsmvi
and added to their respective parent

classes.

Proof: The transformation is total because

a. An OWL class Ci is created for a primary relationRCMmi
. In a primary relation

the attributes can be classified into two categories; (i) non-key attributes,
and (ii) primary key attribute. Each non-key attribute is transformed into a
DataTypeProperty. The primary key attribute of the relation is transformed
into a functional DataTypeProperty with a minCardinality restriction of 1. All
the tuples of RCMmi

are mapped to the instances of Ci.

b. An OWL class Csi
is created for a subtype relation and property rdf:subClassOf

is added. In a subtype relation the attributes can be classified into two cate-
gories; (i) non-key attributes and (ii) primary key attribute (i.e., foreign key).
Each non-key attribute is mapped to a DataTypeProperty. As the primary key
attribute of the relation is also a foreign key, it is transformed into a functional
ObjectProperty with a minCardinality restriction of 1. All the tuples of RCMsi

and RCLi
are mapped to the instances of their respective classes.

c. An OWL class Ccmv is created for a weak primary relation Rcmvi
and prop-

erty rdf:subClassOf is added. In a weak primary relation the attributes can
be classified into three categories; (i) non-key attributes, (ii) primary key at-
tribute, and (iii) foreign key (part of primary key) . Each non-key attribute
is mapped to a DataTypeProperty. The primary key attribute of the relation
is transformed into a functional DataTypeProperty with a minCardinality re-
striction of 1. As the foreign key attribute of the relation is a part of primary
key, it is transformed into a functional ObjectProperty with a minCardinality
restriction of 1. Tuples of the relation are mapped to the class instances.

d. OWL class is not created for the weak secondary relation Rsmvi
. In a weak

secondary relation the attributes can be classified into two categories; (i) pri-
mary key attribute, and (ii) foreign key (part of primary key) . The primary
key of Rsmvi

which is not a foreign key is mapped to a DataTypeProperty and
added to the class which has been created for its parent relation. The primary
key of Rsmvi

which is also a foreign key is discarded as it has already been
mapped to the functional DatatypeProperty in the parent relation.

The transformation is also injective since its inverse maps OWL class and its prop-
erties back to the tuples of source model because information about attribute val-
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Figure 6.3: A multilevel hierarchy of concepts created for DSpace database

ues and constraint are properly maintained by the transformation. Therefore, it
is proved that the transformation is both total and injective and preserves the
information capacity.

6.3.1.5 Conclusions of Lemma 1-4

Therefore, these four lemmas proved that transformation T of relational database S1

into Ontology S2 is correct and information capacity preserving transformation. The
categories of data model entities E (DM) are identified such that ∀Ei ε (CMm ∨ CMs ∨ CL ).
A multilevel subsumption hierarchy of concepts H is created for these categories. H
consists of set of nodes:

NH = {root, NC , NT} (6.1)

This hierarchy defines:

• a root− node, denoted by root which is main parent node,

• a set NC of complex− nodes which have child(ren) node(s), and

• a set NT of terminal − nodes which have no child(ren) node(s).

According to DSpace data model these nodes are used to represent following con-
cepts:
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• root represents CMmi

• NC represents ∀CMs v CMmi

• NT represents
[∑q

j=1

(
CL v CMsj

∧ CL 6= ∅
)
v CMmi

]
t [∀AC v CMmi

],
here q is total number of sub-communities of CMmi

which directly subsume the
collection(s) means these sub-communities do not have any sub-community in
their child(ren).

The output of transformation T is target model S2(i.e., ontology). S2 contains a
multilevel subsumption hierarchy of concepts H, which is a set of nodes NH , here;

• total number of NH = total number of roots (i.e., root) = total number of
main communities CMm

• total number of NC = total number of sub-communities CMs

• total number of NT = total number of non-empty collections CL + total
number of complex attributes AC

In the example scenario, There are one main community, eight sub-communities, ten
collections and four multivalued attributes. Therefore, H contains only one node
NH because there is one main community so one multilevel subsumption hierarchy
has been created. NH contains one root node corresponding to main community,
8 NC nodes corresponding to sub-communities and 11 NT nodes corresponding to
collections and complex attributes. This hierarchy of concepts is shown in Figure
6.3.

6.3.1.6 Lemma 5

Given two ontologies O1 (i.e., source ontology) and O2 (i.e., target ontology) and
an alignment A between these two ontologies. Let C1 and C2 be the concepts of
O1 and O2 respectively such that C1i ε C1 and C2j ε C2. A is a pair of (C1i, C2j)
which means that C1i ≡ C2j. Let instance matching is a triple (I1k, I2l, R), where
R is a relation between instances I1k ε C1i and I2l ε C2j. R is taken from the set
{≡, ⊥, }for equivalence and disjointness respectively. Data translation is correct
iff

a. I1k is given the same URI as I2l, if (I1k, I2l, ≡),
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Table 6.3: Data Set specifications

Communities Collections Items Metadata Fields
Metadata

values

Main Sub

(Total)

Sub

(Empty)

Total Empty Non-

multivalued

multivalued Complex

Data Set 1 3 10 0 18 3 2,242 11 5 3 37,032

Data Set 2 1 14 5 12 5 533 12 2 1 10,132

Data Set 3 1 8 0 10 0 100 9 3 1 1,679

b. new instances of C2j are created ∀ (I1k, I2l, ⊥) and linked with the existing
data

Proof: Data translation is functional as:

a. The triple (I1k, I2l, ≡) shows that I1k ≡ I2l, therefore I1k is given the URI
of the I2l, which identifies the two as the same instance. For example, I1k is
an instance of contributor class (i.e., C1i) which is mapped to the person class
(i.e., C2j). C2j has the same author (i.e., I2l). Therefore, instead of creating
new instance of C2j, the URI of I2l has been given to I1k.

b. The triple ∀ (I1k, I2l, ⊥) shows that I1k is not matching with any instance
of C2j. A proper VIVO URI is given to I1k. I1k is finally linked with the
existing data. For example, there is a new publication (i.e., I1k) and its author
(i.e., I2l) is already in O2 . Therefore, I1k is linked with I2l.

6.4 Experimental Results

For the evaluation of the proposed system, three data sets are used. The specifi-
cations of these data sets have been shown in Table 6.3. The results are validated
by comparing the generated ontology with (i) the intermediate database, and (ii)
the DSpace data model and its database contents. Ontology classes, properties
and instances are compared with (i) the intermediate relations, attributes and tu-
ples respectively, and (ii) the DSpace data model entities (i.e., communities, sub-
communities and collections), items’ metadata fields and items’ metadata values
respectively. To prove that a multilevel subsumption hierarchy of concepts is com-
plete and correct according to input data sets, following formulas are used which
are extracted from the mathematical proof provided in above section:
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• total number of NH = total number of roots (i.e., root) = total number of
main communities CMm, which have non-empty collection(s).

