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ABSTRACT 

A novel byte systolic fully parallel architecture is proposed for mapping 128-bit AES encryption 

algorithm. The plain text of 128-bit block is encrypted using the 128-bit key so number of rounds 

are 10. All the 10 rounds are implemented in parallel by cascading the stages, so the resulting 

architecture does not reuse the logic resources instead all the computations are in parallel. The 

proposed architecture works on in-place indexing; a single byte of plain text is input and after the 

initial latency of 10x16 cycles a byte of cipher text is output in every clock cycle. The novelty of 

the proposed architecture is more pronounced around in-place indexing. By employing the in-

place indexing byte systolic fully parallel architecture best utilizes the memory and works in a 

lock step manner. The same data memory of each stage is used for next coming frame thus 

reducing the hardware resources. The technique intelligently removes all the inter and across 

round dependences by tracing out a single byte so design works in byte systolic fashion. This 

scheme speeds up the implementation 10x16 times thus increasing the data rate and throughput. 

The proposed design for AES encryption offers the data rates of 200Mbs while utilizing 2063 

slices and 1.6GHz throughput on Xilinx Virtex V xc5v2x5ot. Comparison results clearly show 

that proposed architecture offers the best tradeoff between area, data rate and throughput.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

 

The thesis is the mapping of the 128-bit AES algorithm to a byte systolic fully parallel 

architecture.  The AES algorithm is well known encryption scheme that convert the plain text 

into non readable text using the key. The receiver will decrypt the message into original plain 

text by using the same key. The design of AES is based upon the principle of Substitution 

Permutation; it has fast hardware and software implementation. There are number of AES 

architectures proposed in the literature, selection of a particular architecture depends upon 

throughput, area, power and data rate of the input. The novel architecture Byte Systolic Fully 

Parallel Architecture works on byte in-place indexing, the design encrypts the 128-bit of 

plaintext using key of size of 128-bit. In this technique a byte (8-bit) of plain text is input to the 

architecture and result in a byte of cipher text as an output in every clock cycles after an initial 

latency of 16x10 cycles. All the 10 rounds are implemented by cascading all the stages thus 

resulting architecture does not reuse the logic resources instead executes all the rounds in 

parallel, thus maximizing the data path size that leads to significantly increase the throughput 

and data rate. 

The hardware descriptive language “VERILOG” is used as a programming language and Xilinx 

platform is used for the implementation and simulations. 

1.2 Background and Motivation 

By the invention of internet need for the encryption algorithm emerges, before this encryption 

was rarely used by the general public mostly used for military purposes. In this modern world 

it’s very uncommon for a person not to have a computer on his desk, work or at home, it’s 

become an essential device now days. The main purpose of a computer is to store, receive and 

send data between two parties. To communicate with other computer, computers are connected 

in some fashion (LAN, MAN, WAN etc) [2].While communicating everyone wants to maintain 
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privacy, so data and communication security have been an important topic. Encryption is a 

process for providing the privacy to your information [1]. 

The importance of cryptography applied to security in electronic data transactions has acquired 

an essential relevance during the last years [3]. Each day millions of users generate and 

interchange large volumes of information in various fields, such as financial and legal files, 

medical reports, and bank services via Internet, telephone conversations, and e-commerce 

transactions. Network security has three major security goals: confidentiality, availability and 

message integration between senders and receivers. Many algorithms are available in each of 

these three goals of security. One of the frequently used security algorithm in block cipher is the 

AES algorithm [7].  

AES has variable key length 128-bit, 192-bit and 256-bit but fixed length block of 128-bits. 

Rijndeal has the key and block multiples of 32 and minimum length is 128-bit, maximum block 

size is 256-bits and no theoretical maximum value for key length. The design of AES is based 

upon the principle of Substitution Permutation; it has fast hardware and software 

implementation. 

1.3  Objective 

The proposed design Byte Systolic Fully Parallel Architecture implements the 128-bit AES 

based encryption. Following are the objectives to create architecture that result into high 

throughput, high data rate and efficient memory utilization.  

 To make a design Byte systolic that takes a byte as input; work in lock step fashion and 

giving out a byte as output. All the operation of AES algorithm; shift row, add round key, 

byte substitution and mix column will be done on 8-bit data. 

 To executes the all rounds of the algorithm in parallel for every upcoming frame. 

 To remove the inter and across round dependencies to fully avail the benefit of parallel 

architecture. 

  Implementation on the Xilinx Project Navigator 12.1i suite using Verilog as a 

programming language. 
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 Comparison of the result with pervious publications.  

1.4 Contributions 

A number of AES architectures are proposed in the literature but few of them are mapped to an 

8-bit data path. The existing 8-bit AES architecture offers the compact design and best suited for 

the low area and power applications but the throughput of the 8-bit designs is very low. So the 

previous 8-bit designs only suited for embedded systems, mobile computing and smart cards. 

The proposed Byte Systolic Fully Parallel AES architecture offers the highest throughput with a 

small increase in area compared to other 8-bit designs. So the resulting architecture works for the 

systems which require the high throughput with low area. The proposed design is also of special 

interest of the application in which input changes at every clock cycle at faster rate. In addition to 

this the research conducted has several application areas, image processing, voice 

communication and multimedia transfer over internet.    

1.5 Dissertation Outline 

The chapterwise dissertation is given below: 

 Chapter 2: Literature Review 

Related background topics are discussed in this chapter. The evolution of the encryption 

algorithms and also discuss the different algorithm for encryption. All the operation of 

AES i.e. Shift Row, Add Round Key, Byte Substitution and Mix column are explained in 

detail. This chapter also presents the some of the work by the other researchers in the 

field of cryptography and especially in AES encryption algorithm. 

 Chapter 3: Design of the Proposed Architecture 

The complete design of the Byte Systolic Fully Parallel Architecture is discuss in the 

chapter 3.the comparison of standard AES algorithm with the proposed algorithm is also 

included in this chapter. The chapter further explains the top level design of architecture; 

data flow of the algorithm and detail design of Byte Systolic Fully Parallel Architecture. 
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 Chapter 4: Implementation of Byte Systolic Architecture 

The chapter 4 describes how the all stage are implemented using a tool Xilinx. The 

implementation is divided into two parts the DATA PATH and the CONTROLLER. The 

chapter 4 is comprises of complete design and implementation of the controller and data 

path of Byte Systolic Fully Parallel Architecture. 

 Chapter 5: Results  

This chapter shows the result of simulation on Xilinx ISE 12.1-1, it includes the wave 

form of input plain text, all the signals of the controller, all rounds and final output cipher 

text. Comparison of different AES designs with proposed architecture. 

 Chapter 6: Conclusion  

Last chapter presents the conclusion of the dissertation; it also includes the future work. 
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CHAPTER 2: ENCRYPTION AND ALGORITHMS 

 2.1  Introduction 

In this modern world it’s very uncommon for a person not to have a computer on his desk, work 

or at home, it’s become an essential device these days. The main purpose of a computer is to 

store, receive and send data between two parties. To communicate with other computer, 

computers are connected in some fashion (LAN, MAN, WAN etc) [2].While communicating 

everyone wants to maintain privacy, so data and communication security have been an important 

topic. Encryption is a process for providing the privacy to your information [1]. 

To explain why we need to have encryption, let’s have an example of computer   network or a 

phone network. Although they both run on the computer but with phone network you have a 

voice on the other end, this voice will provide the authentication. Both the parties caller and 

callee know to whom they are talking there would be no misunderstanding of whom you are 

talking. If you want to make a call to your friend, you know that on the other end it’s your friend 

nobody else, whatever your friend says you will hear after a fraction of delay. It’s assured that 

until and unless you are not using, cellular or cordless phone, making an international call, your 

conservation is secured. If you are using cellular or cordless phone it would be easy for a third 

party to listen your conservation using radio equipments [2].  Government routinely monitored 

international calls, in making an international call it may possible some law enforcement agency 

has interest in you or in your friend and agency have order from the court to tap your 

conservation. 

On the other hand sending a message to your friend using the computer network, it may possible 

your message being changed by someone during the journey before it actually delivered to your 

friend. Let’s see what happens when you sent a message to your friend, first the software (of 

sending and receiving message) will find your friend on the same computer, if it succeed in 

finding your friend then it will deliver the message. Otherwise next step would be to check that 

message can be sent directly to your friend or not, if yes message will be delivered. If software 

can’t find the direct path then it will deliver to computer that can talk to friend’s computer. Now 



6 BYTE SYSTOLIC FULLY PARALLEL ARCHITECTURE 
 

 

your message will be stored on disk of each computer, it seems too appeared as you are directly 

connected to your friend but actually it’s not true. Your message passes through several 

computers thus making the network. Now you are on people mercy, your message can be 

changed before it actually delivers to your friend. Encryption provides the ways to secure your 

information, so that the intended recipient can get the information [1]. Encryption algorithm is 

being used to provide privacy and confidentiality for email communication named as Pretty 

Good Privacy (PGP) [9]. It involves a serial combination of public-key cryptography, 

symmetric-key cryptography, and hashing and data compression. The combination of symmetric-

key and public-key provides the confidentiality to your message. A symmetric encryption 

algorithm requires the symmetric key to encrypt the message and each key is used only once in a 

session, it is also called session key. The session key is being encrypted by receiver public key 

for ensuring that only intended recipient get the session key. The encrypted session key and 

message is sent to receiver. PGP also supports integrity and authentication. Encryption and 

decryption algorithm are shown in Figure 2.1. 

 

Figure 2.1: PGP Algorithm 

Most of our daily activities are being done through internet e.g. bank transaction, credit card 

transaction, and secret information exchange. So encryption is a necessary step for the successes 

Generated
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of commerce over the internet. Without authentication of whom you are communicating people 

are unwilling to transact any kind of business because transacts are not secure [3]. Encryption 

can provide the confidence to the people so that they can transact over the internet. The Figure 

2.2 and 2.3 shows the two different scenarios with and without encryption. 

