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ABSTRACT 

Software Defined Radio (SDR) is of big importance when it comes to secure communication in 

hostile environment. In the signal jamming conditions, the effects on the received signal are 

undesirable. To counter this problem, the signal to be transmitted is spreaded over the entire 

bandwidth using chip code. The receiver then uses the same code for despreading. Moreover, to 

counter the undesirable effects of channel, the training sequence is appended with data before 

transmission. The receiver uses this training sequence to equalize the effects caused by the 

channel. In this thesis, two parts of receiver of software defined radio have been implemented. It 

includes CORDIC and Coarse Frequency Estimation. Implementation has been realized on 

FPGA because communicational algorithms that provide respective solutions are 

computationally intensive. Chosen algorithms for implementation are well evolved and robust. 

Detailed design of each of the implementation has been presented along with description. Two 

designs are given for coarse frequency estimation algorithm; one of them is optimized for area 

and other is for performance. Moreover, the CORDIC implementation is optimized for both 

accuracy and area. Numerous fundamental principles of both signal processing and digital 

system design have also been mentioned as a part of literature review. Detailed results including 

percentage error, throughput and resource consumption are provided. In conclusion and future 

work, the parts of the SDR that can work in cascade with implementation are discussed. 
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Chapter 1: Introduction 

1.1 Overview 

The Software Defined Radio (SDR) is one of the most emerging technologies in the field of 

wireless communication. The reason for which it is known as ‘Software Defined’ is the fact that 

most of the operations done on the signal like modulation, demodulation, frequency estimation, 

channel estimation are configurable and controllable by the software. For different SDRs the 

extent to which these operations are configurable by the software is different and purely defined 

by its architecture. Moreover, it also helps in facilitating the connectivity with wide range of 

wired protocols and also can be to designed to work equally well with standard wireless protocol 

implementations without changing baseline hardware. 

Its major advantage over the conventional analog radios is reduced error rate and facility to 

encrypt the data sent over the wireless channel. The reason being the digitally designed 

components are more predictable and reconfigurable in fulfilling the required design 

characteristics and hence far more consistent and deterministic then their analog counterpart. The 

power of hardware is increasing rapidly with time which enables radio designers to shift more 

and more part of the radio in the software. So, as a bonus, in order to change the functionality, 

designers do not need to change the underlying hardware which reduces the overall development 

resource consumption. 

Due to its ability to include multiple encrypting techniques for highly secured communication, it 

is very popular among military forces of many countries. Moreover, countries tend to use the 

legacy GSM systems in order to communicate at the long distances. For Example, In Pakistan, 

the commercial telecommunication network is very strong along the eastern border with India. 

SDR can be designed to work with GSM protocol with its own baseband encryption, making it 

possible to send messages to any part of a country. 
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For the communication with another local radio directly, it generally uses jamming resistant 

techniques. These techniques spread the transmitted signal over its entire bandwidth irrespective 

of the changes in baseband signal. Moreover, encryption is also employed on the baseband signal 

which makes it further secure. Typical abstract architecture of SDR is shown in Figure 1.1. 

Analog to Digital/

Digital to Analog 

Conversion

Information

Antenna

Analog Front End
Digital Signal 

Processing

 

Figure 1.1 Abstract Architecture of Software Defined Radio 

One of the most vital parts of SDR is analog front end. It converts the high frequency modulated 

signal to an intermediate frequency which digital system is able to process. This process is 

known as mixing. Analog to Digital Converter converts the analog signal at intermediate 

frequency to digital signal for Digital Signal Processor (DSP) to process. DSP is the most 

complex and most reconfigurable part. It processes the digitally converted signal for necessary 

algorithms of digital communication. This may include Start of Burst Detection, up or down 

sampling, intermediate carrier frequency estimation, channel equalization and many others. 

Information baseband signal is the output of DSP which is given to the type of output it belongs 

to. Reverse is the process in case of transmitting information. 

1.2 Background 

The specific SDR, for which research has been done in this thesis, is the project of Center for 

Advanced Research in Engineering (CARE), Islamabad and it is designed for fulfilling the 

portable communication needs of Pakistan Armed Forces. The hardware boards for these SDR 

are prepared by the Turkish based company Aselsan Radio. The major contribution of CARE, 

Islamabad is to design the brain of hardware board which includes the design of different 

architectural layers including physical and networking layer. The technology of implementation 

of architectural layers is hybrid. It includes embedded microprocessors, DSP processors and 

Field Programmable Gate Arrays (FPGAs).  
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Basic requirements of this SDR, being a part of military equipment, are that it must be highly 

jamming resistant, high level data encryption, automatic error correction of bit stream and high 

data rate. To meet all these requirements, the design of WCDMA at abstract level is shown in 

Figure 2.14. In this dissertation, the major concentration will be on the design of following 

constituents of receiver. 

 Coarse Frequency Estimation 

 CORDIC Implementation 

1.3 Problem Description 

In this section, the main objectives of design of parts of Software Defined Radio are given. 

1.3.1. High Data Rate 

Design of the parts of the SDR is required to achieve high data processing throughput. Mainly 

two designs of Coarse Frequency Estimation Algorithm have been implemented. One of them is 

targeted to the SDR of high throughput while other targets medium data rate SDR. High 

throughput corresponds to the SDR of throughput up to 384 kbps while medium throughput 

relates to the SDR of throughput up to 128 kbps. These implementations may give user the 

choice to choose one of the designs depending upon the resources available and targeted 

throughput. 

Due to the complexity of the algorithms, the target technology for the receiver will be Field 

Programmable Gate Array. The reasons of the choice of target technology are given under topic 

Target Technology Selection on Page 16. Moreover design must be extendible so that it is 

possible to make it work for future configurations. 

1.3.2. Demodulation 

To demodulate the receiving signal, the exact frequency of the carrier is required to be multiplied 

with transmitted signal. The problem exists is the regeneration of the exact carrier signal at the 

receiving end. Easiest way of demodulation is by using crystal oscillator to regenerate an exact 

frequency of carrier at receiver end and multiply it with received signal. This type of 
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demodulator is known as synchronous or coherent demodulator [1]. For this type of 

demodulation, following problems will occur. 

 Crystal oscillator of exactly same frequency must be employed for transmitter and 

receiver. 

 With the process of aging, the crystal oscillator will start to divert from the frequency 

signal for which it was employed. This will cause distortion in the receiving signal. 

 Overall cost of the design will increase. 

The most feasible solution to this problem is to implement some method that can measure the 

frequency of the received carrier and generate that frequency. But alternative methods are more 

complex and require more resources to implement. 

1.4 Target Technology Selection 

The targeted technology for the implementation of physical layer is the baseline hardware on 

which the design is incorporated. Basic parameters that govern the selection of category of 

device technology for implementation are; 

 Time to market. 

 Maintainability. 

 Area of specialization. 

 Computational complexity of design. 

 Power constraints on the system. 

 Industrial Standards for targeted application. 

 Testing Requirements. 

 Accuracy in calculation.  

. It may include one or multiple of the following technologies. 

 DSP Microprocessors  

 Micro Controllers  

 FPGAs 
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Most of DSP Microprocessors and Microcontrollers have Harvard, Modified Harvard or Von 

Neumann Architecture. Von Neumann Architecture is explained in great detail in [2]. Major 

difference between these architectures is Von Neumann architecture has only one memory which 

is served as program and data memory. Harvard Architecture postulates of having separate 

memory both for data and program. This increases the speed of the architecture as program 

instruction and data can be obtained simultaneously. But Modified Harvard Architecture does 

not allow this strict partition. In this architecture, data can be accessed as an instruction and vice 

versa. 

1.4.3. DSP Microprocessors 

DSP Microprocessor is the type of processor that is specialized for DSP applications. They are 

generally Reduced Instruction Set Computer (RISC) based. Its instruction set includes 

instructions that can effectively perform DSP operations using hardware acceleration.  

Advantages of DSP Processors are 

 DSP microprocessors are optimized with respect to power consumption. They are also 

designed to consume power variably depending on the performance required by the 

application.  

 Low time to market along with only software of DSP processor is required to be tested. 

 Change in functionality would be achieved by changing the software only.  

 Overall maintainability cost is quite low and computational complexity capability is high. 

Their overall computational capability and power consumption depends on the 

architecture and clock speed.  

 Many high end DSP Processors have support for single precision floating point 

calculation in hardware. This allows the programmer to perform DSP operations with 

very high accuracy. 

Weakness of DSP microprocessors is following 

 If the implemented design in DSP does not meet performance requirements, it may be 

needed to replace it with higher benchmark DSP processor. It can cause design to change. 
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1.4.4. Microcontrollers 

Microcontrollers are small computers that can be programmed to do a specific task. They have 

integrated resources that can be used to store programs. Microcontrollers are both RISC and 

Complex Instruction Set Computer (CISC). Both RISC and CISC are explained in [2] and [3]. 

Microcontrollers may have both fixed and floating point arithmetic implementation. Hence 

accuracy of their computation varies. 

Advantages of Microcontrollers are 

 They contain major resources on board. So, they can operate standalone. This decreases 

the cost for hardware design. 

 Optimized for low power consumption. 

 Low Time to market. 

 High maintainability. 

 To change functionality, only software needs to be changed. 

Disadvantages of Microcontrollers are 

 As many other resources are also fabricated along with the processor, the overall 

processing capability of processor is quite low. Microcontrollers are generally targeted 

for low end and highly power constraint applications. 

 If required processing power is more than offered by a microcontroller, generally 

controller needs to be changed. 

1.4.5. FPGAs 

FPGA is a reprogrammable device that can be used to implement hardware of any digital design 

defined by a software code. The major vendors are Xilinx and Altera. Its technology is 

completely different from Application Specific Integrated Circuit (ASIC) in the sense that any 

digital hardware can be implemented and erased making it flexible to work with large number of 

applications. The basic functional unit for logic implementation is Logic Element (LE) in Altera 

and Slice in Xilinx FPGAs. Both of these units have multiplexers and Look up Tables (LUT) to 
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implement digital logic of any kind. These units are connected together with programmable 

connections. 

Generally the design of FPGA is targeted for high throughput DSP and Networking 

Applications. Being very important in the field of DSP, designers of FPGAs have provided 

hardware acceleration of extensively used blocks. For example, as multiplication and 

accumulation is very widely used operation, their support is provided in hardware i.e. special 

dedicated blocks are made to take care for these operations.  

Microprocessors, both of hard-core and soft core type are used in FPGAs. By hard core 

microprocessors, it means that processor is already fabricated within FPGA. Whether or not that 

processor is utilized, it always remains inside as an extra resource. These processors can be 

connected with custom logic developed inside FPGA logic units. Xilinx FPGAs have 32 bit 

version of hard-core Power PC microprocessor. 

Soft-core processors are the Intellectual Properties (IP) of certain company that can be employed 

using the basic building blocks of FPGA. Xilinx provides 32 bit Microblaze and 8 bit Picoblaze 

microprocessors. Unlike soft-core, hard-core processors do not consume a single logic unit in an 

FPGA. Moreover, hard-core processors are faster than soft-core processors. 

Major Advantages of FPGAs are 

 Hardware with optimized performance for a specific purpose can be designed.  

 Performance can be scaled by employing extra logic. Performance scaling is only limited 

by the area of FPGA. 

 Unlike ASICs, hardware design can be changed according to the requirement. 

 FPGA contains on chip memory that enhances the speed of design. 

 Exact Requirement Specific design can be made at low cost while getting much higher 

performance than that of General Purpose Processors (GPP) and DSP Processors. 

 Microprocessors can be connected with custom logic and that logic can be used by giving 

instructions in software. This looks like a processor with hardware acceleration of some 

certain set of instructions. 
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Major Disadvantages of FPGAs are 

 In case of design change, hardware needs to be changed that means resources of 

hardware testing are needed. 

 While development, software and hardware both needs to be tested. This requires a lot of 

extra effort. 

 Power consumption of FPGA is higher than that of microprocessors and microcontrollers. 

 Extra skills are needed to develop and test hardware in logic units of FPGA. It increases 

the cost of overall design [4]. 

1.4.6. Overall Comparison 

Based on the analysis of problem description along with the strengths and weaknesses of 

nominated target technologies, FPGA is the best option for implementation. Briefly stated; 

algorithms to be implemented are highly computationally intensive and are not a part of any 

standard implementations, it is quite evident that there is a need to map entire application on 

FPGA for effective implementation [5]. 

Overall comparison is summarized in Figure 1.2. 

General Purpose 

Microprocessors

DSP 

Microprocessors

FPGAs

ASICs

Flexibility Maintainability

Performance Time to market
 

Figure 1.2 Target Technologies Comparison against multiple trends 

1.5 Thesis Organization 

This document includes the details of the overall information gathered for the research work 

along with the proposed design of parts of Software Defined Radio. Chapter 1 is the introduction 

and background to the research work. It is followed by the Chapter of Literature Review that 
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contains relevant researches and concepts. This chapter contains the details of primary concepts 

used in the implementation and proposed design. Moreover, it also comprises the previous 

relevant implementations and thesis related calculations. 

