
1

WCDMA BASED RECEIVER DESIGN AND

IMPLEMENTATION ON FPGA FOR SOFTWARE

DEFINED RADIO

by

Waqas Mazhar

2010-NUST-MS PHD- ComE-06

MS-65

Submitted to the Department of Computer Engineering in fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

Thesis Supervisor

Prof. Dr. Shoab Ahmad Khan

College of Electrical & Mechanical Engineering

National University of Sciences & Technology

2013

2

DECLARATION

I hereby declare that I have developed this thesis entirely on the basis of my personal efforts

under the sincere guidance of my supervisor Prof. Dr. Shoab Ahmad Khan. All of the sources

used in this thesis have been cited and contents of this thesis have not been plagiarized. No

portion of the work presented in this thesis has been submitted in support of any application for

any other degree of qualification to this or any other university or institute of learning.

Waqas Mazhar

3

ACKNOWLEDGEMENTS

All praises to Allah Almighty, the most gracious the most merciful and the unprecedented

Innovator of this universe, for giving me courage and leading me through. Without His guidance,

it would not be possible for me to complete this landmark. Moreover, I am thankful to my

parents for their prayers, encouragement and moral support in my entire academic career.

I am deeply thankful to my thesis supervisor, Dr. Shoab Ahmed Khan, for his guidance. Under

the shadow of his command, I am able to accomplish this milestone. He is one of the very few

people I have met in my life, who has inspired me to unimaginable scale and encouraged me to

take challenges with interest. Moreover, I would also like to thank Mr. Muhammad Zeeshan

Attari from Center for Advanced Research in Engineering (CARE) who helped me figuring out

the specifications of the design to be implemented.

My compliments to the guidance committee members especially to Dr. Saad Rehman whose

coaching in Computer Architecture and Parallel Processing has helped me a lot in the

implementation of design. The valuable suggestions and guidance of Dr. Arslan Shaukat and Dr.

Sheikh Farhan were great source of formatting my thesis and improved presentation of my

research work.

My deep hearted thanks to long list of friends especially my roommates Mr. Murtaza Naqvi and

Mr. Farhan Ahmed. They cooperated a lot throughout the session of this research work. My other

colleagues such as Mr. Nadeem Iqbal, Major Salman Rasheed helped me wherever possible. I

wish them a big good luck for their career.

4

Dedicated to Hard Working People of Pakistan

5

ABSTRACT

Software Defined Radio (SDR) is of big importance when it comes to secure communication in

hostile environment. In the signal jamming conditions, the effects on the received signal are

undesirable. To counter this problem, the signal to be transmitted is spreaded over the entire

bandwidth using chip code. The receiver then uses the same code for despreading. Moreover, to

counter the undesirable effects of channel, the training sequence is appended with data before

transmission. The receiver uses this training sequence to equalize the effects caused by the

channel. In this thesis, two parts of receiver of software defined radio have been implemented. It

includes CORDIC and Coarse Frequency Estimation. Implementation has been realized on

FPGA because communicational algorithms that provide respective solutions are

computationally intensive. Chosen algorithms for implementation are well evolved and robust.

Detailed design of each of the implementation has been presented along with description. Two

designs are given for coarse frequency estimation algorithm; one of them is optimized for area

and other is for performance. Moreover, the CORDIC implementation is optimized for both

accuracy and area. Numerous fundamental principles of both signal processing and digital

system design have also been mentioned as a part of literature review. Detailed results including

percentage error, throughput and resource consumption are provided. In conclusion and future

work, the parts of the SDR that can work in cascade with implementation are discussed.

6

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION... 13

1.1 Overview ... 13

1.2 Background ... 14

1.3 Problem Description ... 15

1.3.1. High Data Rate.. 15

1.3.2. Demodulation.. 15

1.4 Target Technology Selection .. 16

1.4.3. DSP Microprocessors ... 17

1.4.4. Microcontrollers.. 18

1.4.5. FPGAs ... 18

1.4.6. Overall Comparison .. 20

1.5 Thesis Organization .. 20

CHAPTER 2: LITERATURE REVIEW .. 22

2.1 Introduction ... 22

2.2 Basic Concepts .. 22

2.2.3. Digital Communication... 23

2.2.4. Digital System Design .. 33

2.3 Generic WCDMA Receiver Abstract Design ... 39

2.4 Throughput Calculation of Current Implementation .. 40

2.4.3. System Specifications ... 40

2.4.4. Throughput Calculation .. 41

2.4.5. Doppler Shift Calculation ... 42

2.5 Resources Available for Implementation.. 43

2.6 Relevant Algorithms and Implementations .. 43

2.6.3. CORDIC (Coordinate Rotation Digital Computer) .. 43

2.6.4. Coarse Frequency Estimation & Compensation ... 47

2.7 Summary ... 49

7

CHAPTER 3: DESIGN METHODOLOGY ... 50

3.1 Design & Implementation of CORDIC Algorithm ... 50

3.1.3. Major Top Level Parts of CORDIC System ... 50

3.1.4. Selection of total Number of Iterations for CORDIC Algorithm 51

3.1.5. System Capabilities... 52

3.1.6. Integration of Multiple Modes in Single System .. 53

3.1.7. Usage of Trigonometric Identities to Solve Convergence Problem 53

3.1.8. CORDIC Core Implementation .. 55

3.1.9. Input and Output Interfaces Implementation .. 57

3.1.10. Control Path Implementation .. 59

3.2 Coarse Frequency Estimation Implementation ... 59

3.2.3. Shared Resource Coarse Frequency Estimation Datapath .. 63

3.2.4. Performance Optimized Coarse Frequency Estimation Datapath 65

3.2.5. Coarse Frequency Estimation Control Path .. 65

3.3 Summary ... 65

CHAPTER 4: RESULTS AND DISCUSSION ... 67

4.1 CORDIC Implementation Results .. 67

4.1.3. Percentage Error ... 67

4.1.4. Simulated Waveforms... 71

4.1.5. Area Consumption and Timing Results .. 74

4.1.6. Comparison with Previous Implementations .. 75

4.1.7. Maximum Throughput Calculation .. 76

4.2 Coarse Frequency Estimation Implementation Results .. 76

4.2.3. Percentage Error for shared resource design .. 76

4.2.4. Percentage Error for Performance optimized design .. 77

4.2.5. Area Consumption and Timing Results for shared resource design 78

4.2.6. Area Consumption and Timing Results for performance optimized design 80

4.2.7. Maximum Throughput Calculation for Shared Resource Design 81

8

4.2.8. Maximum Throughput Calculation for Performance optimized Design 81

4.2.9. Simulated Waveforms... 82

4.2.10. Comparison with Previous Implementations .. 85

4.3 Results Discussion .. 85

4.4 Clock Relationship .. 90

4.5 Summary ... 91

CHAPTER 5: CONCLUSION AND FUTURE WORK .. 92

5.1 Conclusion .. 92

5.2 Future Work .. 93

5.2.1. Channel Estimation ... 94

5.2.2. Fine Frequency Estimation ... 96

5.2.3. Residual Phase Estimation .. 97

REFERENCES .. 99

PROPOSED SOLUTION SPECIFICATIONS .. 104

APPENDIX: ABBREVIATIONS .. 106

9

LIST OF FIGURES

Figure 1.1 Abstract Architecture of Software Defined Radio .. 14

Figure 1.2 Target Technologies Comparison against multiple trends .. 20

Figure 2.1 Digital Communication System [6] ... 23

Figure 2.2 Baseband (Modulating) Signal .. 24

Figure 2.3 Carrier Signal... 24

Figure 2.4 Amplitude Modulation .. 25

Figure 2.5 Frequency Modulation... 25

Figure 2.6 Binary Phase Shift Keying .. 26

Figure 2.7 CDMA Modulation ... 26

Figure 2.8 (a) Low Frequency Signal (b) Medium (Band pass) Frequency Signal (c) High

Frequency Signal .. 28

Figure 2.9 Effects of limiting bandwidth of baseband signal before transmission 30

Figure 2.10 Minimum Bandwidth Pulse that also satisfies Nyquist zero intersymbol interference

criterion ... 30

Figure 2.11 Direct Sequence Spread Spectrum [13] ... 32

Figure 2.12 Mealy Finite State Machine Architecture [16] .. 37

Figure 2.13 Moore Finite State Machine Architecture [16] ... 38

Figure 2.14 Abstract Diagram of Receiver ... 40

Figure 2.15 Component wise throughput Calculation .. 42

Figure 2.16 Single Iteration of CORDIC Algorithm .. 45

Figure 3.1 Top Level Flow Diagram of CORDIC Implementation.. 51

Figure 3.2 Calculated Magnitude Error in the simulation of CORDIC Algorithm (N = 16) 51

Figure 3.3 Calculated Magnitude Error in the simulation of CORDIC Algorithm (N = 32) 52

Figure 3.4 CORDIC Core Datapath Implemented Design ... 56

Figure 3.5 Main CORDIC Datapath Design ... 58

Figure 3.6 Training Sequence to be Transmitted .. 59

Figure 3.7 Top Level CORDIC Control Path (with control signals) .. 60

Figure 3.8 Coarse Frequency Estimation Algorithm Pre Calculable Result 61

10

Figure 3.9 Absolute Difference between the Consecutive Samples of the result shown in Figure

3.8.. 61

Figure 3.10 Shared Resource Coarse Frequency Estimation Datapath .. 62

Figure 3.11 Coarse Frequency Estimation Control Path for optimized area implementation 64

Figure 3.12 Performance optimized Coarse Frequency Estimation Datapath 66

Figure 4.1 Percentage Cosine Error of 32 bit CORDIC Implementation (Rotation Mode) 68

Figure 4.2 Percentage Sine Error of 32 bit CORDIC Implementation (Rotation Mode) 68

Figure 4.3 Visual Comparison of Results of CORDIC Calculation of Cosine with Corresponding

MATLAB Output.. 69

Figure 4.4 Visual Comparison of Results of CORDIC Calculation of Sine with Corresponding

MATLAB Output.. 69

Figure 4.5 Percentage Error for Vectoring mode of CORDIC implementation 70

Figure 4.6 Visual Comparison b/w Values generated by Vectoring mode and MATLAB 71

Figure 4.7 Simulated Waveform for Rotation mode of CORDIC .. 72

Figure 4.8 Simulated Waveform for Vectoring mode of CORDIC .. 73

Figure 4.9 Percentage Error of Shared Resource Coarse Frequency Estimation for N=32 77

Figure 4.10 Percentage Error of Shared Resource Coarse Frequency Estimation for N=64 77

Figure 4.11 Percentage Error of Performance Based Coarse Frequency Estimation for N=32 ... 78

Figure 4.12 Percentage Error of Shared Resource Coarse Frequency Estimation for N=64 78

Figure 4.13 Simulated Waveform for Performance Optimized Coarse Frequency Estimation

Algorithm Implementation for training sequence length 32 ... 83

Figure 4.14 Simulated Waveform for Shared Resource Coarse Frequency Estimation Algorithm

Implementation for training sequence length 64 .. 84

Figure 4.15 Slice Flip Flop and DSP48 blocks Utilization Comparison of Coarse Frequency

Estimation Implementation ... 86

Figure 4.16 Throughput and Clock for both designs of Coarse Frequency Estimation

Implementation ... 87

Figure 4.17 Area Utilization of CORDIC Top Level Implementation ... 88

Figure 4.18 Clock and Throughput of CORDIC Top Level Implementation 88

Figure 4.19 Final Throughput for 32 length training sequence ... 90

11

Figure 5.1 Offline calculable part of Channel Estimation Equation (summed up as an array) 96

Figure 5.2 Abstract Diagram of Top Level Datapath Implementation ... 98

12

LIST OF TABLES

Table 2.1 Cases of Fixed Point Number multiplication [5] .. 36

Table 2.2 System Specifications ... 41

Table 2.3 Total Available Resources in xc3sd3400a-4cs484 ... 43

Table 2.4 Actually Available Resources for Current Implementation ... 43

Table 2.5 Functions Calculation using CORDIC ... 44

Table 3.1 Calculation of sine and cosine using CORDIC algorithm .. 54

Table 3.2 Calculation of tan
-1

(y/x) using CORDIC Algorithm (see text)..................................... 55

Table 3.3 CORDIC Core Beahivour ... 55

Table 3.4 Complex Multiplication Using Shared Muliplier ... 63

Table 4.1 Resource Consumed by CORDIC at various levels ... 75

Table 4.2 Resurces Consumed by Shared Resource Coarse Frequency Estimation Algorithm

Implementation at various levels .. 79

Table 4.3 Resources Consumed by Performance optimized Coarse Frequency Estimation

Algorithm Implementation at various levels... 81

13

Chapter 1: Introduction

1.1 Overview

The Software Defined Radio (SDR) is one of the most emerging technologies in the field of

wireless communication. The reason for which it is known as ‘Software Defined’ is the fact that

most of the operations done on the signal like modulation, demodulation, frequency estimation,

channel estimation are configurable and controllable by the software. For different SDRs the

extent to which these operations are configurable by the software is different and purely defined

by its architecture. Moreover, it also helps in facilitating the connectivity with wide range of

wired protocols and also can be to designed to work equally well with standard wireless protocol

implementations without changing baseline hardware.

Its major advantage over the conventional analog radios is reduced error rate and facility to

encrypt the data sent over the wireless channel. The reason being the digitally designed

components are more predictable and reconfigurable in fulfilling the required design

characteristics and hence far more consistent and deterministic then their analog counterpart. The

power of hardware is increasing rapidly with time which enables radio designers to shift more

and more part of the radio in the software. So, as a bonus, in order to change the functionality,

designers do not need to change the underlying hardware which reduces the overall development

resource consumption.

Due to its ability to include multiple encrypting techniques for highly secured communication, it

is very popular among military forces of many countries. Moreover, countries tend to use the

legacy GSM systems in order to communicate at the long distances. For Example, In Pakistan,

the commercial telecommunication network is very strong along the eastern border with India.

SDR can be designed to work with GSM protocol with its own baseband encryption, making it

possible to send messages to any part of a country.

14

For the communication with another local radio directly, it generally uses jamming resistant

techniques. These techniques spread the transmitted signal over its entire bandwidth irrespective

of the changes in baseband signal. Moreover, encryption is also employed on the baseband signal

which makes it further secure. Typical abstract architecture of SDR is shown in Figure 1.1.

Analog to Digital/

Digital to Analog

Conversion

Information

Antenna

Analog Front End
Digital Signal

Processing

Figure 1.1 Abstract Architecture of Software Defined Radio

One of the most vital parts of SDR is analog front end. It converts the high frequency modulated

signal to an intermediate frequency which digital system is able to process. This process is

known as mixing. Analog to Digital Converter converts the analog signal at intermediate

frequency to digital signal for Digital Signal Processor (DSP) to process. DSP is the most

complex and most reconfigurable part. It processes the digitally converted signal for necessary

algorithms of digital communication. This may include Start of Burst Detection, up or down

sampling, intermediate carrier frequency estimation, channel equalization and many others.

Information baseband signal is the output of DSP which is given to the type of output it belongs

to. Reverse is the process in case of transmitting information.

1.2 Background

The specific SDR, for which research has been done in this thesis, is the project of Center for

Advanced Research in Engineering (CARE), Islamabad and it is designed for fulfilling the

portable communication needs of Pakistan Armed Forces. The hardware boards for these SDR

are prepared by the Turkish based company Aselsan Radio. The major contribution of CARE,

Islamabad is to design the brain of hardware board which includes the design of different

architectural layers including physical and networking layer. The technology of implementation

of architectural layers is hybrid. It includes embedded microprocessors, DSP processors and

Field Programmable Gate Arrays (FPGAs).

15

Basic requirements of this SDR, being a part of military equipment, are that it must be highly

jamming resistant, high level data encryption, automatic error correction of bit stream and high

data rate. To meet all these requirements, the design of WCDMA at abstract level is shown in

Figure 2.14. In this dissertation, the major concentration will be on the design of following

constituents of receiver.

 Coarse Frequency Estimation

 CORDIC Implementation

1.3 Problem Description

In this section, the main objectives of design of parts of Software Defined Radio are given.

1.3.1. High Data Rate

Design of the parts of the SDR is required to achieve high data processing throughput. Mainly

two designs of Coarse Frequency Estimation Algorithm have been implemented. One of them is

targeted to the SDR of high throughput while other targets medium data rate SDR. High

throughput corresponds to the SDR of throughput up to 384 kbps while medium throughput

relates to the SDR of throughput up to 128 kbps. These implementations may give user the

choice to choose one of the designs depending upon the resources available and targeted

throughput.

Due to the complexity of the algorithms, the target technology for the receiver will be Field

Programmable Gate Array. The reasons of the choice of target technology are given under topic

Target Technology Selection on Page 16. Moreover design must be extendible so that it is

possible to make it work for future configurations.

1.3.2. Demodulation

To demodulate the receiving signal, the exact frequency of the carrier is required to be multiplied

with transmitted signal. The problem exists is the regeneration of the exact carrier signal at the

receiving end. Easiest way of demodulation is by using crystal oscillator to regenerate an exact

frequency of carrier at receiver end and multiply it with received signal. This type of

16

demodulator is known as synchronous or coherent demodulator [1]. For this type of

demodulation, following problems will occur.

