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Abstract 

 
Research in the field of text to image generation has shown incredible momen- 

tum owing to the availability of more powerful natural language processing (NLP) 

models and generative networks. The quality of data representation learned by 

the generative models acts as a determining factor in the success of these mod- 

els. Self-supervised learning augments the generative power of these networks by 

utilizing the underlying hidden structure of the data for providing supervisory 

signals. Contrastive learning (CL), a self-supervised technique, has been used in 

generative models to foster improvements in image to image and text to image 

(T2I) tasks. Use of generative adversarial networks (GAN) is not nascent in the 

field of text to image generation. But, GANs suffer from the problem of training 

instability. In T2I models, the existence of numerous mappings between the image 

and text captions adds more to this training instability and puts the adversarial 

loss under another constraint. Several T2I models have been proposed in the 

literature which have employed CL with the intent to stabilize the GAN train- 

ing and improve semantic consistency of generated images and textual captions. 

But most of these models have used stacked architecture as baseline and atten- 

tion computations for ensuring the semantic consistency of image and text. This 

setup becomes computationally more expensive as the resolution of the generated 

images increases. In this work we have employed CL in a single stage GAN for 

improving the convergence of generative model to a better learnt latent data rep- 

resentation. Comprehensive experiments upon benchmark datasets have shown 

remarkable improvement in the convergence rate of model when co-related with 

other similar state-of-the-art models. 
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CHAPTER 1 
 
 
 

Introduction 
 
 
 
 

1.1 Overview 

 
Textual data has always been an efficient and effective way of communication 

and information sharing. It is often combined with visual content to make it more 

comprehensive, accurate, and intelligible means of conveying ideas and knowledge. 

Images and graphics are equitable part of communicating ideas and information 

in all fields of life whether it’s the academic field, design industry, marketing 

industry or fashion industry. The application of graphical content can vary from 

augmenting the textual content for better comprehension to capturing attention 

with captivating illustrations, but importance of images is a fact. For this, there is 

dire need of devising novel models for the generation of plausible images satisfying 

various needs[5]. 

Remarkably plausible images satisfying various needs can already be generated 

using modern day computer graphics. But the caveat involved in the task is 

requirement of substantial human designers and developers’ effort for translating 

high-level concepts to end product of pixel-level details. [2] Past few decades 

has witnessed an increase in the availability of computational resources. This 

has paved the way for data driven methods like deep learning (DL) to automate 

creative and complex human tasks such as hyper-natural image synthesis and 

natural language processing. Artificial Neural Networks (ANNs) or simply the 

Neural Networks (NNs) are the heart of DL. Taking intuition from human brain’s 
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activity of passing signals through the biological neurons, ANNs recognize and 

learn the data pattern from extensive quantities of training data by propagating 

it through NN layers and thus avoid the need of explicit functional programming.  

In DL data distributions are learned using algorithms rather than pre-defining 

them. [3] 

Generative Models (GM) are such powerful algorithms in the field of DL and 

Machine learning (ML) which learn the underlying hidden distribution from the 

training data and generate new data by sampling from the learned distribution. 

Some popular generative models include Neural Autoregressive Distribution Es- 

timator, Variational autoencoders (VAE) and Generative Adversarial Networks 

(GAN). Computational advances and architectural innovations in the field of deep 

learning (DL) has enabled the deep generative models to show significant improve- 

ments in producing rich representations of the real-world data which are hard to 

distinguish from the real samples. 

GANs are popular GMs which have data distribution matching capability which 

makes them excellent choice for various data synthesis and manipulation tasks. 

Generator and discriminator are two of its components that are trained in an 

adversarial fashion to learn the underlying data distribution, where the objective 

of the generator is to generate fake data that resembles real data and the role of 

discriminator is to distinguish the fake data from real data. Owing to their good 

conditional generative capability these are also extensively used for text to image 

(T2I) synthesis tasks. 

Translation of text into image pixels involves two sub problems. First sub problem 

involves the learning of such a text representation which captures the visual details 

and second sub problem is concerned with generating plausible images from the 

captured visual description. Traditionally, detailed visual information about the 

object to be generated was captured in the attribute representations. But these 

attribute representations were cumbersome to obtain as domain specific knowledge 

was required. Automatic text representations learned directly from words and 

characters, using deep convolutional and recurrent networks has paved the way 

for translation of words and characters to image pixels[6]. 
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Gap between textual modality and visual modality makes the task of image gener- 

ation from visual details (captured from natural language descriptions) even more 

challenging. 

The beginning of T2I synthesis was marked by GAN-INT-CLS, in which class con- 

ditional GAN was used to generate images from single sentences using sentence 

interpolations. Then, stacked architectures were introduced to increase the qual- 

ity and resolution of the generated images and resolve GAN stability issues. It 

was used as the baseline architecture in following text to image generation tasks. 

T2I models based on stacked architecture obtained promising results. Another 

improvement in the fine-grained details was attained by attending to the relevant 

words in the input text. More recent methods, taking it as baseline backbone 

architecture, obtained further improvements by incorporating the formulation of  

semantic layout (object bounding boxes, segmentation masks or a combination) 

based on the input text. This generated layout was then used for leading towards 

more semantically consistent image generation for the input text. But, these multi  

step T2I generation processes require more fine-grained object labels for training 

such models.Another hitch involved in these multistage architectures is that the 

quality in the later stages of hierarchy highly depends on the results of initial 

stage. Furthermore, cross modal attention computation cost increases proportion- 

ally with the scale of generated imaged which makes these models hard to extend 

towards high resolution synthesis. 

In T2I tasks, natural language adds another ambiguity by offering a general and 

flexible interface for describing objects in any space of visual categories. Con- 

trastive Learning (CL) is a technique employed to deal with the problem of natural  

language in describing same visual content in various ways. It is employed to guide 

the generative model about the distinctiveness in captions of different images and 

analogy of the various captions for the same image[7]. CL has proved remarkable 

improvements in various computer vision and natural language processing tasks 

[8–11]. These improvements are attributed to the capability of contrastive learn- 

ing to deal with GAN training issues including mode collapse and discriminator 

forgetting the learned data representation. In text to image generation tasks CL 

has also been used by [12, 13] for improving the semantic consistency of generated 
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images and textual descriptions. 

 

1.2 Motivation and Problem Statement 

 
GANs suffer from the problem of training instability due to the non stationary 

nature of the training environment.In T2I models, existence of multiple mappings 

between the image and text caption domains adds more to this training instability 

by putting the adversarial loss under another constraint.[13] In the field of self 

supervised learning, contrastive Learning among various views of data has lead 

to improved training stability[8, 14–16].Several T2I models[13, 17, 18] have been 

proposed in the literature which employed CL with the intent to stabilize the 

GAN training and improve semantic consistency of generated image and textual  

caption. But most of these models have used stacked architecture as baseline 

and attention computations for ensuring the semantic consistency of image and 

text. Which becomes computationally more expensive as the resolution of the 

generated images increases. Baseline staged architecture also introduces generator 

entanglements which badly effects the quality of generated image in the final stage. 

[4]suggested a simple backbone comprising of single generator and discriminator 

pair for generating high-resolution images. In this model, Hinge loss[19] was used 

for training the generative model and affine transformations for fusing the text 

and image features. 

Given that there has been a lot of recent research and progress in the field of text 

to image generation models and that existing models contain contrastive learning,  

we focus to build upon a simple one stage GAN and add CL in the adversarial 

training to lead towards improved data convergence. 

We will combine the semantic consistency of similar captions and uniqueness of 

captions for different images in the form of contrastive loss during the training 

phase of adversarial network to achieve highly consistent generated imaged for 

similar image captions. 
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1.3 Objectives 

 
The main objectives of thesis are: 

 
• To build GAN based T2I synthesis for generating high fidelity images seman- 

tically consistent with input text. 

• Use of Hinge Loss and Contrastive learning to improve the convergence of 

model towards target distribution and inducing training stability in GAN 

• Compare the model with state-of-the-art technique. 

 

1.4 Thesis Contribution 

 
The main contribution of this thesis is to propose a GAN based text to image 

model which uses contrastive learning in the training phase to generate more 

semantically consistent images for the input text. Our primary contributions are 

summarized below. 

• Introduce a model to incorporate the contrastive learning in the training 

phase of generative model to learn an embedding space where related signals 

are pulled together and mismatching signals are pushed away. 

• Generation of text encoded vector representations of image caption by em- 

ploying pretrained BERT. 

• Generation of image embedding by employing pretrained InceptionV3 model. 

 
• Model evaluation and performance comparison with existing state-of-the-art 

models. 

 
1.5 Area of Application 

 
Visual content is an important part of communication in all fields of life whether 

it’s the academic field, design industry, marketing industry or fashion industry. 

Continuous growth in the field of computer vision and natural language processing 
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has brought revolution in the multi model synthesis and manipulation tasks. One 

such active area of research is synthesis of images by taking guidance from text 

written in natural language. 

The use of visual content generation conditioned on textual description is very 

beneficial in graphics designing industry. Effective graphic designing is backbone 

of many economy pillars of the country like marketing, print and fashion design- 

ing industry; owing to its ability of capturing attention of customers by presenting 

ideas more aesthetically. Thus, improvements in the field of graphic designing, im- 

age generation and manipulation tasks will boost not only computer aided design- 

ing but also positively impact other related fields by blending textual information 

with captivating illustrations. 

This synthesis of realistic images conditioned on the textual input is extremely 

beneficial in a number of domains like art generation, image editing, video games 

and computer aided design. Although, high quality image synthesis has already 

been revolutionized remarkably, yet a substantial amount of effort is still required 

to narrow the gap between high-level concepts and end product of pixel-level de- 

tails. High level control over the contents of the scene to be generated can be very 

beneficial in generating realistic images. Utilizing contrastive learning semantic 

consistency can be improved in the generated images conditioned on human writ- 

ten captions. This can be beneficial in a number of domains in Pakistan’s graphics 

designing industry and improve their contributions in boosting country’s economy. 

• Art Generation 

 
• Computer aided Design 

 
• Image Editing and Manipulation 

 
• Video Games 

 

1.6 Thesis Organization 

 
The thesis is structured as follows: 
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• Chapter 1: This chapter contains introduction, objectives and the contribu- 

tions made in this thesis. It also contains brief overview of the proposed 

model. 

• Chapter 2: In chapter 2, we have briefly covered the methods and concepts 

used in the succeeding chapters. 

• Chapter 3: In this chapter, review of literature and background is given along 

with brief description of existing technique. 

• Chapter 4: In this chapter, our proposed GAN is presented along with the 

introduction of the embedding technique and contrastive learning being used 

in the proposed model are also explained. 

• Chapter 5: This chapter discusses the experiment detail and analysis of the 

results by comparing with baseline model along with the brief explanation 

of the evaluation metrics being used to evaluate the model. 

• Chapter 6: This chapter concludes the report and proposes the future work. 



8 

 

 

 
 
 
 
 

CHAPTER  2 
 
 
 

Background 

 
In this chapter, we have briefly covered the methods and concepts used in the 

succeeding chapters. Section 2.1 describes how the biological theories lead to- 

wards the development of neural networks. A brief overview covering artificial 

neural networks and commonly used activation functions in provided in section 

2.2. Other topics briefly described in this section include feed-forward neural net- 

works, common loss functions, gradient descent, back-propagation, and popular 

improvements such as batch normalisation and residual connections. 

Section 2.3 summaries Convolutional Neural Networks (CNNs). It covers convo- 

lutional layers, pooling layers, and gated linear units. It also introduces recurrent 

neural networks, their accompanying vanishing gradient problem.Section 2.4 intro- 

duces generative models. It covers generative adversarial networks and discusses 

some of GAN training instabilities including convergence, vanishing gradients, 

and mode collapse.This section also includes brief overview of auto-encoders and 

denoising auto-encoders. Lastly, section 2.5 covers salient’s of the text encoders. 

 
2.1 Deep Learning 

 
Initially, artificial intelligence (AI) systems were developed using formal languages. 

