

NATIONAL UNIVERSITY OF SCIENCES & TECHNOLOGY

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING,

RAWALPINDI, PAKISTAN

Multi­criteria optimization of process plans for

reconfigurable manufacturing systems: An evolutionary

approach

By

Ms. Taiba Zahid

MS‐68 (Mechanical Engineering)

(2011­NUST­MS­PhD­Mech­25)

Thesis submitted to the faculty of the Department of Mechanical Engineering, National

University of Sciences and Technology College of Electrical and Mechanical Engineering,

Rawalpindi PAKISTAN in partial fulfillment of the requirements for the degree of Masters

Thesis Supervisor

Associate Prof. Dr. Aamer A. Baqai

ii

Multi­criteria optimization of process plans for reconfigurable

manufacturing systems: An evolutionary approach

By

Ms. Taiba Zahid

Submitted to the Faculty of Department of Mechanical Engineering,
National University of Sciences and Technology College of Electrical

and Mechanical Engineering, Rawalpindi Pakistan, in partial
fulfillment of the requirement for the degree of
Master of Science in Mechanical Engineering

Candidate: __
Ms. Taiba Zahid

Advisor: ___
Associate Professor Dr. Aamer A. Baqai

Committee Members:

1. Assistant Prof. Dr. Imran Akhtar

2. Assistant Prof. Dr. Sajidullah Butt

3. Assistant Prof. Dr. Hasan Aftab Saeed

National University of Sciences and Technology
College of Electrical & Mechanical Engineering

Rawalpindi

29 April, 2013

iii

ABSTRACT
Production systems have developed over the years due to changing environment, external and
internal drivers and conditions like new technologies, developed products and customer
needs. These needs were the main drivers for integrated and evolved manufacturing systems
which can be more responsive and customer focused. Prototypes of manufacturing industries
which have been recently introduces as flexible and reconfigurable manufacturing systems
are responding to these recent needs in peculiar ways focusing not only on product design
level but also on integrated manufacturing systems and process planning level.

Optimization is central to any problem involving decision making whether in engineering or
any other field of life. Manufacturing problems are considered as complex combinatorial
problems involving non linear constraints and large solution search space. The area of
optimization has received enormous attention in recent years, primarily because of the rapid
development in computer technology, advance manufacturing methods and products. Many
software packages now come with a special optimization tool like Optimization toolbox of
MATLAB. When these techniques are used to solve the design problems in engineering then
this becomes engineering optimization or design optimization. The aim is to fill the gap
between theory of optimization and engineering practices. Since most of the engineering
problems are NP hard problems which cannot be solved by conventional techniques that lead
to the promotion of developing advance techniques and search methods in optimization.

Evolutionary Algorithms is a class of evolutionary computation which uses mechanisms
inspired by evolution. In this work, methodologies are presented to solve NP-Hard problem
of process planning through evolutionary optimization using Genetic Algorithms and Cuckoo
Search to generate and then find the optimized process plan for a part or part family.
Furthermore, an approach has been provided in order to achieve reconfigurability,
accommodating new feature in the already generated process plan and thus creating a hybrid
between generative and variant process planning approach.

iv

ACKNOWLEDGMENT

 I would like to thank Almighty Allah; whose guidance lead this work to be completed in
time and whose blessings and benevolent help kept me sheltered all the time.

First and foremost I offer my sincerest gratitude to my supervisor, Dr Aamer Baqai, who has
supported me throughout my thesis with his patience and knowledge whilst allowing me the
room to work in my own way. I attribute the level of my Masters degree to his effort and
encouragement and without him this thesis, too, would not have been completed or written.
One simply could not wish for a better or friendlier supervisor. Along with technical insight,
he continually conveyed a spirit of adventure in research and an excitement in regard to
teaching.

I am indebted to the College of Electrical and Mechanical Engineering, National
University of Sciences and Technology resources for this research work.

I would like to thank my beloved parents and family, who always guided me in the right
way and whose endless effort and support made it possible for me, to be, what I am today. I
would not forget to thank my sister and my friend Ms. Aida Zahid who helped me a lot in my
thesis work.

I have been fortunate to met and work with many wonderful people like Prof. Waheed ul
Haq, Asst. Prof. Imran Akhtar, Asst. Prof. Hasan Aftab Saeed, Asst. Prof. Sajidullah Butt and
Mr. Muhammad Saif ullah Khaild who made my time at college enjoyable and whose
continues encouragement made it possible for me to reach all the way to this point.

In the end I would like to thank the entire honorable faculty of Mechanical Department of
the college, whose professional approach and vision groomed me.

Taiba Zahid

April 2013

v

Contents

Chapter 01: Introduction to Reconfigurable Manufacturing Systems .. 10

1.1 Introduction ... 2

1.1.1 Motivation .. 2

1.2 Justification for Advance Manufacturing Systems ... 3

1.2.1 Changeability/Variations .. 3

1.2.2 Hierarchy of Product/Process Variations ... 4

1.2.3 Uncertainty .. 4

1.3 Comparison of Manufacturing Systems .. 5

1.3.1 Reconfigurable Manufacturing Systems .. 8

1.3.2 Characteristics of RMS ... 8

1.3.3 Development in RMS ... 9

1.4 Process Planning ‐ Interconnect between Changing Products & Manufacturing 11

1.4.1 Process Planning .. 11

1.4.2 Factors effecting Process Selection ... 12

1.4.3 Process Plan Generation .. 12

1.5 Optimization ... 14

1.5.1 Advance Optimization & Manufacturing ... 15

1.6 Problem Definition .. 16

1.6.1 Problem Description .. 16

1.6.2 Construction of the Thesis .. 17

1.7 Summary ... 17

CHAPTER 02: Literature Review .. 18

2.1 Process Planning ... 19

2.1.1 Process Plan Generation Approach ... 20

2.1.2 Minimum Machine Structure Approach .. 22

2.1.3 Improvement Approach ... 23

2.2 Optimization Techniques .. 24

2.2.1 Calculus Based Techniques .. 25

2.2.2 Enumerative Techniques.. 27

2.2.3 Evolutionary Algorithms (EA) ... 31

2.3 Process Planning and Optimization .. 42

vi

2.4 Summary ... 42

Chapter 03: Process Plan Generation .. 19

3.1 Introduction ... 44

3.2 Setup Planning .. 44

3.3 Precedence Constraints ... 45

3.4 Summary ... 53

Chapter 04: Proposed Methodology for Optimization .. 44

4.1 Background ... 55

4.2 Objective Function .. 55

4.3 Selection Function .. 57

4.4 Crossover .. 58

4.5 Mutation .. 59

4.6 Stopping Criteria ... 61

4.7 Cuckoo Search Methodology .. 61

Step 1: Input .. 63

Step 2: Levy Flight Application .. 63

Step 3: Population Size ... 66

Step 4 & 5: Fitness Evaluation ... 66

Step 6: Stopping Criteria ... 66

4.8 Summary ... 66

Chapter 05: Comparison ... 55

5.1 Background ... 68

5.2 Comparison between CS and GA ... 68

5.2.1 Conclusion .. 71

5.3 Comparison of GA methodologies in Process Planning ... 71

5.4 Comparison and Summary .. 74

Chapter 06: Analysis & Future Recommendations ... 68

6.1 Analysis & Future Recommendations ... 77

Appendix A ... 79

Appendix B ... 91

Appendix C ... 104

Appendix D ... 119

References .. 126

vii

List of Tables

Table 1: Difference between Manufacturing Systems .. 7

Table 2: Factors effecting Process Selection .. 12

Table 3: Features of real-life optimization problems [26] .. 16

Table 4: Encoding Schemes for GA operator ... 35

Table 5: Different techniques for crossover .. 36

Table 6: Mutation Techniques in GA ... 37

Table 7: Machining features for figure 21 .. 47

Table 8: Precedence group matrix for figure 21 ... 50

Table 9: PGM for example part in figure 21 ... 51

Table 10: Machining features for ANSI 101 .. 52

Table 11: PGM for ANSI 101 ... 53

Table 12: Tool change matrix for ANSI 101 .. 55

Table 13: Setup change matrix for ANSI 101 ... 56

Table 14: Penalty Matrix for ANSI 101 part .. 60

Table 15: Comparison of GA and CS on test functions .. 69

Table 16: Comparison of GA and CS on ANSI 101 part .. 69

Table 17: Input machining features for Example part in figure 33 ... 72

Table 18: PGM for Example part in figure 33 .. 73

Table 19: Comparison of GA methodologies for generation of process plans 74

Table 20: Tool change Matrix for example part in figure 33 .. 120

Table 21: Penalty matrix for example part in figure 33 .. 122

Table 22: Tool change matrix for example part in figure 33 .. 124

viii

List of Figures

Figure 1: An Example of Dedicated Manufacturing Line ... 5
Figure 2: An Example of Flexible Manufacturing System [1] ... 6
Figure 3: Responsiveness of RMS with the change in product [33] ... 6
Figure 4: Comparison of DMS, FMS and RMS on Variety-Volume Scale .. 7
Figure 5: Patented Design of Arch type RMT [2]... 10
Figure 6: Milling Plans generation concept [6] .. 13
Figure 7:Co-Evolution Paradigm [19] .. 21
Figure 8: Machine Structure Configuration Approach [11] .. 22
Figure 9:Co-Generation & Minimum Kinematic Configuration Approach [20] 24
Figure 10: Improved Approach for Co-Generated Process Plan [20] ... 25
Figure 11: Optimization Search Techniques ... 26
Figure 12: Flow Chart for Tabu Search [22] ... 30
Figure 13: Description of ACO exhibiting behavior of ants [26] ... 33
Figure 14: An algebraic example exhibiting implementation of GA ... 38
Figure 15: Flowchart for explaining basic steps for GA algorithm .. 39
Figure 16: CS Algorithm [40] ... 41
Figure 17: Datum Constraints ... 45
Figure 18: An example of technological constraints... 46
Figure 19: Geometrical Constraints .. 46
Figure 20: Fixture Constraint .. 47
Figure 21: Example Part ... 47
Figure 22: Flow chart for process plan generation.. 49
Figure 23: Modified flow chart for process plan generation ... 50
Figure 24: ANSI 101 ... 52
Figure 25: Flowchart for proposed GA Methodology .. 62
Figure 26: Flowchart for CS ... 64
Figure 27: flowchart for levy flight ... 65
Figure 28: 3-D plot for Rastrigin's Function ... 68
Figure 29: 3-D plot for Sphere Function ... 69
Figure 30: Results obtained for ANSI 101 by GA ... 70
Figure 31: Results obtained for ANSI 101 by CS .. 70
Figure 32: Example Part for Case Study [55] ... 71
Figure 33: Flowchart for generation of process plans by GA [55] ... 72
Figure 34: Results obtained for optimal no of tool changes by GA methodology of Deb [55] 75
Figure 35: Results obtained for optimal no of tool changes by proposed GA methodology 75

ix

List of Abbreviations
DML Dedicated Manufacturing Line

DMS Dedicated Manufacturing System

FMS Flexible Manufacturing System

RMS Reconfigurable Manufacturing System

RMT Reconfigurable Machine Tool

RAS Reconfigurable Assembly System

CAPP Computer Aided Process Planning

KC Kinematic Configuration

EA Evolutionary Algorithms

ACO Ant Colony Optimization

PSO Particle Swarm Optimization

GA Genetic Algorithm

CS Cuckoo Search

SA Simulated Annealing

TAD Tool Approach Direction

PGM Precedence Group Matrix

Chapter 01: Introduction to

Reconfigurable Manufacturing

Systems

Chapter 1: Introduction

2

1.1 Introduction
Manufacturing industry has an ability to bring wealth for any organization that is the core purpose of

all organizations directly or indirectly. To sustain in the world which has become a global village,

industries have to focus on improving quality while maintaining price in a range that gives

competitive advantage and is attractable for customers. A pertinent manufacturing system will be able

to fulfill that purpose.

Due to the aforesaid cause, production industries are in a continuous race, focusing towards total

quality management and trying to improve their products in order to get competitive advantage. Such

improvement can be brought from higher quality products, or by lowering cost keeping quality in

mind or by timely supply and innovative products. This leads to the need of application of new

technologies and concepts not only for product design but also for the manufacturing system and

entire setup.

There can be many types of manufacturing systems extending from dedicated and fixed to fully

automatic and flexible, from isolated facilities or job shops to computer integrated systems. The level

of production volume, demand, type of customer and product are the main factors that determine

whether it has to be a job shop, fixed, discrete or continuous production system. Thus multiple factors

have to be kept in mind for the selection of manufacturing systems.

Combat is deducted from many factors like responsiveness, good service, customer satisfaction,

quality and less waste. The aim of choosing such a manufacturing system that utilizes the optimal

resources and gives competitive advantage in lowest capital investment gives designers and managers

a big challenge since it is a multi-objective task with many conflicting objectives in a way that

increasing one decreases the other. The aforesaid factors are the reason due to which advance

manufacturing systems are replacing traditional manufacturing systems in today’s world due to

potential benefits associated with them.

1.1.1 Motivation
Production systems have developed over the years due to changing environment and conditions like

new technologies, developed products and customer needs. These were the external drivers but along

with them there were internal drivers as well such as to keep the waste and scrap minimal, increase

productivity, reduce inventory and labor costs etc. These needs were the main drivers for integrated

and evolved manufacturing systems which can be more responsive and customer focused.

Chapter 1: Introduction

3

1.2 Justification for Advance Manufacturing Systems
Prototypes of manufacturing industries which have been recently introduced as flexible and

reconfigurable manufacturing systems are responding to these recent needs in peculiar ways. These

systems can be responsive and can provide necessary transformations whenever required at different

levels.

The main factors or drivers leading towards the shift from traditional manufacturing systems to

advance manufacturing can be summarized in the form of variation and uncertainty. These factors

would be discussed further in detail.

1.2.1 Changeability/Variations
To compete in global market and production networks, manufacturing systems should be transformed

in such a way that processes, products and facilities lay out should be made adaptable so that it can be

changed due to variations in external or internal drivers mentioned above. This quality of

manufacturing industries to be adaptable in a constantly evolving manufacturing environment can be

described as “changeability”,

The need for reconfigurability or adaptability is switched by external and internal drivers whose main

source is the turbulence in market conditions and customer demands. To keep customers attracted and

be center of attention, designers need to bring variety in their products at design level. This would be

small level change but a major change can also be adopted such as to enter a new market and to target

a whole new type of customers.

Changeability or responsiveness is required due to uncertainty in a manufacturing system. It is

required at different levels in a manufacturing system. Uncertainty for factory, assembly, process

planning and manufacturing level would be discussed further in detail.

Factory Level
At factory level due to the product variations, shop floor has to be changed and layout needs to be

changed due to the changing demands. This means a need for a dynamic facility planning. In addition

to that it is needed to scale up and down the production volumes according to the demands. Along

with that inventory control would also has to be flexible.

Assembly Level
Assembly lines or process lines have to be transformable. With the changing product variety, mobility

needs and process lines would be different and one has to reconfigure them.

Chapter 1: Introduction

4

Process Planning and Control Level
Process planning is a major concern for companies having various part families. Obtaining optimized

machine configuration for each part family and then among the part families, determining the one

giving the most benefit is an NP hard problem. They have to be adoptable, adjustable and evolvable.

One of the major challenges for today’s process planners is to design systems in such a way so as to

accommodate variations at product design level as well as manufacturing system level for the

upcoming suture. Also the availability of resources has to be kept in consideration. This particular

need of responsiveness at process planning and control level is a major push for advanced

reconfigurable manufacturing systems.

Manufacturing Level
Manufacturing systems undergo incremental changes in modern world of industrialization. To

maintain position in such competitiveness, a company should be able to have a manufacturing system

that fulfills the present demands and can also be reconfigured for the future demands. It can be

considered as a tool for implementing computer integrated manufacturing.

1.2.2 Hierarchy of Product/Process Variations
Market demands, research and development, awareness, science and technology, cost reduction,

corporeal changes and legal rules and push the evolution of products. Product designs are evolved

with time in response to these requirements. Changes in design of product may lead to change in

functions and forms that may produce a whole new set of part family with different design features.

This gives rise to product families that contain variants of the products and their parts, components

and configurations. Five apparent levels in the hierarchy are described as:

a. Product Features

b. Product/ Part Family

c. Products families

d. Sub assemblies/part components

e. Products Families

1.2.3 Uncertainty
Frequent and unpredictable market changes are challenges facing manufacturing enterprises at

present. In the short term, there are many triggers for products changes including evolving over time

due to innovation. They also experience significant evolutions in the long term due to products and

technological changes.

To increase competitive advantage of company and to have a customized product or features through

which company stands out among others research and developers always aim for innovative products.

Chapter 1: Introduction

5

This innovativeness leads to uncertainty because production teams do not know that what might be

their future product. So to ensure that those uncertain features can be developed in the system, it has

to be made reconfigurable i.e. flexibility when needed.

1.3 Comparison of Manufacturing Systems
The traditional manufacturing systems do not fit into the present marketing world and the shift was

needed. Since dedicated systems were only capable of producing specialized products because of their

design. In dedicated manufacturing lines (DML), each line is specifically designed to build a

particular/product. Since line is specifically designed for that purpose, it will take a lesser time to be

made and as long as the part demand is high making production volume higher, unit cost of the

product will be low and cost for purchasing specialized equipment will be compensated. Figure 1

shows a dedicated manufacturing line for a cement plant designed specifically for this purpose.

Figure 1: An Example of Dedicated Manufacturing Line 1

 As customer’s demands changed, flexible manufacturing systems (FMS) were developed to

accommodate various needs. Flexible manufacturing systems aimed for increasing variety of

products. So the best application of FMS was found in the production system having larger product

variety in small amount. Flexible manufacturing systems consisted of computerized numerically

controlled machines and manufacturing systems were designed to be automated. Flexibility was

introduced at different levels in a manufacturing system. Figure 2 shows a flexible manufacturing

system proposed by S.S Sankar et al [1]. It is composed of different flexible subsystems making a

complete FMS. Each circle represents a flexible machine cell (FMC) that consists of two or three

machines with automatic tool changer and pallet changer. Each cell has a robot for loading/unloading

of the parts. Automated guided vehicles (AGVs) are present for handling the part from the machine

cells and loading/unloading them from the automated storage/retrieval system (AS/RS).

1 http://www.intechopen.com/books/alternative‐fuel

Chapter 1: Introduction

6

Figure 2: An Example of Flexible Manufacturing System [1]

But these systems were made with flexibilities which in most cases were not needed. The equipment

required for these systems was much expensive and the initial capital costs were high. That resulted in

the increased cost of manufacturing system and in turn of the product. So these systems were not

adopted completely but at some levels of manufacturing.

RMS aims for customized flexibility meaning flexibility when needed. It aims to increase

responsiveness of a system. It can be seen as an extension of Just in time (JIT) production system.

This customized flexibility leads to a lower setup as well as product cost as compared to FMS and

also faster throughput and higher production rates. Figure 3 shows comparison between these systems

in terms of their responsiveness. FMS and DMS are static systems but RMS evolves with time [2].

Figure 3: Responsiveness of RMS with the change in product [33]

Chapter 1: Introduction

7

However integration of machines and selection of machine configuration becomes a tough task for

RMS. Table 1 represents general comparison of three basic types of manufacturing systems.

Table 1: Difference between Manufacturing Systems

Features DMS FMS RMS

Aim Specialized Product Increased Variety Increased

Responsiveness

Product Variety Specialized products High Customized

Quantity High Low High

Machine Configuration Dedicated Flexible Reconfigurable

Flexibility No High Customized(when

needed)

Scalability No Yes Yes

Responsiveness (after

market review)

Lowest Medium Fast

Market Stable Predictable Uncertain

Process Technology Fixed Needs acceptability Responsive

System Focus Part Machine Part Family

System Structure Fixed Adjustable Adjustable

Manufacturing Policy Pushing Pulling Customizing

Cost Low High Intermediate

Figure 4 shows the comparison of manufacturing systems at the variety-volume scale. As discussed,

DMS tends to have the highest production but the lowest variety.

Figure 4: Comparison of DMS, FMS and RMS on Variety-Volume Scale

Chapter 1: Introduction

8

1.3.1 Reconfigurable Manufacturing Systems
The research work regarding the design and requirements of reconfigurable manufacturing systems in

the past ten years resulted in a state-of-the-art definition that Y. Koren [2] summarized as follows:

 ‘A RMS is a system designed at the outset for rapid changes in structure, as well as in its machines

and controls, in order to rapidly adjust production capacity and functionality (within a part family).’

 The basic messages here–in contrast to configurable systems –are ‘rapid changes’ or ‘rapid

adjustment’ which must happen in relatively short time ranging between minutes and hours and not

days or weeks. The reconfigurable manufacturing systems have two important components

termed as reconfigurable machine tool and reconfigurable controller.

Reconfigurable Machine Tool (RMT)
The uniqueness of reconfigurable manufacturing system is that the structure of the system as well as

of its machines and control can be rapidly changed in response to market changes. A major

component of RMS is the reconfigurable machine tools (RMT). RMT are designed for customized

range of operations requirement and may be cost effectively reconfigured if the requirements are

changed. So they are designed to produce specific range of operations for a specific range of cycle

time. The primary aim of RMT is to cope with the changes that a product, part or a system may face.