 Crystal oscillator of exactly same frequency must be employed for transmitter and

receiver.

 With the process of aging, the crystal oscillator will start to divert from the frequency

signal for which it was employed. This will cause distortion in the receiving signal.

 Overall cost of the design will increase.

The most feasible solution to this problem is to implement some method that can measure the

frequency of the received carrier and generate that frequency. But alternative methods are more

complex and require more resources to implement.

1.4 Target Technology Selection

The targeted technology for the implementation of physical layer is the baseline hardware on

which the design is incorporated. Basic parameters that govern the selection of category of

device technology for implementation are;

 Time to market.

 Maintainability.

 Area of specialization.

 Computational complexity of design.

 Power constraints on the system.

 Industrial Standards for targeted application.

 Testing Requirements.

 Accuracy in calculation.

. It may include one or multiple of the following technologies.

 DSP Microprocessors

 Micro Controllers

 FPGAs

17

Most of DSP Microprocessors and Microcontrollers have Harvard, Modified Harvard or Von

Neumann Architecture. Von Neumann Architecture is explained in great detail in [2]. Major

difference between these architectures is Von Neumann architecture has only one memory which

is served as program and data memory. Harvard Architecture postulates of having separate

memory both for data and program. This increases the speed of the architecture as program

instruction and data can be obtained simultaneously. But Modified Harvard Architecture does

not allow this strict partition. In this architecture, data can be accessed as an instruction and vice

versa.

1.4.3. DSP Microprocessors

DSP Microprocessor is the type of processor that is specialized for DSP applications. They are

generally Reduced Instruction Set Computer (RISC) based. Its instruction set includes

instructions that can effectively perform DSP operations using hardware acceleration.

Advantages of DSP Processors are

 DSP microprocessors are optimized with respect to power consumption. They are also

designed to consume power variably depending on the performance required by the

application.

 Low time to market along with only software of DSP processor is required to be tested.

 Change in functionality would be achieved by changing the software only.

 Overall maintainability cost is quite low and computational complexity capability is high.

Their overall computational capability and power consumption depends on the

architecture and clock speed.

 Many high end DSP Processors have support for single precision floating point

calculation in hardware. This allows the programmer to perform DSP operations with

very high accuracy.

Weakness of DSP microprocessors is following

 If the implemented design in DSP does not meet performance requirements, it may be

needed to replace it with higher benchmark DSP processor. It can cause design to change.

18

1.4.4. Microcontrollers

Microcontrollers are small computers that can be programmed to do a specific task. They have

integrated resources that can be used to store programs. Microcontrollers are both RISC and

Complex Instruction Set Computer (CISC). Both RISC and CISC are explained in [2] and [3].

Microcontrollers may have both fixed and floating point arithmetic implementation. Hence

accuracy of their computation varies.

Advantages of Microcontrollers are

 They contain major resources on board. So, they can operate standalone. This decreases

the cost for hardware design.

 Optimized for low power consumption.

 Low Time to market.

 High maintainability.

 To change functionality, only software needs to be changed.

Disadvantages of Microcontrollers are

 As many other resources are also fabricated along with the processor, the overall

processing capability of processor is quite low. Microcontrollers are generally targeted

for low end and highly power constraint applications.

 If required processing power is more than offered by a microcontroller, generally

controller needs to be changed.

1.4.5. FPGAs

FPGA is a reprogrammable device that can be used to implement hardware of any digital design

defined by a software code. The major vendors are Xilinx and Altera. Its technology is

completely different from Application Specific Integrated Circuit (ASIC) in the sense that any

digital hardware can be implemented and erased making it flexible to work with large number of

applications. The basic functional unit for logic implementation is Logic Element (LE) in Altera

and Slice in Xilinx FPGAs. Both of these units have multiplexers and Look up Tables (LUT) to

19

implement digital logic of any kind. These units are connected together with programmable

connections.

Generally the design of FPGA is targeted for high throughput DSP and Networking

Applications. Being very important in the field of DSP, designers of FPGAs have provided

hardware acceleration of extensively used blocks. For example, as multiplication and

accumulation is very widely used operation, their support is provided in hardware i.e. special

dedicated blocks are made to take care for these operations.

Microprocessors, both of hard-core and soft core type are used in FPGAs. By hard core

microprocessors, it means that processor is already fabricated within FPGA. Whether or not that

processor is utilized, it always remains inside as an extra resource. These processors can be

connected with custom logic developed inside FPGA logic units. Xilinx FPGAs have 32 bit

version of hard-core Power PC microprocessor.

Soft-core processors are the Intellectual Properties (IP) of certain company that can be employed

using the basic building blocks of FPGA. Xilinx provides 32 bit Microblaze and 8 bit Picoblaze

microprocessors. Unlike soft-core, hard-core processors do not consume a single logic unit in an

FPGA. Moreover, hard-core processors are faster than soft-core processors.

Major Advantages of FPGAs are

 Hardware with optimized performance for a specific purpose can be designed.

 Performance can be scaled by employing extra logic. Performance scaling is only limited

by the area of FPGA.

 Unlike ASICs, hardware design can be changed according to the requirement.

 FPGA contains on chip memory that enhances the speed of design.

 Exact Requirement Specific design can be made at low cost while getting much higher

performance than that of General Purpose Processors (GPP) and DSP Processors.

 Microprocessors can be connected with custom logic and that logic can be used by giving

instructions in software. This looks like a processor with hardware acceleration of some

certain set of instructions.

20

Major Disadvantages of FPGAs are

 In case of design change, hardware needs to be changed that means resources of

hardware testing are needed.

 While development, software and hardware both needs to be tested. This requires a lot of

extra effort.

 Power consumption of FPGA is higher than that of microprocessors and microcontrollers.

 Extra skills are needed to develop and test hardware in logic units of FPGA. It increases

the cost of overall design [4].

1.4.6. Overall Comparison

Based on the analysis of problem description along with the strengths and weaknesses of

nominated target technologies, FPGA is the best option for implementation. Briefly stated;

algorithms to be implemented are highly computationally intensive and are not a part of any

standard implementations, it is quite evident that there is a need to map entire application on

FPGA for effective implementation [5].

Overall comparison is summarized in Figure 1.2.

General Purpose

Microprocessors

DSP

Microprocessors

FPGAs

ASICs

Flexibility Maintainability

Performance Time to market

Figure 1.2 Target Technologies Comparison against multiple trends

1.5 Thesis Organization

This document includes the details of the overall information gathered for the research work

along with the proposed design of parts of Software Defined Radio. Chapter 1 is the introduction

and background to the research work. It is followed by the Chapter of Literature Review that

21

contains relevant researches and concepts. This chapter contains the details of primary concepts

used in the implementation and proposed design. Moreover, it also comprises the previous

relevant implementations and thesis related calculations.

Chapter 3 has detail of the proposed design of various parts of SDR; how and what was the

approach of this design is the key concentration of it. All details are illustrated by the tables and

figures of proposed design. It is followed by the Chapter 4 which is of results of the

implementation of proposed design and its discussion. Final is the Chapter 5 which briefly

concludes the whole research and presents the opportunities of the work that can be done in

future.

22

Chapter 2: Literature Review

2.1 Introduction

This chapter summarizes the details of research in the field of SDR. A large number of research

citations have been published in this accord. Although there are many citations, this literature

review concentrates on the design theme of the physical layer of SDR. Design theme majorly

includes the translation of the mathematical algorithms into architecture such that the

requirements assumed for design are fulfilled. Analyses of algorithms are done and various other

parameters are discussed that affect the design and its performance.

Already published citations include architectures that are optimized for different requirements.

Moreover, algorithms used in these architectures are also discussed. Various competent

technologies for SDR are mentioned and fact based analysis is done on technologies using which

architectures can be implemented and reasons are given on why a particular technology is

selected. The overall abstract design of the SDR for which the research has been conducted is

also given.

This chapter starts with the discussion on the fundamental concepts related to digital

communication and digital system design techniques with relevant examples. All of these topics

also include relevant technical terms and their definitions. It is then followed by the trends in the

research of digital system design and implementation of architecture in different publications.

After providing further relevant information, this chapter concludes on the algorithms used in the

design, mathematical calculation and abstract design of overall SDR used in this research.

2.2 Basic Concepts

This section contains all of the most basic relevant concepts used in the research. Most of these

concepts are related to terminologies and definitions of digital communication in wireless

domain and digital system design.

23

2.2.3. Digital Communication

When two devices communicate with each other digitally, such that most of the processing of

data is done in digital domain, it is known as digital communication. By digitally, it is meant that

a received signal is converted into digital stream before a receiving device can operate and find

the message hidden in it. Reverse is the case for signal transmission; a device processes a

message into digital stream and then that stream is converted into analog signal before

transmission. This stream is converted into analog waveform before transmission. Digital

systems along with examples are given in detail in [1] and [6].

There are also cases for which communication at all stages is digital and at no stage it is

converted into analog. This type of communication is for the devices that are at relatively very

short distances i.e. of the order of few meters or even lesser. In the context of this thesis, by

digital communication, it is meant that two communicating devices are at large distances i.e.

typically 10 meters or more.

There is various numbers of stages that combine together for making digital communications

possible. Nice overview about these stages has been presented in [6]. Each of the stage is used in

both transmission and reception of data and they are connected in cascading. Moreover, stages

are used in reverse in case of receiver as compared to transmitter. Figure 2.1 shows various

stages of digital communication system.

Format
Source

Encode
Encrypt

Channel

Encode

Multiple

x

Pulse

Modulate

Bandpass

Modulate

Frequency

Spread

Multiple

Access

Format
Source

Decode
Decrypt

Channel

Decode

Demulti

plex
Detect

Demodu

late
Frequency

DeSpread

Multiple

Access

Channel

Information

Information

Synchro

ni-

zation

Bit Stream

Digital

Baseband

Waveform

Digital

Bandpass

Waveform

Optional Stage

Essential Stage

Figure 2.1 Digital Communication System [6]

24

Figure 2.1 shows an overview of the essential entities required. Many of them are optional and

there use is subjected to requirement. Synchronization between receiver and transmitter is also

very essential to the overall communication and methods of synchronization are the most vital

part that decides the overall performance benchmark of digital receiver in communication system

as proved in [7]. All of the relevant concepts that are in the scope of research are given below.

2.2.3.1. Modulation

Modulation is the process of embedding an information containing signal into a second signal so

that the transmission of the signal gets easier [8]. Mathematically, it is defined in eq. 2.1.

 () () () - - - - - - - - - - (2.1)

The information bearing signal () is generally known as baseband signal or Modulating signal

while the signal which is used to facilitate transmission is non as carrier signal ()

[1]. Figure 2.2 and Figure 2.3 shows baseband and carrier signal respectively.

Figure 2.2 Baseband (Modulating) Signal

Figure 2.3 Carrier Signal

Widely used types of Modulation are Amplitude Modulation and Frequency Modulation. In

Amplitude Modulation, the amplitude of the carrier signal is varied according to the amplitude of

the baseband. Figure 2.4 and Figure 2.5 shows modulation of a baseband signal. In frequency

25

modulation, frequency of carrier is changed on the basis of the amplitude of baseband signal.

Both of these types have their own advantages and disadvantages and their use is dependent

upon the target application.

Figure 2.4 Amplitude Modulation

Figure 2.5 Frequency Modulation

If the baseband signal is in digital form, the modulation is replaced by the word shift keying.

That is for digital domain, types would be Amplitude shift keying and Frequency shift keying. In

this thesis, modulation scheme has been used is PSK (Phase Shift Keying). In this scheme,

information of baseband is in the phase of the carrier signal. There can be two out of phase

carrier signals each can be used to represent a digital symbol. That is transmitting in phase

sinusoidal for zero and out of phase sinusoidal for one. This is known as binary phase shift

keying (BPSK) as shown in Figure 2.6.

Similarly, if four sinusoidal waveforms, each out of phase by 90 degrees, are used to represent

four symbols of transmission, this type is Quadrature or Quaternary Phase Shift Keying [9]. So,

we can generalize that if M numbers of waveforms (separated by (2pi/M) radians) are used each

representing a single digital symbol of transmission, then this type of modulation is known as M-

ary Phase Shift Keying. Increasing M starts to increase the data rate too but for the same error

rate requirement, overall power required to transmit a single symbol also increases [6].

26

1 0 1 0 1

Figure 2.6 Binary Phase Shift Keying

For CDMA modulation, actual data stream is spreaded over the entire allocated bandwidth. It is

done by mixing data with pseudo random sequence of much higher data rate. Receiver must

know the pseudo random sequence in order to demodulate the received signal. Figure 2.7 shows

CDMA modulation.

Figure 2.7 CDMA Modulation

27

2.2.3.2. Demodulation

The process of recovering an information containing signal from modulated signal is known as

demodulation [1]. Generally, there are two major demodulation techniques, each with their own

pros and cons. These are synchronous and asynchronous demodulation [8].

Synchronous demodulation is the straight forward technique in which baseband signal is

recovered by multiplying the regenerated carrier signal, at the receiver, of exactly same

frequency as in modulated signal. It is relatively easier technique to execute but regenerating a

signal with exact carrier frequency is very difficult to achieve and increases the overall cost of

the system. Moreover, with ageing of the components in the circuitry, the overall frequency of

regenerated carrier also starts to change. To counter this problem, frequency estimation

technique is used. This technique can be realized by including a training signal in transmission

[7]. This training signal (already known at the receiver end) is used to estimate the actual

frequency of the transmitted signal. After the estimation is made, the signal of that frequency is

regenerated at the receiver end.

In case of asynchronous demodulation the need for synchronizing transmitter and receiver is

eliminated (as required for synchronous demodulation) [8]. It includes the way of detecting the

envelope of carrier signal (used for demodulation of Amplitude Modulation [1]).

2.2.3.3. Signal Energy

There are various ways of measuring the strength of signal. One of them is Signal’s Energy.

Signal Energy is defined as the area under the square of the signal. Mathematically, it is defined

in eq. 2.2. [1],

 ∫ | ()|

 - - - - - - - - - - (2.2)

It is not to be confused with the term known as Energy signal. Energy signal is the signal whose

energy is finite (0 <E<∞) [10].

2.2.3.4. Signal Power

This measure of signal tells the rate of energy a signal has. For a signal to be meaning full, it is

necessary that its power is less than infinity. Mathematically signal power is defined in eq. 2.3.

28

∫ | ()|

 - - - - - - - - - - (2.3)

It is not to be confused with Power Signal. Power Signal is the one whose energy is infinite but

power is finite. [10].

2.2.3.5. Bandwidth

The range of frequencies over which power (or energy) density spectrum is concentrated is

known as bandwidth of a signal [10]. Strictly speaking, all of the frequencies present inside a

signal form its bandwidth. One of the most fundamental concepts of Signal Processing is that if

signal is time limited then it can’t be made limited in frequency domain. Vice versa of this is also

true [1]. Practically, all signals are time limited and hence their bandwidth is infinite. But most of

energy (or power) of that signal is concentrated in specific range of frequencies. So, generally

accepted definition of bandwidth is up to range of frequencies that make certain proportion of

energy (or power) of signal. This proportion may be 75% or 90% or 95% or 99% depending

upon the scenario [10].

If bandwidth of signal is concentrated about zero, it is known as low-frequency signal. Similarly,

if bandwidth is concentrated on high frequency signals, the signal is of high frequency type. If it

contains the hybrid sort of signal that contains the mix up of low and high frequencies, type of

signal is known as band pass signal [10]. Figure 2.8 shows each of the signal type.

X(f)

f

X(f)

f

X(f)

f

(a) (b) (c)

X(f)

Figure 2.8 (a) Low Frequency Signal (b) Medium (Band pass) Frequency Signal (c) High Frequency

Signal

Bandwidth is an extremely precious resource so it is handled very carefully. All of countries in

the world have their respective regulations regarding the use of bandwidth. Its unauthorized use

29

is considered as crime. The reason being the fact that if more than one user is transmitting signal

at the same place and time in same bandwidth, interference will occur which will cause the

receiver fail to communicate.

2.2.3.6. Signal to Noise Ratio (SNR)

It is the metric of measuring the overall quality of a signal. As a signal propagates through any

channel, it gets affected by the noise in the channel. Effect of noise is more as the distance from

transmitter is increased which in turn causes to increase the overall error rate at the receiver end.

The effect caused by this noise cannot be reversed. This noise is known as thermal noise and it

corrupts the signal in an additive fashion. One of the biggest advantages of digital

communication is the graceful degradation in noisy environment [6]. Mathematical

representation of SNR is given in eq. 2.4.

 - - - - - - - - - - (2.4)

2.2.3.7. Intersymbol Interference (ISI)

In the field of digital communications, filters are of prime importance. They are frequently used

throughout in the different stages. One of the most important stages is before transmitting the

signal in both wired and wireless transmission. Signal has to be made band limited in this stage.

While making the signal band limited or by suppressing those frequency contents that are not

allowed due to bandwidth constraints, the signal shape distorts in time domain [1]. Figure 2.9

illustrates how symbols get smeared and interfere with each other after filtering.