These AI systems were based on hard-enciphered knowledge representing real 

world scenarios coded in formal languages. The difficulties faced in these hard- 

coded systems suggested that AI systems ought to have capability to attain their 
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own knowledge, by foraging patterns from real world data. Making systems ar- 

tificially intelligent in this way is termed as machine learning. The higher the 

quality of learnt data representation, the better the performance of these machine 

learning algorithms will be. Designing of a successful artificial intelligence task is  

dependant on the design of appropriate feature set for that particular task. How- 

ever, first difficulty faced in this endeavour is to arrive at a decision about the 

extraction of feature set which will be right for the task. In order to deal with this  

problem, researchers arrived at a finding that such algorithms should be designed 

which can not only learn the mapping from representation to accomplish that task 

but also the hidden data representation itself. This solution for the problem was 

names as representation learning. The quintessential illustration of a representa- 

tion learning algorithm is the auto encoder. Two networks are combined together 

form an auto encoder; first component network called an encoder takes the input 

and translates it to different representation and the second member of auto en- 

coder generates data resembling with the input for encoder. The second network 

of auto encoder is named as decoder. 

Deep learning algorithms used simpler representations to express the complex 

representations or in other words it can be stated that in deep learning, simpler 

concepts are the building blocks used by computers to build complex concepts. For 

instance, a deep learning system uses simple concept of corners and contours to 

construct the concept of an image. These building blocks are also defined in terms 

of edges. The quintessential example of a deep learning model is the multilayer 

perceptron (MLP).[20] 

 
2.1.1 Biological Intuition 

 
Initial learning algorithms were developed based on the biological activity of the 

human brain. These computational models imitated the way learning happens or 

could happen in human brain. For the same reason these were named as artificial  

neural networks (ANNs). The basic idea of making these computational units 

intelligent through their interactions waas also inspired from the human brain 

activity. 
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Another inspiration from neuroscience was the hope of arriving at a single deep 

learning algorithm for various tasks. If we look at the initial research works in the 

field of machine learning, the most evident fact found would be the fragmented 

research; different communities were putting their effort in different directions 

like natural language processing, vision, motion planning, and speech recognition. 

But, the advancements in the field of deep learning changed the trend and research 

started for devising common practices for studying these diverse application areas.  

Neuroscience is not only the single foundational base of modern deep learning 

but other fields (linear algebra, probability, information theory, and numerical  

optimization) also have their contributions in it.[20] 

Linear Models These models are the ancestors of modern deep learning. Neu- 

roscience and applied mathematical concepts lead to the development of these 

models. These models were aimed to find the mapping for output y from a set 

of n input values a1, ..., an. These models would learn a set of weights w1, ..., wn 

and compute their output f (a, w) = a1a1+,......+xnwn.  Limitations associated 

with these simpler Linear models invited backlash from research communities. A 

famous inability of linear models was to learn the XOR function. In XOR function 

input valuesf ([0, 1], w) and f ([1, 0], w) give 1 as output where as 0 is obtained as 

output for input values f ([1, 1], w) and f ([0, 0], w). In short, such flaws brought 

bad name to biologically inspired learning in general[21]. 

 
2.2 Artificial Neural Networks 

 

A simple ANN is not much different from a linear classifier: 

f = Wx 

xϵRDWϵRCxD 

 

 
(2.2.1) 

Where x is input vector, W is learnable weight matrix of dimension D and C the 

number of categories. A 2 layer ANN is: 

f = W2max(0, W1x) 

W2ϵRCxH W1ϵRHxDxϵRD
 

 
(2.2.2) 
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Where x is input vector, W1 and W2 are learnable weight matrices H is number 

of hidden layer, c is number of output channels. It can be generalized to any 

number of layers. Max represents activation function (ReLU), covered in detail 

in following section. In practice a learnable bias term is added for each layer as 

well. In a fully connected neural network(multi layer perceptron) all elements of 

x effect all elements of H and all elements of H effect all elements of s (output 

layer).[20] 

 
2.2.1 Activation Functions 

 
These are the functions having input from the set of real numbers. The output 

from these functions is also a number but in a certain range. The output is achieved 

using a non-linear differentiable function. These are required to be differentiable 

because these are used in back propagation for training the neural networks and 

updating its parameters; these functions differentiate and provide gradients to 

the previous layer. Non-linearity is a requirement for computing complex features 

within the neural networks. If a non-linear activation function is not used, a neural 

network with multiple hidden layers and neurons could actually be collapsed into 

a simple linear regression [20]. 

Some common activation functions are: 

 
• ReLU (Recified linear Unit). It computes the maximum between input 

u and zero, or it squashes out all the negative values. 

f [l](u[l]) = max(0, u[l]) (2.2.3) 

 
Where u is the input from the layer l, f is activation (ReLU), that takes the 

maximum between the value zero and u. One problem with this activation is 

dying ReLU. For u = 0 it differentiates to zero which leads towards stopping 

the learning of ANN [20]. 

• Leaky ReLU is a variant of ReLU introduced to solve dying ReLU issue. 

 
f [l](u[l]) = max(az[l], u[l]) (2.2.4) 
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It maintains the same form as ReLU for the case when input value u is 

positive, it keeps the same positive value , but it adds a little value or a slope 

to the line when u is less than zero or when input u is negative. So, it has 

non-zero derivative when u is negative. This solves the dying ReLU problem 

by enlarge [20]. 

• Sigmoid The range for outputs values in this activation function is 0-1. 

f [l](u[l]) = 
1 

e−u[l] 

(2.2.5) 

It outputs values between 0.5 and 1 for u[l] >= 0 and 0 and 0.5 for u[l] < 0 

. This activation function is often used in binary classification models. It 

isn’t used very often in hidden layers because the derivative of the function 

approaches zero at the boundary ranges of this function. It causes vanishing 

gradient problem, or saturated output [20]. 

• tanh It is similar to the sigmoid activation function known as hyperbolic 

tangent or tanh which outputs values in the range of −1 − 1. 

f [l](u[l]) = tanh(u[l]) (2.2.6) 

 
One key difference from the sigmoid is that tanh keeps the sign of the input 

u. so, negatives input remains negative and vice versa. It can be useful in 

some applications. The same saturation and vanishing gradient issues do 

occur in this activation function also [20]. 

 
2.2.2 Loss Function 

 
A loss function compares the output of the network to the target output. It gives 

information about how good a model is improving in learning the task. In case of 

classifier, it tells how good a classifier is; low loss means a good classifier. If we 

have a dataset of examples (xi, yi)iN  where xi is the image and yi is the label. 

Loss for single example is Li = (f (xi, W ), yi) and that of whole dataset is the 

average of per example losses [22]: 

L 
Σ 

L (f(x , W ), y ) (2.2.7) 
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2.2.3 Optimization 

 
The process of finding weight matrix W which minimizes the loss function and fits  

the model to training data is called optimization. 

w∗ = argminwL(w) (2.2.8) 

For a function f (x) which takes some scalar value as input and gives some scalar 

value as output, the derivative of the function gives the slope of function. In 

case when the input is a vector and output is scalar value, gradient at a point 

is a vector that gives the direction of greatest increase and the magnitude of the 

gradient gives information about the slope in the direction of greatest increase. 

In multidimension space, partial derivatives are computed along each dimension 

which are vectors along each dimension. The dot product of direction with the 

gradient computes the slope. Negative gradient is the direction of steepest descent. 

Iteratively stepping in the direction of the negative gradient is called gradient 

descent. When is performed for the whole batch it is known as the batch gradient 

descent: 

L(w) = 
Σ 

L (x , y , W ) + λR(W ) 

  
i i i=1 (2.2.9) 

𝘫 L(w) = 
 

Σ 
𝘫
 L (x , y , W ) + λ𝘫 R(W ) 

N i=1 
w    i i i w 

But taking full sum becomes expensive when the N is large. So a way around is to  

approximate the sum using the mini batch examples. It is known as the stochastic 

gradient descent (SGD). Some problems with the SGD are: 

• Gradient descent faces slow progress due to varying rates of loss change 

in different directions. Slow progress rate in gradient descent for shallow 

dimensions and vice versa for steep directions. 

• When the loss function has some saddle point or local minima. Here zero 

gradient is found but the gradient descent becomes stuck. 

• Gradients computed for small batches can be noisy. These noisy gradients 

causes algorithms to linger around the objective as these are not the exact 

gradients; these are just the stochastic or approximate gradients. 

w 

i 
N 
 1 

 1 
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L(W ) = 

Σ 
L (x , y , W ) 

  
i i i=1 (2.2.10) 

𝘫 L(W ) = 
 

Σ 
𝘫
 L (x , y , W ) 

N i=1 
w    i i i 

To resolve these issues, SGD is not used in its vanilla version. Rather other versions 

of SGD are used. One such version is SGD combined with momentum. In simple 

SGD for every iteration steps are taken in the direction of gradient calculated 

for mini batches where as in SGD+Momemntum, at every point the gradients 

are integrated to compute a velocity vector. For every point in time this velocity 

vector is some weighted combination of current gradient and the historical velocity 

vector. Here step is taken in the direction of the velocity vector rather than the 

computed gradient.[23] 

Adagrad is another category of optimization function which is based on adaptive 

learning rate. Here rather then keeping track of historical average of the gradi- 

ents, we keep track of historical average of square of gradients. This function 

calculates the summation of element-wise gradients. These gradients are formal- 

ized by summing up the squares in every direction. In this way varying progress 

is obtained for steep directions and flat directions. An acceleration is observed 

for steep directions and damped effect for flatter directions. Adagrad is combined 

with RMS prop is a leaky version of adagrad. It adds friction term to deal with 

slowness of adagrad optimization process. Adam is adagrad+RMS prop combined 

with momentum.[20] 

 
2.2.4 backpropagation 

Backpropagation algorithms are used for efficiently computing gradients of com- 

plex functions. An effectual way of computing the gradients of a loss function 

with respect to the individual weights is backpropagation.Mathematically it can 

be expressed as: 
∂L 

= 
∂L  ∂y (2.2.11) 

∂wij ∂y ∂wij 

Beginning from the last layer, it computes the gradients layer by layer. Efficiency 

is fostered in this algorithm by computation of partial derivative only once and 

w 

i 
N 
 1 

 1 
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then its reuse in subsequent layers.[20] 

 
2.2.5 Batch Normalization 

 
Data distributions are normalized to solve the problem of covariate shift.  In the 

data distribution with many inputs, if input is not normalized or it is skewed more 

towards higher values or lower value; it will effect the cost function in the training 

process. When such a model is tested on data skewed in opposite direction then 

cost function changes and the results of the model become unexpected. To deal 

with such issues, data distribution are normalized to have mean equal to 0 and 

a standard deviation equal to 1. It makes the cost function smoother and more 

balanced across all input dimensions. And as a result training would actually be 

much easier and potentially much faster.[24] 

Normalization reduces the effect of covariate shift quite significantly.  However, 

covariate shift is not a problem if the distribution of the data set is similar to the 

task required to be modeled.[24] 

Neural networks are also susceptible to something called internal covariate shift  

also. Which just means covariate shift in the internal hidden layers of neural 

network. Batch normalization seeks to remedy the situation. It normalizes all 

the internal nodes based on statistics calculated for each input batch. And this 

is in order to reduce the internal covariate shift. And this has the added benefit 

of smoothing the cost function out and making the neural network easier to train 

and speeding up the whole training process.[20] 

 
2.2.6 Residual connection 

 
Deep Neural networks are incredibly powerful networks but are hard to train due 

to the depth of the networks. Enormous datasets are required for the training due 

to the presence of more and more parameters. So, training epochs takes more time 

to train and gradient loss decrease at slower rate at the initial epochs as compared 

to the shallow networks. Reason for the slow decrease is as the input arrives at the  

later layer of the network it becomes almost scrambled noise due multiplication 

with random weights at the earlier layers and it becomes less meaningful at the 
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later layers. Same is the case with gradient at the initial layers which becomes 

scrambled noise and less meaningful till the time it reaches at initial layers in 

back propagation after the update at the output layer. Update at the initial 

layers becomes less meaningful as gradients are not much meaningful.[25] 

Skip connection is a way which is used to ensure input at later layers and gradients 

at initial layers becomes more meaningful. In skip connections, network layers 

are grouped in blocks and input to the blocks goes both forward through the 

block and around the block. At the end of each block output from that block 

is combined with the input to the block either through concatenation or element 

wise summation to keep the input more meaningful in the later layers.[25] 

Residual network is built in this way out of these residual blocks which is hoped 

to accelerate the training process as here each block augments the data, makes 

the path for loss gradient to be shorter and its modularity.[20] 

 
2.3 Convolutional Neural Networks 

 
Computational primitives that respect the spatial structure of two dimensional im- 

age data are called as convolutional neural networks (CNN). The building blocks 

for fully connected neural networks are fully connected layers and activation func- 

tions whereas CNN are built from three components convolutional layers, pooling 

layer and normalization. 