Reconfigurable Controller
To control a particular machine, specific functions or classes currently must be designed and build

into reconfigurable controller. The controller becomes unchangeable at run time for controlling

different machines. The controller can be dynamically reconfigured for different machine.

1.3.2 Characteristics of RMS
Ideally a reconfigurable manufacturing system possesses six core characteristics. Yorem Koren [2]

introduced these characteristics which would be discussed in described in detail.

Modularity
In RMS components have to be modular such as spindle axis or machine configuration so that the

modular components can be changed according to the part design. Modularity is the most important

component of RMS that provides feature of customized flexibility.

Diagnosability
It is the characteristic that adds the factor of quality assurance and control by checking the current

status of the system and diagnosing the root cause of the problem. It has two main aspects which are:

a. Detecting machine flaw

Chapter 1: Introduction

9

b. Detecting part flaw

Convertibility
Convertibility is the characteristic that gives responsiveness to the system. System convertibility may

have several levels. Conversion may require switching spindles on a milling machines or manual

adjustment of passive degrees-of-freedom changes when switching production between two members

of the part family within a given day. System conversion at this daily level must be carried out quickly

to be effective.

Scalability
The ability to easily change production capacity by rearranging an existing manufacturing system

and/or changing the production capacity of reconfigurable stations is known as scalability. Scalability

is the counterpart characteristic of convertibility. Scalability may require at the machine level adding

spindles to a machine to increase its productivity, and at the system level changing part routing or

adding machines to expand the overall system capacity (i.e., maximum possible volume) as the

market for the product grows.

Integrability
Integrability is the ability to integrate modules rapidly and precisely by a set of mechanical,

informational, and control interfaces that enable integration and communication. At the machine level,

axes of motions and spindles can be integrated to form machines. In addition, machine controllers can

be designed for integration into a factory control system.

Customized Flexibility
To design system/machine flexibility just around a product family, obtaining thereby customized-

flexibility, as opposed to the general flexibility of FMS/CNC is termed as customized flexibility. This

characteristic drastically distinguishes RMS from flexible manufacturing systems (FMS), and allows a

reduction in investment cost. Customized flexibility for the part family allows the utilization of

multiple tools (e.g., spindles in machining or nozzles in injection molding) on the same machine,

thereby increasing productivity at reduced cost without compromising flexibility.

1.3.3 Development in RMS
The concept of RMS has rocked the world and promised a global revolution in the 21st century

manufacturing landscape [3]. From 20th century, a lot of research has been going on in this area and a

lot papers have been archived. The term RMS can be attributed to Dr. Koren. Yoram Koren [2]

proposed to the National Science Foundation to establish an Engineering Research Center (ERC) for

Reconfigurable Manufacturing Systems (RMS), thereby initiating the RMS paradigm in 1995 in the

Chapter 1: Introduction

10

university of Michigan. The RMS is a manufacturing system that is designed at the outset for rapid

changes in its structure to quickly adjust its production capacity and system functionality in response

to sudden market changes and customer demands. Delphy study of manufacturing [4], RMS concept

was identified as number one priority technology for future manufacturing and one of six key research

challenges.

The charter of the ERC-RMS is bringing the RMS science to the factory floor with new scientific

methodologies and innovative equipment that enable to begin production faster and with higher

productivity and improved part quality. RMS technologies give manufacturers “exactly the

production capabilities needed, exactly when needed” to compete in the global marketplace.

Over thirty industrial companies are the founding partners of the ERC-RMS Center. They include

machine tool builders and control vendors, as well as end-users such as the auto and aerospace

industries and power train builders.

A lot of research is going on to develop reconfigurable machine tool structure. Koren with other

researchers have developed an arch type RMT for machining a variety of part family and in particular,

low cost RMT that is able to perform a variety of machining operations.

The advantage of this designed RMT is that it permits easy reconfiguration of machine structure and

its spindle units to produce a new series of part belonging to the same part family.

It includes multiple support units which are able to support multiple desired tools. The base of RMT

has several slots positioned in generally circular orientation around the table. Table is at the center of

base and can be moved horizontally, vertically or tilted with respect to base. Spindles can be mounted

on support units at any desired position and support units can be connected to the base through any

slot thus providing easy reconfigurable machine structure and customized flexibility (Koren et al [2]).

Figure 5: Patented Design of Arch type RMT [2]

Chapter 1: Introduction

11

Research has been carried out on Reconfigurable Factory Test Bed (RFT). By providing a

collaborative mix of hardware/software and real/simulation components distributed across a web-

enabled network, the RFT will serve as an excellent environment to consolidate and showcase results

of the University of Michigan's Engineering Research Center for RMS. More importantly, it provides

an environment to envision, rapidly prototype, and verify in a factory operation environment those

solutions that result from the combination of the RFT components. Further it will provide a

mechanism for pre-validation of manufacturing software components to standard specifications.

Along with RFT, researchers are also working on developing the generic manufacturing automation

test bed intended for application to a range of different manufacturing sectors.

Apart from RMT, another element of RMS is reconfigurable assembly system (RAS). Assembly is

very important part of manufacturing and it is observed that 20% to 50% of the total cost is assembly

cost [5]. DFA is being considered as enabling technology for RAS. The objective of DFA is to

optimize a product design with consideration of its production system including supplies, material-

handling systems, manufacturing and assembly processes, labor force, distribution systems and

customers [3].

Robots are being used for RAS. They can be reprogrammed according to accomplish different

assembly tasks. Today, most RAS are developed using industrial robots [5]. So RMS is one of the

most promising paradigms that can provide solutions to changes and uncertainties in a competitive

manufacturing environment.

1.4 Process Planning - Interconnect between Changing

Products & Manufacturing
Changing product designs with different features need efficient sequence planning. It is a phenomenal

concern in process planning to make them efficient and responsive in such a way that they are able to

accommodate various part features in products. With the addition of any member in the group, this

process plan has to be transformed again that justifies the importance of RMS at process planning and

control level. Process planning and sequencing/scheduling provide phenomenal links between

multiple generations of product families and their respective design features, capacities and layouts of

production systems throughout their entire lifecycle.

1.4.1 Process Planning
Process Planning can be defined as a procedure that focuses on selecting resources for use in the

execution and completion of a project. In a manufacturing setting, this aspect of planning also

includes establishing the general sequence of steps that begin with the acquisition of materials and end

with the creation of a finished product.

Chapter 1: Introduction

12

The practice of process planning in a manufacturing provides precise and clear sequential directions

about how the product is to be routed and fabricated in a manufacturing facility. In advance

manufacturing systems, this will influence how the facility will be designed and laid out in

preparation for the new product.

1.4.2 Factors effecting Process Selection
While determining processes for a product, several factors need to be kept in mind. Selecting a

process without considering the influence of these factors on it could adversely affect the cost, quality

and ease of manufacturing the parts. Table 2 describes some of the factors that influence process

selection.

Table 2: Influence of Factors on Process Selection

Factor Potential Influences

Materials Some materials require a different process, for

example aluminium can be casted while wood

cannot.

Quantity Large lot sizes justify expensive

tooling/process

Surface Finish Requirements Different processes produce different

tolerances

Tolerance Tight tolerances require expensive tooling

Structural Strength According to the use of product

Apart from the process selection, operation sequence is also a major task. It has to be designed

keeping in mind various factors so as to reduce lead time of the product. Each process may has to be

performed a number of times for manufacturing. Hence operation sequences must be selected in a

way that minimum time should be given to part handling and tool setting activities. Hence these

scheduling problems can be differentiated and compiled based upon a number of parameters such as

machining time, machine configuration, and precision and so on.

1.4.3 Process Plan Generation
Process planning is an activity that brings designers and manufacturers at one platform. F.Villeneuve

et al [6] summarized the approaches which are being used for generation of process plans.

Traditionally, in CAPP, designers generated process plan while considering fixed and specific

components. Due to this reason only one process plan was generated which was supposed to produce

one type of product. So it was related to DMS and there was no product variability and static systems

Chapter 1: Introduction

13

were developed. With the passage of time, researchers focused towards generating multiple process

plans that can be compatible with the dynamic nature of manufacturing systems such as FMS and

RMS.

Figure 6: Milling Plans generation concept [6]

FMS focused towards the product variety and hence there was a need of alternative process plan

generation. Flexible process plans were developed which were capable of producing alternative

sequences and manufacturing resources. The generation of process plans has two main approaches [7]

which are described below:

Variant Approach
In variant process planning, alternative cases are used to generate process plans. The variant approach

groups and assigns codes to families of components that require similar manufacturing set-ups. All the

parts already existing in the company are grouped according to their similarities in features,

dimensions and tooling etc. So when the new part arrives, corresponding process plan is selected. This

method is based on the previous experience and knowledge of the company. It lacks flexibility and

also grouping of the parts (which have been manufactured and designed already in the company) is

also required.

Generative Approach
Generative process planning as the name suggests, is not based on retrieving process plans from

already existing ones but rather generates new process plans. So it uses the part information and

design specifications to propose process plan and optimized machine structure. With these diverse

approaches, three of the methods are discussed in section 1.11.3 [8] for generating process plans.

Chapter 1: Introduction

14

Expert System Generation
The first expert system was developed in 1960s. The expert system generally consists of two main

elements. Set of rules and a set of tasks. Set of rules consist of “if and then” conditions and require

knowledge of user. Set of tasks consist of operations performed by the system. It consists of some

variables which are required as input from the user.

Selection by Constraint Satisfaction
Constraints are defined by variables. Objective is achieved by narrowing the domain of solution space

by satisfying constraints. As important part of this method is mathematical modeling by which

objective function and constraints are defined. This method is useful for combinatorial problems

involving more than one objective function.

Reconfigurable Process Plans
As discussed in section 1.4, FMS dealt with the part variety and focused on machine structure.

Reconfigurable process plans were developed to deal with change in product and flexibility was

introduced when needed. In case of existing machines, RPP propose that part family nearest to the

new part is selected and then process plan for the new part is retrieved from it. RPP used two criteria.

First, part handling and tool handling activities which do not add any value were minimized. Second,

cost of changes was added. A new part may require new machine which in turn would cause change

in process plan. RPP supports decision makers in making machine selection and sequencing activities

at initial stages of manufacturing, thus promoting concurrent engineering.

There has been extensive research on process plan generation in reconfigurable manufacturing

systems. Problems of Multi objective process plans in reconfigurable systems are a challenge for

today’s manufacturers and designers. A wide variety of process planning issues exists in literature.

Due to the complexity involved in analyzing process planning and related issues, researchers tend to

focus their studies on one of the aspect for RPP. For example they consider the process selection

problem as in [9], process sequencing [10] or minimum machine structure required [11]. These

proposed techniques generated all possible process plans for a certain part family. Certain

considerations needed to be taken into account to generate optimized process plan.

1.5 Optimization
The desire of optimality is inherent by humans. The search for extremes has been the goal of human

race since the start of the world. Theory of optimization was developed in sixties after the computers

became available. The goal of the theory is the creation of reliable methods to catch the extremes

(maxima or minima) of a function by an intelligent arrangement of its evaluations (measurements).

This theory is vitally important for modern engineering and planning that incorporate optimization at

every step of the complicated decision making process.

Chapter 1: Introduction

15

Optimization is central to any problem involving decision making whether in engineering or any other

field of life. The task is to find the best among alternatives. The measure of goodness is described by

an objective function developed by extensive mathematical modelling. In general optimization is the

selection of best among some alternatives. In mathematics, optimization problem consists of

maximizing or minimizing a function from a set of domain.

The area of optimization has received enormous attention in recent years, primarily because of the

rapid development in computer technology, advanced manufacturing methods and products. Many

software packages now come with a special optimization tool like Optimization toolbox of MATLAB.

When these techniques are used to solve the design problems in engineering then this becomes

engineering optimization or design optimization. The aim is to fill the gap between theory of

optimization and engineering practices. Since most of the engineering problems are NP hard problems

which cannot be solved by conventional techniques that lead to the promotion of developing advance

techniques and search methods in optimization.

Based upon the objective function and the domain, optimization has been subdivided into many major

areas like multi objective optimization, multi modal optimization, convex optimization, combinatorial

optimization etc.

Since some of the problems are linear having constrained or unconstrained domains, so linear

programming was developed for this class of optimization. Likewise some objective functions have a

set of domain from which each input is verified for the criteria of optimization. We can say that there

is a limited solution space where optimal point has to be found. But in some cases there is no solution

space so bench marking is done according to some specific criteria obtained by mathematical

modeling. So a lot of search techniques have been developed for different objectives and engineering

optimization is a way to fill the gap between the engineering practice, real life problems and the

developed optimization techniques.

1.5.1 Advance Optimization & Manufacturing
Manufacturing problems are considered as complex combinatorial problems involving non linear

constraints and large solution search space and are considered to be NP Hard problems. As discussed,

conventional approaches cannot provide answer to these problems due to their limitations. Search

techniques play an important role in this regards. Oduguwa et al [12] summarized the features of real

life industrial problems which make them almost impossible to solve by traditional techniques.

The past decades have seen important advances in the use of search techniques and more importantly

evolutionary algorithms to address challenging optimization problems in manufacturing.

Chapter 1: Introduction

16

Table 3: Features of real‐life optimization problems [12]

Classification Schemes Features

Number of parameters Highly dimensional

Existence of constraints Constrained

Number of objective functions Multi-objective

Nature of objective functions Hybrid

Nature of objective functions Inseparable

Dependence among variables Independent and dependent variable

Nature of quantitative search space Unknown search space, Multi-modal

Nature of equations involved Linear, non-linear, quadratic

Nature of design variables Static and dynamic

Permissible values of design variables Hybrid

Expert knowledge Imprecise and stochastic

Nature of qualitative search space Discontinuous and highly multi-modal

1.6 Problem Definition
In current manufacturing systems which require responsiveness, the alternative processing routes are

key issues since they provide sequencing and processing flexibility which can be used for

reconfiguration issues [13]. When alternative process plans are available, due to the numerous

possible combinations of alternative process plans, the goal in computing a solution methodology is to

answer the question: which of the process plan will give the optimal results for the given production

scenario? Solving such a problem requires a comprehensive analysis of interrelated decision making

activities that aim at selecting an optimal manufacturing process plan. This becomes an NP Hard

problem [12].

This kind of problem can’t be defined by a limited search space involving simple constraints, thus

making it difficult to solve by classical techniques. These problems can be solved by using

evolutionary approach. By their use an optimized process plan can be found based on criteria which

can be set based upon time and tolerance constraints. Methodology has been proposed to add

reconfigurability in the proposed process plan so that it can be made around a part family rather than a

specific product and to be made modular for future uncertainties. So the problem definition is “to find

optimized reconfigurable process plan based on set criteria”.

1.6.1 Problem Description
The complete problem description has been divided into three parts by keeping in mind the

assumptions that single spindle direction is considered hence parallel machining case option is not

considered as well as there is single machine option. The main parts of the problem are as follows:

Chapter 1: Introduction

17

a. Process plan generation

b. Modeling

c. Application of Evolutionary Approach

1.6.2 Construction of the Thesis
The thesis report has been divided into seven chapters. Chapter 1 provides a comprehensive

introduction to this research, description and justification of the research problem and the conceptual

approach along with motivation to handle the research problem. Chapter 2 mainly focuses on different

techniques of process planning as well as search techniques in optimization and provides a detailed

literature review. In chapter 3 and 4, main methodology for generating the process plans and

application of evolutionary algorithm have been discussed respectively. Chapter 5 and 6 discuss

comparison and analysis of the proposed methodology and also provide directions for future research

in this area.

1.7 Summary
In this chapter, we have briefly compared different manufacturing systems and the need of advanced

reconfigurable systems. The characteristics of these advanced systems were described in detail along

with the recent developments. Along with that, different approaches of process planning along with

the need of reconfigurability and optimization in this area were discussed.

CHAPTER 02: Literature Review

Chapter 2: Literature Review

19

2.1 Process Planning
Process planning can be defined as a group of work instructions defined in a sequence to make a

product. There can be a single part or assembly of parts in a sequence to synthesize the final product.

Due to its importance in industrial as well as manufacturing systems engineering, researchers have

proposed many techniques over the years to generate process plans.

ElMaraghy [14] divided the approaches for the generation of process plans into three levels according

to their level of granularity. These were described as follows:

1. Multi-domain Process Planning Level: This was based on the initial decisions which have to be

taken before machining or assembling the product such as method of assembly, material selection etc.

2. Macro Process Planning Level: It was concerned with selecting the sequence for generating

process plan so as to create a setup. In FMS and RMS, this process has to be repeated frequently due

to the changes in product design unlike in DMS where the setup is fixed.

3. Micro Process Planning Level: This level is concerned with the exploration of optimal

sequence/process plan based upon details and criteria defined by the manufacturer.

 Dusan [10] proposed a technique of generating alternative process plans for integrated manufacturing

environment in order to get a cost feedback each time a modification was made in the sequence by the

designer. The methodology consisted of three main parts; first was the selection of machining

processes which can be adopted for generating machining feature specified in the part, second was

grouping and sequencing of those processes and third was the generation of a process plan network.

Prabhu et al [15] proposed process plan generation for rotational components. It was presented in the

form of a tree where different branches represented alternative process plans for a part. But there was

inadequacy of several important issues like generation of process plan for prismatic parts which have

complex precedence constraints.

Vamsi et al [16] used feature based modeling for generating automated process plan. The

methodology involved feature recognition for rotational components and then using knowledge based

system for generating process plan. It consisted of three modules which were feature recognition,

feature storage algorithm and process plan generation module. But these models were developed only

for simple rotational components and could not handle complex precedence constraints. Similarly

Yang et al [17] also proposed a feature recognition technique to generate alternative process plan but

it was not limited to rotational components. Rule based knowledge was used to generate process plan

taking into account the limitations of the available machine tool.

Chapter 2: Literature Review

20

Ray [18] pointed out that the process plans should be integrated to make process planning useful in a

production system. He proposed integrated process planning approach in which two modules were

integrated. One module was for the generated process plans while the second managed the flow lines

and resource allocation.

The development of process plans along with their kinematic configuration led to the concept of

coordinate evolution or co evolution. As discussed, the traditional approaches were focused on

developing the process plans on the machine structure which was fixed. But the rapid changes in

products design and competition aroused the need of focusing on process plan along with their

machine kinematic configuration simultaneously.

In this new line of research and RMS, product and process selection cannot be limited and treated as a

simple optimization problem. There is a need for a dynamic model that can accommodate

uncertainties where success depends on continuous improvement and quality management and

internal environment reflects selection pressures from outside [1].

Tolio [19] presented the concept of co-evolution. The co-evolution paradigm suggests that changes in

product, processes and production systems have a direct impact on each other. Therefore, changing

one of them causes the change in other two. The author reviewed most of the research work done till

2010 on co evolution and placed it on evolution axis. He discussed in detail that the research which is

carried out focus on machine structure or process based upon the objective functions. He used

triangular cross section as a representation of the level of integration between the products, processes

and production systems for a given configuration. He assumed that transformation (i.e. part

production) can only be carried out if and only if all the three parameters (PS3) of co evolution

paradigm were designed. He proposed different examples of configuration by which level of

integration for a particular configuration can be measured.

 The concept of co evolution or generation emphasizes on focusing on machine structure and process

sequence at the same time. Few recent approaches have been discussed below in detail which will

help us to develop more understanding about the concept of co-generation.

2.1.1 Process Plan Generation Approach
As discussed in section 1.4, due to the need for co evolution, various methodologies have been

proposed in the recent literature to sort out this problem. The first approach which is discussed here

generated multiple process plans for a given part along with their kinematic machine structure. This

approach was presented by A. Baqai [8].

Chapter 2: Literature Review

21

Figure 7:Co-Evolution Paradigm [19]

The main steps of the approach [8] are mentioned below:

Step 0: Initialize the first process plan

Step 1: Generation of process plans along with their associated kinematic configuration for machine

structure. Operations having first priority are given zero precedence.

Step 2: To generate ensuing process plans from step 1 by ascribing operations to it which can be

performed on the same machine structure.

Step 3: Generation of ensuing process plans after step 1 & 2 by ascribing operations that can be

performed on parallel machine structures by subsequent operation of spindles.

Step 4: Generations of ensuing process plans after step 1, 2 & 3 by allocating operations that can be

performed after a tool spindle change.

Step 5: Generations of subsequent process plans of step 1, 2, 3 & 4 by allocating operations that can

be performed after part rotation.

Step 6: Find any other possible option for process plan.

Description
The inputs to the approach are topological interactions which tell about the relation between the

operations which have to be performed on the part and precedence matrix which identifies operations

that need to be performed before or after any other operation based on topological interaction. After

that, precedence ranking of the operations for the part is developed.