 

                            

Figure 2.2: No encryption algorithm no authentication to whom one is talking. 

                                

Figure 2.3: Encryption provides integrity and authentication. 
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internet

Whom I am dealing?
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                                Figure 2.4:  How transaction over the internet being attacked 

The Figure 2.4 shows the transaction over the internet is being attacked. So need of encryption 

has found in many application of life starting from electronic financial transactions, data storage, 

smart card, wireless communication and cellular phone [8]. Different encryption algorithm have 

been used since last two decades, RSA, DSA, DES, 3DES, AES etc. the latest algorithm 

outperforming the previous one.  

2.2  Cryptography  

Cryptography is defined as “the science and study of techniques for providing secure 

communication in the presence of third party” [11]. Cryptography is science and study of secure 

communication and encryption is a component of that science, it use the mathematics to encrypt 

and decrypt [29]. More generally cryptography is concern about analyzing and construction the 

protocol that overcomes the influence of third party thus providing the authentication, 

confidentiality, data integrity and non-repudiation. 

        Authentication: It provides the identity to user.  

        Data integrity: Ensuring the receiver that original message has not been changed by any 

intruder in the communication path.  

         Non-repudiation: This is a process of proving to receiver that message is really sent by the 

sender. 

COMPUTER 

internet 
I am dealing with ABC 

HACKER 

ABC 
BANK 

INC 

COMPUTER 
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         Confidentiality: Ensuring that only the intended receiver can read the message. 

Prior to modern age cryptography is synonymous with encryption; the conversion of readable 

message into unreadable state, in this modern age cryptography is based on computer science 

and mathematical theory. Cryptography algorithms are based on computationally hard 

assumption thus making impossible for intruder to break it. It’s theoretical possible to break the 

algorithm but it’s impossible to break it by any practical means, so algorithm are termed as 

computationally secure. These algorithms are difficult to implement than theoretical breakable 

schemes. 

2.3 Types of Cryptography  

Cryptography not just only provides confidentiality but also integrity and authentication, to achieve this 

goal there are three schemes of cryptography which are as follow: 

 Symmetric Cryptography 

 Asymmetric Cryptography 

 Hashing Function 

 

2.3.1 Asymmetric Cryptography 

Asymmetric cryptography also called public-key cryptography (PKC). Public-key cryptography 

uses the asymmetric algorithm, where key use to encrypt the message will not be used to decrypt 

the message [9]. There is a pair of cryptography key; one is public key other one is private key. 

The public key is known by everyone but private key is secret only intended user will have that. 

The message is encrypted using public key of recipient and it’s only decrypted using 

corresponding private key (only recipient will have that). Both the keys are related 

mathematically, but it’s not feasibly to derive private key from public key [13]. Figure 2.5 shows 

the asymmetric cryptography. 

Many cryptosystem and cryptographic algorithm based on public-key cryptographic approach; 

there is no need of initial exchange of one or more secret key unlike symmetric-key 

cryptography.  
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It is also used to create digital signature. Public-key cryptographic algorithm widely used to 

create digital signature and key exchange. 

 RSA 

 Diffie-Hellman 

 DSA 

 ElGamal  

 Cramer-Shoup  

 KEA 

2.3.1.1 RSA  

It is the first and mostly used algorithm for signing as well as encryption.RSA is named after 

three mathematicians Ronald Rivest, Adi Shamir and Leonard Adleman [13].RSA is widely used 

in 100 of software products especially electronic commerce protocols.RSA uses a variable size 

key and encryption block. The key is derived from “n” that is very large number, according to 

special rules these two prime numbers are selected. The product of these two prime numbers 

gives rise to “n” very large number, if each of prime numbers is of 100 digits then “n” will be of 

200 digits. The public key includes the very large number “n” and derivates of one of the prime 

number, so attacker is unable to determine the one of factor of the “n” is in public- key. With 

very high computing power it’s difficult to find out the prime factors of “n”, according to test 

Figure2.5:  Asymmetric Cryptography [14] 
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held in 2005 to find the prime factor of 200 digit number took one and half year aver the fifty 

years of computing time. Thus by making the size of key large RSA becomes more secure [16].  

2.3.1.2 Diffie-Hellman 

After RSA algorithm Whitfield Diffie and Martin Hellman published their own algorithm in 

1976. It was later emerged that this algorithm had been invented by Malcolm J. Williamson with 

GCHQ (the British intelligence agency).D-H is used for only secret key exchange not for digital 

signature and authentication. 

 In 2002 Hellman and Ralph Merkle suggested the algorithm called Diffie- Hellman- Merkle key 

exchange. Diffie-Hellman is a non authenticated key agreement protocol but it provides basis for 

the variety of authenticated protocols. It provides the perfect forward security in Transport Layer 

Security modes.  

2.3.1.3 Digital Signature Algorithm 

Digital signature algorithm is a standard used for digital signature only; it’s not an encryption algorithm 

[19].DSA specified in NIST as Digital Signature standard (DDS). 

2.3.1.4 ElGamal  

It was designed by Taher Elgamal in 1985, it is an asymmetric cryptography based on Diffie-

Hellman. ElGamal is used in the free Privacy Guard Software a recent version of Pretty Good 

Protocol PGP. ElGamal is used to establish the common keys similar to Diffie-Hellman. 

2.3.1.5 Cramer shoup 

It is developed by Victor shoup and Ronald Cramer in 1998 and it is an extension of Elgamal 

algorithm. Elgamal is extremely malleable but cramer shoup adds the additional features to 

ensure the non-malleability [12]. It is an asymmetric cryptography; it was the first scheme that is 

proven to be more secure against the adaptive cipher text attacks by employing the standard 

cryptographic assumptions. The Cramer shoup is based on the computational intractability of the 

Diffie hellman assumption. The non-malleability is achieved by using the collision resistant hash 

function, additional computation and as a result the cipher text formed is twice larger than 

Elgamal. 
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2.3.1.6 Key Exchange Algorithm 

Key exchange algorithm is an asymmetric cryptography; it is a variation of Diffie Hellman and 

proposed as the exchange of key for Capstone [12]. 

2.3.2 Symmetric Cryptography 

In symmetric cryptography a single key is used for encryption and decryption. The key used for 

encryption at sender the same key used for decryption at the receiver [1]. So sender and receiver 

must have the key and it is the most difficult problem of symmetric cryptography to distribute 

the key. 

Stream cipher and block cipher are general categories of symmetric cryptography. The Stream 

cipher works on a single bit, byte or on a word, it implements the feedback algorithms so key is 

changing constantly [28]. The block ciphers works on one block of data at a time and use the 

same key on each of the block. In general, the block cipher result in the same cipher text if same 

key is used for the encryption of plaintext block whereas in stream cipher same data result into 

different ciphers text [26].  

The most common modes of the block cipher are as follows: 

 Electronic Code Book (ECB): It is the simplest and common mode of the block cipher; it 

encrypts the plaintext block using the secret key into cipher text and vulnerable to brute-force 

attacks. The same plaintext block encrypts into same cipher text [39]. 

 Cipher Block Chaining (CBC): It adds the feedback feature to the encryption, before 

encryption CBC XOR the plaintext with the previous block of cipher text ,the same plaintext  

block never encrypts into same cipher text.       

Cipher Feed Back (CFB):  It encrypts the data into smaller units than the block size which is 

useful for the encryption of interactive terminal input. If one byte CFB is used so every 

upcoming character is placed into the register when block size is achieved then block is 

transmitted and at receiver block is decrypted and extra bits are discarded, this mode is similar to 

self synchronization stream cipher. 



13 BYTE SYSTOLIC FULLY PARALLEL ARCHITECTURE 
 

 

Output Feed Back (OPF): It is similar to synchronous stream cipher; OPF uses the internal 

feedback mechanism that is independent of plaintext and cipher text streams so it prevents the 

generation of same cipher text from the same plaintext [12]. 

Symmetric cryptographic algorithms used today are as follows:                            

 Data Encryption Standards (DES) 

 Advance  Encryption Standards (AES) 

 Blowfish 

 Twofish 

 Camellia 

 SEED 

 ARIA 

 CLEFIA 

2.3.2.1 Data Encryption Standard 

It the most common algorithm used today, it was designed in 1970 by IBM and adopted by NBS 

for unclassified government and commercial applications.DES is based upon block cipher, it 

operates on 64-bit and use 56-bit key having complex set of rules and transformations that result 

in slow software and fast hardware implementation [11]. Now a day’s DES is insecure for many 

applications because of 56-bit key size which is very small. In 1999 DES is break by Electronic 

Frontier Foundation and distributed.net in 22 hours and 15 minutes although it is unfeasible to 

mount. FIPS 46-3 developed the triple DES and it can be used until 2030 as approved by FIPS as 

encryption algorithm. TDES employs the 3 rounds of the DES and having the key length of 168-

bits; brute force attacks are currently not possible. 

2.3.2.2 Advance Encryption Standard 

It was announced in November 26, 2001 and based on Rijndeal. AES is a block cipher and can 

use the variable lengths of key and block, latest version allow any combination of block length 

128 and key length (128,192,256). The AES describe in detail in section 2.4. 
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2.3.2.3 Blowfish 

It is invented by Bruce Schneier, works on 64-bit cipher block and key length can vary from 32-

bit to 448-bits.Blowfish is especially designed for 32-bit architecture with large data caches and 

faster than DES on Pentium or power PC [30]. 

2.3.2.4 Twofish 

It is designed by a team supervised by Bruce Schneier which is highly flexible, highly secures, 

well suited for 8-bit smart microprocessors and dedicated hardware. Twofish works on 128-bit 

block with the key of length 128-bit, 192-bit and 256-bit. 