Convolution layers takes three dimensional tensors as input, and weight ma- 

trix(filter or kernel), which is also a three dimensional tensor. Depth of the input 

tensor and filter is required to be same. Filter slides over the image spatially 

and compute the dot products to construct another three dimensional tensor. 

Resultant matrix is known as the activation map. Number of filters is the hyper- 

parameter, for n number of filters n activation maps are obtained. When a convo- 

lutional layer is stacked on top of another convolutional layer, it does not make any 

difference because it has same representational power as the single convolutional  

layer will have. So, activation functions are used in between the convolutional 

layers. [20] 
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For an input image i of dimensions Cin x H x W hyper-parameters will be kernel 

KH x KW , No of filters Cout, padding p and stride s. With the Cout filters of 

dimensions Cin x H x W the bias vector will be Cout. Output dimension will be 

Cout  x H
𝘫   

x W 
𝘫   

where H
𝘫   

will be  (H−K+2P ) and W 
𝘫   

will be  (W −K+2P ) . 

In these networks, the task of pooling layer is to down sample the output of 

preceding convolutional layer. For an input with dimensions C x W x H and filter  

K, stride S and pooling function could be either max or avg, output will be C x 

W 
𝘫   

x H
𝘫 
.  Here W 

𝘫   
is  (W −K) and H

𝘫   
is  (H−K) . 

Internal layers in deep neural networks face the issue of internal covariate shift. 

This issue pertains to the fact that input for a layer is the output from the previous 

layer which gets effected by the optimization applied between them. So, the input 

distribution received by the layer will not be from fixed input distribution. Batch 

normalization is applied to make the output of every layer to have zero mean and 

unit variance so that network can be trained towards the target distribution.[26] 

 
2.4 Generative Models 

 
A fundamental requirement for understanding generation of image guided by in- 

put text is to comprehend the concept of generative models. In contrast to the 

discriminative networks, which tries to predict the class of objects based on their  

features into classes, generative networks try to learn the generation of realistic 

representations of some class. The target of generative modelling is to learn the 

hidden data distribution from the training data. This learned data distribution is  

then sampled for synthesizing new data.[1] 

These are partitioned as: 

 
• Undirected generative models 

 
• Directed generative models 

 
This segregation is based on the fact whether the neural layers are interacting 

directly or indirectly. In recent years, incredible research has been done using 

directed generative models. Many popular models like Neural Autoregressive Dis- 
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tribution Estimator and Variational Encoders have been developed with basis on 

directed generative models.In generative models, the latent variables z are trans- 

formed to the observed samples x using feed forward neural networks. Simple 

distributions like Gaussian Distributions are used for sampling latent variables.  

Adversarially trained networks known as GANs are also a type of directed gener- 

ative models which are actively been used for generating realistic images[1]. 

 
2.4.1 Generative Adversarial Networks (GAN) 

 
GANs are neural network architecture for generative modeling. Since their in- 

ception in 2014, they have outperformed other generative networks in learning 

deep representations. The datasets used is this training are also not extensively 

annotated. After training, the generative model can then be used in a numerous 

applications including image generation, style transfer, image manipulations , en- 

hancing image resolution and classification tasks. Properly trained GANs exhibit 

the generation of semantically meaningful data from standard distributions [27]. 

High fidelity images belonging to a variety of domains can be synthesized by 

utilizing GANs because proper training can lead them to generate semantically 

meaningful data from standard distributions. Framework of GAN is shown in 

figure 2.1 . It consists of two networks generator G and discriminator D working 

in rivalry. Generator is a typical feed forward network that maps the latent variable 

z to the observed samples x. Discriminator acts as inspector or critic. Its job is 

to classify the generated samples as fake or real [27]. 

GAN Architecture. In early GANs, fully connected architecture was used for 

both the generator and discriminator. These GANs were used for image generation 

but on simple datasets like Minist (Handwritten digits) and CIFAR-10 (natural 

images)[28]. A natural extension to these fully connected GANs was to convolu- 

tional (CNN) GANs because of their suitability for image data. Major hurdles 

faced in the GANs were the training instability of generator and discriminator 

networks due to non-convergence, mode collapse and diminished gradients. These 

difficulties were handled by the use of Laplacian pyramids for adversarial networks. 

In this scheme a real image is converted into a multi-scale pyramid image. CNN is 
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Figure 2.1: GAN Framework.[1] 

 
trained for the purpose to generate multiscale and multi-level feature maps. The 

combination of all these maps lead to the generation of final feature map.[29] 

Deep convolutional GAN(DCGAN) was proposed by [30]. In this architecture of 

GAN deep convolutional generator was trained in rivalry to a deep convolution 

discriminator network. Convolutions with strides or partial strides were used to 

learn both down sampling and up sampling spatial operations. A key requirement 

of mapping the image space to low dimensional latent space is to handle the 

sampling rate and locations. The use of convolutions with strides made this key 

requirement a reality. 

Conditional GANs were proposed in 2014. These GANs have the ability to provide 

improved representation for multimodal data generation problems. This approach 

provided the prospect for the application of same generic method for a variety 

of problems and diminished the need of complex loss formulations. [31]. An- 

other GAN architecture based on auto-encoder was proved extremely productive 

in various vision tasks. Two components of these networks are encoder and de- 

coder. Here deterministic mapping is arrived at via utilizing the encoders and the 

decoders. [32]. 
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2.4.2 Autoencoders 

 
In these neural networks, the desired output is given as input. Network’s first 

component called as the encoder represents it in the latent space and the task of 

other component of the network, known as the decoder, is to reproduce the target 

data from the latent representation in the lower space.[33] 

Its leaning procedure involves representing the input into lower dimensional space. 

Real data is fed into the network as input and a latent representation is obtained 

for it which is then used by the decoder part of the network to reconstruct the 

target data.[33] 

Variational Auto-encoder are trained to make them learn the latent probability 

distribution. This learned probability distribution models the input data rather 

than a function to generate output for the given input. Once the probability 

distribution is learnt, samples from this distribution are given to the decoder to  

reconstruct the target output. This auto encoders tries to maximize the likelihood 

of generating the real data more close to the input data.[33] 

 
2.4.3 Diffusion Models 

These generative models work by adding Gaussian noise to the training data, 

and then this noising process is reversed to recover the real data. After training, 

reverse noising process is used to generate data data from random noise. More 

formally a diffusion probabilistic model is a parameterized Markov chain. This 

chain gradually adds noise to the data in order to obtain the approximate posterior 

defined asq(x1 : T |a0). In this equation a1, ....., aT are the latent variables with 

the same dimensionality as a0. Variational inference is used in the training of this 

model. After sufficient training these models generate samples matching the target 

data. In the training process data gets converted to pure noise. The objective of 

the diffusion model is to learn the reverse process Pθ(pt−1|pt), and it is achieved 

by traversing in the reverse direction of the Markov chain[2]. 
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Figure 2.2: Diffusion process.[2] 

 
2.5 Text Encoders 

 
Growth in the field of deep learning has facilitated the use of neural networks 

for solving problem pertaining to the natural language. Attention mechanisms are 

combined with CNN, Recurrent networks or graph-based neural networks (GNNs) 

for various tasks in the domain of natural language. One advantage offered by these 

neural networks is the alleviation of feature engineering, a mechanism in which 

syntactic and semantic attributes of the natural language are captured in low- 

dimensional and dense vectors also known as the distributed representations.[34]. 

A good representation for a language task is the one which has captured language 

rules and common context from the training data. Language rules include lexical  

structures along with meanings, grammar or syntax with semantics and pragmatics 

of the language.[35] 

Text to image generation models use textual embedding techniques for the repre- 

sentations of textual input into image vector space to facilitate further translation 

into images. With the inception of T2I task, different researchers used various text  

encoders to represent text into image vector space. A foundational work on this 

research area was performed by [6]. Text encodings were obtained by employing 

a pretrained character level convolutional recurrent neural network (char-CNN- 

RNN). This pretrained model learns the correlation function based on the class 

labels. Correlation of image and text are obtained in this way. Text representa- 

tions like Word2Vec and Bag-of-Words did not prove to be effective for encoding 

task. 
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2.5.1 Long Short Term Memory (LSTM) 

 
Artificial Neural Networks(ANN) are big composite functions which gets converted 

into multiplication in the derivative (chain rule). The more deep a function is the 

more number of multiplications are involved. Recurent neural networks (RNN) 

suffer vanishing gradient problem which gets worse with the increase in the depth 

of RNN. Simple RNN has problem learning long term dependencies.[36] 

Recurrent network having both “long-term memory" and "short-term memory” is 

termed as LSTM. With every epoch of training the network model, connection 

weights and biases are updated. The architecture of LSTM is designed with the 

aim to make it having a short memory that can last longer timestamps. This is 

the reason it is called as long short-term memory. At a point in time, the hidden 

state of the network is obtained by getting the weighted sum of previous hidden 

states and current value. Components included in the LSTM unit are a cell, and 

three gates; input, output and forget. The duty of the cell is to keep the values 

over arbitrary time intervals. Three gates named as input, output and forget have 

the regulating duty on the information flowing into cell. [36] 

Figure 2.3: Long Short Term Memory 

 
Where x(t), h(t-1) and c(t-1) are inputs to the Network to get h(t) and optional 

c(t). Simple LSTM is comprised of: 

• Forget gate: f(t) = Neuron (binary classifier) 

 
• Input gate: i(t) = Neuron (binary classifier) 

 
• Output gate: o(t) = Neuron (binary classifier) 

 
• Cell: f(t) * c(t-1) + i(t) * Simple RNN 
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• h(t) = 0(t) * tanh(c(t)) 

 
Bidirectional LSTM (BiLSTM) is a also a recurrent network. It is enhanced 

version of the LSTM and is also used for the processing of textual contents writ- 

ten in natural language. In this network input flows in two directions. This 

bidirectional flow of input enables to utilize the information from both sides. This 

capability makes it an excellent choice for modeling the sequential dependencies 

between words and phrases in both directions of the sequence. In short it can 

be stated that BiLSTM has one extra LSTM layer to reverse the flow of infor- 

mation. Input sequence backward flow is attributed to this additional layer of 

LSTM. For combining the output of the two layers average , sum , multiplication 

or concatenation can be used. [36] 

 
2.5.2 Bidirectional Encoder Representations from Transformers(BERT) 

 
It is a popular transformer-based language modeling network that uses attention 

in bidirectional training to capture the relationship of words and sub words in a 

textual content keeping the context in view. Training in both directions enables it 

to learn language context in better depth. For the training of this model a novel 

technique named Masked LM (MLM) was used. Encoder of this model scans the 

word sequence at once for capturing the context. 

A sequence of tokens formalizes its input. This input is embedded in vectors and 

it is passed through the networks for processing. Output vector is also a sequence 

of vectors. vector for an input token can be found at same index. [37] 
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CHAPTER  3 
 
 
 

Literature Review 

 
An overview covering most common approaches of generative image modelling is  

included in this chapter. Section 3.1 introduces the generative models trained 

in adversarial fashion for text to image synthesis task. Section 3.2 illustrates 

the most common autoencoders, and autoregressive based models for generating 

images conditioned on text and section 3.3 provides brief overview of diffusion 

models. 

 
3.1 Generative Adversarial Network (GAN) 

 
3.1.1 Preliminary Methods 

 
Generative adversarial image synthesis conditioned on text was proposed by [38] 

in 2016. This work laid the foundation of this challenging task of T2I synthesis to 

start with the translation of single human written sentence into image pixels. They 

aimed to learn direct mapping of image pixels from words and characters existing 

in the sentence. Building on the enormous progress laid in the fields of natural 

language representation and image synthesis, this T2I task was achieved by the  

authors. Deep symmetric structured joint embedding was utilized in this work 

which uses deep convolutional and recurrent text encoders. These encoders learnt 

the correspondence function for the textual content and images. This pre-trained 

text encoder approach was proposed by [3] in 2016. 