• total number of NC = total number of sub-communities CMs =

p∑
i=1

[CMs v CMmi
] (6.2)

• total number of NT = total number of non-empty collections CL + total
number of complex attributes AC =

p∑
i=1

[
q∑

j=1

(
CL v CMsj

∧ CL 6= ∅
)
v CMmi

]
t

m∑
i=1

[AC v CMmi
] (6.3)

here, p is total number of main communities and q is total number of sub-
communities of CMmi

which directly subsume the collection(s) means these
sub-communities do not have any sub-community in their child(ren).

After evaluating the generated ontology, its instances are compared with the indi-
viduals which are translated and expressed with respect to the VIVO ontology.

6.4.1 Data Set 1

6.4.1.1 Relation to Ontology Transformation

This data has been harvested from MIT’s DSpace. 18 collections have been se-
lected for data harvesting. 3 collections are empty as they do not have any item.
Total 2,242 items have been harvested in other 15 collections. This data set con-
tains 3 main communities and 10 sub-communities. These items contain 11 non-
multivalued, 3 multivalued and 5 complex metadata fields, and these contain 37,032
metadata values. Table 6.4 shows the result obtained at the end of Part 1 (i.e.,
Intermediate database creation) and Part 2 (i.e., ontology creation) of proposed sys-
tem. Table shows the schema of intermediate database and ontology, created for
the DSpace data model entities and items’ metadata fields, and the intermediate
database tuples and ontology instances, created for the items’ metadata values. 3
main OWL classes have been created for main communities and 28 sub-classes have
been created for sub-communities, collections and complex attributes. 19 Datatype
Properties are created for non-multivalued, multivalued and non-key attributes. 6
functional Datatype properties with min cardinality 1 are created for primary key
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Table 6.4: Data Set 1: Summary of Results - Ontology Creation

DSpace Data Model (Source

Model)

Extracted Intermediate

Database

OWL Ontology (Target

Model)

Communities, Collections, Items,

Metadata Fields & Metadata

values

Entities, Attributes & Tuples OWL Classes, Properties &

Instances

Main Communities 3 Primary Entities 3 Primary Classes 3

Sub-communities (with

non-empty collection(s))

10 Sub-entities 10 Sub-classes 10

Non-empty Collections 15 Sub-entities 15 Sub-classes 15

Metadata Fields (complex) 3 Weak Primary entities 3 Sub-classes 3

Metadata Fields

(multivalued)

5 Weak Secondary Entities 5 Datatype Property 5

Metadata Fields (not

multivalued)

11 Non Key Attributes 14 Datatype Property 14

Primary Keys (not foreign

key)

11 Functional Datatype Property

with minCardinality=1

6

Primary Keys (foreign keys) 33 Functional Object Property

with minCardinality=1

28

Total items in 15 collections 2,242 Total tuples of

RCL(relations corresponding

to collections)

2,242 Total instances of CCL(classes

corresponding to RCL)

2,242

attributes which are not foreign keys. 28 functional Object properties with min car-
dinality 1 are created for those primary key attributes which are also foreign keys.
The extracted formulas are applied on the generated ontology which proved that a
multilevel subsumption hierarchy of concepts H is complete and correct according
to input DSpace database. Therefore, it is proved that;

• H =
{
NH

1 , N
H
2 , N

H
3

}
, Total number of root nodes NH= 3, which are equal

to the total number of main communities CMm

• NH
1 =

{
root, NC , NT

}
, NC =

{
NC

1 , N
C
2 , N

C
3 , ... , N

C
8

}
, NT =

{
NT

1 , N
T
2 , N

T
3 , ... , N

T
12

}
• NH

2 =
{
root, NC , NT

}
, NC =

{
NC

1

}
, NT =

{
NT

1 , N
T
2

}
• NH

3 =
{
root, NC , NT

}
, NC =

{
NC

1

}
, NT =

{
NT

1 , N
T
2 , N

T
3 , N

T
4

}
• Total number of nodes NC are calculated by using equation 6.2 =

p∑
i=1

[CMs v CMmi
]
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Table 6.5: Data Set 1: Summary of Results - Data Translation

Generated Ontology (Source

Model)

VIVO Ontology (Target Model)

Classes & Instances Identified VIVO individuals

Total classes 31 AcademicDepartment 3

Total Instances of

CCL(classes corresponding

to collections)

2,242 Laboratory 5

Report 272

Thesis 1,969

Article 1

here p = 3 therefore,
[ 8 + 1 + 1] = 10

which is equal to the total number of sub-communities CMs

• Total number of nodes NT are calculated by using equation 6.3 =

p∑
i=1

[
q∑

j=1

(
CL v CMsj

∧ CL 6= ∅
)
v CMmi

]
t

m∑
i=1

[AC v CMmi
]

here p = 3, for i = 1→ q = 7, i = 2→ q = 1, i = 3→ q = 1 therefore,

[{(1 + 2 + 1 + 1 + 1 + 1 + 4) + (1) + (3)}+ (1 + 1 + 1)] = 18

which is equal to the total number of non-empty collections CL + total number
of complex multivalued attributes AC

6.4.1.2 Ontology Alignment and Data Translation

Ontology has been created for the data set 1, as discussed above, but this ontology
can not be imported into VIVO directly as it is not in the required format. VIVO
ontology is needed to be populated with the data of the extracted ontology, for
that purpose a semi-automatic approach has been used for translating data into the
format of VIVO ontology. Total 31 OWL classes have been created for this data set,
as discussed above. An alignment A has been used for the instance matching, A is
a pair (C1i, C2j) which means that C1i ≡ C2j, for example:

• contributor_department_of_architecture ≡ Person

• department_of_architecture ≡ AcademicDepartment
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Table 6.6: Data Set 2: Summary of Results

DSpace Data Model (Source

Model)

Extracted Intermediate

Database

OWL Ontology (Target

Model)

Communities, Collections, Items,

Metadata Fields & Metadata

values

Entities, Attributes & Tuples OWL Classes, Properties and

Instances

Main Communities 1 Primary Entities 1 Primary Classes 1

Sub-communities (with

non-empty collections)

9 Sub-entities 9 Sub-classes 9

Non-empty Collections 7 Sub-entities 7 Sub-classes 7

Metadata Fields (complex) 1 Weak Primary Entities 1 Sub-classes 1

Metadata Fields

(multivalued)