Chapter 3 has detail of the proposed design of various parts of SDR; how and what was the 

approach of this design is the key concentration of it. All details are illustrated by the tables and 

figures of proposed design. It is followed by the Chapter 4 which is of results of the 

implementation of proposed design and its discussion. Final is the Chapter 5 which briefly 

concludes the whole research and presents the opportunities of the work that can be done in 

future. 
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter summarizes the details of research in the field of SDR. A large number of research 

citations have been published in this accord. Although there are many citations, this literature 

review concentrates on the design theme of the physical layer of SDR. Design theme majorly 

includes the translation of the mathematical algorithms into architecture such that the 

requirements assumed for design are fulfilled. Analyses of algorithms are done and various other 

parameters are discussed that affect the design and its performance. 

Already published citations include architectures that are optimized for different requirements. 

Moreover, algorithms used in these architectures are also discussed. Various competent 

technologies for SDR are mentioned and fact based analysis is done on technologies using which 

architectures can be implemented and reasons are given on why a particular technology is 

selected. The overall abstract design of the SDR for which the research has been conducted is 

also given. 

This chapter starts with the discussion on the fundamental concepts related to digital 

communication and digital system design techniques with relevant examples. All of these topics 

also include relevant technical terms and their definitions. It is then followed by the trends in the 

research of digital system design and implementation of architecture in different publications. 

After providing further relevant information, this chapter concludes on the algorithms used in the 

design, mathematical calculation and abstract design of overall SDR used in this research. 

2.2 Basic Concepts 

This section contains all of the most basic relevant concepts used in the research. Most of these 

concepts are related to terminologies and definitions of digital communication in wireless 

domain and digital system design. 
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2.2.3. Digital Communication 

When two devices communicate with each other digitally, such that most of the processing of 

data is done in digital domain, it is known as digital communication. By digitally, it is meant that 

a received signal is converted into digital stream before a receiving device can operate and find 

the message hidden in it. Reverse is the case for signal transmission; a device processes a 

message into digital stream and then that stream is converted into analog signal before 

transmission. This stream is converted into analog waveform before transmission. Digital 

systems along with examples are given in detail in [1] and [6].  

There are also cases for which communication at all stages is digital and at no stage it is 

converted into analog. This type of communication is for the devices that are at relatively very 

short distances i.e. of the order of few meters or even lesser. In the context of this thesis, by 

digital communication, it is meant that two communicating devices are at large distances i.e. 

typically 10 meters or more. 

There is various numbers of stages that combine together for making digital communications 

possible. Nice overview about these stages has been presented in [6]. Each of the stage is used in 

both transmission and reception of data and they are connected in cascading. Moreover, stages 

are used in reverse in case of receiver as compared to transmitter. Figure 2.1 shows various 

stages of digital communication system. 

Format
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Encode
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Modulate
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Figure 2.1 Digital Communication System [6] 
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Figure 2.1 shows an overview of the essential entities required. Many of them are optional and 

there use is subjected to requirement. Synchronization between receiver and transmitter is also 

very essential to the overall communication and methods of synchronization are the most vital 

part that decides the overall performance benchmark of digital receiver in communication system 

as proved in [7]. All of the relevant concepts that are in the scope of research are given below. 

2.2.3.1. Modulation 

Modulation is the process of embedding an information containing signal into a second signal so 

that the transmission of the signal gets easier [8]. Mathematically, it is defined in eq. 2.1. 

 ( )    ( )      (       )  - - - - - - - - - -   ( 2.1 ) 

The information bearing signal  ( ) is generally known as baseband signal or Modulating signal 

while the signal which is used to facilitate transmission is non as carrier signal     (       ) 

[1]. Figure 2.2 and Figure 2.3 shows baseband and carrier signal respectively. 

 

Figure 2.2 Baseband (Modulating) Signal 

 

Figure 2.3 Carrier Signal 

Widely used types of Modulation are Amplitude Modulation and Frequency Modulation. In 

Amplitude Modulation, the amplitude of the carrier signal is varied according to the amplitude of 

the baseband. Figure 2.4 and Figure 2.5 shows modulation of a baseband signal. In frequency 
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modulation, frequency of carrier is changed on the basis of the amplitude of baseband signal. 

Both of these types have their own advantages and disadvantages and their use is dependent 

upon the target application. 

 

Figure 2.4 Amplitude Modulation 

 

Figure 2.5 Frequency Modulation 

If the baseband signal is in digital form, the modulation is replaced by the word shift keying. 

That is for digital domain, types would be Amplitude shift keying and Frequency shift keying. In 

this thesis, modulation scheme has been used is PSK (Phase Shift Keying). In this scheme, 

information of baseband is in the phase of the carrier signal. There can be two out of phase 

carrier signals each can be used to represent a digital symbol. That is transmitting in phase 

sinusoidal for zero and out of phase sinusoidal for one. This is known as binary phase shift 

keying (BPSK) as shown in Figure 2.6.  

Similarly, if four sinusoidal waveforms, each out of phase by 90 degrees, are used to represent 

four symbols of transmission, this type is Quadrature or Quaternary Phase Shift Keying [9]. So, 

we can generalize that if M numbers of waveforms (separated by (2pi/M) radians) are used each 

representing a single digital symbol of transmission, then this type of modulation is known as M-

ary Phase Shift Keying. Increasing M starts to increase the data rate too but for the same error 

rate requirement, overall power required to transmit a single symbol also increases [6]. 
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Figure 2.6 Binary Phase Shift Keying 

For CDMA modulation, actual data stream is spreaded over the entire allocated bandwidth. It is 

done by mixing data with pseudo random sequence of much higher data rate. Receiver must 

know the pseudo random sequence in order to demodulate the received signal. Figure 2.7 shows 

CDMA modulation. 

 

Figure 2.7 CDMA Modulation 
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2.2.3.2. Demodulation 

The process of recovering an information containing signal from modulated signal is known as 

demodulation [1]. Generally, there are two major demodulation techniques, each with their own 

pros and cons. These are synchronous and asynchronous demodulation [8]. 

Synchronous demodulation is the straight forward technique in which baseband signal is 

recovered by multiplying the regenerated carrier signal, at the receiver, of exactly same 

frequency as in modulated signal. It is relatively easier technique to execute but regenerating a 

signal with exact carrier frequency is very difficult to achieve and increases the overall cost of 

the system. Moreover, with ageing of the components in the circuitry, the overall frequency of 

regenerated carrier also starts to change. To counter this problem, frequency estimation 

technique is used. This technique can be realized by including a training signal in transmission 

[7]. This training signal (already known at the receiver end) is used to estimate the actual 

frequency of the transmitted signal. After the estimation is made, the signal of that frequency is 

regenerated at the receiver end. 

In case of asynchronous demodulation the need for synchronizing transmitter and receiver is 

eliminated (as required for synchronous demodulation) [8]. It includes the way of detecting the 

envelope of carrier signal (used for demodulation of Amplitude Modulation [1]). 

2.2.3.3. Signal Energy 

There are various ways of measuring the strength of signal. One of them is Signal’s Energy. 

Signal Energy is defined as the area under the square of the signal. Mathematically, it is defined 

in eq. 2.2. [1],  

   ∫ |  ( )|   
 

  
    - - - - - - - - - -  ( 2.2 ) 

It is not to be confused with the term known as Energy signal. Energy signal is the signal whose 

energy is finite (0 <E<∞) [10]. 

2.2.3.4. Signal Power 

This measure of signal tells the rate of energy a signal has. For a signal to be meaning full, it is 

necessary that its power is less than infinity. Mathematically signal power is defined in eq. 2.3. 
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    - - - - - - - - - -  ( 2.3 ) 

It is not to be confused with Power Signal. Power Signal is the one whose energy is infinite but 

power is finite. [10]. 

2.2.3.5. Bandwidth 

The range of frequencies over which power (or energy) density spectrum is concentrated is 

known as bandwidth of a signal [10]. Strictly speaking, all of the frequencies present inside a 

signal form its bandwidth. One of the most fundamental concepts of Signal Processing is that if 

signal is time limited then it can’t be made limited in frequency domain. Vice versa of this is also 

true [1]. Practically, all signals are time limited and hence their bandwidth is infinite. But most of 

energy (or power) of that signal is concentrated in specific range of frequencies. So, generally 

accepted definition of bandwidth is up to range of frequencies that make certain proportion of 

energy (or power) of signal. This proportion may be 75% or 90% or 95% or 99% depending 

upon the scenario [10].  

If bandwidth of signal is concentrated about zero, it is known as low-frequency signal. Similarly, 

if bandwidth is concentrated on high frequency signals, the signal is of high frequency type. If it 

contains the hybrid sort of signal that contains the mix up of low and high frequencies, type of 

signal is known as band pass signal [10]. Figure 2.8 shows each of the signal type. 

X(f)
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X(f)

f
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Figure 2.8 (a) Low Frequency Signal (b) Medium (Band pass) Frequency Signal (c) High Frequency 

Signal 

Bandwidth is an extremely precious resource so it is handled very carefully. All of countries in 

the world have their respective regulations regarding the use of bandwidth. Its unauthorized use 
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is considered as crime. The reason being the fact that if more than one user is transmitting signal 

at the same place and time in same bandwidth, interference will occur which will cause the 

receiver fail to communicate. 

2.2.3.6. Signal to Noise Ratio (SNR) 

It is the metric of measuring the overall quality of a signal. As a signal propagates through any 

channel, it gets affected by the noise in the channel. Effect of noise is more as the distance from 

transmitter is increased which in turn causes to increase the overall error rate at the receiver end. 

The effect caused by this noise cannot be reversed. This noise is known as thermal noise and it 

corrupts the signal in an additive fashion. One of the biggest advantages of digital 

communication is the graceful degradation in noisy environment [6]. Mathematical 

representation of SNR is given in eq. 2.4. 

     
            

           
    - - - - - - - - - -  ( 2.4 ) 

2.2.3.7. Intersymbol Interference (ISI) 

In the field of digital communications, filters are of prime importance. They are frequently used 

throughout in the different stages. One of the most important stages is before transmitting the 

signal in both wired and wireless transmission. Signal has to be made band limited in this stage. 

While making the signal band limited or by suppressing those frequency contents that are not 

allowed due to bandwidth constraints, the signal shape distorts in time domain [1]. Figure 2.9 

illustrates how symbols get smeared and interfere with each other after filtering. 

Moreover, the channel through which signal will propagate also contain some undesirable 

properties. It includes additive noise, multipath effects and for wired channel, the baseband 

signal faces non-uniform reactance [6]. Channel noise adds amplitude errors and frequency 

response of a channel causes further smearing of transmitted symbol [8].  
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Figure 2.9 Effects of limiting bandwidth of baseband signal before transmission 

To avoid the intersymbol interference, the pulse is shaped in a way that even after making it band 

limited, intersymbol interference does not occur. This technique is known as pulse shaping [1] 

[6] [8]. The idea behind this technique is to remove the interference at the time instant at which 

the pulse is required to be detected [1]. Nyquist proposed different criteria of shaping the pulse 

that could reduce or even nullify the intersymbol interference. 

0 T-T
 

Figure 2.10 Minimum Bandwidth Pulse that also satisfies Nyquist zero intersymbol interference 

criterion 

One of the most famous ideas of Nyquist about eliminating ISI is given in [11]. He stated that, if 

the pulse is shaped such that it is zero at the sampling time of other symbols, ISI can be avoided. 

Note that, the value of interfering symbol will only be zero exactly when symbol value is meant 
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to be sampled and not before or after the sampling time. By following this criterion, we can 

make sure that even after band limiting a signal, ISI will be avoided. The pulse in Figure 2.10 is 

the minimum bandwidth pulse that satisfies the Nyquist criterion of zero ISI [1]. 

2.2.3.8. Multiple Channel Access: 

In case of two or more wireless radios operating within range and trying to talk to some other 

radio, there is a chance of collision. To avoid this, it is quite pertinent to use some anti-collision 

methods. The biggest problem while using these methods is the way multiple signals are handled 

together. Careless handling may cause the signal quality to deteriorate because of the 

interference from other signals [12]. Anti-collision methods include: 

Space Division Multiple Access (SDMA) 

In this kind, same frequency transmitters are separated in space. They can transmit their data 

where they are at enough distance from other same-frequency transmitter such that their 

transmission cannot be collided. Simply, each same frequency transmitter has its own exclusive 

territory. 

Time Division Multiple Access (TDMA) 

In this type, transmission from different transmitters is divided in time. In simpler words, when 

one transmitter transmits, all other same frequency transmitters in its proximity are banned from 

transmitting a signal. This phenomenon also occurs when there are multiple devices and only one 

transmitter, the system requires TDM type in which transmitter is multiplexed and sends data of 

every device for some predetermined amount of time. 

