
 i

POSIX.1 conformance For Android Applications
By

Tayyaba Nafees

2011-NUST-MSPHD- CSE (E)-39

MS-11 (CSE)

Submitted to the Department of Computer Engineering in fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
In

SOFTWARE ENGINEERING

Thesis Supervisor

 Dr. Shoab Ahmed Khan

College of Electrical & Mechanical Engineering

National University of Sciences & Technology

2012

 ii

DECLARATION

I hereby declare that I have developed this thesis entirely on the basis of my

personal efforts under the guidance of my supervisor Dr. Shoab Ahmed

Khan. All the sources used in this thesis have been cited and the contents of

this thesis have not been plagiarized. No portion of the work presented in

this thesis has been submitted in support of any application for any other

degree of qualification to this or any other university or institute of learning.

TAYYABA NAFEES

 iii

Acknowledgement

This thesis would not have been conceived without the help of many, whom

I owe a great deal.

First and foremost is Allah Almighty, the Most Gracious and Most Merciful

who has given me the strength to read and write. Truly, we plan and he

plans, And Allah is the Best of All Planners.

I would like to record my sincere gratitude to my supervisor Prof. Dr.

Shoab Ahmad Khan, whose guidance, careful analysis and productive

comments were valuable. I am grateful that he allowed me to work with him

for this thesis.

I world like to thank my committee members Dr.Usman Qamar,Dr.

Mohammad Abbas,Dr.Farhan Riazfor providing me the guidance.

I thank my parents for their lots of prayers, for allowing me to follow my

ambitions for being patient with my endless years of study.

 iv

ABSTRACT

POSIX.1 conformance For Android Applications
Android operating system is designed for use in mobile computing by The Open Handset

Alliance. It runs the powerful applications and gives its users a choice to select their

applications and their carriers. At this time Android market has hundreds of thousands of

Android applications and these applications are restricted only to the mobiles. This

restriction is mainly because of portability and compatibility issues of Android operating

system. So need of employing these countless Android applications on any POISX

Desktop operating system without disturbing the internal structure of application is very

desirable. Besides that, it is also a developer's vital wish to double their revenue of the

Android market from 53.3% to 100% by grabbing the POISX Desktop user market as

well. Thus we need to resolve these standardization and portability concerns by using

POSIX standards (Portable Operating System Interface). The concepts of POSIX

conformance for Android applications provide full-scale portability services and Android

applications reusability for any POSIX desktop operating system. So Android

applications will become usable for all POISX desktop users in addition to mobile users.

This research theme introduces POSIX.1 Android thin layer model that simply provides

the POSIX conformance for Android applications. It is using the POSIX.1 APIs for

Android applications, which maintains the compatibility between the POISX Desktop

operating systems and Android applications. We have done prudent analysis of this

research work by implementation of the different applications in standard POSIX

environment and, have verified its results. The results of POSIX.1 model clearly showed

that it will boost up the Android applications market revenue up to 100% and is expected

to add real-time capability, standardization and reusability.

 v

Table of Contents

Acknowledgement .. iii
ABSTRACT .. iv
POSIX.1 conformance For Android Applications ... iv

List of Abbreviations .. ix
Chapter 1 ... 1
1. Introduction ... 1

4.1. The Problem statement ... 2
4.1.1. Android applications portability .. 3

4.1.2. Is Android POSIX COMPLAINCE? ... 3
4.1.3. Earliest Idea invention of POSIX conformance for Android 3

4.2. Contribution .. 4
4.2.1. Proposed ANDROID POSIX.1 Thin layer Model .. 4
4.2.2. Sparkling Improvements for Android applications .. 5

4.3. Motivation .. 6
4.3.1. Motivation for Android applications users ... 6
4.3.2. Motivation for Android developers .. 6
4.4. Principle of POSIX .. 7
8.1. Thesis structure .. 7
8.2. Publications ... 8

Chapter 2 ... 8
2. Related work .. 9
2.1. Literature review .. 9
2.1.1. The Android ... 9
2.1.1.1. Android Features ... 9
2.1.1.2. Android (operating system) ... 10
2.1.1.3. Android Architecture .. 11
2.1.1.4. The Android platform ... 12
2.1.1.5. Applications ... 14
2.1.1.6. Application Framework ... 14
2.1.1.7. Libraries .. 15
2.1.1.8. Android Runtime ... 16
2.1.1.9. Linux Kernel .. 16
2.1.1.10. Required tools .. 16
2.1.1.11. Market application restrictions .. 18
2.1.1.12. Download the Android SDK ... 19
2.1.1.13. Why Android? .. 19
2.1.1.13.1. Open .. 19
1.1.1.1.1. All applications are created equal .. 19
1.1.1.1.2. Breaking down application boundaries ... 20
1.1.1.1.3. Fast & easy application development ... 20

 vi

1.1.2. What POSIX Is .. 20
1.1.2.1. List of POSIX base standards. ... 22

1.2. Chapter summery ... 24
Chapter 3 .. 25
2. Proposed methodology .. 25
2.2. Problem statement .. 25
2.2.1. Android applications portability ... 26
2.2.2. Is Android POSIX COMPLAINCE? .. 27
2.2.3. Earliest Idea invention of POSIX conformance for Android 27
2.3. Proposed framework .. 27
2.3.1. ANDROID POSIX.1 Thin layer Model .. 27
2.1.2. Selection of POSIX.1 standard ... 32
2.1.3. Selection of binding language ... 32
2.1.4. Finding the POSIX Libraries ... 33

2.2. Chapter summary ... 34
Chapter 4 .. 35
3. Implementation of ANDROID POSIX.1 Thin layer Model 35
3.1. The POSIX Development Environment ... 35
3.2. List of Android applications used as sample .. 35
3.3. Android Application template for POSIX.1 .. 41
3.3.1. Used some core Portable functions .. 43
3.3.2. Opening and Closing Files functions .. 43

3.4. Sample examples code matching with Android Application template
for POSIX.1 ... 44
3.5. Tested Sample Examples ... 48
3.6. Chapter summary ... 56

Chapter 5 .. 58
4. Analysis and Results ... 58
4.1. Functioning Outside the Standards .. 58
4.2. Quantified Feasibility analysis .. 59
4.2.1. Resulting impact factor for Android developers .. 62

4.3. Chapter summary ... 63
Chapter 6 .. 64
5. Conclusion .. 64
5.1. Achievement .. 64
5.2. Limitations .. 65
5.3. Future work .. 65

References .. 68

 vii

List of Figures

Figure. 2.1 Dalvik VM [7] ... 11
Figure. 2.2 Android Architecture [8] .. 14
Figure. 2.3 Android Emulator [7] .. 18
Figure. 2.4 gccPOSIX compilers for test environment ... 21
Figure. 2.5 Xcode used as test IDE ... 21
Figure. 3.1 Proposed POSIX.1 thin layer model ... 28
Figure. 3.2 Application framework diagram .. 29
Figure. 3.3 gcc compiler information used for application testing ... 31
Figure. 4.1 Text File creations, opening and closing code of sample Android POSIX.1
application .. 44
Figure. 5.1 Example of portable application .. 59
Figure. 5.2 Worldwide Smartphone Sales to End User by Operating source: Gartner
(February 2013)[23] ... 60
Figure. 5.3 Android market share [21].. 60
Figure.5.4 POSIX.1 thin layer Model resulting impact factors .. 63
Figure. 6.1 proposed Android OS POSIX compliant model .. 66

 viii

List of Tables

Table 2.1: SDK list [12] __ 19
Table 2.2: POSIX Standards list ___ 23
Table 2.3: POSIX.1 functional commands [2] __ 23
Table 4.1: Development environment specifications ____________________________________ 35
Table 4.2: Hello application framework ___ 37
Table 4.3: Timer application framework __ 38
Table 4.4:File creator application framework ___ 39
Table 4.5: Multithreading application framework ______________________________________ 41
Table 4.6: Android POSIX.1 application template _______________________________________ 43
Table 4.7: matching of POSIX.1 compliant Android application with POSXI.1 template
 ___ 48
Table 4.8: Tested sample Android applications code and output comparison _________ 56
Table 5.1: Market share analysis for Android developers [6] ___________________________ 61
Table 5.2: Comparative analysis of applications development time and manpower for
Android developers __ 62

 ix

List of Abbreviations

POSIX Portable Operating System Interface

API Application Programming Interface

UI User interface

OS Operating system

pthreads POSIX thread

VM Virtual machine

AOSP Android Open Source Project

IDE Integrated development environment

AVD Android virtual device

SDK Software development kit

AOSP Android Open Source Project

 1

Chapter 1

1. Introduction

In these days Smartphone’s are becoming the vital need and very soon it will be used as

replacement of laptop and desktops. Mobile phone with built-in operating system is

called smart phone.A Smartphone gives additional advanced computing competence plus

connectivity than a simple phone.[1]. Presently, Android smart phones are becoming

extra stylish by giving functionalities that once anticipated from laptop as well as desktop

computing systems. [2] Using Google play Android smart phones are providing new and

unimaginable functionalities to users. Mobile computing is real time computing. But

mobile computing did not compete with Desktop OS because the Desktop users are still

large in number plus it becomes the necessary need of user thus Mobile OS companies

are still trying hard to make their space in the Desktop OS environment. Android is most

famous and open source mobile operating system. It covers nearly 60% of mobile market

but even Android OS (operating system) had the compatibility limitations. Therefore the

need of standardization and portability is very essential. Android applications have

multiple dependences so this limits the Android application utilization. One of the best

possible solutions for catering these limitations is POSIX.

POSIX is a worldwide standard with a precise explanation plus a set of declarations. It is

used for verifying compliance. A POSIX conformance application can easily shift from

machine to machine with a very high assurance of low maintenance plus accurate

operation. POSIX is the only way to go, when your desired software to run on the largest

achievable collection of hardware as well as operating systems. [3]

POSIX conformance for android Application is the basic aim of this research in, which

multiple Android applications are, used as sample input with the POSIX Application

Programming Interface (API) standards. The research agenda based on the POSIX.1 thin

layer model, which gives the POSIX conformance for Android applications. This

POSIX.1 thin layer model hierarchy is:

 2

1. Selection of POSIX standard for Android Applications (POSIX.1).

2. Need of POSIX.1 binding language.

3. Conversion of sample examples of Android in POSIX binding language and test it

4. Establishment of template for Android applications (POSIX thin layer model for

Android applications)

4.1. The Problem statement

Android is open source OS introduce by Google. Android is still developing. Now a days

it is becoming gradually more important to design software with an open system

architecture utilizing industry adopted standards. So development of open system is

dependent on these factors.