Moreover, the channel through which signal will propagate also contain some undesirable

properties. It includes additive noise, multipath effects and for wired channel, the baseband

signal faces non-uniform reactance [6]. Channel noise adds amplitude errors and frequency

response of a channel causes further smearing of transmitted symbol [8].

30

Band limiting Filter

& Undesirable

Channel FIltering

x1

x2 x3 x4

x1

x2 x4

TT

x3

Intersymbol Interference

Figure 2.9 Effects of limiting bandwidth of baseband signal before transmission

To avoid the intersymbol interference, the pulse is shaped in a way that even after making it band

limited, intersymbol interference does not occur. This technique is known as pulse shaping [1]

[6] [8]. The idea behind this technique is to remove the interference at the time instant at which

the pulse is required to be detected [1]. Nyquist proposed different criteria of shaping the pulse

that could reduce or even nullify the intersymbol interference.

0 T-T

Figure 2.10 Minimum Bandwidth Pulse that also satisfies Nyquist zero intersymbol interference

criterion

One of the most famous ideas of Nyquist about eliminating ISI is given in [11]. He stated that, if

the pulse is shaped such that it is zero at the sampling time of other symbols, ISI can be avoided.

Note that, the value of interfering symbol will only be zero exactly when symbol value is meant

31

to be sampled and not before or after the sampling time. By following this criterion, we can

make sure that even after band limiting a signal, ISI will be avoided. The pulse in Figure 2.10 is

the minimum bandwidth pulse that satisfies the Nyquist criterion of zero ISI [1].

2.2.3.8. Multiple Channel Access:

In case of two or more wireless radios operating within range and trying to talk to some other

radio, there is a chance of collision. To avoid this, it is quite pertinent to use some anti-collision

methods. The biggest problem while using these methods is the way multiple signals are handled

together. Careless handling may cause the signal quality to deteriorate because of the

interference from other signals [12]. Anti-collision methods include:

Space Division Multiple Access (SDMA)

In this kind, same frequency transmitters are separated in space. They can transmit their data

where they are at enough distance from other same-frequency transmitter such that their

transmission cannot be collided. Simply, each same frequency transmitter has its own exclusive

territory.

Time Division Multiple Access (TDMA)

In this type, transmission from different transmitters is divided in time. In simpler words, when

one transmitter transmits, all other same frequency transmitters in its proximity are banned from

transmitting a signal. This phenomenon also occurs when there are multiple devices and only one

transmitter, the system requires TDM type in which transmitter is multiplexed and sends data of

every device for some predetermined amount of time.

Frequency Division Multiple Access (FDMA)

Multiple devices are allowed to transmit within their pre allocated frequency ranges. Using this

Phenomenon, multiple devices can transmit at same time and at same location.

Code Division Multiple Access (CDMA)

Code division multiplexing access is one of the multiple channel access methods in which

multiple transmitters transmit data at same location, time and frequency. The transmission of all

transmitters is spreaded in entire available frequency spectrum. The key difference between their

transmissions is the spreading code or device specific transmission law. [12]. This transmission

32

specific code is known to the receiver in advance. Receiver uses the method of co relation for

detection of the transmission of interest.

Wideband Code Division Multiple Access (WCDMA):

This is the variant of CDMA in which upload and downloaded streams are divided into time or

frequency slots. It contains the integration of multiple channel access methods. For frequency

division/ Code Division multiple access, uplink and downlink have different frequencies. For

time division/Code division multiple access, uplink and downlink are separated by time slots

[12]. All characteristics contained by CDMA are also the part of WCDMA.

2.2.3.9. Spread Spectrum Techniques:

In CDMA, signal can be spreaded using different techniques, widely used are following.

Direct Sequence spread spectrum (DSSS)

In this type of spreading, the modulation of carrier is done for the second time with some pseudo

random code. This code differs from the information in the sense that its bit rate is higher and

usually it does not effectively contain any information. It is also known as ‘chips’ and the bit rate

is known as ‘chip rate’ [13]. High bit rate of code causes the information containing carrier to

wide spread in frequency which has multiple advantages. The information in the signal is

decodable only when the chip sequence is known a priori to the receiver. This causes the

resistance against unauthorized listening of the signal. Figure 2.11 shows the schematic of DSSS.

Information

Modulation
Carrier Signal

Information

Spreading Modulation

(Performaing DSSS)

Pseudo Random Sequence Known

a priori to authorized receiver only

To Transmission

Figure 2.11 Direct Sequence Spread Spectrum [13]

33

Moreover, multiple transmitters with different chip sequence can transmit the signal at same

frequency, time and space which decreases the bandwidth requirement. Also, being spreaded at

wide frequency range, it is less vulnerable to jamming due to the fact that jammer has to transmit

a confusing signal to extremely wide range of frequency to be effective which will require huge

amount of power.

Frequency Hopping Spread Spectrum (FHSS)

In this type of spreading, the carrier containing information is hopped pseudo randomly over

different frequency within permitted bandwidth [14]. For different systems, the speed with which

carrier frequency hops over different frequencies is different. This pseudo random hopping

sequence of carrier frequency is known a priori to the receiver.

2.2.4. Digital System Design

When it comes to mapping DSP systems on fully customizable target technology i.e. Field

Programmable Gate Array, it is quite important to know that fully customizable designing

capability acts as both advantage and disadvantage. Advantage is due to the fact that designer

can design the system by purely using his own creativity effectively independent of any

architecture designed before which gives him full control to create perfectly optimized system

for given set of requirements. And disadvantage is that, every new part of design has to be fully

tested and this testing procedure requires extra effort. Moreover, if carelessly created, it becomes

difficult to change or to add new features in the system.

As soon as FPGAs emerged into the market, they have become ideal for implementing real time

DSP systems. FPGA designer companies designed internal structure of FPGAs in a way that

makes it ideal for doing multiplication and accumulation at extremely fast rate; a quite common

operation in DSP algorithms. Over the period of its development, the system designer’s

capability and confidence increased due to new advances in this technology allowing them to

design a whole system on a single chip (SOC). Market leaders Xilinx and Altera both are getting

confidence from their customer organizations by making FPGA system designing tools that are

easier to learn and can implement high caliber digital systems in lesser time.

34

The development environment used for programming depends on the company that has designed

the FPGA chip used within. Development board is the Printed Circuit Board (PCB) that contains

the chip of FPGA physically connected with different number of peripherals. Xilinx made boards

include Spartan 3, Spartan 3A, Vertex Series, Spartan 3A-DSP etc. and Altera’s FPGA leading

board designer is Terasic Technologies who has made series of DE-2 and DE-3 boards.

For Xilinx FPGAs development environment is Xilinx ISE in which a project can be created and

navigated, although it provides basic ability to write a program in prescribed language with some

facilities but other softwares designed by Xilinx can also be used to refine the design. Each of

these softwares is specialized for a specific purpose. Some of these softwares are Xilinx

PlanAhead, Chip Scope, Embedded Development Kit, System generator, iMPACT and Core

generator etc. Detailed information on these softwares can be obtained from manufacturer’s

website. For Altera FPGAs, Quartus 2 designed by Altera Corporation is used.

2.2.4.1. Suitable Programming Languages

The most basic languages used for its programming is Verilog and VHSIC Hardware Description

Language (VHDL). The basic purpose of this language is to give the description of hardware

needed to be built. The major difference between this language and other commonly used

languages such as C, C++, C# etc. is that the description given by this language is constructed in

hardware and its lines of code generally works in parallel. Verilog has some of its constructs

similar to C Language. Moreover, C language is also used quite extensively in the design of IP

cores in FPGAs. The role of C language is to program the hardcore or soft core predesigned

readily available processors so that those processors can work in conjunction with the custom

designed hardware. For simulation of purposes, stimulus can also be written in Verilog.

2.2.4.2. Combinational and Sequential Circuits

In any digital design system, there are two types of circuits, combinational and sequential.

Combinational circuits does not contain any memory elements, moreover, they also have no

feedback input. Moreover, they also do not synchronized on clock ticks. On the other hand

sequential circuits can produce delays in their outputs due to presence of memory elements in

them and can have feedback input.

35

2.2.4.3. Floating & Fixed Point Format

To convert computation of DSP algorithms into live implementation, the numbers are to be

mapped on digital voltage lines for arithmetic operations. There are two types of floating point

numbers; single and double precision floating point. Processors having floating point arithmetic

capability are known as floating point processors. The detail of floating point format and its

arithmetic is given in IEEE standard for floating point arithmetic.

Processors that have floating point number processing capability are bound to do three

operations automatically: exponent adjustment, mathematical operation and normalization.

Floating point numbers are used where any number is required to be represented over extremely

large dynamic range with high accuracy. In DSP algorithms, this is generally not a requirement.

Implementation of floating point arithmetic is more power and area hungry while giving lesser

performance, hence it is generally avoided [5].

Fixed point implementation has lesser area requirements and is ideal for operation in power

constraint embedded systems. However, due to its less ability to perform automatic operations,

this format is required to be traced and guaranteed by the designer of the system. In case of over

flow or under flow, the handling is quite different from floating point numbers and if handled

carelessly, it may lead to incorrect results. Shortly the track of fixed point format is required to

be done manually after each set of operation. Moreover, it is flexible in the sense that, depending

upon the designer, custom number of bits can be assigned to fractional and integral part which

gives extended control over the accuracy and range of number to be represented.

Representation of fixed point format is known as Q point format. For example Qn.m represents a

number of n + m bits with n and m bits are used to represent integral and fractional part of the

number respectively. If two numbers with Q4.5 and Q6.4 are added, result will be in the format

of Q6.5 (largest integral and fractional number is selected). In case of multiplication result will

be dependent upon the sign of each number and results will be as shown in Table 2.1.

36

First Number Second Number Result

Unsigned Qn1.m1 Unsigned Qn2.m2 Unsigned Q (n1 + n2).(m1 + m2)

Signed Qn1.m1 Unsigned Qn2.m2 Signed Q (n1 + n2).(m1 + m2)

Unsigned Qn1.m1 Signed Qn2.m2 Signed Q (n1 + n2).(m1 + m2)

Signed Qn1.m1 Signed Qn2.m2 Signed Q (n1 + n2 - 1).(m1 + m2 + 1)

Table 2.1 Cases of Fixed Point Number multiplication [5]

To counter this problem, hardware embedded specially designed clock lines that supply clock

ticks in different blocks are present inside FPGA. Moreover, care is also required to be taken

while working with clock as it is not a good practice to divide a clock using cascade of counters

and then giving this clock to some other module to operate. In order to perform operations on the

clock, Digital Clock Manager (DCM) blocks are used [15].

2.2.4.4. Finite State machines

Finite State machines (FSM) are ideal for those systems that require sequence of operations to

fulfill the desired task. It has the ability to make logical decisions on the basis of previous

operation or its output values. Each state is a stable entity which system can occupy. The

transition from one state to another state is done under the control of outside world-input [16].

One typical design may include FSM that can generate control signals specific for each state.

The general design of FSM includes state register which represents the current state of the

machine. The most important factor in this regard is the encoding of different states within the

state register.

There are different encoding schemes for state register as binary encoding, one hot encoding,

almost one hot encoding and gray encoding. Each of these schemes have their advantages and

disadvantages and are used depending upon the requirement of the system. For example for one

hot encoding, area requirement is high but transition between different states is fastest due to

state transition logic is simplest. Hence it is highly suitable for performance hungry systems.

Similarly, the binary encoding is area efficient but its transition logic is complex which

consumes more time in state transition [5].

37

State machines are based on three major entities; next logic decoder, clock based memory units

and output logic decoder. Historically, there are two distinct types of state machines in which all

of these entities are used in different manner. State machines can be synchronous if they get

input generally on the edge of clock (positive or negative) and are asynchronous if their input

decoding mechanism is of combinational type.

Mealy Machine

It is the type of FSM in which both output and next logic decoding depends upon present state

and current user inputs to the FSM. Figure 2.12 illustrates Mealy Machine.

Next

Logic

Decoder

Memory

Units

(Flip

Flops)

Output

Decoder

Next State

Current State

Inputs of State

Machine

Outputs of State

Machine

Figure 2.12 Mealy Finite State Machine Architecture [16]

Moore Machine

In contrast to the former type, Moore Machine is the one whose output is decoded only on the

basis of current state. Figure 2.13 shows the architecture of Moore Machine.

38

Next

Logic

Decoder

Memory

Units

(Flip

Flops)

Output

Decoder

Next State

Current State

Inputs of State

Machine

Outputs of State

Machine

Figure 2.13 Moore Finite State Machine Architecture [16]

2.2.4.5. Latch & Flip Flop

Latch and Flip Flop both act as a memory unit in circuitry. But latch is clock less while flip flop

operates on clock. There are several design approaches that may lead to the formation of latches

inside the design. FPGA vendors generally recommend designers to avoid the latches as they

may lead the overall design to malfunction or become technology dependent. Latches can be

inefficient and cause complications in timing analysis [17]. Care is to be taken while writing the

code. Following approaches should be followed when writing the code in Verilog.

 For each case statement, always use default case.

 Define the state of all relevant registers for every case in all case statements, even in

default case too.

 Define the states of all relevant registers in both if and else statements.

 For synchronous always block, use non-blocking assignment operator for assigning

values to registers.

 For combinational always block, use blocking assignment operator for assigning values

to registers.

2.2.4.6. Block and Distributed Memory Units

Several algorithms require block of data to be saved temporarily somewhere in the system and

then to be used later on for further computation. Moreover, high speed data read/write from the

temporary storage is also a requirement. To fulfill this, on chip block RAM are provided on

39

FPGA. Generally, block RAM read/write both take one clock cycle and these blocks are well

placed such that they are accessible from all parts of FPGAs. Typical size of block RAM is

several kilobits and it depends on the type of FPGA used.

Distributed RAM is a Look Up Table (LUT) present in every Configurable Logic Block (CLB)

of FPGA. Distributed RAM is faster than Block RAM but it is very small in size. Distributed

RAM is faster than block RAM but it is small in size. Moreover, in Xilinx FPGAs, distributed

RAM is of both single and dual port [15].

If memory requirement is high for complex systems then either off chip RAM is used or multiple

FPGAs are connected and used together. Off chip memory has high capacity but their speed is

much lower than that of on chip RAM (both distributed and block RAM). Off chip RAM and

multiple FPGAs working together is generally subjected to the design of the development board

of FPGA.

2.3 Generic WCDMA Receiver Abstract Design

Based upon the general characteristics, in which receiver must be able to recover the baseband

signal without synchronous demodulation, there are multiple choices for the design. It includes

the signal processing immediately after the Analog Front End (AFE) from detecting the start of

burst to the actual stream of information intended for communication. The detailed abstract

diagram of complete SDR receiver is shown in Figure 2.14.

As already discussed, this receiver is the part of SDR project initiated by the CARE organization.

There are series of algorithms that need to be performed on the signal to get the required output.

It is quite important to mention here that the order with which they are performed on the signal is

the ease and availability of all factors required for their operation.

40

Signal Down Sampling

(Four to One)

Correlation of Received Signal

with Spreading Sequence
Spread Sequence

Start of Burst Detection

and Timing Compensation

Data Despreading

Training Samples

Coarse Frequency

Estimation

Channel Estimation &

Compensation

Coarse Frequency

Compensation

Fine Frequency Estimation

Fine Frequency

Compensation

Channel Equalization

Phase Adjustment and

Removal of Training Samples

Error Correction and

Symbol Demapping

Demodulated

Bit Stream

CORDIC

xyz

atan /

sin,cos

cos(z)sin(z)atan(y/x)

Figure 2.14 Abstract Diagram of Receiver

2.4 Throughput Calculation of Current Implementation

This section discusses some requirements and specifications of the design which are preset

before the implementation of necessary parts SDR receiver.

2.4.3. System Specifications

This section tells about the specifications of the SDR receiver to be designed. Table 2.2 shows

the parameters of the receiver to be designed.

41

Serial Number Parameter Design Value

1 Training Length 32 (64 for future systems)

2 Spreading Factor 16

3 Data Length 288

4 Modulation Index 4

5 Modulation Schemes QPSK

6 Target throughput 384 kbps

7 Forward Error Correction 1/2

8 Chip Rate 6.83 Mcps

9 Up sampling Factor 4

Table 2.2 System Specifications

2.4.4. Throughput Calculation

At each part of the receiver, the throughput requirement may be scaled up or down depending

upon the nature of operation it is doing on the data stream. Chip rate has been calculated in eq.

2.5.

 ()

 ()

 - - - - - - - - - - - - (2.5)

Actual Bandwidth in digital domain is after up sampling the chip rate by 4. It can be calculated

as,

 - - - - - - - - - - - - (2.6)

Using the calculation shown above, the throughput require for each constituent component can

be easily calculated. It is shown by Figure 2.15.