2.3.2.5 Camellia 

It was developed in 2000 by joint collaboration of Mitsubishi Electric Corporation (MEC) and 

Nippon Telegraph and Telephone (NTT). Some of the features of Camellia is similar to AES that 

is 128-bit block with key of variable length 128-bit, 192-bit, 256-bit; suitable for both hardware 

and software implementations. Camellia is also well suited for 32-bit as well as 8-bit 

microprocessors. 

2.3.2.6 SEED 

It is invented by Korea Information Security Agency (KISA) and in South Korea it is adopted as 

a national standard. SEED is block cipher it works on 128-bit block with 128-bit key. 

2.3.3 Hashing Function 

Hashing function can also called one way encryption and message digests. A hash value is fixed 

length which is computed from plaintext, hash value has no key so plaintext can never recovered. 

Hash functions are usually used for the generation of digital fingerprint of the content of the file 

and ensure the integrity of the file, that no third party had altered the contents. Many operating 

systems use the hashing algorithm for the encryption of passwords. 

It is misunderstood that two file will not have the same hash value, it is wrong two file can have 

the same hash value. Hash function which generates the 128-bit hash value so possible hash 

values 2
128   

are but infinite number of possible files ∞ >> 2
128

can have the same hash value. To 
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find the two files having the same hash value is very difficult for this reason extensively used for 

the information security and computer forensics applications. 

2.4 Advance Encryption Algorithm 

It was announced by NIST in November 26, 2001 and based on Rijndeal after standardization of 

five years in which 15 competing algorithm were presented and before this Rijndeal was 

considered to be the best algorithm. In cryptography AES is approved as a standard by Federal 

Information Processing Standard Publications FIPS and adopted by US government [22].  

AES has variable key length 128-bit, 192-bit and 256-bit but fixed length block of 128-bits. 

Rijndeal has the key and block multiples of 32 and minimum length is 128-bit, maximum block 

size is 256-bits and no theoretical maximum value for key length. The design of AES is based 

upon the principle of Substitution Permutation; it has fast hardware and software implementation 

and unlike DES it does not apply Feistel network. 

AES operates on a state matrix of 16 bytes (4 x 4) and most of the operations are in finite filed. A 

number of transformations on a state matrix convert the plaintext into cipher text and a set 

reverse transformation on cipher text result into original plaintext [14]. The Figure 2.6 shows the 

flow of the AES encryption algorithm. The key length of AES will determine the number of 

rounds; for different key length numbers of rounds are as follows: 

 128-bit  10 rounds 

 192-bit 12 rounds  

 256-bit 14 rounds. 

2.4.1 AddRound Key 

As all the operations are on state matrix, addround key is bitwise XOR of state matrix with round 

key. 

2.4.2 Shift Row 

It is the cyclic rotation of rows to the left by a certain offset. For AES shift row is simple, first 

row is unchanged, second row is shifted by 1 to the left, third row is shifted by 2 and third row is 
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Figure 2.6:  Flow diagram of AES Encryption 

shifted by 3.unlike AES, Rijndeal have variable block lengths so row shit operation is same as of 

AES for 128-bit and 192-bit block. For 256-bit block first row is unchanged and second, third 

and fourth row offset are 1, 3 and 4 respectively. Figure 2.7 shows the row shift operation. 

S

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S

S0,0 S0,1 S0,2 S0,3

S1,1 S1,2 S1,3 S1,0

S2,2 S2,3 S2,0 S2,1

S3,0 S3,1 S3,2 S3,3

 

Figure 2.7:  Shift Row operation for 128-bit block 
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2.4.3 Byte Substitution 

Thus is the non linear transformation, each byte of state matrix is replaced by a byte from lookup 

table 16 x16 called S-BOX. This S-BOX provides the nonlinearity to the algorithm and it is 

derived from multiplicative inverse over the finite field GF (2
8
) and combines with invertible 

affine transformation [24]. The property of S-BOX avoids the attacks which are simply based 

upon algebraic computations and also handle the fixed and opposite fixed points. The S_BOX is 

used for the encryption and inverse S_BOX is used for decryption, both of them are shown in 

Figure 2.8 and 2.9 respectively.   

 

Figure2.7:  Lookup table 16x16 of S-BOX 

2.4.2 Mix Column 

It is the most complicated operation of AES algorithm, all the operation is in finite field GF (2
8
). 

Before explaining the mix column operation in detail first have look on finite field operations. 

2.4.2.1 Finite Field 

Finite field arithmetic’s is different from the normal integer arithmetic’s; in finite field there are 

limited numbers of elements and result after the operation of finite field  also lies in that field. 

The elements are of form p
x
; where x is positive integer called the dimension of the field and p is 

a prime number called the characteristics of the field [14]. Finite field itself is not infinite but  
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Figure2.8:  Lookup table 16x16 of inverse S-BOX 

there are infinite numbers of finite fields, two finite fields with same number of elements are 

called isomorphic. 

Finite field is used in many applications; including linear block codes, BCH codes, Reed 

Solomon error correction, classic coding theory and cryptography. 

Each element in GF (2
8
) represents a polynomial of degree 7 having coefficient in GF (2

8
), there 

are 8 terms in the polynomial and coefficient can have any value 0 or 1[15]. 

Addition in Finite Field: 

Addition and subtraction of two elements in finite field is simple bit wise exclusive OR of two 

elements.  

1
st
 Polynomial: x

6
+ x

4
+x +1 

2
nd

 Polynomial: x
7
+x

6
+ x

3
+x 

(x
6
+ x

4
+x +1) + (x

7
+x

6
+ x

3
+x)  =  x

7
+x

4
+ x

3
+x 

01010011       +  11001010       = 1001001 

                   {53}           +  {CA}             = {99}   
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Multiplication in Finite Field: 

In finite field multiplication is XOR and AND operation. Following is the algorithm for finite 

field multiplication. 

Run the following loop 8 times. It is ok to stop when a or b are zero an iteration. 

1. If right most bit of b is set, exclusive OR the product p by the value of a. this is  

polynomial addition 

2. Shift b one bit to the right, discarding the right most bit and making the left most bit zero. 

This divides the polynomial by x. discarding the x
0
 term. 

3. Keep the track of whether the left most bit of “a” is set to one and call this value carry. 

4. Shift “a” 1 bit to the left, discarding the leftmost bit of “a” and making rightmost bit zero. 

This multiplies the polynomial by x, the coefficient of x
7
. 

5. If carry had a value of one, exclusive OR “a” with the hexadecimal number 0x1b, 0x1b 

corresponds to irreducible polynomial with the high term eliminated. Conceptually the 

high term of the irreducible polynomial and carry add modulo 2 to 0.  

2.4.2.2   Mixcolumn in AES 

In AES mix column operation is multiplication of state matrix 4 x4 with fixed predefined matrix, 

multiplication is done in such a way that the mixcolumn takes the input a column (a0 a1 a2 a3) of 

state matrix and multiple it with the matrix P and results into a column vector B (b0 b1 b2 b3) 

which is replaced with input column in a state matrix. Each column of a state matrix is multiplied 

with a fixed polynomial described below and represented by matrix.  

                                                     F(x) = 3x
3 

+ x
2 

+ x + 2                                                           (2.1) 

The inverse polynomial is as follows: 

                                                     F
-1

(x) = 11x
3 

+ 13x
2 

+ 9x + 14                                              (2.2) 

P   = [

        
        
        
        

] 
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[

  
  
  
  

]   =    [

        
        
        
        

] [

  
  
  
  

] 

                                                         B                         P                         Ist column of state matrix 

The partial products are as follow: 

                                                b0= 2a0     3a1     1a2   1a3                                                            (2.2) 

                                             b1= 1a0    2a1    3a2    1a3                                                               (2.3) 

                                             b2 =1a0   1a1     2a2   3a3                                                                 (2.4) 

                                             b3 =3a0   1a1    1a2   2a3                                                                  (2.5) 

In this way one by one column of state matrix is multiplied with matrix P and the result of 

multiplication will replace the input column in the state matrix as shown in Figure 2.9. 

 

Figure2.9:  Replacement of a column of state matrix with the result of Mixcolumn 

2.5 Related Work 

This section presents the some of the work by the other researchers in the field of cryptography 

and especially related to AES encryption. There are number of architectures proposed in the 

literature, selection of a particular architecture depends upon throughput, area, power and data of 

the input. The intensively pipelined architecture has been used for achieving high throughput, 

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

b0

b1

b2

b3
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on-the-fly key generation for avoiding the storage key memory, optimized Mixcolumn and 

efficient S-BOX implementations for the applications with area constrain. Recent research work 

for AES implementation has focused on compact AES architecture to target the applications in 

consumer electronics with low cost and low power. 

In paper [41], minimizes the data path size that leads to significant reduction in hardware 

resources. The in 8-bit time shared architecture recourses are shared, different operations are 

performed using the same resources at different time intervals. The key expansion scheduling 

algorithm use the same logic resources thus reported architecture offer the data rate in the range 

of 41 Mbs while utilizing the 236 slices. This design is viable for wireless communication where 

high throughput is not required. 

In reference to paper [31], AES is modified to reduce the computational overhead. In the 

modified AES mixcolumn is replaced by the permutation step which is taken from the Data 

Encryption Algorithm. Modified AES is a fast lightweight algorithm which ensures the security 

to multimedia applications. 

The standard AES encryption algorithm is slow and not suitable for the application which 

requires the high speed. As the need of high performance computation increased, the Graphic -

Processing Unit (GPU) is hot topic of research. The paper [26] presents the AES algorithm is 

based upon the high computation performance of GPU. The AES encryption based on GPU is 

higher than on CPU, because of its high data transfer and better parallelism. 

The image encryption algorithm alone is not efficient to provide image integrity; AES algorithm 

is used with them to provide the integrity to images. The paper [35] presents the low power and 

high speed encryption technique for images. To increase the throughput and speed, pipelining of 

4 stages with the optimization of mixcolumn is implemented. The design offer the data rate in 

range 100MHz and maximum frequency is 475MHz on Altera Company of FPGA and power is 

achieved as 301Mw using Xilinx Xpower Analyzer The limitation of this architecture is it’s not 

fully parallel so throughput is not drastically increased.   