• Inefficient usage of manpower: Firstly, one developer deploys the whole system

from zero. As the size of the project increases there is always more need of

manpower.

• Portability problem: Secondly, software does not run in separate environment; it

must co-exist with the vast amount of commercially available software and can be

run on available OS.

• Maintainability problems: software application always required the multiple

alterations at different level of development and post development.

• Need of standardization: lastly the biggest problem facing in these days is

implementation of standards because portability and maintainability only fruitful

when software developer follows the standards.

But Android performance is not enough, In addition, performance-analyzing environment

has not been developed yet, and then its performance cannot be discussed well. Android

OS addresses multiples challenges of today’s software development process like

interoperability, portability and compatibility issues. The major question is here, is

Android application market is usable for all OS. Android applications standardization is

major dilemma for Android market. Android applications for all OS are core idea of this

research. But HOW is big question here. Thus Android applications need the openly

 3

published standard interfaces for competing these hybrids issues in Android OS. We are

applying the Android applications standardizations by using the POISX.POSIX is based

on UNIX, a well-established technology. POSIX defines a standard way for an

application to interface to the operating system. [4] POSIX, the Portable Operating

System Interface .The goal of POSIX is the source-code portability of applications: it

means transform an application from one operating system to another by simple

conversion. This Thin layer model of POSIX.1 provides the portability for Android

applications that can be run on any operating system.

4.1.1. Android applications portability

Android is conceded as the most popular mobile platform. Android user can use all the

Google apps. There are more than 600,000 apps and games available on Google Play

store. [5] But the sorrowful act is limitation of these 600,00 apps only for the Android

OS. All of this work need conformance for any operating system according to the users

and developers need. Because developers are also trying to employ Android in a range of

other embedded systems, which have usually depend on the benefits of true real-time

operating systems performance, boot-up time, real-time response, reliability, and no

unseen maintenance costs.

4.1.2. Is Android POSIX COMPLAINCE?

Android is considering a partial POSIX compliance. Limited POSIX threads (pthreads)

library is implemented in Android Bionic library. It provides built-in support for

pthreads, but implementation is very restricted. So Android applications conformance is

very inspiring, which never has done yet.

4.1.3. Earliest Idea invention of POSIX conformance for Android

Android used the non standard Bionic library which restricted the android applications to

only for android OS. So best into our knowledge this proposed model first time in the

 4

history trying to merge the mobile OS Android applications with desktop POSIX OS. All

this innovation has been done under the umbrella of POSIX.1 that means standardization

and consistency.

4.2. Contribution

4.2.1. Proposed ANDROID POSIX.1 Thin layer Model

POSIX, the Portable Operating System Interface. The goal of POSIX is the source-code

portability of applications: it means transform an application from one operating system

to another by simple conversion. This goal is unattainable since most applications,

especially the real-world ones, require more operating system support than you can find

in any particular standard. The above unfeasible objective is now achievable through

POSIX. POSIX is called useful.” Useful," here, means "an aid to portability," and this

brings us to the goal of POSIX: source-code portability of applications. The main

intention of this work is that it will provide portability for the Android real world

applications. Basically android is a Linux-based operating system designed primarily for

touch screen mobile devices such as Smartphone’s and tablet computers. But after the

development of this thin layer model of POSIX.1.Android applications will become

portable (POSIX compliance) and can be run on any operating system. This model

provides the benefit to users as well as Android developers by increasing the number of

users of android applications and reduces the developer time and cost because of

portability and equivalence.

 A

So

•

ANDROID A

Application

ource code c
to POSIX

Fig

4.2.2. Sp

Android

o PO

po

Application

n layer

conversion
.1 binding l

gure 1.1Pro

parkling Imp

application

OSIX .1 thi

ortability to d

with respec
language.

oposed And

provements

ns portabilit

in layer mo

different ope

LINUX, UN

UI layer

ct

droid POSI

for Android

ty

del is initia

erating syste

NIX, WINDO

X.1 thin lay

d application

ation point f

ems.

OWS/OS

yer model

ns

for Android

d application

5

ns

 6

• Android applications reusability

o POSIX .1 thin layer model provides the reusability of the Android

applications on multiple operating systems.

• Transformation

o POSIX .1 thin layer model is a standard way of transformation of

application from one operation system to another with damaging the

application internal structure.

• Extend the Android market usage

o POSIX .1 thin layer model gives the diversity to the Android application

market.

4.3. Motivation

ANDROID POSIX.1 Thin layer Model is immense development for users as well as

developers because now user can use any application from Android market without

concerning its mobile and desktop OS. Secondly developer needs to follow the POSIX.1

code template and its application available for mobile user plus desktop users.

4.3.1. Motivation for Android applications users

On Mobile World Congress Google ambassador said that Android growth rate is 250%,

including 850,000 Android devices turn on every day. [6] We talk about usage of the

Android applications user its same above. So measurement of enhancement in the

Android market users including the Desktop OS users are countless and become the blast

of user in the Android market.

4.3.2. Motivation for Android developers

At this point there are three basic motivational points for developer

• Increase numbers of Android application user

o Android user +desktop OS user=double numbers of user

 7

• Double the revenue of Android developer

o As the numbers of user double so no doubt the revenue double. Like

Android user are 3,000 apps per day and Desktop OS user 15,00 App per

day so total number of apps is 4,500 now multiple developer app cost.

• Reduce the manpower of developer

o Last but not least once the developer develop the app and it will be use

again and again obviously it is reducing the manpower of developer

4.4. Principle of POSIX

5. POSIX is contract, interface or working like bridge between an application and the

operating system. How to write applications programs or how to write operating

systems is not responsibility of the POSIX.

6. The standard is written in terms of Standard C. The standard does not require that an

implementation support Standard C. FORTRAN and ADA interfaces to POSIX be

being developed.

7. There was no intention to specify all aspects of an operating system. Only functions

used by ordinary applications are included. There are no system administration

functions.

8. The standard has been absolute implementation at the source code level. But it does

not give the 100% assurance that the object or binary code will run underneath a

distinctive conforming implementation environment. This concerns even to two equal

machines with the identical operating system.

8.1. Thesis structure

Chapter 1 This chapter provides the overview of the POSIX conformance for Android

applications proposed model. Also include the problem statement in which usage

of POSIX conformance for Android OS is briefly explains then contributions to

our work are briefly stated.

 8

Chapter 2 This chapter describes the lecture review about the Android and POISX.1.

Chapter 3 This chapter includes the proposed methodology in which selection of

appropriate POSIX standard for android and programming language for POSIX is

prepared.

Chapter 4 The chapter first basically implementing POSIX.1 Thin layer Model and then

looks into the Android Applications template for POSIX.1 and finally sample

example code conversion and matching it with Android Applications template for

POSIX.

Chapter 5 This chapter is concerned with analysis and results of the proposed model.

Chapter 6 This chapter presents the summery and conclusions.

8.2. Publications

• Research work of ANDROID POSIX.1 Thin layer Model are accepted in the

IOSR Journal of Computer Engineering (IOSR-JCE).

• We got another acceptance notification from the 2013 9th International

Conference on Natural Computation (ICNC 2013), to be held jointly with the

2013 10th International Conference on Fuzzy Systems and Knowledge Discovery

(FSKD 2013), from 23-25 July 2013 in Shenyang, China (impact factor 1.6).

• We also got acceptance notification from IEEE Technically Co-Sponsored

Science and Information Conference 2013, London UK.

Chapter 2

 9

2. Related work

2.1. Literature review

Basically Android is not POSIX compliant but some time it called partially POSIX

compliant so this work is very restraining in lecture. Till now there is no such thing

implemented for any MOBILE Operation System especially for Android. There are some

software’s like blue stack that provides the portability for Android applications but the

concept of standardization is not applied like POSIX there and secondly all these type of

software’s work like application file run and exit but not gives the compatibility with

underlying machine OS. May be it would be done in future for window mobile OS

because of Microsoft company has its own desktop OS although in that case there is

nothing for open source mobile OS. Hence there is no implementation related work. Now

this chapter explains the brief history of Android OS, application development

framework for Android and POSIX its standards and APIs. While the process of

margining this innovative ides is presenting in the next chapter of implementation.

2.1.1. The Android

Android is a software stack intended for mobile devices it comprises an operating system,

middleware and key functions. The Android SDK offers the tools in addition to APIs

essential to start developing applications lying on the Android platform via the Java

programming language. [7]

2.1.1.1. Android Features

Android has the following features

• Application framework facilitating reuse plus replacement of components

• Dalvik virtual machine optimized for mobile devices

• Integrated browser stand on the open source WebKit engine

 10

• Optimized graphics powered through a custom 2D graphics library; 3D graphics

based on the OpenGL ES 1.0 specification

• SQLite for Database

• Media sustain for common audio, video, also still image formats (MPEG4, H.264,

MP3, AAC)

• Telephony GSM (hardware dependent)

• GPS, Camera, and accelerometer (hardware dependent)

• Prosperous development environment as well as a device emulator, tools in favor of

debugging, memory along with performance profiling, furthermore a plug-in for the

Eclipse IDE. [7]

2.1.1.2. Android (operating system)

Google introduced the Android in the mobile devices. Google Inc. Purchased the early

developer of the software, Android Inc in 2005. Android's mobile operating system is

established at the Linux kernel. Google as well as other partners of the Open Handset

Alliance act as a team on Android's development plus release The Android Open Source

Project (AOSP) is tasked among the maintenance and additional growth of Android. [8].

Android virtual machine performance is greatly improved than the java virtual machine

in many perspectives similar to energy intake. [9]

The presentation of the Android circulation on 5 November 2007 was revealed among the

founding of the Open Handset Alliance, a grouping of 80 hardware, software, and

telecom companies dedicated to advancing open standards for mobile devices. [8]

All the Java applications running on top of a Java-based, object-oriented application

framework on top of Java interior libraries running on a Dalvik virtual machine

characterizing JIT compilation is part of Android. C written Libraries contain the surface

manager, Open Core media framework, Bionic libc, SQLite relational database

management system, WebKit layout engine, SGL graphics engine, SSL, with OpenGL

ES 2.0 3D graphics API. [8]

Linux

writte

signif

Virtu

instan

as sho

An A

a. A

All a

when

b. S

2.1.1.

x kernel is u

en the Andr

ficant to no

ual Machine

nce of the D

own below.