2 Weak Secondary Entities 2 Datatype Property 2

Metadata Fields (not

multivalued)

12 Non Key Attributes 13 Datatype Property 13

Primary Keys (not foreign

key)

4 Functional Datatype Property

with min cardinality=1

2

Primary Keys (foreign keys) 19 Functional Object Property

with min cardinality=1

17

Total items in 15 collections 533 Total tuples in the

RCL(relations corresponding

to collections)

533 Total instances of the

CCL(classes corresponding to

RCL)

533

• aerospace_control_laboratory ≡ Laboratory

• aerospace_control_laboratory_technical_reports ≡ Report

Table 6.5 shows the result obtained at the end of Part 3 (i.e., Ontology alignment and
data translation) of the proposed system. 3 classes are mapped on AcademicDepart-
ment class and 5 classes are mapped on Laboratory class. Therefore, 3 individuals of
Academic department class and 5 individuals of Laboratory class have been created.
8 classes, having 1,969 instances, are mapped on Thesis class, 5 classes, having 272
instances, are mapped on Report class and 1 class having 1 instance, is mapped on
Article class. Therefore, 1,969 individuals of Thesis class, 272 individuals of Report
class and 1 individual of Article class have been created. The individuals of Person
class have been created for their authors.
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6.4.2 Data Set 2

6.4.2.1 Relation to Ontology Transformation

This data set contains the DSpace database of an institute, SEECS. This data set
contains 1 main community and 14 sub-communities in which 5 sub-communities
contain empty collections. There are total 12 collections in which 5 collections
are empty and other 7 collections contain 533 items. These items contain 12 non-
multivalued, 1 multivalued and 2 complex metadata fields, and these contain 10,132
metadata values. Table 6.6 shows the results obtained at the end of Part 1 (i.e.,
Intermediate database creation) and Part 2 (i.e., ontology creation) of proposed
system. Table shows the schema of intermediate database and ontology, created for
the DSpace data model entities and items’ metadata fields, and the intermediate
database tuples and ontology instances, created for the items’ metadata values. 1
main OWL class has been created for main community and 17 sub-classes have
been created for sub-communities, collections and complex attributes. 15 Datatype
Properties are created for non-multivalued, multivalued and non-key attributes. 2
functional Datatype properties with min cardinality 1 are created for primary key
attributes which are not foreign keys. 17 functional Object properties with min
cardinality 1 are created for those primary key attributes which are also foreign keys.
By applying the extracted formulas on the generated ontology it is proved that a
multilevel subsumption hierarchy of concepts H is complete and correct according
to input DSpace database. Therefore, it is proved that;

• H =
{
NH

1

}
, Total number of nodes NH= 1, which is equal to the total

number of main communities CMm

• NH
1 =

{
root, NC , NT

}
, NC =

{
NC

1 , N
C
2 , N

C
3 , ... , N

C
9

}
, NT =

{
NT

1 , N
T
2 , N

T
3 , ... , N

T
8

}
• Total number of nodes NC are calculated by using equation 6.2 =

p∑
i=1

[CMs v CMmi
]

here p = 1 therefore, [ 9 ]= 9, which is equal to the total number of sub-
communities CMs

• Total number of nodes NT are calculated by using equation 6.3 =

p∑
i=1

[
q∑

j=1

(
CL v CMsj

∧ CL 6= ∅
)
v CMmi

]
t

m∑
i=1

[AC v CMmi
]
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Table 6.7: Data Set 2: Summary of Results - Data Translation

Generated Ontology (Source

Model)

VIVO Ontology (Target Model)

Classes & Instances Identified VIVO individuals

Total classes 18 Schools 1

Total Instances of

CCL(classes corresponding

to collections)

533 AcademicDepartments 2

Reports 70

Theses 463

here p = 1, for i = 1→ q = 7 therefore,

[(1 + 1 + 1 + 1 + 1 + 1 + 1) + (1)] = 8

which is equal to the total number of non-empty collections CL + total number
of complex multivalued attributes AC

6.4.2.2 Ontology Alignment and Data Translation

Total 18 OWL classes have been created for this data set, as discussed above. An
alignment A has been used for the instance matching, A is a pair (C1i, C2j) which
means that C1i ≡ C2j, for example:

• department_of_computing ≡ AcademicDepartment

• thesis_reports ≡ Thesis

• fyp_reports ≡ Report

• contributor_school_of_electrical_engineering_computer_science ≡ Person

Table 6.7 shows the result obtained at the end of Part 3 (i.e., Ontology alignment
and data translation) of the proposed system. 1 class is mapped on School class
and 2 classes are mapped on AcademicDepartment class. Therefore, 1 individual of
School class and 2 individuals of Academic department class have been created. 4
classes are mapped on Thesis class, these classes contain 463 instances. Therefore,
463 individuals of Thesis class have been created. 3 classes are mapped on Report
class, having 70 instances. Therefore, 70 individuals of Report class have been
created.
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Table 6.8: Data Set 3: Summary of Results

DSpace Data Model (Source

Model)

Extracted Intermediate

Database

OWL Ontology (Target

Model)

Communities, Collections, Items,

Metadata Fields & Metadata

values

Entities, Attributes & Tuples OWL Classes, Properties &

Instances

Main Communities 1 Primary Entities 1 Primary Classes 1

Sub-communities (with

non-empty collection(s))

8 Sub-entities 8 Sub-classes 8

Non-empty Collections 10 Sub-entities 10 Sub-classes 10

Metadata Fields (complex) 1 Weak Primary Entities 1 Sub-classes 1

Metadata Fields

(multivalued)

3 Weak Secondary Entities 3 Datatype Property 3

Metadata Fields (not

multivalued)

9 Non Key Attributes 10 Datatype Property 10

Primary Keys (not foreign

key)

5 Functional Datatype Property

with min cardinality=1

2

Primary Keys (foreign keys) 22 Functional Object Property

with min cardinality=1

19

Total items in 15 collections 100 Total tuples of

RCL(relations corresponding

to collections)

100 Total instances of CCL(classes

corresponding to RCL)