An area optimized AES encryptor on a reconfigurable device is presented in [21]. In this design, 

the S-box implementation is achieved by mapping the S-box table using composite field 
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arithmetic. The S-box is implemented using combinational logic for area optimization. The 

design is capable of processing data with all supported key lengths. It lacks efficient utilization 

of FPGA hardware resources as the reported gate count to implement this design is more than 

21K on Virtex xcv1000 device from Xilinx.  

A reduced data path AES design is reported in [22]. The 8-bit AES architecture uses embedded 

memory devices available in the FPGA to store round keys and S-box table entries. The use of 

memory devices replaces the hardware required to implement key schedule and S-box as the 

round keys and S-box entries are stored inside FPGA memories. A circuitry is used to fetch the 

stored keys from the memory and distribute them during encryption and decryption processes. 

The use of embedded memories makes the design memory intensive. The design is implemented 

on Flex 10k20 FPGA from Altera and utilizes 957 logic elements.   

A 64-bit data path version of the AES architecture with internal pipelining is presented in [23] by 

Mónica Liberatori. The architecture uses 8 S-box implementations. It uses on-the-fly key 

generation and does not require any memory to store round keys. The 64-bit internal data path is 

converted into 128-bit data path in the mix column stage to obtain results in a single cycle. The 

number of logic resources reported for this architecture is 822 slices for the encryption module 

implementation when mapped on Spartan 3 xc3x200 device from Xilinx. 

Two architectures of AES are presented in [7] implemented as sequential and pipelined designs. 

A memory less solutions is obtained in the sequential design of the AES algorithm. This makes 

the design highly portable as it can be virtually mapped on any FPGA device with no 

dependency of the FPGA embedded resources. Since the design is sequential in nature, the 

number of logic resources required to implement this solution is 2744 configurable logic block 

(CLB) slices. The design offers a sustained throughput of 258.5 Mbps. The pipelined version of 

the same design utilizes 2136 CLB slices offering throughput in the range of 2.868 Gbps. The 

latter uses 100 Block Select RAMs (BRAMs) available as embedded FPGA memories which 

make it a memory intensive design. The sequential and the pipelined versions are implemented 

on Virtex E family of the Xilinx FPGA devices (xcv812). 

AES designs reported by Chodwiec [45] and Rouvroy [24] are amongst area efficient FPGA 

designs to the best of author’s knowledge. The design presented in [45] uses 222 slices of the 
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Spartan 2 xc2s30-6 FPGA device from Xilinx whereas the design in [24] utilizes 163 slices on 

Spartan 3 xc3s50-4 FPGA device.   

The design presented in [19] is yet another compact and interesting AES architecture. The design 

is implemented as an Application Specific Instruction Processor (ASIP) with the capability of 

performing encryption and decryption processes through the same module. The architecture is 

based on 8-bit data path and uses only 128-bit cipher key length. The design obtains area 

optimization by implementing S-box using existing composite field arithmetic. It uses 

considerably low amount of FPGA resources when mapped on one of the smallest FPGA device 

from Xilinx (Spartan 2 xc2s15). The number of reported logic resources utilized by this design is 

262 slices. 

The design presented in [18] is author’s initial research work which transforms the 32-bit AES 

algorithm to 8-bit through architectural transformation. The work presents an efficient hardware 

implementation for the encryption process. A high degree of hardware re-usability results in a 

complex controller in this design. However, the amount of logic resources utilized to implement 

this architecture is still low and amounts to 337 slices when mapped on a Virtex 2 xc2v1000-6 

FPGA device from Xilinx. The design uses two embedded memory blocks of the FPGA.   

The paper [38] pipeline architecture of AES algorithm using key generation which is based on 

search based memory. The pipelining is introduce to increase the throughput and search based S-

BOX technique is used to reduce the hardware constrains. The comparison results presented 

shows the slices utilization 402, 2700 and 3898 of iterative loop 128-bit AES, pipeline and 

pipeline with search based engine architecture respectively. 
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CHAPTER 3: Design of a Proposed Architecture 

3.1 Overview 

The proposed design Byte Systolic Fully Parallel Architecture implements the 128-bit AES 

based encryption using in-place indexing, parallel computation and by pass techniques to create 

architecture that result into high throughput, high data rate and efficient memory utilization. 

The novel architecture Byte Systolic Fully Parallel Architecture works on byte in-place indexing, 

the design encrypts the 128-bit of plaintext using key of size of 128-bit. In this technique a byte 

(8-bit) of plain text is input to the architecture and result in a byte of cipher text as an output in 

every clock cycles after an initial latency of 16x10 cycles. All the 10 rounds are implemented by 

cascading all the stages thus resulting architecture does not reuse the logic resources instead 

executes all the rounds in parallel, thus maximizing the data path size that leads to significantly 

increase the throughput and data rate. 

 The standard AES works on 32-bit word so hardware implementation requires 32-bit data path, 

register, buses and memory. Though some of 8 bit architectures are proposed in the literature but 

they require accumulation of four 8-bit words for computation of mix column operation [6]. As 

proposed architecture is a byte systolic it works on a single byte thus reducing the width of data 

path and other hardware resources thus result in minimizing the area and dissipate less power. 

The proposed architecture is also fully parallel that is all the rounds are implemented in parallel. 

The parallel architectures proposed in literature have limitations that inter round dependences 

produces some extra latency, the novelty of proposed architecture is more pronounced around in-

place indexing  which removes the inter round and within round dependences . The 16 cycles are 

required to write 16 bytes of a data after writing the data round can starts its execution. As single 

memory 8x16 bits is used for each round that is the upcoming next frame uses the same memory. 

Now for the next frame to be written also requires 16 cycles, but our proposed architecture works 

on in-place indexing so the technique writes the input of next frame at the location that is already 

used in the current cycle. As one round is in process the input data for the next frame getting into 

its location, on completion of one round data of next frame is also ready so more latency of 16 

cycles. This schemes speed up the design 10x16 times thus increasing the data rate and 
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throughput. The removal of all the dependencies makes the proposed architecture to execute in 

lock step and implements all the rounds in parallel without creating some extra latency. The 

proposed architecture offers the best tradeoff between area, power, data rate and throughput for 

AES hardware implementation. Figure 3.1 shows the comparison of standard AES algorithm and 

proposed architecture. 

 

(a)                                                         (b) 

Figure 3.1:  Comparison of standard AES algorithm and proposed architecture. (a) Standard AES. 

 (b) Proposed AES Algorithm. 

3.2 Proposed Architecture 

3.2.1 Byte Systolic Fully Parallel Architecture 

The proposed architecture mapped the AES algorithm to Byte Systolic Fully Parallel 

Architecture that encrypts the 128-bit block of plaintext using the key of size 128-bit so number 

of rounds for each data block is 10. The proposed architecture works on byte in-place indexing; a 

single byte of a plaintext is input and after an initial latency of 16x10 cycles a byte of cipher text 

is output in every clock cycle. Top level design of architecture is shown in Figure 3.2. 
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Figure 3.2:  Top Level Design 

3.2.1.1 Pipelining of Architecture 

The pipelining is way to process the data in a continuous manner without waiting for the 

completion of current process, the concept of pipelining is seen in many processors [44]. The 

pipelined architecture is shown in the Figure 3.3. Each stage is separated by register so the output 

of the one stage is saved and can pass to next stage when it is required without any latency. In 

iterative loop architecture next round can’t start its execution until and unless current round is in 

process because same hardware is used again for the next round. Thus, the pipelined architecture 

drastically increased the speed and throughput.  
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Figure 3.3:  Pipelined Architecture. 

The design of a byte systolic fully parallel architecture is shown in Figure 3.4. All the rounds are 

implemented in parallel and this is achieved by cascading all the stages. Every stage has its own 

data and key memory only last stage has two key memories, the text which has to be encrypted is 

stored in data memory. In key memory corresponding key is stored in each stage which is 

expanded offline by key scheduling algorithm. For key size of 128-bit there are 10 rounds keys; 
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for stage 1 cipher key; for stage 2  round key (R1);  for stage 3 round key (R2)  and so on but in 

stage 10 round keys R9 and R10 are saved in key memory. The data is input in byte serial 

fashion to stage 1, execution of the round starts when the 16 bytes have been written into the data 

memory. As the round 1 for 1
st
 frame is in process at the same time input for the second frame is 

written into the data memory of the stage 1 by applying in-place index addressing which is 

explained in next section. In-place index addressing scheme writes the input at the location from 

where the data is read and currently used in the cycle. The addressing for writing and read from 

memory is done by using the address generation unit that is with each data memory and key 

memory. As the 1
st
 frame completes the execution of the round1 data for the 2

nd
 frame is stored 

in data memory of stage one, now 1
st
 frame starts the execution of the round 2 and 2

nd
 frame goes 

for the round1. On completion of round 1 of 2
nd

 frame, input data for the 3
rd

 frame has been 

written into the data memory of stage 1.the 3
rd

 frame starts the execution of round 1,2
nd

 frame 

goes for the execution of round 2 and 1
st
 frame is ready for the execution of round 3. Similarly as 

one frame completes the execution of one round, it move forward for the next round and 

upcoming frame takes the position of pervious frame. In this way frames can executes in parallel, 

on arrival of 10
th

 pipeline is fully occupied thus achieving the maximum throughput. 

3.2.1.2 In-place Indexing 

The novelty of the proposed architecture is more pronounced around in-place indexing. By 

employing the in-place indexing data rate of the architecture increases with best utilization the 

memory. The same data memory of each stage is used for next coming frame thus reducing the 

hardware resources which results into reduction of area. The technique intelligently removes all 

the dependences by tracing a single byte and implements the fully parallel architecture that a 

single byte of plain text is input to the architecture and a single byte is output as cipher in every 

clock cycle after an initial latency of 16x10 cycles. The in-place indexing technique drastically 

increases the through put and data rate of the architecture. 