Frequency Division Multiple Access (FDMA) 

Multiple devices are allowed to transmit within their pre allocated frequency ranges. Using this 

Phenomenon, multiple devices can transmit at same time and at same location. 

Code Division Multiple Access (CDMA) 

Code division multiplexing access is one of the multiple channel access methods in which 

multiple transmitters transmit data at same location, time and frequency. The transmission of all 

transmitters is spreaded in entire available frequency spectrum. The key difference between their 

transmissions is the spreading code or device specific transmission law. [12]. This transmission 
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specific code is known to the receiver in advance. Receiver uses the method of co relation for 

detection of the transmission of interest. 

Wideband Code Division Multiple Access (WCDMA): 

This is the variant of CDMA in which upload and downloaded streams are divided into time or 

frequency slots. It contains the integration of multiple channel access methods. For frequency 

division/ Code Division multiple access, uplink and downlink have different frequencies. For 

time division/Code division multiple access, uplink and downlink are separated by time slots 

[12]. All characteristics contained by CDMA are also the part of WCDMA. 

2.2.3.9. Spread Spectrum Techniques: 

In CDMA, signal can be spreaded using different techniques, widely used are following. 

Direct Sequence spread spectrum (DSSS) 

In this type of spreading, the modulation of carrier is done for the second time with some pseudo 

random code. This code differs from the information in the sense that its bit rate is higher and 

usually it does not effectively contain any information. It is also known as ‘chips’ and the bit rate 

is known as ‘chip rate’ [13]. High bit rate of code causes the information containing carrier to 

wide spread in frequency which has multiple advantages. The information in the signal is 

decodable only when the chip sequence is known a priori to the receiver. This causes the 

resistance against unauthorized listening of the signal. Figure 2.11 shows the schematic of DSSS. 

Information 

Modulation
Carrier Signal

Information

Spreading Modulation 

(Performaing DSSS)

Pseudo Random Sequence Known 

a priori to authorized receiver only 

To Transmission

 

Figure 2.11 Direct Sequence Spread Spectrum [13] 
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Moreover, multiple transmitters with different chip sequence can transmit the signal at same 

frequency, time and space which decreases the bandwidth requirement. Also, being spreaded at 

wide frequency range, it is less vulnerable to jamming due to the fact that jammer has to transmit 

a confusing signal to extremely wide range of frequency to be effective which will require huge 

amount of power. 

Frequency Hopping Spread Spectrum (FHSS) 

In this type of spreading, the carrier containing information is hopped pseudo randomly over 

different frequency within permitted bandwidth [14]. For different systems, the speed with which 

carrier frequency hops over different frequencies is different. This pseudo random hopping 

sequence of carrier frequency is known a priori to the receiver. 

2.2.4. Digital System Design 

When it comes to mapping DSP systems on fully customizable target technology i.e. Field 

Programmable Gate Array, it is quite important to know that fully customizable designing 

capability acts as both advantage and disadvantage. Advantage is due to the fact that designer 

can design the system by purely using his own creativity effectively independent of any 

architecture designed before which gives him full control to create perfectly optimized system 

for given set of requirements. And disadvantage is that, every new part of design has to be fully 

tested and this testing procedure requires extra effort. Moreover, if carelessly created, it becomes 

difficult to change or to add new features in the system. 

As soon as FPGAs emerged into the market, they have become ideal for implementing real time 

DSP systems. FPGA designer companies designed internal structure of FPGAs in a way that 

makes it ideal for doing multiplication and accumulation at extremely fast rate; a quite common 

operation in DSP algorithms. Over the period of its development, the system designer’s 

capability and confidence increased due to new advances in this technology allowing them to 

design a whole system on a single chip (SOC). Market leaders Xilinx and Altera both are getting 

confidence from their customer organizations by making FPGA system designing tools that are 

easier to learn and can implement high caliber digital systems in lesser time. 
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The development environment used for programming depends on the company that has designed 

the FPGA chip used within. Development board is the Printed Circuit Board (PCB) that contains 

the chip of FPGA physically connected with different number of peripherals. Xilinx made boards 

include Spartan 3, Spartan 3A, Vertex Series, Spartan 3A-DSP etc. and Altera’s FPGA leading 

board designer is Terasic Technologies who has made series of DE-2 and DE-3 boards. 

For Xilinx FPGAs development environment is Xilinx ISE in which a project can be created and 

navigated, although it provides basic ability to write a program in prescribed language with some 

facilities but other softwares designed by Xilinx can also be used to refine the design. Each of 

these softwares is specialized for a specific purpose. Some of these softwares are Xilinx 

PlanAhead, Chip Scope, Embedded Development Kit, System generator, iMPACT and Core 

generator etc. Detailed information on these softwares can be obtained from manufacturer’s 

website. For Altera FPGAs, Quartus 2 designed by Altera Corporation is used. 

2.2.4.1. Suitable Programming Languages 

The most basic languages used for its programming is Verilog and VHSIC Hardware Description 

Language (VHDL). The basic purpose of this language is to give the description of hardware 

needed to be built. The major difference between this language and other commonly used 

languages such as C, C++, C# etc. is that the description given by this language is constructed in 

hardware and its lines of code generally works in parallel. Verilog has some of its constructs 

similar to C Language. Moreover, C language is also used quite extensively in the design of IP 

cores in FPGAs. The role of C language is to program the hardcore or soft core predesigned 

readily available processors so that those processors can work in conjunction with the custom 

designed hardware. For simulation of purposes, stimulus can also be written in Verilog. 

2.2.4.2. Combinational and Sequential Circuits 

In any digital design system, there are two types of circuits, combinational and sequential. 

Combinational circuits does not contain any memory elements, moreover, they also have no 

feedback input. Moreover, they also do not synchronized on clock ticks. On the other hand 

sequential circuits can produce delays in their outputs due to presence of memory elements in 

them and can have feedback input. 
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2.2.4.3. Floating & Fixed Point Format 

To convert computation of DSP algorithms into live implementation, the numbers are to be 

mapped on digital voltage lines for arithmetic operations. There are two types of floating point 

numbers; single and double precision floating point. Processors having floating point arithmetic 

capability are known as floating point processors. The detail of floating point format and its 

arithmetic is given in IEEE standard for floating point arithmetic.  

Processors that have floating point number processing capability are bound to do three 

operations automatically: exponent adjustment, mathematical operation and normalization. 

Floating point numbers are used where any number is required to be represented over extremely 

large dynamic range with high accuracy. In DSP algorithms, this is generally not a requirement. 

Implementation of floating point arithmetic is more power and area hungry while giving lesser 

performance, hence it is generally avoided [5]. 

Fixed point implementation has lesser area requirements and is ideal for operation in power 

constraint embedded systems. However, due to its less ability to perform automatic operations, 

this format is required to be traced and guaranteed by the designer of the system. In case of over 

flow or under flow, the handling is quite different from floating point numbers and if handled 

carelessly, it may lead to incorrect results. Shortly the track of fixed point format is required to 

be done manually after each set of operation. Moreover, it is flexible in the sense that, depending 

upon the designer, custom number of bits can be assigned to fractional and integral part which 

gives extended control over the accuracy and range of number to be represented.  

Representation of fixed point format is known as Q point format. For example Qn.m represents a 

number of n + m bits with n and m bits are used to represent integral and fractional part of the 

number respectively. If two numbers with Q4.5 and Q6.4 are added, result will be in the format 

of Q6.5 (largest integral and fractional number is selected). In case of multiplication result will 

be dependent upon the sign of each number and results will be as shown in Table 2.1. 
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First Number Second Number Result 

Unsigned Qn1.m1 Unsigned Qn2.m2 Unsigned Q (n1 + n2).(m1 + m2) 

Signed Qn1.m1 Unsigned Qn2.m2 Signed Q (n1 + n2).(m1 + m2) 

Unsigned Qn1.m1 Signed Qn2.m2 Signed Q (n1 + n2).(m1 + m2) 

Signed Qn1.m1 Signed Qn2.m2 Signed Q (n1 + n2 - 1).(m1 + m2 + 1) 

Table 2.1 Cases of Fixed Point Number multiplication [5] 

To counter this problem, hardware embedded specially designed clock lines that supply clock 

ticks in different blocks are present inside FPGA. Moreover, care is also required to be taken 

while working with clock as it is not a good practice to divide a clock using cascade of counters 

and then giving this clock to some other module to operate. In order to perform operations on the 

clock, Digital Clock Manager (DCM) blocks are used [15]. 

2.2.4.4. Finite State machines 

Finite State machines (FSM) are ideal for those systems that require sequence of operations to 

fulfill the desired task. It has the ability to make logical decisions on the basis of previous 

operation or its output values. Each state is a stable entity which system can occupy. The 

transition from one state to another state is done under the control of outside world-input [16]. 

One typical design may include FSM that can generate control signals specific for each state. 

The general design of FSM includes state register which represents the current state of the 

machine. The most important factor in this regard is the encoding of different states within the 

state register.  

There are different encoding schemes for state register as binary encoding, one hot encoding, 

almost one hot encoding and gray encoding. Each of these schemes have their advantages and 

disadvantages and are used depending upon the requirement of the system. For example for one 

hot encoding, area requirement is high but transition between different states is fastest due to 

state transition logic is simplest. Hence it is highly suitable for performance hungry systems. 

Similarly, the binary encoding is area efficient but its transition logic is complex which 

consumes more time in state transition [5]. 
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State machines are based on three major entities; next logic decoder, clock based memory units 

and output logic decoder. Historically, there are two distinct types of state machines in which all 

of these entities are used in different manner. State machines can be synchronous if they get 

input generally on the edge of clock (positive or negative) and are asynchronous if their input 

decoding mechanism is of combinational type. 

Mealy Machine 

It is the type of FSM in which both output and next logic decoding depends upon present state 

and current user inputs to the FSM. Figure 2.12 illustrates Mealy Machine. 
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Figure 2.12 Mealy Finite State Machine Architecture [16] 

Moore Machine 

In contrast to the former type, Moore Machine is the one whose output is decoded only on the 

basis of current state. Figure 2.13 shows the architecture of Moore Machine. 
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Figure 2.13 Moore Finite State Machine Architecture [16] 

2.2.4.5. Latch & Flip Flop 

Latch and Flip Flop both act as a memory unit in circuitry. But latch is clock less while flip flop 

operates on clock. There are several design approaches that may lead to the formation of latches 

inside the design. FPGA vendors generally recommend designers to avoid the latches as they 

may lead the overall design to malfunction or become technology dependent. Latches can be 

inefficient and cause complications in timing analysis [17]. Care is to be taken while writing the 

code. Following approaches should be followed when writing the code in Verilog. 

 For each case statement, always use default case. 

 Define the state of all relevant registers for every case in all case statements, even in 

default case too. 

 Define the states of all relevant registers in both if and else statements. 

 For synchronous always block, use non-blocking assignment operator for assigning 

values to registers. 

 For combinational always block, use blocking assignment operator for assigning values 

to registers. 

2.2.4.6. Block and Distributed Memory Units 

Several algorithms require block of data to be saved temporarily somewhere in the system and 

then to be used later on for further computation. Moreover, high speed data read/write from the 

temporary storage is also a requirement. To fulfill this, on chip block RAM are provided on 
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FPGA. Generally, block RAM read/write both take one clock cycle and these blocks are well 

placed such that they are accessible from all parts of FPGAs. Typical size of block RAM is 

several kilobits and it depends on the type of FPGA used. 

Distributed RAM is a Look Up Table (LUT) present in every Configurable Logic Block (CLB) 

of FPGA. Distributed RAM is faster than Block RAM but it is very small in size. Distributed 

RAM is faster than block RAM but it is small in size. Moreover, in Xilinx FPGAs, distributed 

RAM is of both single and dual port [15].  

If memory requirement is high for complex systems then either off chip RAM is used or multiple 

FPGAs are connected and used together. Off chip memory has high capacity but their speed is 

much lower than that of on chip RAM (both distributed and block RAM). Off chip RAM and 

multiple FPGAs working together is generally subjected to the design of the development board 

of FPGA. 

2.3 Generic WCDMA Receiver Abstract Design 

Based upon the general characteristics, in which receiver must be able to recover the baseband 

signal without synchronous demodulation, there are multiple choices for the design. It includes 

the signal processing immediately after the Analog Front End (AFE) from detecting the start of 

burst to the actual stream of information intended for communication. The detailed abstract 

diagram of complete SDR receiver is shown in Figure 2.14. 

As already discussed, this receiver is the part of SDR project initiated by the CARE organization. 

There are series of algorithms that need to be performed on the signal to get the required output. 