Chapter 2: Literature Review

22

Along with these inputs, relationships between the operations are also required. The relationships

required are as folloes:

a. Operations having similar axis

b. Operations having similar spindle direction

c. Operations having similar operation type

This knowledge will provide the information that which operations can be performed in parallel, with

the same tool and which can be performed after rotating a part. For example if operation 1 and 2 are

of same operation type, then they can be performed with the same tool. Due to the primary focus on

process plans, the focus shifts from the main concept of co-evolution. On the other hand, because the

approach considers the machine configuration as well as the process plans, this approach after

improvement can be brought closer to the concept of co-evolution.

2.1.2 Minimum Machine Structure Approach
The second approach under consideration here is the machine structure configuration approach

presented by A.I. Shabaka and H.A. ElMaraghy [11]. The flow chart of the approach is shown in

figure 8.

Figure 8: Machine Structure Configuration Approach [11]

Description
The inputs as shown in the flow chart are

Precedence Graph

Tool Approach Directions

Dimension of Part

Precedence Graph captures the precedence constraints, which define order of succession among

operations. In previous approach [8] precedence matrix gave the information about the sequencing of

Chapter 2: Literature Review

23

operations. Grouping or clustering of machining features is based on constraints that can be of

different types. Elmaraghy in his machine configuration approach [11] mentioned three types of such

constraints which were logical, tolerance and datum. Logical constraints are between those operations

which are logically related to one another. For example if milling and surface finish has to be

performed on same plane of part, then milling must be performed before finishing. Tolerance Datum

constraints as the name suggests are between two operations when a group of operations must be

performed on the same machine and with the same set-up positions to preserve tolerances with respect

to position and the relative positioning of the operated features. Finally other constraints refer to

those constraints which exist between operations but are neither tolerance datum nor logical. Graph is

used for the clustering of operations.

Tool Approach Directions (TAD) represents all the possible directions by which a tool approaches to

build the required feature. Orthogonal dimensions are considered giving the possibility of six

directions in which tool can be directed towards the part. Based on the information of TAD and

operations clusters, minimum machine configuration is developed for producing the given part.

Comparison of minimum machine structure and kinematic
approach
In the first approach, formation of the process plans was mainly discussed and along with that

machine configurations are developed for each possible process plans. But in the second approach,

focus was towards generating minimum machine structure. Since machine structure is supposed to be

simpler, so the possibility of performing parallel operations is ruled out in the second approach. So

first approach considers multiple platforms but second does not.

First approach has been developed by considering objective function of minimizing the time needed

to manufacture the part but Elmaraghy [11] has considered objective function of minimizing the

initial cost. That is why he has emphasized on minimizing the machine structure. Initial cost for the

first approach will be high.

2.1.3 Improvement Approach
Maaz et al [20] in his thesis suggested new algorithm by combining the approaches developed by

A.Baqai [8] and Elmaraghy [11] on cogeneration. This thesis [20] was focused on improving the

previous approaches and to address certain issues regarding co-evolution.

Chapter 2: Literature Review

24

Figure 9:Co-Generation & Minimum Kinematic Configuration Approach [20]

Description
The algorithm developed for the improved approach [20] is same as that of minimum machine

structure approach from the start and utilizes the same inputs, but after the operation clustering and

defining minimum TAD for each and every cluster, it move towards the process sequencing and

considers possibility of performing operations in parallel. In the end, generation of machine structures

with the associated process plans takes place. Hence objective function of minimizing the initial cost

and time is combined.

The above discussion helped us in understanding the concept of reconfigurable process plans and

cogeneration. From the approaches presented in sections 2.1.1-2.1.3, a number of process plans for

the given part along with their machine structures can be obtained. To determine the optimized

process plan among them is an NP Hard problem. In later chapters, optimization techniques will be

discussed which can be used to address issues that are critical in obtaining optimized process plan in

RMS.

In order to get competitive advantage, need of optimality aroused after getting alternative process

plans. Further we will discuss the search areas in optimization and techniques which can be used to

address issues that are critical in obtaining optimized process plans in RMS.

2.2 Optimization Techniques
Since from the first day, man has always urged for improvement and for optimization. So various

search techniques have been developed in order to attain a goal; that is optimization. These techniques

can be divided into three main types starting from classical techniques and moving towards modern

age optimization techniques. The details of these search areas are further explained in detail. Fig [11]

gives an overview of these search areas of optimization.

Chapter 2: Literature Review

25

Figure 10: Improved Approach for Co-Generated Process Plan [20]

2.2.1 Calculus Based Techniques
The calculus based methods have been intensely studied and are subdivided in two main classes

a. The direct search methods find a local maximum moving on a function over the relative local

gradient directions.

b. The indirect methods usually find the local ends solving a set of non-linear equations, resultant of

equaling the gradient from the object function to zero, i.e., by means of multidimensional

generalization of the notion of the function’s extreme points from elementary calculus give a smooth

function without restrictions to find a possible maximum which is to be restricted to those points

whose slope is zero in all directions. They involve methods such as gradient based and region

elimination methods. Some of these techniques are discussed below in detail.

Gradient based technique and Langragian technique are one of the classical techniques that have

been developed. They are easy to understand and apply. But they can be applied to unconstrained

functions and unimodal mostly. Also they become difficult when the problem is multidimensional.

Since they do not search the solution space efficiently, there were chances that solution might stuck in

a local optima.

Chapter 2: Literature Review

26

Figure 11: Optimization Search Techniques

For these one directional search methods like fibnocci, golden section search, secant or other region

elimination methods, which solve the problem of optima in a closed interval with unimodal condition,

developments were done to increase the accuracy of desired optima and to get more accurate answer

with fewer calculations but still the conditions could not be changed and these classical gradient based

techniques remained for one dimensional unimodal objective functions.

To solve this problem, convex programming was suggested in combination with KKT methods that

ensure that the solution found is global optima and search space was efficiently searched. But the

unconstrained and multidimensional problem was still there.

Gradient base techniques were although used for one directional problems but they played an

important part in the development of multi directional problems solving techniques where they were

used as line search. To find solution for a multidimensional problem, conjugate direction method

was developed. In these methods conjugate directions were searched to find optima in the given

space. But these types of methods had a restriction on objective function. They cannot be applied if

the given objective function is singular or not positive or negative definite. Further development on

these methods was conjugate successive search method.

Chapter 2: Literature Review

27

Simplex method was developed for constrained optimization problems. These methods were based

on linear programming and were under the class of convex optimization. They were used to solve for

the optima under the linear constraints. They had a quality of not getting stuck in local optima.

However they came with worst case exponential complexity. This means that by the increase of

variables, the computation cost as well as total time was increased thus slowing down the whole

procedure. Also the constraints when linear and explicit, were solved easily, but implicit constraints

were a lot difficult to handle. Non linear constraints were neglected. In many cases when there were

too many constraints, then the solution became infeasible.

So after having a detailed discussion on them we can say that they have two main short comings

a. They depend on the availability of derivative.

b. They have a local focus since they seek the optima in localized neighborhood so they may

give local optima.

Limitations on Calculus based Techniques
As discussed, it was necessary to develop new techniques apart from these classical methods so as to

deal with the real life practical and NP Hard problems, which can be a solution for industries.

Problems associated with the use of conventional methods leading us to development of these random

search techniques can be summarized as follows:

a. Provide solutions to unimodal problems

b. Convexity checks

c. Regularity checks

d. Implicit and coupled constraints involved

e. Cannot be used for NP Hard problems

f. In efficient search of solution space

g. Mathematical problems in defining real world problem with complete constraints

h. Unsuitable for unconstrained problems (stuck in local optima)

2.2.2 Enumerative Techniques
As explained in detail short comings of calculus based techniques, further development was based to

solve combinatorial optimization problems. Combinatorial problems are the one which were more

close to real world problems involving exhaustive search, non linear constraints, complex objective

functions and many variables. They were developed for the problems having usually irregular

structure.

Enumerative techniques as name indicates are the one in which all the points feasible for optima are

searched one by one for checking the optimality criteria. They search every possible point of objective

Chapter 2: Literature Review

28

functions domain stepwise. These are simple to implement but may require a lot of computation. They

were mainly divided into three main techniques which are described in detail.

Depth First Search (DFS) Technique
DFS is a technique of searching the solution space one by one in form of tree. One starts from the root

and goes one by one to the other nodes. It is a uniformed search method. Depth-first search is an

example of a directed search use to find a sequence of operations that will move a problem solver

from the initial state to a goal state of a problem. It is an approach that makes the search through the

problem space more efficient than simpler method. It means that DFS goes from a root to a leaf

exploring all the nodes instead of going to another path. First it explores that path to the ultimate node

and then starts from the root again for other path. Sometimes any node at the end or any leaf can be

chosen but sometimes node that is nearest to the root or having shortest path is selected. This is

known as minimum depth.

Breadth First Search (BFS) Technique
BFS method explores the root nearest to current node, before exploring nodes further away. So the

roots are not searched in order. They are searched level by level. When a breadth-first search

succeeds, it finds a minimum-depth (nearest the root) goal node.When a depth-first search succeeds,

the found goal node is not necessarily minimum depth.

Limitations of DFS & BFS
For a large tree, breadth-first search memory requirements may be excessive. For a large tree, a depth-

first search may take an excessively long time to find even a very nearby goal node. They are purely

exhaustive search methods and will fail to find any solution but for smaller instances that can be

found in practical length of time. As discussed, DFS and BFS are exhaustive search techniques so

they can be applied to simple problems which have a small solution space but in industrial world,

where combinatorial objective functions are involved and benchmark has to be achieved, DFS and

BFS fail to provide a solution due to their computational limitations.

Dynamic programming
Dynamic programming is a stage-wise search method suitable for optimization problems whose

solutions may be viewed as the result of a sequence of decisions [21]. The most attractive property of

this strategy is that during the search for a solution it avoids full enumeration by pruning early partial

decision solutions that cannot possibly lead to optimal solution. In many practical situations, this

strategy hits the optimal solution in a polynomial number of decision steps. However, in the worst

case, such a strategy may end up performing full enumeration.

Chapter 2: Literature Review

29

Dynamic programming takes advantage of the duplication and it arranges to solve each subproblem

only once, saving the solution (in table or in a globally accessible place) for later use. The underlying

idea of dynamic programming is: avoid calculating the same stuff twice, usually by keeping a table of

known results of subproblems.

Limitations of Dynamic Programming
Dynamic programming has been applied to various manufacturing problems which involve

production scheduling. Approximate dynamic programming promises to provide results within 1% to

2% of global optimum [21]. Dynamic programming has some limitations since it involves

enumeration. For complex combinatorial problems, in which one decision effects the objective

function of other such as labor cost and completion time of batch of product. If labor cost is reduced

by reducing labor, then it will have an effect on completion time for a batch to be manufactured. Since

in dynamic programming, the decisions are considered to be independent, so it can’t be employed

there.
All these enumerative techniques involve a lot of computation and become more and more difficult to

apply practically in a situation involving more variables and a large search space.

Guided Random Search Techniques

As discussed optimization problems are ubiquitous in our everyday life and may come in a variety of

forms. The real world has many discontinuities and noises which is not surprising due to the

innovations and complex constraints involved. Guided random search techniques can be sub divided

in further categories which are further discussed below in detail.

Tabu Search
Tabu search is a metaheuristic local search algorithm which can be used for combinatorial

optimization problems. Local search start from considering a solution to be optimum and checking its

immediate neighborhood for improvement. They perform it by having a memory structure (which can

be short, intermediate or long term) that describes the visited solution but they have a tendency to

stuck into local optima.

Tabu search uses the exclusive memory function to reach to final solution. The basic algorithm of

Tabu search by Pham et al [22] is described in figure 12.

Chapter 2: Literature Review

30

 Figure 12: Flow Chart for Tabu Search [22]

Limitations of Tabu Search
It allows non-improving solution to be accepted in order to escape from a local optimum and uses

Tabu list for memory function to avoid cycling. It can be applied to both discrete and continuous

solution spaces.But there are too many parameters to be determined and number of iterations could be

very large.

By the use of systematic memory function, the tabu search avoids cycling. It can be used in

manufacturing where complex optimization problems involving non linear constraints are not

involved since they tend to make solution space bigger which makes the tabu list and in turn memory

function too large to handle.

Simulated Annealing (SA)
Simulated annealing is a method based on the heat treatment process of annealing. It is a method used

of finding a good approximation of global optima in a large search space. It is usually more effective

than enumerative methods provided if the objective is to find a good approximation of optima rather

than to have a exact solution.

F. Busetti [13] gave an overview on simulated annealing. He explained SA with the help of a

bouncing ball which can jump over higher valleys depending upon temperature. It can be proved that

by controlling temperature, SA can provide global optima.

Chapter 2: Literature Review

31

Limitations of SA
SA can deal with high non linear models. It’s flexible and can reach to global optima. It is robust and

has general technique. It is said to be very versatile. However there is a clear tradeoff between the

quality of the solutions and the time required to compute them. The precision of the numbers used in

implementation is of SA can have a significant effect upon the quality of the outcome. Both SA and

GAs, by comparison, start with an initial random population, and allocate increasing trials to regions

of the search space found to have high fitness. This is a disadvantage if the maximum is in a small

region, surrounded on all sides by regions of low fitness.

Hill Climbing
Hill climbing is again a local search method that moves towards the solution incrementally by having

one iteration at a time. If the new solution is better than before, then an increment is made to the

solution until no further improvement is possible or a stopping criterion is met. It is again very good

to find local optima in short time but does not guarantees global optima.

Limitations of Hill Climbing
Tabu search and simulated annealing give better results than hill climbing and are more advanced but

hill climbing has to be applied for those applications where the time is limited such as real time

problems. This makes necessary to develop new techniques that does not get stuck to local optima and

can be applied to real time problems as well.

Random search and gradient search may be combined to give an iterated hill climbing search. Once

one peak has been located, the hill climb is started again, but with another, randomly chosen, starting

point. This technique has the advantage of simplicity, and can perform well if the function does not

have too many local maxima.

2.2.3 Evolutionary Algorithms (EA)
EA is a class of evolutionary computation which uses mechanisms inspired by evolution:

reproduction, mutation, combination, selection. The common underlying idea behind all these

algorithms is the same, given a population of individuals, environmental pressure causes natural

selection and this leads to rise in fitness of population among which survival of the fittest occurs.

Based upon a fitness function selected that can be any according to objective function, best

individuals are selected and a new generation is created after assigning some random variations which

differ for different evolutionary algorithms. So they use random variations to get new generation of

solutions. Evolutionary algorithms have two main distinguish features named as intensification and

diversification.

Chapter 2: Literature Review

32

Intensification enables them to find the best while diversification compels them to find new search

spaces so that it can be done efficiently and the solution does not limits itself in local optima. So the

power of all evolutionary algorithms is that they intimate the best in nature especially the biological

systems evolved in millions of years. So the forces that form the basis of these algorithms can be

summarized into two main categories as:

a. Variation operators that create the necessary diversity

b. Selection acts as a force pushing quality

There have been many developments on evolutionary algorithms. Some of them are discussed further

in detail.

Due to the limitations discussed above, researchers have explored evolutionary algorithms in a past

few years for engineering problems. Venter [23] reviewed optimization techniques for non-linear

constrained optimization problems. The designer should be aware that no such algorithm exists that

will solve all optimization problems. He classified the optimization algorithms as classical gradient

based methods and evolutionary algorithms and proposed that for problems where local minima is not

an issue and analyses is computationally expensive, local search techniques or classical gradient

should be used for optimization. Problems where gradient is not present and global optimum has to be

found, one should use global techniques such as evolutionary algorithms.

Odugva et al [12] summarized the application of evolutionary computing in manufacturing industry.

He concluded that unlike classical techniques, which usually gave sub-optimal solution, evolutionary

algorithms have a better approach in solving industrial problems which are more complex and

random. They gave detailed overview showing application of these algorithms in paper, chemical and

metal forming industry.

Since 1980s, trend of using evolutionary techniques in practical applications has been increased. For

routing and scheduling problems, ACO has been applied widely. Shahram and Iraj [24] proposed a

method to solve cell formation problem in cellular manufacturing by ACO. They solved it with the

help of building a pherone matrix consisting of cells, machines and parts. This pherone matrix was

used to develop next random solutions. The proposed algorithm resulted in 5.73% improvement of

cellular movements.

Yasuhiro Yamada et al [25] used particle swarm optimization for solving layout problem and for

optimized resource allocation for a manufacturing system. 3D graphic simulator was used for clear

demonstration and the effectiveness was validated through several manufacturing examples. Since

this research focuses on evolutionary techniques of optimization, brief detail of these techniques has

been discussed in this section below.

Chapter 2: Literature Review

33

Ant Colony Optimization (ACO)
Ant Colony Optimization is a probabilistic technique based upon the nature of ant travel. Ants

wonder in search of food and upon finding food they return to their colony laying pheromone trail

behind them so that other ants can follow their path. More of the ants travel through a path, that means

that more the path is suitable. This feature lay basis of optimization.

ACO was first established in 1990s. It was first checked for travelling sales man problem. With the

advent of time, it was used by manufacturers for routing and scheduling problem. Christian Blum [26]

reviewed ACO and mentioned the recent trends in which ACO is used along with GA and constraint

programming to produce hybrid and more effective ACO. The main idea of hybridization is to reduce

the solution search space.

Figure 13: Description of ACO exhibiting behavior of ants [26]

Particle swarm optimization (PSO)
Particle swarm optimization (PSO) is based on the natural process in which the flock of bird travels

along a path in search of food. There has been a lot of research in PSO and many further techniques

like post particle swarm optimization have been developed to further refine PSO. Most of the changes

have been made which adjust the velocity of the bird.

In PSO, each particle is considered as a bird which is placed in a solution search space and each

calculates objective function at its current location [27]. Each bird then determines its next location

based on its current location, its previous best position and the best position of the bird from the whole

flock or set of particles. Each individual is composed of three dimensions, the current position,

Chapter 2: Literature Review

34

previous best positions and the velocity. Eventually, the whole flock is likely to move to reach the

location of food i.e. global optimum position.

In an article of Dr. Umarani [27], he has discussed applications of PSO. PSO finds its applications in

data mining, controls and combinatorial optimization problems. NASA is working on planetary

mapping through swarm intelligence. Research has been proposed for its use in medicine by

controlling nanobots in the body for killing cancer tumors. Mostly it is being applied to solve

unconstrained problems.

PSO can be applied to multi objective problems but there are still many stochastic parameters

involved in it. It is fact converging which may lead one to local minima. For this as previously stated,

that velocity factor is being controlled through various evolved PSO algorithms.

Genetic algorithms (GA)
Genetic algorithms (GA) are the most popular class of EA which are based on Darwin’s theory of

survival of the fittest and were first developed in 1970’s by Fraser and Bernall. A generation of

solution is produced from the previous generation of solution known as parent generation and based

on objective function; the fitter ones survive thus providing better solution. A brief description of

evolutionary process would help in better understanding the concept of GA.

In nature all living organisms basically consist of cells. Every cell consists of a set of chromosomes.

Each chromosome in turn is a string of DNA and serves as a model for the whole organism. A

chromosome is basically a collection of genes, each one representing a trait. Each string has a specific

position in a chromosome. Parents combine by crossover and mutation operators to produce new

chromosomes. In crossover, recombination takes place. During mutation basically a small change is

incorporated in the elements of DNA. Research indicates that errors in copying genes from parents

result in these changes.

John Holland in 1970 first proposed the methodology of GA in detail and gave the basic framework

for it. Initially a population that consisted of a set of solution was generated and then evaluated on the

basis of some fitness value. Fitness value was assigned according to the objective function. After

selecting the fitter solutions from the initial population, they were termed as parents who were used to

generate new population.

The first step in GA was generating random solutions and encoding i.e. the representation of problem

solution/chromosome. Encoding technique varies with the problem. Sankar and Ranjendran [1]

applied GA on same scheduling problem by using both phenotype and binary encoding and concluded

that there isn’t any difference in both in terms of computational time and ease of programming but

Chapter 2: Literature Review

35

binary encoding gives better results as compared to phenotype encoding. Some of the different

encoding techniques are given in table below.

After encoding and generation of initial population, next step is the selection of fitter chromosomes

for the generation of next population. Selection operator deserves a special position in Genetic

algorithm since it is the one which mainly determines the evolutionary search spaces. It is used to

improve the chances of the survival of the fittest individuals. There are many traditional

selection mechanisms used and many user specified selection mechanisms specific to the problem

definition. Various methods for example roulette wheel selection, rank selection, tournament selection

and elitism etc have been proposed for this purpose. A detail on selection methods can be found in

[28] by Sivaraj in which the author discussed different parameters involved in choosing the selection

method.

Table 4: Encoding Schemes used in GA [29]

S/No Encoding Technique Example

1

Binary Encoding

Chromosome 1: 1100101

Chromosome 2: 0111001

2

Tree Encoding

Chromosome A Chromosome B

3

Permutation Encoding

Chromosome 1: 143652

Chromosome 2: 645132

4

Value Encoding

Chromosome 1: 5.345 1.342 4.564 3.786

Chromosome 2: DHEFIGTSR

Chromosome 3: (right), (back), (left), (up), (forward)

+

Y
X

5B

Step

Do Until

Wall

Chapter 2: Literature Review

36

After selection, recombination occurs between parents known as crossover. Crossover is a genetic

operator used to vary the programming of a chromosome or chromosomes from one generation to the

next. It is analogous to reproduction and biological crossover, upon which genetic algorithms are

based. Cross over is a process of taking more than one parent solutions and producing a child solution

from them. There are methods for selection of the chromosomes. Crossover can be of many types

such as single point crossover, two point crossover or uniform crossover etc. It depends upon the

encoding techniques used for representing solution.