This model was proposed to deal with the shortcoming of text models base on con- 
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Figure 3.1: Deep Structured Joint Embedding convolutional-recurrent net[3]. 

 
volution. Initial models lacked the ability to capture the dependency This model 

was proposed to overcome the shortcoming found in convolution-only text mod- 

els. These models were unable to capture the dependency structure for long input 

sequences. In this model researchers combined a recurrent network with temporal 

CNN hidden layer. This stack of recurrent layer with convolutional layer enabled 

the model to take advantage of both recurrent models and CNNs. In this way, 

this approach has exploited the CNN’s capability of efficient learning to learn the 

low-level temporal features. Figure 4 shows the phenomenon of Deep Structured 

Joint Embedding. It was used in deep convolutional generative adversarial net- 

work (DC-GAN) conditioned on text features. [38] DC-GAN was proposed by [39] 

for stabilizing the training of GANs by proposing some architectural changes in 

the simple convolutional GAN. They applied a set of constraints for this purpose. 

During training of DC-GAN, added a third type of input to discriminator (match- 

ing aware discriminator GAN-CLS) consisting of real images with mismatching 

text in addition to the real (real image, matching text) and fake (fake image, right  

text) input pairs. Then, GAN INT learnt utilizing the manifold interpolation and 

GAN-INTCLS combines the both to produce plausible images. 
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This model was trained on two data sets CUB and Oxford 102. For CUB dataset 

GAN and GAN CLS get some color information right but produced images are not 

real whereas GAN-INT and GAN INT-CLS generates images which are better rep- 

resentations of the captions. For Oxford 102 Flower dataset all four GANs (GAN, 

GAN-CLS, GAN-INT, GAN-INT-CLS) performed good in generating plausible 

flower images as per the given text. 

[6] demonstrated that usefulness of image generating system can be enhanced 

by executing more control over the contents of the scene to be generated. They 

proposed Generative Adversarial What-Where Network (GAWWN) which has the 

capability to synthesize images guided by the instructions about what to draw and 

where to draw. They also used structured joint embedding of visual descriptions 

and images for learning the correspondence function between images and text 

features. A minor modification in this approach was done by using CNN-GRU 

[40] instead of char-CNN-RNN [3]. GAWWN synthesized images by taking input 

of instructions describing the content to draw along with its locations. For this 

purpose bounding box or a set of keys describing parts. 

[22] proposed a GAN based encoder-decoder architecture. This architecture fo- 

cused on the semantics contained in both image and text and ignored the text 

irrelevant parts of the image. The generator was an encoder-decoder architecture 

and synthesized images guided text embeddings. The discriminator performed the 

discriminative task guided textual description. A pretrained text encoder was used 

for creating semantic representations. A text embedding augmentation method 

[41] which enabled the model to synthesize diverse images conditioned on text. 

[42] improved image feature representation by utilizing VGG in place of an image 

encoder in the generator. VGG is pretrained on imageNet. They performed hu- 

man evaluation of the proposed method with baseline method [3] and found that 

their proposed method had ability to generate more plausible images. 

Text to image generation methods considered the output image as single unit and 

tried to figure out the semantics of the input text in single unit of the image. 

Which led to lesser semantic consistency in generated image and input text. In 

reality, every natural images is viewed in context having of a foreground and back 
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ground. T2I generation methods could not generate a true representation of the 

semantics of the given text when they ignored this fact. Motivated by this reality, 

[43] proposed multi conditional GAN.This method synthesized a target image by 

drawing the background and fore ground of the image. For this purpose back- 

ground of a source image was used and a text-descriptions were used to generate 

foreground object. A synthesis block was used to consider the background fea- 

ture without nonlinear function and the foreground feature were the feature map 

resulting from the preceding layer. 

 
3.1.2 Stacked Generative Adversarial Networks 

 
Some difficulties associated with training of generative networks being trained in 

adversarial fashion, were their instability in training process, sensitivity to the 

choice of hyper parameters and model collapse. These challenges even turn to 

more severity when attempts are made to generate high-resolution images (256 x 

256). Motivated by the work of many researchers to handle these challenges and 

stabilize the GAN training process [44] started their work to generate image of 

higher resolution by introducing multi stage GANs. If the images from real world 

are closely observed, it is evident that real world images specially, natural images 

can be modeled at different scales. Same continuous image signal with different 

sampling rates leads to the generation of images at different scales. Another in- 

teresting fact is the phenomenon that a relationship exists among the distribution 

of images at multiple discrete scales[45]. These facts and motivation of divide and 

conquer rule led [46] to the idea of breaking the complex task of image generation 

into sub problems. 

Model proposed by [46] had three components. Conditional augmentation, two 

generative networks organised in a hierarchy of stages. Text description was en- 

coded using a pretrained encoder. It generated images for given text in two stages: 

In stage-1, sketches comprising of basic shape and colors conditioned on the given 

text input were produced. For background layout a noise vector was used. Thus, 

an image of low resolution was generated. In stage-II, a high-resolution image was 

produced by correcting the defects of stage-1 image and reading the input text 
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again. This method generated higher resolution images (e.g., 256 x 256) having 

more photo-realistic details. 

Very natural extension to this two staged network was to have multiple generative 

networks arranged in a tree like structure. Each branch of the tree was a GAN that 

used to produce image at scale lower than its succeeding branch GAN; in this way 

generation at higher resolution was achieved. Generators belonging to all branches 

are jointly trained. Whereas generators and discriminators are trained in alter- 

nating fashion. Authors performed comparison of the image generation capability 

of stackGAN-V1 and stackGAN-V2 by utilizing CUB, Oxford-102 and COCO for 

conditional generative tasks and LSUN (bedroom, church) and ImageNet (dog, 

cat) for unconditional generative tasks. They showed from the empirical results 

that StackGAN-V2 out performs not only stackGANV1 but also other state of the 

art T2I models at that time [44]. 

In an effort to generate high fidelity images [47] proposed fuseGAN built upon the 

stackGAN. Authors identified three important quality attributes for measuring the 

quality of the image generation models which include fidelity, diversity and con- 

trollable sampling. Instead of using multiple stages like stackGAN, they proposed 

a pipeline. This pipeline had a built-in stack. The first unconditional generator 

of the pipeline was tasked to generate unconditional structure prior. The second 

generator enhances the structure prior from first stage generator by adding style 

to it on the bases of input condition. Advantages claimed by the model include: 

1) it enabled to control the image diversity. 2) semi-supervised data can be used 

in training and 3) is no reliance on additional intermediate supervision such as 

segmentation maps. They performed the training and evaluation of this image 

generation model using CUB dataset and claimed higher inception score and FID 

for the proposed model. 

This challenging task of was handled by [48] by a method employing hierarchical- 

nested adversarial objectives inside the network hierarchies. In this way they regu- 

larized intermediate data representations. This regularization improved generator 

training for capturing the complex image statistics. 

Another model for achieving high resolution images was perceptual pyramid ad- 
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versarial networks (PPAN) [49]. In this work they utilized a network archi- 

tecture(Laplacian Pyramid Super-Resolution Network) which was proposed by 

[50]. This architecture progressively improved the image generation towards high- 

resolution. In this model, a pyramid framework was used for combining low- 

resolution and high resolution features. An auxiliary classification loss was also 

employed as a perceptual loss [51] in this model. Moving on the journey to arrive 

at high resolution images another model was proposed by utilizing hierarchically- 

fused architecture having only one discriminator. Global features for the image 

are extracted at varying scales utilizing different stages of hierarchy. Then these 

are fused together to generate the image at higher resolution.[52] 

 
3.1.3 Attention GAN 

 
Compelling sequence modeling and transduction model for various tasks had incor- 

porated the attention mechanisms. Attention models had enables them to model 

dependencies without regard to their distance in the input or output sequence[53]. 

Attention is a mechanism by owing to which network were able to focus on specific  

parts of an input. It assigned more weight to important parts than insignificant 

parts of the input. Attention had proved to be an extremely powerful technique 

and led towards a major impact on improving language and vision applications[54]. 

AttenGAN [55] is another latest work that proposed attentional generative adver- 

sarial network for this multi modal task of T2I synthesis. It used attention-driven, 

hierarchy network for creating image conditioned on text description. It used 

Bidirectional LSTM for text encoding which concatenated hidden states for the 

forward and backward directions. Then, attention generative network was utilized 

to encode the text into global sentence vector and word vectors. An image at lower 

resolution was generated in first stage by utilizing global sentence vector. Then, 

high resolution images were generated in the later stages by combining regional  

image vector and corresponding word context vector. Finally, it computed the 

similarity of generated image and given text by a deep attentional multi modal 

similarity model. 

An important contribution made by [55] was DAMSM network model. This extra 
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network takes the output of final stage GAN and computes its similarity with 

global sentence vector and word vector. This model was also used in SDGAN. 

In this model SCBN (Semantic conditioned batched normalization)was used re- 

inforced the visual-semantic embedding in the feature maps. SD-GAN adopted a 

Siamese structure which extracted semantic information from the textual content. 

Use of semantic layout to improve the consistency of generated image against 

input was proposed by [56]. They suggested the use of a network named as layout 

generator for synthesizing the semantic map for the image. Input text description 

is used as condition in this layout generation. This layout generator is further 

segregated as box generator and shape generator. Once this semantic layout is 

constructed , then attention module and similarity loss are used for infusing the 

fine grained details of the image. 

BigGAN[57] architecture eas based on residual blocks. The use of Spectral Nor- 

malization and Non-local Blocks in both components of GAN was a novel feature 

of this model. BigGAN-Deep also introducesd conditioning information in the 

generator using Conditional Batch Normalization. Unquie feature of critic net- 

work the use of projection approach. For discriminator network, sentence vectors 

were linearly projected whereas in the generator network sentence vectors were 

concatenated with the noise vector z. 

RiFeGAN suggested Rich Feature Generation in Text-to-Image Synthesis. Feature 

enrichment was performed utilizing Prior Knowledge. In this generative model, 

enrichment of the captions were from prior knowledge to tackle the problem of lim- 

ited information. An extra network named attentional text-matching model was 

used to retrieve compatible captions from prior knowledge automatically. Then, 

multi captions attentional GANs were used to extract rich features and synthesiz- 

ing high-quality images. [58] 

MirrorGAN [59] was a model of learning Text-To-Image Generation by Redescrip- 

tion. In this model, first network was trained to generate images guided by text. 

Then a pretrained, image to text model is used to construct the input text from 

the generated image. The loss function computes the similarity of input text and 

generated text in addition to the adversarial loss and helps the generative model 
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in convergence towards the target distribution. 

 

3.2 Auto-regressive Models 

 
Rise of auto-regressive generative models has tremendously improved the nat- 

ural language performance and few-shot language understanding. Use of auto- 

regressive models in CV is nothing new. PixelCNN,PixelRNN, Image transformer, 

ImageGPT, VQ-VAE have demonstrated incredible improvements in the field of 

image generation[60]. Conditional image generation models also witnessed re- 

markable improvements due to the existence of incredibly powerful image gen- 

erative and natural language processing methods. DALL-E [61] based on the 

VQ-VAE(Vector Quantized Variational Encoder) brought a revolution in the field 

of text to image generation. Authors took intuition from the idea of increasing 

model size, compute and data for impressive results and trained a 12-billion pa- 

rameter auto-regressive transformer on 250 million image- text pairs. They got 

successful in achieving zero shot text to image generation with high quality. 

Authors of CogView [60] identified unstable large-scale text-to-image generative 

retraining and suggested Precision Bottleneck Relaxation and Sandwich Layer- 

norm and were able to achieve improvement in the conditional image generation. 

 
3.3 Diffusion Models 

 
Another line of research with incredible momentum involves diffusion models[62] 

for text to image generation. Some of the popular models include GLIDE[63], 

DALL-E 2[64] and Imagen[65]. These models are diffusion based which use dis- 

crete image tokens with diffusion models and generate high fidelity images. These  

models have shown remarkable improvements in the FID scores for the generated 

images and zero shot image generation. 
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CHAPTER  4 
 
 
 

Method 

 
In this chapter we present reasoning behind the choice of baseline text-to-image ar- 

chitecture, contrastive learning techniques, several approaches of interpreting and 

combining them with synthesis models. Section 4.1 discusses our chosen backbone 

architecture of DF-GAN[66].This section is excursion DF-GAN structure and its 

novel components. In Section 4.2 we present contrastive learning approach along 

with a brief introduction of its architecture and training. Section 4.3 illustrates 

our model and describes the incorporation of constrastive learning technique in 

the adversarial training. 