42

Signal Down Sampling

(Four to One)

Correlation of Received Signal

with Spreading Sequence
Spread Sequence

Start of Burst Detection

and timing Compensation

Data Despreading

(Spreading Factor is 16)

Training Samples

Coarse Frequency

Estimation

Channel Estimation

Coarse Frequency

Compensation

Fine Frequency Estimation

& Compensation

Channel Equalization &

Phase Adjustment

Training Sequence

Removal (32 samples)

Forward Error Correction

Symbol Demapping

(QPSK)

Demodulated

Bit Stream

192 ksps

384 kbps

384 ksps

426.8 ksps

426.8 ksps

426.8 ksps

426.25 ksps

426.8 ksps

426.8 ksps

6.83 Mcps

6.83 Mcps (Chip rate)

27.306 Mcps

Figure 2.15 Component wise throughput Calculation

2.4.5. Doppler Shift Calculation

.The Doppler shift for the system can be calculated as shown in eq. 2.7.

 (

)

()

 - - - - - - - - - - - - (2.7)

43

2.5 Resources Available for Implementation

The target FPGA for implementation of various parts of SDR is xc3sd3400a-4cs484. This device

is from the family of Spartan 3-A DSP FPGAs from Xilinx. It has quite large number of

resources especially DSP blocks which are highly required in computationally complex

implementations. The resources of this device are shown in the table below.

Resource Quantity

Total Slices 23,872

Total 4 input LUTs 47,744

Total Slice Flip Flops 47,744

I/O Pins 309

DSP Blocks 126

Block RAM 126

Table 2.3 Total Available Resources in xc3sd3400a-4cs484

Algorithms up to data despreading are already implemented. The resources consumed by

previous implementations and actual available resources for systems to be implemented are

shown in the table below.

Resource
Consumed Resources by

already implemented system
Free Resources

Percentage of Free

Resources

Total Slices 9,891 13,981 59 %

Total 4 input

LUTs
13,379 34,365 72 %

Total Slice Flip

Flops
9,621 38,123 80 %

I/O Pins 96 213 69 %

DSP Blocks 69 57 46 %

Block RAM 22 104 83 %

Table 2.4 Actually Available Resources for Current Implementation

2.6 Relevant Algorithms and Implementations

This section discusses the relevant algorithms, implementations and widely practiced designs on

the relevant topics.

2.6.3. CORDIC (Coordinate Rotation Digital Computer)

One of the very important components of the SDR is CORDIC module. This algorithm was

introduced by J. E. Volder in 1959 to fulfill the real time airborne computation [18]. Initially it

44

was targeted for military equipment only but as time passed, it started to be used in application

for commercial purposes too. It is one of the mainstream algorithms for trigonometric functions.

This was presented as a unified algorithm by J.S. Walther [19]. One of the inherent properties of

this algorithm is it does valid calculations for only limited set of inputs. Researchers have solved

this convergence problem mostly by using trigonometric identities.

It is basically an iterative algorithm that can be used in two modes. One mode is rotation and

other is vectoring mode. There are three basic equations, eq. 2.8 – eq. 2.10, that operate under

these modes iteratively.

 - - - - - - - - - - - - - - (2.8)

 - - - - - - - - - - - - - - (2.9)

 - - - - - - - - - - - - (2.10)

 ()

 Initialization Final Values (after N Iterations)

Rotation Mode

 {

 ∏√

Vectoring Mode

 {

 √

 ()

 ∏√

Table 2.5 Functions Calculation using CORDIC

45

Generally the total number of iterations is 16 or 32. Let Total Number of Iterations to be N.

Table 2.5 summarizes the behavior of CORDIC Algorithm. It includes only circular

computational behavior because only this part is used in the implementation of SDR. Linear and

hyperbolic computations of CORDIC are given in detail in [20].

In rotation mode, vector is rotated recursively using known rotations. After N number of known

rotations, vector reach at the desired angle and its x and y components are and

respectively. In vectoring mode, basic concept is to have initial coordinates of the vector whose

angle is required to be calculated. It presumes that initial x coordinate is always positive and

initial y coordinate is any arbitrary number. CORDIC algorithm iterates the y coordinate such

that it becomes zero and net calculation is done which results the angle through which the vector

is rotated. This calculation gives (). Figure 2.16 illustrates single iteration.

(xi,yi)

(xi+1,yi+1)

tan-12-i

zizi+1

Figure 2.16 Single Iteration of CORDIC Algorithm

This algorithm has been implemented in countless number of applications. Generally, the

proposed design and implementations are requirement specific. One of the most comprehensive

researches is done in [21]. It includes the detailed literature about the capabilities of CORDIC

algorithm. This paper also discusses different types of architecture each targeted to different set

of requirements for example iterative type, bit serial type, fully unrolled architecture and hybrid

types. One of the Hybrid type architecture is derived from fully unrolled type in which all

additions and subtractions are done in bit serial form. This paper also includes the details of one

of the first CORDIC implementation in FPGA.

46

2.6.3.1. Previous Implementations

While considering the CORDIC algorithm for hardware implementation, results are always

based on approximation. These errors are introduced due to the quantization. However, by

increasing the resources, designers can reduce errors as per their requirement. A detailed analysis

on quantization errors in CORDIC have been conducted in [22] for both floating and fixed point

hardware implementations. It describes and presents the mathematical theorem for various

scenarios like error propagation in CORDIC iterations and rounding errors in normalization

operation.

With the target implementation of SDR, [23] has implemented a pipelined based architecture that

calculates the value of sine and cosine. They have implemented an angle sequencer that is used

to generate sine/cosine waves. This sequencer will generate saw tooth wave which will be given

as an input to the CORDIC system.

Neji and Boudabous [24] have implemented a CORDIC algorithm that is targeted to

fingerprinting algorithm. Their design precision is up to 14 bits but the design which they have

proposed has convergence problem. The architecture proposed in [23] also has the convergence

problem. The average error for their exponential and tangential designs is 0.005% and 0.01%

respectively.

Some of the generic and fast methods are proposed in [25] and [26]. Authors of [25] have

proposed an architecture that is known as branching CORDIC method. In this method, two

conventional CORDIC iterations are run in parallel. Although this algorithm is fast but it

consumes more area than many other designs which is the drawback of it. Few alternative

implementations are presented in [26] that results in increase speed and reduced area. One of the

proposed modification in conventional design is the use of carry free adders instead of carry

propagate adders.

Other researches include scalable pipelined architecture has been designed and implemented in

[27] in which they claim to have memory less architecture. Number of iterations for the

computation is 14 bit and overall architecture is 16 bit. Both [28] and [29] have compared their

designs with software implementations. Design in [28] has shown that implementation on certain

47

family of FPGA is 27500 times faster than that of implemented in software on 2 GHz T7300

processor, hence it is better to implement CORDIC in hardware for satellite altitude

determination. Their architecture is of iterative type and based on barrel shifter in which they

have limited their implementation to the calculation of sine and cosine functions only.

Similarly in [29], NIOS 2 soft core processor has been used to show the difference in

computation time of CORDIC in software and hardware. Architecture is 16 bit pipeline based.

Special instruction in NIOS 2 processor has been used to invoke the hardware accelerated circuit

of CORDIC and ratio of calculation of the time taken by same instruction in software and

hardware is 26. In this way, it is shown that by using the custom hardware designed in FPGA

with soft-core processor, one can easily increase the overall processing efficiency.

2.6.4. Coarse Frequency Estimation & Compensation

This algorithm is very convenient when demodulation of the received signal at the receiver end

is done without the knowledge of exact frequency of carrier signal. Algorithm selected for

implementation does this estimation by using training samples in transmitted data. This training

data is already known to the receiver. Using this, the rough estimation of frequency is done. This

algorithm is given in [30].

Let us define an array of size N + 1, where N is the total number of samples in training sequence.

 ()

((

) ()) - - - - - - - - - - - - - - (2.11)

Received training sequence and already known noiseless training sequence to the receiver are

given in eq. 2.12 and eq. 2.13.

 () () () () () () - - - - - - - - - - - (2.12)

 () () () () () () - - - - - - - - - - (2.13)

On the basis of described equations, the coarse frequency estimation can be calculated as

48

 ̂

 (∑ ((

) (

 ()

 ()
)

 () ())
) - - - - - - - - - - - - - - (2.14)

Once the frequency has been estimated, the received data stream can be coarse frequency

compensated using the following equation. Suppose the data as of length ‘m’, then compensated

data can be represented as,

 () ()
 ̂ - - - - - - - - - - - (2.15)

Note that this estimation is quite rough and does not calculate the exact frequency within tolerate

able limits. For this purpose, fine frequency estimation algorithm is used.

2.6.4.1. Previous Implementations

Targeted to different set of requirements, different implementations address the problem of

coarse frequency estimation. A total of three algorithms about carrier offset estimation as given

in eq. 2.16 to eq. 2.18 have been compared in [31].

 ̂ {∑ |
 |

 } - - - - - - - - - - - - - (2.16)

 ̂ {| ∑
 |

 } - - - - - - - - - - - - (2.17)

 ̂ {∑ |
 |

 } - - - - - - - - - - - - - - - - (2.18)

W is total number of samples in training sequence whereas L & l is the sliding window of

frequency offset estimation. X and Y are the transmitted and received training symbols

respectively. The value in the subscript shows the number of actual sample to be processed.

Results show that algorithm in eq. 2.16 works perfectly fine with unsynchronized symbol timing

but get badly affected by multiple path effects of channel. Moreover, eq. 2.17 gets badly affected

by unsynchronized symbol timing of training sequence but works well in multiple path

environments. Algorithm of eq. 2.18 gives the best result of all in which it can deal with multiple

path effects and does not get affected by error in symbol timing.

Quick comparisons of performances of multiple coarse frequency estimation algorithms such as

L&R [32], M&M [33] and Fitz [34] have been performed in [35]. It also contains the efficient

49

implementation of L&R algorithm in FPGA with targeted application of Digital Video

broadcasting via satellite communication. The architecture presented in this paper is of shared

nature. There architecture is of three stages; first one is the buffer stage that stores the samples

and second & third stages are correlation and accumulation stages respectively. Due to shared

nature of this architecture, up to 92% less area is required as compared to direct implementation.

Similarly, for Digital Audio broadcasting, [36] has implemented a system that can estimate and

correct the frequency offset.

Timing and Frequency Synchronization scheme has been proposed and implemented in FPGA

for IEEE standard 802.11a in [37]. Commonly used training samples have been deployed in

order to measure the frequency offset in carrier using correlation. This correlation is calculated

using the iterative architecture to save the area. Comparison has also been made between floating

point simulation and fixed point implementation to validate the system.

Similarly, another implementation for wireless LAN modem with IEEE 802.11a standard has

been done in [38]. C++ along with the help of hardware libraries have been used to define the

architecture. Note that coarse frequency estimation is quite rough and does not calculate the

exact frequency within tolerate able limits. For this purpose, fine frequency estimation algorithm

is used.

2.7 Summary

This chapter forms the base for implementing the parts of SDR receiver. It contains basic

relevant concepts related to digital signal processing, digital system design and computer

architecture. It also discusses the coverage of system to be implemented along with its

specifications, requirements and relevant calculations. Previous relevant research work both on

algorithms and their relevant implementation on FPGAs is also the part of this chapter.

50

Chapter 3: Design Methodology

The implementation for various parts of SDR receiver has been discussed in this part of the

document. All of the relevant designs, tables and illustrations along with arguments have been

given in this chapter. Two different type of architectures are implemented for coarse frequency

estimation. Most of the systems that are the part of SDR receiver are first simulated on

MATLAB. On the basis of the written code, translation has been made to hardware architecture.

Results obtained by these implementations are in discussed the next chapter.

3.1 Design & Implementation of CORDIC Algorithm

There are numerous amounts of factors that affect design aspects. One of the most important of

them is the intrinsic property of this algorithm; output values are valid only for limited set of

input values. The importance of this implementation lies in the fact that most of the

communicational algorithms to be implemented are based on trigonometric and angular

calculations of complex number.

To calculate the values out of the valid range, the support of trigonometric identities can be used.

It can be implemented by first altering the input according to the trigonometric identity such that

the value becomes within well calculable range for CORDIC Algorithm. After obtaining

trigonometric result, the output can operate accordingly on that result to obtain the result

corresponding to the actual input.

3.1.3. Major Top Level Parts of CORDIC System

In order to realize the solution of the problem discussed above, the system can be composed of

the following parts.

 CORDIC Core

 CORDIC Input Interface

 CORDIC Output Interface

51

 Control Path

The part CORDIC core will implement the actual CORDIC algorithm. CORDIC Input and

Output Interfaces will implement the trigonometric identities. Control path will have the

sequence with which all operations will be performed. All of these parts have been discussed

later in this chapter. Figure 3.1 shows the top level structure of CORDIC system.

CORDIC Core
CORDIC I/P

Interface

CORDIC O/P

Interface

X

Y

θ

X

Y

θ

X

Y

θ

X

Y

θ

Control Path

Figure 3.1 Top Level Flow Diagram of CORDIC Implementation

3.1.4. Selection of total Number of Iterations for CORDIC Algorithm

As mentioned by set of eq. 2.8 to eq. 2.10, CORDIC is an iterative algorithm. With the point of

view of implementing this algorithm in FPGA, the total iterations as well as precision of

processing variables is equally important. By simulating the CORDIC algorithm for most widely

used number of iterations in MATLAB the effect of increasing iterations on error rate can be

compared.

Figure 3.2 Calculated Magnitude Error in the simulation of CORDIC Algorithm (N = 16)

-15 -10 -5 0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03
Simulated Magnitude cosine error N = 16

|%
 E

rr
o
r|

-15 -10 -5 0 5 10 15
0

0.005

0.01

0.015

0.02

0.025
Simulated Magnitude sine error N = 16

|%
 E

rr
o
r|

52

By comparing Figure 3.2 and Figure 3.3 it is quite evident that by increasing the total number of

iterations for which this algorithm can operate decreases the percentage error. By surveying

overall system and simulation results, the decision for total number of iteration is 32. The

arguments supporting this design decision are following.

 The property of the targeted system is required to be optimized for accuracy; the reason

of this is the fact that there is multiple numbers of algorithms that call the services of this

system multiple times for the demodulation of single received burst. So the error gets

accumulated each time received burst is passed through this system.

 The simulated results show that the percentage error for 32 iteration algorithm is at least

100,000 times less than that of 16 iteration algorithm.

 Although the area requirement may increase, this design decision also is made because

total number of resources actually available in the targeted system is very high as evident

from the Table 2.4.

As the current implementation can also be used for other algorithms and the throughput

requirement may vary, parallelism can be used to satisfy this requirement.

Figure 3.3 Calculated Magnitude Error in the simulation of CORDIC Algorithm (N = 32)

3.1.5. System Capabilities

Careful examination of coarse frequency estimation/compensation, channel estimation, fine

frequency estimation/compensation and phase estimation it is evident that the system should be

53

able to calculate the trigonometric functions sine and cosine (Rotation mode). Also, system

should be able to find the angle of complex number (Vectoring Mode).

3.1.6. Integration of Multiple Modes in Single System

Both the rotation and vectoring modes have remarkable similarities between them as shown in

Table 2.5. The design decision for the implementation is to integrate both modes in single

system. System will be able to change the mode in runtime. This decision has following

supporting arguments.

 At any given time there will be only one mode (either rotation or vectoring) is required in

runtime throughout the operation at the receiver end.

 It will decrease the required area and increase the area efficiency.

3.1.7. Usage of Trigonometric Identities to Solve Convergence Problem

In order to solve the convergence problem, trigonometric identities are employed. For rotation

mode i.e. for the calculation of sine and cosine functions, the design decision is to use CORDIC

core only for

 to calculate the trigonometric functions. The selected range lies well

within the correct calculable range of CORDIC core which lies from -0.9573 to 0.9573 radians to

be exact. If is outside the selected range, trigonometric identities simplifies the problem as

shown in Table 3.1.

Case Output

 (

)

 (

)

 (

)

 (

)

 ()

 ()

 (

)

 (

)

 (

)

54

 (

)

 ()

 ()

 ()

 ()
Table 3.1 Calculation of sine and cosine using CORDIC algorithm

For the vectoring mode of CORDIC operation the requirement is to calculate the angle of

complex number that lies in any quadrant. CORDIC algorithm gives correct result for

 (

) if (

) . It is required by the system that it should be able to calculate

the correct angle to which complex number points. In order to achieve this property, the

design decision is to keep the ratio less than 1 by inverting it if it is greater. It is then provided to

CORDIC core for processing. To get the accurate output, pre and post processing is done that is

based on the actual input. The equivalent output for each of the case is shown in the Table 3.2.

Case Subcase Equivalent Output

x < 0, y <0

|x| > |y| (
| |

| |
)

|x| = |y|

|x| < |y| (
| |

| |
)

x < 0, y =0
|x| > |y|

|x| = |y|, |x| < |y| Scenario Not Possible

x < 0, y >0

|x| > |y| (
| |

| |
)

|x| = |y|

|x| < |y| (
| |

| |
)

x = 0, y <0
|x| > |y|, |x| = |y| Scenario Not Possible

|x| < |y|

x = 0, y =0

|x| > |y| Scenario Not Possible

|x| = |y| 0

|x| < |y|
Scenario Not Possible

x = 0, y >0
|x| > |y|, |x| = |y|

|x| < |y|

55

x > 0, y <0

|x| > |y| (
| |

| |
)

|x| = |y|

|x| < |y| (
| |

| |
)

x > 0, y =0
|x| > |y| 0

|x| = |y|, |x| < |y| Scenario Not Possible

x > 0, y >0

|x| > |y| (
| |

| |
)

|x| = |y|

|x| < |y| (
| |

| |
)

Table 3.2 Calculation of tan
-1

(y/x) using CORDIC Algorithm (see text)

3.1.8. CORDIC Core Implementation

This section describes the actual implementation of CORDIC Algorithm shown in Figure 3.4.