Let’s explain the mechanism of in-place indexing in detail; basically it is a scheme which writes 

the upcoming input at the location from where the value is used in the current cycle. The address 

generation unit will generate the address for reading and writing value from data and key 

memory. The address is incremented by employing the Eq (3.1) and (3.2). 
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Figure 3.4:  Design of Byte Systolic Fully Parallel Architecture 
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                                                     addr = (addr + index) % 16                                              (3.1) 

                                                     index = ( index +4 ) % 16                                                  (3.2) 

The value of “addr” a change 16 times within a round, index changes its value after each round 

and remains constant within a round.  

 

(a)                                                      ( b)                                                      (c) 

 

(d) 

Figure 3.5:  Input data (a) First frame (b) Second frame (c) Third frame (d) Corresponding index of the 

frames 

The plaintext is input to first round in byte serial fashion, the 16 cycles are required to write 16 

bytes. The address is initialized and incremented by 1, so for the first write in each data memory 

is sequential. The Figure 3.5 shows the input data of first, second and third frame with their 

indices. When 16 bytes of the first frame have been written into the data memory of stage 1 

shown in Figure 3.6, the 1
st
 frame starts executing the Round1 of the algorithm. At the same time 

when first Round of 1
st
 frame is in process the input data for the second frame has been written 

into the data memory of the stage 1 by employing the in-place indexing. The techniques in-place 

indexing writes the input data of the second frame at the locations from where the value is read 

for the execution of Round 1 of the first frame. As in proposed design the data is read in row is 

32 88 31 e0

43 5a 31 37
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a8 8d a2 34

01 05 09 13

02 06 10 14

03 07 11 15

04 08 12 16
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0d ab af bd
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shift order directly from the memory so address are generated by address generation unit which 

listed in Table 1. 

Index = 5 

addr  = 0 

Addr Adrr=(index+addr)%16 

0 5+0 =5 

5 5+5 =10 

10 5+10 =15 

15 5+15 =4 

4 5+4 =9 

9 5+9 =14 

14 5+14 =3 

3 5+3 =8 

8 5+8 =13 

13 5+13 =2 

2 5+2 =7 

7 5+7 =12 

12 5+12 =1 

1 5+1 =6 

6 5+6 =11 

Table 1: Address generation for reading 1
st
 frame in Row Shift order  

 

 

 

 

 

 

 

 

Figure 3.6:  Data Memory of Stage 1 after writing first frame of data  
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As the data is read from the index “0” the first byte of second frame is written at location “0”. 

The second byte of 1
st
 frame from the read from the index “5”; so the second byte of the 2

nd
 

frame is placed at same index. Now as third value of 1
st
 frame is read from location “10” the 

third byte of the 2
nd

 frame latched into that position. 

Similarly as values are read in row shift order from the indices the input data of second frame 

getting into those locations. The Figure 3.7(a) shows data memory of stage 1 employing in-place 

indexing for first and second frame and the Figure 3.7(b) shows data memory of stage 1 at the 

end of round 1 of first frame. On completion of round 1 of first frame the input data for the 

second frame have been written into the data memory of stage 1; result of round1 of first frame 

have been written into data memory of stage2. Now first frame goes for the execution of round 2 

and second frame can starts the execution of round1. As the first write in each data memory is 

sequential so result of the round 1of the first frame is written into data memory of stage in 

sequential order and for reading the data in row shift order index has the value 5. As the Figure 

3.7 (b) shows input data of second frame is not saved sequential so now for reading data “addr” 

is not incremented by 5 instead of it “index” value is 9. By putting the value of index in equation 

[5] address for the reading the data of 2
nd

 frame can be generated easily. The address generation 

unit will generate the address as shown in the Table 2 for reading data in row shift order. 

Addr Adrr=(index+addr)%16 

0 9+0 =9 

9 9+9 =2 

2 9+10 =11 

15 9+15 =4 

4 9+4 =13 

13 9+13 =6 

6 9+6 =15 

15 9+15 =8 

8 9+8 =1 

1 9+1 =10 

10 9+10 =3 

3 9+3 =12 

12 9+12 =5 

5 9+5 =14 

14 9+14 =7 

Table 2: Address generation for reading 2
nd

 frame in Row Shift order  



32 BYTE SYSTOLIC FULLY PARALLEL ARCHITECTURE 
 

 

 

(a) 

 

(b) 

Figure 3.7:  In-place Indexing for 1st and 2nd frames (a) Reading and Writing into data memory of stage 

1 by employing In-place Indexing (b) Data memory of stage 1 after completion of Round1 of first frame. 

As values are read from the indices 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 at the same 

time input data for the third frame have been written into the data memory of stage 1. Now first 

frame can go for round 3, second frame can go for the execution round 2 and third frame can 

start the execution of the round1. The Figure 3.8 shows that data for the 3
rd

 frame is also not in a 

sequential order so for reading in row shift order by implementing the Eq (3.1) and 

(3.2).Similarly for the fourth frame of input data same equations are implemented to read in row 

shift order. The value of index changes after the completion of each round and remains constant 
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with the each round, its value repeats after every four frame. The Figure 3.9 (a) shows the write 

address for the first four frames in the data memory of stage 1 and (b) shows the indices for 

reading the data in row shift order. This address pattern repeats after every fourth frame of data. 

 

 

(a) 

 

(b) 

Figure 3.8:  In-place Indexing for 2nd and 3rd frames (a) Reading and Writing into data memory of stage 

1 by employing In-place Indexing (b) Data memory of stage 1 after completion of Round1 of second 

frame. 
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(a) 

 

(b) 

Figure 3.9:  Byte in place indexing for byte systolic AES architecture. (a) Indices for writing data for first 

four frames. (b) Indices for reading in row shift order for first four frames 

3.3 Mapping of AES on Byte Systolic Fully Parallel Architecture 

The 128-bit AES encryption algorithm is mapped to proposed architecture 8-bit Systolic 

Architecture. All the operations of the algorithm are modified according to the 8-bit design. The 

flow of the proposed algorithm is shown in the Figure 3.10, all the rounds are similar expect the 

last round in which mixcolumn is replaced by add round key operation. Let’s have the brief 

introduction of the basic operation of the proposed algorithm, which are as follow: 

 Shift Row 

 Add Round Key 

 Byte Substitution 

 Mix Column 

3.3.1 Shift Row 

Normally Shift Row operation is performed in such a way that row 1,2,3,4 is circularly shifted to 
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Figure 3.10:  Flow of algorithm for Encryption 

left by an offset of 0,1,2,3 respectively. Shift row operation in done on the state matrix (16 bytes) 

as shown in the Figure 3.11. 

S

S 0,0 S 0,1 S 0,2 S 0,3

S 1,0 S 1,1 S 1,2 S 1,3

S 2,0 S 2,1 S 2,2 S 2,3

S 3,0 S 3,1 S 3,2 S 3,3

S

S 0,0 S 0,1 S 0,2 S 0,3

S 1,1 S 1,2 S 1,3 S 1,0

S 2,2 S 2,3 S 2,0 S 2,1

S 3,0 S 3,1 S 3,2 S 3,3

 

Figure 3.11:  Shift Row operation 

As proposed architecture is byte systolic so all the computation is on a single byte of a data to 

achieve this goal the technique proposed is; the data is read from the memory in shift row order 

as shown in Figure 3.12(b), so logic of shift row operation is no more required. 
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     (a)                                                             (b) 

Figure 3.12:  State Index for Shift Row operation (a) Original index (b) After Shift Row operation. 

 Each iteration of the algorithm reads the 8-bit data directly from the memory and the address to 

access the memory is generated by address generation unit by implementing the following 

equation. 

                                             AddrSR = (AddrSR + out) % 16                                                     (3.3) 

The value of ‘out’ varies for each frame for first, second, third and fourth frame of data values of 

‘out’ is 5,9,13 and 1 respectively; it repeats its value after four frames. 

3.3.2   Add Round Key 

In this step data is exclusive OR with the round key; normally in Add Round Key state matrix is 

XOR with the key as shown in Figure 3.13. The proposed technique maps the AES to byte 

systolic architecture so all the operation will be on 8-bit data. A single byte of data is read from 

the memory is XOR with the single byte of round key, as data is read in row shift order so round 

key is also read in row shift order. To synchronize the value of data and a key same address 

generation unit will generate the address for both data and key memory as shown in Figure 3.14. 

 

Figure 3.13:  Add Round Key 
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     Figure 3.14:  Address generation unit deriving the data and key memory 

3.3.3 Byte Substitution 

The result from the Add Round key is fed into byte substitution module, the proposed byte 

substitution is same as of normal BS of AES algorithm except computation is done on 8-bit data. 

Figure 3.15 shows the byte substitution of a proposed architecture. 

 

 

Figure 3.15:  Proposed Byte Substitution 

3.3.4 Mix Column 

In all the rounds, 8-bit result computed from Byte Substitution is than passed to Mix Column 

module, except the last round which does not have the mix column module. Mix column is a 

linear transformation based upon GF (2
8
). The Figure 3.16 shows the multiplication of a column 

in mix column stage. One column of a multiplicand matrix is multiply with multiplier matrix and 

result we get is a column vector “M”. The column of multiplicand which goes for multiplication 

is replaced with column vector “M”. 
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]         (.*)       [

        
        
        
        

] 

                   Input data (multiplicand)                     Predefined matrix (multiplier) 

(a) 

 

[

   
   
   
   

]           (.*)     [

        
        
        
        

]       =     M   =    [

  
  
  
  

] 

(b) 

P0  = 2C00+3C01+C02+C03 

P1  = C00+2C01+3C02+C03 

P2  = C00+C01+2C02+3C03 

P3  = 3C00+C01+ C02+2C03 

(c) 

Figure 3.16:  Multiplications in Mix column (a) Multiplier and Multiplicand (b) Multiplication of a 

column(c) Partial Product Equations 

The proposed architecture is byte systolic so it works on a single byte to accomplish this goal 

mix column is modified in such a way that instead of implementing the partial product equation 

horizontally equations are implemented vertically and we get new equation which is as follow: 

                        X0= [

    
   
   
    

]   ,   X1 = [

    
    
   
   

]       ,        X2 = [

   
    
    
   

]               ,    X3 =[

   
   
    
    

] 

 

                                                        M = X0 + X1 + X2 +X3                                                                           (3.4) 
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Figure 3.17:  Proposed design of Mix column for Byte Systolic Architecture 

The Figure 3.17 shows the proposed mix column design for Byte systolic architecture. The 

design multiplies each upcoming byte with 4 constants, the constant values in matrix are in such 

a way that each row has the same value but shifted by one to the right. Instead of shifting the 

multiplier the partial product are shifted to the right by one and saved into the registers (R0, R1, 

R2, R3). Each coming byte is multiplied with the constant than resulted value is XOR with the 

partial product saved into registers. Multiplication of one column requires four cycles and each 

cycle is discussed. 