 
4.1 Introduction 

 
This section provides acumens about our baseline architecture and text-encoder. 

For making a decision about the general approach for T2I synthesis we studied 

the existing work in the domain of T2I processing. We arrived at the general idea 

that most preexisting works in the context of generative image modelling falls 

into the categories of Auto-encoder, Auto-regressive Model, diffusion Models, or 

Generative Adversarial Network (GAN). The objective of an auto-encoders is to 

reconstruct the output from the latent representation of input. For text-to-image 

generation tasks, Auto-encoders have to learn the multi modal representation in 

the latent space. Recent research in this field has shown that more compute 

power, larger model size and larger data set leads to impressive results utilizing 

auto-regressive transformers[53]. And for multi modal tasks it goes even higher. 
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Where as GANs have excellent data matching capability and they produce more 

plausible results as compared to auto-regressive models of same size. Limitation 

of compute resources lead us to the choice of GAN coupled with GAN’s excellent  

performance in recent image synthesis and manipulation tasks. 

GANs suffer from the training instability issue which involves vanishing gradient 

problem in the generator training. Many techniques have been suggested to deal 

with this instability, and has made them more promising candidates for the image 

synthesis and manipulation tasks. Stacked architecture[46] was also introduced 

to deal with training instability for generating high scale images. Many SOTA 

GAN models have used stacked backbone architecture. But this architecture has 

its own limitations. It becomes computationally more expensive as the size of the 

image grows and image quality in later stages is determined by the quality of basic 

image structure generation in the initial stages. 

To make generated images more consistent with input textual description some 

stack based architectures utilized extra networks and incorporated multi modal 

attention approach[55][59]. Other models proposed improvements through object 

driven hierarchical approaches to generate images from semantic layout(bounding 

boxes, segmentation masks) and text[52, 67–70]. But these models require more 

fine grained object labels for training. [66] suggested a single stage generator and 

discriminator architecture DF-GAN to deal with these problems. We have selected 

it as our baseline GAN architecture. 

Text-to-image generation involves representation of text into visual space which is 

then utilized by the conditional generative networks to generate plausible images 

satisfying input text. It is not feasible to train a such a huge model from scratch. 

We shall use a pretrained text-encoder Bert[37] for obtaining text embeddings. 

Self supervised learning is a field where the focus is to obtain good intermediate 

representations that can be used for downstream tasks without supervision. Self- 

supervised objectives are either auxiliary classification losses or contrastive losses.  

The objective in contrastive losses is to learn such an embedding space in which 

the contrasting input signals are closer and different data points are far apart. 

Auxiliary classification losses are concerned with making predictions for the rota- 
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tion of inputs and masked losses. The objective of such losses is to predict he true 

value of input masked out.[71] Natural language has the discrepancy of describing 

same visual content in various ways. As data sets used for text to image generation 

are annotated by humans, so same visual content can be annotated differently by 

different persons. To narrow this gap contrastive learning techniques are employed 

for pushing together the captions of same image and distinguishing the captions 

for different images in the learned representations. 

Contrastive learning technique was employed by [13, 18] in cross modal attention 

based text-to-image models for improving the semantic consistency of image with 

captions described in different ways. We took intuition from it and applied the 

contrastive loss interpretation along with generator’s conditional loss to improve 

generated image’s semantic coherence with different captions of same image. 

 
4.1.1 DF-GAN 

 

Figure 4.1: The architecture DF-GAN for text-to-image synthesis .[4] 

 

Deep fusion generative network synthesizes images at improved resolution by uti- 

lizing a simple architecture comprising of one pair of generator and discriminator.  

For generating images conditioned on the input text, it fuses the text information 

and visual feature maps. Seven Deep text-image Fusion Blocks known as DF- 

Blocks are used for this fusion. Other important components of this generative 
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model are Matching-Aware Gradient Penalty (MA-GP) and One-Way Output. In 

stead of stacked architecture, hinge loss[19] along with residual networks is used 

for stabilising the GAN training issue. In stead of concatenating the textual em- 

bedding with the visual features along channel wise, it fuses text and image using 

affine transformations. Generator of this model has more layers as compared to 

the generators of most GANs[4]. 

 
4.1.2 Deep Fusion Generator 

 
Deep fusion generator has more layers because it has to generate image from 

noise in single stage. It is formed of seven UpBlocks followed by a convolutional 

layer. Each UpBlock consists a upsample layer, a residual block and a DF-Block. 

Noise is reshaped by passing it through a fully connected layer and given as input  

to the generator along with the text embeddings. Pretrained bi directional Long 

Short-Term Memory (BiLSTM) [72]text encoder is used for extracting visual detail 

vectors from the text. Noise and text embedding are passed through the seven 

Upblocks for fusing the text and image features. Output from the seventh block 

is passed through a convolutional layer which generates an image from the input 

image features [66]. 

UpBlocks have residual networks to train layers more effectively in deeper net- 

works. For stabilizing the GAN training, hinge loss is used along with residual 

networks. Cost function for this one stage method is described as: 

 

 
CostFuncD = Eimg∼ır 

"

min(0, −1 + D(img, emb))

# 

− ( 
1
)E 

 
G(𝑥)∼Pg 

"

min(0, −1 − D(G((z), emb)))

# 

− ( 
1
)E 

 
img∼Pmis 

 
(4.1.1) 

"

min(0, −1 − D(img, emb)))

#

 

Efficient text-image fusion is performed by the two blocks contained in each Up- 

Blocks. Each deep fusion block (DF Block) has multiple Affine Transformation 

stacked on each other. In it two multi layer perceptron are used; one to learn text  

guided channel wise scaling parameter γ and other to predict shifting parameters 
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θ from sentence vector e [66]. 

γ  = MultiLayerP erceptron1(emb), θ = MultiLayerP erceptron2(emb) (4.1.2) 

For a given feature map XϵEBxCxHxW , affine transformation process is: 

AFFINE(imgi|emb) = γ.imgi + θi (4.1.3) 

Affine layers widens the conditional latent representation space for the first net- 

work called generator. For adding more expansion to this conditional represen- 

tation space , non linearity is added between the two MLP layer by ReLU layer. 

Due to this expansion, mapping of different images to different latent representa- 

tion space becomes possible. This deep fusion process benefits the image synthesis 

process in two ways: at one hand generator takes full advantage of the textual 

information due to the fusion of text-image features and on the other hand en- 

larged representation space benefits the generator to generate more semantically 

consistent results. 

 
4.1.3 Semantic-Aware Discriminator 

 
Two important components of this semantic-aware discriminator are matching- 

aware zero-centered Gradient Penalty (MA-GP) and one way output. 

[73] presented a analysis to lead the way towards the use of zero-centered gradient 

penalties for local convergence. This idea was used by the authors of DF-GAN to 

devise this cost function. They also employed gradient penalty on text matching 

real/target data to foster further improvement in conditional generation. The 

formulation of this model is described as: 

costFuncD = Eimg∼ır 

"

min(0, −1 + D(img, emb))

# 

− ( 
1
)E 

 
G(𝑥)∼Pg 

"

min(0, −1 − D(G((z), emb)))

# 

− ( 
1
)E 

 
img∼Pmis 

"

min(0, −1 − D(img, emb)))

# 

+ kEimg∼Pr 

"

||(𝘫imgD(img, emb)|| + ||𝘫eD(img, emb)||)p

#

 

CostFuncG = −EG(𝑥)∼Pg 

"

D(G(z), emb)

#

 

(4.1.4) 
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Here k and p are two hyper-parameters to balance the effectiveness of gradient 

penalty. MA-GP loss is the regularization on the discriminator due to which model 

converges to the target data conditioned on text. MA-GP calculations involve only 

gradient summation which made it computational economical. 

 

Figure 4.2: Comparison of two-way output and one-way output. [4] 

 
Second improvement suggested by this simple backbone architecture is the one 

way out put. In contrast to previous text-to-image models, DF-GAN discriminator 

predicts the whole adversarial loss directly. One-way output devised in DF-GAN 

strengthened the MA-GP role for target aware convergence. 

 
4.2 Contrastive Learning 

 
Success of machine learning(ML) and deep learning(DL) methods is determined 

by the quality of datasets used to train these models. Self-supervised learning 

has proven its mark in the success of generative models because it evades the 

need of having large dataset and its annotations. Self-supervised learning utilizes 

the underlying structure of the data to obtain supervisory signals from the data. 

Contrastive leaning(CL) is a technique which falls under the umbrella of self- 

supervised learning. Self-supervised learning in CV, NLP domains, involves CL 

as a dominant component. The objective of CL is to bring close the embedding 

augmented versions of same sample and push away the embeddings of dissimilar 

samples.[74] 

Contrastive Learning can be thought of as learning by comparing. Samples are 

compared to learn the underlying latent structure of the data. This comparison 
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involves the contrast of similar inputs (positive pairs) and also the dissimilar in- 

puts(negative pairs). Contrastive learning aims to learn an embedding space. In 

this learned representation, similar samples are represented closer together where 

as dissimilar samples are pushed away. In this way, it arrives at a representation 

where positive pairs are pulled together and negative pairs are far away [12]. 

 
4.2.1 Architectures 

 
In contrastive learning, negative samples are obtained by perform lookups from 

a dictionary. This dictionary is comprised from the complete training set. De- 

pending on the lookups being performed, this dictionary could be a sub set of 

the complete training set. Categories of the CL techniques are based on the way 

negative samples are collected for a positive data point in training. [74]. These 

are categorized as: 

• Use of two encoders which are trained End-to-End. One encoder is trained 

to generates mapping for positive samples. Second encoder to obtain repre- 

sentations for negative samples. 

• Encodings of negative samples are obtained and stored in a memory bank. 

These encoding are then obtained from this memory bank. 

• Use of momentum encoder which serves as dynamic dictionary lookup. Neg- 

ative sample encodings are looked from this encoder in training. 

 
4.2.2 Training 

 
For fetching mapping of similar data signals together and dissimilar data signals 

far away in the learned representation, contrastive learning techniques employ 

similarity metrices. These metrices gauges the similarity of embeddings obtained 

for two samples. Cosine similarity is the most commonly used metric for this 

purpose. Different contrastive loss functions are devised based on this similarity 

metric. This metric measures the cosine of the angle existing between two vectors. 

Mathematically it is described as follows: 



CHAPTER 4: METHOD 

39 

 

 

i=0 i 

 
 
 

cos_sim(V1, V2) =
 V1.V2 

 

||V1||.||V2|| 
(4.2.1) 

Noise Contrastive Estimation [75] is a metric used in several models which have 

utilized contrastive learning technique for improving the convergence of the model 

towards target data. It performs a comparison of sample embeddings: defined as 

: 
 

  exp(sim(img, k+)/τ )  

LNCE  = − log 
exp(sim(img, k+)/τ ) + exp(sim(img, k )/τ ) 

(4.2.2) 

For an original sample img , k+ is the positive sample, and k_denotes negative 

sample.τ is a hyper-parameter known as temperature coefficient. For computing 

the similarity, generally cosine similarity as defined in Equation 4.2.1 is used. NCE 

forges a nonlinear logistic regression to discriminates between observed data and 

some artificially synthesized noise. 

InfoNCE is a variant of NCE. It is used in cases when there exists a large number 

of negative samples. Similarity metric l2 normalization and τ enables to assign 

different weights to different samples and facilitates the model to learn effectively 

 
  exp(sim(img, k+)/τ )  

Linf oN CE  = − log 
exp(sim(img, k+)/τ ) + 

Σk exp(sim(img, k )/τ ) 
(4.2.3)

 

Negative sample is represented as ki. 

Contrastive learning has been explored in a number of computer vision and natu- 

ral language processing applications. In adversarial training it has also been used 

extensively [8–11]. It was employed as a measure to resolve two of training is- 

sues concerned with the GANs i.e mode collapse and discriminator forgetting the  

learned information. Contrastive learning was used along with mutual information 

maximization for long-term representation learning. 