The implemented architecture is of iterative type. This will generalize the design so that any

number of iterations is possible with least amount of changes. Only 3 registers each of 32 bits is

required for this design and one iteration completes in one clock cycle which means it will take

at least 32 clock cycles to complete the operation of this core.

Most important thing is the actual execution of single iteration. As given in the algorithm,

initialization is necessary every time calculation starts. So, initialization for both the modes in the

same system can be done by implementing four to one multiplexers as shown in the implemented

design. The behavior of the system on the basis of the control pins of these muxes are shown in

the Table 3.3.

Control Pins System Behavior

2’b00 Iteration is in progress in Rotation Mode

2’b01 Initialization of x and y with appropriate constants in Rotation Mode. While z

is equated to the θ for which trigonometric functions are to be calculated.

2’b10 Iteration is in progress in Vectoring mode

2’b11 Initialization of z in Vectoring mode. While y and x are initialized with values

for which inverse tangent is required to be calculated.

Table 3.3 CORDIC Core Beahivour

56

All 32 bit values are in Q5.27 signed format

Rx

Ry

+/-

change_cordic_out

0

1

change_cordic_out

0

1

clock

reset

clock

reset

{mode_0_1,process0_idle1}

1

0

3

2

2

{mode_0_1,process0_idle1}

1

0

3

2

2

+/- add_sub_x

add_sub_y

32
32

1

32

32

32

32

32

32

32'h06decad9

32

32'd0

32

32

32

cordiccore_inx

cordiccore_outy

cordiccore_outx

Rz

+/-

change_cordic_out

0

1

clock

reset

1

0

3

2

2

add_sub_z

32
32

32

32

32

32'd0

{mode_0_1,process0_idle1}

32 cordiccore_outz

32

32

32

32

0

1

mode_0_1
Rz[31]

1

1

ROM_arctan

cordiccore_inz

atan data
32

iteration_nth 5

Rx >>> shift_value

Ry >>> shift_value

32

3232

32

32

1

1

1

cordiccore_iny[31]

5'd1

6

shift_value

cordiccore_iny

Data Path

Control Path

Address Path

32

1

1

Figure 3.4 CORDIC Core Datapath Implemented Design

57

The two to one mux, whose output is the input of adders, serves the purpose of the testing

condition which decides for addition/subtraction in two different modes. In Rotation mode, the

sign of z while in Vectoring mode the sign of y decides either the operation for next iteration is

to be addition or subtraction. Input named as Iteration_nth is used for indexing a specific value

from ROM_arctan. Moreover, it also gives amount of rotation for output of Rx and Ry. Its value

ranges from 0 to 31 and gets incremented after single clock cycle.

The entity ROM_arctan shown in Figure 3.4 acts as a look up table in which already calculated

values of required for CORDIC processing are stored (where i is from 1 to 32). So, for

32 iteration system, total number of locations in this look up table is also 32. Each location

contains a 32 bit number in Q5.27 signed format. This is the same Q point format as used for the

entire CORDIC core.

3.1.9. Input and Output Interfaces Implementation

Both of the input and output interfaces are designed together as both of them implements

trigonometric identities as given in Table 3.1 and Table 3.2. The interfaces along with the

CORDIC core are shown in Figure 3.5. On the arrival of input, the input interface decides the

mode of operation and also informs to the output interface so that correct value for the actual

input can be calculated. The input interface has the two parts; one is dedicated for rotation while

other is for vectoring mode. For each part, the mode of operation is selected on the basis of the

quadrant in which input lies as illustrated in Figure 3.5.

The input interface basically consists of series of comparators. The only difference in these parts

is at any mode only one of them is in the operation. The output interface of the system is

common for both of the modes as some common nature of operations are required at this point.

The output interface has three 32 bit registers that stores the final calculated value. Values in

eight by one multiplexer are

 written in Q5.27 signed format.

Likewise CORDIC core, the Q point format of both input and output interface is Q5.27 signed.

One reason of this Q point selection is that, it gives enough high precise output and the range for

which the calculation can be done in both modes is moderately high; the system shown in Figure

3.5 has the capability to calculate sine and cosine from -5pi to 5pi in rotation mode.

58

All 32 bit values are in Q5.27 signed format

Top_CORDIC_core_datapath

mode_0_1

change_cordic_out

cordiccore_outx

11

cordiccore_outy

cordiccore_outz

32

32

32

exchange_enable

0

1

1

0 1
1

exchange_enable

y_exchanged

x_exchanged

twos_complement_x

0

1

1

0

1

1

2's

Complement

32

32

twos_complement_y

2's

Complement

change_value

0

1

0

1

1

change_value

1

mux_x

mux_y

32

32

Rx

clock

reset
x_out

32

32

Ry

clock

reset

32

y_out

twos_complement_z

0

1

1

2's

Complement

mux_z
32

Data Path

Control Path

Address Path

bypass_cordic_tan1

0

1

1

32'd0

bypass_cordic_tan2 0 1
1

bypassed_z_mux_out

bypassed_z_mux_out

32

32

0

1

1

change_value

Rz

clock

reset
z_out

32

32'd0

0 1
3

constt_value_z

32

2 3 4 5 6 7z_bypass_constt

32'h06487ed5

32'h0c90fdaa

32'h12d97c7f

32'h1921fb54

32'hf9b7812b

32'hf36f0256

32'hed268381

32'he6de04ac

32

32

32

32

32

32

32

32

process0_idle1

1

sine_cosine_range_checker (Behavior)

pi/4pi/23(pi/4)

-pi, pi

-3(pi/4) -pi/2 -pi/4

0

clock

reset

start

ready

mode

cordicore_inz (out_theta)

32

1

1

3

32 z_in(In_theta)

If in_theta > pi then subtract 2pi and check the mode again

If in_theta < pi then add 2pi and check the mode again

mode = 7

mode = 7

out_theta = in_theta

out_theta = in_theta
sin(in_theta) = sin(out_theta)
cos(in_theta) = cos(out_theta)

sin(in_theta) = sin(out_theta)

cos(in_theta) = cos(out_theta)

Target Equations

Target Equations

mode = 1

out_theta = pi/2 – in_theta

sin(in_theta) = sin(out_theta)
cos(in_theta) = cos(out_theta)

Target Equations

mode = 2

out_theta = in_theta - pi/2

sin(in_theta) = cos(out_theta)
cos(in_theta) = -sin(out_theta)

Target Equations

mode = 3

out_theta = pi - in_theta

sin(in_theta) = sin(out_theta)

cos(in_theta) = -cos(out_theta)

Target Equations

mode = 4

out_theta = -pi/2 - in_theta

sin(in_theta) = -sin(out_theta)
cos(in_theta) = -cos(out_theta)

Target Equations

mode = 5

out_theta = pi/2 + in_theta

sin(in_theta) = -cos(out_theta)
cos(in_theta) = -cos(out_theta)

Target Equations

sin(in_theta) = sin(out_theta)
cos(in_theta) = cos(out_theta)

Target Equations

out_theta = -pi - in_theta

mode = 6

y_in

x_in

tan_range_checker (Behavior)

clock reset

start ready mode

11 4

32 32

x_in y_in

x_out y_out

3232

x_in = 0

y_in > 0

x_in = 0

y_in < 0

y_in = 0

x_in >0

y_in = 0

x_in <0

|x_in|>|y_in|

mode = 13

|x_in|<|y_in|

mode = 15
|x_in|<|y_in|

mode = 7

|x_in|>|y_in|

mode = 5

|x_in|>|y_in|

mode = 1

|x_in|<|y_in|

mode = 3

|x_in|<|y_in|

mode = 12

|x_in|>|y_in|

mode = 10

|x_in|=|y_in|

mode = 11

mode = 8

|x_in|=|y_in|

mode = 2

mode = 4

|x_in|=|y_in|

mode = 6

mode = 9

|x_in|=|y_in|

mode = 14

mode = 0

For x and y both equal to zero, mode = 0

x_in > 0

y_in > 0

x_in < 0

y_in < 0

x_in < 0

y_in > 0

x_in > 0

y_in < 0

angle(x_in + y_in*i) = 0

angle(x_in + y_in*i) = atan(|y|/|x|)

angle(x_in + y_in*i) = -atan(|y|/|x|)

angle(x_in + y_in*i) = pi/2-atan(|x|/|y|)

angle(x_in + y_in*i) = pi/4

angle(x_in + y_in*i) = -pi/4

angle(x_in + y_in*i) = atan(|x|/|y|)-pi/2

angle(x_in + y_in*i) = -pi/2

angle(x_in + y_in*i) = -atan(|x|/|y|)-pi/2

angle(x_in + y_in*i) = -(3*pi)/4

angle(x_in + y_in*i) = (3*pi)/4

angle(x_in + y_in*i) = pi

angle(x_in + y_in*i) = pi/2

angle(x_in + y_in*i) = atan(|y|/|x|) - pi

angle(x_in + y_in*i) = pi - atan(|y|/|x|)

angle(x_in + y_in*i) = pi/2+atan(|x|/|y|)

Figure 3.5 Main CORDIC Datapath Design

59

3.1.10. Control Path Implementation

All of the sequences of operations to be performed as discussed in previous sections are

controlled by this part. It is simply a state machine with multiple states each generating specific

control signals. The implemented behavior is shown in Figure 3.7. To start processing one of the

rotation or vectoring mode is selected, values for which processing is required to be placed at the

input and start pin is triggered. After the processing is complete and the output is ready, this state

machine asserts the out_ready pin.

3.2 Coarse Frequency Estimation Implementation

Implementation of coarse frequency estimation algorithm is given in eq. 2.14. Its implementation

is shown in Figure 3.10 and Figure 3.12. This equation can be divided into two major parts. A

factor (

) (

 ()

 ()
)

is one dimensional array that will remain constant over the

entire period of processing. Thus this portion of equation can be calculated in offline mode. A

second major part consists of real time data input required for processing i.e. () ().

The approach of implementation is to calculate both of these parts separately, multiply the result

then calculate the angle using CORDIC implementation. Both factors of first part are already

known. The factor b(k) can be calculated from the eq. 2.11 while a(k) is the noiseless transmitted

training sequence which is shown in Figure 3.6.

Figure 3.6 Training Sequence to be Transmitted

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

samples

v
a
lu

e

Training Sequence a(k) for N=32

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

samples

v
a
lu

e

Training Sequence a(k) for N=64

60

Change_value_in = 1'b1, out_ready_1 =

out_ready_1, start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd1, mode_0_1 = mode_0_1,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = Twos_complement_x,

Twos_complement_y = Twos_complement_y,

Twos_complement_z = Twos_complement_z ,

bypass_cordic_tan1 = bypass_cordic_tan1,

bypass_cordic_tan1 = bypass_cordic_tan1,

z_bypass_const = z_bypass_const,

exchange_enable =exchange_enable,

state = IDLE

IDLE0

reset

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b1, start_tan = 1'b0,

process0_idle1 = 1'd1, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b0, state =

WAIT_RESPONSE_SINE_COSINE_MODE

IDLE2
register_start &&

~mode_of_calculation

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b1,

process0_idle1 = 1'd1, mode_0_1 =1'd1,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b0, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b0, state = WAIT_RESPONSE_TAN_MODE

IDLE1

register_start &&

mode_of_calculation

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b1, start_tan = 1'b0,

process0_idle1 = 1'd0, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b1, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE2

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd0, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b1, Twos_complement_y =

1'b1, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b1, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE5

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd0, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b1, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b1, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE3

Change_value_in = 1'b0, out_ready_1 = 1'b1,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd1, mode_0_1 =1'd0,

change_cordic_out = 1'b0, iteration_nth = 5'd0,

change_value = 1'b1,

Twos_complement_x = 1'b0, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b0, state = IDLE

WAIT_RESPONSE_

SINE_COSINE_MODE1

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd0, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b1, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b0, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE7

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd0, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b1, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b0, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE4

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd1, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b0, state =

WAIT_RESPONSE_SINE_COSINE_MODE

WAIT_RESPONSE_

SINE_COSINE_MODE0

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd0, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 1'b0, Twos_complement_y =

1'b1, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b1, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE6

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd0, mode_0_1 =1'd0,

change_cordic_out = 1'b1, iteration_nth = 5'd0,

change_value = 1'b0,

Twos_complement_x = 0'b1, Twos_complement_y =

1'b0, Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1, bypass_cordic_tan1 =

1'b0, z_bypass_const = 3'd0, exchange_enable =

1'b0, state = CORDIC_PROCESS

WAIT_RESPONSE_

SINE_COSINE_MODE8

ready_sin_cos &&

mode_sin_cos == 0

ready_sin_cos &&

mode_sin_cos == 1

ready_sin_cos && mode_sin_cos == 2

ready_sin_cos && mode_sin_cos == 3

ready_sin_cos &&

mode_sin_cos == 4

ready_sin_cos && mode_sin_cos == 5

ready_sin_cos && mode_sin_cos == 6

ready_sin_cos && mode_sin_cos == 7

Change_value_in = 1'b0, out_ready_1 = 1'b0,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd0, mode_0_1 =mode_0_1,

change_cordic_out = 1'b1, iteration_nth =

iteration_nth + 1, change_value = 1'b0,

Twos_complement_x = Twos_complement_x,

Twos_complement_y = Twos_complement_y,

Twos_complement_z = Twos_complement_z ,

bypass_cordic_tan1 = bypass_cordic_tan1,

bypass_cordic_tan1 = bypass_cordic_tan1,

z_bypass_const = z_bypass_const,

exchange_enable =exchange_enable,

state = CORDIC_PROCESS

CORDIC_PROCESS1

iteration_nth < 31

Change_value_in = 1'b0, out_ready_1 = 1'b1,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd1, mode_0_1 =mode_0_1,

change_cordic_out = 1'b0, iteration_nth = 5'd0,

change_value = 1'b1,

Twos_complement_x = Twos_complement_x,

Twos_complement_y = Twos_complement_y,

Twos_complement_z = Twos_complement_z ,

bypass_cordic_tan1 = bypass_cordic_tan1,

bypass_cordic_tan1 = bypass_cordic_tan1,

z_bypass_const = z_bypass_const,

exchange_enable =exchange_enable,

state = CORDIC_PROCESS

CORDIC_PROCESS0

Iteration_nth == 31

Change_value_in = 1'b0, out_ready_1 = 1'b1,

start_sin_cos = 1'b0, start_tan = 1'b0,

process0_idle1 = 1'd1, mode_0_1 =mode_0_1,

change_cordic_out = 1'b0, iteration_nth = 5'd0,

change_value = 1'b1,

Twos_complement_x = Twos_complement_x,

Twos_complement_y = Twos_complement_y,

Twos_complement_z = Twos_complement_z ,

bypass_cordic_tan1 = bypass_cordic_tan1,

bypass_cordic_tan1 = bypass_cordic_tan1,

z_bypass_const = z_bypass_const,

exchange_enable =exchange_enable,

state = CORDIC_PROCESS

CORDIC_

BYPASS_TAN

Change_value_in = 1'b0,

out_ready_1 = 1'b0, start_sin_cos = 1'b0,

 start_tan = 1'b1, process0_idle1 = 1'd1,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b0,

z_bypass_const = 3'd0,

exchange_enable = 1'b0, state =

WAIT_RESPONSE_TAN_MODE

WAIT_RESPONSE

_TAN_MODE0

Change_value_in = 1'b0,

out_ready_1 = 1'b0, start_sin_cos = 1'b0

, start_tan = 1'b0, process0_idle1 = 1'd1,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

 Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd0,

exchange_enable = 1'b0, state =

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE1

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd6,

exchange_enable = 1'b0, state =

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE3

~ready_sin_cos

~ready_tan

ready_tan &&

mode == 0

ready_tan &&

mode == 2

ready_tan &&

mode == 8

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd2,

exchange_enable = 1'b0, state =

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE6

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd5,

exchange_enable = 1'b0, state =

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE2

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd1,

exchange_enable = 1'b0, state =

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE4

ready_tan &&

mode == 6

ready_tan &&

mode == 9

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd4,

exchange_enable = 1'b0, state =

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE7

ready_tan &&

mode == 11

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd0,

exchange_enable = 1'b0, state =

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE5

ready_tan &&

mode == 14

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b1,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd3,

exchange_enable = 1'b0, state =

CORDIC_BYPASSED_TAN

WAIT_RESPONSE

_TAN_MODE8
ready_tan &&

mode == 4

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd3,

exchange_enable = 1'b0, state =

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE11

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b1 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b0,

z_bypass_const = 3'd0,

exchange_enable = 1'b0, state =

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE13 Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b1 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd1,

exchange_enable = 1'b0, state =

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE16

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b0,

z_bypass_const = 3'd0,

exchange_enable = 1'b0, state =

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE15

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd5,

exchange_enable = 1'b0, state =

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE14

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b0 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd7,

exchange_enable = 1'b0, state =

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE10

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b1 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd5,

exchange_enable = 1'b0, state =

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE9

Change_value_in = 1'b0,

 out_ready_1 = 1'b0, start_sin_cos = 1'b0,

start_tan = 1'b0, process0_idle1 = 1'd0,

mode_0_1 =1'd1, change_cordic_out = 1'b1,

iteration_nth = 5'd0, change_value = 1'b0,

Twos_complement_x = 1'b0,

Twos_complement_y = 1'b0,

Twos_complement_z = 1'b1 ,

 bypass_cordic_tan1 =1'b0,

bypass_cordic_tan1 = 1'b1,

z_bypass_const = 3'd3,

exchange_enable = 1'b0, state =

CORDIC_PROCESS

WAIT_RESPONSE

_TAN_MODE12

ready_tan &&

mode == 1

ready_tan &&

mode == 3

ready_tan &&

mode == 5

ready_tan &&

mode == 7

ready_tan &&

mode == 12

ready_tan &&

mode == 10

ready_tan &&

mode == 13

ready_tan &&

mode == 15

Figure 3.7 Top Level CORDIC Control Path (with control signals)

61

As shown in Figure 3.6, there are two different lengths of training sequences depending upon the

system configuration. After calculating the result on MATLAB the result is illustrated in Figure

3.8a

Figure 3.8 Coarse Frequency Estimation Algorithm Pre Calculable Result

In order to save this result, 1.5 kilobits of memory is required (if every sample is represented in

16 bits). But this amount of resource can be drastically reduced if the pattern hidden in the

sequence is figured out. By carefully observing the results, it can be concluded that the

difference between absolute values of consecutive samples is linear and easily generate able. So,

if only first value of the sequence is known, the rest of values can be generated. For illustration,

the difference of consecutive samples has been shown in Figure 3.9.