It is quite important to mention here that the order with which they are performed on the signal is 

the ease and availability of all factors required for their operation. 
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Figure 2.14 Abstract Diagram of Receiver 

2.4 Throughput Calculation of Current Implementation 

This section discusses some requirements and specifications of the design which are preset 

before the implementation of necessary parts SDR receiver.  

2.4.3. System Specifications 

This section tells about the specifications of the SDR receiver to be designed. Table 2.2 shows 

the parameters of the receiver to be designed. 
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Serial Number Parameter Design Value 

1 Training Length 32 (64 for future systems) 

2 Spreading Factor 16 

3 Data Length 288 

4 Modulation Index 4 

5 Modulation Schemes QPSK 

6 Target throughput 384 kbps 

7 Forward Error Correction 1/2 

8 Chip Rate 6.83 Mcps 

9 Up sampling Factor 4 

Table 2.2 System Specifications 

2.4.4. Throughput Calculation 

At each part of the receiver, the throughput requirement may be scaled up or down depending 

upon the nature of operation it is doing on the data stream. Chip rate has been calculated in eq. 

2.5. 

           
                            (                             )

                                                       
 

  
            (        )

           
             - - - - - - - - - - - -  ( 2.5 ) 

Actual Bandwidth in digital domain is after up sampling the chip rate by 4. It can be calculated 

as, 

                                                                

                           - - - - - - - - - - - -  ( 2.6 ) 

Using the calculation shown above, the throughput require for each constituent component can 

be easily calculated. It is shown by Figure 2.15. 
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Figure 2.15 Component wise throughput Calculation 

2.4.5. Doppler Shift Calculation 

.The Doppler shift for the system can be calculated as shown in eq. 2.7. 
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                - - - - - - - - - - - - ( 2.7 ) 
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2.5 Resources Available for Implementation 

The target FPGA for implementation of various parts of SDR is xc3sd3400a-4cs484. This device 

is from the family of Spartan 3-A DSP FPGAs from Xilinx. It has quite large number of 

resources especially DSP blocks which are highly required in computationally complex 

implementations. The resources of this device are shown in the table below. 

Resource Quantity 

Total Slices 23,872 

Total 4 input LUTs 47,744 

Total Slice Flip Flops 47,744 

I/O Pins 309 

DSP Blocks 126 

Block RAM 126 

Table 2.3 Total Available Resources in xc3sd3400a-4cs484 

Algorithms up to data despreading are already implemented. The resources consumed by 

previous implementations and actual available resources for systems to be implemented are 

shown in the table below. 

Resource 
Consumed Resources by 

already implemented system 
Free Resources 

Percentage of Free 

Resources 

Total Slices 9,891 13,981 59 % 

Total 4 input 

LUTs 
13,379 34,365 72 % 

Total Slice Flip 

Flops 
9,621 38,123 80 % 

I/O Pins 96 213 69 % 

DSP Blocks 69 57 46 % 

Block RAM 22 104 83 % 

Table 2.4 Actually Available Resources for Current Implementation 

2.6 Relevant Algorithms and Implementations 

This section discusses the relevant algorithms, implementations and widely practiced designs on 

the relevant topics. 

2.6.3. CORDIC (Coordinate Rotation Digital Computer) 

One of the very important components of the SDR is CORDIC module. This algorithm was 

introduced by J. E. Volder in 1959 to fulfill the real time airborne computation [18]. Initially it 



44 

was targeted for military equipment only but as time passed, it started to be used in application 

for commercial purposes too. It is one of the mainstream algorithms for trigonometric functions. 

This was presented as a unified algorithm by J.S. Walther [19]. One of the inherent properties of 

this algorithm is it does valid calculations for only limited set of inputs. Researchers have solved 

this convergence problem mostly by using trigonometric identities. 

It is basically an iterative algorithm that can be used in two modes. One mode is rotation and 

other is vectoring mode. There are three basic equations, eq. 2.8 – eq. 2.10, that operate under 

these modes iteratively. 

            
       - - - - - - - - - - - - - -  ( 2.8 ) 

            
        - - - - - - - - - - - - - - ( 2.9 ) 

              
        - - - - - - - - - - - - ( 2.10 ) 
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Table 2.5 Functions Calculation using CORDIC 
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Generally the total number of iterations is 16 or 32. Let Total Number of Iterations to be N. 

Table 2.5 summarizes the behavior of CORDIC Algorithm. It includes only circular 

computational behavior because only this part is used in the implementation of SDR. Linear and 

hyperbolic computations of CORDIC are given in detail in [20]. 

In rotation mode, vector is rotated recursively using known rotations. After N number of known 

rotations, vector reach at the desired angle and its x and y components are      and      

respectively. In vectoring mode, basic concept is to have initial coordinates of the vector whose 

angle is required to be calculated. It presumes that initial x coordinate is always positive and 

initial y coordinate is any arbitrary number. CORDIC algorithm iterates the y coordinate such 

that it becomes zero and net calculation is done which results the angle through which the vector 

is rotated. This calculation gives      (   ). Figure 2.16 illustrates single iteration. 

(xi,yi)

(xi+1,yi+1)

tan-12-i

zizi+1

 

Figure 2.16 Single Iteration of CORDIC Algorithm 

This algorithm has been implemented in countless number of applications. Generally, the 

proposed design and implementations are requirement specific. One of the most comprehensive 

researches is done in [21]. It includes the detailed literature about the capabilities of CORDIC 

algorithm. This paper also discusses different types of architecture each targeted to different set 

of requirements for example iterative type, bit serial type, fully unrolled architecture and hybrid 

types. One of the Hybrid type architecture is derived from fully unrolled type in which all 

additions and subtractions are done in bit serial form. This paper also includes the details of one 

of the first CORDIC implementation in FPGA. 



46 

2.6.3.1. Previous Implementations 

While considering the CORDIC algorithm for hardware implementation, results are always 

based on approximation. These errors are introduced due to the quantization. However, by 

increasing the resources, designers can reduce errors as per their requirement. A detailed analysis 

on quantization errors in CORDIC have been conducted in [22] for both floating and fixed point 

hardware implementations. It describes and presents the mathematical theorem for various 

scenarios like error propagation in CORDIC iterations and rounding errors in normalization 

operation. 

With the target implementation of SDR, [23] has implemented a pipelined based architecture that 

calculates the value of sine and cosine. They have implemented an angle sequencer that is used 

to generate sine/cosine waves. This sequencer will generate saw tooth wave which will be given 

as an input to the CORDIC system. 

Neji and Boudabous [24] have implemented a CORDIC algorithm that is targeted to 

fingerprinting algorithm. Their design precision is up to 14 bits but the design which they have 

proposed has convergence problem. The architecture proposed in [23] also has the convergence 

problem. The average error for their exponential and tangential designs is 0.005% and 0.01% 

respectively. 

Some of the generic and fast methods are proposed in [25] and [26]. Authors of [25] have 

proposed an architecture that is known as branching CORDIC method. In this method, two 

conventional CORDIC iterations are run in parallel. Although this algorithm is fast but it 

consumes more area than many other designs which is the drawback of it. Few alternative 

implementations are presented in [26] that results in increase speed and reduced area. One of the 

proposed modification in conventional design is the use of carry free adders instead of carry 

propagate adders. 

Other researches include scalable pipelined architecture has been designed and implemented in 

[27] in which they claim to have memory less architecture. Number of iterations for the 

computation is 14 bit and overall architecture is 16 bit. Both [28] and [29] have compared their 

designs with software implementations. Design in [28] has shown that implementation on certain 
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family of FPGA is 27500 times faster than that of implemented in software on 2 GHz T7300 

processor, hence it is better to implement CORDIC in hardware for satellite altitude 

determination. Their architecture is of iterative type and based on barrel shifter in which they 

have limited their implementation to the calculation of sine and cosine functions only. 

Similarly in [29], NIOS 2 soft core processor has been used to show the difference in 

computation time of CORDIC in software and hardware. Architecture is 16 bit pipeline based. 

Special instruction in NIOS 2 processor has been used to invoke the hardware accelerated circuit 

of CORDIC and ratio of calculation of the time taken by same instruction in software and 

hardware is 26. In this way, it is shown that by using the custom hardware designed in FPGA 

with soft-core processor, one can easily increase the overall processing efficiency. 

2.6.4. Coarse Frequency Estimation & Compensation 

This algorithm is very convenient when demodulation of the received signal at the receiver end 

is done without the knowledge of exact frequency of carrier signal. Algorithm selected for 

implementation does this estimation by using training samples in transmitted data. This training 

data is already known to the receiver. Using this, the rough estimation of frequency is done. This 

algorithm is given in [30]. 

Let us define an array of size N + 1, where N is the total number of samples in training sequence. 
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)   (   ))   - - - - - - - - - - - - - -  ( 2.11 ) 

          
 

 
  

 

 
      

 

 
   

 

 
   

Received training sequence and already known noiseless training sequence to the receiver are 

given in eq. 2.12 and eq. 2.13. 

 ( )    ( )  ( )  ( )  ( )    (   )  - - - - - - - - - - - ( 2.12 ) 

 ( )    ( )  ( )  ( )  ( )    (   ) - - - - - - - - - -  ( 2.13 ) 

On the basis of described equations, the coarse frequency estimation can be calculated as 
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Once the frequency has been estimated, the received data stream can be coarse frequency 

compensated using the following equation. Suppose the data as of length ‘m’, then compensated 

data can be represented as, 

               ( )                   ( )  
     ̂    - - - - - - - - - - - ( 2.15 ) 

                 

Note that this estimation is quite rough and does not calculate the exact frequency within tolerate 

able limits. For this purpose, fine frequency estimation algorithm is used. 

2.6.4.1. Previous Implementations 

Targeted to different set of requirements, different implementations address the problem of 

coarse frequency estimation. A total of three algorithms about carrier offset estimation as given 

in eq. 2.16 to eq. 2.18 have been compared in [31]. 

 ̂        {∑ |               
 | 

   }  - - - - - - - - - - - - - ( 2.16 ) 

 ̂        {| ∑                
 | 

   }  - - - - - - - - - - - - ( 2.17 ) 

 ̂        {∑ |           
 | 

   } - - - - - - - - - - - - - - - - ( 2.18 ) 

W is total number of samples in training sequence whereas L & l is the sliding window of 

frequency offset estimation. X and Y are the transmitted and received training symbols 

respectively. The value in the subscript shows the number of actual sample to be processed. 

Results show that algorithm in eq. 2.16 works perfectly fine with unsynchronized symbol timing 

but get badly affected by multiple path effects of channel. Moreover, eq. 2.17 gets badly affected 

by unsynchronized symbol timing of training sequence but works well in multiple path 

environments. Algorithm of eq. 2.18 gives the best result of all in which it can deal with multiple 

path effects and does not get affected by error in symbol timing. 

Quick comparisons of performances of multiple coarse frequency estimation algorithms such as 

L&R [32], M&M [33] and Fitz [34] have been performed in [35]. It also contains the efficient 
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implementation of L&R algorithm in FPGA with targeted application of Digital Video 

broadcasting via satellite communication. The architecture presented in this paper is of shared 

nature. There architecture is of three stages; first one is the buffer stage that stores the samples 

and second & third stages are correlation and accumulation stages respectively. Due to shared 

nature of this architecture, up to 92% less area is required as compared to direct implementation. 

Similarly, for Digital Audio broadcasting, [36] has implemented a system that can estimate and 

correct the frequency offset. 

Timing and Frequency Synchronization scheme has been proposed and implemented in FPGA 

for IEEE standard 802.11a in [37]. Commonly used training samples have been deployed in 

order to measure the frequency offset in carrier using correlation. This correlation is calculated 

using the iterative architecture to save the area. Comparison has also been made between floating 

point simulation and fixed point implementation to validate the system.  

Similarly, another implementation for wireless LAN modem with IEEE 802.11a standard has 

been done in [38]. C++ along with the help of hardware libraries have been used to define the 

architecture. Note that coarse frequency estimation is quite rough and does not calculate the 

exact frequency within tolerate able limits. For this purpose, fine frequency estimation algorithm 

is used. 

2.7 Summary 

This chapter forms the base for implementing the parts of SDR receiver. It contains basic 

relevant concepts related to digital signal processing, digital system design and computer 

architecture. It also discusses the coverage of system to be implemented along with its 

specifications, requirements and relevant calculations. Previous relevant research work both on 

algorithms and their relevant implementation on FPGAs is also the part of this chapter.  



50 

Chapter 3: Design Methodology  

The implementation for various parts of SDR receiver has been discussed in this part of the 

document. All of the relevant designs, tables and illustrations along with arguments have been 

given in this chapter. Two different type of architectures are implemented for coarse frequency 

estimation. Most of the systems that are the part of SDR receiver are first simulated on 

MATLAB. On the basis of the written code, translation has been made to hardware architecture. 

Results obtained by these implementations are in discussed the next chapter. 