Table 5: Different techniques for crossover [29]

S/No Encoding

Techniques

Crossover

Techniques

Example

1

Binary

Single point

crossover

111/100 + 001/110 = 111/110 + 001/100

Uniform

crossover

111111 + 000000 = 101010 + 010101

Double

point

crossover

11/01/00 + 10/11/11 = 11/11/00 + 10/01/11

Arithmetic

crossover

001010 + 100101 = 110010 + 111101

(First three digits are added for 1st child and the last three digits are from the parent on

Similarly same method is adopted for 2nd child.

2

Permutation

encoding

Single point

swap

1234/5678 + 3142/7586 = 1234/7586 + 3142/5678

(it can also be double point crossover like in binary encoding)

Chapter 2: Literature Review

37

3

Tree

Encoding

Swapping

Once the crossover takes place, next step is of mutation. Mutation is a genetic operator used to

maintain genetic diversity from one generation of a population of algorithm chromosomes to the next.

It is analogous to biological mutation. Mutation alters one or more gene values in a chromosome from

its initial state. In mutation, the solution may change entirely from the previous solution. Hence GA

can come to better solution by using mutation. Mutation occurs during evolution according to a user-

defined mutation probability. This probability should be set low. If it is set too high, the search will

turn into a primitive random search.

Table 6: Mutation Techniques used in GA [29]

S/No Encoding

Type

Mutation

Technique

Example

1 Permutation Change of order 2341567 => 2143567 (single point swap)

23456718 => 32486715 (double point swap)

2 Binary Bit Inversion 110011 => 110001 (single point)

110001 => 011001 (double point)

3 Real Value Addition of small

number

1.33 1.45 1.11 => 1.33 1.56 1.11

4 Tree Change of operator

V

==

V

Chapter 2: Literature Review

38

 The decision of crossover and mutation rate is a very important one. Crossover rate actually

determines the probability or chances of recombination between the parents. Higher will be the

crossover rate, higher will be the possibility of recombination between the selected parents for next

generation. Crossover is done in a hope of getting better children having better fitness value and in

turn higher chances of survival for the next generation. Crossover performs the intensification

function and thus searches the solution space for better chromosome/solution.

Likewise mutation rate determines chances of a chromosome being mutated or not. If we assign zero

percentage of mutation then it means that there is going to be no mutation in any chromosome of a

generation. Mutation performs the diversification function and tends to generate new solutions by

exploring search space more efficiently. If we set mutation arte too high, then we are actually

increasing the chances in a generation for chromosomes of being getting mutate and it may cause our

solution to cross the boundaries of search space. M.K.A.Ariffin et al [30] applied fuzzy logics to

determine the optimum rate of crossover and mutation for the routing of automated guided vehicles.

The flowchart for basic genetic algorithm can be represented in figure 15. To understand concept of

GA a simple example given by Eiben and Smith [31] is described in figure 14.

Figure 14: An algebraic example exhibiting implementation of GA

Chapter 2: Literature Review

39

Figure 15: Flowchart for explaining basic steps for GA algorithm

GA developed in 1970s has also been implemented to various manufacturing problems. Paris and

Pirreval [32] proposed that GA can be applied to deal with various design options in manufacturing.

Tree encoding was used to represent different design options and sub-options. Simulation

optimization method is applied to refine the design options. This method facilitates in selecting

options since if we use only simulation method, then it involves many hit and trial processes. thus

along with numerical optimization, design options can also be optimized using GA. Along with other

sub fields of industry, scheduling problem was also optimized by this approach. In 2006, Omar and

Baharum [33] proposed GA in solving constrained combinatorial problem of Job Shop Scheduling.

Their intention was to reduce make span of the processes. Schedules were represented in the form of a

matrix in which rows represented machines and columns represented order of the part. Although, GA

takes a lot of time in solving this problem, but it can handle a variety of constraints along with

objective functions and its results are predictable as well unlike branch and bound methods. Sankar et

al [1] also solved the scheduling problem for a flexible manufacturing system.

Chapter 2: Literature Review

40

In 2010, Y.Yang et al [34] developed a method for the dynamic facility planning by using GA. Since

with the product changes, facilities have to be rearranged for reducing material handling costs. So the

facility is supposed to be dynamic and is rearranged if the arranging cost is lesser than the reduction in

material handling cost.

Apart from the manufacturing management problems of scheduling and layout planning, Nafis and

Haque [35] proposed GA for the optimization of process planning parameters for rotational parts.

Their purpose was to propose the optimal cutting depth, speed and feed of the machine keeping in

mind machine specifications and maximum cutting force. They considered time as objective function

and showed that total machining time can be improved by using optimal parameters.

Along with manufacturing systems and mass production industries, optimization using GA has also

been applied in many other research areas. Cylvio and Desio [36] used GA to find optimal velocity in

a stop and go cruise control system in which acceleration of the cruise has to be specifically

controlled. Kazen et al [37] used GA to optimize point to point trajectory planning for a 3-linked

robotic arm. Objective was to minimize travelling time in space. They concluded that GA can be used

for multi-objective optimization problem in a non-linear constrained environment.

Due to the rapid growth in this area, hybrid GAs was proposed to get more efficient results. Ariffin et

al [30] used fuzzy logics to control mutation and crossover rate in GA and applied it on scheduling

problem for AGVs used in industries. Likewise Kordoghli and Jmali [38] combined GA with Fuzzy

logics to solve scheduling problem in a textile industry. They concluded that the scheduling problem

cannot be solved by classical priority based rule and GA along with fuzzy logic gives better results

especially when the problem is a combinatorial optimization problem. Adnan Tariq [39] solved

problem of cell formation for cellular manufacturing system using hybrid GA. The research was

divided into machine cells grouping and sequencing problem. Since each cell behaved in a job-shop

way, so sequencing problem was solved in a similar way as of job shop scheduling problem. GA was

combined with local search techniques to find the optimal solution.

Cuckoo search
Cuckoo search optimization is a new technique developed in 2010. It has been developed on the

breeding behavior of cuckoo. There is a lot of potential in working on this area.

 Cuckoo search is a new EA developed in 2010 by Yang and Deb [40] in which cuckoo breeding

behavior is used for the development of a new metaheuristic algorithm. Levy flights concept has been

given to ensure diversification along with intensification of the solution search space. Levy flight

optimization methods have been explained in [41] in detail in which types of levy flights have also

Chapter 2: Literature Review

41

been discussed. Along with that simulations have been performed after changing various parameters

involved in it to study their effect on objective function.

As compared to GA, cuckoo search has only one random factor involved in it. Cuckoo breeding

behavior can be studied in [42] with more detail. It is fascinating that in the way these cuckoo show

aggressive reproductive strategy.

They do not make their own nests and lay their eggs in another nest of some other species while (not

in all brood parasitism) throw the eggs of host species in order to increase the chances of

reproductivity because if host bird discovers the cuckoo egg then it throws it away from its nest or

abandon the nest. Some species of cuckoo like “tapera” are evolved in such a way that they are

specialized in mimicking the color of their eggs according to host species which further increases

chances of reproductivity.

 So the bottom line is that cuckoo tries to mimic the host egg continuously while the host tries to find a

way to detect the parasitic egg that leads to an arms race each trying to survive out the other

(survival of the fittest)

Now to generate new solutions levy flight phenomena has been proposed. It can also be studied in

detail in [4]. It is seen that many animals show the phenomena of levy flight. Levy flights is a random

walk in which step size/length is based on heavy tailed probability distribution. It can be simply

treated as an efficient method in order to obtain a random solution. The general algorithm for CS is

shown in figure 16.

Figure 16: CS Algorithm [40]

Chapter 2: Literature Review

42

Since the CS approach is not so old so a lot of work can be done on it. GA have been applied to a lot

many applications in a variety of fields like in FMS, RMS, scheduling, process planning ,design

optimization , cruise control, motion planning etc. So CS can be applied in all of these to further

investigate its efficiency. Also the levy flight that is based on heavy tailed probability distribution can

be made more efficient by varying and applying different types of heavy tailed distribution and check

what are the outcomes.

2.3 Process Planning and Optimization
As discussed in section 2.2, various techniques have been proposed in literature for generating process

plans in different situations. Need of optimality is a basic and fundamental concern. Kristina [43] did

an overview on optimization techniques used in process planning. He concluded that stochastic hill

climbing methods have a chance of getting stuck in a locla minima in case of multiple peaks.

Different peaks can be searched by starting from a different random solution each time but still it is

unprdictable. Simulated annealing and GA was proposed to be better option for CAPP.

Various mathematical models were developed in the past few years for optimization in process

planning.Nourali [44] developed a mathematical model for integrated process planning in a flexible

assembly system. The methodology for generating process plans and scheduling was developed for

assembly lines. Ismail et al [45] considered optimization problem for process planning in multiple

parts flow lines involving parallel assembly lines.

Various evolutionary approaches have also been used for optimization of process plans. Krishna and

Rao [46] have used ant colony approaches while a simulated annealig approach has been used by Ma

et al [47]. Zhang and Nee [48] also used a simulated annealing approach for process planning

optimization. Feature recognition method was used to extraxt features and develop alternative route

plans for the part. The methodologies lacked consideration of complex precedence contraints between

the part features and the non-conformities which may occur by not satisfying the constraints. Also

responsiveness needed for the current manufacturing needs was considered and process plans have

been developed for a certain part.

2.4 Summary
This chapter gave us detailed overview of techniques which have been used for generating alternative

process plans in CAPP. Along with that, due to need of optimization in area of process planning,

optimization search areas were discussed in detail to have a better insight of these techniques. Main

focus was given to the techniques which can be applied on manufacturing problems.

Chapter 03: Process Plan Generation

Chapter 3: Process Plan Generation

44

3.1 Introduction
As we discussed, most of the techniques used in past for computer aided process planning were based

on knowledge based expert system and feature recognition methods. The methods of cogeneration

discussed alternative process plans for a part but optimality criterion were not considered. In this

present work, a novel methodology is proposed to generate alternative process plans keeping in mind

precedence constraints for the part and to be modelled in a way that algorithms for generating optimal

process plans can be applied.

A process plan defines the route plan of all the processes to generate the final part from raw material.

It basically consists of a series of operations or a set of machining features that are arranged in a

systematic way. Machining feature refers to volume removal from the raw material.

The problem of process planning can be sub-divided into two main categories as follows:

a. Operation Selection

b. Operation sequencing

Operation selection means that after analyzing features in part design, selecting operations and

allocating machine resources and tool approach directions for the part. A machining feature can be

performed by multiple possible operations and machines or it can happen that none of the machine in

the manufacturing system can produce the feature. In that case designer may have to do some

modifications in the recommended design.

Operation sequencing is to determine the systematic and correct order of operations in a way that

none of the operation is left behind and all the precedence constraints are also maintained.

3.2 Setup Planning
Each operation needs a particular tool and setup to be performed. Setup is related to orientation of the

part that refers to tool approach direction (TAD). Setup planning is a major task considering process

plan sequence. It is considered to have a large impact on product quality when measured in terms of

dimensional variance. The purpose of setup planning is to arrange machining features in an

appropriate sequence in order to ensure quality and productivity. Tool approach is considered to be

important while determining setups. The tool approach direction is an unobstructed path that a tool

can take to access the feature. In a process plan different operations can have different TAD and for

machining that feature, setup needs to be changed. Thus a different TAD for a feature implies setup

change. Operations having similar tool approach directions should be performed first in order to have

minimum setup changes. This will avoid setup error and time require for changing setup will also be

reduced. This is the purpose of setup formation. Since we know quality is always an important factor.

Product quality is affected by the number of setup changes since each time setup is changed due to a

different TAD for a feature, work piece has to be dismounted and mounted again on the fixture which

Chapter 3: Process Plan Generation

45

will have an impact on its dimensional accuracy. This factor won’t have an effect on the parts where

dimensional tolerance is large but in other cases, designer has to be careful. So in those cases, one of

the major tasks for the designer is to suggest sequence with minimum setup changes.

3.3 Precedence Constraints
Along with setup formation, precedence constraints between the parts also need to be considered.

Process plan designer first do the mechanical preliminary analysis of the part and analyze points

mentioned below before sequencing the part:

a. Geometrical design

b. Geometrical tolerances

c. Machining features

d. Surface characteristics

e. Material selection

Different types of constraints that have to be kept in mind are:

a. Datum constraints so that features don’t intersect

b. Technological constraints for proper sequencing

c. Geometrical constraints for reference purposes

These constraints will be explained below with the help of examples to have a clear understanding.

Figure 17 shows an example of datum constraints. F1 is rough turning while F2 is for finish turning.

F3 should be performed after F2 since tolerances are tighter for F3 and if F3 has to be performed first

for some reasons, then reduction of tolerances should be done first. So the proper sequence would be :

F1 → F2 → F3

Figure 17: Datum Constraints

Figure 18 gives illustration for technological constraints. Hole 1 has to be performed before hole 2.

According to Halevi and Weill [49], hole with more depth and smaller precise diameter should be

machined before the hole with a larger diameter and with lesser depth because the straightness of a

thinner or more precise hole can be impaired by the larger hole upon their intersection.

Chapter 3: Process Plan Generation

46

 Figure 18: An example of technological constraints

Another example of technological constraint can be observed when a hole needs to be chamfered but

since burrs are not allowed in the precise hole, so therefore chamfering must be done before drilling.

Geometrical constraints for reference datum purposes are well explained by figure 19. Since hole 1

works as datum reference for holes surrounding it, hole 1 should be machined first. Also since the

depth of hole 1 has to be precise and has to be straight, surface A should be milled first. So the

sequence would be:

Milling of surface A → Drilling of Hole 1 → Drilling of nine holes

 Figure 19: Geometrical Constraints

Another important constraint mentioned by G.H.Ma et al [48] was fixture constraint. This constraint

exists between two features when machining one feature before the other one, may cause the other

one to be unfixturable. For example consider the figure 20 in which feature 2 is a slot while feature 1

and 3 are milled surfaces on the opposite side. Feature 2 must be milled before the other features.

Otherwise the supporting area for milling F2 may not be sufficient.

Chapter 3: Process Plan Generation

47

Figure 20: Fixture Constraint

The essence of process planning, as discussed involves determining in what order to perform a select

of operations such that the resultant order satisfies the precedence constraints established by both

parts and operations. In order to maintain and not to disobey any of the constraint, we would develop

a precedence matrix.

Consider a part shown in figure 21. Features which have to be performed on this are

a. Milling

b. Drilling

c. Reaming

Figure 21: Example Part

Since there could be more than one operation which have to be performed for developing a feature, so

description of feature along with operation is given in table 8.

Table 7: Machining features for figure 21

Machining Features Operations to be performed

Milling (for six surfaces of block) 1.Rough milling of surface A

2.Finish milling of surface A

Chapter 3: Process Plan Generation

48

3. Rough milling of surface B

4. Finish milling of surface B

5. Rough milling of surface C

6. Finish milling of surface C

7. Rough milling of surface D

8. Finish milling of surface D

9. Rough milling of surface E

10. Finish milling of surface E

11. Rough milling of surface F

12. Finish milling of surface F

Drilling 13. For hole on surface A

Reaming 14. For hole on surface A

Here it can be noted that this scheduling problem is different from the usual travelling salesman

problem (TSP). In TSP, if there are n number of cities, then the possible routing options for the

salesman would be n!. But in the case of sequencing for a part, options would be less than n!. This is

because of the fact that precedence constraints are involved and they make some of the options

infeasible. More are the number of constraints, more there are infeasible options.

For generating precedence group matrix (PGM), operations are grouped in such a way that each group

represents precedence between operations. The first element of every group has to be performed first.

So that element has to be given first priority in a group. It should be noted that there is no precedence

among the groups. Since each group represents a constraint (either geometrical or technological) so

number of groups in PGM is equal to number of precedence for that part.

Since the datum surface A works as a reference for drill hole, that is why it needs to be performed

after milling surface A. All other precedence constraints are logical since finishing cut is performed

after rough cut.

To generate feasible plans, 1st element from any group is randomly selected. After that, second

element of that group is given 1st priority and it’s given zero precedence. For example in start,

operations 1, 3, 5, 7, 9 and 11 have 1st priority and any number is chosen randomly from them.

Suppose 7 got selected, after that 1, 3, 5, 9, 11 and 8 will have 1st priority and randomly chosen

operation would be assigned from them until the sequence is not complete (refer to table [7]). Flow

chart would be presented as described in figure 22.

Chapter 3: Process Plan Generation

49

Figure 22: Flow chart for process plan generation

Where

n∑i=1 xij

n = no of groups in PGM

i = total number of groups in PGM

j= position of element in a group

For example X21 represents 1st element of second group of PGM.

A case may arise when there are constraints among features in a way that it may cause repetition of

operations in groups. In that case, sequence will contain repetitive elements which will result in an

infeasible solution. For this case, the above algorithm may be modified in a way that after selecting

each element from PGM, it would be scanned in the sequence array already generated to check for

repetition and if repetition occurs, then this element will be discarded and new element would be

selected from PGM. The modified flow chart is represented as below in figure 23.

Assign xi1 = xi2

Chapter 3: Process Plan Generation

50

Figure 23: Modified flow chart for process plan generation

The stepwise explanation of the flow chart in figure 23 will be described below

Step 1: Input data
Starting from a part shown in figure 20 the precedence group matrix PGM will be the input shown in

table 8.

Table 8: Precedence group matrix for figure 21

Group Number Precedence between

operations

I 1, 2, 13, 14

II 1,3, 4

III 5, 6

IV 7, 8

V 9, 10

VI 11, 12

Chapter 3: Process Plan Generation

51

Step 2: Choose members having zero precedence
The steps having zero precedence are those which come first in the groups defined in PGM. In this

example, operation numbers 1,5,7,9 and 11 have zero precedence. So any random operation would be

selected from the list. Suppose in this case operation 1 is selected from group I and added in the

sequence array.

Step 3: Re assign Precedence
In this step, PGM will be re-ranked. Continuing from step 1 and 2, if Op 1 is selected from the list,

then new PGM for the part will be as follows

Table 9: PGM for example part for figure 21

Group Number Precedence between

operations

I 2, 13, 14

II 1,3, 4

III 5, 6

IV 7, 8

V 9, 10

VI 11, 12

Step 4: Assign 2nd operation for sequence
Now random element will be selected from new PGM in table 9. Now the operations having zero

precedence will be 2, 1, 5, 7, 9 and 11. Here we can see that there is a possibility for operation to be

selected twice. Suppose operation 1 is again selected.

Step 5: Checking Repeatability
A check is made that whether the last selected operation is already present in the sequence array or

not. If it does like in step 4, then the last selected operation would be discarded and step 4 would be

repeated again. Continuing from step 4 described above, Op 1 will be discarded and a new operation

would be selected from new PGM in table 9.

 1

 1 1

Chapter 3: Process Plan Generation

52

Step 6: Check for completion
Sequence will be checked for completion. If number of elements in a sequence array are equal to

number of operations, then algorithm would be stopped. If not, then step 3 to step 6 would be repeated

again. A complete sequence for the part would be

1 → 5 → 2 → 3 → 7 → 9 → 6 → 11 → 10 → 13 → 14 → 12 → 4

For our case study, we consider the part ANSI 101 shown in figure 24.

Figure 24: ANSI 101

Features and PGM for the part in figure 24 are given in table 10 and 11 respectively.

Table 10: Machining features for ANSI 101

Operation ID Feature/ Operation Operation ID Feature/ Operation

1 Milling 11 Milling

2 Milling 12 Step

3 Drilling 13 Milling

4 Step Milling 14 Boss

5 Milling 15 Compound hole drill

6 Milling 16 Boring

7 Compound hole drill 17 Reaming

8 Boring 18 Pocket

9 Reaming 19 Pocket

10 Nine holes drill 20 Reaming

 1 5

Chapter 3: Process Plan Generation

53

Table 11: PGM for ANSI 101

Group Number Precedence Constraints

I 1,2

II 14,2

III 1,14,6

IV 1,14,2,7

V 14,1,2,10,8

VI 14,1,4,3,9

VII 1,14,18

VIII 1,14,19

IX 1,14,4,5

X 1,14,4,13

XI 1,14,4,11,12

XII 1,14,4,11,12,15,16,17

XIII 1,14,20

Following the algorithm, a randomly generated process plan for this part can be:

1 → 14 → 2→ 6 → 2 → 10 → 7 → 8 → 4 → 18 → 19 → 3 → 5 → 12 → 9 → 13 → 15 → 11 → 16

→ 20 → 17

It can be seen that every part satisfies the constraints mentioned in PGM.