 
4.3 Model 

 
In, this section, the proposed framework "Semantically Coherent Text to Image 

Generation" is illustrated. Proposed model is developed based upon the con- 

− 
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trastive loss presented in Section 4.2.2 which is incorporated into the baseline 

model presented in Section 4.1.1. Proposed model architecture is illustrated in 

Figure 4.3. 

 

Figure 4.3: Illustration of the Semantically Coherent T2I-GAN framework 

 
Proposed model has two main components, a generator network and a discrimina- 

tor network. Textual caption for image generation are encoded using pretrained 

text encoder BERT[37]. Generator gets two inputs, one is the noise vector z sam- 

pled from the Gaussian distribution and the other is sentence embedding obtained 

by encoding the text with pretrained BERT. Which is then passed through the 

up sampling block of the generator to get the image features. These are then 

converted to a fake image by utilizing the convolutional layer. 

Image generation conditioned on input text aims at producing realistic images and 

at the same time semantically consistent with the provided textual description. 

To arrive at this two fold objective we propose to incorporate contrastive learning.  

The aim here is to utilize the coherence of similar captions describing same im- 

age (positive pairs)to bring them closer in learned representation and push away 

dissimilar captions describing different images (negative pairs)far away in the rep- 

resentation. Since the image generation is conditioned on textual description, so 

this pre training approach will narrow the gap between the generated image and 

input text. 
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To achieve this contrastive learning objective we have followed the noisy con- 

trastive estimation framework from[15]. Contrastive learning tends to correlate 

two signals in the representation. For a caption c, there exits some captions de- 

scribing the same image (positives) and some describing other images (negatives).  

CL minimizes the distance among positives and pushes negatives far way in the 

learned representation. Normalized temperature scaled cross entropy loss is cal- 

culated for ith query as: 

 

  exp(sim(ci, cj)/τ )  
CL−Loss = − log 

Σ2N  I
 exp(sim(c , c 

)/τ ) 
(4.3.1) 

k=1 k ̸=i i k 

In the above equation positives are indicated as ith and jth c. When k ̸= i the 

value of I is 1. τ is temperature scale. We have sampled 2N captions for N images. 

At a time a mini batch is taken and CL loss is calculated across the mini batch. 

 
4.3.1 Objective Functions 

 
Discriminator Objective Following our baseline model, we used one-way dis- 

criminator with gradient penalty on the real images with two branches of matching 

captions. Loss function with MA-GP used for training is: 

 

 

LD = LD⊮ + LD⊭ 

+ kEimg∼P  

"

||(𝘫imgD(img, c1)|| + ||𝘫eD(img, c1)||)p

#

 

+ kEimg∼P  

"

||(𝘫imgD(img, c2)|| + ||𝘫eD(img, c2)||)p

#

 

Where LD and LD hinge wise adversarial loss for GANs [76]. 

 

 
(4.3.2) 

Generator Objective The total loss for the generator is composed of hinge wise 

adversarial loss and normalized temperature scaled cross entropy loss (NT-Xent) 

[16]. 
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4.3.2 Contrast Aware Discriminator 

 
We augmented the matching aware zero-centered Gradient Penalty discriminator 

from our baseline model with contrastive learning to smooth the convergence of  

generated data points to the target data points. To fulfill desiderata we sampled 

a mini batch of images. For an image ’x’ in the batch we loaded two captions 

describing the same image. Due to computational constraints of GPU we have 

to reduce the batch size to half to that of our baseline model because we are 

calculating the hinge loss [77] of an image x for two captions c1 and c2 and using 

it for the calculation for MA-GP on the target data to speed up the convergence 

towards the real data. 

The hinge version of adversarial loss[77] for both the captions is calculated and 

semantic coherence of each caption for the image is obtained which is used for 

obtaining the gradient penalty on the real data. This MA-GP serves as a regular- 

ization on the critic and saves it from over fitting. 

Following the single output intuition of the baseline method, we concatenated the 

c1 features and x image features and obtained the adversarial loss LDc1 by passing 

it through two convolutional layers. Then we concatenated the c2 features with 

the image x and arrived at adversarial loss LDc2. 

 

LD1 =Eimg∼ır 

"

min(0, −1 + D(img, c1))

#

 

− (  )E  ( ) P 
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The hinge wise adversarial loss LDc1 and LDc2 are used to calculate the MA-GP 
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as: 
 
 

LD = LD⊮ + LD⊭ 

+ kEimg∼P  

"

||(𝘫imgD(img, c1)|| + ||𝘫eD(img, c1)||)p

#

 

+ kEimg∼P  

"

||(𝘫imgD(img, c2)|| + ||𝘫eD(img, c2)||)p
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(4.3.5) 

 

Here z is the noise vector sampled from the Guassian distribution N (0, 1); c1 and 

c2 are the caption embeddings; ıg, ır and ımis represent the generated distribution, 

real distribution and mis-matching data distribution, respectively. 

 
4.3.3 Generator 

 
Our model has single generator to generate image conditioned on the input text. 

Noise z sampled from Gaussian distribution and text embedding obtained from 

pretrained BERT are given as input to the generator. Noise z is reshaped by 

passing it through a fully connected layer and then it is fused with text embedding 

by utilizing the two Text-Image Fusion blocks same like the baseline model are 

used to fuse the text and noise vector. 

We sampled mini batch of 15 images and captions for generating images. Adver- 

sarial loss for the generator is computed as 

 

LGc1 = −EG(𝑥)∼Pg 

"

D(G(z), c1)

#

 

LGc2   = −EG(𝑥)∼Pg 

"

D(G(z), c2)

#

 

(4.3.6) 

 

To exploit the contrast of the positive sample we calculated the generator ad- 

versarial loss for the two captions and then arrived at the contrastive loss for 

the sampled image. For ith and jth contrasting samples the contrastive loss is 

calculated as 

 

  exp(sim(ci, cj)/τ )  
CLc1,c2 = − log 

Σ2N   I
 exp(sim(c , c 

)/τ ) 
(4.3.7) 

k=1 k  i i k 
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Then the adversarial loss for the generator is calculated as 

 

LG = LGc1 + LGc2 + CLc1,c2 (4.3.8) 
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CHAPTER  5 
 
 
 

Results and Evaluations 

 
Experimental results and discussion on evaluation metrices are included this chap- 

ter. This chapter also provides comparison of our model with other models. Sec- 

tion 5.1 covers experimental setup. Section 5.2 provides excursion of evaluation 

metrics such as the inception score, and the Fréchet inception distance. This sec- 

tion also includes discussion on the suitability of the selected evaluation metrices. 

Section 5.3 outlines our experiment with contrastive loss, the strategy to combine it 

with the MA-GP loss and generator conditional loss and techniques for stabilizing 

GAN training. In the following section, hyperparameter tuning was performed. A 

visual analysis of the tuned model is also included in this section. Lastly, Section 

5.4 compares our tuned model with other approaches in T2I generation. 

 

5.1 Introduction 

 
This section provides overview of model’s experimental setup. We used the Caltech- 

UCSD Birds 200 (CUB) dataset [74]. This is a well-known dataset used in several 

state-of-the-art text-to-image generation models. This dataset has 8855 train and 

2933 test images. Each image is described in ten different captions which are 

also part of this dataset. For the purpose of computing evaluation metrics, image 

is generated for the input captions from the test set. Therefore, the evaluation 

metrics are computed over 2933 images. We computed our evaluation metrics at 

every 10 epoch. 
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Images included in this dataset are real-world images belonging to 200 different 

classes. Train and test split is formed on the basis of image classes. 150 classes 

are included in the train set and 50 classes in the test set. 

 
5.2 Evaluation Metrices 

 
Evaluation of generative adversarial networks is similar to the evaluation of other 

models. Typically a check point is selected with weights frozen at a certain point.  

Then the output of generative model is compared against some metrices which are 

used across similar models for evaluation purpose. 

Evaluation of GANs is challenging because of two factors: 

 
• Generator of GAN generates a fake image starting from the noise. There 

does not exist any concrete way of telling how realistic the generated image 

is. 

• Discriminator never gains perfection in classifying fake and real images and 

it often overfits in classifying fake and real images for a particular generator. 

So the discriminator can not be used to decide which generator is better then 

the other one. 

Direct evaluation metrices like the likelihood are not applicable to the GANs, as 

GANs lack any overt representation. It is the reason behind the use of sampling 

based metrices for evaluation purposes. Two important considerations while eval- 

uating the generated images are fidelity and diversity. Fidelity measures image 

quality and diversity measures the variety. For comparing the images on fidelity 

and diversity grounds, higher level features of the images are required to be com- 

pared. To perform such a comparison first task is to extract the features of both 

generated image and the real image. Typically a pretrained classifier, trained on 

large dataset like Imagenet is used for feature extraction. End task of the classifier  

is not required for this purpose. While training for this classification task, this 

network has learned valuable features which can be used for evaluation of images. 

This is the reason that final classification layer is lobbed off and the output from 
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an earlier layer is used. Most commonly the last pooling layer is used for feature 

extraction[78]. 

Figure 5.1: Pretrained classifier. 

 
Imagenet is a huge dataset with 14,000,000 images belonging to 20,000 categories. 

Features extracted from the classifier trained on the Imagenet are often called 

Imagenet embeddings. [79] Inception-v3-Network is a 42 layer deep convolutional 

neural network classifier trained on Imagenet. It is used for feature extraction of 

real and fake images which are then compared for evaluations. [80] Two methods 

which are commonly used for feature comparison are discussed in the following 

sections . 

 
5.2.1 Fre𝘫chet Inception Distance (FID) 

 
It is the most popular metric for measuring the feature distance between the gen- 

erated and real images. It is used for measuring the distance between curves that 

is further extended to measure the distance between distributions. FID between 

two single dimensional, normal distributions is defined as: 

d(X, Y ) = (µX − µY )2 + (σX − σY )2 (5.2.1) 

Where mean gives a sense of centre and standard deviation tells about the spread. 

Squares are taken to penalize the values farther away in the distributions. Multi 

variable normal distributions generalize the idea of normal distribution to higher 

dimension which are used to model complex distributions. In such distributions 

values in one dimension causes values in other dimension to become less or more 
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likely.Such a relationship is captured in the covariance matrix. Covariance mea- 

sures the variance between two dimensions. Multivariate normal FID is: 

FID = ||µX − µY ||2 + Tr(ΣX + ΣY − 2
q

ΣXΣY ) (5.2.2) 

Where Σ denotes the covariance matrices. Real and fake image feature embeddings 

are treated as two multivariate distributions. Feature embeddings for both the 

fake and real images are extracted using Inception V3- network. FID evaluates 

the statistics obtained from the target multi-variable distribution and that of the 

multi-variable synthesized distribution. For the purpose of evaluation both the 

representations are normalized. In this evaluation, FID finds the difference in the 

mean and variance of the two distributions. Smaller the difference in the statistics 

of two distribution better the FID score is [78]. 

 
5.2.2 Inception Score (IS) 

 
It is another widely used metric for calculating the distance between real and 

fake image distributions. It was developed before FID and is more relevant to the 

conditional generation. Inception score also uses Inception-V3 classifier pretrained 

on Imagenet. The difference here is IS uses it as a classifier, and not for feature 

extraction. A fake image is fed into the classifier and seen how it is been classified 

by the classifier. High value on one class suggests that image clearly resembles 

one class, means high fidelity is achieved. It is done for many samples to arrive at 

a judgment about the performance of the GAN. Second requirement from GAN 

is to produce diverse outputs[81]. 

Entropy can be thought of as randomness. While evaluating for the fidelity in the 

generated images the focus is on keeping entropy low. Where as on the diversity 

measures, high entropy is expected as more variety is required to be generated. 

These measurements are the used to make a decision about the performance of 

the model under consideration.IS uses KL Divergence as: 

KLDivergenceDKL (p(y|x)|p(y)) = p(y|x)log( 
p(y|x)

) (5.2.3) 
 

In this equation p(y|x) defines conditional distribution and p(y) describes marginal 
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distribution [81]. IS is calculated as: 

 

IS = exp(Ex∼pDKL(p(y|x)||p(y))) (5.2.4) 

 
5.3 Model Evaluation 

 
This section illustrates the improvements in FID score and IS by the incorporation 

of contrastive loss and compare it with FID score and IS of the baseline models. 