3.1 Design & Implementation of CORDIC Algorithm 

There are numerous amounts of factors that affect design aspects. One of the most important of 

them is the intrinsic property of this algorithm; output values are valid only for limited set of 

input values. The importance of this implementation lies in the fact that most of the 

communicational algorithms to be implemented are based on trigonometric and angular 

calculations of complex number. 

To calculate the values out of the valid range, the support of trigonometric identities can be used. 

It can be implemented by first altering the input according to the trigonometric identity such that 

the value becomes within well calculable range for CORDIC Algorithm. After obtaining 

trigonometric result, the output can operate accordingly on that result to obtain the result 

corresponding to the actual input.  

3.1.3. Major Top Level Parts of CORDIC System 

In order to realize the solution of the problem discussed above, the system can be composed of 

the following parts. 

 CORDIC Core 

 CORDIC Input Interface 

 CORDIC Output Interface 
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 Control Path 

The part CORDIC core will implement the actual CORDIC algorithm. CORDIC Input and 

Output Interfaces will implement the trigonometric identities. Control path will have the 

sequence with which all operations will be performed. All of these parts have been discussed 

later in this chapter. Figure 3.1 shows the top level structure of CORDIC system. 

CORDIC Core
CORDIC I/P 

Interface

CORDIC O/P 

Interface

X

Y

θ

X

Y

θ

X

Y

θ

X

Y

θ

Control Path

 
Figure 3.1 Top Level Flow Diagram of CORDIC Implementation 

3.1.4. Selection of total Number of Iterations for CORDIC Algorithm 

As mentioned by set of eq. 2.8 to eq. 2.10, CORDIC is an iterative algorithm. With the point of 

view of implementing this algorithm in FPGA, the total iterations as well as precision of 

processing variables is equally important. By simulating the CORDIC algorithm for most widely 

used number of iterations in MATLAB the effect of increasing iterations on error rate can be 

compared. 

 
Figure 3.2 Calculated Magnitude Error in the simulation of CORDIC Algorithm (N = 16) 
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By comparing Figure 3.2 and Figure 3.3 it is quite evident that by increasing the total number of 

iterations for which this algorithm can operate decreases the percentage error. By surveying 

overall system and simulation results, the decision for total number of iteration is 32. The 

arguments supporting this design decision are following. 

 The property of the targeted system is required to be optimized for accuracy; the reason 

of this is the fact that there is multiple numbers of algorithms that call the services of this 

system multiple times for the demodulation of single received burst. So the error gets 

accumulated each time received burst is passed through this system. 

 The simulated results show that the percentage error for 32 iteration algorithm is at least 

100,000 times less than that of 16 iteration algorithm. 

 Although the area requirement may increase, this design decision also is made because 

total number of resources actually available in the targeted system is very high as evident 

from the Table 2.4. 

As the current implementation can also be used for other algorithms and the throughput 

requirement may vary, parallelism can be used to satisfy this requirement. 

 
Figure 3.3 Calculated Magnitude Error in the simulation of CORDIC Algorithm (N = 32) 

3.1.5. System Capabilities 

Careful examination of coarse frequency estimation/compensation, channel estimation, fine 

frequency estimation/compensation and phase estimation it is evident that the system should be 
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able to calculate the trigonometric functions sine and cosine (Rotation mode). Also, system 

should be able to find the angle of complex number (Vectoring Mode). 

3.1.6. Integration of Multiple Modes in Single System 

Both the rotation and vectoring modes have remarkable similarities between them as shown in 

Table 2.5. The design decision for the implementation is to integrate both modes in single 

system. System will be able to change the mode in runtime. This decision has following 

supporting arguments. 

 At any given time there will be only one mode (either rotation or vectoring) is required in 

runtime throughout the operation at the receiver end. 

 It will decrease the required area and increase the area efficiency. 

3.1.7. Usage of Trigonometric Identities to Solve Convergence Problem 

In order to solve the convergence problem, trigonometric identities are employed. For rotation 

mode i.e. for the calculation of sine and cosine functions, the design decision is to use CORDIC 

core only for  
 

 
    

 

 
 to calculate the trigonometric functions. The selected range lies well 

within the correct calculable range of CORDIC core which lies from -0.9573 to 0.9573 radians to 

be exact. If   is outside the selected range, trigonometric identities simplifies the problem as 

shown in Table 3.1. 
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Table 3.1 Calculation of sine and cosine using CORDIC algorithm 

For the vectoring mode of CORDIC operation the requirement is to calculate the angle of 

complex number that lies in any quadrant. CORDIC algorithm gives correct result for 

     (
 

 
) if        (

 

 
)      . It is required by the system that it should be able to calculate 

the correct angle to which complex number       points. In order to achieve this property, the 

design decision is to keep the ratio less than 1 by inverting it if it is greater. It is then provided to 

CORDIC core for processing. To get the accurate output, pre and post processing is done that is 

based on the actual input. The equivalent output for each of the case is shown in the Table 3.2. 

Case Subcase Equivalent Output 

x < 0, y <0 

|x| > |y|      (
| |

| |
)      

|x| = |y| 
   

 
 

|x| < |y|       (
| |

| |
)   

 

 
  

x < 0, y =0 
|x| > |y|   

|x| = |y|, |x| < |y| Scenario Not Possible 

x < 0, y >0 

|x| > |y|       (
| |

| |
)     

|x| = |y| 
  

 
 

|x| < |y|      (
| |

| |
)   

 

 
  

x = 0, y <0 
|x| > |y|, |x| = |y| Scenario Not Possible 

|x| < |y| 
  

 
 

x = 0, y =0 

|x| > |y| Scenario Not Possible 

|x| = |y| 0 

|x| < |y| 
Scenario Not Possible 

x = 0, y >0 
|x| > |y|, |x| = |y| 

|x| < |y| 
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x > 0, y <0 

|x| > |y|       (
| |

| |
)  

|x| = |y| 
  

 
 

|x| < |y|      (
| |

| |
)   

 

 
  

x > 0, y =0 
|x| > |y| 0 

|x| = |y|, |x| < |y| Scenario Not Possible 

x > 0, y >0 

|x| > |y|      (
| |

| |
)  

|x| = |y| 
 

 
 

|x| < |y|       (
| |

| |
)   

 

 
  

Table 3.2 Calculation of tan
-1

(y/x) using CORDIC Algorithm (see text) 

3.1.8. CORDIC Core Implementation 

This section describes the actual implementation of CORDIC Algorithm shown in Figure 3.4. 

The implemented architecture is of iterative type. This will generalize the design so that any 

number of iterations is possible with least amount of changes. Only 3 registers each of 32 bits is 

required for this design and one iteration completes in one clock cycle which means it will take 

at least 32 clock cycles to complete the operation of this core. 

Most important thing is the actual execution of single iteration. As given in the algorithm, 

initialization is necessary every time calculation starts. So, initialization for both the modes in the 

same system can be done by implementing four to one multiplexers as shown in the implemented 

design. The behavior of the system on the basis of the control pins of these muxes are shown in 

the Table 3.3. 

Control Pins System Behavior 

2’b00 Iteration is in progress in Rotation Mode 

2’b01 Initialization of x and y with appropriate constants in Rotation Mode. While z 

is equated to the θ for which trigonometric functions are to be calculated. 

2’b10 Iteration is in progress in Vectoring mode 

2’b11 Initialization of z in Vectoring mode. While y and x are initialized with values 

for which inverse tangent is required to be calculated. 

Table 3.3 CORDIC Core Beahivour  
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All 32 bit values are in Q5.27 signed format
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Figure 3.4 CORDIC Core Datapath Implemented Design 
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The two to one mux, whose output is the input of adders, serves the purpose of the testing 

condition which decides for addition/subtraction in two different modes. In Rotation mode, the 

sign of z while in Vectoring mode the sign of y decides either the operation for next iteration is 

to be addition or subtraction. Input named as Iteration_nth is used for indexing a specific value 

from ROM_arctan. Moreover, it also gives amount of rotation for output of Rx and Ry. Its value 

ranges from 0 to 31 and gets incremented after single clock cycle. 

The entity ROM_arctan shown in Figure 3.4 acts as a look up table in which already calculated 

values of          required for CORDIC processing are stored (where i is from 1 to 32). So, for 

32 iteration system, total number of locations in this look up table is also 32. Each location 

contains a 32 bit number in Q5.27 signed format. This is the same Q point format as used for the 

entire CORDIC core. 

3.1.9. Input and Output Interfaces Implementation 

Both of the input and output interfaces are designed together as both of them implements 

trigonometric identities as given in Table 3.1 and Table 3.2. The interfaces along with the 

CORDIC core are shown in Figure 3.5. On the arrival of input, the input interface decides the 

mode of operation and also informs to the output interface so that correct value for the actual 

input can be calculated. The input interface has the two parts; one is dedicated for rotation while 

other is for vectoring mode. For each part, the mode of operation is selected on the basis of the 

quadrant in which input lies as illustrated in Figure 3.5. 

The input interface basically consists of series of comparators. The only difference in these parts 

is at any mode only one of them is in the operation. The output interface of the system is 

common for both of the modes as some common nature of operations are required at this point. 

The output interface has three 32 bit registers that stores the final calculated value. Values in 

eight by one multiplexer are 
 

 
 
 

 
 
  

 
   

  

 
 
  

 
 
   

 
     written in Q5.27 signed format. 

Likewise CORDIC core, the Q point format of both input and output interface is Q5.27 signed. 

One reason of this Q point selection is that, it gives enough high precise output and the range for 

which the calculation can be done in both modes is moderately high; the system shown in Figure 

3.5 has the capability to calculate sine and cosine from -5pi to 5pi in rotation mode. 
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All 32 bit values are in Q5.27 signed format
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angle(x_in + y_in*i) = pi/2

angle(x_in + y_in*i) = atan(|y|/|x|) - pi

angle(x_in + y_in*i) = pi - atan(|y|/|x|)

angle(x_in + y_in*i) = pi/2+atan(|x|/|y|)

 

Figure 3.5 Main CORDIC Datapath Design 
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3.1.10. Control Path Implementation 

All of the sequences of operations to be performed as discussed in previous sections are 

controlled by this part. It is simply a state machine with multiple states each generating specific 

control signals. The implemented behavior is shown in Figure 3.7. To start processing one of the 

rotation or vectoring mode is selected, values for which processing is required to be placed at the 

input and start pin is triggered. After the processing is complete and the output is ready, this state 

machine asserts the out_ready pin. 

3.2 Coarse Frequency Estimation Implementation 

Implementation of coarse frequency estimation algorithm is given in eq. 2.14. Its implementation 

is shown in Figure 3.10 and Figure 3.12. This equation can be divided into two major parts. A 

factor  ( 
 

 
    )  (

 (   )

 ( ) 
)
 

is one dimensional array that will remain constant over the 

entire period of processing. Thus this portion of equation can be calculated in offline mode. A 

second major part consists of real time data input required for processing i.e.  (   )  ( ).  

The approach of implementation is to calculate both of these parts separately, multiply the result 

then calculate the angle using CORDIC implementation. Both factors of first part are already 

known. The factor b(k) can be calculated from the eq. 2.11 while a(k) is the noiseless transmitted 

training sequence which is shown in Figure 3.6. 