Android appl

Activities

applications w

n a user selec

ervices

3. Andro

used in Andr

roid applica

ote down tha

is an open

Dalvik VM, w

ication cons

with visible

cts an applic

id Architect

roid for com

ations, and v

at the VM i

n source tech

which in turn

Figure. 2

ists of one o

UI are exec

ation from th

ture

mpilation. Jav

virtual mach

is not a JVM

hnology. Al

n resides ins

.1 Dalvik V

or more of th

cuted with a

he home scr

va programm

hine (VM) r

M as may a

ll Android a

side a Linux-

VM [7]

he following

n activity. A

reen or appli

ming languag

run the app

assume, alth

application r

-kernel man

classificatio

An activity i

cation launc

1

ge is used fo

plications. It

hough Dalvi

run inside a

aged proces

ons:

s in progres

cher. [7]

1

or

t's

ik

an

s,

s,

 12

For long time running application services are used, like that a network monitor and up

date-checking application. [7]

c. Content providers

The content providers normally use a database server. A content provider's work is to

handle approach to persisted data, like an SQLite database. If application is so

straightforward, it is not essentially develop a content provider. But for building a

superior application or one that offers data available to multiple activities and

applications, hence accessing the data of data is responsibility of a content provider. [7]

d. Broadcast receivers

Data or respond to an event an Android application always initiated process, like that the

receipt of a text message.

AndroidManifest.xml in an Android application is used for implementation.

AndroidManifest.xml includes the essential configuration information to correctly install

it to the device. It contains the necessary class names plus types of events the application

is capable to process, in addition to the compulsory permissions the application wants to

run. Such declarative safety assists decrease the probability so as to a scoundrel

application can produce any harmful consequences on your device. [7]

2.1.1.4. The Android platform

Android invincible properties, it would be comfortable to mix up it with a desktop

operating system. On the foundation of the Linux kernel Android is a layered

environment. Android-layered environment gives the constant functionality the user

interface subsystem comprises:

• Windows

• Views

• Widgets for displaying common elements such as edit boxes, lists, and drop-down

lists

 13

Android possesses a strong array of connectivity opportunities like WiFi, wireless data

over a cellular connection and Bluetooth (for example, GPRS, EDGE, and 3G). The most

fashionable method in Android applications is to connect to Google Maps to show an

address exactly inside an application. Android software stack is also help for location-

based services (such as GPS) plus accelerometers, while all Android devices are not

ready with the necessary hardware. Implementation required the camera for support.

A built upon WebKit in Android provides an embeddable browser, the similar open

source browser engine enriching the iPhone's Mobile Safari browser.

Traditionally, graphics/media, and data storage methods are basic fields where mobile

applications are struggling. Built-in support for 2-D and 3-D graphics, including the

OpenGL library in Android addresses the graphics challenges. Secondly the famous open

source SQLite database is used for erased data-storage. [8]

The following diagram shows the major components of the Android operating system.

Each section is described in more detail below.

 14

Figure.2.2Android Architecture [8]

2.1.1.5. Applications

Android equipped with a collection of basic applications like an SMS program, calendar,

maps, browser, email client, contacts, and many more. Java programming language is

used for writing all these applications. [10]

2.1.1.6. Application Framework

Android gives developers the capability to construct tremendously rich plus inventive

applications by providing an open development platform.

 15

 It provides the countless free advantages like device hardware used, access location

information, run background services, set alarms, add notifications to the status bar, along

with much, much more to developer.

Developers have complete rights to the similar framework APIs used by the main

applications. The concept of the reusability is very beautifully implemented here by

application architecture. Like any application can broadcast its functionalities and those

functionalities can be used by any other application. Component replacement also used

same process. [10]

2.1.1.7. Libraries

Android comprises a collection of C/C++ libraries. These libraries are used by a variety

of Android system components. Android application frameworks are used for showing

these resources. Some of the core libraries are listed below:

• System C library – A standard C system library (libc) is implemented, which is

BSD-derived implementation of the standard C system library. This library

supports embedded Linux-based devices.

• Media Libraries - established on PacketVideo's OpenCORE; these libraries

support all the popular audio and video formats as well as static image files, plus

MPEG4, H.264, MP3, AAC, AMR, JPG, along with PNG.

• Surface Manager - manages approaches to the show subsystem as well as

flawlessly multipart 2D and also 3D graphic layers from several applications

• LibWebCore - a new web browser engine powers both the Android browser in

addition to an embeddable web view.

• SGL - the core 2D graphics engine

• FreeType - vector font rendering plusbitmap

 16

• SQLite - a influential as well as lightweight relational database engine accessible

to each applications [10]

2.1.1.8. Android Runtime

For developing the Android Applications developers needed the set of fundamental

functionality libraries. These core libraries very similar to the java programming core

libraries.

At the run time each Android application executes in one process. This process creates it

particular instance in the Dalvik virtual machine. This is the beauty of Dalvik virtual

machine that it can efficiently run multiple instances of the multiple applications. The

Dalvik VM converts the java files into .dex format. The .dex format file is using the only

footprint of memory in the device and gives the optimal result.

Linux kernel is responsible of the Dalvik VM, which gives the incredible functionality

like that threading plus low-level memory management. [10]

2.1.1.9. Linux Kernel

Linux 2.6 kernel is used in the Android. Linux kernel provides the fundamental services

like memory management, security, process management and network stack. Linux

kernel is interface or bridge between the software stack and hardware. [10]

2.1.1.10. Required tools

For developing the Android application Android SDK and the Eclipse IDE is used. For

developing the Android application developer can used any of the following operating

systems.

• Microsoft Windows

 17

• Mac OS X

• Linux

Eclipse IDE and the Android Developer Tools is standardized way to develop the

Android application. Java language is used for development of the application. Instead of

java VM Android used the Dalvik VM. Eclipse IDE is terrifically rich Java environment

that includes code suggestion hints, context-sensitive help and many more. After the

compilation of the Android code developer Toolkit attached the all required packages

The SDK is developer Toolkit that is unpacked into the mobile device of the user. The

SDK have the following features:

1. Android. Jar

All the important Android SDK classes to execute the any android application are

provided by the Android.jar.

2. Docs directory and Documention.html

All the information and helpful links for development of application are given into these

java documents. These java documents are available locally in the IDE and externally

from the web can access easily.

3. Samples directory

Multiple sample examples with source code are available in the sample directory. These

examples used multiple APIs and very helpful for the premature developer. Sample

directory is idea innovation spot for starting Android application development.

4. Tools directory

adb utility (Android Debug Bridge) is example of tool directory. Android also provides

the access of the command-line through command line tools.

5. Usb_driver

 18

For testing the developed Android application the developer needs to connect the IDE

with the mobile device. All the essential drivers like the G1 or the Android Dev 1

unlocked development phone for employ the connection between the device and

development environment is provided by usb_driver These files are only required for

developers using the Windows platform.

Android SDK port the Android applications on mobile or Emulator that used for testing

the applications .the below figure shows the Emulator. [8]

Figure.2.3Android Emulator [7]

2.1.1.11. Market application restrictions

Android OS is open source but applications in the Android market are not open source.

All the Android devices first of all accept the Google licensing agreement and then it

 19

allows for downloading the application from market. Still hardware dependencies exist

there. At this time more then 1.5 billions of Android application users are there. [11]

2.1.1.12. Download the Android SDK

Platform Package Size MD5 Checksum

Windows Android-sdk_r12-
windows.zip

36486190 bytes 8d6c104a34cd2577
c5506c55d981aebf

Installer_r12-
windows.exe (Rec
ommended)

36531492 bytes 367f0ed4ecd70aefc
290d1f7dcb578ab

Mac OS X (Intel) Android-sdk_r12-
mac_x86.zip

30231118 bytes 341544e4572b4b1
afab123ab817086e
7

Linux (i386) Android-sdk_r12-
linux_x86.tgz

30034243 bytes f8485275a8dee3d1
929936ed538ee99a

Table 2.1: SDK list [12]

2.1.1.13. Why Android?

2.1.1.13.1. Open

Android provides the enormous opportunities for developers to build the marvelous

applications with unbeatable qualities. The openness offers the developers to utilize the

all the benefits of mobile devices. Linux kernel is base of the Android. Besides that,

Dalvik VM supports them for fighting the challenges related to the memory utilization

and mobile hardware resource management. Injecting new technologies benefits into the

Android is only possible because of the open source OS. [13]

1.1.1.1.1. All applications are created equal

There is no difference between the 3rd party applications and Android core applications in

Android devices. It means Android gives the equality for all the applications regardless of

 20

its type. Any core application can be replace with 3rd party application depend on the user

need and demand. All the applications have equal rights in the Google market. [13]

1.1.1.1.2. Breaking down application boundaries

There are no boundaries for the developer in the Android IDE. Developer can develop

any application using any core or 3rd party libraries. Sample examples are Cloud

computing applications, SQlite using application. [13]

1.1.1.1.3. Fast & easy application development

Development of the application in the Android is quite easy and fast. It offers the

countless built-in tools and libraries for the developer. So developer can easily make the

Android applications with magnificent functionalities. [13]

1.1.2. What POSIX Is

Portable operating system interface is bridge between the two different environment

applications. After using the POISX you are basically connecting the very distinct

environment applications and make the impossible tack by help of it. POSIX basically

dependent on:

a. A Compilation System:A compiler, basically. Real live POSIX systems are supposed

to support a standard language. For this purpose the compiling language is C. for

getting the POSIX support in any application each system have a variety of way of

compiling code, for each occurrence. For instance, under LynxOS one invokes the

compiler (GNU C) with gcc -mposix1b, and under QNX the POSIX.4 facilities are

available by default. Using the compilation system in the approved fashion makes the

POSIX environment available to the program. [14]

b. H

p

es

w

n

in

Fi

Headers: A

articular sys

specially wh

with the inten

ot even be fi

n given exam

igure.2.4 gc

set of hea

stem. These

hen the user

ntion of runn

files in the tr

mple

Fig

ccPOSIX co

aders that d

are usually f

r are cross d

ning them o

raditional sen

gure.2.5Xc

ompilers fo

defines the

files in /usr/i

developing

n another, to

nse. [14] #in

ode used a

or test envi

POSIX inte

include, but

(building pr

otally differe

nclude <stdio

as test IDE

ironment

erface suppo

they could b

rograms on

ent machine

o.h> was use

2

orted on th

be elsewhere

one machin

e); they migh

ed header fil

1

he

e,

ne

ht

le

 22

c. Libraries: Libraries are pre-compiled, vendor-supplied objects that implement the

POSIX functionality for any one. The libraries are linked into the application when it

is built, or in the case of dynamically shared libraries, when user runs the program.