We performed a comprehensive evaluation of our proposed model on two datasets 

which is summarized in the table 5.1. 

Figure 5.2 shows the impact of incorporating the contrastive loss in the training 

phase of deep fusion generative adversarial network. 

 
5.3.1 Baselines 

 
For the purpose of comparison, we have considered following models. 

 
• AttnGAN[55]: It is stack based architecture which enabled the genera- 

tive network to formulize different regions of the image conditioned on most  

relevant words. An extra network DAMSM(Deep Attentional Multimodal 

Similarity Model) was used for ensuring semantic consistency of text and 

generated image. 

• MirrorGAN[59]: This text-to-image generation model improved the con- 

sistency of generated image for input by redescription. It used stack based 

architecture to generate images from local word and global sentence atten- 

tion. To ensure semantic consistency between the generated image and text, 

it also used encoder decoder-based image caption framework [82] for gener- 

ating text from the fake image. Then computing loss of two text captions 

and augmenting the adversarial loss with this computed and value help the 

model towards better convergence. 

• DM-GAN[83]: In this model a dynamic memory module was used to refine 

fuzzy image contents. Dynamic memory module comprised of a memory 
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writing gate for selecting the important text information based on the initial  

image content which enabled more consistent image generation conditioned 

on text. 

• XMC-GAN[13]: This model used an attentional self-modulation generator 

for generating image from the text and used contrastive loss along with global 

and local attentional conditional losses for improving the role of discriminator 

in guiding the generator towards better convergence. 

• DAE GAN [84]: This model was built upon the basic intuition of generating 

basic image from the sentence embedding and adding fine grained details 

from the words present in the sentence. It added aspect details informa- 

tion for further improving the quality of the generated image. Attended 

Global Refinement (AGR) module was used to employ fine-grained word-level 

features for global refinement, and a novel Aspect-aware Local Refinement 

(ALR) module to utilize aspect-level features for local enhancement. By al- 

ternately applying these two components in a dynamic way, image details 

were refined from both global and local perspectives. 

• DF-GAN [66]: This model offered single generator and discriminator pair 

for generating high resolution images. For this purpose they utilized the 

affine transformation in the fusion blocks to fuse the text and image features. 

Scaling and shifting parameters were applied in the model in the MLPs to 

fuse text and image features and thus avoided the fuzzy features in the finally 

generated images. 

 
5.3.2 Implementation Details 

 
The proposed model is trained on google colab pro account having Tesla T4 GPU 

with 25GB RAM. We used the Adam optimiser [33] for both the generators and 

the discriminators with a learning rate of 0.0002, β1 = 0.0, and β2 = 0.999. We 

trained with a batch size of 15 because of the high memory consumption of images. 

We generated 256x256 images. Hyper parameter temperature is set to τ = 0.2 

and weight λ)c = 0.5 for training the generative model. 
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Algorithm 1 Generator Adversarial Network Model training algorithm with Con- 

trastive loss  
Input: Two components networks of GAN Generator G, Discriminator D. For 

training the generative model Batch size set to M, Hyper parameters temperature τ 

and coefficient λc are set, pretrained text encoder b for getting text embeddings and 

pretrained image encoder g for getting the image encoding. 

1: for number of training iterations do 

2: for t = 1, ......, M do 

3: Sample {Zi}M from P𝑥 

4: Sample image img and captions ci, cj 

5: { (imgi, ci)}M ∼ Pdata(img, c)  and { (imgi, cj)}M ∼ Pdata(img, c) 

6: e1 = b(ci) 

7: e2 = b(cj) 

8: LD = Eimg∼r[min(0, −1  +  D(img, c1))]  −  1 EG [min(0, −1   − 
c1 

D(G((𝑥), c1)))] − 1 Eimg∼P [min(0, −1 − D(img, c1))] 

2 𝑥∼Pg 

9: LD = Eimg∼r[min(0, −1  +  D(img, c2))]  −  1 EG [min(0, −1   − 
c2 

D(G((𝑥), C2)))] − 1 Eimg∼P [min(0, −1 − D(img, C2))] 
2 𝑥∼Pg 

2 min 

10: LD = LD + LD + kEimg∼P   [||(𝘫(img)D(img, C1)𝘫eD(img, c1))p||] 

11: Update D to minimize LD 

12: end for 

13: Sample {Zi}M ∼  P (Z), {(imgi, ci)}M ∼  Pdata(img, c), {(imgj, cj)}M ∼ 

Pdata(img, c) 

14: LGc1  = −EG(𝑥) ∼ Pg[D(G(𝑥), c1)] 

15: LGc2  = −EG(𝑥) ∼ Pg[D(G(𝑥), c2)] 

16: img1 = g(G(𝑥, c1)) 

17: img2 = g(G(𝑥, c2)) 

18: Lc = NT − Xent(img1, img2) 

19: LG = LGc1 + LGc2 + λcLc 

20: Update G to minimize LG 

 21: end for  

min 
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Table 5.1: The results of evaluation metrices with state of the art methods on the test set for 

CUB and COCO datasets 

 

 
Model 

CUB COCO 

IS ↑ FID ↓ IS ↑ FID ↓ 

AttnGAN [55] 4.36 23.98 - 35.49 

MirrorGAN [59] 4.56 18.34 - 34.71 

DM-GAN [83] 4.75 16.09 - 32.64 

XMC-GAN [13] - - - 9.30 

DAE-GAN [84] 4.42 15.19 - 28.12 

DF-GAN [66] 5.10 14.81 - 19.32 

Ours 3.49 15.69 - 43.07 

 
 

We trained our model for 1000 epochs on CUB dataset and 103 epochs on COCO 

dataset. Algorithm describing the training sequence of generative model is given 

as Algorithm 1. 

 
5.3.3 Comprehensive Performance Analysis 

 
Comparison of our model with GAN based state of the art models is presented in 

Table 5.1 . This table presents the optimized outcomes of each baseline models 

on benchmark datasets. The final row displays how the proposed model has per- 

formed on the benchmark datasets. Due to limitation of computational resources, 

we have trained our model on CUB dataset for 1000 epochs and on COCO dataset 

for only 103 epochs. Model has shown visible improvement on automated metric 

scales even after lesser training as compared to the other models under consider- 

ation. 

 
5.3.4 Performance Visualization 

 
Visual examination of selected images (Fig 5.2) convincingly shows the quality  

improvement achieved by employing the contrastive loss in the training phase of  

GAN. 
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Figure 5.2: Generated images for selected examples from CUB dataset. These images are 

generated from the model trained on CUB dataset only for 1000 epochs but the 

generated images are even then are of comparable quality with the state of the art 

models. 

 

5.4 Ablation Study 

 
In our work we used contrastive learning during the training phase of the GAN 

for generating images guided by input text. We investigated the incorporation of  

contrastive loss with generator loss and discriminator loss respectively to arrive 

at the fair conclusion about the effect of the constrastive learning to augment the 

generative model in learning a better representation. With automated evaluations 

we established the opinion that constrastive learning adds a positive effect in mak- 

ing a generative model to learn a better data distribution and hence generate more 

consistent images for the text input. With the DF-GAN as the baseline model 

we show the results for (1) contrastive loss with MA-GP loss of critic (2) con- 

trastive loss incorporation with the generator adversarial loss (3) both generator 

and discriminator getting contrastive loss along with adversarial losses. 
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Experimental results are shown in the Fig 5.3. It is evident from the results that 

contrastive learning technique improves the text to image generation capability 

of the baseline model. Generator adversarial loss augmented with contrastive loss 

make the generative model to converge towards hidden representation at improved 

rate as compared to the incorporation of contrastive loss along with the adversarial 

loss for the discriminator only. 

Figure 5.3: Ablation study results demonstrating the impact of Contrastive loss in the training 

of generative model for the CUB dataset. These results are obtained after training 

the model for 300 epochs. 

We experimented with hyper-parameters to establish the impact of these values 

on the performance of the overall model. We performed these investigations for 

the CUB dataset. Table 5.2 presents the values of hyper-parameters used for the 

purpose. First we adjusted the values of temperature to get fair idea about its 

impact in the performance contrastive learning. we tuned its value at {0.1, 0.5, 1}. 

Form the experimental results it became evident that increasing the value from 

0.5 leads lowering the FID score for the learned representation. Then we ex- 

perimented with the second hyper-parameter λc and tuned its weights at values 

{0.1, 0.2, 0.5, 1.0}. Results of experiments lead to idea that changing the value 

of this hyper-parameter has very marginal impact on the training of generative 

model. 
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Table 5.2: Ablation study showing results on choosing different values of the hyper-parameters 

τ and λc 

 

Model Hyper-Parameter IS ↑ FID ↓ 

CL in GAN Training τ   

 0.1 3.90 16.11 

0.5 3.49 15.69 

1 2.99 19.99 

CL in GAN Training λc 
  

 0.1 4.42 16.22 

0.2 3.49 15.69 

0.5 3.77 15.89 

1.0 3.65 15.77 
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CHAPTER  6 
 
 
 

CONCLUSION AND FUTURE 

WORK 

 
6.1 Conclusion 

 
In this work, we used contrastive loss along with the adversarial loss of generative  

model, in the training phase of a simple one stage GAN. Contrastive learning, a 

self-supervised learning technique, improved the convergence of model in learn- 

ing the underlying structure of the data. Comprehensive experiments on bench 

mark datasets showed remarkable improvements in convergence rate even with 

less training. However, due to constraint of computational resources, we have to 

stick to smaller batch size. Contrastive learning performs best with large batch size  

and more training. Use of larger batch size with enormous dataset can remarkably  

improve the results. 



57 

 

 

 
 
 
 
 

 

References 

 
[1] Xudong Mao and Qing Li. Generative adversarial networks for image gener- 

ation. Springer, 2021. 

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic  

models. Advances in Neural Information Processing Systems, 33:6840–6851, 

2020. 

[3] Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. Learning deep 

representations of fine-grained visual descriptions. In Proceedings of the IEEE 

conference on computer vision and pattern recognition, pages 49–58, 2016. 

[4] Ming Tao, Hao Tang, Fei Wu, Xiao-Yuan Jing, Bing-Kun Bao, and Chang- 

sheng Xu. Df-gan: A simple and effective baseline for text-to-image synthesis. 

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat- 

tern Recognition, pages 16515–16525, 2022. 

[5] James M Clark and Allan Paivio. Dual coding theory and education. Educa- 

tional psychology review, 3(3):149–210, 1991. 

[6] Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, 

and Honglak Lee. Learning what and where to draw. Advances in neural 

information processing systems, 29:217–225, 2016. 

[7] Bo Dai and Dahua Lin. Contrastive learning for image captioning. Advances 

in Neural Information Processing Systems, 30, 2017. 

[8] Kwot Sin Lee, Ngoc-Trung Tran, and Ngai-Man Cheung. Infomax-gan: Im- 

proved adversarial image generation via information maximization and con- 



REFERENCES 

58 

 

 

 

trastive learning. In Proceedings of the IEEE/CVF winter conference on ap- 

plications of computer vision, pages 3942–3952, 2021. 

[9] Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Im- 

age augmentations for gan training. arXiv preprint arXiv:2006.02595, 2020. 

[10] Fengchun Qiao, Naiming Yao, Zirui Jiao, Zhihao Li, Hui Chen, and Hongan 

Wang. Geometry-contrastive gan for facial expression transfer. arXiv preprint 

arXiv:1802.01822, 2018. 

[11] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin Tong. Disentangled 

and controllable face image generation via 3d imitative-contrastive learning. 

In Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition, pages 5154–5163, 2020. 

[12] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive repre- 

sentation learning: A framework and review. IEEE Access, 8:193907–193934, 

2020. 

[13] Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. 

Cross-modal contrastive learning for text-to-image generation. In Proceedings 

of the IEEE/CVF conference on computer vision and pattern recognition, 

pages 833–842, 2021. 

[14] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and Neil Houlsby. Self- 

supervised gans via auxiliary rotation loss. In Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition, pages 12154–12163, 

2019. 

[15] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning 

with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018. 