3.4 Summary
In this chapter we defined a methodology for modeling alternative generation of process plans which

can be used to find the optimal process plan based upon the set criteria. The algorithm developed can

be used for prismatic as well as rotational parts. Also it is not limited to simpler parts and can be

applied to complex ones involving complex constraints among different machining features.

Chapter 04: Proposed Methodology

for Optimization

Chapter 4: Proposed Methodology for Optimization

55

4.1 Background
This chapter deals with the methodology proposed for dealing with optimization problem through

evolutionary approach. As discussed in chapter 2, basic methodology for process planning by genetic

algorithms and cuckoo search will be proposed. After the process plan generation, first step is to

define the fitness criteria or objective function which we want to optimize.

4.2 Objective Function
Certain needs have to be kept in mind while going for the optimization of process plans. Various

criteria for optimization have been used in literature. In [35], the author used minimal machining time

for rotational components. [50] used minimal machine changes and tool change as an optimization

criteria but it was only for rotational components. Also both these criteria were considered one by

one. In current proposed methodology, minimal tool change and set up change is set to be as an

objective function. Weightage method has been used for handling multi-objectives because of their

dependency on each other.

Tool change matrix has been shown in table 12 for ANSI part shown in figure 24. When there is a tool

change from operation 1 to 2 then it would assign penalty 1 in the matrix otherwise zero. For

example, row 2 and column 15 of table 12 (i.e. between op 1 and 14) shows a penalty of zero which

means that operation 1 and 14 can be performed with same tool (i.e. end milling). Similarly in row 2

and column 4 (i.e. between op 1 and 3), an entry 1 depicts that operation 1 and 3 cannot be performed

by using same tool since operation 1 is milling while operation 3 is drilling operation.

Table 12: Tool change matrix for ANSI 101

Op# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0

2 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1

3 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

4 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

5 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

6 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

7 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

8 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

9 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

10 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

12 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

Chapter 4: Proposed Methodology for Optimization

56

13 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

14 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

15 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

16 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

17 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

No of tool changes in a sequence will be

TCi = jn-1→jn∑j→j+1TC

Where, TCi = no of tool changes in sequence i

j = 1, 2 ,3, n, n = no of operations in a sequence

Setup change matrix as detailed in section 3.2 will be generated by tool approach directions. If an

operation has different TAD from the other, then it would be assigned a penalty of 1, otherwise zero.

Setup change matrix for ANSI part is given in table 13.

Table 13: Setup change matrix for ANSI 101

Op# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0

2 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1

3 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

4 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

5 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

6 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

7 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

8 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

9 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

10 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

12 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

13 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

14 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

15 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

16 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

17 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

Chapter 4: Proposed Methodology for Optimization

57

No of setup changes in a sequence will be

SCi = jn-1
→j

n∑j→j+1SC

Where SCi = no of setup changes in sequence i

n = no of operations in a sequence

Fitness criteria would be combined as

Objective Function = W1 * TCi + W2 * SCi

where W1 and W2 are the weightage factors for tool change and setup change respectively. They will

be assigned after keeping in mind considerations of design requirements of product. If tolerance

requirements for a part are very tight then it is best for a manufacturer to minimize setup change so as

to minimize fixture changes and not to realign the part multiple times for machining features. In that

case, W1 will be kept higher. If tooling is expensive then W2 will be kept higher.

4.3 Selection Function
After ranking the initial generation according to the aforesaid objective function, parents have to be

selected for creation of next solution strings (i.e. children). It is considered to be very important

phenomena since it determines the solution space. Basic purpose of every selection mechanism is to

enhance the chances of generating fitter next generation. Various methods have been proposed by

researchers for selection method. Sivaraj et al [23] presented an overview of optimization methods.

They concluded that the selection pressure which is the process of selection of fitter parents for next

generation, is the most critical factor in determining selection mechanism since it determines the

diversity of solution space. If it is set too low, then there the convergence towards optimal solution

would be too low and if it is set too high, then there will be a faster convergence but diversity will be

lost and chances of getting stuck in a local optima will be much higher.

In present research, elitist method proposed by Thierens and Glodberg [51], with a little modification

has been used for selection purposes. In this method, the fittest individuals are copied to the next

generation and are selected for generating next population as a parent. After generating equal number

of children as of population, all are evaluated and ranked accordingly. The fittest ones equal to

population size of initial population then survive to the next generation while the other ones are

discarded. It is used to avoid the loss of fitter solutions since in this case it can happen that after

Chapter 4: Proposed Methodology for Optimization

58

mutation function, precedence constraints may be violated leading to infeasible and unaccepted

solution.

4.4 Crossover
As detailed in chapter 2, parent recombination to generate new feasible solutions is known as

crossover. The traditional approaches for crossover as discussed in chapter 2 cannot be used in this

problem of process planning. Let us consider an example here where in a string of 8 operations, 4th

place is considered as crossover point for single point crossover.

Parent 1 = 1 3 5 7 │ 4 8 6 2

Parent 2 = 2 4 1 3 │ 6 8 7 5

Children 1 = 1 3 5 7 6 8 7 5

Children 2 = 2 4 1 3 4 8 6 2

Here we can see that in both children, elements are repeating. However practically it is not possible

since one operation cannot be machined two times in a sequence. So the process plans become

infeasible.

This repetition problem was considered somewhat similar as in traveling salesman problem where a

salesman has to find shortest path between the cities, and a city cannot be visited more than once.

Liang and Chin [52] proposed OX crossover to avoid this problem of repetition resulting in an

infeasible solution. This operator is preceded as

Parent 1 = 1 3 4 │2 9 8 6│ 7 5 10

Parent 2 = 10 7 6│ 4 9 8 2│ 3 1 5

After selecting a portion from both parents, copy this sequence in temporary created off spring,

O1 = x x x│2 9 8 6│ x x x

O2 = x x x│4 9 8 2│ x x x

Copy the portion from 2nd crossover point to the end in temporary created parents as

P1’’ = 7 5 10 1 3 4 2 9 8 6

P2’’ = 3 1 5 10 7 6 4 9 8 2

Chapter 4: Proposed Methodology for Optimization

59

Now portions selected from O1 and O2 will be subtracted from P2’’ and P1’’ respectively, resulting

in R1 and R2. These R1 and R2 will be copied from the second crossover point in O2 and O1

respectively to replace the x positions. The resulting offspring will be as follows;

C1 = 10 7 4 2 9 8 6 3 1 5

C2 = 7 5 10 4 9 8 2 1 3 6

This proposed method solves the problem of repetition but it may happen that it violates any

precedence constraints present between the parts. For example in above example if there was

precedence between 2 and 5 such that 2 must be machined before 5, but after crossover it will be

violated and the resulting sequence will be infeasible and instead of moving towards better solutions

we will get worse ones.

Due to this reason, position wise crossover is used in present methodology. This will be preceded as

Parent 1 = 1 3 4 │2 9 8 6│ 7 5 10

Parent 2 = 10 7 6│ 4 9 8 2│ 3 1 5

After selecting a portion from both parents, copy the remaining sequence in temporary created off

spring,

O1 = 1 3 4│x x x x│ 7 5 10

O2 = 10 7 6│x x x x│ 3 1 5

Now scan parent 2 for O1 and fill the operations present in cut portion of parent 1 in the order which

was followed in parent 2. Same method is being adopted for O2. Resulting offsprings will be

O1 = 1 3 4 6 9 8 2 7 5 10

O2 = 10 7 6 4 2 9 8 3 1 5

This technique ensures that precedence won’t be disturbed and results produced will be feasible.

4.5 Mutation
Fast and premature convergence is seen to be one of the frequent problems whenever GA is applied to

multi-objective problems and results in a getting a local optima. It happens when offspring being

produced are no longer better than their parents. This problem is related with loss of diversity. As

discussed in chapter 2, mutation operator is used to avoid this situation. This operator is applied after

crossover.

Chapter 4: Proposed Methodology for Optimization

60

Two point swapping is performed on the offspring produced after crossover as follows

O1 = 1 3 │4│ 6 9 8│2│ 7 5 10

Two mutation sites are chosen randomly for swapping purposes. In the above example 4 and 2 have

been chosen.

O1’’ = 1 3 2 6 9 8 4 7 5 10

However it can be seen that it is possible that after this swapping, a precedence may get violated

resulting in an infeasible solution. Carlson [53] summarized three methods of handling infeasible

solutions which are

• Eliminating infeasible solutions

• Repairing infeasible solutions

• Applied penalty methods

The elimination method has been shown by several authors as a poor approach. Repair schemes can

be applied where there are explicit and independent constraints such as traveling salesman problem.

For implicit constraints and combinatorial objective functions, penalty method is proposed to be the

most useful method and there are different methods of applying it. Further details can be studies in

[53]. In the present proposed methodology, penalty is applied by adding a number in the fitness

function. Fitness/objective function is been modified as

Objective Function = W1 * TCi + W2 * SCi + Pi

Pi = penalty in sequence i

Penalty matrix is developed by keeping precedence constraints for given part in consideration.

Whenever a sequence violates any constraint, a penalty of 100 is assigned to it and added into the

objective function. Penalty matrix for ANSI 101 part is shown in table 14. For example in matrix,

column 3 and row 2 shows an entry of 100. This means that if operation 2 takes place before 1, then a

penalty of 100 would be assigned. This is because operation 1 serves as datum for operation 2. Hence

operation 1 has to be performed before 2.

Table 14: Penalty matrix for ANSI 101

Op# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0

2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 100 100 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

4 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 4: Proposed Methodology for Optimization

61

5 100 100 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

6 100 100 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

7 100 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

8 100 100 0 0 0 0 0 0 0 100 0 0 0 100 0 0 0 0 0 0

9 100 100 100 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

10 100 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

11 100 100 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

12 100 100 0 100 0 0 0 0 0 0 100 0 0 100 0 0 0 0 0 0

13 100 100 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

14 0

15 100 100 0 0 0 0 0 0 0 0 0 100 0 100 0 0 0 0 0 0

16 100 100 0 0 0 0 0 0 0 0 0 100 100 100 100 0 0 0 0 0

17 100 100 0 0 0 0 0 0 0 0 0 100 0 100 100 100 0 0 0 0

18 100 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

19 100 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

20 100 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 100 0

4.6 Stopping Criteria
After mutation, generation produced will be evaluated on fitness criteria. After that, solutions

sequences having lesser fitness will be discarded keeping population size same. Frequently used

stopping criteria in GA are stalling limit, tolerance value and the number of generations.

Stalling limit is the one in which algorithm stops when fitness value stops to change over a defined

number of generations. Tolerance limit criteria cannot be used in this case since we don’t know the

solution space. Studies reveal that when elitist model is used for selection of parents, stalling limit is

not suitable as stopping criteria since it shows erratic behavior. So no of generations/iterations is used

here. Flow chart for the proposed methodology is presented in figure 25.

4.7 Cuckoo Search Methodology
As detailed in chapter 2, cuckoo search is proposed by Yang and Deb [40]. After the ranking of initial

population, new population/solution will be created by Levy Flight phenomena.

Levy flight is a type of random walk and it follows Markov’s chain phenomena. It implies that the

future value or state for problem under discussion depends upon its present value and not on its past.

Randomness is considered to be a very important factor since it plays phenomenal role in exploration

and diversification of solution search space. Different methods have been proposed for implementing

Chapter 4: Proposed Methodology for Optimization

62

levy flight and choosing random step size. In current methodology, step size proposed by X.Yang [54]

has been adopted. Step length is calculated as follows

 Step size = ά * U / │V│1/β (3.1)

Figure 25: Flowchart for proposed GA Methodology

Chapter 4: Proposed Methodology for Optimization

63

where U and V are randomly generated numbers between 0 and 1.

1 ≤ β ≤ 3 (range of β for levy flight)

This step size is added in the previous solution to generate new solution. Since our solution in this

case represents a process plan, so there we will use modification in using levy flight. Step size will be

multiplied with a factor ά which is related with scales of the problem. In our case we will take it as

105. This is done due to incorporate this step length in our process plan. An example is described

below

Parent Process Plan = 3 → 5 → 6 → 8 → 1 → 2 → 9 → 10 → 7 → 4

β = 1.5 , Step length = 23018

For generating child, 8 will be added in 4, 1 will be added in 7 and so on. Since we can see that 8+4

generates 12 which is not possible. In this case it will retain its original number i.e. 4. If after adding

numbers, two numbers are repeated in the sequence (for example 8 and 1+7 in this case) then the

original position of these two numbers will be swapped. So the new sequence will be

Process plan (child) = 3 → 5 → 6 → 7 → 1 → 4 → 9 → 10 → 8 → 2

It may happen that after this swapping, process plan may be infeasible due to violation of precedence

constraints. In this case, penalty will be automatically imposed on the sequence resulting in lesser fit

solution which will be discarded at the end of each generation while population/solution size will be

remain same for each generation. Flow chart for process plan generation by CS methodology is

described in figure 26. The proposed CS methodology is explained in steps by taking example of

ANSI part.

Step 1: Input
Input in the form of process plans as described in section 3.3, stopping criteria and population size is

provided. For understanding the concept, let us consider a process plan for a part having 10 operations

as

Parent = 1 → 3 → 4 → 5 → 7 → 10 → 2 → 8 → 6 → 9

Step 2: Levy Flight Application
The steps of levy flight are described in detail in figure 27.

Step 2A: First a random number is generated from levy walk. For instance referring to equation

Chapter 4: Proposed Methodology for Optimization

64

Figure 26: Flowchart for CS

3.1, the random number generated is

β = 3 9 4 2 2

Chapter 4: Proposed Methodology for Optimization

65

Figure 27: flowchart for levy flight

Step 2B: β will be added in the parent process plan.

Parent = 1 → 3 → 4 → 5 → 7 → 10 → 2 → 8 → 6 → 9

 β = 3 9 4 2 2

Child = 1 → 3 → 4 → 5 → 7 → 13 → 11 → 12 → 8 → 11

Step 2C: the sequence generated will be checked whether to be feasible or not. Continuing from

step 2B, we can see that generated child is not feasible since some elements are greater than no of

operations. So a repair scheme will be applied. The repair scheme, applied in two steps, will be as

follows:

If any element in the array is greater than, less than or equal to zero, then the child new sequence will

retain element of its parent sequence. So the child would be modified to:

Child = 1 → 3 → 4 → 5 → 7 → 10 → 2 → 8 → 8 → 9

If any element in the array is repeated, then it would be swapped from its parent sequence. The new

sequence will be

Child = 1 → 3 → 4 → 5 → 7 → 10 → 2 → 6 → 8 → 9

Chapter 4: Proposed Methodology for Optimization

66

Step 3: Population Size
If number of new solutions generated are equal to population size, then algorithm will move forward,

otherwise step 2 would be repeated.

Step 4 & 5: Fitness Evaluation
Newly generated process plans will be ranked along with their parents based on their fitness. Solution

sequences having lower fitness will be discarded (population size for next generation will remain

same).

Step 6: Stopping Criteria
If the generated process plan meets the criteria, then algorithm would stop, otherwise step 2 to 5

would be repeated. Here the stopping criterion is set to be no of generations.

4.8 Summary
In this chapter, methodologies for generating optimized process plans by both CS and GA

methodologies. In coming chapter, comparison of these methodologies on test functions as well as at

process planning will be performed.

Chapter 05: Comparison

Chapter 5: Comparison

68

5.1 Background

In chapter 4, two methodologies of evolutionary approach were presented to solve process planning

problem. A comparison of between these approaches along with other optimization techniques already

been proposed in the literature will help us understand to have a better picture of these proposed

methodologies.

5.2 Comparison between CS and GA
There are many test functions in literature which are used frequently to test efficiency and

characteristics of optimization algorithms. Here we will compare the results of these test functions by

applying our developed methodology on both. We took Rastrigin’s and sphere function to check the

performance of CS and GA. Rastrigin’s function as shown in figure 28 has multiple peaks exhibiting

local minima and a global minima at 0,0. It is a non-convex function due to which it is hard to find its

global minima through classical techniques.

Figure 28: 3-D plot for Rastrigin's Function

Sphere function has only one global minimum as shown in figure 29.

Chapter 5: Comparison

69

Figure 29: 3-D plot for Sphere Function

Comparison of both GA and CS on these test functions is listed below in table 15.

Table 15: Comparison of GA and CS on test functions

Test Functions No of Variables CS GA

Rastrigin’s Function

 2

f(x) = 0.18e-12

population size = 20

No of iterations = 56

f(x) = 0.03

population size = 20

No of iterations = 62

Sphere Function

 2

f(x) = 0.18e-12

population size = 20

No of iterations = 56

f(x) = 0.18e-12

population size = 20

No of iterations = 56

It can be seen that results obtained through CS on these test functions are better than GA. Now we

will apply GA and CS on ANSI part 101 shown in figure 24 (refer to Annex A & B for GA and CS

codes repectively). The results obtained from both methodologies are compared in table 16.

Table 16: Comparison of GA and CS on ANSI 101 part

Methodology Optimum Sequence Computation

Time

Optimum value

for combined

objective function

No of iterations

GA 14,1,6,2,18,20,7,4,19,13,

3,11,12,15,10,5,8,9,16,17

10 sec 12 110

CS 14,1,2,4,18,6,13,20,7,10,

3,11,8,12,19,5,15,9,16,17

17sec 13 920

Chapter 5: Comparison

70

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

no of generations

no
 o

f t
oo

l c
ha

ng
es

GA methodology

Figure 30: Results obtained for ANSI 101 by GA

100 200 300 400 500 600 700 800 900 1000
10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

no of generations

ob
je

ct
iv

e
fu

nc
tio

n

CS methodology

Figure 31: Results obtained for ANSI 101 by CS

O
bj
ec
tiv

e
Fu
nc
tio

n

Chapter 5: Comparison

71

5.2.1 Conclusion
It can be observed that when precedence constraints are involved, GA seems to give better results than

CS approach. This is due to the fact that in order to apply CS methodology on process planning

problems, we have to produce new solutions/sequences via levy flights. But when levy flight is

applied on a plan, it violates precedence constraints while repairing itself as described in chapter 4.

Penalty would be assigned to that sequence due to which its fitness gets disturbed and while ranking,

it gets discarded from the parent generation.

5.3 Comparison of GA methodologies in Process

Planning
Another approach for process planning was proposed by Kumar and Deb [55]. Different objective

functions were considered separately to be minimized. Elitist model is used for selection purposes.

The flow chart of GA methodology proposed is shown in figure 32.

The proposed methodology is applied on part in figure 33 while the operation sequences and TAD for

the part is given in 34. The Tool change, setup change and penalty change matrices for the part are

described in table 22, 20 and 21 respectively (Refer to Annex-C).

Figure 32: Example Part for Case Study [55]

Chapter 5: Comparison

72

Figure 333: Flowchart for generation of process plans by GA [55]

Table 17: Input data with machining features for Example part in figure 32

Operation

Number

Operation

Type

TAD

1 Face Milling 6

2 Face Milling 3

3 Face Milling 5

4 Face Milling 1

5 Face Milling 6

6 Face Milling 3

7 Face Milling 5

8 Face Milling 1

9 Face Milling 2

10 Face Milling 2

Chapter 5: Comparison

73

11 Face Milling 4

12 End Milling 1

13 End Milling 1

14 Drilling 2

15 Drilling 2

16 Drilling 2

17 Drilling 2

18 End Milling 3

19 End Milling 6

20 End Milling 5

21 End Milling 2

22 Boring 2

23 Drilling 2

24 Boring 2

25 Drilling 4

26 Boring 4

27 Drilling 2

28 Tapping 2

Table 18: PGM for Example part in figure 33

Group No Precedence

I 11 , ALL OPERATIONS

II 9,24

III 9,27,28

IV 25,26,10,9

V 1,5

VI 10,14

VII 10,17

VIII 10,15

IX 10,16

X 21,23,22

XI 5,10

XII 6,10

XIII 7,10

Chapter 5: Comparison

74

XIV 6,18

XV 4,12

XVI 4,13

XVII 20,7

XVIII 3,7

XIX 25,24

XX 18,4

XXI 4,8

Comparisons of the results obtained by both methodologies are described in table 19 (Refer to Annex-

D for MatLab code of proposed GA methodology on part in figure 33).

Table 19: Comparison of GA methodologies for generation of process plans

Methodology Optimum value

for tool change

Optimum Sequence No of iterations

GA by Deb

 5

11,2,6,18,19,20,3,7,1,4,8,26,10,9,1

2,13,21,15,16,17,23,25,27,4,

28,14,5,22

 147

Proposed GA

 5

11,2,3,19,1,26,6,18,4,8,5,20,7,12,1

0,9,13,21,25,27,28,23,22,24,17,16,

15,14

 15

The results obtained are shown in figures 34 and 35.

5.4 Comparison and Summary
The results obtained from proposed GA methodology in chapter 4 are compared with methodology

presented by Deb in [55]. The optimum value for tool change i.e. 5 is obtained in 15 iterations. The

generated process plan doesn’t violate any constraint and is completely feasible. This is due to the fact

that subroutine developed for modifying the sequences after mutation not only increases the

processing time, but it also may neglect some of the constraints resulting in an infeasible solution.