[14]

d. A Run‐Time System: Once user has built the program, the run-time, or operating

system, allows him/her to run the application. For most of you UNIX folks, the

runtime system is the same system under which built the application. You compile the

application and then you run it, just like that. However, it's important to realize that

you may compile your application in one place and run it in an entirely different

environment. Especially in the real-time world, it's common to build an application in

a user-friendly environment, such as SunOS on a SPARC or HP-UX on a Precision

machine—or even MS-DOS (everything's relative). [14]

1.1.2.1. List of POSIX base standards.

POSIX.1 System Interface (basic reference standard) a, b

POSIX.2 Shell and Utilities

POSIX.3 Methods for Testing Conformance to POSIX, a

POSIX.4 Real-time Extensions

POSIX.4a Threads Extensions

POSIX.4b Additional Real-time Extensions

POSIX.6 Security Extensions

POSIX.7 System Administration

POSIX.8 Transparent File Access

POSIX.12 Protocol Independent Network Interfaces

 23

POSIX.15 Batch Queuing Extensions

POSIX.17 Directory Services

Table 2.2: POSIX Standards list

POSIX.1 on the other hand, is not considered to be basic functionality that all systems

need in order to be useful (regardless of my personal opinion). Therefore, POSIX.1 is

structured as a set of well-defined options that a vendor can support, or not. The only

parts of POSIX.1 that aren't optional are some additions to the basic POSIX.1 signal

mechanism. POSIX.1 options.

 Option Name Functionality

_POSIX_PRIORITY_SCHEDULING Process scheduling control:
sched_setparam, sched getparam,
sched_setscheduler, sched_getscheduler,
sched_yield,
sched_get_priority_max,
sched_get_priority_min,
sched_rr_get_interval

_POSIX_TIMERS Clocks and timers: clock_settime,
clock_gettime, clockgetres,
timercreate, timer_delete, timer_settime,
timergettime,
timer_getoverrun, nanosleep

_POSIX_MAPPED_FILES Files mapped as memory: mmap, munmap,
ftruncate, msync (if and only
if _POSIX_SYNCHRONIZED_IO)

Table2.3: POSIX.1 functional commands [2]

a. Compile‐Time Checking: the checking of an operating system's POSIX support at

compile time, either from code in your application or in a totally separate

conformance-checking application that you run at the same time. A generic

 24

conformance checker is a useful program because it's not tied to a particular

application. Each optional piece of POSIX comes with a constant, which defines

its existence, and perhaps other symbols, which define its size and shape.

Existence is defined in <unistd.h>, and the numeric parameters (size and shape)

for each option are given in <limits.h>. [14]

1.2. Chapter summery

In this chapter we discussed the Android OS, its structure and Android applications basic

subparts. After that we gave the information about what is POSIX its basic components

and list POSIX standards. For implementing the POSIX conformance for Android

application understanding of POISX.1 and Android is compulsory.

 25

Chapter 3

2. Proposed methodology

POSIX is an international standard with an exact definition and a set of assertions, which

can be used to verify compliance. A conforming POSIX application can move from

system to system with a very high confidence of low maintenance and correct operation.

If you want software to run on the largest possible set of hardware and operating systems,

POSIX is the way to go. POSIX is based on UNIX System V and Berkeley UNIX, but it

is not itself an operating system. POSIX describes the contract between the application

and the operating system. POSIX does not say how to write applications programs or

how to write the operating system. Instead, POSIX defines the interface between

applications and their libraries. POSIX does not talk about ''system calls" or make any

distinction between the kernel and the user.

2.2. Problem statement

Android is open source OS introduce by Google. Android is still developing. Now a days

it is becoming gradually more important to design software with an open system

architecture utilizing industry adopted standards. So development of open system is

dependent on these factors.

• Inefficient usage of manpower: Firstly, one developer deploys the whole system

from zero. As the size of the project increases there is always more need of

manpower.

• Portability problem: Secondly, software does not run in separate environment; it

must co-exist with the vast amount of commercially available software and can be

run on available OS.

• Maintainability problems: software application always required the multiple

alterations at different level of development and post development.

 26

• Need of standardization: lastly the biggest problem facing in these days is

implementation of standards because portability and maintainability only fruitful

when software developer follows the standards.

But Android performance is not enough, In addition, performance-analyzing environment

has not been developed yet, and then its performance cannot be discussed well. Android

OS addresses multiples challenges of today’s software development process like

interoperability, portability and compatibility issues. The major question is here, is

Android application market is usable for all OS. Android applications standardization is

major dilemma for Android market. Android applications for all OS are core idea of this

research. But HOW is big question here. Thus Android applications need the openly

published standard interfaces for competing these hybrids issues in Android OS. We are

applying the Android applications standardizations by using the POISX.POSIX is

established on UNIX, a well-established technology. POSIX defines a standard way for

an application to interface to the operating system. [4] POSIX, the Portable Operating

System Interface .The goal of POSIX is the source-code portability of applications: it

means transform an application from one operating system to another by simple

conversion. This Thin layer model of POSIX.1 provides the portability for Android

applications that can be run on any operating system.

2.2.1. Android applications portability

Android is conceded as the most popular mobile platform. Android user can use all the

Google apps. There are more than 600,000 apps and games available on Google Play

store. [5] But the sorrowful act is limitation of these 600,00 apps only for the Android

OS. All of this work need conformance for any operating system according to the users

and developers need. Because developers are also trying to employ Android in a range of

other embedded systems, which have usually depend on the benefits of true real-time

operating systems performance, boot-up time, real-time response, reliability, and no

unseen maintenance costs.

 27

2.2.2. Is Android POSIX COMPLAINCE?

Android is considering a partial POSIX compliance. Limited POSIX threads (pthreads)

library is implemented in Android Bionic library. It provides built-in support for

pthreads, but implementation is very restricted. So Android applications conformance is

very inspiring, which never has done yet.

2.2.3. Earliest Idea invention of POSIX conformance for Android

Android used the non standard Bionic library which restricted the android applications to

only for android OS. So best into our knowledge this proposed model first time in the

history trying to merge the mobile OS Android applications with desktop POSIX OS. All

this innovation has been done under the umbrella of POSIX.1 that means standardization

and consistency.

2.3. Proposed framework

2.3.1. ANDROID POSIX.1 Thin layer Model

POSIX, the Portable Operating System Interface .The goal of POSIX is the source-code

portability of applications: it means transform an application from one operating system

to another by simple conversion. This goal is unattainable since most applications,

especially the real-world ones, require more operating system support than you can find

in any particular standard. The above unfeasible objective is now achievable through

POSIX. POSIX is called useful.” Useful," here, means "an aid to portability," and this

brings us to the goal of POSIX: source-code portability of applications. The main

intention of this work is that it will provide portability for the Android real world

applications. Basically android is a Linux-based operating system designed primarily for

touch screen mobile devices such as Smartphone’s and tablet computers. But after the

development of this thin layer model of POSIX.1.Android applications will become

portable (POSIX compliance) and can be run on any operating system. This model

provi

users

porta

 A

Sou

ides the bene

 of android

ability and eq

ANDROID A

Application

urce code co
to POSIX.1

efit to users

d applicatio

quivalence.

Application

n layer

onversion w
1 binding la

Figure.2.

as well as A

ns and redu

with respect
anguage.

1 Proposed

LINUX, UN

Android dev

uces the de

UI layer

d POSIX.1 t

IX, WINDO

velopers by

eveloper tim

 thin layer m

OWS/OS

increasing th

me and cost

 model

2

he number o

t because o

8

of

of

Norm

•

•

Becau

frame

are tw

The a

•

•

•

Fund

has a

platfo

frame

2.1.1.

mally android

Applicatio

UI layer

use of limita

ework enabl

wo main part

application l

All the es

Informati

All the ap

behavior o

damentally ap

access of al

orm. [16] A

ework of and

A

1. Androi

d application

on layer

ation of POS

les the reusa

t of this fram

Figure.2

ayer compri

ssential comp

on about the

pplication so

of the applic

pplication fr

l sub comp

ANDROID

droid applica

Applicat
layer

id applicatio

n has two pa

SIX.1 we de

ability and r

mework

2.2 Applica

sing:

ponents of th

e necessary f

urce code re

cation define

ramework is

onents of an

POSIX.1 T

ation and sen

Applic
Framw

tion
r

on

arts

eal only with

replacement

ation frame

he framewor

features of th

elated to func

e here.

s key to open

n applicatio

Thin layer

nd it to unde

cation
work

U
Inter

la

h application

of Android

ework diag

rk is define h

he device

ctionality of

n any Andro

on and offer

Model onl

er layer of co

User
rface(UI)
ayer

n framework

component

gram

here

f the applicat

oid applicati

rs the open

ly took the

ode conversi

)

2

k. Applicatio

ts [15]. Ther

tion and

ion because

developmen

e applicatio

ion.

9

on

re

it

nt

on

 30

2.1.1.2. POSIX binding language code conversion

Basically there is no standard tool available for conversion of code according to the

binding language. Secondly most of the binding language of POSIX is very extinct.

Porting an existing application to run on a new system requires two major steps. These

tasks can range from very easy to almost impossible. First, you have to transport the

program to the target computer. Second, you have to modify the program to run in the

new environment. The POSIX standard can help you in both steps. [17] There are

multiple binding languages of POSIX like IEEE POSIX.5 committee is defining the

ADA interface to POSIX and the IEEE POSIX.9 committee is defining the FORTRAN

interface to POSIX.POSIX.1 standard is written in terms of the C programming language.

POSIX supports two programming environments. One is based on the traditional

Clanguage. The other is based on the Standard C language defined by American National

Standard for Information Systems—Programming Language—C, X3.159-1989. Standard

C defines the C language in a more precise way and allows for more portability than

traditional C. The POSIX. 1 Standard Document is dedicated to POSIX. 1, which

produced an IEEE standard in 1988 and an international standard in 1990. The full legal

name is: IEEE Std. 1003.1-1990 Standard for Information Technology—Portable

Operating System Interface (POSIX)—PART 1. System Application Programming

Interface (API) [C Language]. Today, there are many Standard C compilers on the

market and most platforms support one or more of them. This research is implemented on

the gcc compiler. [14] Information about compiler is:

POSI

[18]

The P

the O

it’s

defin

the S

after

The _

any s

neede

This

Figure.2

IX is a supe

2.1.1.