100

6.4.3 Data Set 3

6.4.3.1 Relation to Ontology Transformation

This data set contains an example DSpace database which is used to elaborate the
proposed system throughout this thesis. This data set contains 1 main community
and 8 sub-communities. There are 10 collections which contain 100 items. These
items contain 9 non-multivalued, 1 multivalued and 3 complex metadata fields, and
these contain 1,679 metadata values. Table 6.8 shows the results obtained at the
end of Part 1 (i.e., Intermediate database creation) and Part 2 (i.e., ontology cre-
ation) of proposed system. Table 6.8 shows the schema of intermediate database
and ontology, created for the DSpace data model entities and items’ metadata fields,
and the intermediate database tuples and ontology instances, created for the items’
metadata values. 1 main OWL class has been created for main community and
19 sub-classes have been created for sub-communities, collections and complex at-
tributes. 13 Datatype Properties are created for non-multivalued, multivalued and
non-key attributes. 2 functional Datatype properties with min cardinality 1 are
created for primary key attributes which are not foreign keys. 19 functional Object
properties with min cardinality 1 are created for those primary key attributes which
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are also foreign keys. The extracted formulas are applied on the generated ontology
which proved that a multilevel subsumption hierarchy of concepts H is complete and
correct according to input DSpace database. Therefore, it has been proved that;

• H =
{
NH

1

}
, Total number of nodes NH= 1, which is equal to the total

number of main communities CMm

• NH
1 =

{
root, NC , NT

}
, NC =

{
NC

1 , N
C
2 , N

C
3 , ... , N

C
8

}
, NT =

{
NT

1 , N
T
2 , N

T
3 , ... , N

T
11

}
• Total number of nodes NC are calculated by using equation 6.2 =

p∑
i=1

[CMs v CMmi
]

here p = 1 therefore,[ 8 ] = 8, which is equal to the total number of sub-
communities CMs

• Total number of nodes NT are calculated by using equation 6.3 =

p∑
i=1

[
q∑

j=1

(
CL v CMsj

∧ CL 6= ∅
)
v CMmi

]
t

m∑
i=1

[AC v CMmi
]

here p = 1, for i = 1→ q = 4 therefore,

[(3 + 3 + 2 + 2) + (1)] = 11

which is equal to the total number of non-empty collections CL + total number
of complex multivalued attributes AC .

6.4.3.2 Ontology Alignment and Data Translation

Total 20 OWL classes have been created for this data set, as discussed above. An
alignment A has been used for the instance matching, A is a pair (C1i, C2j) which
means that C1i ≡ C2j, for example:

• department_of_electrical_engineering ≡ AcademicDepartment

• pg_thesis ≡ Thesis

• ug_fyp ≡ Report

• journal_article ≡ Article
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Table 6.9: Data Set 3: Summary of Results - Data Translation

Generated Ontology (Source

Model)

VIVO Ontology (Target Model)

Classes & Instances Identified VIVO individuals

Total classes 20 School 1

Total Instances of

CCL(classes corresponding

to collections)

100 AcademicDepartment 2

Report 32

Thesis 23

Article 12

Conference Paper 18

Book 15

• conference_proceedings ≡ ConferencePaper

• contributor_seecs ≡ Person

Table 6.9 shows the result obtained at the end of Part 3 (i.e., Ontology alignment
and data translation) of the proposed system. 1 class is mapped on School class
and 2 classes are mapped on AcademicDepartment class. Therefore, 1 individual of
School class and 2 individuals of Academic department class have been created. 3
classes are mapped on Thesis class, these classes contain 23 instances. Therefore, 23
individuals of Thesis class have been created. 2 classes are mapped on Report class,
having 32 instances. Therefore, 32 individuals of Report class have been created. 2
classes are mapped on Article class and 2 classes are mapped on ConferencePaper,
these classes contain 12 and 18 instances respectively. Therefore, 12 individuals of
Article class and 18 individuals of ConferencePaper class have been created.

6.5 Comparison with Gold Standards

An ontology is complex structured, so it should be evaluated separately at different
levels. The evaluation of an ontology involves the following levels: (i) lexical term
layer, (ii) hierarchy/taxonomy level, (iii) Context/application level, (iv) syntactic
level, and (v) Structure/design level. The following approaches can be used for
evaluating the ontology construction capability: (1) application based evaluation, (2)
human evaluation, (3) data-driven evaluation or (4) comparing with a gold standard
[46].

In this section, the measures are used for evaluating the ontology at lexical
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and hierarchy levels.

• Lexical term layer: This involves the evaluation of concepts, instances, facts,
etc. included in the ontology. It involves the string similarity measures and
comparison with various data sources.

• Hierarchy (taxonomy) level: Evaluation on this level concerns with a hier-
archical is-a relation between concepts. The is-a relationship is particularly
important for the preservation of DSpace data model hierarchy.

The generated ontology has been compare with gold standard due to frequent eval-
uations and its feasibility in practice. The precision and recall measures are most
widely used to evaluate and compare ontologies [47]. The extended precision and
recall measures are used for the gold standard based evaluation of ontologies. The
lexical precision and recall measures are used for evaluating the ontology at lexical
term layer. and for the concept hierarchy, taxonomic precision, recall and f-measures
are used, as defined in [48, 49]. The simplified definition of a core ontology is used
which only contains the lexical term layer and the concept hierarchy. Similarly to
[50], a core ontology is defined as follows:

Definition 4: The structure O := (C, root, ≤ c) is a core ontology consisting of
a set of concept identifiers, C and a designated root concept representing top
element of the partial order ≤ c on C such that ∀cεC : c ≤ root. This partial order
is called concept hierarchy or taxonomy.

6.5.1 Lexical Precision & Recall

LetOC is a computed core ontology and OR is a a reference ontology, the lexical
precision (LP ) and lexical recall (LR) are defined as follows [48]:

LP (OC, OR) = |CC ∩ CR|
|CC |

(6.4)

LR (OC, OR) = |CC ∩ CR|
|CR|

(6.5)
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6.5.2 Taxonomic Precision & Recall

Taxonomic Precision (TP ) and Taxonomic Recall (TR) measures can be based on
Semantic Cotopy (SC) or Common Semantic Cotopy (CSC). SC define all super
and sub concept (c) relations in ontology (O). SC can be defined as:

SC(c, O) := {ci|ci ε C ∧ (ci ≤ c ∨ c ≤ ci)} (6.6)

The influence of lexical precision in the taxonomic measurement can be avoided by
using CSC. CSC excludes all concepts which are not also available in the set of
concepts of other ontology. CSC can be defined as:

CSC(c, OC , OR) := {ci|ci ε C1 ∩ C2 ∧ (ci <1 c ∨ c <1 ci)} (6.7)

The measures TPSC and TRSC do not allow a separate evaluation of lexical term
layer and concept hierarchy. For evaluation scenarios where a thorough analysis of
the learned ontologies is needed the measures TPCSC and TRCSC are better suited
[48]. TPCSC and TRCSC can be defined as:

TPCSC (OC, OR) := 1
|CC ∩ CR|

∑
cεCC∩CR

tpcsc (c, c, OC, OR) (6.8)

and
TRCSC (OC, OR) := TPCSC (OR, OC) (6.9)