Figure 3.9 Absolute Difference between the Consecutive Samples of the result shown in Figure 3.8

0 5 10 15 20 25 30
-150

-100

-50

0

50

100

150

index = 0 -- N-1

v
a
lu

e
 o

f
e
a
c
h
 s

a
m

p
le

Precalculated values of constant part of algorithm for N=32

0 10 20 30 40 50 60
-600

-400

-200

0

200

400

600

index = 0 -- N-1
v
a
lu

e

Precalculated values of constant part of algorithm for N=64

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15

index

D
if
fe

re
n
c
e

Difference between consecutive absolute samples values of constant array for N= 32

0 10 20 30 40 50 60

-30

-20

-10

0

10

20

30

index

D
if
fe

re
n
c
e

Difference between consecutive absolute samples values of constant array for N= 64

62

R2

R1

clock

reset

clock

reset

Z_imag Z_real

Change_R1_R2

16 (Q5.11 signed)

1

16 (Q5.11 signed)

M1_M2_cntrl
3

0 1 2 3 4 5

0 1 2 3 4 5

out_mult_actual

16 (Q5.11 & Q10.6 signed)

16 (Q5.11 & Q9.7 signed)

32 (Q18.14 signed)

ctrl_decod0

1

0

1

ctrl_decod1

1

0

1

decod_0to1

ctrl_decod2

1

0

1

decod_0to2

16 (Q9.7 signed)

out_mult_actual[31:16]

R3

clock

reset

decod1toR3

+/-

decod1toadd_sub

16 (Q9.7 signed)

16 (Q9.7 signed)
16 (Q9.7 signed)

R4

clock

reset

add_subtoR4

16 (Q9.7 signed)

R5

clock

reset

16 (Q9.7 signed)
R6

clock

reset

16 (Q9.7 signed)

16 (Q9.7 signed)

16 (Q9.7 signed)

1

0

1

ctrl_acc_mux_real

0

1

0

1

ctrl_acc_mux_img

0

decod2out0

decod2out1

32 (Q18.14 signed)

32 (Q18.14 signed)

32 (Q18.14 signed)

R1_64

clock

reset

R2_64

clock

reset

0
64

64

64

64
reset_64_bit

reset_64_bit

Bit_conversion_64to32

clock

reset

start

cf_real cf_imaginary

out_avaiable

1

0

1

1

0

1

ctrl_mux1

State_machine_counter

clock

reset

R8

clock

reset

in_N

mode
increment

1

1

1

0

1

1

0

1

22.8750

46.8750
16(Q10.6 signed)

mux0_mux1

counter_to_addr

mux1_to_addition

address 6

ROM_32

ROM_64

addr_32

addr_64

66

6 data_64

data_32

1

1

R7

clock

reset

change_arrayd_coff

addition_out

32 (Q5.27 signed)

1

Two’s Complement R9

clock

reset

enable_memory_module

enable 1

memory_in

16 (Q5.11 signed)

16 (Q5.11 signed)

Data Path

Control Path

Address Path

Z_imag_memory Z_real_memory

clock reset clock reset

inport_imag inport_real

read_

address

16 (Q5.11 signed) 16 (Q5.11 signed)

read_

address

write_

address

write_

address

write_enable write_enable

6 6 6 6

1 1

configuration_

memory

clock reset

inport_config

read_

address

write_

address

write_enable

3 3

1

16 (Q5.11 signed)

config_data_read

add_sub_ctrl

32 (Q9.23 & Q18.14 signed)

16 (Q10.6 signed)

32 (Q18.14 signed)

32 (Q18.14 signed)

32 (Q18.14 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

32 (Q5.27 signed)

64 (Q50.14 signed)

64 (Q50.14 signed)

16 (No fixed Q point)

1

change

Given to CORDIC

Figure 3.10 Shared Resource Coarse Frequency Estimation Datapath

63

3.2.3. Shared Resource Coarse Frequency Estimation Datapath

The design of datapath is optimized for efficient resource utilization. Only one multiplier is

enough to handle the data for data rate given in Figure 2.15. For each value of the control signal

M1_M2_cntrl, the signals used as a multiplicand in the multiplication performed by six to one

multiplexers is shown in the Table 3.4.

Value of M1_M2_cntrl Signals as Multiplicand

0 (()) (())

1 (()) (())

2 (()) (())

3 (()) (())

4 (() ()) ()

5 (() ()) ()

Table 3.4 Complex Multiplication Using Shared Muliplier

R3 to R6 registers hold values calculated when M1_M2_cntrl is 0 to 3. Once the required result

is calculated (when M1_M2_cntrl is 4 and 5), the real and imaginary part of the result is

accumulated in R1_64 and R2_64 respectively. Both of these registers are of 64 bit while all

others in current design are of 16 bit precision.

The pre calculable part is saved in the design portion where state machine counter is located.

This counter is used to generate the consecutive values shown in Figure 3.9. ROM_32 and

ROM_64 tell the sign of each computation. When the value of N is 32, the counter generates

from 14 to -15; decrementing one in each clock cycle. The generated value is then added to the

initial value 22.8750 to get the absolute result. The sign of this result is stored in ROM_32 which

is of 32 bits. It outputs one bit 0 or 1 for positive or negative sign respectively. Same is the case

for N=64 in which counter generates from 30 to -31, initial value is 46.8750 and sign of each

computation is stored in ROM_64. By using this strategy, the memory requirement is only 96

bits. The values of ROM_32 and ROM_64 are given in eq. 3.1 and eq. 3.2 respectively.

 - - - - - - - - - - - - - - - - - - - (3.1)

 - - - - - - - - - - - - (3.2)

64

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd0;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b0;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b0; ctrl_mux1 = 1'b0;

increment = 1'b0; change = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = data_configuration_memory;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b1;

actual_adress = 6'd0

IDLE1

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd0;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b1;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N =

configuration_N[6]; ctrl_acc_mux_img = 1'b0;

change = 1'b1; ctrl_bit_conversion_start = 1'b0;

ctrl_mux1 = ctrl_mux1; increment = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = data_configuration_memory;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = actual_address + 1;

INCREMENT_ADDRESS

_COUNTER

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd0;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b0;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b0;

ctrl_mux1 = ctrl_mux1; increment = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = actual_adress

PROCESS_STEP_1

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd1;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b1;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b0;

ctrl_mux1 = ctrl_mux1; increment = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = actual_adress

PROCESS_STEP_2

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd2;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b0;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b0;

ctrl_mux1 = ctrl_mux1; increment = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = actual_adress

PROCESS_STEP_3

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd5;

ctrl_decod0 = 1'b1; ctrl_decod1 = 1'b0;

ctrl_decod2 = 1'b1; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b1; change = 1'b0;

ctrl_bit_conversion_start = 1'b0; ctrl_mux1 = 1'b1;

increment = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b1;

actual_adress = actual_adress

PROCESS_STEP_6

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd3;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b1;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b1;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b0;

ctrl_mux1 = ctrl_mux1; increment = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = actual_adress

PROCESS_STEP_4

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd4;

ctrl_decod0 = 1'b1; ctrl_decod1 = 1'b0;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b1; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b0;

ctrl_mux1 = ctrl_mux1 ; increment = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = actual_adress

PROCESS_STEP_5

Reset_64_bit = 1'b0; M1_M2_cntrl = 3'd0;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b0;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b0; ctrl_mux1 = 1'b0;

increment = 1'b0; change = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b0;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = 6'd0

IDLE0

reset

~start

start

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd0;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b0;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b1; ctrl_mux1 = 1'b0;

increment = 1'b0;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = actual_adress

PROCESS_STEP_7

Reset_64_bit = 1'b1; M1_M2_cntrl = 3'd0;

ctrl_decod0 = 1'b0; ctrl_decod1 = 1'b0;

ctrl_decod2 = 1'b0; ctrl_add_sub = 1'b0;

ctrl_acc_mux_real = 1'b0; in_N = 1'b0;

ctrl_acc_mux_img = 1'b0; change = 1'b0;

ctrl_bit_conversion_start = 1'b0;

ctrl_mux1 = ctrl_mux1; increment = 1'b1;

change_arrayD_out = 1'b0; Busy_state = 1'b1;

configuration_N = configuration_N;

address_configuration_memory = 3'd0;

change_R1_R2 = 1'b0;

actual_adress = actual_adress

PROCESS_STEP_7

actual_address < configuration_N - 1

actual_address >= configuration_N - 1

Figure 3.11 Coarse Frequency Estimation Control Path for optimized area implementation

65

3.2.4. Performance Optimized Coarse Frequency Estimation Datapath

Coarse frequency estimation data path optimized for high throughput is shown in Figure 3.12.

Memory architecture is similar for both previously discussed and current design. High

throughput is achieved by exploiting the pipelining and implementing complex multiplication

using dedicated multipliers. As shown in figure, multiple pipeline cuts provide the opportunity to

get maximum throughput from the system. Throughput calculation and its comparison with

previous implementation is done in next chapter.

3.2.5. Coarse Frequency Estimation Control Path

The implemented state machine for shared type of implementation is shown in Figure 3.11. Once

the start pin is triggered, it starts its iterative operation for given number of data inputs. Once

those iterations are complete, it goes idle again while output ready pin is raised. State machine

for Figure 3.12 is simpler than Figure 3.11 shown because no control signals for iteration are

involved.

3.3 Summary

This chapter presents the design blueprints of SDR receiver implementations in FPGA.

Discussion on these designs is done along with tables and figures for illustration purposes.

Arguments on some of the important design decisions are given. Moreover, due to some pre

known factors, some algorithms are simplified such that they can be implemented with fewer

resources.

66

1

0

1

1

0

1

ctrl_mux1

State_machine_counter

clock

reset

R8

clock

reset

in_N

mode
increment

1

1

1

0

1

1

0

1

22.8750

46.8750
16(Q10.6 signed)

mux0_mux1

counter_to_addr

mux1_to_addition

address 6

ROM_32

ROM_64

addr_32

addr_64

66

6 data_64

data_32

1

1

R7

clock

reset

change_arrayd_coff

addition_out

Two’s Complement R9

clock

reset

enable_memory_module

enable 1

memory_in

16 (Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

16(Q10.6 signed)

1

change

R2

R1

clock

reset

clock

reset

Z_imag Z_real

Change_R1_R2

16 (Q5.11 signed)

1

16 (Q5.11 signed)

32 (Q9.23 signed)

16 (Q5.11 signed)

Z_imag_memory Z_real_memory

clock reset clock reset

inport_imag inport_real

read_

address

16 (Q5.11 signed) 16 (Q5.11 signed)

read_

address

write_

address

write_

address

write_enable

write_enable

6 6 6 6

1 1

R1_64

R2_64

clockreset

clockreset

Real Part

Out_ready

Imaginary part

Out_readychange

change

64

64

32 (Q9.23 signed)

32 (Q9.23 signed)

32 (Q9.23 signed)

16 (Q9.7 signed)

16 (Q9.7 signed)

32 (Q18.14 signed)

32 (Q18.14 signed)

Bit_conversion_64to32

clock

reset

start

cf_real cf_imaginary

out_avaiable

32 (Q5.27 signed)

1

32 (Q5.27 signed)

1

Given to CORDIC

Pipeline cut 2 Pipeline cut 1Pipeline cut 3

Figure 3.12 Performance optimized Coarse Frequency Estimation Datapath

67

Chapter 4: Results and Discussion

In this chapter, results of the implementations have been presented. It also contains the brief

discussion on these results. These results include the percentage error, resource requirements,

maximum achievable clock and print screens of simulations. The target device is Xilinx 3A DSP

xc3sd3400a FPGA.

4.1 CORDIC Implementation Results

This section contains the detailed results obtained by the implementation of proposed CORDIC

designs.

4.1.3. Percentage Error

Outcomes of percentage error for both (rotation and vectoring) modes of CORDIC operation are

given in this section. Figure 4.1 and Figure 4.2 shows the percentage cosine and sine error

respectively. While Figure 4.3 and Figure 4.4 shows the visual comparison of the values

calculated in MATLAB and results of implementation.

68

Figure 4.1 Percentage Cosine Error of 32 bit CORDIC Implementation (Rotation Mode)

Figure 4.2 Percentage Sine Error of 32 bit CORDIC Implementation (Rotation Mode)

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-6 % error for cos values

value

%
 E

rr
o
r

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-6 % error for sine values

value

%
 E

rr
o
r

69

Figure 4.3 Visual Comparison of Results of CORDIC Calculation of Cosine with Corresponding

MATLAB Output

Figure 4.4 Visual Comparison of Results of CORDIC Calculation of Sine with Corresponding

MATLAB Output

-15 -10 -5 0 5 10 15

-1

-0.5

0

0.5

1

Detialed Comparison of cos MATLAB output and Cordic Implementation

value

c
o
s
(v

a
lu

e
)

MATLAB output

Cordic out

-15 -10 -5 0 5 10 15

-1

-0.5

0

0.5

1

Detialed Comparison of sine MATLAB output and Cordic Implementation

value

s
in

(v
a
lu

e
)

MATLAB output

Cordic out

70

Another way of looking at these results is to draw a waveform by calculating values for rotation

mode of CORDIC implementation and to compare the values with calculation done in MATLAB

as shown in Figure 4.3 and Figure 4.4. All of these results have been calculated with input and

output interfaces included in the design. Input values range from -15 to 15 after constant

intervals.

For vector mode of operation, the values are selected such that system gets verified for large

number of values lying in four quadrants that is both x and y range from -2 to 2. Results are

shown in Figure 4.5 and visual comparison of values obtained in vector mode with MATLAB is

shown in Figure 4.6. Mesh and surface represents the values calculated by MATLAB and vector

mode of CORDIC implementation respectively.

Figure 4.5 Percentage Error for Vectoring mode of CORDIC implementation

-2

-1

0

1

2

-2

-1

0

1

2
-4

-2

0

2

4

6

x 10
-5

x

%Error of angle calculation of complex number

y

%
 E

rr
o
r

71

Figure 4.6 Visual Comparison b/w Values generated by Vectoring mode and MATLAB

4.1.4. Simulated Waveforms

Waveforms of the system for vectoring and rotation modes are shown in Figure 4.7and Figure

4.8. A simulated operation of Rotation mode of CORDIC is shown in above figure. It calculates

the sine and cosine values for 10.808, -1.9960 and -1.8578 (all in Q5.27 signed format). All of

these values are placed at z_in. Valid results are at {x_out, y_out} once out_ready is high and for

these inputs, they are {-0.1865, -0.9825}, {-0.4125, -0.9110} and {-0.2831, -0.9591}. The format

of output is {cos(input), sin(input)}. Average clock cycles required for calculation are 38.

72

Start of Calculation

Rotation Mode

Input in Q5.27 signed

format

Cosine of input in Q5.27

signed format

Sine of input in Q5.27

signed format

Output is ready

Figure 4.7 Simulated Waveform for Rotation mode of CORDIC

73

Start of Calculation

Vectoring mode

Input x in Q5.27 signed

format

Output = angle(x + yi) in

Q5.27 signed format

Output is ready Input y in Q5.27 signed

format

Figure 4.8 Simulated Waveform for Vectoring mode of CORDIC

74

In Figure 4.8, angle of three complex numbers have been calculated. They are 15.2450 +

11.1986i, 15.2450 – 0.1210i and -0.1210 + 11.1986i. All of these numbers are represented in

Q5.27 signed format. Calculation takes on average 36 clock cycles and results are visible at

z_out which are 0.6336, -0.0079 and 1.5816. Note that mode of calculation is 1 which represents

vectoring mode.