POISX comp

OS its POISX

a POISX

nition tells yo

eptember, 1

that, and you

_POSIX_C_

symbols othe

ed symbols

is the basic r

2.3gcc com

erset of stand

3. Compi

pliant OS ch

X application

application.

our system t

993version

u don't care

_SOURCE d

er than those

because its

reason of mo

mpiler infor

dard C libra

ile‐time chec

heck the app

n so firstly at

 This sym

that you wa

of POSIX. Y

about anyth

definition sim

e defined by

not for othe

odularization

rmation use

ary.POSIX.1

cking

plication POS

t compile-tim

mbol is cal

ant the POSI

You don't ca

hingother tha

mply tell the

y POSIX or A

er all modu

n.

ed for appl

-2008 defer

SIX compati

me define th

lled #define

IX definition

are about PO

an POSIX.

compiler th

ANSI C. but

les of the p

lication tes

rs to the ISO

ibility or use

he symbols w

e_POSIX_SO

ns that were

OSIX work t

at you're not

t don’t worr

rogram that

3

sting

O C standard

er need to te

which classif

OURCE.Thi

e in effect fo

that happene

t interested i

ry about othe

t’s work fine

1

d.

ell

fy

is

or

ed

in

er

e.

 32

2.1.1.4. Run‐time checking

The run-time checking is totally different from compile-time checking. Basically here we

used the POISX APIs and header files like system header and local headers file.

2.1.1.5. Run the Android application on the POSIX compliant OS

After the language conversion now Android application is ready for running any POISX

compliant desktop OS.

2.1.2. Selection of POSIX.1 standard

In the large list of POISX standards selection of any one POISX standards is very

difficult but we select the POSIX.1 because it gives two type of conformance

conformance-conformance to POSIX.1, C Language Binding (C Standard Language-

Dependent System Support), or to POSIX. 1,C Language Binding (Common-Usage C

Language-Dependent System Support). An ISO/IEC Conforming POSIX.1 Application is

an application that uses only the facilities described in this standard and approved

Conforming Language bindings for any IS0 or IEC standard. [19]

2.1.3. Selection of binding language

Standard C language is used as the binding language for POSIX.1 but the questions are

here

• Standard Clanguage

• Difference between POSIX and Standard C Library

 33

2.1.3.1. Why Standard C language?

The Standard C libraries are important. POSIX supplies only one part of the

programming toolkit. We need the libraries provided as part of Standard C in order to

write interesting programs. It is not worth wasting brain cells remembering which tools

are in the Standard C box and which are in the POSIX box. It is better to remember our

tools by function. This is like sorting our tools into screwdrivers and wrenches instead of

Craftsman tools and Stanley tools.

2.1.3.2. Are there any Difference Between POSIX and Standard C Library?

POSIX contain a lot of things. For example, threads, semaphores, file system access API,

etc. there are very minimalist of operating system libraries in the Standard C library (i.e.,

ANSI/ ISO C) For example, standard C library have no such function, which handle the

multi threading .So, the implementation of the IPC inter process communication is

restricted. It means it has no ability to tackle with multi-processing operating system. But

we need the complete toolkit for implementation. POSIX is a superset of standard C

library. POSIX defines a library of functions for conforming programs to use. Many of

these functions are also defined in the Standard C library. Each function in the library

requires you to include at least one header. This is done with a statement like:

#include <stdio.h>

Many systems support multiple development environments. How do you get the POSIX

headers? You must define the symbol _POSIX_SOURCE before including any of the

standard headers. The best way to do this is to place the statement.

#Define _POSIX_SOURCE 1 at the start of each file.

2.1.4. Finding the POSIX Libraries

 34

The POSIX libraries are part of the standard system libraries. You can indicate that you

want all vendor extensions hidden from you by defining the symbol _POSIX_SOURCE

with the statement:

#Define _POSIX_SOURCE 1

According to the rules of Standard C, only those symbols that are in the base standard or

are enabled by a specific #define feature test are allowed to be visible. However, many

vendors require a special command to get the Standard C behavior. They include their

added value by default. By defining _POSIX_SOURCE you should protect yourself from

this added value. Every conforming POSIX system must provide a ''conformance

document" that describes its implementation.

2.2. Chapter summary

In this chapter we first defined the problem statement then proposed an Android POSIX.1

thin layer model to overcome the problem of portability and standardization of android

applications. Next we illustrated design and working of the Android POSIX.1 thin layer

model and description of this model sub components. At The end reason of selection of

the appropriate POISX.1 standard and selection of standard C language for the POISX.1

also discussed here.

 35

Chapter 4

3. Implementation of ANDROID POSIX.1 Thin layer Model

3.1. The POSIX Development Environment

POSIX provides portability at the source level. This means that you transport your source

program to the target machine, compile it with the Standard C compiler using conforming

headers, and link it with the standard libraries. The system vendor provides the compiler,

the libraries, and headers. Strictly speaking, these are all black boxes and you do not need

to know how they work. For POSIX .1 thin layer model implementation we used the

following specifications.

Specifications POSIX environment Android Environment

OS Macintosh Macintosh

IDE Xcode Eclipse INDIDGO

Language C Java

Complier gcc version 4.2.1 Java complier

Table 3.1: Development environment specifications

3.2. List of Android applications used as sample

For this model we start the implementation from very simple to the complex one like

multithreading [20].

• Hello world

• Timer

• Text file creator, save data on it and display the text on the terminal

• Multithreading example [20]

 36

The reasons of start test from very simple Android application to complex one Android

application are

• Is Android application will be POSIX compliant is a question itself. So we

implement the very first sample example in both environment then we move

forward that why it is part of our research work.

• The User interface means graphical user interface of POISX is not very

supportive for android applications

• There is no such engine or converter that convert the whole application layer of

android application.

• All the gcc complier is not POSIX and all the desktop OS are not POISX

compliant

• All the implement applications are very simple in Android environment but

POSIX APIs are limited in numbers. Even for hello example POSIX standard C

language have specified code.

• File creator and multithreading is very important example because it used very

frequent OS calls. The IEEE Std 1003.1b-1993(pp.103) also used these examples

for implementation.

Hello

o world Anndroid appl

Table

lication lay

e 3.2: Hello

yer POI
exam

#de
#in

int
* a
{

pri
Wor
ret
}

•

•

 application

SX conform
mple
efine _PO
nclude <s

t main(in
argv[])

ntf("%s"
rld!\n");
turn0;

• % s Writ
be a po
character
stream.

• Now it
language
also

n framewo

mance Hello

OSIXSOURC
stdio.h>

nt argc,

","Hello,

te the argum
ointer to a
r string) t

is fully p
e like Frenc

ork

3

o world

CE 1

 constcha

,

ment (assume
null-termina

to the ou

portable for
ch or Japan

7

ar

ed to
ated

utput

all
nese

Time

er Androidd applicatio

Table

on layer

 3.3: Timer

POI
exa

#de
#in
#in
mai
int
cha
{
str
tim

loc
pri
is:
cti
if
pri
tim
els
pri
exi
}

r applicatio

ISX conform
ample

efine _PO
nclude <s
nclude <t
in(argc,a
t argc;
ar **argv

ructtm *t
me_t time
 timer =
 tmptr =
caltime(&
intf("The
:\n%s",
ime(&time
 (tmptr -
intf("Day
me\n");
se
intf("Sta
it(0);

on framewo

mance Tim

OSIXSOURC
stdio.h>
time.h>
argv)

v;

tmptr;
er;
= time(NU
=
&timer);
e current

er));
->tm_isds
ylight sa

andard ti

ork

3

mer Android

CE 1

ULL);

t time

st)
avings

ime\n");

8

d

F

Mult

File creator

tithreading

r Android a

Table 3.4

g Android a

application

4:File creat

 application

 layer

tor applica

n layer

PO
cre

#d
_P
#i
in
FI
ch
in

fp
"w
pr
WR
FI
wh
!=
pu
fc
fp
"r

wh

pr
WR
FI

tion frame

POISX con
Multithre

OISX confor
eatorAndro

efine
OSIX_SOU
nclude<s
t main()
LE *fp;
ar ch;
t c;

=fopen("

w");
intf("\n

RITTEN TO
LE:");
ile((ch=
EOF)
tc(ch,fp
lose(fp)
=fopen("
");
 c = fg
ile (c!=
 {
 putch
 c = f

intf("\n
RITTEN TO
LE:"+c);
 }fclos

ework

nformance
eading Andr

3

rmance file
oid exampl

URCE 1
stdio.h>
{

data.txt

nTHIS DAT
O A

=getchar(

p);
;
data.txt

getc(fp)
= EOF)

ar(c);
fgetc(fp)
nTHIS DAT
O A

se(fp);}

roid examp

9

e
le

t",

TA

())

t",

;

;
TA

ple

#include
#include
#include
#include
#include
#include
#define
struct t
 int
 pthr
 int
structth
thread_d
void *Th
void Er
*str, .
void *
Thread(v
{
 stru
= (struc
 int

 prin
%d\n", p
 for
<1000000
 ;
 p->s
+ 1;
 prin
%d\n", p
return v
int
main(int
**argv)
{int e,
 pthr
 stru
*res;
if
(pthread
)
 Erro
nit");
for (n =
++n) {
 th
= n;
if (e =
pthread_
ta[n].ti

e <pthre
e <stdio
e <stdarg
e <errno
e <stdli
e <unist
 NTHREAD
thread_d
 my_id;
read_t ti
 status;}
hread_da
data[NTH
hread(vo
ror(cons
..);

void *v)

uctthread
ctthread_
 n;

ntf("sta
p->my_id
 (n = 0;
0000; ++

status =

ntf("end
p->my_id
v;}

t argc,

 n;
read_att
uctthread

d_attr_i

or("pthre

= 0; n <

read_data

_create(&
id, &att

4

ad.h>
.h>
g.h>
.h>
b.h>
d.h>
S 5
ata {

id;
};
ta
READS];
id *);
tchar

d_data *
_data *)

rt thread
);
 n
n)

 p->my_id

 thread
);

char

r_t attr
d_data

nit(&att

ead_attr_

NTHREADS

a[n].my_

&thread_
r, Threa

40

p
v;

d

d

;

r)

_i

;

id

da
d,

 41

(void *)&thread_data[n]))

 Error("pthread_create
%d", e);}
for (n = 0; n <NTHREADS;
++n) {if
(pthread_join(thread_data
[n].tid, (void **)&res))

 Error("pthread_join")
;
 printf("das war
thread %d, status %d\n",
 res-
>my_id, res-
>status);}return0;}
void
Error(constchar *str,
...)
{va_list ap;
 int e;
 e = errno;
va_start(ap, str);
vfprintf(stderr, str,
ap);
 va_end(ap);
fprintf(stderr, "\n");
 if (e) {
 errno = e;
 perror("system
error");
 fprintf(stderr,
"errno %d\n", errno);
 }exit(1);}

Table 3.5: Multithreading application framework

This step includes the conversion of the sample-tested example Android application

framework into POISX.1 template. Using the C library POISX threads. [29] This is point-

to-point conversion like headers of Android replace with according to standard C into

system header or local headers, variable into local variables etc.