Taxonomic F-measure (TF ) calculates the harmonic mean of TPCSC and
TRCSC which used for balancing value of them. TF can be computed as:

TFCSC (OC, OR) := 2 · TPCSC (OC, OR) · TRCSC (OC, OR)
TPCSC (OC, OR) + TRCSC (OC, OR) (6.10)

6.5.3 Evaluation of Relation to Ontology Transformation

In this section the measures presented in above sections are used to evaluate the
results. The gold standard ontology OR is created by the domain expert for the
evaluation of the proposed system. DSpace data model varies from organization
to organization, therefore gold standard ontology is created according to source
DSpace database. This ontology contains the classes for DSpace data model entities
and complex multivalued attributes. It has same multilevel subsumption hierarchy
as DSpace data model has. Three different data sets are used for testing the pro-
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posed system so separate gold standard ontology has been created for every data
set. The gold standard ontologies OR1, OR2 and OR3 are used for comparison in
evaluation for data set 1, 2 and 3 respectively. OC1A, OC2A and OC3A are produced
ontologies by the proposed system. The non-leaf concept is used to determine CSC
as used in [49]. The ontologies are evaluated with a common semantic cotopy based
measure which is better suited for evaluating a concept hierarchy. The proposed
technique, for transforming DSpace database into ontology, has been compared with
Astrova [1], DataMaster [3] and D2R server [4]. These techniques are applied on
DSpace database but they generated totally incorrect ontologies. They used their
basic transformation rules and created OWL classes for DSpace database relation
whereas correct classes should be extracted from the contents of these tables. There-
fore, lexical and taxonomic precision and recall, and taxonomic f-measure scores of
existing techniques are zero percent (0%). Therefore, these techniques are then ap-
plied on the intermediate database which is created by the proposed system and
then these results are compared with the results of the proposed system.

6.5.3.1 Comparison with Astrova

The technique proposed by Astrova [1] has been selected for comparison because it
is the most similar technique which is using almost the same transformation rules
which are used in the proposed transformation system. But this system is not
publicly or commercially available, therefore, its rules are thoroughly studied and
then these are applied on the intermediate database and the ontologies OC1B, OC2B

and OC3B are generated for data set 1, 2 and 3 respectively. These ontologies are
compared and evaluated with their corresponding gold standard ontologies.

For the data set 1, gold standard ontology OR1is used for comparison with
OC1A( generated by the proposed system) and OC1B (generated by Astrova). These
ontologies are shown in Figure 6.4. Figure 6.4a shows the gold standard ontology
which is created by the domain expert for the comparison with implemented system.
Ontology generated by the proposed system has exactly the same concept hierarchy
as shown in Figure 6.4b, whereas ontology generated by applying the rules of Astrova
has 5 extra classes as shown in Figure 6.4c. Astrova is not using multivalued property
rules therefore instead of creating datatype properties it created OWL classes for
these relations. Similarly ontologies for data set 2 and 3 are shown in Figure 6.5
and 6.6 respectively.

Table 6.10 shows the common semantic cotopies CSC and computed taxo-
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Table 6.10: Common semantic cotopies CSC and local taxonomic precision tpCSC
for non-leaf concepts of ontologies OC1A and OC1B

Non-leaf

concept

CSC

(c, OR1, OC1)

CSC

(c, OC1A, OR1)

CSC

(c,OC1B2 , OR1)

tpcsc

(c, c,OC1A,OR1)

tpcsc

(c, c,OC1B,OR1)

CMm1 A1, CL1, CL2,

CL3, CL4, CL5,

CL6, CL7, CL8,

CL9, CL10, CL11

A1, CL1, CL2,

CL3, CL4, CL5,

CL6, CL7, CL8,

CL9, CL10, CL11

A1, A4, A5, A6,

CL1, CL2, CL3,

CL4, CL5, CL6,

CL7, CL8, CL9,

CL10, CL11

12/12=1.00 12/15=0.80

CMm2 A2, CL12 A2, CL12 A2, A7, CL12 2/2=1.00 2/3=0.67

CMm3 A3, CL13, CL14,

CL15

A3, CL13, CL14,

CL15

A3, A8, CL13,

CL14, CL15

4/4=1.00 4/5=0.80

CMs1 CL1 CL1 CL1 1/1=1.00 1/1=1.00

CMs2 CL2, CL3 CL2, CL3 CL2, CL3 2/2=1.00 2/2=1.00

CMs3 CL4 CL4 CL4 1/1=1.00 1/1=1.00

CMs4 CL4 CL4 CL4 1/1=1.00 1/1=1.00

CMs5 CL5 CL5 CL5 1/1=1.00 1/1=1.00

CMs6 CL6 CL6 CL6 4/4=1.00 4/4=1.00

CMs7 CL7 CL7 CL7 1/1=1.00 1/1=1.00

CMs8 CL8, CL9, CL10,

CL11

CL8, CL9, CL10,

CL11

CL8, CL9, CL10,

CL11

1/1=1.00 1/1=1.00

CMs9 CL12 CL12 CL12 1/1=1.00 1/1=1.00

CMs10 CL13, CL14, CL15 CL13, CL14, CL15 CL13, CL14, CL15 3/3=1.00 3/3=1.00
CMm1: department_of_aeronautics_and_astronautics (main community);
CMm2: department_of_architecture (main community); CMm3: depart-
ment_of_biology (main community); CMs1: humans_and_automation_laboratory
(sub-community); CMs2: aerospace_control_laboratory (sub-community); CMs3: fac-
ulty_and_researchers (sub-community); CMs4: sheila_e_widnall (sub-community); CMs5:
man_vehicle_laboratory (sub-community); CMs6: aerospace_computational_design_laboratory
(sub-community); CMs7: flight_transportation_laboratory (sub-community);
CMs8: theses_aeronautics_and_astronautics (sub-community); CMs9: the-
ses_department_of_architecture (sub-community); CMs10: theses_biology (sub-community);
CL1: hal_reports (collection); CL2: aerospace_control_laboratory_technical_reports
(collection); CL3: aerospace_control_laboratory_manuscripts (collec-
tion); CL4: selected_publications (collection); CL5: manuscripts (collec-
tion); CL6: aerospace_computational_design_laboratory_technical_reports
(collection); CL7: flight_transportation_laboratory_reports (collec-
tion); CL8: aeronautics_and_astronautics_engineers_degree (collection);
CL9: aeronautics_and_astronautics_phd_scd (collection); CL10: aero-
nautics_and_astronautics_bachelors_degree (collection); CL11: aeronau-
tics_and_astronautics_masters_degree (collection); CL12: architecture_masters_degree
(collection); CL13: biology_phd_scd (collection); CL14: biology_bachelors_degree
(collection); CL15: biology_masters_degree (collection); A1: contribu-
tor_department_of_aeronautics_and_astronautics (complex attribute); A2: contribu-
tor_department_of_architecture (complex attribute); A3: contributor_department_of_biology
(complex attribute);
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(a) Gold Standard Ontology (b) Ontology generated by proposed system