 

Figure 3.6 Training Sequence to be Transmitted 
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Change_value_in = 1'b1, out_ready_1 =  

out_ready_1, start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd1, mode_0_1 = mode_0_1, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0,

Twos_complement_x = Twos_complement_x, 

Twos_complement_y = Twos_complement_y, 

Twos_complement_z = Twos_complement_z , 

bypass_cordic_tan1 = bypass_cordic_tan1, 

bypass_cordic_tan1 = bypass_cordic_tan1, 

z_bypass_const = z_bypass_const, 

exchange_enable =exchange_enable, 

state = IDLE

IDLE0

reset

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b1, start_tan = 1'b0, 

process0_idle1 = 1'd1, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b0, state = 

WAIT_RESPONSE_SINE_COSINE_MODE

IDLE2
register_start && 

~mode_of_calculation

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b1, 

process0_idle1 = 1'd1, mode_0_1 =1'd1, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b0, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b0, state = WAIT_RESPONSE_TAN_MODE

IDLE1

register_start && 

mode_of_calculation

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b1, start_tan = 1'b0, 

process0_idle1 = 1'd0, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b1, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE2

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd0, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0, 

Twos_complement_x = 1'b1, Twos_complement_y = 

1'b1, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b1, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE5

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd0, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0, 

Twos_complement_x = 1'b1, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b1, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE3

Change_value_in = 1'b0, out_ready_1 =  1'b1, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd1, mode_0_1 =1'd0, 

change_cordic_out = 1'b0, iteration_nth = 5'd0, 

change_value = 1'b1,

Twos_complement_x = 1'b0, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b0, state = IDLE

WAIT_RESPONSE_

SINE_COSINE_MODE1

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd0, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0, 

Twos_complement_x = 1'b1, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b0, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE7

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd0, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0, 

Twos_complement_x = 1'b1, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b0, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE4

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd1, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b0, state = 

WAIT_RESPONSE_SINE_COSINE_MODE

WAIT_RESPONSE_

SINE_COSINE_MODE0

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd0, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0, 

Twos_complement_x = 1'b0, Twos_complement_y = 

1'b1, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b1, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE6

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd0, mode_0_1 =1'd0, 

change_cordic_out = 1'b1, iteration_nth = 5'd0, 

change_value = 1'b0, 

Twos_complement_x = 0'b1, Twos_complement_y = 

1'b0, Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 = 

1'b0, z_bypass_const = 3'd0, exchange_enable = 

1'b0, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE8

ready_sin_cos &&

mode_sin_cos == 0

ready_sin_cos && 

mode_sin_cos == 1

ready_sin_cos && mode_sin_cos == 2

ready_sin_cos && mode_sin_cos == 3

ready_sin_cos &&

mode_sin_cos == 4

ready_sin_cos && mode_sin_cos == 5

ready_sin_cos && mode_sin_cos == 6

ready_sin_cos && mode_sin_cos == 7

Change_value_in = 1'b0, out_ready_1 =  1'b0, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd0, mode_0_1 =mode_0_1, 

change_cordic_out = 1'b1, iteration_nth = 

iteration_nth + 1, change_value = 1'b0, 

Twos_complement_x = Twos_complement_x, 

Twos_complement_y = Twos_complement_y, 

Twos_complement_z = Twos_complement_z , 

bypass_cordic_tan1 = bypass_cordic_tan1, 

bypass_cordic_tan1 = bypass_cordic_tan1, 

z_bypass_const = z_bypass_const, 

exchange_enable =exchange_enable, 

state = CORDIC_PROCESS

CORDIC_PROCESS1

iteration_nth < 31

Change_value_in = 1'b0, out_ready_1 =  1'b1, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd1, mode_0_1 =mode_0_1, 

change_cordic_out = 1'b0, iteration_nth = 5'd0, 

change_value = 1'b1, 

Twos_complement_x = Twos_complement_x, 

Twos_complement_y = Twos_complement_y, 

Twos_complement_z = Twos_complement_z , 

bypass_cordic_tan1 = bypass_cordic_tan1, 

bypass_cordic_tan1 = bypass_cordic_tan1, 

z_bypass_const = z_bypass_const, 

exchange_enable =exchange_enable, 

state = CORDIC_PROCESS

CORDIC_PROCESS0

Iteration_nth == 31

Change_value_in = 1'b0, out_ready_1 =  1'b1, 

start_sin_cos = 1'b0, start_tan = 1'b0, 

process0_idle1 = 1'd1, mode_0_1 =mode_0_1, 

change_cordic_out = 1'b0, iteration_nth = 5'd0, 

change_value = 1'b1, 

Twos_complement_x = Twos_complement_x, 

Twos_complement_y = Twos_complement_y, 

Twos_complement_z = Twos_complement_z , 

bypass_cordic_tan1 = bypass_cordic_tan1, 

bypass_cordic_tan1 = bypass_cordic_tan1, 

z_bypass_const = z_bypass_const, 

exchange_enable =exchange_enable, 

state = CORDIC_PROCESS

CORDIC_

BYPASS_TAN

Change_value_in = 1'b0, 

out_ready_1 =  1'b0, start_sin_cos = 1'b0,

 start_tan = 1'b1, process0_idle1 = 1'd1, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0, 

bypass_cordic_tan1 = 1'b0, 

z_bypass_const = 3'd0, 

exchange_enable = 1'b0, state = 

WAIT_RESPONSE_TAN_MODE

WAIT_RESPONSE

_TAN_MODE0

Change_value_in = 1'b0, 

out_ready_1 =  1'b0, start_sin_cos = 1'b0

, start_tan = 1'b0, process0_idle1 = 1'd1, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

 Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 , 

bypass_cordic_tan1 =1'b1, 

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd0, 

exchange_enable = 1'b0, state = 

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE1

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd6, 

exchange_enable = 1'b0, state = 

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE3

~ready_sin_cos

~ready_tan

ready_tan &&

mode == 0

ready_tan && 

mode == 2

ready_tan &&

mode == 8

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd2, 

exchange_enable = 1'b0, state = 

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE6

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd5, 

exchange_enable = 1'b0, state = 

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE2

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd1, 

exchange_enable = 1'b0, state = 

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE4

ready_tan &&

mode == 6

ready_tan &&

mode == 9

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd4, 

exchange_enable = 1'b0, state = 

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE7

ready_tan &&

mode == 11

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd0, 

exchange_enable = 1'b0, state = 

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE5

ready_tan &&

mode == 14

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd3, 

exchange_enable = 1'b0, state = 

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE8
ready_tan &&

mode == 4

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd3, 

exchange_enable = 1'b0, state = 

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE11

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b1 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b0, 

z_bypass_const = 3'd0, 

exchange_enable = 1'b0, state = 

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE13 Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b1 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd1, 

exchange_enable = 1'b0, state = 

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE16

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b0, 

z_bypass_const = 3'd0, 

exchange_enable = 1'b0, state = 

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE15

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd5, 

exchange_enable = 1'b0, state = 

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE14

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 

Twos_complement_y = 1'b0, 

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1, 

z_bypass_const = 3'd7, 

exchange_enable = 1'b0, state = 

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE10

Change_value_in = 1'b0,

 out_ready_1 =  1'b0, start_sin_cos = 1'b0, 

start_tan = 1'b0, process0_idle1 = 1'd0, 

mode_0_1 =1'd1, change_cordic_out = 1'b1, 

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0, 
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Figure 3.7 Top Level CORDIC Control Path (with control signals)
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As shown in Figure 3.6, there are two different lengths of training sequences depending upon the 

system configuration. After calculating the result on MATLAB the result is illustrated in Figure 

3.8a 

 

Figure 3.8 Coarse Frequency Estimation Algorithm Pre Calculable Result 

In order to save this result, 1.5 kilobits of memory is required (if every sample is represented in 

16 bits). But this amount of resource can be drastically reduced if the pattern hidden in the 

sequence is figured out. By carefully observing the results, it can be concluded that the 

difference between absolute values of consecutive samples is linear and easily generate able. So, 

if only first value of the sequence is known, the rest of values can be generated. For illustration, 

the difference of consecutive samples has been shown in Figure 3.9. 

 
Figure 3.9 Absolute Difference between the Consecutive Samples of the result shown in Figure 3.8
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Figure 3.10 Shared Resource Coarse Frequency Estimation Datapath 
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3.2.3. Shared Resource Coarse Frequency Estimation Datapath 

The design of datapath is optimized for efficient resource utilization. Only one multiplier is 

enough to handle the data for data rate given in Figure 2.15. For each value of the control signal 

M1_M2_cntrl, the signals used as a multiplicand in the multiplication performed by six to one 

multiplexers is shown in the Table 3.4. 

Value of M1_M2_cntrl Signals as Multiplicand 

0     ( ( ))        ( (   )) 

1     ( ( ))        ( (   )) 

2     ( ( ))        ( (   )) 

3     ( ( ))        ( (   )) 

4     ( ( )    (   ))                    ( ) 

5     ( ( )    (   ))                    ( ) 

Table 3.4 Complex Multiplication Using Shared Muliplier 

R3 to R6 registers hold values calculated when M1_M2_cntrl is 0 to 3. Once the required result 

is calculated (when M1_M2_cntrl is 4 and 5), the real and imaginary part of the result is 

accumulated in R1_64 and R2_64 respectively. Both of these registers are of 64 bit while all 

others in current design are of 16 bit precision. 

The pre calculable part is saved in the design portion where state machine counter is located. 

This counter is used to generate the consecutive values shown in Figure 3.9. ROM_32 and 

ROM_64 tell the sign of each computation. When the value of N is 32, the counter generates 

from 14 to -15; decrementing one in each clock cycle. The generated value is then added to the 

initial value 22.8750 to get the absolute result. The sign of this result is stored in ROM_32 which 

is of 32 bits. It outputs one bit 0 or 1 for positive or negative sign respectively. Same is the case 

for N=64 in which counter generates from 30 to -31, initial value is 46.8750 and sign of each 

computation is stored in ROM_64. By using this strategy, the memory requirement is only 96 

bits. The values of ROM_32 and ROM_64 are given in eq. 3.1 and eq. 3.2 respectively. 

                      - - - - - - - - - - - - - - - - - - -  ( 3.1 ) 

                                - - - - - - - - - - - - ( 3.2 ) 
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Figure 3.11 Coarse Frequency Estimation Control Path for optimized area implementation 
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3.2.4. Performance Optimized Coarse Frequency Estimation Datapath 

Coarse frequency estimation data path optimized for high throughput is shown in Figure 3.12. 

Memory architecture is similar for both previously discussed and current design. High 

throughput is achieved by exploiting the pipelining and implementing complex multiplication 

using dedicated multipliers. As shown in figure, multiple pipeline cuts provide the opportunity to 

get maximum throughput from the system. Throughput calculation and its comparison with 

previous implementation is done in next chapter. 

3.2.5. Coarse Frequency Estimation Control Path 

The implemented state machine for shared type of implementation is shown in Figure 3.11. Once 

the start pin is triggered, it starts its iterative operation for given number of data inputs. Once 

those iterations are complete, it goes idle again while output ready pin is raised. State machine 

for Figure 3.12 is simpler than Figure 3.11 shown because no control signals for iteration are 

involved. 

3.3 Summary 

This chapter presents the design blueprints of SDR receiver implementations in FPGA. 

Discussion on these designs is done along with tables and figures for illustration purposes. 

Arguments on some of the important design decisions are given. Moreover, due to some pre 

known factors, some algorithms are simplified such that they can be implemented with fewer 

resources. 
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Figure 3.12 Performance optimized Coarse Frequency Estimation Datapath  
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Chapter 4: Results and Discussion 

In this chapter, results of the implementations have been presented. It also contains the brief 

discussion on these results. These results include the percentage error, resource requirements, 

maximum achievable clock and print screens of simulations. The target device is Xilinx 3A DSP 

xc3sd3400a FPGA. 

4.1 CORDIC Implementation Results 

This section contains the detailed results obtained by the implementation of proposed CORDIC 

designs. 

4.1.3. Percentage Error 

Outcomes of percentage error for both (rotation and vectoring) modes of CORDIC operation are 

given in this section. Figure 4.1 and Figure 4.2 shows the percentage cosine and sine error 

respectively. While Figure 4.3 and Figure 4.4 shows the visual comparison of the values 

calculated in MATLAB and results of implementation. 
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Figure 4.1 Percentage Cosine Error of 32 bit CORDIC Implementation (Rotation Mode) 

 
Figure 4.2 Percentage Sine Error of 32 bit CORDIC Implementation (Rotation Mode) 
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Figure 4.3 Visual Comparison of Results of CORDIC Calculation of Cosine with Corresponding 

MATLAB Output 

 

Figure 4.4 Visual Comparison of Results of CORDIC Calculation of Sine with Corresponding 

MATLAB Output 
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Another way of looking at these results is to draw a waveform by calculating values for rotation 

mode of CORDIC implementation and to compare the values with calculation done in MATLAB 

as shown in Figure 4.3 and Figure 4.4. All of these results have been calculated with input and 

output interfaces included in the design. Input values range from -15 to 15 after constant 

intervals. 

For vector mode of operation, the values are selected such that system gets verified for large 

number of values lying in four quadrants that is both x and y range from -2 to 2. Results are 

shown in Figure 4.5 and visual comparison of values obtained in vector mode with MATLAB is 

shown in Figure 4.6. Mesh and surface represents the values calculated by MATLAB and vector 

mode of CORDIC implementation respectively. 

 
Figure 4.5 Percentage Error for Vectoring mode of CORDIC implementation 
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Figure 4.6 Visual Comparison b/w Values generated by Vectoring mode and MATLAB 

4.1.4. Simulated Waveforms 

Waveforms of the system for vectoring and rotation modes are shown in Figure 4.7and Figure 

4.8. A simulated operation of Rotation mode of CORDIC is shown in above figure. It calculates 

the sine and cosine values for 10.808, -1.9960 and -1.8578 (all in Q5.27 signed format). All of 

these values are placed at z_in. Valid results are at {x_out, y_out} once out_ready is high and for 

these inputs, they are {-0.1865, -0.9825}, {-0.4125, -0.9110} and {-0.2831, -0.9591}. The format 

of output is {cos(input), sin(input)}. Average clock cycles required for calculation are 38. 
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Figure 4.7 Simulated Waveform for Rotation mode of CORDIC 
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Figure 4.8 Simulated Waveform for Vectoring mode of CORDIC 
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In Figure 4.8, angle of three complex numbers have been calculated. They are 15.2450 + 

11.1986i, 15.2450 – 0.1210i and -0.1210 + 11.1986i. All of these numbers are represented in 

Q5.27 signed format. Calculation takes on average 36 clock cycles and results are visible at 

z_out which are 0.6336, -0.0079 and 1.5816. Note that mode of calculation is 1 which represents 

vectoring mode. 