1
st
 Cycle of Mix Column: 

In the first cycle of mix column as shown in Figure 13.18, input C00 is multiplied with the 4 

constant values and the output is saved into the register R0, R1, R2 and R3, having the following 

values: 

R0 =  C00 

R1 =  C00 

clk clk clk clk

R0R1R2R3

reset

clk clk clk clk

R00R11R22R33

enable

Mux_sel
2

3 1 1 2
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R2 = 3 C00 

R3 = 2 C00 

 

Figure 3.18:  1st Cycle of Mix Column 

2
nd

 Cycle of Mix Column: 

In second cycle shown in Figure 13.19, C01 is input to the mix column module and multiples with 

4 constant values than XOR with the shifted values saved into the register R0, R1, R2 and R3, now 

output is latched into same registers. Register are having the following values: 

R0 = R1 +C01  =  C00  + C01 

R1 = R2 +C01  = 3C00 + C01 

R2 = R3+3 C01= 2C00 + 3C01 

R3 = R0+2 C01=   C00 + 2C01 
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Figure 3.19:  2nd Cycle of Mix Column 

3
rd

 Cycle of Mix Column: 

C02 is input to the mix column module in third cycle, after the multiplication of C02 with 4 

constant values the result we get is XOR with the values saved into registers now final output is 

latched into registers R0, R1, R2 and R3, so registers have the following values. The Figure 13.20 

shows the third cycle of mixcolumn. 

R0 = R1 +C02  =  3C00  + C01   + C02 

R1 = R2 +C02  = 2C00  + 3C01 + C02 

R2 = R3+3C02 =   C00 + 2C01  + 3C02 

R3 = R0+2 C02=   C00 + 2C01  + 2C02 

clk clk clk clk

R0R1R2R3

reset

clk clk clk clk

R00R11R22R33
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       Figure 3.20: 3rd Cycle of Mix Column 

4
th

 Cycle of Mix Column: 

In the last cycle of mix column C03 is input to mix column, after multiplication with constant the 

result is XOR with the values saved into the register R0, R1, R2 and R3 now the final result is 

latched into registers R00, R11, R22 and R33 and  R0, R1, R2, R3register are reset in every fourth 

cycle. The Figure 3.21 shows the last cycle of mixcolumn. 

R00 = R1 + C02 = 2C00  +   C01 +   C02 +  C03 

R11 = R2 + C02 =   C00 + 2C01 + 3C02 +  C03 

R22 = R3+3C02 =   C00 +   C01 + 2C02 + 3C03 

R33 = R0+2 C02= 3C00 +   C01 +   C02 + 2C03 

R0 =  0 

R1 =  0 

R2 =  0 

R3 =  0 

clk clk clk clk

R0R1R2R3

reset

clk clk clk clk

R00R11R22R33

enable

Mux_sel
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          Figure 3.21:  4th Cycle of Mix Column 
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CHAPTER 4: Implementation of a Byte Systolic Fully 

Parallel Architecture 

The proposed architecture has been implemented in Verilog for encryption. There are two main 

parts one is the CONTROLLER and other is a DATAPATA; controller will generate the signals 

to drive the data path. The first part of the chapter is dedicated to the design and implementation 

of the controller and second part is dedicated to data path implementation. The controller takes 

the input and generates the signals for the data path when to start and stop the execution of the 

algorithm, it controls the data reading and writing into the memory and the address generation to 

access the memory is also controlled by the controller. The register reset is also controlled by the 

controller. In short Controller is the mind of the implementation which thinks and decides what 

to do and when to do. The top level design for the implementation of byte systolic fully parallel 

architecture is shown in figure 4.1. 

 

Figure 4.1:  Top Level Design for the implementation of byte systolic AES architecture. 
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Let’s explain the data path and complete design of the controller. 

4.1 Data Path Byte Systolic Fully Parallel Architecture 

The figure 4.2 shows the RTL diagram of the byte systolic fully parallel architecture. The data 

path is consists of three main modules which are instantiated to implement the 10 rounds of the 

AES algorithm.  

 Module I 

 Module II 

 Module III 

 

Figure 4.2:  RTL diagram of byte systolic fully parallel AES architecture. 

 

4.1.1    Module I 

The module I implements the first round of algorithm for each upcoming frame. The module has 

the data and key memory of 16x8 size, 8-bit wide and 16–bit deep. The signals plain text, clk, 

reset, start, enable, key, index_sel, muxsel and out_text are the output signal of the module. All 

the input signals are generated by the controller according to frame number. 
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Firstly the data is written into the data memory and controller will generate the signals 

index_sel1 that controls the address of memory where to write the plain text. The address 

generation unit will generates the address for reading and writing into the memory by 

implementing the equation [6].The value of index changes after every round; values which are 

repeated after every four frames are 1, 5, 9 and13. So it is implemented by using the 4:1 MUX 

and different values of index are as input to the MUX. The 2 bit “index_sel” line is used to select 

the desired input, the index_sel is controlled by the Controller. Each stage has its own select line 

“index_sel” i.e. round1 has the index_sel1, round 2 has the index_sel2, round 3 has the 

index_sel3 and so on.        

                           

Figure 4.3: MUX for the selection of desired value of index 

The implementation of this MUX in verilog is given below: 

always @ (index_sel) 
begin 
if(index_sel==2'b00) 

out=4'd 1; 

else if(index_sel==2'b01) 

out=4'd 5; 

else if(index_sel==2'b10) 

out=4'd 9; 

 else if(index_sel==2'b11) 

out=4'd 13; 

2

1 5 9 13

Index_sel



47 BYTE SYSTOLIC FULLY PARALLEL ARCHITECTURE 
 

 

end 

The address of the memory is incremented by employing the equation [6], for writing and 

reading the data. The modulo 16 is implemented by having the register “addr” of 4-bit, so the 

result will remains in range 0 to 15. As the “addr” is the register so its value is update at every 

positive edge of the clock cycle. The Verilog code for writing the data into the memory is given 

below: 

always @ (posedge clk or negedge reset) 

begin 
if(!reset) 

addr<=0; 

else 

if (start) 

addr<=index; 

end 

//writing  TEXT into data reg and key into reg Rkey 

always @ (posedge clk or negedge reset) 

begin 
if(!reset) 

begin 
 for (i = 0; i < 16; i = i + 1) 
 begin 

 data[i] <= 0; 

end 
end 
 

else 
begin 
data[addr]<=input_text; 
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end 
end 

Step 1: Shift Row 

The first step of the proposed algorithm is to read the data in row shift directly from the memory 

the index value is selected by the controller according to the frame number. 

Step 2: Add Round Key 

In this step data is XOR with the key both the data and key is read in row shift order and same 

“addr” will generate the address for two memories. 

assign A_ARK= data[addr]^Rkey[addr]; 

Step 3: Byte Substitution 

The result from the step 2 is fed into the 16x16 lookup table S_BOX for the byte substitution. 

The S-BOX is saved into the memory of 256x8; 256-bits deep and 8-bit wide. The 8-bit input 

data to S-BOX for byte substitution results into 8-bit output data. The verilog code of the S-BOX 

is given below: 

initial 

begin 

S_BOX[0] = 8'h 63; 

S_BOX[1] = 8'h 7c; 

S_BOX[2] = 8'h 77; 

S_BOX[3] = 8'h 7b; 

S_BOX[4] = 8'h f2; 

S_BOX[5] = 8'h 6b; 
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S_BOX[251] = 8'h 0f; 

S_BOX[252] = 8'h b0; 

S_BOX[253] = 8'h 54; 

S_BOX[254] = 8'h bb; 

S_BOX[255] = 8'h 16; 

end 

Step 4: Mix Column 

After byte substitution result is fed into the mix column, where the input byte is multiplied by 

four constants 3, 1, 1 and 2 which are saved as a, b, c and d respectively. The multiplied result is 

XOR with the values in registers R0, R1, R2, and R3 and the final result is latched into the register 

in accordance with the number of cycle of mix column. The Verilog code of the mix column is 

given below: 

assign a= d ^ A_SB;                                                                       //by 3 (multipl by 2 and xor with its self 

assign b= A_SB;                                                                              //by 1 

assign c= A_SB;                                                                              //by 1 

assign d= A_SB[7]  ?  (A_SB<<1  ^  8'h1b ) : ( A_SB<<1 );         //multiplication by 2(right shift 1) 

assign m1=a^R3; 

assign m2=b^R2; 

assign m3=c^R1; 

assign m4=d^R0; 

always @ (posedge clk or negedge reset) 

begin 

if((!reset))// & (!enable)) 
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begin 

R0<=0; 

R1<=0; 

R2<=0; 

R3<=0;  

count<=0; 

end     

else if(count<4) 

begin 

R0<=m3; 

R1<=m2; 

R2<=m1; 

R3<=m4; 

count<=count+1; 

 end 

else 

begin 

R0<=0; 

R1<=0; 

R3<=0; 

R00<=m3; 

R11<=m2; 

R22<=m1; 

R33<=m4; 
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count<=1; 

 end 
end 

Step 5: Dispatching Of Result  

The last step of each stage is to dispatch the result of mix column to the next stage. The values 

saved in registers R00, R11, R22 and R33 have to be latched into the data memory of the next stage. 