(c) Ontology generated by Astrova [1]

Figure 6.4: Ontologies for data set 1

(a) Gold Standard Ontology (b) Ontology generated by
proposed system

(c) Ontology generated by As-
trova [1]

Figure 6.5: Ontologies for data set 2

(a) Gold Standard Ontology (b) Ontology generated by pro-
posed system

(c) Ontology generated by As-
trova [1]

Figure 6.6: Ontologies for data set 3
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Table 6.11: Common semantic cotopies CSC and local taxonomic precision tpCSC
for non-leaf concepts of ontologies OC2A and OC2B

Non-leaf

concept

CSC

(c, OR2, OC2)

CSC

(c, OC2A, OR2)

CSC

(c,OC2B, OR2)

tpcsc

(c, c,OC2A,OR2)

tpcsc

(c, c,OC2B,OR2)

CMm1 A1, CL1, CL2,

CL3, CL4, CL5,

CL6, CL7

A1, CL1, CL2,

CL3, CL4, CL5,

CL6, CL7

A1, A2, A3, CL1,

CL2, CL3, CL4,

CL5, CL6, CL7

8/8=1.00 8/10=0.80

CMs1 CL1, CL2, CL3 CL1, CL2, CL3 CL1, CL2, CL3 3/3=1.00 3/3=1.00

CMs2 CL1 CL1 CL1 4/4=1.00 4/4=1.00

CMs3 CL2 CL2 CL2 1/1=1.00 1/1=1.00

CMs4 CL3 CL3 CL3 1/1=1.00 1/1=1.00

CMs5 CL4, CL5,CL6,

CL7

CL4, CL5,CL6,

CL7

CL4, CL5,CL6,

CL7

1/1=1.00 1/1=1.00

CMs6 CL4 CL4 CL4 1/1=1.00 1/1=1.00

CMs7 CL5 CL5 CL5 1/1=1.00 1/1=1.00

CMs8 CL6 CL6 CL6 1/1=1.00 1/1=1.00

CMs9 CL7 CL7 CL7 1/1=1.00 1/1=1.00
CMm1: school_of_electrical_engineering_and_computer_science_seecs (main
community); CMs1: department_of_computing (sub-community); CMs2:
ms_information_technology (sub-community); CMs3: bs_information_technology (sub-
community); CMs4: pgd_information_technology (sub-community); CMs5: depart-
ment_of_electrical_engineering (sub-community); CMs6: ms_electrical_engineering
(sub-community); CMs7: ms_computer_system_engineering (sub-community);
CMs8: be_information_and_communication_systems_engineering (sub-community);
CMs9: be_electrical_engineering (sub-community); CL1: thesis_reports_5 (col-
lection); CL2: fyp_reports_6 (collection); CL3: thesis_reports_15 (collection);
CL4: thesis_reports_24 (collection); CL5: thesis_reports_25 (collection); CL6:
fyp_reports_13 (collection); CL7: fyp_reports_12 (collection); A1: contribu-
tor_school_of_electrical_engineering_and_computer_science_seecs (complex attribute);
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Table 6.12: Common semantic cotopies CSC and local taxonomic precision tpCSC
for non-leaf concepts of ontologies OC3A and OC3B

Non-leaf

concept

CSC

(c, OR3, OC3)

CSC

(c, OC3A, OR3)

CSC

(c,OC3B, OR3)

tpcsc

(c, c,OC3A,OR3)

tpcsc

(c, c,OC3B,OR3)

CMm1 A1, CL1, CL2,

CL3, CL4, CL5,

CL6, CL7, CL8,

CL9, CL10

A1, CL1, CL2,

CL3, CL4, CL5,

CL6, CL7, CL8,

CL9, CL10

A1, A2, A3, A4,

CL1, CL2, CL3,

CL4, CL5, CL6,

CL7, CL8, CL9,

CL10

11/11=1.00 11/14=0.79

CMs1 CL1, CL2, CL3,

CL4

CL1, CL2, CL3,

CL4

CL1, CL2, CL3,

CL4

4/4=1.00 4/4=1.00

CMs2 CL1, CL2 CL1, CL2 CL1, CL2 6/6=1.00 6/6=1.00

CMs3 CL3, CL4 CL3, CL4 CL3, CL4 2/2=1.00 2/2=1.00

CMs4 CL3, CL4 CL3, CL4 CL3, CL4 2/2=1.00 2/2=1.00

CMs5 CL5,CL6, CL7,

CL8, CL9, CL10

CL5,CL6, CL7,

CL8, CL9, CL10

CL5,CL6, CL7,

CL8, CL9, CL10

3/3=1.00 3/3=1.00

CMs6 CL5,CL6, CL7 CL5,CL6, CL7 CL5,CL6, CL7 3/3=1.00 3/3=1.00

CMs7 CL5,CL6, CL7 CL5,CL6, CL7 CL5,CL6, CL7 2/2=1.00 2/2=1.00

CMs8 CL8, CL9, CL10 CL8, CL9, CL10 CL8, CL9, CL10 2/2=1.00 2/2=1.00
CMm1: seecs (main community); CMs1: dept_of_computing (sub-community); CMs2: publica-
tions_11 (sub-community); CMs3: documents_12 (sub-community); CMs4: reports_13 (sub-
community); CMs5: dept_of_electrical_engineering (sub-community); CMs6: documents_9
(sub-community); CMs7: project_reports_10 (sub-community); CMs8: publications_8 (sub-
community); CL1: conference_proceedings_12 (collection); CL2: journal_article_11 (collection);
CL3: pg_thesis_14 (collection); CL4: ug_fyp_13 (collection); CL5: phd_thesis_10 (collec-
tion); CL6: ug_fyp_8 (collection); CL7: pg_thesis_9 (collection); CL8: books_7 (collection);
CL9: journal_article_5 (collection); CL10: conference_proceedings_6 (collection); A1: contribu-
tor_seecs (complex attribute);
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Table 6.13: Evaluation of the ontologies (i.e. shown in Figure 6.4, 6.5 and 6.6) with
a common semantic cotopy based measure