4.1.5. Area Consumption and Timing Results 

Resources consumed by various implemented parts are given in Table 4.1. 

Component Resources Consumed 
Maximum Clock (Post 

Place and Route) 

Core Datapath 

(Figure 3.4) 

Slice Flip Flops: 96 (0.2%) 

Total 4 Input LUTs: 682 (1.42%) 

Occupied Slices: 393 (1.65%) 

BUFGMUXs (Global Clock): 1 (4.16%) 

86.125 MHz 

Input Interface for 

Rotation Mode 

(Figure 3.5 & 

Table 3.1) 

Slice Flip Flops: 41 (0.086%) 

Total 4 Input LUTs: 539 (1.13%) 

Occupied Slices: 278 (1.16%) 

BUFGMUXs (Global Clock): 1 (4.16%) 

61.778 MHz 

Input Interface for 

Rotation Mode 

(Figure 3.5 & 

Table 3.2) 

Slice Flip Flops: 39 (0.082%) 

Total 4 Input LUTs: 617 (1.29%) 

Occupied Slices: 311 (1.30%) 

BUFGMUXs (Global Clock): 1 (4.16%) 

DSP48As: 2 (1.59%) 

131.874 MHz 
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Top Level 

Datapath (Figure 

3.5) 

Slice Flip Flops: 368 (0.77%) 

Total 4 Input LUTs: 2145 (4.50%) 

Occupied Slices: 1180 (4.94%) 

BUFGMUXs (Global Clock): 1 (4.16%) 

DSP48As:  2 (1.59%) 

61.630 MHz 

Top Level Control 

Path (Figure 3.7) 

Slice Flip Flops: 27 (0.06 %) 

Total 4 Input LUTs: 80 (0.17 %) 

Occupied Slices: 44 (0.18 %) 

BUFGMUXs (Global Clock): 1 (4.16%) 

215.750 MHz 

Top Level 

CORDIC 

Slice Flip Flops: 395 (0.827 %) 

Total 4 Input LUTs: 2183 (4.57 %) 

Occupied Slices: 1198 (5.02 %) 

BUFGMUXs (Global Clock): 1 (4.16%) 

DSP48As:  2 (1.59%) 

53.746 MHz 

Table 4.1 Resource Consumed by CORDIC at various levels 

4.1.6. Comparison with Previous Implementations 

The percentage error of current implementation is much lower than its previous counterparts 

which are discussed in 2.6.3.1 . This is due to the fact that current implementation is of 32 bit 

and most of the previous implementations are 16 bit. Although the area consumption of current 

implementation is higher, it has better overall utilization of resources; multiple modes are 

implemented in single design with ability of convergence for larger range of input. Generally, 
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implementations of CORDIC are requirement specific and it’s a tradeoff between different 

design parameters. 

4.1.7. Maximum Throughput Calculation 

Maximum achievable throughput for CORDIC implementation is calculated in eq. 4.1. 

                           

(Verified with clock constraint 17 ns 50 % duty cycle) 

                                                      

                   
       

  
           

                                           - - - - - - - - - - - - ( 4.1 ) 

4.2 Coarse Frequency Estimation Implementation Results 

In this section, all the relevant results related to Implementation of Coarse Frequency Estimation 

Algorithm. 

4.2.3. Percentage Error for shared resource design 

Percentage error calculated in implementation for training sequence of length 32 and 64 are 

shown in Figure 4.9 and Figure 4.10. 
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Figure 4.9 Percentage Error of Shared Resource Coarse Frequency Estimation for N=32 

 

Figure 4.10 Percentage Error of Shared Resource Coarse Frequency Estimation for N=64 

4.2.4. Percentage Error for Performance optimized design 

Percentage error for performance optimized implementation is almost similar for shared 

resource. Figure 4.11and Figure 4.12 gives the percentage error of training sequence of length 32 

and 64 respectively. 
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Figure 4.11 Percentage Error of Performance Based Coarse Frequency Estimation for N=32 

 

Figure 4.12 Percentage Error of Shared Resource Coarse Frequency Estimation for N=64 

4.2.5. Area Consumption and Timing Results for shared resource design 

Details of area consumed by both designs of Coarse Frequency Estimation system and maximum 

achievable clock are given in Table 4.2. 
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Component Resources Consumed 

Maximum Clock 

(Post Place and 

Route) 

Data Path (Figure 3.10) 

Slice Flip Flops: 394 (0.825 %) 

Total 4 Input LUTs: 659 (1.38 %) 

Occupied Slices: 433 (1.81 %) 

BUFGMUXs (Global Clock): 1 (4.16%) 

DSP48As:  1 (0.794 %) 

56.815 MHz 

Control Path (Figure 3.11) 

Slice Flip Flops: 47 (0.1 %) 

Total 4 Input LUTs: 76 (0.16 %) 

Occupied Slices: 50 (0.21 %) 

BUFGMUXs (Global Clock): 1 (4.16%) 

127.486 MHz 

Top Level Implementation 

Slice Flip Flops: 459 (0.961 %) 

Total 4 Input LUTs: 768 (1.61 %) 

Occupied Slices: 502 (2.10 %) 

BUFGMUXs (Global Clock): 1 (4.16%) 

DSP48As:  1 (0.794 %) 

RAMB16BWERs: 2 (1.59 %) 

54.383 MHz 

Table 4.2 Resurces Consumed by Shared Resource Coarse Frequency Estimation Algorithm 

Implementation at various levels 
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4.2.6. Area Consumption and Timing Results for performance optimized 

design 

The area and post place and route timing results for performance based implementation are 

shown in Table 4.3. 

Component Resources Consumed 

Maximum Clock 

(Post Place and 

Route) 

Data Path (Figure 3.12) 

Slice Flip Flops: 304 (0.64 %) 

Total 4 Input LUTs: 557 (1.17 %) 

Occupied Slices: 321 (1.34 %) 

BUFGMUXs (Global Clock): 1 (4.16%) 

DSP48As:  6 (4.76 %) 

124.486 MHz 

(with the 

utilization of all 

available pipeline 

registers) 

Control Path 

Slice Flip Flops: 36 (0.07 %) 

Total 4 Input LUTs: 67 (0.14%) 

Occupied Slices: 40 (0.17 %) 

BUFGMUXs (Global Clock): 1 (4.16%) 

131.509 MHz 

Top Level Implementation 

Slice Flip Flops: 338 (0.71 %) 

Total 4 Input LUTs: 662 (1.39 %) 

Occupied Slices: 402 (1.68 %) 

BUFGMUXs (Global Clock): 1 (4.16%) 

DSP48As: 6 (4.76 %) 

RAMB16BWERs: 2 (1.59 %) 

122.9 MHz 
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Table 4.3 Resources Consumed by Performance optimized Coarse Frequency Estimation 

Algorithm Implementation at various levels 

4.2.7. Maximum Throughput Calculation for Shared Resource Design 

Calculation of maximum throughput for training sequence of length 32 and 64 are shown in eq. 

4.2 and eq. 4.3 respectively. 

                                             

(Verified with clock constraint 19 ns 50 % duty cycle) 

                                                                        

                                                                        

                                             
        

   
              

                  
    

      
            - - - - - - - - - - - - - - ( 4.2 ) 

                                             
        

   
             

                 
    

      
            - - - - - - - - - - - - - -  ( 4.3 ) 

4.2.8. Maximum Throughput Calculation for Performance optimized Design 

The throughput calculation for performance based for training sequence of length 32 and 64 is 

shown in eq. 4.4 and eq. 4.5 respectively. 

                                             

(Verified with clock constraint 8.5 ns 50 % duty cycle) 

                                                                    160 
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             - - - - - - - - - - - - - - ( 4.4 ) 

                                             
       

   
             

                
    

      
           - - - - - - - - - - - - -( 4.5 ) 

4.2.9. Simulated Waveforms 

Figure 4.13 shows simulated waveform of Coarse Frequency Estimation Algorithm 

Implementation for training sequence of length 32 for performance optimized design. Similarly, 

Figure 4.14 shows the simulated waveform for training sequence of length 64 for shared resource 

design.  
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Start of Calculation

Vectoring mode

Address of data read from 

memory

Input y in Q5.27 signed 

format

Output in Q5.27 singed 
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Absolute value of 

compressed memory

Address of 64 or 32 bit 

ROM

Bit that decides the sign of 

values stored

Accumulation Register

 

Figure 4.13 Simulated Waveform for Performance Optimized Coarse Frequency Estimation 

Algorithm Implementation for training sequence length 32 
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Values Stored in Memory 

in Q5.11 signed format

Start of operation

64 length configuration

Busy State

Conversion to maximum 

precision

Output in singed Q5.27 

format
Next set of operation can 

be started from here

 

Figure 4.14 Simulated Waveform for Shared Resource Coarse Frequency Estimation Algorithm 

Implementation for training sequence length 64 
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4.2.10. Comparison with Previous Implementations 

Detailed information about previous implementations is given in 2.6.4.1. Most of the 

implemented architectures are requirements based. Current implementation uses only one DSP 

block for its implementation. Overall shared nature of architecture makes it area optimized. 

Moreover, the compression of lookup table has been performed such that memory requirements 

reduce from 1.5 kb to only 96 bits.  

4.3 Results Discussion 

The basic idea behind presenting two architectures for coarse frequency estimation is to provide 

comparison of various attributes that effect throughput and area utilization The two different 

implementations of same algorithm provide insight of the tradeoffs between the parameters i-e 

by comparing the Table 4.2 and Table 4.3, it can be concluded if used properly, dedicated 

resources provide boost in throughput. Pipelining also plays an important role of increasing the 

throughput in performance optimized design. This design contains three pipeline stages that 

boost its clock speed from 43 MHz to 120 MHz. 
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Figure 4.15  Slice Flip Flop and DSP48 blocks Utilization Comparison of Coarse Frequency 

Estimation Implementation 

The comparison shown in Figure 4.15 and Figure 4.16 tells the complete picture of the tradeoff 

between performance and utilization of dedicated DSP blocks. Throughput of shared resource 

implementation is low because it requires more clock cycles for complex multiplication. For high 

throughput design, complex multiplication is done in multiple dedicated hardware multipliers. 
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Figure 4.16 Throughput and Clock for both designs of Coarse Frequency Estimation 

Implementation 

The CORDIC implementation is used to calculate the final frequency estimation factor. This 

implementation is done with iterative architecture. This is due to the fact that the input and 

output interface of CORDIC core implementation operates iteratively. Implementing CORDIC 

core in unrolled form can decrease the efficiency of design for the values for which CORDIC 

algorithm do not converge. To get higher throughputs, multiple modules of CORDIC 

implementation can be used. 

Another important factor considered while designing CORDIC architecture is to facilitate other 

algorithms that require sine and cosine calculation in the configuration known as rotation mode. 

Coarse Frequency Estimation requires the angle calculation only which has also been integrated 

in its design. Figure 4.17and Figure 4.18 illustrates area utilization and throughput respectively. 
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Figure 4.17 Area Utilization of CORDIC Top Level Implementation 
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Figure 4.18 Clock and Throughput of CORDIC Top Level Implementation 

The bottle neck for CORDIC implementation is the implementation of trigonometric identities 

and the iteration of subtraction or addition that brings input value to the valid range of CORDIC 
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core. By using this CORDIC implementation with both designs of Coarse Frequency Estimation 

the final throughput is shown in eq. 4.6 to eq. 4.9 and illustrated by Figure 4.19. 
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Figure 4.19  Final Throughput for 32 length training sequence 

From all the discussion above, it can be concluded that, the two presented implementations can 

be divided into two categories. 

 Design with throughput upto 140 Ksps 

 Design with throughput upto 490 Ksps 

As the requirement is 426.8 Ksps, so the second design can be used with in SDR of final 

throughput of 384 kbps. 

4.4 Clock Relationship 

In order to accomplish coarse frequency estimation operation, the cascade operation of any of the 

coarse frequency architecture and CORDIC is required. As evident by the results, both of these 

architectures operate in different clocks so in order to transfer the data from one module to 

another module, some interface is required. This interface will ensure the smooth acquisition of 

data from coarse frequency estimation to CORDIC module.  
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The interface between both modules can simply be achieved by using a register that is operating 

at CORDIC clock frequency. Once the data is available at the output of coarse frequency 

estimation architecture, it can be written to this intermediate memory and coarse frequency can 

be used for next operation immediately. Meanwhile, the CORDIC can start its operation by 

reading the input data from intermediate memory. 