This achieved by placing a 4:1 MUX with the select line “mux_sel” and the value of the 

“mux_sel” is selected by the controller. Similar to “index_sel” each stage has its own “mux_sel” 

line. 

                                    

Figure 4.4:  MUX for the latching the result of mix column to next stage 

Verilog code is given below: 

//mux for writing the byte in next block 

always @ (muxsel, R00, R11, R22, R33) 

begin 

if(muxsel==2'b00) 

out1<=R00;    

else if(muxsel==2'b01)    

out1<=R11;    

else if(muxsel==2'b10) 

Mux_sel
2

RRRR

R00R11R22R33
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out1<=R22;    

else if(muxsel==2'b11) 

out1<=R33; 

end 

4.1.2    Module II 

The module II is same as of module I the only change is of by-pass MUX, which is used to 

bypass the last value of each stage and directly sent to add round key operation of next stage. 

This bypass MUX is used to avoid pipeline stall.  

4.1.3    Module III 

 The module III has some changes; having the two key memories; mix column operation is 

replaced with a XOR operation. The result from the byte substitution is XOR with round key 10 

and giving the single byte of cipher text that is latched into the output register. 

4.2 Controller for the Byte Systolic Fully Parallel Architecture 

All the signals of data path are controlled by the controller. The controller will generate the signal for 

each frame in accordance of its round number. As all the rounds are executed in parallel this is achieved 

by cascading the all stages. This cascading of module is implemented in Verilog by instantiate the module 

I, module II and module III; output of the one module is deriving the input of the next module. The 

module I, II and III are instantiated in Verilog as given below and to implement round 3 to round9 mod2 

will be instantiated. 

mod1 round1(.input_text(plain_text), .out_text(out1), .clk(clk), .reset(reset), .index_sel(index_sel1), 

.muxsel(muxsel1), .key(cipher_key), .start(start) , .enable(enable1)); 

mod2 round2(.inputdata(out1), .out_text(out2), .clk(clk), .reset(reset2), .index_sel(index_sel2), 

.data_sel(dsel),.muxsel(muxsel2),key({R1[0],R1[1],R1[2],R1[3],R1[4],R1[5],R1[6],R1[7],R1[8],R1[9],R1[10],R1[1

1],R1[12],R1[13],R1[14],R1[15]}), .start(start2) , .enable(enable2)); 

mod3 final(.input_text(out9), .cipher_text(cipher_text), .clk(clk), .reset(reset10), .index_sel(index_sel10), 

.data_sel(dsel), .start(start10), .start_f(start_f)); 
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4.2.1   States of Controller: 

The controller is design in such a way that it divides 10 round of algorithm into 10 states. Each 

state generates the signals for the every upcoming frame according to its round number.  

Following are the states with their functionality: 

4.2.1.1   State S0 

The rod 0 signal is set when start signal is high and as rod is set then state S0 start executing. In 

this state only data of the first frame has to written into the data memory of the stage 1. So the 

following signals are set to write the data into the memory. 

Rod0 =1; 

Index_sel = “00”; 

 So Out=1; 

Start=1; 

When data writing is completed then rod 1 signal is set so state S1 can start.  

4.2.1.2   State S1 

In this state first frame starts the execution of its round 1, at the same time input data for the 

second frame have been written into the data memory of stage 1.the result of the round 1 of the 

frame 1 has to be written into the data memory of the stage 2. Following are the signals which 

are set to achieve this goal. 

Index_sel1=”01”; 

Index_sel2=”00”; 

Mux_sel1=”00” “01” “10” “11” 

On completion of round 1 of first frame rod 2 signal is set to activate the next state S2. 

4.2.1.3   State S2 

In this state first frame go for the execution of round 2 and second frame starts the execution of 

its round1.the input data for the third frame has been written into the data memory of the stage 1. 
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Start3=1; 

Index_sel1=”10”; 

Index_sel2=”01”; 

Index_sel3=”00”; 

Mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 

When state S2 is done then rod 3 is set high for the activation of S3. 

4.2.1.4   State S3 

As the rod 3 is set so state S3 starts its working. The first frame goes for the execution of round 

3, second frame starts executes the round 2 and third frame goes for the round1. 

Start4=1; 

Index_sel1=”11”; 

Index_sel2=”10”; 

Index_sel3=”01”; 

Index_sel4=”00”; 

Mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 

Mux_sel3=”00” “01” “10” “11” 

The signal rod 4 is set on completion of state S3. 

4.2.1.5   State S4 

In this state first frame start the execution of round 4, second frame goes for round 3, third frame 

for round 2, fourth frame for found 1 and fifth frame has to be written into the data memory of 

the stage 1 

Start5=1; 
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Index_sel1=”00”; 

Index_sel2=”11”; 

Index_sel3=”10”; 

Index_sel4=”01”; 

Index_sel5=”00”; 

Mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 

Mux_sel3=”00” “01” “10” “11” 

mux_sel4=”00” “01” “10” “11” 

The signal rod 5 is set on completion of state S4. 

4.2.1.6   State S5 

As rod 5 is set high state S5 starts its working. 1st frame starts the execution of round 5, 2nd 

frame goes for round 4, 3rd frame for round 3, 4th frame for round 2, 5th frame for round 1 and 

6th has to be written into the data memory of stage 1. 

Start6=1; 

Index_sel1=”01”; 

Index_sel2=”00”; 

Index_sel3=”01”; 

Index_sel4=”10”; 

Index_sel5=”01”; 

Index_sel6=”00”; 

Mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 
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Mux_sel3=”00” “01” “10” “11” 

mux_sel4=”00” “01” “10” “11” 

mux_sel5=”00” “01” “10” “11” 

The signal rod 6 is set on completion of state S5. 

4.2.1.7   State S6 

As rod 6 is set high state S6 starts its working. 1st frame starts the execution of round 6, 2nd 

frame goes for round 5, 3rd frame for round 4, 4th frame for round 3, 5th frame for round 2, 6th 

frame for round 1 and 7th has to be written into the data memory of stage 1. 

Start7=1; 

Index_sel1=”10”; 

Index_sel2=”01”; 

Index_sel3=”10”; 

Index_sel4=”11”; 

Index_sel5=”10”; 

Index_sel6=”01”; 

Index_sel7=”00”; 

mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 

Mux_sel3=”00” “01” “10” “11” 

mux_sel4=”00” “01” “10” “11” 

mux_sel5=”00” “01” “10” “11” 

mux_sel6=”00” “01” “10” “11” 

The signal rod 7 is set on completion of state S6. 
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4.2.1.8   State S7 

As rod 7 is set high state S7 starts its working. 1st frame starts the execution of round 7, 2nd 

frame goes for round 6, 3rd frame for round 5, 4
th

 frame for round 4, 5
th

 frame for round 3, 6
th

  

frame for round 2, 7
th

 for round 1and 8
th

 frame has to be written into the data memory of stage 1. 

Start8=1; 

Index_sel1=”11”; 

Index_sel2=”10”; 

Index_sel3=”11”; 

Index_sel4=”00”; 

Index_sel5=”11”; 

Index_sel6=”10”; 

Index_sel7=”01”; 

Index_sel8=”00”; 

mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 

Mux_sel3=”00” “01” “10” “11” 

mux_sel4=”00” “01” “10” “11” 

mux_sel5=”00” “01” “10” “11” 

mux_sel6=”00” “01” “10” “11” 

mux_sel7=”00” “01” “10” “11” 

mux_sel8=”00” “01” “10” “11” 

The signal rod 8 is set on completion of state S7. 
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4.2.1.9   State S8: 

As rod 8 is set high state S8 starts its working. 1st frame starts the execution of round 8, 2nd 

frame goes for round 7, 3rd frame for round 6, 4th frame for round 5, 5th frame for round 4, 6th 

frame for round 3, 7th for round 2, 8th  for round1and 9th  frame has to be written into the data 

memory of stage 1. 

Start9=1; 

Index_sel1=”00”; 

Index_sel2=”11”; 

Index_sel3=”00”; 

Index_sel4=”01”; 

Index_sel5=”11”; 

Index_sel6=”11”; 

Index_sel7=”10”; 

Index_sel8=”01”; 

Index_sel9=”00”; 

 mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 

Mux_sel3=”00” “01” “10” “11” 

mux_sel4=”00” “01” “10” “11” 

mux_sel5=”00” “01” “10” “11” 

mux_sel6=”00” “01” “10” “11” 

mux_sel7=”00” “01” “10” “11” 

mux_sel8=”00” “01” “10” “11” 
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mux_sel9=”00” “01” “10” “11” 

The signal rod 9 is set on completion of state S8. 

4.2.1.10   State S9 

As rod 9 is set high state S9 starts its working. 1st frame starts the execution of round 9, 2nd 

frame goes for round 8, 3rd frame for round 7, 4th frame for round 6, 5th frame for round 5, 6th 

frame for round 4, 7th for round 3, 8th  for round 2, 9th for round 1and 10th  frame has to be 

written into the data memory of stage 1. 

Start9=1; 

Index_sel1=”01”; 

Index_sel2=”01”; 

Index_sel3=”01”; 

Index_sel4=”10”; 

Index_sel5=”00”; 

Index_sel6=”00”; 

Index_sel7=”11”; 

Index_sel8=”10”; 

Index_sel9=”01”; 

Index_sel9=”00”; 

 mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 

Mux_sel3=”00” “01” “10” “11” 

mux_sel4=”00” “01” “10” “11” 

mux_sel5=”00” “01” “10” “11” 
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mux_sel6=”00” “01” “10” “11” 

mux_sel7=”00” “01” “10” “11” 

mux_sel8=”00” “01” “10” “11” 

mux_sel9=”00” “01” “10” “11” 

mux_sel9=”00” “01” “10” “11” 

The signal rod 10 is set on completion of state S9. 