Chapter 5: Comparison

75

Figure 34: Results obtained for optimal no of tool changes by GA methodology of Deb [55]

20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

10

no of generations

no
 o

f t
oo

l c
ha

ng
es

Proposed GA methodology

Figure 35: Results obtained for optimal no of tool changes by proposed GA methodology

Chapter 06: Analysis & Future
Recommendations

Chapter 6: Analysis & Future Recommendations

77

6.1 Analysis & Future Recommendations
This thesis falls in the domain of optimization in advanced manufacturing systems. It aims in

generating alternative process plans for a part/part family. The issues addressed in this thesis include

not only generation of process plan around a part family, but also to make it reconfigurable so that it

can accommodate future needs and can be made responsive. Along with that, search areas in

optimization are also discussed in order to yield optimal process plan from the alternatives. The

methodology proposed to address the aforesaid issues can be divided as follows:

a. A detailed literature review on techniques proposed for creating alternative process

plans such as feature recognition based techniques, co-generation and knowledge

based techniques. The literature review yields that generated process plans do not

consider optimality criteria.

b. A detailed literature review of search areas in optimization was discussed. It was

observed that classical calculus based techniques are not so popular when it comes to

solve manufacturing problems.

c. Development of a methodology for generating process plans by keeping the

precedence constraints for a part under consideration. Along with that, the proposed

methodology was constructed in such a way that later it can accommodate new

features in a part.

d. Development of algorithms for generating optimal process plan for defined criteria.

The developed algorithms were compared to identify the better methodology. Along

with that, the better proposed methodology was compared with algorithm proposed in

literature. It was analyzed that due to lesser checks and better methodology for

generating initial input process plans, proposed algorithm gives better results.

By using EAs, optimization techniques were combined with manufacturing application. It was

analyzed that GA gives better results than CS if precedence constraints are not considered. Moreover,

proposed GA methodology provided better results and responsive process plans as compared to the

one already existing in literature. Certain future work recommendations which can be an extension to

the present work are as follows:

a. Parallel sequencing can be considered for cases in which minimum machine time is

required and precision is not an issue.

b. Different machine options can be considered and choice can be provided if the part to be

made requires has features that require operation on various machines.

Chapter 6: Analysis & Future Recommendations

78

c. Along with the specified criteria, parameter optimization can be performed resulting in

suggesting optimal feed, speed and depth of cut for the part. This will require detailed

literature review on tooling and cutting force directions.

d. Optimization algorithms can be modified to extend their use in other reconfigurable

manufacturing problems for example dynamic facility planning.

Appendix

79

Appendix A
This Appendix contains MATLab Code in GA methodology for ANSI 101 part.

MATLab Code (GA Methodology)

function []=ansiga()
k=1;
e=1;
pop=6; %Pop represents population size
parent=1;
cost_m=[0 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0;0 0 1 0 1 1
1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0;0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1;1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0
0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1
0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
setup_m=[0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0;0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0
0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1
0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
penality_m=[0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0;100 0 0 0

Appendix

80

 0 0 0 0 0 0 0 0 0 100 0 0
 0 0 0 0;100 0 0 100 0 0 0 0 0
 0 0 0 0 100 0 0 0 0 0 0;100 0
 0 0 0 0 0 0 0 0 0 0 0 100
 0 0 0 0 0 0;100 0 0 100 0 0 0
 0 0 0 0 0 0 100 0 0 0 0 0
 0;100 0 0 0 0 0 0 0 0 0 0 0
 0 100 0 0 0 0 0 0;100 100 0 0 0
 0 0 0 0 0 0 0 0 100 0 0 0
 0 0 0;100 100 0 0 0 0 0 0 0 100
 0 0 0 100 0 0 0 0 0 0;100 0 100
 100 0 0 0 0 0 0 0 0 0 100 0
 0 0 0 0 0;100 100 0 0 0 0 0 0
 0 0 0 0 0 100 0 0 0 0 0
 0;100 0 0 100 0 0 0 0 0 0 0 0
 0 100 0 0 0 0 0 0;100 0 0 100 0
 0 0 0 0 0 100 0 0 100 0 0 0
 0 0 0;100 0 0 100 0 0 0 0 0 0
 0 0 0 100 0 0 0 0 0 0;0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0;100 0 0 100 0 0 0 0
 0 0 0 100 0 100 0 0 0 0 0
 0;100 0 0 100 0 0 0 0 0 0 0 100
 0 100 100 0 0 0 0 0;100 0 0 100 0
 0 0 0 0 0 0 100 0 100 100 100 0
 0 0 0;100 0 0 0 0 0 0 0 0 0
 0 0 0 100 0 0 0 0 0 0;100 0 0
 0 0 0 0 0 0 0 0 0 0 100 0
 0 0 0 0 0;100 0 0 0 0 0 0 0
 0 0 0 0 0 100 0 0 0 0 0 0];
while (k<=pop)
p=1;
l1=0;
l2=0;
l3=0;
l4=0;
l5=0;
l6=0;
l7=0;
l8=0;
l9=0;
l10=0;
l11=0;
l12=0;
l13=0;
l14=0;
l15=0;
l16=0;
l17=0;
l18=0;
l19=0;
l20=0;
l21=0;
g1=[1 14 2]; %each g represents group of PGM of ANSI 101
g2=[14 1 2];
g3=[1 14 6];
g4=[1 14 2 7];
g5=[1 14 2 10 8];
g6=[1 14 4 3 9];
g7=[1 14 18];
g8=[1 14 19];

Appendix

81

g9=[1 14 4 5];
g10=[14 1 4 13];
g11=[14 1 2 10];
g12=[1 14 4 11 12 15 16 17];
g13=[14 1 20];
g14=[1 14 20];
g15=[1 14];
g16=[14 1 11 12 15 4];
g17=[1 14 11 12 15 4 6 16];
g18=[14 1 11 12 15 4 6 3 16];
g19=[1 14 6 11 12 15 4 6 16 17];
g20=[14 1 18 6 2 11];
g21=[1 14 19 2];

u1=length(g1);
u2=length(g2);
u3=length(g3);
u4=length(g4);
u5=length(g5);
u6=length(g6);
u7=length(g7);
u8=length(g8);
u9=length(g9);
u10=length(g10);
u11=length(g11);
u12=length(g12);
u13=length(g13);
u14=length(g14);
u15=length(g15);
u16=length(g16);
u17=length(g17);
u18=length(g18);
u19=length(g19);
u20=length(g20);
u21=length(g21);

oo=length(g1)+length(g2)+length(g3)+length(g4)+length(g5)+length(g6)+length
(g7)+length(g8)+length(g9)+length(g10)+length(g11)+length(g12)+length(g13)+
length(g14)+length(g15)+length(g16)+length(g17)+length(g18)+length(g19)+len
gth(g20)+length(g21);
while(p<=oo)
array=[g1(1),g2(1),g3(1),g4(1),g5(1),g6(1),g7(1),g8(1),g9(1),g10(1),g11(1),
g12(1),g13(1),g14(1),g15(1),g16(1),g17(1),g18(1),g19(1),g20(1),g21(1)];
d=size(array);
Index=randi(21);
randVal=array(Index);
if(randVal==0)
p=p;
else
new(p)=randVal;
p=p+1;
if randVal==g1(1)
l1=l1+1;
if(l1==u1)
g1(1)=0;
else
g1(1)=[];
end
elseif randVal==g2(1)
l2=l2+1;
if(l2==u2)

Appendix

82

g2(1)=0;
else
g2(1)=[];
end
elseif randVal==g3(1)
l3=l3+1;
if(l3==u3)
g3(1)=0;
else
g3(1)=[];
end
elseif randVal==g4(1)
l4=l4+1;
if(l4==u4)
g4(1)=0;
else
g4(1)=[];
end
elseif randVal==g5(1)
l5=l5+1;
if(l5==u5)
g5(1)=0;
else
g5(1)=[];
end
elseif randVal==g6(1)
l6=l6+1;
if(l6==u6)
g6(1)=0;
else
g6(1)=[];
end
elseif randVal==g7(1)
l7=l7+1;
if(l7==u7)
g7(1)=0;
else
g7(1)=[];
end
elseif randVal==g8(1)
l8=l8+1;
if(l8==u8)
g8(1)=0;
else
g8(1)=[];
end
elseif randVal==g9(1)
l9=l9+1;
if(l9==u9)
g9(1)=0;
else
g9(1)=[];
end
elseif randVal==g10(1)
l10=l10+1;
if(l10==u10)
g10(1)=0;
else
g10(1)=[];
end
elseif randVal==g11(1)

Appendix

83

l11=l11+1;
if(l11==u11)
g11(1)=0;
else
g11(1)=[];
end
elseif randVal==g12(1)
l12=l12+1;
if(l12==u12)
g12(1)=0;
else
g12(1)=[];
end
elseif randVal==g13(1)
l13=l13+1;
if(l13==u13)
g13(1)=0;
else
g13(1)=[];
end
elseif randVal==g14(1)
l14=l14+1;
if(l14==u14)
g14(1)=0;
else
g14(1)=[];
end
elseif randVal==g15(1)
l15=l15+1;
if(l15==u15)
g15(1)=0;
else
g15(1)=[];
end
elseif randVal==g16(1)
l16=l16+1;
if(l16==u16)
g16(1)=0;
else
g16(1)=[];
end
elseif randVal==g17(1)
l17=l17+1;
if(l17==u17)
g17(1)=0;
else
g17(1)=[];
end
elseif randVal==g18(1)
l18=l18+1;
if(l18==u18)
g18(1)=0;
else
g18(1)=[];
end
elseif randVal==g19(1)
l19=l19+1;
if(l19==u19)
g19(1)=0;
else
g19(1)=[];

Appendix

84

end
elseif randVal==g20(1)
l20=l20+1;
if(l20==u20)
g20(1)=0;
else
g20(1)=[];
end
elseif randVal==g21(1)
l21=l21+1;
if(l21==u21)
g21(1)=0;
else
g21(1)=[];
end
else
end
end
[junk,index] = unique(new,'first');
newe=new(sort(index));
newe
end
pp=length(newe);
cost=0; % Calculation of fitness function for each process plan
setup=0;
penality=0;
for i=1:pp-1
 x=newe(i)
 y=newe(i+1)
 if(cost_m(x,y)==1)
 cost=cost+1
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
end
for i=1:pp-1
 x=newe(i)
 for y=newe(i+1:pp)
 if(penality_m(x,y)==100)
 penality=penality+100
 else
 penality=penality+0;
 end
 end
end
cost_array(parent)=cost;
setup_array(parent)=setup;
penality_array(parent)=penality;
parent=parent+1;
saved(e,:)=newe;
e=e+1;
k=k+1;
end
saved
cost_array
setup_array

Appendix

85

penality_array
w1=input('Enter weight for cost function:');
w2=input('Enter weight for setup function:');
for q=1:length(cost_array)
fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_array(q));
end
m=1;
fitting=fitness;
n=(max(fitting)+20);
lll=0;
while((lll)<(length(fitting)))
 [r,c] = find(fitting==max(fitting(:)));
 [row,col] = find(fitting==min(fitting(:)));
minimum=col;
maximum=c;
if (length(minimum)==1)
ranks(m)=minimum;
m=m+1;
fitting(col)=n;
elseif(length(minimum>1))
 jj=length(minimum);
 for indi=1:jj
 ranks(m)=minimum(indi);
 m=m+1;
 fitting(col)=n;
 end
else
end
lll=length(ranks);
end
ranks
ooo=length(ranks);
for i=1:ooo
 k=ranks(i);
 ranked(i,:)=saved(k,:);
end
ranked
generations=1;
grap=1;
while(generations<=1000)
[l b]=size(ranked);
num=1;
i=1;
choose=ceil(b/2);
 indec=randi(choose) %choosing indexes for creation of children
 indes=indec+(choose-1)
while(i<l)
 f=1;
 one=ranked(i,:);
 two=ranked(i+1,:);
 for j=1:b
 if((indec>j)|(j>indes))
 cop(j)=one(j);
 else
 cop(j)=0;
 unoccupied(f)=j;
 check(f)=one(j);
 f=f+1;
 end
 end
 cop

Appendix

86

 pos=1;
for t=1:length(check)
 w=check(t);
 h(pos)=find(two==w);
 pos=pos+1;
end
sorted=sort(h);
for u=1:length(unoccupied)
 cop(unoccupied(u))=two(sorted(u));
end
child(num,:)=cop;
num=num+1;
 i=i+2;
end

i=1;
while(i<l)
 f=1;
 one=ranked(i,:);
 two=ranked(i+1,:);
 for j=1:b
 if((indec>j)|(j>indes))
 cop(j)=two(j);
 else
 cop(j)=0;
 unoccupied(f)=j;
 check(f)=two(j);
 f=f+1;
 end
 end
 cop
 pos=1;
for t=1:length(check)
 w=check(t);
 h(pos)=find(one==w);
 pos=pos+1;
end
sorted=sort(h);
for u=1:length(unoccupied)
 cop(unoccupied(u))=one(sorted(u));
end
child(num,:)=cop;
num=num+1;
 i=i+2;
end

child
[m g]=size(child);
for k=1:m
 ch=randi(100);
 if(ch>20)
 finalized(k,:)=child(k,:);

 else
 temporary=child(k,:)
 pep1=randi(g);
 pep2=randi(g);
 while(pep2==pep1)
 pep2=randi(g);
 end

Appendix

87

 temp=temporary(pep1);
 temporary(pep1)=temporary(pep2);
 temporary(pep2)=temp;

 finalized(k,:)=temporary;
 end
 end
finalized
[c d]=size(finalized);
child1=1;
t=1;
while(t<=c)
cost1=0;
setup1=0;
penality1=0;
j=finalized(t,:);
j1=length(j);
for p=1:(j1-1)
 x1=j(p);
 y1=j(p+1);
 if(cost_m(x1,y1)==1)
 cost1=cost1+1;
 else
 cost1=cost1+0;
 end
 if(setup_m(x1,y1)==1)
 setup1=setup1+1;
 else
 setup1=setup1+0;
 end
end
for p=1:(j1-1)
 x1=j(p);
 for y1=j(p+1:j1)
 if(penality_m(x1,y1)==100)
 penality1=penality1+100
 else
 penality1=penality1+0;
 end
 end
end
cost_array1(child1)=cost1;
setup_array1(child1)=setup1;
penality_array1(child1)=penality1;
child1=child1+1;
t=t+1;
end

cost_array1
setup_array1
penality_array1
r=1;
combo_saved=ranked;
[m n]=size(ranked);
[o p]=size(finalized);
for u=(m+1):(2*o)
 combo_saved(u,:)=finalized(r,:);
 r=r+1;
end
combo_saved
[l b]=size(ranked);

Appendix

88

position=1;
for t=1:l
cost=0;
setup=0;
penality=0;
g=ranked(t,:);
for i=1:b-1
 x=g(i);
 y=g(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
end
for i=1:b-1
 x=g(i);
 for y=g(i+1:b)
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end
 end
end
cost_array(position)=cost;
setup_array(position)=setup;
penality_array(position)=penality;
position=position+1;
end
for q=1:length(cost_array)
combo_fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_array(q))
;
end
combo_fitness
 v=1;
 for q=(length(cost_array)+1):(2*length(cost_array1))

combo_fitness(q)=(w1*cost_array1(v))+(w2*setup_array1(v))+penality_array1(v
);
 v=v+1;
 end

combo_fitness
m=1;
combo_fitting=combo_fitness;
n=(max(combo_fitting)+400);
lll=0;
while((lll)<(length(combo_fitting)))
 [r,c] = find(combo_fitting==max(combo_fitting(:)));
 [row,col] = find(combo_fitting==min(combo_fitting(:)));
mini=col;
maxi=c;
if (length(mini)==1)
combo_ranks(m)=mini;
m=m+1;

Appendix

89

combo_fitting(col)=n;
elseif(length(mini>1))
 jj=length(mini);
 for indi=1:jj
 combo_ranks(m)=mini(indi);
 m=m+1;
 combo_fitting(col)=n;
 end
else
end
lll=length(combo_ranks);
end
combo_ranks
ooo=length(combo_ranks);
for i=1:ooo
 k=combo_ranks(i);
 combo_ranked(i,:)=combo_saved(k,:);
end
combo_ranked
[l b]=size(combo_ranked);
nub=l/2;
for p=1:nub
 chosen(p,:)=combo_ranked(p,:);
end
chosen
ranked=chosen;
[l b]=size(ranked);
parent=1;
gener=chosen(1,:);
cost=0;
setup=0;
penality=0;
for i=1:(length(gener)-1)

 x=gener(i);
 y=gener(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
end
 for i=1:b-1
 x=gener(i);
 for y=gener(i+1:b)
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end
 end
end
cost_gener=cost;
setup_gener=setup;
penality_gener=penality;
fitness_gener=w1*cost_gener+w2*setup_gener+penality_gener;

Appendix

90

fitness_graph(grap)=fitness_gener;
grap=grap+1;
generations=generations+1;
fitness_graph
end
chosen
[l b]=size(chosen);
parent=1;
for t=1:l
cost=0;
setup=0;
penality=0;
k=chosen(t,:);
for i=1:b-1
 x=k(i);
 y=k(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
 end
for i=1:b-1
 x=k(i);
 for y=k(i+1:b);
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end
 end
end

cost_array(parent)=cost;
setup_array(parent)=setup;
penality_array(parent)=penality;
parent=parent+1;
end
for q=1:length(cost_array)
fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_array(q));
end
fitness
tt=1:1000;
plot(tt,fitness_graph)
fitness

Appendix

91

Appendix B
This Appendix contains MATLab Code in CS methodology for ANSI 101 part.

MATLab Code : ANSI 101 BY CS methodology
function []=ansiga()
k=1;
e=1;
pop=6;
parent=1;
cost_m=[0 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0;0 0
1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0;0 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1;1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0
1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0
0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1
0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0];
setup_m=[0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0
1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0
1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0
0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1

Appendix

92

0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0];
penality_m=[0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0;100 0 0 0
 0 0 0 0 0 0 0 0 0 100 0 0
 0 0 0 0;100 0 0 100 0 0 0 0 0
 0 0 0 0 100 0 0 0 0 0 0;100 0
 0 0 0 0 0 0 0 0 0 0 0
 100 0 0 0 0 0 0;100 0 0 100 0 0
 0 0 0 0 0 0 0 100 0 0 0 0
 0 0;100 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0 0 0 0;100 100 0 0
 0 0 0 0 0 0 0 0 0 100 0 0
 0 0 0 0;100 100 0 0 0 0 0 0 0
 100 0 0 0 100 0 0 0 0 0 0;100 0
 100 100 0 0 0 0 0 0 0 0 0
 100 0 0 0 0 0 0;100 100 0 0 0 0
 0 0 0 0 0 0 0 100 0 0 0 0
 0 0;100 0 0 100 0 0 0 0 0 0 0
 0 0 100 0 0 0 0 0 0;100 0 0
 100 0 0 0 0 0 0 100 0 0 100 0
 0 0 0 0 0;100 0 0 100 0 0 0 0
 0 0 0 0 0 100 0 0 0 0 0
 0;0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0;100 0 0 100 0
 0 0 0 0 0 0 100 0 100 0 0 0
 0 0 0;100 0 0 100 0 0 0 0 0 0
 0 100 0 100 100 0 0 0 0 0;100 0 0
 100 0 0 0 0 0 0 0 100 0 100
 100 100 0 0 0 0;100 0 0 0 0 0 0
 0 0 0 0 0 0 100 0 0 0 0 0
 0;100 0 0 0 0 0 0 0 0 0 0 0
 0 100 0 0 0 0 0 0;100 0 0 0 0
 0 0 0 0 0 0 0 0 100 0 0 0
 0 0 0];
while (k<=pop)
p=1;
l1=0;
l2=0;
l3=0;
l4=0;
l5=0;
l6=0;
l7=0;
l8=0;
l9=0;
l10=0;
l11=0;
l12=0;
l13=0;
l14=0;
l15=0;
l16=0;
l17=0;

Appendix

93

l18=0;
l19=0;
l20=0;
l21=0;
g1=[1 14 2];
g2=[14 1 2];
g3=[1 14 6];
g4=[1 14 2 7];
g5=[1 14 2 10 8];
g6=[1 14 4 3 9];
g7=[1 14 18];
g8=[1 14 19];
g9=[1 14 4 5];
g10=[14 1 4 13];
g11=[14 1 2 10];
g12=[1 14 4 11 12 15 16 17];
g13=[14 1 20];
g14=[1 14 20];
g15=[1 14];
g16=[14 1 11 12 15 4];
g17=[1 14 11 12 15 4 6 16];
g18=[14 1 11 12 15 4 6 3 16];
g19=[1 14 6 11 12 15 4 6 16 17];
g20=[14 1 18 6 2 11];
g21=[1 14 19 2];

u1=length(g1);
u2=length(g2);
u3=length(g3);
u4=length(g4);
u5=length(g5);
u6=length(g6);
u7=length(g7);
u8=length(g8);
u9=length(g9);
u10=length(g10);
u11=length(g11);
u12=length(g12);
u13=length(g13);
u14=length(g14);
u15=length(g15);
u16=length(g16);
u17=length(g17);
u18=length(g18);
u19=length(g19);
u20=length(g20);
u21=length(g21);

oo=length(g1)+length(g2)+length(g3)+length(g4)+length(g5)+length(g6)
+length(g7)+length(g8)+length(g9)+length(g10)+length(g11)+length(g12
)+length(g13)+length(g14)+length(g15)+length(g16)+length(g17)+length
(g18)+length(g19)+length(g20)+length(g21);
while(p<=oo)
array=[g1(1),g2(1),g3(1),g4(1),g5(1),g6(1),g7(1),g8(1),g9(1),g10(1),
g11(1),g12(1),g13(1),g14(1),g15(1),g16(1),g17(1),g18(1),g19(1),g20(1
),g21(1)];