[16] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A 

simple framework for contrastive learning of visual representations. In Inter- 

national conference on machine learning, pages 1597–1607. PMLR, 2020. 

[17] Guojun Yin, Bin Liu, Lu Sheng, Nenghai Yu, Xiaogang Wang, and Jing 

Shao. Semantics disentangling for text-to-image generation. In Proceedings 



REFERENCES 

59 

 

 

 

of the IEEE/CVF conference on computer vision and pattern recognition, 

pages 2327–2336, 2019. 

[18] Hui Ye, Xiulong Yang, Martin Takac, Rajshekhar Sunderraman, and Shi- 

hao Ji. Improving text-to-image synthesis using contrastive learning. arXiv 

preprint arXiv:2107.02423, 2021. 

[19] Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv preprint 

arXiv:1705.02894, 2017. 

[20] Eli Stevens, Luca Antiga, and Thomas Viehmann. Deep learning with pytorch. 

Manning, 2020. 

[21] Shayle R Searle and Marvin HJ Gruber. Linear models. John Wiley & Sons, 

2016. 

[22] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for 

deep neural networks in classification. arXiv preprint arXiv:1702.05659, 2017. 

[23] Nitish Shirish Keskar and Richard Socher. Improving generalization perfor- 

mance by switching from adam to sgd. arXiv preprint arXiv:1712.07628, 

2017. 

[24] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.  

How does batch normalization help optimization? Advances in neural infor- 

mation processing systems, 31, 2018. 

[25] Larry R Medsker and LC Jain. Recurrent neural networks. Design and 

Applications, 5:64–67, 2001. 

[26] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Un- 

derstanding batch normalization. Advances in neural information processing 

systems, 31, 2018. 

[27] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa 

Sengupta, and Anil A Bharath. Generative adversarial networks: An 

overview. IEEE Signal Processing Magazine, 35(1):53–65, 2018. 



REFERENCES 

60 

 

 

 

[28] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde- 

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver- 

sarial nets. Advances in neural information processing systems, 27, 2014. 

[29] Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep gen- 

erative image models using a laplacian pyramid of adversarial networks. arXiv 

preprint arXiv:1506.05751, 2015. 

[30] Yang Yu, Zhiqiang Gong, Ping Zhong, and Jiaxin Shan. Unsupervised repre- 

sentation learning with deep convolutional neural network for remote sensing 

images. In International Conference on Image and Graphics, pages 97–108. 

Springer, 2017. 

[31] Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay. Face aging with 

conditional generative adversarial networks. In 2017 IEEE international con- 

ference on image processing (ICIP), pages 2089–2093. IEEE, 2017. 

[32] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. It takes (only) 

two: Adversarial generator-encoder networks. In Proceedings of the AAAI 

Conference on Artificial Intelligence, volume 32, 2018. 

[33] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. arXiv preprint 

arXiv:2003.05991, 2020. 

[34] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing 

Huang. Pre-trained models for natural language processing: A survey. Science 

China Technological Sciences, pages 1–26, 2020. 

[35] Liyuan Liu, Jingbo Shang, Xiang Ren, Frank Xu, Huan Gui, Jian Peng, and 

Jiawei Han. Empower sequence labeling with task-aware neural language 

model. In Proceedings of the AAAI Conference on Artificial Intelligence, 

volume 32, 2018. 

[36] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of 

recurrent neural networks: Lstm cells and network architectures. Neural 

computation, 31(7):1235–1270, 2019. 



REFERENCES 

61 

 

 

 

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: 

Pre-training of deep bidirectional transformers for language understanding. 

arXiv preprint arXiv:1810.04805, 2018. 

[38] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt 

Schiele, and Honglak Lee. Generative adversarial text to image synthesis. 

In International Conference on Machine Learning, pages 1060–1069. PMLR, 

2016. 

[39] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa- 

tion learning with deep convolutional generative adversarial networks. arXiv 

preprint arXiv:1511.06434, 2015. 

[40] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua 

Bengio. On the properties of neural machine translation: Encoder-decoder 

approaches. arXiv preprint arXiv:1409.1259, 2014. 

[41] Jimei Yang, Scott E Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly- 

supervised disentangling with recurrent transformations for 3d view synthesis. 

In Advances in neural information processing systems, pages 1099–1107, 2015. 

[42] Hao Dong, Simiao Yu, Chao Wu, and Yike Guo. Semantic image synthesis 

via adversarial learning. In Proceedings of the IEEE International Conference 

on Computer Vision, pages 5706–5714, 2017. 

[43] Hyojin Park, Youngjoon Yoo, and Nojun Kwak. Mc-gan: Multi- 

conditional generative adversarial network for image synthesis. arXiv preprint 

arXiv:1805.01123, 2018. 

[44] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei 

Huang, and Dimitris N Metaxas. Stackgan++: Realistic image synthesis 

with stacked generative adversarial networks. IEEE transactions on pattern 

analysis and machine intelligence, 41(8):1947–1962, 2018. 

[45] Bruno A Olshausen and David J Field. Natural image statistics and efficient 

coding. Network: computation in neural systems, 7(2):333, 1996. 



REFERENCES 

62 

 

 

 

[46] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei 

Huang, and Dimitris N Metaxas. Stackgan: Text to photo-realistic image 

synthesis with stacked generative adversarial networks. In Proceedings of the 

IEEE international conference on computer vision, pages 5907–5915, 2017. 

[47] Navaneeth Bodla, Gang Hua, and Rama Chellappa. Semi-supervised fusedgan 

for conditional image generation. In Proceedings of the European Conference 

on Computer Vision (ECCV), pages 669–683, 2018. 

[48] Zizhao Zhang, Yuanpu Xie, and Lin Yang. Photographic text-to-image syn- 

thesis with a hierarchically-nested adversarial network. In Proceedings of the 

IEEE conference on computer vision and pattern recognition, pages 6199– 

6208, 2018. 

[49] Lianli Gao, Daiyuan Chen, Jingkuan Song, Xing Xu, Dongxiang Zhang, and 

Heng Tao Shen. Perceptual pyramid adversarial networks for text-to-image 

synthesis. In Proceedings of the AAAI Conference on Artificial Intelligence, 

volume 33, pages 8312–8319, 2019. 

[50] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Fast 

and accurate image super-resolution with deep laplacian pyramid networks. 

IEEE transactions on pattern analysis and machine intelligence, 41(11):2599– 

2613, 2018. 

[51] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cun- 

ningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, 

Zehan Wang, et al. Photo-realistic single image super-resolution using a gener- 

ative adversarial network. In Proceedings of the IEEE conference on computer 

vision and pattern recognition, pages 4681–4690, 2017. 

[52] Xin Huang, Mingjie Wang, and Minglun Gong. Hierarchically-fused gener- 

ative adversarial network for text to realistic image synthesis. In 2019 16th 

Conference on Computer and Robot Vision (CRV), pages 73–80. IEEE, 2019. 

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, 

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you 

need. Advances in neural information processing systems, 30, 2017. 



REFERENCES 

63 

 

 

 

[54] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma- 

chine translation by jointly learning to align and translate. arXiv preprint 

arXiv:1409.0473, 2014. 

[55] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei 

Huang, and Xiaodong He. Attngan: Fine-grained text to image generation 

with attentional generative adversarial networks. In Proceedings of the IEEE 

conference on computer vision and pattern recognition, pages 1316–1324, 2018. 

[56] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and Honglak Lee. Infer- 

ring semantic layout for hierarchical text-to-image synthesis. In Proceedings 

of the IEEE conference on computer vision and pattern recognition, pages 

7986–7994, 2018. 

[57] Ting-Yun Chang and Chi-Jen Lu. Tinygan: Distilling biggan for conditional 

image generation. In Proceedings of the Asian Conference on Computer Vi- 

sion, 2020. 

[58] Jun Cheng, Fuxiang Wu, Yanling Tian, Lei Wang, and Dapeng Tao. Rifegan: 

Rich feature generation for text-to-image synthesis from prior knowledge. In 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, pages 10911–10920, 2020. 

[59] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Mirrorgan: 

Learning text-to-image generation by redescription. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 

1505–1514, 2019. 

[60] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, 

Junyang Lin, Xu Zou, Zhou Shao, Hongxia Yang, et al. Cogview: Mastering 

text-to-image generation via transformers. Advances in Neural Information 

Processing Systems, 34:19822–19835, 2021. 

[61] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec 

Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. 

In International Conference on Machine Learning, pages 8821–8831. PMLR, 

2021. 



REFERENCES 

64 

 

 

 

[62] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image 

synthesis. Advances in Neural Information Processing Systems, 34:8780–8794, 

2021. 

[63] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela 

Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards 

photorealistic image generation and editing with text-guided diffusion mod- 

els. arXiv preprint arXiv:2112.10741, 2021. 

[64] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark 

Chen. Hierarchical text-conditional image generation with clip latents. arXiv 

preprint arXiv:2204.06125, 2022. 

[65] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, 

Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu 

Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion 

models with deep language understanding. Advances in Neural Information 

Processing Systems, 35:36479–36494, 2022. 

[66] Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Xiao-Yuan Jing, Fei Wu, 

and Bingkun Bao. Df-gan: Deep fusion generative adversarial networks for 

text-to-image synthesis. arXiv preprint arXiv:2008.05865, 2020. 

[67] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip Torr. Controllable 

text-to-image generation. Advances in Neural Information Processing Sys- 

tems, 32, 2019. 

[68] Wenbo Li, Pengchuan Zhang, Lei Zhang, Qiuyuan Huang, Xiaodong He, Siwei 

Lyu, and Jianfeng Gao. Object-driven text-to-image synthesis via adversarial 

training. In Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, pages 12174–12182, 2019. 

[69] Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Semantic object accuracy 

for generative text-to-image synthesis. IEEE transactions on pattern analysis 

and machine intelligence, 2020. 



REFERENCES 

65 

 

 

 

[70] Ayushman Dash, John Cristian Borges Gamboa, Sheraz Ahmed, Marcus Li- 

wicki, and Muhammad Zeshan Afzal. Tac-gan-text conditioned auxiliary clas- 

sifier generative adversarial network. arXiv preprint arXiv:1703.06412, 2017. 

[71] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with 

deep neural networks: A survey. IEEE transactions on pattern analysis and 

machine intelligence, 43(11):4037–4058, 2020. 

[72] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. 

IEEE transactions on Signal Processing, 45(11):2673–2681, 1997. 

[73] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training 

methods for gans do actually converge? In International conference on ma- 

chine learning, pages 3481–3490. PMLR, 2018. 

[74] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya 

Banerjee, and Fillia Makedon. A survey on contrastive self-supervised learn- 

ing. Technologies, 9(1):2, 2020. 

[75] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new 

estimation principle for unnormalized statistical models. In Proceedings of 

the thirteenth international conference on artificial intelligence and statistics, 

pages 297–304. JMLR Workshop and Conference Proceedings, 2010. 

[76] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 

Spectral normalization for generative adversarial networks. arXiv preprint 

arXiv:1802.05957, 2018. 

[77] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self- 

attention generative adversarial networks. In International conference on 

machine learning, pages 7354–7363. PMLR, 2019. 

[78] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training 

for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 

2018. 



REFERENCES 

66 

 

 

 

[79] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im- 

agenet: A large-scale hierarchical image database. In 2009 IEEE conference 

on computer vision and pattern recognition, pages 248–255. Ieee, 2009. 

[80] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet 

models transfer better? In Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition, pages 2661–2671, 2019. 

[81] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv 

preprint arXiv:1801.01973, 2018. 

[82] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for gener- 

ating image descriptions. In Proceedings of the IEEE conference on computer 

vision and pattern recognition, pages 3128–3137, 2015. 

[83] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-gan: Dynamic mem- 

ory generative adversarial networks for text-to-image synthesis. In Proceed- 

ings of the IEEE/CVF conference on computer vision and pattern recognition, 

pages 5802–5810, 2019. 

[84] Shulan Ruan, Yong Zhang, Kun Zhang, Yanbo Fan, Fan Tang, Qi Liu, and 

Enhong Chen. Dae-gan: Dynamic aspect-aware gan for text-to-image synthe- 

sis. In Proceedings of the IEEE/CVF International Conference on Computer 

Vision, pages 13960–13969, 2021. 