4.1.5. Area Consumption and Timing Results

Resources consumed by various implemented parts are given in Table 4.1.

Component Resources Consumed
Maximum Clock (Post

Place and Route)

Core Datapath

(Figure 3.4)

Slice Flip Flops: 96 (0.2%)

Total 4 Input LUTs: 682 (1.42%)

Occupied Slices: 393 (1.65%)

BUFGMUXs (Global Clock): 1 (4.16%)

86.125 MHz

Input Interface for

Rotation Mode

(Figure 3.5 &

Table 3.1)

Slice Flip Flops: 41 (0.086%)

Total 4 Input LUTs: 539 (1.13%)

Occupied Slices: 278 (1.16%)

BUFGMUXs (Global Clock): 1 (4.16%)

61.778 MHz

Input Interface for

Rotation Mode

(Figure 3.5 &

Table 3.2)

Slice Flip Flops: 39 (0.082%)

Total 4 Input LUTs: 617 (1.29%)

Occupied Slices: 311 (1.30%)

BUFGMUXs (Global Clock): 1 (4.16%)

DSP48As: 2 (1.59%)

131.874 MHz

75

Top Level

Datapath (Figure

3.5)

Slice Flip Flops: 368 (0.77%)

Total 4 Input LUTs: 2145 (4.50%)

Occupied Slices: 1180 (4.94%)

BUFGMUXs (Global Clock): 1 (4.16%)

DSP48As: 2 (1.59%)

61.630 MHz

Top Level Control

Path (Figure 3.7)

Slice Flip Flops: 27 (0.06 %)

Total 4 Input LUTs: 80 (0.17 %)

Occupied Slices: 44 (0.18 %)

BUFGMUXs (Global Clock): 1 (4.16%)

215.750 MHz

Top Level

CORDIC

Slice Flip Flops: 395 (0.827 %)

Total 4 Input LUTs: 2183 (4.57 %)

Occupied Slices: 1198 (5.02 %)

BUFGMUXs (Global Clock): 1 (4.16%)

DSP48As: 2 (1.59%)

53.746 MHz

Table 4.1 Resource Consumed by CORDIC at various levels

4.1.6. Comparison with Previous Implementations

The percentage error of current implementation is much lower than its previous counterparts

which are discussed in 2.6.3.1 . This is due to the fact that current implementation is of 32 bit

and most of the previous implementations are 16 bit. Although the area consumption of current

implementation is higher, it has better overall utilization of resources; multiple modes are

implemented in single design with ability of convergence for larger range of input. Generally,

76

implementations of CORDIC are requirement specific and it’s a tradeoff between different

design parameters.

4.1.7. Maximum Throughput Calculation

Maximum achievable throughput for CORDIC implementation is calculated in eq. 4.1.

(Verified with clock constraint 17 ns 50 % duty cycle)

 - - - - - - - - - - - - (4.1)

4.2 Coarse Frequency Estimation Implementation Results

In this section, all the relevant results related to Implementation of Coarse Frequency Estimation

Algorithm.

4.2.3. Percentage Error for shared resource design

Percentage error calculated in implementation for training sequence of length 32 and 64 are

shown in Figure 4.9 and Figure 4.10.

77

Figure 4.9 Percentage Error of Shared Resource Coarse Frequency Estimation for N=32

Figure 4.10 Percentage Error of Shared Resource Coarse Frequency Estimation for N=64

4.2.4. Percentage Error for Performance optimized design

Percentage error for performance optimized implementation is almost similar for shared

resource. Figure 4.11and Figure 4.12 gives the percentage error of training sequence of length 32

and 64 respectively.

78

Figure 4.11 Percentage Error of Performance Based Coarse Frequency Estimation for N=32

Figure 4.12 Percentage Error of Shared Resource Coarse Frequency Estimation for N=64

4.2.5. Area Consumption and Timing Results for shared resource design

Details of area consumed by both designs of Coarse Frequency Estimation system and maximum

achievable clock are given in Table 4.2.

79

Component Resources Consumed

Maximum Clock

(Post Place and

Route)

Data Path (Figure 3.10)

Slice Flip Flops: 394 (0.825 %)

Total 4 Input LUTs: 659 (1.38 %)

Occupied Slices: 433 (1.81 %)

BUFGMUXs (Global Clock): 1 (4.16%)

DSP48As: 1 (0.794 %)

56.815 MHz

Control Path (Figure 3.11)

Slice Flip Flops: 47 (0.1 %)

Total 4 Input LUTs: 76 (0.16 %)

Occupied Slices: 50 (0.21 %)

BUFGMUXs (Global Clock): 1 (4.16%)

127.486 MHz

Top Level Implementation

Slice Flip Flops: 459 (0.961 %)

Total 4 Input LUTs: 768 (1.61 %)

Occupied Slices: 502 (2.10 %)

BUFGMUXs (Global Clock): 1 (4.16%)

DSP48As: 1 (0.794 %)

RAMB16BWERs: 2 (1.59 %)

54.383 MHz

Table 4.2 Resurces Consumed by Shared Resource Coarse Frequency Estimation Algorithm

Implementation at various levels

80

4.2.6. Area Consumption and Timing Results for performance optimized

design

The area and post place and route timing results for performance based implementation are

shown in Table 4.3.

Component Resources Consumed

Maximum Clock

(Post Place and

Route)

Data Path (Figure 3.12)

Slice Flip Flops: 304 (0.64 %)

Total 4 Input LUTs: 557 (1.17 %)

Occupied Slices: 321 (1.34 %)

BUFGMUXs (Global Clock): 1 (4.16%)

DSP48As: 6 (4.76 %)

124.486 MHz

(with the

utilization of all

available pipeline

registers)

Control Path

Slice Flip Flops: 36 (0.07 %)

Total 4 Input LUTs: 67 (0.14%)

Occupied Slices: 40 (0.17 %)

BUFGMUXs (Global Clock): 1 (4.16%)

131.509 MHz

Top Level Implementation

Slice Flip Flops: 338 (0.71 %)

Total 4 Input LUTs: 662 (1.39 %)

Occupied Slices: 402 (1.68 %)

BUFGMUXs (Global Clock): 1 (4.16%)

DSP48As: 6 (4.76 %)

RAMB16BWERs: 2 (1.59 %)

122.9 MHz

81

Table 4.3 Resources Consumed by Performance optimized Coarse Frequency Estimation

Algorithm Implementation at various levels

4.2.7. Maximum Throughput Calculation for Shared Resource Design

Calculation of maximum throughput for training sequence of length 32 and 64 are shown in eq.

4.2 and eq. 4.3 respectively.

(Verified with clock constraint 19 ns 50 % duty cycle)

 - - - - - - - - - - - - - - (4.2)

 - - - - - - - - - - - - - - (4.3)

4.2.8. Maximum Throughput Calculation for Performance optimized Design

The throughput calculation for performance based for training sequence of length 32 and 64 is

shown in eq. 4.4 and eq. 4.5 respectively.

(Verified with clock constraint 8.5 ns 50 % duty cycle)

 160

82

 - - - - - - - - - - - - - - (4.4)

 - - - - - - - - - - - - -(4.5)

4.2.9. Simulated Waveforms

Figure 4.13 shows simulated waveform of Coarse Frequency Estimation Algorithm

Implementation for training sequence of length 32 for performance optimized design. Similarly,

Figure 4.14 shows the simulated waveform for training sequence of length 64 for shared resource

design.

83

Start of Calculation

Vectoring mode

Address of data read from

memory

Input y in Q5.27 signed

format

Output in Q5.27 singed

format

Absolute value of

compressed memory

Address of 64 or 32 bit

ROM

Bit that decides the sign of

values stored

Accumulation Register

Figure 4.13 Simulated Waveform for Performance Optimized Coarse Frequency Estimation

Algorithm Implementation for training sequence length 32

84

Values Stored in Memory

in Q5.11 signed format

Start of operation

64 length configuration

Busy State

Conversion to maximum

precision

Output in singed Q5.27

format
Next set of operation can

be started from here

Figure 4.14 Simulated Waveform for Shared Resource Coarse Frequency Estimation Algorithm

Implementation for training sequence length 64

85

4.2.10. Comparison with Previous Implementations

Detailed information about previous implementations is given in 2.6.4.1. Most of the

implemented architectures are requirements based. Current implementation uses only one DSP

block for its implementation. Overall shared nature of architecture makes it area optimized.

Moreover, the compression of lookup table has been performed such that memory requirements

reduce from 1.5 kb to only 96 bits.

4.3 Results Discussion

The basic idea behind presenting two architectures for coarse frequency estimation is to provide

comparison of various attributes that effect throughput and area utilization The two different

implementations of same algorithm provide insight of the tradeoffs between the parameters i-e

by comparing the Table 4.2 and Table 4.3, it can be concluded if used properly, dedicated

resources provide boost in throughput. Pipelining also plays an important role of increasing the

throughput in performance optimized design. This design contains three pipeline stages that

boost its clock speed from 43 MHz to 120 MHz.

86

S
lic

e
s
 o

r
L

U
T

100

200

300

400

500

502

402

1

2

3

4

5

D
e

d
ic

a
te

d
 D

S
P

 B
lo

c
k
s6

7

Total Slices

1

6

DSP48 blocks

Shared Resource Implementation

Performance Optimized Implementation

600

700

768

662

Total LUTs Occupied

Figure 4.15 Slice Flip Flop and DSP48 blocks Utilization Comparison of Coarse Frequency

Estimation Implementation

The comparison shown in Figure 4.15 and Figure 4.16 tells the complete picture of the tradeoff

between performance and utilization of dedicated DSP blocks. Throughput of shared resource

implementation is low because it requires more clock cycles for complex multiplication. For high

throughput design, complex multiplication is done in multiple dedicated hardware multipliers.

87

T
h

ro
u

g
h

p
u

t
(K

s
p

s
)

100

200

300

400

500

166.728

Ksps

751.875

Ksps

20

40

60

80

100

C
lo

c
k
 (

M
H

z
)

120

140

Throughput for 32 length

training sequence

120.3

MHz

Clock

Shared Resource Implementation

Performance Optimized Implementation

600

700

Throughput for 64 length

training sequence

93.601

Ksps

422.10

Ksps

53.353

MHz

Figure 4.16 Throughput and Clock for both designs of Coarse Frequency Estimation

Implementation

The CORDIC implementation is used to calculate the final frequency estimation factor. This

implementation is done with iterative architecture. This is due to the fact that the input and

output interface of CORDIC core implementation operates iteratively. Implementing CORDIC

core in unrolled form can decrease the efficiency of design for the values for which CORDIC

algorithm do not converge. To get higher throughputs, multiple modules of CORDIC

implementation can be used.

Another important factor considered while designing CORDIC architecture is to facilitate other

algorithms that require sine and cosine calculation in the configuration known as rotation mode.

Coarse Frequency Estimation requires the angle calculation only which has also been integrated

in its design. Figure 4.17and Figure 4.18 illustrates area utilization and throughput respectively.

88

S
lic

e
s
 o

r
L

U
T

s

300

600

900

1200

1500

1198

1

2

3

4

5

D
S

P
 D

e
d

ic
a

te
d

 B
lo

c
k
s6

7

DSP48A

1800

2100

LUTsSlices

2183

2

Figure 4.17 Area Utilization of CORDIC Top Level Implementation

T
h

ro
u

g
h

p
u

t
(K

s
p

s
)

200

400

600

800

1000

1410

Ksps

10

20

30

40

50

C
lo

c
k
 (

M
H

z
)

60

70

1200

1400

ClockThroughput

53.746

MHz

Figure 4.18 Clock and Throughput of CORDIC Top Level Implementation

The bottle neck for CORDIC implementation is the implementation of trigonometric identities

and the iteration of subtraction or addition that brings input value to the valid range of CORDIC

89

core. By using this CORDIC implementation with both designs of Coarse Frequency Estimation

the final throughput is shown in eq. 4.6 to eq. 4.9 and illustrated by Figure 4.19.

 - - - - - - - - - - (4.6)

 - - - - - - - - - - -(4.7)

 - - - - - - - - - - (4.8)

 - - - - - - - - - - -(4.9)

90

T
h

ro
u

g
h

p
u

t
(k

s
p

s
)

75

150

225

300

375

149.031

Ksps

450

525

Performance

Optimized
Shared

Resource

490.196

Ksps

Required Throughput

(426.8 Ksps)

Figure 4.19 Final Throughput for 32 length training sequence

From all the discussion above, it can be concluded that, the two presented implementations can

be divided into two categories.

 Design with throughput upto 140 Ksps

 Design with throughput upto 490 Ksps

As the requirement is 426.8 Ksps, so the second design can be used with in SDR of final

throughput of 384 kbps.

4.4 Clock Relationship

In order to accomplish coarse frequency estimation operation, the cascade operation of any of the

coarse frequency architecture and CORDIC is required. As evident by the results, both of these

architectures operate in different clocks so in order to transfer the data from one module to

another module, some interface is required. This interface will ensure the smooth acquisition of

data from coarse frequency estimation to CORDIC module.

91

The interface between both modules can simply be achieved by using a register that is operating

at CORDIC clock frequency. Once the data is available at the output of coarse frequency

estimation architecture, it can be written to this intermediate memory and coarse frequency can

be used for next operation immediately. Meanwhile, the CORDIC can start its operation by

reading the input data from intermediate memory.

While designing both of these architectures, it has been ensured that data should never get over

run. It has been ensured by designing CORDIC such that its throughput remains higher then

fastest coarse frequency estimation implementation. In this way, CORDIC completes processing

the current output data before coarse frequency estimation can generate next data of concern.

CORDIC implementation gets in idle state if it does not get the data in the next processing cycle.

So the data under run condition is also handled successfully without the generation of any

exception.

4.5 Summary

This chapter gives the results of the implementations of designs given in previous chapter. It

includes two coarse frequency estimation designs and CORDIC implementation. CORDIC is

used to calculate the angle of estimation after the complex number is provided by the Coarse

frequency estimation architecture.

92

Chapter 5: Conclusion and Future Work

5.1 Conclusion

The primary objective of this thesis is to propose the design and implementation of Coarse

Frequency Estimation Algorithm for SDR receiver of throughput 384 Ksps. The approach to the

solution of the problem is to design two different architectures. One of them is shared resource

design while other is performance optimized. The major characteristic that differs between both

is the utilization of dedicated resources.

The performance optimized design explicitly uses dedicated multipliers in hardware while shared

resource design uses only one dedicated hardware multiplier. As a consequence, it becomes

evident that the use of dedicated hardware helps in increasing the throughput of the system.

Moreover, performance optimized design also utilizes pipeline stages.

After the careful examination of Coarse Frequency Estimation Algorithm, it can be divided into

two parts. One part can be named as pre calculable part and other as real time calculation part.

The pre calculable part can be implemented such that it consumes only 96 bit ROM and few

resources for counter as compare to the direct implementation which needs at least 1.5 kb of

ROM. Its input is the received training sequence of either 32 or 64 bit length depending upon the

mode of operation. The output of this module is given to the input of CORDIC module that

calculates the final Coarse Frequency Offset in the received burst. The format of implementation

is Q5.11 signed. Both of the implemented designs utilize this compression of pre calculable part.

One of the most important parts is the design and implementation of CORDIC algorithm which

will be used for calculating fundamental trigonometry functions. It consists of two parts; core

and interface. Due to the limitation in convergence of CORDIC algorithm, the interface provides

the behavior of trigonometric identities to facilitate the calculation for wide range of inputs. The

overall design of core is of 32 bit iterative nature in Q5.11 signed format. Moreover, in order to

utilize resources in better way, both vector and rotation modes of CORDIC Algorithm are

93

implemented in single system such that it has the capability to change modes in runtime. This

CORDIC implementation

Literature review gives extensive relevant information on both digital signal processing and

digital system design. It includes concepts related to modulation, demodulation, multiple access

techniques and many others. Concepts related to architecture and state machines are also

discussed. All of the algorithms of interest along with relevant previous implementations are

presented in detail.

For each of the implementation, mainly the benchmark criteria are the percentage error,

throughput and consumption of resources. In order to calculate percentage error, comparison of

implemented system is done with MATLAB. Visual Comparisons of graph shows the calculated

values in hardware along with MATLAB. Objective of these graphs are to give the rough idea of

range in which the calculated output lies. Some of the simulation waveforms provide the

visualization of some scenarios in which these systems can perform. The model of FPGA is from

the family of XLINX 3A- DSP xc3sd3400a. Based on the throughput results achieved, it has

been discussed that, the performance optimized design can be used for SDR implementation of

384 Ksps.

5.2 Future Work

Given in Figure 2.14, besides the implementation of CORDIC algorithm and Coarse Frequency

estimation algorithm implementation of channel estimation, fine frequency estimation and

residual phase estimation can be done on FPGA. Most of these implementations can use

CORDIC implementation to figure out their respective trigonometric calculations. In order to

achieve desired throughput with current implemented CORDIC, it is recommended to use its

multiple instances in parallel.