Appendix

94

d=size(array);
Index=randi(21);
randVal=array(Index);
if(randVal==0)
p=p;
else
new(p)=randVal;
p=p+1;
if randVal==g1(1)
l1=l1+1;
if(l1==u1)
g1(1)=0;
else
g1(1)=[];
end
elseif randVal==g2(1)
l2=l2+1;
if(l2==u2)
g2(1)=0;
else
g2(1)=[];
end
elseif randVal==g3(1)
l3=l3+1;
if(l3==u3)
g3(1)=0;
else
g3(1)=[];
end
elseif randVal==g4(1)
l4=l4+1;
if(l4==u4)
g4(1)=0;
else
g4(1)=[];
end
elseif randVal==g5(1)
l5=l5+1;
if(l5==u5)
g5(1)=0;
else
g5(1)=[];
end
elseif randVal==g6(1)
l6=l6+1;
if(l6==u6)
g6(1)=0;
else
g6(1)=[];
end
elseif randVal==g7(1)
l7=l7+1;
if(l7==u7)
g7(1)=0;
else
g7(1)=[];

Appendix

95

end
elseif randVal==g8(1)
l8=l8+1;
if(l8==u8)
g8(1)=0;
else
g8(1)=[];
end
elseif randVal==g9(1)
l9=l9+1;
if(l9==u9)
g9(1)=0;
else
g9(1)=[];
end
elseif randVal==g10(1)
l10=l10+1;
if(l10==u10)
g10(1)=0;
else
g10(1)=[];
end
elseif randVal==g11(1)
l11=l11+1;
if(l11==u11)
g11(1)=0;
else
g11(1)=[];
end
elseif randVal==g12(1)
l12=l12+1;
if(l12==u12)
g12(1)=0;
else
g12(1)=[];
end
elseif randVal==g13(1)
l13=l13+1;
if(l13==u13)
g13(1)=0;
else
g13(1)=[];
end
elseif randVal==g14(1)
l14=l14+1;
if(l14==u14)
g14(1)=0;
else
g14(1)=[];
end
elseif randVal==g15(1)
l15=l15+1;
if(l15==u15)
g15(1)=0;
else
g15(1)=[];

Appendix

96

end
elseif randVal==g16(1)
l16=l16+1;
if(l16==u16)
g16(1)=0;
else
g16(1)=[];
end
elseif randVal==g17(1)
l17=l17+1;
if(l17==u17)
g17(1)=0;
else
g17(1)=[];
end
elseif randVal==g18(1)
l18=l18+1;
if(l18==u18)
g18(1)=0;
else
g18(1)=[];
end
elseif randVal==g19(1)
l19=l19+1;
if(l19==u19)
g19(1)=0;
else
g19(1)=[];
end
elseif randVal==g20(1)
l20=l20+1;
if(l20==u20)
g20(1)=0;
else
g20(1)=[];
end
elseif randVal==g21(1)
l21=l21+1;
if(l21==u21)
g21(1)=0;
else
g21(1)=[];
end
else
end
end
[junk,index] = unique(new,'first');
newe=new(sort(index));
newe
end
pp=length(newe);
cost=0;
setup=0;
penality=0;
for i=1:pp-1
 x=newe(i)

Appendix

97

 y=newe(i+1)
 if(cost_m(x,y)==1)
 cost=cost+1
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
end
for i=1:pp-1
 x=newe(i)
 for y=newe(i+1:pp)
 if(penality_m(x,y)==100)
 penality=penality+100
 else
 penality=penality+0;
 end
 end
end
cost_array(parent)=cost;
setup_array(parent)=setup;
penality_array(parent)=penality;
parent=parent+1;
saved(e,:)=newe;
e=e+1;
k=k+1;
end
saved
cost_array
setup_array
penality_array
w1=input('Enter weight for cost function:');
w2=input('Enter weight for setup function:');
for q=1:length(cost_array)
fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_array(q)
);
end
fitness
m=1;
fitting=fitness;
n=(max(fitting)+20);
lll=0;
while((lll)<(length(fitting)))
 [r,c] = find(fitting==max(fitting(:)));
 [row,col] = find(fitting==min(fitting(:)));
minimum=col;
maximum=c;
if (length(minimum)==1)
ranks(m)=minimum;
m=m+1;
fitting(col)=n;
elseif(length(minimum>1))
 jj=length(minimum);

Appendix

98

 for indi=1:jj
 ranks(m)=minimum(indi);
 m=m+1;
 fitting(col)=n;
 end
else
end
lll=length(ranks);
end
ranks
ooo=length(ranks);
for i=1:ooo
 k=ranks(i);
 ranked(i,:)=saved(k,:);
end
ranked
generations=1;
grap=1;
while(generations<=10)
[l b]=size(ranked);
num=1;
i=1;
[l b]=size(ranked);
num=1;
i=0;
[m g]=size(fitness);
for k=1:m
 beta=3/2;
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta
-1)/2)))^(1/beta);
u=randn(size(fitness))*sigma;
 v=randn(size(fitness));
 step=u./abs(v).^(1/beta);
step1=100000*step;
b1=round(step1)
end

b=zeros(pop,5);
for i=1:10,
 for j=1:10,
 for k=1:pop,

 if i==1 && j==1
 b(k,i) = round(b1(k)/1e4);

 end
 if i==2 && j==2
 b(k,i)=round(rem(b1(k),1e4)/1e3);

 end
 if i==3 && j==3
 b(k,i)=round(rem(rem(b1(k),1e4),1e3)/1e2);

 end
 if i==4 && j==4
 b(k,i)=round(rem(rem(rem(b1(k),1e4),1e3),1e2)/1e1);

Appendix

99

 end
 if i==5 && j==5

b(k,i)=round(rem(rem(rem(rem(b1(k),1e4),1e3),1e2),1e1)/1e0);

 end
 end
 end
end

b
 finalized =zeros(pop,20);
 %finalized
ind_a=numel(ranked);
ind_b=numel(b);

 for i=1:ind_a
 finalized(i)=ranked(i);
 if i>(ind_a-ind_b)
 finalized(i)=ranked(i)+b(i-(ind_a-ind_b));
 end

 for i=(ind_a-ind_b+1):ind_a
 if finalized(i)>max(ranked)
 finalized(i)=ranked(i);
 end
 end
 for i=(ind_a-ind_b+1):ind_a
 if finalized(i)<=0
 finalized(i)=ranked(i);
 end
 end
 ranked
 finalized
 [g mon]=size(finalized)
for k=1:50
for i=1:g
checker=finalized(i,:);
ranki=ranked(i,:);
for j=1:mon-1
 for l=2:mon
 if (checker(j)==checker(l) && j~=l)
 checker(j)=ranki(l);
 checker(l)=ranki(j);
 end
 end
end
finalized(i,:)=checker;
end
end
 end
finalized
[c d]=size(finalized);
child1=1;

Appendix

100

t=1;
while(t<=c)
cost1=0;
setup1=0;
penality1=0;
j=finalized(t,:);
j1=length(j);
for p=1:(j1-1)
 x1=j(p);
 y1=j(p+1);
 if(cost_m(x1,y1)==1)
 cost1=cost1+1;
 else
 cost1=cost1+0;
 end
 if(setup_m(x1,y1)==1)
 setup1=setup1+1;
 else
 setup1=setup1+0;
 end
end
for p=1:(j1-1)
 x1=j(p);
 for y1=j(p+1:j1)
 if(penality_m(x1,y1)==100)
 penality1=penality1+100
 else
 penality1=penality1+0;
 end
 end
end
cost_array1(child1)=cost1;
setup_array1(child1)=setup1;
penality_array1(child1)=penality1;
child1=child1+1;
t=t+1;
end

cost_array1
setup_array1
penality_array1
r=1;
combo_saved=ranked;
[m n]=size(ranked);
[o p]=size(finalized);
for u=(m+1):(2*o)
 combo_saved(u,:)=finalized(r,:);
 r=r+1;
end
combo_saved
[l b]=size(ranked);
position=1;
for t=1:l
cost=0;
setup=0;
penality=0;

Appendix

101

g=ranked(t,:);
for i=1:b-1
 x=g(i);
 y=g(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
end
for i=1:b-1
 x=g(i);
 for y=g(i+1:b)
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end
 end
end
cost_array(position)=cost;
setup_array(position)=setup;
penality_array(position)=penality;
position=position+1;
end
for q=1:length(cost_array)
combo_fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_ar
ray(q));
end
combo_fitness
 v=1;
 for q=(length(cost_array)+1):(2*length(cost_array1))

combo_fitness(q)=(w1*cost_array1(v))+(w2*setup_array1(v))+penality_a
rray1(v);
 v=v+1;
 end

combo_fitness
m=1;
combo_fitting=combo_fitness;
n=(max(combo_fitting)+400);
lll=0;
while((lll)<(length(combo_fitting)))
 [r,c] = find(combo_fitting==max(combo_fitting(:)));
 [row,col] = find(combo_fitting==min(combo_fitting(:)));
mini=col;
maxi=c;
if (length(mini)==1)
combo_ranks(m)=mini;
m=m+1;

Appendix

102

combo_fitting(col)=n;
elseif(length(mini>1))
 jj=length(mini);
 for indi=1:jj
 combo_ranks(m)=mini(indi);
 m=m+1;
 combo_fitting(col)=n;
 end
else
end
lll=length(combo_ranks);
end
combo_ranks
ooo=length(combo_ranks);
for i=1:ooo
 k=combo_ranks(i);
 combo_ranked(i,:)=combo_saved(k,:);
end
combo_ranked
[l b]=size(combo_ranked);
nub=l/2;
for p=1:nub
 chosen(p,:)=combo_ranked(p,:);
end
chosen
ranked=chosen;
[l b]=size(ranked);
parent=1;
gener=chosen(1,:);
cost=0;
setup=0;
penality=0;
for i=1:(length(gener)-1)
 x=gener(i);
 y=gener(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end

end
for i=1:b-1
 x=gener(i);
 for y=gener(i+1:b)
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end
 end

Appendix

103

end
cost_gener=cost;
setup_gener=setup;
penality_gener=penality;
fitness_gener=w1*cost_gener+w2*setup_gener+penality;
fitness_graph(grap)=fitness_gener;
grap=grap+1;
generations=generations+1;
fitness_graph
end
chosen
[l b]=size(chosen);
parent=1;
for t=1:l
cost=0;
setup=0;
penality=0;
k=chosen(t,:);
for i=1:b-1
 x=k(i);
 y=k(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
 end
for i=1:b-1
 x=k(i);
 for y=k(i+1:b);
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end
 end
end

cost_array(parent)=cost;
setup_array(parent)=setup;
penality_array(parent)=penality;
parent=parent+1;
end
for q=1:length(cost_array)
fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_array(q)
);
end
fitness
tt=1:10;
plot(tt,fitness_graph)
end

Appendix

104

Appendix C
This Appendix contains MATLab Code in GA methodology for the part in figure 33.

MATLab Code : For example part in figure 33 BY CS methodology

function []=comparison()
k=1;
e=1;
pop=2;
parent=1;
cost_m=[0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 1 0 0 0 0 1 1 1
 1 1 1 1;0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 0 0 0 0
 1 1 1 1 1 1 1;0 0 0 0 0 0
 0 0 0 0 0 0 0 1 1 1 1 0
 0 0 0 1 1 1 1 1 1 1;0 0 0
 0 0 0 0 0 0 0 0 0 0 1 1
 1 1 0 0 0 0 1 1 1 1 1 1
 1;0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 1 0 0 0 0 1 1 1
 1 1 1 1;0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 0 0 0 0
 1 1 1 1 1 1 1;0 0 0 0 0 0
 0 0 0 0 0 0 0 1 1 1 1 0
 0 0 0 1 1 1 1 1 1 1;0 0 0
 0 0 0 0 0 0 0 0 0 0 1 1
 1 1 0 0 0 0 1 1 1 1 1 1
 1;0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 1 0 0 0 0 1 1 1
 1 1 1 1;0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 0 0 0 0
 1 1 1 1 1 1 1;0 0 0 0 0 0
 0 0 0 0 0 0 0 1 1 1 1 0
 0 0 0 1 1 1 1 1 1 1;0 0 0
 0 0 0 0 0 0 0 0 0 0 1 1
 1 1 0 0 0 0 1 1 1 1 1 1
 1;0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 1 0 0 0 0 1 1 1
 1 1 1 1;1 1 1 1 1 1 1 1 1
 1 1 1 1 0 0 0 0 1 1 1 1
 0 1 0 1 1 0 1;1 1 1 1 1 1
 1 1 1 1 1 1 1 0 0 0 0 1
 1 1 1 0 1 0 1 1 0 1;1 1 1
 1 1 1 1 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 0 1 0 1 1 0
 1;1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 1 1 1 1 0 1 0
 1 1 0 1;0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 0 0 0 0
 1 1 1 1 1 1 1;0 0 0 0 0 0
 0 0 0 0 0 0 0 1 1 1 1 0

Appendix

105

 0 0 0 1 1 1 1 1 1 1;0 0 0
 0 0 0 0 0 0 0 0 0 0 1 1
 1 1 0 0 0 0 1 1 1 1 1 1
 1;0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 1 0 0 0 0 1 1 1
 1 1 1 1;1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 0 1 0 1 0 1 1;1 1 1 1 1 1
 1 1 1 1 1 1 1 0 0 0 0 1
 1 1 1 0 1 0 1 1 0 1;1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 0 1 0 1 0 1
 1;1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 1 1 1 1 0 1 0
 1 1 0 1;1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 0 1 0 1 0 1 1;1 1 1 1 1 1
 1 1 0 0 1 1 1 0 0 0 0 1
 1 1 0 0 0 0 1 1 0 0;1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 0];
setup_m=[0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0
1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0
1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0
0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1
0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0];
penality_m=[0 0 0 0 0 0 0 0 0 0
 100 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0;0 0 0 0 0 0 0
 0 0 0 100 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0;0 0 0 0
 0 0 0 0 0 0 100 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0;0 0 0 0 0 0 0 0 0 0 100 0
 0 0 0 0 0 100 0 0 0 0 0 0
 0 0 0 0;100 0 0 0 0 0 0 0 0

Appendix

106

 0 100 0 0 0 0 0 0 0 100 0 0
 0 0 0 0 0 0 0;0 100 0 0 0 0
 0 0 0 0 100 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0;0 0
 100 0 0 0 0 0 0 0 100 0 0 0
 0 0 0 0 0 100 0 0 0 0 0 0
 0 0;0 0 0 100 0 0 0 0 0 0
 100 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0;0 0 0 0 0 0 0
 0 0 100 100 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 100 0 0;0 0 0 0
 100 100 100 100 0 0 100 0 0 0 0 0
 0 0 100 100 0 0 0 0 0 0 0
 0;0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0;0 0 0 0 0 0 0 0 0
 0 100 100 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0;0 0 0 100 0 0
 0 0 0 0 100 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0;0 0 0
 0 0 0 0 0 0 100 100 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0;0 0 0 0 0 0 0 0 0 100 100 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0;0 0 0 0 0 0 0 0 0
 100 100 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0;0 0 0 0 0 0
 0 0 0 100 100 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0;0 0 0
 0 0 100 0 0 0 0 100 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0;0 0 0 0 0 0 0 0 0 0 100 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0;0 0 0 0 0 0 0 0 0
 0 100 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0;0 0 0 0 0 0
 0 0 100 0 100 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0;0 0 0
 0 0 0 0 0 0 0 100 0 0 0 0
 0 0 0 0 0 0 0 100 0 0 0 0
 0;0 0 0 0 0 0 0 0 0 0 100 0
 0 0 0 0 0 0 0 0 100 0 0 0
 0 0 0 0;0 0 0 0 0 0 0 0
 100 0 100 0 0 0 0 0 0 0 0 0
 0 0 0 0 100 0 0 0;0 0 0 0 0
 0 0 0 0 0 100 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0;0 0
 0 0 0 0 0 0 0 0 100 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0;0 0 0 0 0 0 0 0 100 0
 100 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0;0 0 0 0 0 0 0
 0 100 0 100 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0];
while (k<=pop)
p=1;

Appendix

107

l1=0;
l2=0;
l3=0;
l4=0;
l5=0;
l6=0;
l7=0;
l8=0;
l9=0;
l10=0;
l11=0;
l12=0;
l13=0;
l14=0;
l15=0;
l16=0;
l17=0;
l18=0;
l19=0;
l20=0;
l21=0;
g1=[11 1];
g2=[11 2];
g3=[11 3];
g4=[11 2 6 18 4 8];
g5=[11 1 19 5];
g6=[11 3 20 7];
g7=[11 25 26];
g8=[11 2 6 18 4 12];
g9=[11 2 6 18 4 13];
g10=[11 19 1 5];
g11=[11 1 2 25 3 19 26 5 20 7 6 18 4 8 10 9 21 27 28];
g12=[11 1 2 25 3 19 26 5 20 7 6 18 4 8 10 9 21];
g13=[11 25 26 1 3 2 19 5 20 7 6 18 4 8 10];
g14=[11 25 26 1 2 3 19 5 20 6 7 18 4 8 10 9 24];
g15=[11 1 2 25 3 19 26 5 20 7 6 18 4 8 10 9 21 23 22 27 24];
g16=[11 2 25 1 3 26 19 5 20 6 18 7 4 8 10 9 27 21 24 23 22];
g17=[11 2 25 1 26 19 5 20 3 6 7 18 4 8 10 16];
g18=[11 1 3 2 25 26 19 5 6 20 7 18 4 8 10 17];
g19=[11 3 1 25 26 20 19 18 8 4 5 7 10 14];
g20=[11 3 1 25 26 20 19 18 8 4 7 10 15];
g21=[11 1 2 25 3 19 26 5 20 7 6 18 4 8 10 9 21];

u1=length(g1);
u2=length(g2);
u3=length(g3);
u4=length(g4);
u5=length(g5);
u6=length(g6);
u7=length(g7);
u8=length(g8);
u9=length(g9);
u10=length(g10);
u11=length(g11);
u12=length(g12);
u13=length(g13);

Appendix

108

u14=length(g14);
u15=length(g15);
u16=length(g16);
u17=length(g17);
u18=length(g18);
u19=length(g19);
u20=length(g20);
u21=length(g21);

oo=length(g1)+length(g2)+length(g3)+length(g4)+length(g5)+length(g6)
+length(g7)+length(g8)+length(g9)+length(g10)+length(g11)+length(g12
)+length(g13)+length(g14)+length(g15)+length(g16)+length(g17)+length
(g18)+length(g19)+length(g20)+length(g21);
while(p<=oo)
array=[g1(1),g2(1),g3(1),g4(1),g5(1),g6(1),g7(1),g8(1),g9(1),g10(1),
g11(1),g12(1),g13(1),g14(1),g15(1),g16(1),g17(1),g18(1),g19(1),g20(1
),g21(1)];
d=size(array);
Index=randi(21);
randVal=array(Index);
if(randVal==0)
p=p;
else
new(p)=randVal;
p=p+1;
if randVal==g1(1)
l1=l1+1;
if(l1==u1)
g1(1)=0;
else
g1(1)=[];
end
elseif randVal==g2(1)
l2=l2+1;
if(l2==u2)
g2(1)=0;
else
g2(1)=[];
end
elseif randVal==g3(1)
l3=l3+1;
if(l3==u3)
g3(1)=0;
else
g3(1)=[];
end
elseif randVal==g4(1)
l4=l4+1;
if(l4==u4)
g4(1)=0;
else
g4(1)=[];
end
elseif randVal==g5(1)
l5=l5+1;
if(l5==u5)

Appendix

109

g5(1)=0;
else
g5(1)=[];
end
elseif randVal==g6(1)
l6=l6+1;
if(l6==u6)
g6(1)=0;
else
g6(1)=[];
end
elseif randVal==g7(1)
l7=l7+1;
if(l7==u7)
g7(1)=0;
else
g7(1)=[];
end
elseif randVal==g8(1)
l8=l8+1;
if(l8==u8)
g8(1)=0;
else
g8(1)=[];
end
elseif randVal==g9(1)
l9=l9+1;
if(l9==u9)
g9(1)=0;
else
g9(1)=[];
end
elseif randVal==g10(1)
l10=l10+1;
if(l10==u10)
g10(1)=0;
else
g10(1)=[];
end
elseif randVal==g11(1)
l11=l11+1;
if(l11==u11)
g11(1)=0;
else
g11(1)=[];
end
elseif randVal==g12(1)
l12=l12+1;
if(l12==u12)
g12(1)=0;
else
g12(1)=[];
end
elseif randVal==g13(1)
l13=l13+1;
if(l13==u13)