Compare OR1 with Compare OR2 with Compare OR3 with
OC1A OC1B OC2A OC2B OC3A OC3B

LP 100% 86.11% 100% 90% 100% 86.96%
LR 100% 100% 100% 100% 100% 100%

TPCSC 100% 94.38% 100% 98% 100% 97.67%
TRCSC 100% 94.38% 100% 98% 100% 97.67%
TFCSC 100% 94.38% 100% 98% 100% 97.67%

Figure 6.7: The average Lexical and Taxonomic precision, Taxonomic recall and
Taxonomic f-measure scores of the proposed system and Astrova [1].

nomic precision TPCSC for ontologies OC1A and OC1B. As the non-leaf concepts in
OC1A and OC1B are perfectly matching with non-leaf concepts in OR1, then the tax-
onomic recall TRCSC = TPCSC . In OR1 there are total 12 leaf concepts for CMm1,
the proposed system identified correct concepts whereas Astrova created three extra
OWL classes as presented in Table 6.10. Similarly the evaluation of ontologies OC2A

and OC2B, and OC3A and OC3B are presented in Table 6.11 and 6.12 respectively.
Table 6.13 presents the end results of all 3 data sets by the comparison of the aver-
age lexical precision LP , taxonomic precision TPCSC , recall TRCSC and f-measure
TFCSC scores between the proposed system and Astrova’s proposed technique. LP ,
TPCSC , TRCSC and TFCSC scores of the proposed technique are 100%. It is evident
from the results shown in Table 6.13 that the proposed technique is more accurate
as compared to Astrova’s. This is because Astrova does not consider multivalued
property rule. The results showed that the accuracy of Astrova is decreasing with
the increase of number of multivalued attributes in data set. The graph (shown
in Figure 6.7) presents the average experimental results of the proposed technique
and Astrova’s technique. It gave zero percent (0%) precision by applying Astrova’s
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Figure 6.8: The average Lexical and Taxonomic precision, Taxonomic recall and
Taxonomic f-measure scores of the proposed system and DataMaster [3].

technique directly on DSpace database. Therefore, it is then applied on interme-
diate database which generated much better results with 87.69 % lexical precision
and 96.68% taxonomic precision, recall and f-measure scores whereas the proposed
system generated 100% score on all three data sets.

6.5.3.2 Comparison with DataMaster

The proposed system has also been compared with DataMaster [3]. DataMaster is a
Protégé1 plug-in for importing schema structure and data from relational databases
into Protégé. It is the most widely used tool for building ontologies from relational
databases. The graph (shown in Figure 6.8) presents the average experimental re-
sults of the proposed technique and DataMaster. First this tool is directly applied
on DSpace database which generated zero percent (0%) precision. Then it is ap-
plied on intermediate database which generated 84.27% lexical precision, still not
100% because DataMaster is not using multivalued property rules so it generated
some extra classes. DataMaster is also not creating the concept hierarchy, therefore
taxonomic precision, recall and f-measure scores are zero percent (0%) whereas the
proposed system generated 100% score on all three data sets.
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Figure 6.9: The average Lexical and Taxonomic precision, Taxonomic recall and
Taxonomic f-measure scores of the proposed system and D2R Server [4].

6.5.3.3 Comparison with D2R Server

The results are also compared with D2R server [4]. The graph (shown in Figure
??) presents the average experimental results of the proposed technique and D2R
server. First this tool is applied directly on DSpace database which generated zero
percent (0%) precision. Then it is applied on intermediate database which generated
87.69% lexical precision, still not 100% because D2R server has also created some
extra classes. D2R server is also not creating concept hierarchy, therefore taxonomic
precision, recall and f-measure scores are zero percent (0%) whereas the proposed
system generated 100% score.

6.5.4 Evaluation of Ontology Data Translation

The results of the ontology data translation are evaluated using precision, recall and
f-measure measurements. Precision is the number of correct results divided by the
number of all returned results and Recall is the number of correct results divided
by the number of results that should have been returned. In this project, they are
calculated as follows:

Precision = | T ∩ R |
R

(6.11)

1A free, open source ontology editor and knowledge-base framework.
http://protege.stanford.edu/
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Table 6.14: Data set 1: Evaluation of the data translation process

VIVO classes Instances

E R T Precision Recall F-measure

AcademicDepartment 3 3 3 1.00 1.00 1.00

Laboratory 5 5 5 1.00 1.00 1.00

Report 272 272 272 1.00 1.00 1.00

Thesis 1969 1969 1969 1.00 1.00 1.00

Article 1 1 1 1.00 1.00 1.00

Properties

AcademicDepartment 12 12 12 1.00 1.00 1.00

Laboratory 20 20 20 1.00 1.00 1.00

Report 1360 1088 816 0.75 0.60 0.67

Thesis 9845 7876 5907 0.75 0.60 0.67

Article 6 5 3 0.60 0.50 0.55

Table 6.15: Data set 2: Evaluation of the data translation process

VIVO classes Instances

E R T Precision Recall F-measure

School 1 1 1 1.00 1.00 1.00

AcademicDepartment 2 2 2 1.00 1.00 1.00

Report 70 70 70 1.00 1.00 1.00

Thesis 463 463 463 1.00 1.00 1.00

Properties

School 4 4 4 1.00 1.00 1.00

AcademicDepartment 8 8 8 1.00 1.00 1.00

Report 350 350 210 0.60 0.60 0.60

Thesis 2315 2315 1389 0.60 0.60 0.60

Recall = | T ∩ R |
E

(6.12)

where T represents the translated instances/properties, R represents the
retrieved instances/properties and E represents the expected instances/properties
that should have been translated.