While designing both of these architectures, it has been ensured that data should never get over 

run. It has been ensured by designing CORDIC such that its throughput remains higher then 

fastest coarse frequency estimation implementation. In this way, CORDIC completes processing 

the current output data before coarse frequency estimation can generate next data of concern. 

CORDIC implementation gets in idle state if it does not get the data in the next processing cycle. 

So the data under run condition is also handled successfully without the generation of any 

exception. 

4.5 Summary 

This chapter gives the results of the implementations of designs given in previous chapter. It 

includes two coarse frequency estimation designs and CORDIC implementation. CORDIC is 

used to calculate the angle of estimation after the complex number is provided by the Coarse 

frequency estimation architecture.  
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

The primary objective of this thesis is to propose the design and implementation of Coarse 

Frequency Estimation Algorithm for SDR receiver of throughput 384 Ksps. The approach to the 

solution of the problem is to design two different architectures. One of them is shared resource 

design while other is performance optimized. The major characteristic that differs between both 

is the utilization of dedicated resources. 

The performance optimized design explicitly uses dedicated multipliers in hardware while shared 

resource design uses only one dedicated hardware multiplier. As a consequence, it becomes 

evident that the use of dedicated hardware helps in increasing the throughput of the system. 

Moreover, performance optimized design also utilizes pipeline stages. 

After the careful examination of Coarse Frequency Estimation Algorithm, it can be divided into 

two parts. One part can be named as pre calculable part and other as real time calculation part. 

The pre calculable part can be implemented such that it consumes only 96 bit ROM and few 

resources for counter as compare to the direct implementation which needs at least 1.5 kb of 

ROM. Its input is the received training sequence of either 32 or 64 bit length depending upon the 

mode of operation. The output of this module is given to the input of CORDIC module that 

calculates the final Coarse Frequency Offset in the received burst. The format of implementation 

is Q5.11 signed. Both of the implemented designs utilize this compression of pre calculable part. 

One of the most important parts is the design and implementation of CORDIC algorithm which 

will be used for calculating fundamental trigonometry functions. It consists of two parts; core 

and interface. Due to the limitation in convergence of CORDIC algorithm, the interface provides 

the behavior of trigonometric identities to facilitate the calculation for wide range of inputs. The 

overall design of core is of 32 bit iterative nature in Q5.11 signed format. Moreover, in order to 

utilize resources in better way, both vector and rotation modes of CORDIC Algorithm are 
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implemented in single system such that it has the capability to change modes in runtime. This 

CORDIC implementation  

Literature review gives extensive relevant information on both digital signal processing and 

digital system design. It includes concepts related to modulation, demodulation, multiple access 

techniques and many others. Concepts related to architecture and state machines are also 

discussed. All of the algorithms of interest along with relevant previous implementations are 

presented in detail. 

For each of the implementation, mainly the benchmark criteria are the percentage error, 

throughput and consumption of resources. In order to calculate percentage error, comparison of 

implemented system is done with MATLAB. Visual Comparisons of graph shows the calculated 

values in hardware along with MATLAB. Objective of these graphs are to give the rough idea of 

range in which the calculated output lies. Some of the simulation waveforms provide the 

visualization of some scenarios in which these systems can perform. The model of FPGA is from 

the family of XLINX 3A- DSP xc3sd3400a. Based on the throughput results achieved, it has 

been discussed that, the performance optimized design can be used for SDR implementation of 

384 Ksps. 

5.2 Future Work 

Given in Figure 2.14, besides the implementation of CORDIC algorithm and Coarse Frequency 

estimation algorithm implementation of channel estimation, fine frequency estimation and 

residual phase estimation can be done on FPGA. Most of these implementations can use 

CORDIC implementation to figure out their respective trigonometric calculations. In order to 

achieve desired throughput with current implemented CORDIC, it is recommended to use its 

multiple instances in parallel. 

For coarse frequency estimation algorithm, the offline calculable part can be saved outside of 

FPGA chip and can be calculated in general purpose embedded system processor. This way not 

only saves area on FPGA but also introduces further factor of flexibility. Moreover, the module 

of coarse frequency estimation can be interfaced with the software. This interfacing can be 
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realized by first connecting the design with Microblaze processor and then communicating with 

microcontroller or DSP. 

5.2.1. Channel Estimation 

Estimating the channel is actually a measurement of its frequency response. This response is 

equalized using the method known as channel equalization. In this method, received samples are 

filtered through inverted channel response to compensate unwanted suppression caused by 

channel. But before this, the estimation of channel response is required to be made. This 

estimation is known as channel estimation. Suitable algorithm [7] that can be used for channel 

estimation is explained below. 

Let there are a total of N received samples. If these samples are received after passing through 

the channel whose instantaneous gain is                  then let’s define the following, 

    ( )  ( )  ( )   (   )   - - - - - - - - - - ( 5.1 ) 

                   
   - - - - - - - - - - - - - ( 5.2) 

 ( )           
    

   
     

   
     

     
   (   ) 

   - - - - - - - - - ( 5.3) 

                                                                                       

Also the noise sample array for N samples are defined in eq. 5.4 and transmitted training symbol 

matrix can be defined as eq. 5.5 where transmitted training symbols can be denoted by s. 

    ( )  ( )  ( )   (   )   - - - - - - - - - - ( 5.4) 

   [

 ( )         (  )   (    )

 ( )            ( )   (    )
  

 (   )  (   )
 
 

 
 (    )

] - - - - - - - - ( 5.5) 

       ( )            

The received samples can also be represented as 

       ( )        - - - - - - - - ( 5.6) 
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On the basis of all equations given above, maximum likelihood channel estimation can be 

represented as eq. 5.7. 

 ̂               (  )   - - - - - - - - ( 5.7) 

The final channel compensation of received samples can be represented as, 

       ( ̂ )   ( ̂ )   ( ̂ )    ( ̂   ) 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   - - - - - - - - ( 5.8) 

                                                           . 

The implementation of the given algorithm of channel estimation can be implemented for 384 

Ksps. If carefully examined, the matrix W and S given in eq. 5.3 and eq. 5.5 are offline 

calculable and the result can be converted from matrix to array with minimum precision 

sacrifice. This is due to the fact that the matrix   remains constant for any given length of 

training sequence. If algorithmic decision is to estimate the channel up to four coefficients then 

there can only be two matrices of  ; for training sequence of 32 and 64 lengths of order 32 by 4 

and 64 by 4 respectively.  Hence the order of result of offline part            is either 4 by 32 

or 4 by 64. 

A term  (  ) is a diagonal matrix of either 32 by 32 or 64 by 64 (depending upon length of 

training sequence) order with its entries only calculable with appearance of real time received 

training symbols. But before implementation, by further observation, it can be proved that the 

factor              (  ) can be calculated without matrix multiplication. 

The order of result in eq. 5.7 will always be 4 by 1; 4 coefficients of channel estimation. But as 

shown in eq. 5.8, the channel compensation is done by multiplying the accumulation of channel 

estimation coefficients with received data (equalization using FIR filter). Hence, a single 

summed value of channel coefficient is enough for channel compensation. Keeping this fact in 

mind with the discussion done in previous paragraph, following steps can be done in order to 

design channel estimation algorithm. 

 Add all rows of matrix            to an array. 

 Convert   (  ) to an array too by picking all diagonal elements of matrix. 
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 Both            and   (  ) are now an array of same order; 1 by 32 or 1 by 64 

depending upon training symbols. Multiply the elements of both arrays point by point  

 Multiply this result with received training array  . The result will be single channel 

estimation coefficient that will be the sum of 4 channel coefficients of order one by one. 

For the transmitted training sequence shown in Figure 3.6, the value of matrix converted 

array            is shown in Figure 5.1. 

 

Figure 5.1 Offline calculable part of Channel Estimation Equation (summed up as an array) 

The implementation of this algorithm becomes straight forward because after simplification, 

three arrays are required to be point by point multiplied. So, effectively the datapath requires the 

resources to multiply complex numbers and memory to retain the data. Offline 

calculable            , will be saved in ROM separately for both N=32 and N=64. While the 

members of factor   (  ) are calculated in rum time and used as per needed. The received 

sequence will be saved in RAM. 

5.2.2. Fine Frequency Estimation 

The fine frequency estimation and compensation algorithm is applied once coarse frequency 

algorithm is done. It estimates the residual frequency within acceptable range but much more 

complex and computationally high profile. Suitable algorithm for implementation has been 

implemented in [39]. 
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This algorithm basically measures the phase in the received burst that comes from the remaining 

offset in the frequency. Moreover, offset for each sample in received data burst R is calculated 

and compensated separately. Also, we have to append    number of zeros before and after the 

received burst of length  . Then the estimation can be done by the following equation. 

 ̂(    )  [
 

 
   {∑       ( ( ))    (           )

      (           ) } ]
  

 

- - - - - - - - - - ( 5.9) 

                    

          

 

               
  

 
                                                         

After the fine frequency estimation is done, we will get an array of length  . This array is finally 

used to compensate the data burst. 

               ( )                   ( )  
   ̂( )  - - - - - - - - - - -( 5.10 ) 

                 

5.2.3. Residual Phase Estimation  

If some residual phase still remains after demodulation, this phase estimation algorithm is used 

as a solution. This algorithm finds out the residual phase (if any) in the demodulated signal    . 

Implemented algorithm of this dissertation is shown in the one line equation below. Note that, it 

is just the multiplication and accumulation of corresponding training samples of received 

demodulated and transmitted signal. 

        {∑  ( )   ( )   
   }   - - - - - - - - - - -( 5.11 ) 

                                                                                           

The abstract top level diagram of the top level diagram that contains CORDIC module, Coarse 

Frequency Estimation, Channel Estimation, Fine frequency estimation and residual phase 

estimation is shown in  
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Figure 5.2 Abstract Diagram of Top Level Datapath Implementation 
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Proposed Solution Specifications 

Product Coarse Frequency Estimation 

Architecture Dedicated Resource Pipeline Based Shared Resource 

Maximum Clock 120.3 MHz 53.3 MHz 

Number of DSP48 

Blocks Used 
6 1 

Pipeline Stages 3 Pipelining is not used 

Maximum 

Throughput (for 32 

length training 

sequence) 

751.875 Ksps 166.728 Ksps 

Maximum 

Throughput (for 64 

length training 

sequence) 

422.10 Ksps 93.601 Ksps 

Input Format Q5.11 signed 

Output Format Q5.27 signed 

Format of 

Operation 

Write training Sequence to the input memory, write length of training 

sequence in configuration register and trigger start_operation for one 

clock cycle. In order to get higher throughput, replace input data memory 

by custom size buffer so that the time required to write data to memory 

can be reduced. 

Output Availability 

Indication 
out_available pin goes high 
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Product CORDIC Implementation 

Architecture Iterative based and ROM indexed 

Maximum Clock 53.746 MHz 

Number of DSP48 

Blocks Used 
2 

Pipeline Stages Pipelining is not used 

Maximum 

Throughput 
1410 Ksps 

Modes  
Rotation Mode: Calculation of sine and cosine function 

Vectoring mode: Calculation of angle of complex number 

Input Format Q5.27 signed 

Output Format Q5.27 signed 

Solution of 

Convergence 

Problem 

Yes. Trigonometric identity interfaces are present at input and output. 

Format of 

Operation 

Place the data and mode of operation at the input and then trigger 

start_calculation; for rotation mode the mode of operation is set by 

triggering mode_of_calcualtion to low and vice versa for vectoring mode.  

Output Availability 

Indication 
Out_ready pin goes high 
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Appendix: Abbreviations 

AFE Analog Front End 

AM Amplitude Modulation 

ASIC Application Specific Integrated Circuit 

BER Bit Error Rate 

CDMA Code Division Multiple Access 

CLB Configurable Logic Block 

CORDIC Coordinate Rotation Digital Computer  

DCM Digital Clock Manager 

DSSS Direct Sequence Spread Spectrum 

FDMA Frequency Division Multiple Access 

FPGA Field Programmable Gate Array 

FHSS Frequency Hopping Spread Spectrum 

FM  Frequency Modulation 

FSM Finite State Machines 

ISI Intersymbol Interference 

KBps Kilobytes per Second 

Kbps Kilobits per Second 

Ksps Kilo Samples Per Second 

LE Logic Elements 

LUT Look up Table 

Mcps Mega Chips Per Second 

ML Maximum Likelihood  

MMSE Minimum Mean Square Error 

QPSK Quadrature Phase Shift Keying 

SDMA Space Division Multiple Access 
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SDR Software Defined Radio 

SNR Signal To Noise Ratio 

SOC System On Chip 

TDMA Time Division Multiple Access 

VHDL  VHSIC Hardware Description Language 

VHSIC Very High Speed Integrated Circuits 

WBNR Wideband Networking Radio 

WCDMA Wideband Code Division Multiple Access 

 

 