3.3. Android Application template for POSIX.1

POSIX.1 template is not stringent. It would be change according to the Application or

need of the developer. But the #define _POSIX_SOURCE 1 is compulsory part of any

application. [20]

 42

Template Description

 /* Feature test switches */

#define _POSIX_SOURCE 1

define the _POSIX_SOURCE macro to enable the
POSIX symbols and disable all unspecified symbols.

/* System headers */

Each Standard C or POSIX function has one or more
headers that must be included to define the symbols
used by that function.

/* Local headers */

Most projects have at least one project header. These
define common data structures and symbols that are
used in many files.

/* Macros */

Define all of your macros here.

/* File scope variables */

These are variable that are shared by several functions
in the same file.

/* External variables */ This is the list of variables defined in other modules
and used in this module.

 /* External functions */

There should be a prototype for each user-written
external function that you use.

/* Structures and unions */

Define all of the structures that are used only in this
file. Any structure that is used in multiple files should
be in a local header file.

/* Signal catching functions
*/

Place signal catching functions in one place. Signals
are an unusual calling mechanism and often hard to
debug. Unless you point it out clearly in your source
code, it may not be obvious that something is a signal
catching function.

/* Functions */ Define functions here.

/* Main */ There is a main() function in this file

 43

Table 3.6: Android POSIX.1 application template

3.3.1. Used some core Portable functions

The fgetc(), getc() and getchar() Functions are very portable. For example in file creation,

deletion and read data from it .the application used these functions for reading data from

created file.

c = getc(fp) ;

while (c!= EOF)

{

putchar(c);

c = getc(fp);

The call fgetc(stream) returns the next character from stream. If stream is at end-of-file,

EOF is returned.The getc() function is the same as fgetc() except it may be implemented

as a macro. These functions are very portable. So through these portable functions we are

able to write a portable calls like for reading a data from text file

char *fgets(char *s, int n, FILE *stream);

3.3.2. Opening and Closing Files functions

The fopen() function is used to connect a file with a stream:

fp=fopen("data.txt","w");

• Create text file with name data and

• w Create new file for writing. If a file with this name already exists, its contents

are lost.

 44

Some systems make a distinction between text files and binary files. While there is no

such distinction in POSIX, a 'b' may be appended to the mode string to indicate binary.

The b does not do anything but may be useful for compatibility with non-POSIX systems.

If you are creating a binary file, include the b to make your program more portable. Most

systems that do not support the b option will just ignore it.

Upon success, the fopen() function returns a pointer to a file descriptor. This pointer is

used only as an argument to other functions. Do not attempt to manipulate the object it

points at. If the open fails, fopen() returns a null pointer.

When you are finished with a file, you should close it. The call fclose(stream) will

complete any pending processing, release system resources, and end access to the file. If

there are no errors, fclose() returns zero. It returns EOF if any errors are detected.

int main(){
FILE *fp;
char ch;
int c;
 fp=fopen("data.txt","w");
printf("\nTHIS DATA WRITTEN TO A FILE:");
while((ch=getchar())!=EOF)
putc(ch,fp);
fclose(fp);

Figure.3.1 Text File creations, opening and closing code of sample Android
POSIX.1 application

3.4. Sample examples code matching with Android Application template for
POSIX.1

Template Hello world Example
/* Feature test switches */
#define _POSIX_SOURCE 1

#define _POSIXSOURCE 1

/* System headers */

#include <stdio.h>

 45

/* Main */ int main(int argc, constchar *
argv[])
{

printf("%s","Hello, World!\n");
return0;}

Template Text file creator example

/* Feature test switches */
#define _POSIX_SOURCE 1

#define _POSIX_SOURCE 1

/* System headers */

#include<stdio.h>

/* Main */
/* Functions */

int main(){
 fp=fopen("data.txt","w");
printf("\nTHIS DATA WRITTEN TO A
FILE:");
while((ch=getchar())!=EOF)
putc(ch,fp);
fclose(fp);
 fp=fopen("data.txt","r");
 c = fgetc(fp) ;
while (c!= EOF)
 {
 putchar(c);
 c = fgetc(fp);
printf("\nTHIS DATA WRITTEN TO A
FILE:"+c);}
fclose(fp);}

/* File scope variables */ FILE *fp;
char ch;
int c;

 /* External functions */

fclose(fp);
putchar(c);
fopen("data.txt","r");

Template

Timer example

/* Feature test switches */
#define _POSIX_SOURCE 1

#define _POSIX SOURCE 1

/* System headers */

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

 46

/* Main */
 /* External functions */

main (argc,argv)
{
structtm *tmptr;
 timer = time(NULL);
 tmptr = localtime(&timer);
printf("The current time is:\n%s",
ctime(&timer));
if (tmptr ->tm_isdst)
printf("Daylight savings time\n");
else
printf("Standard time\n");
exit(EXIT_SUCCESS); }

/* File scope variables */

int argc;
 char **argv;

/* Structures and unions */

structtm *tmptr;
time_t timer;

Template

Multithreading example

/* Feature test switches */
#define _POSIX_SOURCE 1

#define _POSIX SOURCE 1

/* System headers */

#include <pthread.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#define NTHREADS 5

/* Structures and unions */

struct thread_data {
 int my_id;
 pthread_t tid;
 int status;
};
structthread_data
thread_data[NTHREADS];

void *Thread(void *);
void Error(constchar *str, ...);

void *
Thread(void *v)
{
 structthread_data *p =
(structthread_data *)v;
 int n;

 printf("start thread %d\n", p-
>my_id);

 47

 for (n = 0; n <1000000000; ++n)
 ;
 p->status = p->my_id + 1;
 printf("end thread %d\n", p-
>my_id);

 return v;
}

/* Main */
/* External variables */
 /* External functions */

int
main(int argc, char **argv)
{
 int e, n;
 pthread_attr_t attr;
 structthread_data *res;

 if (pthread_attr_init(&attr))
 Error("pthread_attr_init");

 for (n = 0; n <NTHREADS; ++n) {
 thread_data[n].my_id = n;
if (e =
pthread_create(&thread_data[n].tid,
&attr, Thread,

(void *)&thread_data[n]))
 Error("pthread_create
%d", e);
 }

 for (n = 0; n <NTHREADS; ++n) {
 if
(pthread_join(thread_data[n].tid,
(void **)&res))
 Error("pthread_join");
 printf("das war thread %d,
status %d\n",
 res->my_id, res-
>status);
 }return0;}

/* Signal catching functions */

void
Error(constchar *str, ...)
{
va_list ap;
 int e;
 e = errno;
va_start(ap, str);
vfprintf(stderr, str, ap);
 va_end(ap);
fprintf(stderr, "\n");
 if (e) {
 errno = e;
 perror("system error");
 fprintf(stderr, "errno %d\n",

 48

errno);}
exit(1);}

Table 3.7: matching of POSIX.1 compliant Android application with POSXI.1
template

3.5. Tested Sample Examples

The sample examples are running in two different environments. Before applying the

POSIX .1 thin layer model. These applications run in to the Eclipse INDIGO version with

Android virtual device (AVD) Intel Atom x86 with API level 10.

After Appling the POSIX .1 thin layer model these are tested in to Xcode with gcc

complier version is mention in previous Fig.9 at Macintosh OS. So results of the testing

applications are very adorable. Resultant applications are compatible and reusable.

Sample Example Applications Comparison Table

Text File creator POSIX Conformance
Android application

File creator Android application

#define _POSIX_SOURCE 1
#include<stdio.h>
int main(){
FILE *fp;
char ch;
int c;
 fp=fopen("data.txt","w");
printf("\nTHIS DATA WRITTEN TO A
FILE:");
while((ch=getchar())!=EOF)
putc(ch,fp);
fclose(fp);
//char *fgets(char *s, int n, FILE
*stream);

 fp=fopen("data.txt","r");
 c = fgetc(fp) ;
while (c!= EOF)
 {
 putchar(c);
 c = fgetc(fp);

package com.tayyaba;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;
public class FileActivity extends Activity
{private static final String TAG =
FileActivity.class.getName();

 49

printf("\nTHIS DATA WRITTEN TO A
FILE:"+c);
 }

fclose(fp);
}

 private static final String
FILENAME = "myFileTayyaba.txt";

 @Override
 public void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);}
 public void SaveText(View view){
 // EditText ET =
(EditText)findViewById(R.id.editText1);
 EditText ET =
(EditText)findViewById(R.id.editText1);
 String
textToSaveString =
ET.getText().toString()
 //String
textToSaveString = "Hello Android
tayyaba";
 writeToFile(textToSaveString);
 String
textFromFileString = readFromFile();
 if (
textToSaveString.equals(textFromFileStri
ng))
 Toast.makeText(getApplicationCo
ntext(), "both string are equal",
Toast.LENGTH_SHORT).show();
 else
 Toast.makeText(getApplicationCo
ntext(), "there is a problem",
Toast.LENGTH_SHORT).show();

 Toast.makeText(this,"Text Saved
!",Toast.LENGTH_LONG).show();}
 private void writeToFile(String
data) {
 try {
 OutputStreamWriter
outputStreamWriter = new
OutputStreamWriter(openFileOutput(FIL
ENAME, Context.MODE_PRIVATE));
 outputStreamWriter.write(data);
 Log.e(TAG, "File write : ");
 outputStreamWriter.close();}
 catch (IOException e) {
 Log.e(TAG, "File write failed: " +

 50

e.toString());} }
 private String readFromFile() {
 String ret = "";
 try {
 InputStream inputStream =
openFileInput(FILENAME);
 if (inputStream != null) {
 InputStreamReader
inputStreamReader = new
InputStreamReader(inputStream);
 BufferedReader bufferedReader =
new BufferedReader(inputStreamReader);
 String receiveString = "";
 StringBuilder stringBuilder = new
StringBuilder();

 while ((receiveString =
bufferedReader.readLine()) != null) {

 stringBuilder.append(receiveStrin
g);}inputStream.close();
 ret = stringBuilder.toString();
 TextView tv =
(TextView)findViewById(R.id.textView1
);
 tv.setText("text file data:"+ret);
 Log.e(TAG, "Can read file: " +
ret.toString());
}
}
 catch (FileNotFoundException e) {
 Log.e(TAG, "File not found: " +
e.toString());
 }
 catch (IOException e) {
 Log.e(TAG, "Can
not read file: " + e.toString());
}

return ret;
}
}

Output

St
An

tandard tim
ndroid App

me display PO
plication

OSIX Conf

formance

Standard t
Applicatio

time display
on

5

y Android

1

publicclass
Activity {
 /** Calle
created. */
 @Overri
publicvoid
savedInstan
super.onCr
 //setCo