4.2.1.11   State S10 

As rod 10 is set high state S10 starts its working. 1st frame starts the execution of round 10, 2nd 

frame goes for round 9, 3rd frame for round 8, 4th frame for round 7, 5th frame for round 6, 6th 

frame for round 5, 7th for round 4, 8th  for round 3, 9th for round 2and 10th  frame starts 

executing the round 1. 

Start10=1; 

Index_sel1=”10”; 

Index_sel2=”10”; 

Index_sel3=”10”; 

Index_sel4=”11”; 

Index_sel5=”01”; 

Index_sel6=”01”; 

Index_sel7=”00”; 

Index_sel8=”11”; 

Index_sel9=”10”; 

Index_sel9=”01”; 

Index_sel10=”00”; 
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The signals for dispatching the result of one round into the data memory of the next stage. 

 mux_sel1=”00” “01” “10” “11” 

Mux_sel2=”00” “01” “10” “11” 

Mux_sel3=”00” “01” “10” “11” 

mux_sel4=”00” “01” “10” “11” 

mux_sel5=”00” “01” “10” “11” 

mux_sel6=”00” “01” “10” “11” 

mux_sel7=”00” “01” “10” “11” 

mux_sel8=”00” “01” “10” “11” 

mux_sel9=”00” “01” “10” “11” 

mux_sel10=”00” “01” “10” “11” 
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CHAPTER 5: Results 
 

The Xilinx Project Navigator ISE 12.1I Suite is used for simulation, synthesizing and 

implementation (translate, map, place and route). All the modules are simulated and the result 

can be depicted in the form of wave forms. Different value of all the signals at different instant 

can be viewed easily; the section 5.1 shows the simulated results of the AES encryption. The 

chapter also includes the synthesis report and the comparison with other AES architectures. 

 

5.1 Simulation 

The built in simulator ISlim of Xilinx 12.1 is used for the simulations .Following are simulated 

wave forms of plaintext, round key, signals of address generation unit and the final cipher text. 

5.1.1 Plain text  

Following is wave form of input plain text. At every clock a byte of pain text is input into the 

system. 

 

 

Figure 5.1:  Plain wave form of input plain text  
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5.1.2 Round Key 

Each stage has its corresponding round key, key are saved in the memory is shown below: 

 
Figure 5.2:  Stage Round Key stored in memory 

5.1.3 Address Generation Unit 

All the 10 rounds are implemented in parallel for every upcoming frame. Index-sel is different 

for every incoming frame in accordance with its round number. Following are 10 wave forms of 

all the rounds with their index-sel values. 

 

Figure 5.3:  10 wave forms of all the rounds with their index-sel values 
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5.1.4 Cipher text 

Following is wave form of cipher text, at every clock cycle a byte of cipher text is coming out. 

 

Figure 5.4:  Waveform of cipher text 

5.3 Synthesis Report  

The device utilization and timing summary on a target device XC4VSX55 is given below: 
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5.4 Comparison of Hardware Utilization  

In this section a comparison of hardware utilization of the proposed design with other 

architectures. It is clear from the table 3 that proposed architecture utilizes the least hardware 

resources. 

 
 Author 

Devices Slices BRAM Throughput 
(MHz) 

Operating 
speed 

(MHz) 

Farhan 

et al 

[18] 

XC2V1000-

6 

337 2 53 110 

Frahan 

et al 

[16] 

XC2V1000-
6 

236 1 41.6 117 

Good et 

al  [19] 

XCV-100-4 119 3 0.71 90 

Good et 

al [15] 

XC2S15 174 2 2.3 70 

Our XC4vsx55 934 0 1600 200 

Table 3: Comparison of Results 

5.5 Performance Analysis  

The performance of proposed architecture and other AES designs are determined on the basis of 

throughput. The Figure 5.1 clearly depict the throughput of the Byte Systolic Fully Parallel 

Architecture is higher than the iterative AES algorithm. The comparison result shows that 

proposed design offers the best tradeoff between throughput and area.   
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Figure 5.5: Performance Analysis on the basis of Throughput. 
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CHAPTER 6: Conclusion and Future Work 

 

This chapter concludes the whole dissertation by summarizing the all research work done and 

presenting the results. In addition to this, it presents possible direction for the future work, which 

and expand the ideas presented by the dissertation. 

6.1 Summary of Research done 

There are number of architectures proposed in the literature, selection of a particular architecture 

depends upon throughput, area, power and data of the input. The intensively pipelined 

architecture has been used for achieving high throughput, on-the-fly key generation for avoiding 

the storage key memory, optimized Mixcolumn and efficient S-BOX implementations for the 

applications with area constrain. Recent research work for AES implementation has focused on 

compact AES architecture to target the applications in consumer electronics with low cost and 

low power. A number of AES architectures are proposed in the literature but few of them are 

mapped to an 8-bit data path. The focus of the research was to design an 8-bit architecture of AES 

encryption algorithm that works in a systolic manner with high throughput. 

The architecture Byte Systolic Fully Parallel Architecture works on byte in-place indexing, the 

design encrypts the 128-bit of plaintext using key of size of 128-bit. In this technique a byte (8-

bit) of plain text is input to the architecture and result in a byte of cipher text as an output in 

every clock cycles after an initial latency of 16x10 cycles. The 128-bit AES encryption algorithm 

is mapped to proposed architecture 8-bit Systolic Architecture. All the operations of the 

algorithm are modified according to the 8-bit design 

Pipelining was introduced to achieve high throughput, all the round are implemented in parallel 

by cascading the stages. Thus resulting architecture does not reuse the logic resources instead 

executes all the rounds in parallel, thus maximizing the data path size that leads to significantly 

increase the throughput and data rate. . Every stage has its own data and key memory only last 

stage has two key memories, the text which has to be encrypted is stored in data memory. In key 

memory corresponding key is stored in each stage which is expanded offline by key scheduling 

algorithm. For key size of 128-bit there are 10 rounds keys; for stage 1 cipher key; for stage 2  
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round key (R1);  for stage 3 round key (R2)  and so on but in stage 10 round keys R9 and R10 

are saved in key memory. The data is input in byte serial fashion to stage 1, execution of the 

round starts when the 16 bytes have been written into the data memory. As the round 1 for 1
st
 

frame is in process at the same time input for the second frame is written into the data memory of 

the stage 1 by applying in-place index addressing. 

The novelty of the proposed architecture is more pronounced around in-place indexing. By 

employing the in-place indexing data rate of the architecture increases with best utilization the 

memory. It is a scheme which writes the upcoming input at the location from where the value is 

used in the current cycle. The address generation unit will generate the address for reading and 

writing value from data and key memory. The same data memory of each stage is used for next 

coming frame thus reducing the hardware resources which results into reduction of area. The 

technique intelligently removes all the dependences by tracing a single byte and implements the 

fully parallel architecture that a single byte of plain text is input to the architecture and a single 

byte is output as cipher in every clock cycle after an initial latency of 16x10 cycles. The in-place 

indexing technique drastically increases the throughput and data rate of the architecture. 

6.2  Summary of Results 

The Xilinx Project Navigator ISE 12.1I Suite is used for simulation, synthesizing and 

implementation (translate, map, place and route). The device has been used as a target device. 

The proposed design utilizes the 934 slices 1% of total recourses, number of bounded I/O is 11 

out of 640 thus 1% utilization. Maximum frequency on which design can work is 203.705 Hz 

and clock period is 4.909ns. The comparison result shows that our design achieves highest 

throughput and data rate than previous 8-bit architecture. 

6.3  Achievement of Research Goals 

The proposed architecture fully accomplishes the desired objectives that is mapping of AES 

algorithm to byte systolic fully parallel architecture for high throughput and data rate. The 

proposed design is capable of giving out the single byte of cipher in every clock after initial 

latency of 10x16 cycles. The design works in lock step manner by employing the in-place 

indexing techniques. The technique intelligently removes all the dependences by tracing a single 
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byte. The same data memory of each stage has been used for next coming frame thus reducing 

the hardware resources which results into reduction of area. The proposed AES design for the 

encryption offers the data rate in the range 200MHz while utilizing the 934 slices and throughput 

is 1.6 GHz. The result of comparison shows that proposed design offer the best tradeoff between 

throughput and area. 

6.4  Contributions of the Research 

A number of AES architectures are proposed in the literature but few of them are mapped to an 

8-bit data path. The existing 8-bit AES architecture offers the compact design and best suited for 

the low area and power applications but the throughput of the 8-bit designs is very low. So the 

previous 8-bit designs only suited for embedded systems, mobile computing and smart cards. 

The proposed Byte Systolic Fully Parallel AES architecture offers the highest throughput with a 

small increase in area compared to other 8-bit designs. So the resulting architecture works for the 

systems which require the high throughput with low area. The proposed design is also of special 

interest of the application in which input changes at every clock cycle at faster rate. In addition to 

this the research conducted has several application areas, image processing, voice 

communication and multimedia transfer over internet.   

6.5 Future Work 

Future work, mapping of AES to 4-bit data path for more area optimization.  

The proposed design can be updated by optimizing the linear part of S-BOX, for the efficient 

memory utilization. So the modified architecture will be of interest for the application requires 

high speed and low power. 

 By using the fault tolerance technique with proposed design, the resulting design ensures 

integrity and reliability of the image with high data rate and throughput.  This technique targets 

the satellite applications; it can also be applicable for unnamed aerial vehicles and nuclear 

reactors. 

In order to enhance the algorithm for multi-object evolution techniques the proposed design can 
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be modified by using the Fuzzy set theory, as  fuzzy logic is a  powerful  tool  for  modeling  the 

uncertain system.
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