For coarse frequency estimation algorithm, the offline calculable part can be saved outside of

FPGA chip and can be calculated in general purpose embedded system processor. This way not

only saves area on FPGA but also introduces further factor of flexibility. Moreover, the module

of coarse frequency estimation can be interfaced with the software. This interfacing can be

94

realized by first connecting the design with Microblaze processor and then communicating with

microcontroller or DSP.

5.2.1. Channel Estimation

Estimating the channel is actually a measurement of its frequency response. This response is

equalized using the method known as channel equalization. In this method, received samples are

filtered through inverted channel response to compensate unwanted suppression caused by

channel. But before this, the estimation of channel response is required to be made. This

estimation is known as channel estimation. Suitable algorithm [7] that can be used for channel

estimation is explained below.

Let there are a total of N received samples. If these samples are received after passing through

the channel whose instantaneous gain is then let’s define the following,

 () () () () - - - - - - - - - - (5.1)

 - - - - - - - - - - - - - (5.2)

 ()

 ()

 - - - - - - - - - (5.3)

Also the noise sample array for N samples are defined in eq. 5.4 and transmitted training symbol

matrix can be defined as eq. 5.5 where transmitted training symbols can be denoted by s.

 () () () () - - - - - - - - - - (5.4)

 [

 () () ()

 () () ()

 () ()

 ()

] - - - - - - - - (5.5)

 ()

The received samples can also be represented as

 () - - - - - - - - (5.6)

95

On the basis of all equations given above, maximum likelihood channel estimation can be

represented as eq. 5.7.

 ̂ () - - - - - - - - (5.7)

The final channel compensation of received samples can be represented as,

 (̂) (̂) (̂) (̂)
̅̅ - - - - - - - - (5.8)

 .

The implementation of the given algorithm of channel estimation can be implemented for 384

Ksps. If carefully examined, the matrix W and S given in eq. 5.3 and eq. 5.5 are offline

calculable and the result can be converted from matrix to array with minimum precision

sacrifice. This is due to the fact that the matrix remains constant for any given length of

training sequence. If algorithmic decision is to estimate the channel up to four coefficients then

there can only be two matrices of ; for training sequence of 32 and 64 lengths of order 32 by 4

and 64 by 4 respectively. Hence the order of result of offline part is either 4 by 32

or 4 by 64.

A term () is a diagonal matrix of either 32 by 32 or 64 by 64 (depending upon length of

training sequence) order with its entries only calculable with appearance of real time received

training symbols. But before implementation, by further observation, it can be proved that the

factor () can be calculated without matrix multiplication.

The order of result in eq. 5.7 will always be 4 by 1; 4 coefficients of channel estimation. But as

shown in eq. 5.8, the channel compensation is done by multiplying the accumulation of channel

estimation coefficients with received data (equalization using FIR filter). Hence, a single

summed value of channel coefficient is enough for channel compensation. Keeping this fact in

mind with the discussion done in previous paragraph, following steps can be done in order to

design channel estimation algorithm.

 Add all rows of matrix to an array.

 Convert () to an array too by picking all diagonal elements of matrix.

96

 Both and () are now an array of same order; 1 by 32 or 1 by 64

depending upon training symbols. Multiply the elements of both arrays point by point

 Multiply this result with received training array . The result will be single channel

estimation coefficient that will be the sum of 4 channel coefficients of order one by one.

For the transmitted training sequence shown in Figure 3.6, the value of matrix converted

array is shown in Figure 5.1.

Figure 5.1 Offline calculable part of Channel Estimation Equation (summed up as an array)

The implementation of this algorithm becomes straight forward because after simplification,

three arrays are required to be point by point multiplied. So, effectively the datapath requires the

resources to multiply complex numbers and memory to retain the data. Offline

calculable , will be saved in ROM separately for both N=32 and N=64. While the

members of factor () are calculated in rum time and used as per needed. The received

sequence will be saved in RAM.

5.2.2. Fine Frequency Estimation

The fine frequency estimation and compensation algorithm is applied once coarse frequency

algorithm is done. It estimates the residual frequency within acceptable range but much more

complex and computationally high profile. Suitable algorithm for implementation has been

implemented in [39].

0 5 10 15 20 25 30 35
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

V
a
lu

e

Index

Value of offline part of Channel Estimation Equation for N=32

0 10 20 30 40 50 60 70
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

V
a
lu

e

Index

Value of offline part of Channel Estimation Equation for N=64

97

This algorithm basically measures the phase in the received burst that comes from the remaining

offset in the frequency. Moreover, offset for each sample in received data burst R is calculated

and compensated separately. Also, we have to append number of zeros before and after the

received burst of length . Then the estimation can be done by the following equation.

 ̂() [

 {∑ (()) ()

 () }]

- - - - - - - - - - (5.9)

After the fine frequency estimation is done, we will get an array of length . This array is finally

used to compensate the data burst.

 () ()
 ̂() - - - - - - - - - - -(5.10)

5.2.3. Residual Phase Estimation

If some residual phase still remains after demodulation, this phase estimation algorithm is used

as a solution. This algorithm finds out the residual phase (if any) in the demodulated signal .

Implemented algorithm of this dissertation is shown in the one line equation below. Note that, it

is just the multiplication and accumulation of corresponding training samples of received

demodulated and transmitted signal.

 {∑ () ()
 } - - - - - - - - - - -(5.11)

The abstract top level diagram of the top level diagram that contains CORDIC module, Coarse

Frequency Estimation, Channel Estimation, Fine frequency estimation and residual phase

estimation is shown in

98

4 bytes wide RAM X 2

Coarse Frequency Estimation
Multiple CORDIC Instances

with I/O interface

Fine Frequency Estimation

Residual Phase Estimation

Complex Multiplier

Accumulator

I/O data

Channel Compensation

ROM

Figure 5.2 Abstract Diagram of Top Level Datapath Implementation

99

References

[1] B.P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed. New York: Oxford

University Press, 1998.

[2] William Stallings, Computer Organization & Architecture: Designing for Performance, 6th

ed.: Pearson Education.

[3] M.Morris Mano, Computer System Architecture, 3rd ed. New Jersey, USA: Prentice Hall,

1993.

[4] John McAlister, Gaye Lightbody, Ying Yi Roger Woods, FPGA based implementation of

signal processing systems.: John Wiley & Sons, 2008.

[5] Dr. Shoab Ahmed Khan, Digital Design of Signal Processing Systems: A Practical

Approach.: John Wiley & Sons, Ltd, 2011.

[6] Bernard Sklar, Digital Communications Fundamental and Applications, 2nd ed. Los

Angeles, California: Prentice Hall.

[7] Hlaing Minn, Vijay K. Bhargava, Khaled Ben Letaief, "A Robust Timing and Frequency

Synchronization for OFDM systems," IEEE Transaction on Wireless Communication, vol.

2, no. 4, pp. 822-838, July 2003.

[8] Alan V. Willsky, S Hamid Nawab Alan V. Openheim, Signals And Systems, 2nd ed., Alan

V. Openheim, Ed. New Jersey: Prentice Hall.

[9] M. Moeneclaey, S. A. Fechtel H. Meyr, Digital Communication Receivers; Synchronizaton,

Channel Estimation and Signal Processing. New York, US: John Wiley and Sons, 1998.

100

[10] Dimitris G. Manolakis John G. Proakis, Digital Signal Processing: Principles, Algorithms

and Applications, 4th ed. Boston, MA, US: Pearson Prentice Hall, 2007.

[11] H. Nyquist, "Certain Topics in Telegraph Transmission Theory," AIEE Transactions, vol.

47, no. 2, pp. 617-644, April 1928.

[12] W. Effing W. Rankl, Smart Card Handbook, 3rd ed.: John Wiley and Sons, Limited, 2003.

[13] David L. Adamy, EW 102: A Second Course in Electronic Warfare. London, United

Kingdom: Horizon House Publications, 2004.

[14] Rodger E. Ziemer, Fundamentals of Spread Spectrum Modulation, Virginia Tech William

Tranter, Ed. USA: Morgan and Claypool, 2007.

[15] Spartan-3A DSP FPGA Family Data Sheet, October 4, 2010.

[16] Ian Elliott Peter Minns, FSM-based Digital Design using Verilog H DL. England: John

Wiley & Sons, 2008.

[17] Austin Lesea, Rene Ritcher Doug Amos, FPGA-based Prototyping Methodology Manual:

Best Practices in Design-for-Prototyping. Mountain View, California, USA: Synopsys,

2011.

[18] Jack E. Volder, "The CORDIC Trigonometric Computing Technique," IRE Transaction on

Electronic Computer, vol. EC-8, no. 3, pp. 330-334, September 1959.

[19] J. S. Walther, "Unified Algorithm for elementary functions," in spring joint computer

conference AFIPS '71, New York, 1971, pp. 379-385.

[20] Jean-Michel Muller, Elementary Functions Algorithms and Implementations, 2nd ed.

NewYork, USA: Birkhauser, 2006.

[21] Ray Andraka, "A survey of CORDIC algorithms for FPGA based computers," in FPGA '98

Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field

101

programmable gate arrays, New York, 1998, pp. 191-200.

[22] Yu Hen Hu, "The Quantization effects of CORDIC Algorithm," IEEE TRANSACTIONS ON

SIGNAL PROCESSING, vol. 40, no. 4, pp. 834-844, Apr 1992.

[23] R. Cumplido, M. Arias E. O. Garcia, "Pipelined CORDIC Design on FPGA for a Digital

Sine and Cosine Waves," in 3rd International Conference on Electrical and Electronics

Engineering, Puebla, Mexico, 2006, pp. 1-4.

[24] A. Boudabous, W. Kharrat, N. Masmoudi N. Neji, "Architecture and FPGA Implementation

of the CORDIC Algorithm for Fingerprints Recognition Systems," in 2011 8th International

Multi-Conference on Systems, Signals & Devices, March 2011, pp. 1-5.

[25] Jean-Michel Muller Jean Duprat, "The CORDIC Algorithm: New Results for Fast VLSI

Implementation," IEEE TRANSACTIONS ON COMPUTERS, vol. 42, no. 2, pp. 168-178,

Feb 1993.

[26] M. D. Ercegovac and T. Lang, "Redundant and On-Line CORDIC : Application to Matrix

Triangularization and SVD," IEEE Transactions on Computers, vol. 39, no. 6, pp. 725-740,

June 1990.

[27] Randy Saut Purba Trio Adiono, "Scalable Pipelined CORDIC Architecture Design and

Implementation in FPGA," in International Conference on Electrical Engineering and

Informatics, Selangor, Malaysia, 2009, pp. 646-649.

[28] P.Muralidhar S. Bhuria, "FPGA Implementation of Sine and Cosine Value Generators using

Cordic Algorithm for Satellite Attitude Determination and Calculators," in International

Conference on Power, Control and Embedded Systems (ICPCES), 2010 , Warangal, India,

2010, pp. 1-5.

[29] Min Ye, "FPGA Implementation of CORDIC-Based Square Root Operation for Parameter

Extraction of Digital Pre-Distortion for Power Amplifiers," in 6th International Conference

on Wireless Communications Networking and Mobile Computing, Ningbo, China , 2010, pp.

102

1-4.

[30] H. Meyr and P. Sehier F. Classen, "Maximum likelihood open loop carrier synchronizer for

digital radio," in IEEE International Conference on Communications, Geneva, 1993.

[31] J. h. Ge, Y. Wang B. Ai, "Frequency offset estimation for OFDM in wireless

communications," IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 73-77,

2004.

[32] M. Luise and R. Reggiannini, "Carrier Frequency Recovery in All digital modems for burst

mode transmissions," IEEE Transactions on Communications, vol. 43, no. 234, pp. 1169-

1178, 1995.

[33] U. Mengali and M. Morelli, "Data-Aided Frequency Estimation for Burst Digital

Transmission," IEEE Transactions on Communications, vol. 45, no. 1, pp. 23-25, Jan 1997.

[34] M. P. Fitz, "Planar Filter Techniques for Burst mode Carrier Synchronization," in Global

Telecommunications Conference, West Lafayette, IN, US, 1991.

[35] Hyoung Jin Yun, Myung Hoon Sunwoo, Pansoo Kim, and Dae-Ig Chang Jang Woong Park,

"Efficient Coarse Frequency Synchronizer Using Serial Correlator for DVB-S2," in IEEE

Internatinal Symposium on Circuits and Systems, Suwon, South Korea, May 2008.

[36] Zaiwang Dung Linghi Huang, "The implementation of estimation and correction of carrier

frequency offset of COFDM system in DAB receiver ," in 5th international conference on

ASIC, Beijing, 2003.

[37] J Singh and M Faulkner K Wang, "FPGA Implementation of an OFDM-WLAN

Synchronizer," in Second IEEE International Workshop on Electronic Design, Test and

Application, Melbourne, 2004.

[38] Geert Vanwijnsberghe, Peter Van Wesemael, Tom Huybrechts, Steven Thoen

MaryseWouters, "Real Time Implementation on FPGA of an OFDM based Wireless LAN

103

modem extended with Adaptive Loading," in Proceedings of the 28th European Solid State

Circuits Conference, Heverlee, Belgium, 2002.

[39] A. M. Viterbi A. J. Viterbi, "Nonlinear estimation of PSK-modulated carrier phase with

application to burst digital transmission," IEEE Transactions on Information Theory, vol.

29, no. 4, pp. 543-551, Jul 1983.

[40] Mohamed M. Khairy, H. A. H. Fahmy, S. E.D. Habib K. ElWazeer, "FPGA Implementation

of an Improved Channel Estimation Algorithm for Mobile WiMAX," in International

Conference on Microelectronics, Cairo, 2009, pp. 280-283.

[41] T. Ogunfunmi J. S. Park, "FPGA implementation of channel estimation for MIMO-OFDM,"

in IEEE International Symposium on Circuits and Systems, Santa Clara, 2011, pp. 705-708.

[42] Farhad B. Verahrami, Ajit Shenoy Harvey Chalmers, "Digitally Implemented Fast

Frequency Estimator/ Demodulator for Low Bit Rate Maritime and mobile data

communications without the use of an acquisition preamble," 5272446, Dec 21, 1993.

[43] Vijay K. Bhargava, Khaled Ben Letaief Hlaing Minn, "A Robust Timing and Frequency

Synchronization for OFDM systems," IEEE Transaction on Wireless Communication, vol.

2, no. 4, pp. 822-838, July 2003.

[44] Ray Andraka, "A survey of CORDIC algorithms for FPGA based computers," in FPGA '98

Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field

programmable gate arrays, New York, 1998, pp. 191-200.

104

Proposed Solution Specifications

Product Coarse Frequency Estimation

Architecture Dedicated Resource Pipeline Based Shared Resource

Maximum Clock 120.3 MHz 53.3 MHz

Number of DSP48

Blocks Used
6 1

Pipeline Stages 3 Pipelining is not used

Maximum

Throughput (for 32

length training

sequence)

751.875 Ksps 166.728 Ksps

Maximum

Throughput (for 64

length training

sequence)

422.10 Ksps 93.601 Ksps

Input Format Q5.11 signed

Output Format Q5.27 signed

Format of

Operation

Write training Sequence to the input memory, write length of training

sequence in configuration register and trigger start_operation for one

clock cycle. In order to get higher throughput, replace input data memory

by custom size buffer so that the time required to write data to memory

can be reduced.

Output Availability

Indication
out_available pin goes high

105

Product CORDIC Implementation

Architecture Iterative based and ROM indexed

Maximum Clock 53.746 MHz

Number of DSP48

Blocks Used
2

Pipeline Stages Pipelining is not used

Maximum

Throughput
1410 Ksps

Modes
Rotation Mode: Calculation of sine and cosine function

Vectoring mode: Calculation of angle of complex number

Input Format Q5.27 signed

Output Format Q5.27 signed

Solution of

Convergence

Problem

Yes. Trigonometric identity interfaces are present at input and output.

Format of

Operation

Place the data and mode of operation at the input and then trigger

start_calculation; for rotation mode the mode of operation is set by

triggering mode_of_calcualtion to low and vice versa for vectoring mode.

Output Availability

Indication
Out_ready pin goes high

106

Appendix: Abbreviations

AFE Analog Front End

AM Amplitude Modulation

ASIC Application Specific Integrated Circuit

BER Bit Error Rate

CDMA Code Division Multiple Access

CLB Configurable Logic Block

CORDIC Coordinate Rotation Digital Computer

DCM Digital Clock Manager

DSSS Direct Sequence Spread Spectrum

FDMA Frequency Division Multiple Access

FPGA Field Programmable Gate Array

FHSS Frequency Hopping Spread Spectrum

FM Frequency Modulation

FSM Finite State Machines

ISI Intersymbol Interference

KBps Kilobytes per Second

Kbps Kilobits per Second

Ksps Kilo Samples Per Second

LE Logic Elements

LUT Look up Table

Mcps Mega Chips Per Second

ML Maximum Likelihood

MMSE Minimum Mean Square Error

QPSK Quadrature Phase Shift Keying

SDMA Space Division Multiple Access

107

SDR Software Defined Radio

SNR Signal To Noise Ratio

SOC System On Chip

TDMA Time Division Multiple Access

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

WBNR Wideband Networking Radio

WCDMA Wideband Code Division Multiple Access