Appendix

110

g13(1)=0;
else
g13(1)=[];
end
elseif randVal==g14(1)
l14=l14+1;
if(l14==u14)
g14(1)=0;
else
g14(1)=[];
end
elseif randVal==g15(1)
l15=l15+1;
if(l15==u15)
g15(1)=0;
else
g15(1)=[];
end
elseif randVal==g16(1)
l16=l16+1;
if(l16==u16)
g16(1)=0;
else
g16(1)=[];
end
elseif randVal==g17(1)
l17=l17+1;
if(l17==u17)
g17(1)=0;
else
g17(1)=[];
end
elseif randVal==g18(1)
l18=l18+1;
if(l18==u18)
g18(1)=0;
else
g18(1)=[];
end
elseif randVal==g19(1)
l19=l19+1;
if(l19==u19)
g19(1)=0;
else
g19(1)=[];
end
elseif randVal==g20(1)
l20=l20+1;
if(l20==u20)
g20(1)=0;
else
g20(1)=[];
end
elseif randVal==g21(1)
l21=l21+1;
if(l21==u21)

Appendix

111

g21(1)=0;
else
g21(1)=[];
end
else
end
end
[junk,index] = unique(new,'first');
newe=new(sort(index));
newe
end
pp=length(newe);
cost=0;
setup=0;
penality=0;
for i=1:pp-1
 x=newe(i)
 y=newe(i+1)
 if(cost_m(x,y)==1)
 cost=cost+1
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
end
for i=1:pp-1
 x=newe(i)
 for y=newe(i+1:pp)
 if(penality_m(x,y)==100)
 penality=penality+100
 else
 penality=penality+0;
 end
 end
end
cost_array(parent)=cost;
setup_array(parent)=setup;
penality_array(parent)=penality;
parent=parent+1;
saved(e,:)=newe;
e=e+1;
k=k+1;
end
saved
cost_array
setup_array
penality_array
w1=input('Enter weight for cost function:');
w2=input('Enter weight for setup function:');
for q=1:length(cost_array)
fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_array(q)
);

Appendix

112

end
m=1;
fitting=fitness;
n=(max(fitting)+20);
lll=0;
while((lll)<(length(fitting)))
 [r,c] = find(fitting==max(fitting(:)));
 [row,col] = find(fitting==min(fitting(:)));
minimum=col;
maximum=c;
if (length(minimum)==1)
ranks(m)=minimum;
m=m+1;
fitting(col)=n;
elseif(length(minimum>1))
 jj=length(minimum);
 for indi=1:jj
 ranks(m)=minimum(indi);
 m=m+1;
 fitting(col)=n;
 end
else
end
lll=length(ranks);
end
ranks
ooo=length(ranks);
for i=1:ooo
 k=ranks(i);
 ranked(i,:)=saved(k,:);
end
ranked
generations=1;
grap=1;
while(generations<=50)
[l b]=size(ranked);
num=1;
i=1;
choose=ceil(b/2);
 indec=randi(choose) %choosing indexes for creation of
children
 indes=indec+(choose-1)
while(i<l)
 f=1;
 one=ranked(i,:);
 two=ranked(i+1,:);
 for j=1:b
 if((indec>j)|(j>indes))
 cop(j)=one(j);
 else
 cop(j)=0;
 unoccupied(f)=j;
 check(f)=one(j);
 f=f+1;
 end
 end

Appendix

113

 cop
 pos=1;
for t=1:length(check)
 w=check(t);
 h(pos)=find(two==w);
 pos=pos+1;
end
sorted=sort(h);
for u=1:length(unoccupied)
 cop(unoccupied(u))=two(sorted(u));
end
child(num,:)=cop;
num=num+1;
 i=i+2;
end

i=1;
while(i<l)
 f=1;
 one=ranked(i,:);
 two=ranked(i+1,:);
 for j=1:b
 if((indec>j)|(j>indes))
 cop(j)=two(j);
 else
 cop(j)=0;
 unoccupied(f)=j;
 check(f)=two(j);
 f=f+1;
 end
 end
 cop
 pos=1;
for t=1:length(check)
 w=check(t);
 h(pos)=find(one==w);
 pos=pos+1;
end
sorted=sort(h);
for u=1:length(unoccupied)
 cop(unoccupied(u))=one(sorted(u));
end
child(num,:)=cop;
num=num+1;
 i=i+2;
end

child
[m g]=size(child);
for k=1:m
 ch=randi(100);
 if(ch>70)
 finalized(k,:)=child(k,:);

 else
 temporary=child(k,:)

Appendix

114

 pep1=randi(g);
 pep2=randi(g);
 while(pep2==pep1)
 pep2=randi(g);
 end

 temp=temporary(pep1);
 temporary(pep1)=temporary(pep2);
 temporary(pep2)=temp;

 finalized(k,:)=temporary;
 end
 end
finalized
[c d]=size(finalized);
child1=1;
t=1;
while(t<=c)
cost1=0;
setup1=0;
penality1=0;
j=finalized(t,:);
j1=length(j);
for p=1:(j1-1)
 x1=j(p);
 y1=j(p+1);
 if(cost_m(x1,y1)==1)
 cost1=cost1+1;
 else
 cost1=cost1+0;
 end
 if(setup_m(x1,y1)==1)
 setup1=setup1+1;
 else
 setup1=setup1+0;
 end
end
for p=1:(j1-1)
 x1=j(p);
 for y1=j(p+1:j1)
 if(penality_m(x1,y1)==100)
 penality1=penality1+100
 else
 penality1=penality1+0;
 end
 end
end
cost_array1(child1)=cost1;
setup_array1(child1)=setup1;
penality_array1(child1)=penality1;
child1=child1+1;
t=t+1;
end

cost_array1
setup_array1

Appendix

115

penality_array1
r=1;
combo_saved=ranked;
[m n]=size(ranked);
[o p]=size(finalized);
for u=(m+1):(2*o)
 combo_saved(u,:)=finalized(r,:);
 r=r+1;
end
combo_saved
[l b]=size(ranked);
position=1;
for t=1:l
cost=0;
setup=0;
penality=0;
g=ranked(t,:);
for i=1:b-1
 x=g(i);
 y=g(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
end
for i=1:b-1
 x=g(i);
 for y=g(i+1:b)
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end
 end
end
cost_array(position)=cost;
setup_array(position)=setup;
penality_array(position)=penality;
position=position+1;
end
for q=1:length(cost_array)
combo_fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_ar
ray(q));
end
combo_fitness
 v=1;
 for q=(length(cost_array)+1):(2*length(cost_array1))

combo_fitness(q)=(w1*cost_array1(v))+(w2*setup_array1(v))+penality_a
rray1(v);

Appendix

116

 v=v+1;
 end

combo_fitness
m=1;
combo_fitting=combo_fitness;
n=(max(combo_fitting)+400);
lll=0;
while((lll)<(length(combo_fitting)))
 [r,c] = find(combo_fitting==max(combo_fitting(:)));
 [row,col] = find(combo_fitting==min(combo_fitting(:)));
mini=col;
maxi=c;
if (length(mini)==1)
combo_ranks(m)=mini;
m=m+1;
combo_fitting(col)=n;
elseif(length(mini>1))
 jj=length(mini);
 for indi=1:jj
 combo_ranks(m)=mini(indi);
 m=m+1;
 combo_fitting(col)=n;
 end
else
end
lll=length(combo_ranks);
end
combo_ranks
ooo=length(combo_ranks);
for i=1:ooo
 k=combo_ranks(i);
 combo_ranked(i,:)=combo_saved(k,:);
end
combo_ranked
[l b]=size(combo_ranked);
nub=l/2;
for p=1:nub
 chosen(p,:)=combo_ranked(p,:);
end
chosen
ranked=chosen;
[l b]=size(ranked);
parent=1;
gener=chosen(1,:);
cost=0;
setup=0;
penality=0;
for i=1:(length(gener)-1)

 x=gener(i);
 y=gener(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;

Appendix

117

 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
end
 for i=1:b-1
 x=gener(i);
 for y=gener(i+1:b)
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end
 end
end
cost_gener=cost;
setup_gener=setup;
penality_gener=penality;
fitness_gener=w1*cost_gener+w2*setup_gener+penality_gener;
fitness_graph(grap)=fitness_gener;
grap=grap+1;
generations=generations+1;
fitness_graph
end
chosen
[l b]=size(chosen);
parent=1;
for t=1:l
cost=0;
setup=0;
penality=0;
k=chosen(t,:);
for i=1:b-1
 x=k(i);
 y=k(i+1);
 if(cost_m(x,y)==1)
 cost=cost+1;
 else
 cost=cost+0;
 end
 if(setup_m(x,y)==1)
 setup=setup+1;
 else
 setup=setup+0;
 end
 end
for i=1:b-1
 x=k(i);
 for y=k(i+1:b);
 if(penality_m(x,y)==100)
 penality=penality+100;
 else
 penality=penality+0;
 end

Appendix

118

 end
end

cost_array(parent)=cost;
setup_array(parent)=setup;
penality_array(parent)=penality;
parent=parent+1;
end
for q=1:length(cost_array)
fitness(q)=(w1*cost_array(q))+(w2*setup_array(q))+(penality_array(q)
);
end
fitness
tt=1:50;
plot(tt,fitness_graph)
fitness

Appendix

119

Appendix D
This appendix contains penalty, tool change and setup change matrix for part in figure 33.

Appendix

120

Table 20: Tool change Matrix for example part in 33

Op # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1

7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

9 0 1 1 0 0

10 1 1 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

15 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

21 0 1 1 0 0

Appendix

121

22 1 0 1 0 1 0 1 1

23 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

24 1 0 1 0 1 0 1 1

25 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

26 1 0 1 0 1 0 1 1

27 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0

28 1 0

Appendix

122

Table 21: Penalty matrix for example part in 33
Op

No.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

01 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

5 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

6 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 100 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

8 0 0 0 100 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

10 0 0 0 0 100 100 100 100 0 0 100 0 0 0 0 0 0 0 100 100 0 0 0 0 0 0 0 0

11 0

12 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 100 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 100 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

Appendix

123

23 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

25 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix

124

Table22: Setup change matrix for example part in 33

Op # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1

7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

9 0 1 1 0 0

10 1 1 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

15 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

21 0 1 1 0 0

Appendix

125

22 1 0 1 0 1 0 1 1

23 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

24 1 0 1 0 1 0 1 1

25 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1

26 1 0 1 0 1 0 1 1

27 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0

28 1 0

References

126

References
[1] S.S Sankar, C. Rajendran, S.Ponanblam... “A multi-objective GA for scheduling a FMS”, Int

J. of adv manuf. technology (2003) (al. 2003) (al. 2003)

[2] Y.Koren, U.Heisel, F.Jovane, T.Moriwaki, G.Ulsoy, H.V.Brussel.. “Reconfigurable

Manufacturing Systems” , Annals of CIRP, Vol 48/2 (1999)

[3] Zhuming Bi, Revisiting System Paradigms from the Viewpoint of Manufacturing
Sustainability, Sustainability, Volume 3, 2011

[4] Farayi Musharavati.. “Reconfigurable Manufacturing Systems-What can Industrial

Engineering and Management do?” , Industrial Engineering and Management, Volume 1,

(2012)

[5] Z.M. Bi, Lihui Wang and Sherman Y.T. Lang, Current status of reconfigurable assembly

systems. International Journal of Manufacturing Research, Volume 2, 2007

[6] F.Villeneuve et al, “Feature state approach for operation sequence generation”, Intelligent

design & Manufacturing in mechanical engineering (1998), pp 93‐102

[7] T.C.Chang, R.A.Wysk.. “An introduction to automated process planning”,Prentice Hall, New

Jersey, (1985)

[8] Baqai, S. Schmidt, J.Y Dantan, A. Siadat, P. Martin.. “Algorithmic Design Methodology for

Process Plans and Architectural Configurations of Manufacturing Systems.” LCFC, Arts et

Métiers ParisTech Metz, 4 Rue Augustin Fresnel, 57078 METZ CEDEX 3, France, (2009)

[9] A.Bensmaine et al, “Process plan generation in reconfigurable manufacturing systems using

adapted NSGA-II and AMOSA”, IEEE (2011)

[10] D. Sormez and B. Khoshnevis, “Generation of alternative process plans in integrated

manufacturing systems”, Journal of intelligent manufacturing, (2003), V 14, pp 509-526

[11] Shabaka and H.A ElMaraghy.. “Generation of machine configurations based on product

features.” International Journal of Computer Integrated Manufacturing, (2007), 20(4):355–

369

References

127

[12] V. Oduguwa, A. Tiwari, and R. Roy, Evolutionary computing in manufacturing industry: an

overview of recent applications, Applied Soft Computing Volume 5, 2005

[13] Franco Busetti..“Simulated Annealing Overview”, (2003)

[14] H.A. Elmaraghy, “ Reconfigurable process plans for responsive manufacturing Systems”,
Digital Enterprise Technology, Springer US, (2007), pp.35-44

[15] Prabhu et al, “An operation generator network for computer aided process planning”, Journal
of manufacturing systems, 9(4),283-291

[16] V.Krishna et al, “Feature based modeling and automated process plan generation for turning
components”, Advances in production engineering and management, 6(2011)3, 153-162

[17] Y.N.Yang et al, “ A prototype of feature based multiple alternative process planning system
with scheduling verification”, Computer and industrial engineering, (2011), V 39, pp 109-124

[18] S.H.Huang et al, “An integrated process planning project”, IPPS, (1997), Texas

[19] T. Tolio, D. Ceglarek , H.A. El Maraghy, A. Fischer , S.J. Hu, L. Laperrie` re,S.T. Newman ,

J.Va´ncza..“Co-evolution of products, processes and production systems.” CIRP Annals

Manufacturing technology, (2010)

[20] Syed Maaz Hasan, M. Nadeem Azam, M. Salman Siddiqui, Dr. Aamer A. Baqai.. “An

algorithm for the generation/selection of process plans based upon production rate”,

International Conference on Advanced Modeling and Simulation, 28-30 (2011)

[21] Zheng Wen, Louis J. Durlofsky, Benjamin Van Roy,and Khalid Aziz, Use of Approximate

Dynamic Programming for Production Optimization, Society of Petroleum Engineers, (2011)

[22] Pham et al, “Intelligent optimization techniques: GA, Tabu search, Simulated Annealing and
Neural Networks”, Springer-London (2000)

[23] G. Venter, Review of Optimization Techniques, Encyclopedia of Aerospace

Engineering,(2010)

[24] Maghsud Solimanpur,Shahram Saeedi,IRaj Mahdavi..”Solving Cell Formation problem in

cellular manufacturing using Ant-colony-based optimization”,Intl J Adv Manuf Techol

(2010)

[25] Yasuhiro Yamada,Kazuhiro Ookoudo,Yoshiaki Komura..”Layout Optimization of

Manufacturing Cells and Allocation Optimization of Transport Robots in Reconfigurable

Manufacturing Systems using Particle Swarm Optimization”,Proceedings of the 2003

IEEE/RSJ Intl,Conference on Intelligent Robots and Systems,Las Vegas,Nevada (2003)

References

128

[26] Christian Blum, Ant colony optimization: Introduction and recent trends, Physics of Life

Reviews, Volume 2, (2005)

[27] Dr.R.Umarani and V.Selvi, “Particle Swarm Optimization evolution:Overview And

Applications”, International Journal of Engineering Science and Technology, Vol. 2(7),

(2010)

[28] R.Sivaraj, Dr.T.R.Chandaran.. “A review of selection Methods in GA” ,R.Sivaraj et al,

IJEST

[29] Noor.S, “Operational scheduling of traditional manufacturing systems using genetic

algorithms, artificial neural networks and simulation”,UK (2007)

[30] M.K.Araffin, M.Badakhshian, S.B.Sulaiman, A.A.Faieza.. “Automated Guided Vehicles

Scheduling by Fuzzy GA”, Dept of Mechanical Engineering, UPM Darulehsan,43400,

Malaysia (2003)

[31] A.Eiben, J.E.Smith, “Introduction to evolutionary computing”, Springer-London (1998)

[32] J.J Paris, H Perrival..”Dealing with design options in optimization of manufacturing systems

: An evolutionary approach”, Int J of Production research (2001)

[33] Mahanim Omar,Adnan Baharum,Yahya Abu Hasan..”A Job-Shop Scheduling Problem

(JSSP) using Genetic Algorithm(GA)”,Proceedings of the 2nd IMT-GT Regional Conference

on Mathematics, Statistics and Applications,June 13-15,Penang (2006)

[34] Chang-Lin Yang,Shan-Ping Chuang,Tsung-Shing Hsu..”A Genetic algorithm for dynamic

facility planning in job shop manufacturing”,Int J Adv Manuf Technol (2011)

[35] Nafis Ahmed, A.F.S Anwarul Haque.. “Optimization of process planning parameter for

rotational components by GA” Int conference of Mech Engg (2001)

[36] Sylvio Celso, Decio Crisol.. “Automobile stop and go cruise control system by GA, ABCM

symposium series in Mechatronics, Vol 1,pp 355-362 (2004)

[37] B.I.Kazem, Ali Mahdi, Ali Talib Oudah.. “Motion planning of Robotic Arm by using GA”,

JJMIE, Vol:2, ISSN 1995-6665, pages 131-136 (2008)

[38] Bessem Kordoghli, Seifeddine Saadallah,Mohamed Jmali, and Noureddine Liouene..

“Scheduling Optimization in a Cloth Manufacturing Factory Using Genetic Algorithm with

Fuzzy Logic for Multi-Objective Decision”,JTATM, Volume 6, Issue 3, (2010)

[39] Adnan Tariq,”Operational design of a cellular manufacturing system”, Pakistan (2010)

References

129

[40] X Yang, S.Deb...”Cuckoo search via levy flights”, IEEE publications (2009)

[41] Truyen Tran,Trung Thanh Nguyen,Hoang Linh Nguyen..”Global Optimization using Levy

Flight” , Proceedings of ICT,Hanoi Sep.24-25 (2004)

[42] Ramin Rajabioun.”Cuckoo optimization algorithm”, applied soft computing (2011)

[43] Kerkesova Kristina.”Optimization Methods in Process Planning”,5th International

Multidisciplinary Conference,010 26 (2003)

[44] S.Nourali, “A mathematical model for integrated process planning and scheduling in flexible

assembly jobshop environment with sequence dependent setup times”,Int J. of Math. Analysis

(2012), Vol 6, 2117-2132

[45] N.Ismail et al, “Manufacturing process planning optimization in reconfigurable multi-part

flow lines”, AMME (2008), Vol 31,issue 2

[46] A.G.Krishna and K.M.Rao, “Optimization of operation sequence in CAPP using ant colony

algorithm”, Int J. of adv manufacturing technology, (2006), Vol 29, 159-164

[47] W.D.Li et al “Hybrid genetic algorithm and simulated annealing approach for the

optimization of process plans for prismatic parts”, Int J. of production research (2002), Vol

40, 1899-1922

[48] G.H.Ma et al, “A simulated annealing based optimization algorithm for process planning”,

Int J. of production research, (2000), Vol 38 (12), 2671-2687

[49] G.Halevi, R.D.Weill, “Principles of process planning: a logical approach”, Springer (1995)

[50] G.Singh, “Operation sequencing & machining parameters selection for rotational

components using genetic algorithm & expert system”, India (2006)

[51] D.Theirens and D.Goldberg, “Elitist recombination: an integrated selection recombination

GA”, Belgium (2002)

[52] Chiung Moon et al, “An efficient genetic algorithm for traveling salesman problem”

Eurepeon journal of operational research, Elsevier (2000)

[53] S.E.Carlson, “A general methods for handling constraints in GA”, Virgina, USA (1999)

[54] X.S.Yang, “Nature inspired metaheruistic algorithms”, Luniver press, U.K (2008)

References

130

[55] C.Kumar and S.Deb, “Generation of optimal sequencing of machining operations in setup

planning by genetic algorithms”, Journal of advanced manufacturing systems, (2012), Vol 11

,67-80

[56] Choosak Pornsing,Arnat Wattanasungsuit..”Genetic algorithm approach to the quality-

related assembly line balancing problem”,Proceedings of the International Multi Conference

of Engineers and Computer Scientists ,Vol 2,Hong Kong (2008)

[57] J.Jerald, P.Asokan, R.Saravanan. “Scheduling optimization of FMS using PSO”, Int J of Adv

Manuf tech (2005)

[58] Shanshikant Burnwal, Sankha Deb. “Scheduling optimization of FMS using Cuckoo search-

based approach” , Int J of Adv Manuf (2012)

[59] Yves CRAMA. “Combinatorial Optimization Models for Production Scheduling in

Automated Manufacturing Systems”, Ecole d’ administration des affairs, university de liege,

Belgium (2012)