 Calend
 System
is: "+c.getT
SimpleDate
SimpleDate
HH:mm:ss"
 String
df.format(c
 // Now
value in Te
 TextV
TextView(t
 txtVie
"+formatted

txtView.set
 txtVie
 setCon
 }}

s DateActivi

ed when the

ide
d onCreate(B
nceState) {
reate(savedI
ontentView(

dar c = Cale
m.out.println
Time());
eFormat df =
eFormat("EE
");

g formattedD
c.getTime())
we display f

extView
View txtView

this);
ew.setText("
dDate+" "+"

tGravity(Gra
ew.setTextSi
ntentView(tx

5

ity extends

activity is fi

Bundle

InstanceState
(R.layout.ma

ndar.getInst
n("The curre

= new
EE LLL dd

Date =
;
formattedDa

w = new

The current
"Standard tim

avity.CENTE
ize(20);
xtView);

2

irst

e);
ain);

tance();
ent time

ate

time is:
me");

ER);

Multi
Andro

#def
#inc
#inc
#inc
#inc
#inc
#inc

#def

stru

};

stru
thre

void
void

void
Thre
{

ithreading P
oid Applica

fine _POS
clude <pt
clude <st
clude <st
clude <er
clude <st
clude <un

fine NTHR

ct threa
int my_i
pthread_
int stat

ctthread
ead_data[

d *Thread
d Error(c

d *
ead(void

structth

POSIX Con
ation

SIX SOURC
thread.h>
tdio.h>
tdarg.h>
rrno.h>
tdlib.h>
nistd.h>

READS 5

ad_data {
d;
_t tid;
us;

d_data
[NTHREADS

d(void *)
constchar

*v)

read_dat

formance

CE 1
>

{

S];

);
r *str, .

ta *p =

OUTPUT

An

...);

pa
co

im
im
im
im
im
im
im
an
pu
ex

ne

ha

ex

T

ndroid Mul

ackage
om.tayyab

mport and
mport and
mport and
mport and
mport and
mportandr
mport
ndroid.wi
ublicclas
xtends Ac

 Text
// ou
 Hand

ewHandler
@Over
publi

andleMess
// ge

xtract da
 Bu

ltithreading

ba.multit

droid.os.
droid.os.
droid.os.
droid.app
droid.uti
roid.view

idget.Tex
ss MainAc
ctivity {
tView txt
ur handle
dler hand
r() {
rride
icvoid
sage(Mess
et the bu
ata by ke
undle b =

5

g application

threading

.Bundle;

.Handler;

.Message;
p.Activit
il.Log;
w.Menu;

xtView;
ctivity
{
t;
er
dler =

sage msg)
undle and
ey
=

3

n

g;

;
;
ty;

) {
d

 54

(structthread_data *)v;
 int n;

 printf("start thread %d\n",
p->my_id);
 for (n = 0; n <1000000000;
++n)
 ;
 p->status = p->my_id + 1;
 printf("end thread %d\n", p-
>my_id);

 return v;
}

int
main(int argc, char **argv)
{
 int e, n;
 pthread_attr_t attr;
 structthread_data *res;

 if
(pthread_attr_init(&attr))
 Error("pthread_attr_init");

 /*
 if ((e =
pthread_attr_setscope(&attr,
PTHREAD_SCOPE_SYSTEM)))

Error("pthread_attr_setscope
%d", e);
 */

 for (n = 0; n <NTHREADS;
++n) {
 thread_data[n].my_id = n;
if (e =
pthread_create(&thread_data[n].t
id, &attr, Thread,

(void *)&thread_data[n]))
 Error("pthread_create
%d", e);
 }

 for (n = 0; n <NTHREADS;
++n) {
 if
(pthread_join(thread_data[n].tid
, (void **)&res))
 Error("pthread_join");

msg.getData();
 String key =
b.getString("My Key");
 txt.setText(txt.getText()
+ "new " + key

+System.getProperty("line.sepa
rator"));
 }
 };

 /** Called when the
activity is first created. */
 @Override
 publicvoid
onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInsta
nceState);

setContentView(R.layout.main);
 txt = (TextView)
findViewById(R.id.txt);
 }

 @Override
 protectedvoid onStart() {
 super.onStart();
 super.onStop();
 // create a new thread
 booleanbackground = true;
 Thread background1 =
new Thread(new Runnable() {

 @Override
 publicvoid run() {
 for (int i = 0; i < 10;
i++) {
 try {
 Thread.sleep(1000);

Message msg = new Message();

Bundle b = new Bundle();

 b.putString("My Key", "My

 55

 printf("das war thread %d,
status %d\n",
 res->my_id, res-
>status);
 }

 return0;
}

void
Error(constchar *str, ...)
{
va_list ap;
 int e;

 e = errno;
va_start(ap, str);
vfprintf(stderr, str, ap);
 va_end(ap);
fprintf(stderr, "\n");
 if (e) {
 errno = e;
 perror("system error");
 fprintf(stderr, "errno
%d\n", errno);

}

exit(1);
}

thread#: " +
String.valueOf(i));
 msg.setData(b);

 handler.sendMessage(msg);
 }
catch (Exception e)
{
 Log.v("Error",
e.toString());
 }

}

 }

 });

background1.start();

background1.interrupt();

System.out.println("thread
kill");

}
}

Output

Tab

3

ble 3.8: Tes

.6. Chapter

sted sampl

summary

e Android

 applicationns code andd output co

5

omparison

6

 57

In this chapter we have briefly explained the actual implementation of ANDROID

POSIX.1 Thin layer Model. The information about the development environment is given

and all sample examples Android applications layers are explained there. After that

template is described for Android application for converting in to POISX. Then sample

examples code match with this template. At the end sample example code snippetsare

presented. Analysis and comparison of the sample examples code also explained.

 58

Chapter 5

4. Analysis and Results

Essentially we are trying to provide the standardization (through POSIX) and portability

of Android applications on multiple operating systems. Android Application developers

have the opportunity to establish a template that assists in producing code with consistent

format. Because a well-structured program is portable among the different programmers

who may maintain it. Placing program elements in a consistent order makes finding

things easier. [17] Consequently the concluded points of this experiment are:

• Portability

o POSIX .1 thin layer model is initiation point for Android application

portability to different operating systems.

• Reusability

o POSIX .1 thin layer model provides the reusability of the Android

applications on multiple operating systems.

• Standardization

o POSIX .1 thin layer model is a standard way of transformation of

application with damaging the application internal structure.

• Diversity

o POSIX .1 thin layer model gives the diversity to the Android application

market.

4.1. Functioning Outside the Standards

Most programs have only a few areas, which need to go outside of the standards. Keep

those area isolated to a few modules. Keep most of the code POSIX conforming. For

example, I have a File creation, deletion and read file data Android application, which

create file, read its data and delete it. The program's structure is shown in Figure 11.

 59

Figure.4.1Example of portable application

Modules in the Program Core do not have any knowledge of the user interface. If I need,

for Example, to get data from the user to write on file, I call fopen("data.txt","w"); .That

is one of the routines I wrote in the user interface module. On a system with a graphic

user interface, like Android there is text box for taking data from user and the system

with out graphic user interface there is a terminal used for taking the data from the user.

But the core functionality of the programs is same

Most of the program remains unchanged over several operating systems and user

interfaces. I can build a version for different operating systems and user interfaces by

changing that module.

4.2. Quantified Feasibility analysis

At this time Android covers the 53% of the Smartphone market share as shown in figure

in 12. [27]. But we turn into 100% by introducing POSIX.1 Thin layer Model. It provides

the viability for Android mobile users as well as developers. After implementation of this

POSIX.1 Thin layer Model the Android applications can run on any operating system so

the Android covers the 100% market, which means the revenue according to figure 12 it

would be double. The statistical result is given in the table.12. This model focuses on the

Android mobile users and Android developer through reusability and standardization

Core program

• fp=fopen("data.tx
t","w");

• fclose(fp);

OS Interface POSIX,

Macintosh

User Interface Terminal
 Macintosh

Figur
Gart

Nowa

an A

rapid

But q

The m

merg

of rev

re.4.2Worl
ner (Febru

adays Andro

Android mar

dly [21]. Lik

question is h

market of th

ge both these

vue however

Worldw

ldwide Sm
uary 2013)

oid develope

rket. [23] T

ke in figure.

ere Why are

Figur

he desktop O

e markets on

r also in the

23.60%

8.80% 1.8

wide Smart

martphone
[23]

ers because

The Android

1 Android m

e restricting A

re.4.3Andr

OS is very

nly for the A

form of man

53.10%

80%

tphone Sal

 Sales to E

of open sou

d applicatio

market grow

Android mar

roid marke

large as sho

Android the r

npower redu

es to End U

End User b

urce SDK an

ns market

wth is 861.5%

rket only to

et share [21

own in the b

result is very

uction which

Users by Op

An

iO

Re

M

 by Operat

nd API supp

revenue inc

%, which is

the Mobile O

1]

below table

y magnificen

shown in th

perating

ndroid

OS

esearch In Mo

Microsoft

6

ting source

port prioritiz

creasing ver

s tremendou

OS.

.12.but if w

nt in the form

he table.13.

otion

60

e:

ze

ry

s.

we

m

 61

POSIX
Compliant
operating
systems

Market
share of
desktop

Operating
system

Android
market
share

Total market share for
developers

Windows 7 44.55% 53.1% 97.65%

Windows XP

38.99% 53.1% 92.09%

Windows
Vista

5.17% 53.1% 58.27%

Mac OS X
10.8

2.61% 53.1% 55.71%

Windows 8 2.67% 53.1% 55.77%

Mac OS X
10.6

1.97% 53.1% 55.07%

Mac OS X
10.7

1.93% 53.1% 55.03%

Table 4.1: Market share analysis for Android developers [6]

The above table gives the brief assessment for developer after usage of Android POISX.1

thin layer model.It clearly shown that POISX Desktop OS users and mobile OS users

covered very impressive percentage of market and after combing these target markets the

revenue of the developer is twice.

Application
type

Application
development

manpower

Application
development

time

POSIX
application

development
time

POSIX
application

development
manpower

Entertainment

6-7 developers 30 days (min)

120 days (max)

3 developers 15 days (min)

60 days (max)

 62

Lifestyle 2-3 developers 20 days (min)

60 days (max)

1 developer 10 days (min)

30 days (max)

Productivity 10-11
developers

30 days (min)

120 days (max)

5-6 developers 15 days (min)

60 days (max)

Libraries &
Demo

10-11
developers

30 days (min)

120 days(max)

5-6 developers 15 days (min)

60 days (max)

Table 4.2: Comparative analysis of applications development time and
manpower for Android developers

Android POISX.1 thin layer model also provides the reusability concept for developer in

reducing the manpower since usage of the core functional modules. Theses core

functional modules use by developer again and again in multiples Android applications.