The F −measure is defined as the harmonic mean of precision and recall.
It is calculated as follows:

F −measure = 2 · Precision ·Recall
Precision+Recall

(6.13)

The instances and properties of the mapped classes are matched and ex-
pressed with respect to the target ontology. The Tables 6.14, 6.15 and 6.16 show
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Table 6.16: Data set 3: Evaluation of the data translation process

VIVO classes Instances

E R T Precision Recall F-measure

School 1 1 1 1.00 1.00 1.00

Academic

Department

2 2 2 1.00 1.00 1.00

Report 32 32 32 1.00 1.00 1.00

Thesis 23 23 23 1.00 1.00 1.00

Article 12 12 12 1.00 1.00 1.00

Conference Paper 18 18 18 1.00 1.00 1.00

Book 15 15 15 1.00 1.00 1.00

Properties

School 4 4 4 1.00 1.00 1.00

Academic

Department

8 8 8 1.00 1.00 1.00

Report 160 160 96 0.60 0.60 0.60

Thesis 115 115 69 0.60 0.60 0.60

Article 72 72 36 0.50 0.50 0.50

Conference Paper 108 108 54 0.50 0.50 0.50

Book 90 90 45 0.50 0.50 0.50

Figure 6.10: Result Evaluation of Ontology Data Translation
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the results after evaluating the translated instances and properties of data set 1,
2 and 3 respectively. The tables illustrate that instance translation gives the best
precision which is 100 percent, this is due to the reason that system translated all
the instances properly and expressed with respect to the target ontology. These
instances are transformed into the instances of corresponding mapped classes which
are later used to populate the VIVO ontology (i.e., target ontology). Whereas in the
translation of properties, it is observed that the translated properties are lesser than
the extracted and expected ones meaning it causes some loss of information, which
becomes the reason to lower the precision and recall scores. The graph (i.e., shown
in Figure 6.10) depicts the average precision, recall and f-measure scores. The graph
shows that the precision is 100% in case of instance translation whereas it is 80% in
translating properties of these instances.



Chapter 7

Conclusions and Future Work

In this chapter the research work carried out under this thesis has been concluded
and contribution to the research community is also described. At the end, some
directions are suggested where this work can be extended in future.

7.1 Discussion

Internet and semantic web technologies have enabled academics to find online re-
search materials with increasing speed and accuracy. They have enabled academics
to make connections with each other. Whereas, institutional digital repositories are
often built to serve a specific institution’s community of users. Mostly existing insti-
tutional repositories (IRs) are using relational database schema for maintaining the
metadata of their digital contents. They might need to interact with the many other
information systems that exist to manage research activities within the institution
or outside. The semantic web and relational database worlds and their developed
infrastructures are based on different data models, semantics and query languages.
Thus, it is crucial to provide interoperability and integration mechanisms to bridge
the gap between the semantic web and relational database worlds. To process the
data in semantic context, a relational database is transformed into ontology. On-
tology provides a natural way to annotate data and metadata and to capture the
domain knowledge and it improves the availability of semantically rich content on
the Web. The semantic web technologies provide standard representations for mean-
ingful linkage across different sets of data. The Semantic Web Application (SWA)
provides self-describing data via shared ontologies which is also readable by machines
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and does simple reasoning to categorize and find associations. The use of SWA in
integrating the different institutional repositories metadata facilitates users’ search,
access, and retrieval of learning resources. The adoption and implementation of
semantic web technologies enable ontology-facilitated sharing and reuse of learning
resources by giving users access to a web of content that might otherwise necessitate
discovering and exploring multiple websites or institutional repositories.

The main promising feature of IRs is their flexible data models that can
be customized to arrange the digital documents in a repository according to the
organizational structure of an institute. The data model of an organization’s IR
is not directly converted into IR database schema, but the data model schema is
maintained as values in the comprehensive database schema of the IR. The schema
of IRs databases is nested schema i.e. a schema is embedded in another schema. In
other words, an IR database schema is not a normalized schema with respect to the
data model.

A substantial amount of research has already been done to transform a
relational database (i.e. schema and its data) into ontology. However the exist-
ing transformation systems are only capable to transform a normalized relational
database into ontology. They cannot produce accurate result if they are applied
on IR databases because their schema is nested schema not a normalized schema.
Since the data model is hidden in the IR database schema, it is required to extract
the data model from the IR database schema prior to transforming it into ontology,
so, it makes the transformation complicated and different from the typical trans-
formation tasks. Therefore, first of all it is essential to identify the data model of
an institute from IR database and to extract its metadata and then to transform it
into ontology.

After building the ontologies, a key issue is to enable interoperability among
different ontologies and to integrate them into the semantic web-based network.
Ontology interoperability is a key factor essential for aligning and integrating dis-
tributed ontological resources. It can be achieved by identifying or establishing
semantic correspondence between entities (i.e., classes and properties) among mul-
tiple ontologies.

The proposed system first of all identifies the data model of an institute from
IR database and builds a normalized relational schema for the data model of the
institute. Then metadata of the repository is extracted to populate this produced
schema to build an intermediate database. Once a normalized relational database is
obtained, then relational to ontology transformation techniques are applied on this



94

intermediate database to transform it into ontology. After that instances from the
generated ontology are transformed into corresponding data or instances expressed
in target ontology. The classes from both source and target ontologies are extracted
and simple mappings between these classes are generated by the user. Then the
individuals of these mapped classes are matched and proper URIs are given to each
individual. These individuals are linked with their respective VIVO classes. Finally,
an RDF, having VIVO individuals, is generated. The system has mainly three
modules: (i) Metadata Extraction; (ii) Relation to Ontology Transformation; (iii)
Ontology Alignment and Data Translation.

7.2 Contribution

As IRs are often built to serve a specific institution’s community of users, a key issue
is to integrate the metadata of different IRs into the semantic web-based network to
help faculty, researchers, and students for discovering common interests and make
connections. As mostly existing institutional repositories (IRs) are using relational
database schema for maintaining the metadata of their digital contents, it is crucial
to provide interoperability and integration mechanisms to bridge the gap between
the semantic web and relational database worlds. The adoption and implementation
of semantic web technologies enable ontology-facilitated sharing and reuse of learn-
ing resources. In recognition of need for integrating the metadata of institutional
repositories into the semantic web, the system has been proposed and developed
which integrates the metadata of different IRs into the semantic web-based network
to help faculty, researchers, and students for discovering common interests and make
connections.

The main contribution of this work is to integrate metadata of institutional
repositories into the semantic web applications such as VIVO to enable sharing
and reusing of existing information. The distinguishing features of the proposed
system are (i) identifying the data model of an IR; (ii) extracting metadata of the
repository; (iii) creating proper hierarchy of parent and child classes of ontology
to preserve the data model hierarchy, (iv) generating mappings between ontologies,
and (v) transforming data or instances from source ontology into corresponding
data or instances expressed in target ontology. The system has been implemented
in Java language and Jena API is used for ontology creation. Experimental results
demonstrate that the transformation is correct and the system preserves information
capacity.
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7.3 Future Work

Currently the focus is on DSpace database because it is the most widely used open
source institutional repository software worldwide. The metadata stored in the
DSpace database is transformed, in future this work can be extended for different
IR softwares e.g. EPrints, Invenio, Archimede, etc. for integrating more data into
the semantic web.

The ontology alignment and transformation features can also be enhanced
to maintain more consistency among ontology instances. This work can be extended
by integrating WordNet vocabulary to overcome the problem of synonym, homonym,
polysemy, etc. during instance matching and ontology population.
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