Secondly developer developed the application at once according to the POISX.1 template

and its will be available for the mobile OS user as well as for Desktop OS users. The

above table had shownextraordinarily results that the manpower would be half after

implementation of this model.

4.2.1. Resulting impact factor for Android developers

The feasibility study of the POSIX.1 thin layer Model clearly revealed a lot of benefits

for developers. The resultantinfluencing factors are shown in below figure 14

4

In thi

Thin

users

result

Figure

.3. Chapter

is chapter w

layer Mode

 and develop

ts are rough

e.4.4 POSIX

summary

we narrated t

l .we evalua

pers. The re

estimates, w

Redu
Manpo

Reduce t
develop

X.1 thin lay

the different

ated perform

sulting impa

which may b

A
dev
rem

St

uce
ower

time of
pment

yer Model r

t statistical a

m of this mod

act factors ar

e varies with

Android
velopers
uneratio

Resuability

tandardization

 resulting im

and dynami

del from diff

re shown in

h respect of u

on

POSIX Deskto
OS users

100% marke
share for
Android
developers

mpact facto

c factor of t

fferent point

the form of

usage.

op

et

s

6

ors

this POSIX.

of views lik

tables. Thes

63

.1

ke

se

 64

Chapter 6

5. Conclusion

Right now, Android is the most famous operating system out of the numerous Linux

supported mobile operating systems (e.g., Maemo) [22]. POSIX .1 thin layer model

assigns the Android applications to a wider marketplace without restricting to them with

only mobile computing. In this work, the main theme of research provides the portability

to the Android Application with POSIX.1 standard. In summary introducing this thin

layer POSIX.1 model expands the market for Android applications as well as adds real-

time capability and higher reusability. This meticulous work provides the new horizon for

developers in form of increasing revenue as well as reduces the manpower. Basically we

are trying to vanish the dependencies of Android applications by providing the standard

approach.

5.1. Achievement

This layer resolved compatibility challenges for Android applications .Now Android

application would be accessible for any Android mobile OS in addition to POISX

desktop OS.

Android applications for all POSIX Desktop OS. It means one Android application

market is serviceable for mobile OS user along with Desktop OS users.

According to the research point of view Android POISX.1 thin layer model award the

mobile computing new horizon of research. This research lead to solve the real time

mobile computing problem like portability, reusability and transformation, secondly it

increase the Android market revenue in addition to target market enrichment by adding

the POISX desktop users.

The one research paper related to this research is accepted in IOSR Journal of Computer

Engineering (IOSR-JCE).

 65

We got another acceptance notification from the 2013 9th International Conference on

Natural Computation (ICNC 2013), to be held jointly with the 2013 10th International

Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2013), from 23-25 July

2013 in Shenyang, China (impact factor 1.6).

5.2. Limitations

We have faced multiple limitations related to POSIX as well as related to theAndroid

applications.

• POSIX have a list of standards and some of these standards are not still verified

with IEEE. Secondly POISX bonding languages are very extinct so POISX

programming is very difficult tasks.

• With passing each day POSIX standards are modified very frequently. These

abrupt changes in standards becomes the developer life miserable.

• A lot of Android applications are GUI dependent and POISX .1 support very

limited GUI features so need of GUI functions in POISX .1.

• There is no standard tool or engine for langue conversion from java to standard C.

5.3. Future work

Till now there is only Application layer (code) implementation through this model but the

need of implementation of UI layer is very stimulating and tempting. Although XML

code conversion is very difficult and C library limitation for interface. [30] The Hardware

acceleration for Graphics subsystem is also in require for completing implementation.

Second option is related to making the Android OS POSIXcompliant. This is not an easy

task as there are a lot of limitations of Android hardware restriction, Android devices

variety plus DVM usage that caused the performance drawback [26] but the proposed

mode

obvio

of us

more

In thi

layer

langu

At th

The D

Java

the c

java t

el is one of b

ous but impl

sing C/C++

 attention. T

Figu

is model we

. This layer

uage .so DVM

he runtime D

Dalvik virtu

byte code to

ore libraries

to C/C++ do

best solution

ementation i

for code co

The very roug

ure. 5.1 pro

e are try to

r simply con

M consider i

Dalvik virtual

ual machine

o Dalvik byt

s are written

one here. Bu

n for all these

is not impos

nversion. [2

gh model is

oposed And

introduce a

nverts the a

it as java com

l machine an

is an interpr

e code. [24]

n in Java, thu

ut we are try

e limitations

ssible by exe

28] This is o

presented be

droid OS PO

new layer,

ll java APIs

mmand and

nd the Java c

reter for byt

Dalvik itsel

us interprete

to convert th

s. The small

ecuting the S

only the ide

elow figure.

OSIX compl

which calle

s into POIS

convert it in

core librarie

te code that

lf is compile

ed by Dalvik

he Android

size of usag

Standard C li

a but achiev

liant mode

ed the Java

SX APIs but

nto dex. Form

s are part of

has been co

ed to native c

k. It means c

OS POISX

6

ge hardware i

ibrary instea

vement need

l

POISX API

t still in jav

mat.

f the Android

onverted from

code wherea

conversion o

.One solutio

66

is

ad

ds

Is

va

d.

m

as

of

on

 67

is the POSIX package. This package provides access to the POSIX API from Java.

However essential question is that where put this POISX APIs library for Java?

As shown in above figure .15 we put the java POSIX APIs layer that Basically DVM do

the conversion of java applications to .dex format means conversion of java to C/C++ .so

DVM has not problem if there is any JAVA API so if we put the JAVA POSIX API [25]

layer which convert the all java simple APIs to POISX APIs but still in the java

language.So DVM very easily do it conversion because DVM consider it a java API.

 68

References

Chapter 1

[1] Google Android - An Open Handset Alliance Project, 2008.

http://code.google.com/android/

[2] Hassan Reza, and Narayana Mazumder, “A Secure Software Architecture for

Mobile Computing”, (2012 IEEE)

[3] Donald A. Lewine, “POSIX Programmer's Guide Writing Portable UNIX

Programs with the POSIX.1 Standard”, 1991,pp.31-36

[4] IEEE/ANSI Std 1003.1: Information Technology-- (POSIX®)--Part 1: System

Application: Program Interface (API) [C Language], includes (1003.1a, 1003.1b,

and 1003.1c). 1996.

[5] What is Android,

Http://www.android.com/about/. Accessed March 2013

[6] Market share report of Android,

Http://www.netmarketshare.com.Accessed March 2013

Chapter 2

[7] Introduction to Android development,

Http://www.ibm.com/developerworks/opensource/library/os-android-devel/.

Accessed March 2013

[8] Android operating system,

Http://en.wikipedia.org/wiki/Android_ (operating_system). Accessed December

 69

2012

[9] Kolin Paul, Tapas Kumar Kundu "Android on Mobile Devices: An Energy

Perspective," 10th IEEE International Conference on Computer and Information

Technology, 2010.

[10] Android, the world's most popular mobile platform,

Http://developer.android.com/about/index.html.Accessed December 2012

[11] Android market analysis,

Http://en.wikipedia.org/wiki/Android_Market.Accessed December 2012

[12] SDK for Android developers,

Http://developer.android.com/sdk/eclipse-adt.html.Accessed December 2012

[13] Introduction of Android,

Http://www.android.com/about/. Accessed December 2012

[14] Bill O. Gallmeister, “POSIX. 4: Programming for the Real World”, 1995.ppt.4,

19-20,22,23

Chapter 3

[15] App framework,

http://developer.android.com/about/versions/index.html. Accessed December

2012

[16] Kyosuke Nagata, Saneyasu Yamaguchi “An Android Application Launch

Analyzing System”, (2012,IEEE)

[17] Donald A. Lewine, “POSIX Programmer's Guide Writing Portable UNIX

Programs with the POSIX.1 Standard”, 1991,pp.16-17, 25

[18] POSIX. 1: ISO/IEC 9945-1:1990 IEEE Std. 1003.1-1990

 70

[19] IEEE Std 1003.1b-1993 (Formerly known as IEEE P1003.4) (Includes IEEE Std

1003.1-1990)

Chapter 4

[20] IEEE Portable Applications Standards Committee, P1003.13: Infonnaiion

Technology - Siandardized Applications Environment Profile - POSIX Real-time

Application Support (AEP) (Draft 5) (Feb 1992).

[21] Apple's rivals battle for iOS scraps as app market sales grow to $2.2 billion,

Http://appleinsider.com/articles/11/02/18/rim_nokia_and_googles_android_battle

_for_apples_ios_scraps_as_app_market_sales_grow_to_2_2_billion.html.Access

ed March 2012

[27] Android Market news,
Http://www.gartner.com/newsroom/id/2335616.Accessed March 2012

[29] Frank Mueller, “A library implementation of POSIX threads under UNIX”,
Proceedings of the USENIS Conference (Jan 1993) 29-41.

Chapter 5

[23] Chung-Shih, Yi-Kai, Chin-Yuen, Ying-Dian, and Gong-Da,”An Innovative ICT

Service Creation Approach based on IMS and Android Collaboration”.

(2009,IEEE)

Chapter 6

[22] E. Oliver, “A Survey of Platforms for Mobile Networks Research. Mobile

Computing and Communications Review”, December 2008, pp. 56-63.

[24] Namseung Lee, Sung-Soo Lim, “A Whole Layer Performance Analysis Method

 71

for Android Platforms”, (2011 IEEE).

[25] Java POSIX APIs,

Http://bmsi.com/java/posix/posix-1.2.2/doc/index.html.Accessed March 2012

[26] Leonid, Aubrey-Derrick, Hans-Gunther, Ahmet Camtepe and Sahin Albayrak,”

Developing and Benchmarking Native Linux Applications on Android,” Lecture

Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, Volume 7, pp 381-392, 2009.

[28] E. Cooper and R. Draves, “C threads”. TR CMU-CS-88- 154, Carnegie Melloii

University, Dept. of CS (1988).

[30] J. B. Fenwick, Jr., B. L. Kurtz, and J. Hollingsworth, “Teaching mobile

computing and developing software to support computer science education,” in

Proceedings of the 42nd ACM technical symposium on Computer science

education, ser. SIGCSE ’11. New York, NY, USA: ACM, 2011, pp. 589–594.

[Online]. Available: http://doi.acm.org/10.1145/1953163.1953327

 72

