POSIX.1 conformance For Android Applications

By
Tayyaba Nafees
2011-NUST-MSPHD- CSE (E)-39
MS-11 (CSE)

Submitted to the Department of Computer Engineering in fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
In
SOFTWARE ENGINEERING

Thesis Supervisor
Dr. Shoab Ahmed Khan

College of Electrical & Mechanical Engineering
National University of Sciences & Technology
2012

DECLARATION

| hereby declare that | have developed this thesis entirely on the basis of my
personal efforts under the guidance of my supervisor Dr. Shoab Ahmed
Khan. All the sources used in this thesis have been cited and the contents of
this thesis have not been plagiarized. No portion of the work presented in
this thesis has been submitted in support of any application for any other

degree of qualification to this or any other university or institute of learning.

TAYYABA NAFEES

ii

Acknowledgement

This thesis would not have been conceived without the help of many, whom

| owe a great deal.

First and foremost is Allah Almighty, the Most Gracious and Most Merciful
who has given me the strength to read and write. Truly, we plan and he
plans, And Allah is the Best of All Planners.

I would like to record my sincere gratitude to my supervisor Prof. Dr.
Shoab Ahmad Khan, whose guidance, careful analysis and productive
comments were valuable. | am grateful that he allowed me to work with him

for this thesis.

I world like to thank my committee members Dr.Usman Qamar,Dr.

Mohammad Abbas,Dr.Farhan Riazfor providing me the guidance.

| thank my parents for their lots of prayers, for allowing me to follow my

ambitions for being patient with my endless years of study.

iii

ABSTRACT

POSIX.1 conformance For Android Applications

Android operating system is designed for use in mobile computing by The Open Handset
Alliance. It runs the powerful applications and gives its users a choice to select their
applications and their carriers. At this time Android market has hundreds of thousands of
Android applications and these applications are restricted only to the mobiles. This
restriction is mainly because of portability and compatibility issues of Android operating
system. So need of employing these countless Android applications on any POISX
Desktop operating system without disturbing the internal structure of application is very
desirable. Besides that, it is also a developer’s vital wish to double their revenue of the
Android market from 53.3% to 100% by grabbing the POISX Desktop user market as
well. Thus we need to resolve these standardization and portability concerns by using
POSIX standards (Portable Operating System Interface). The concepts of POSIX
conformance for Android applications provide full-scale portability services and Android
applications reusability for any POSIX desktop operating system. So Android
applications will become usable for all POISX desktop users in addition to mobile users.

This research theme introduces POSIX.1 Android thin layer model that simply provides
the POSIX conformance for Android applications. It is using the POSIX.1 APIs for
Android applications, which maintains the compatibility between the POISX Desktop
operating systems and Android applications. We have done prudent analysis of this
research work by implementation of the different applications in standard POSIX
environment and, have verified its results. The results of POSIX.1 model clearly showed
that it will boost up the Android applications market revenue up to 100% and is expected

to add real-time capability, standardization and reusability.

iv

Table of Contents

ACKNOWIedgement........cciinmnmmimsmsisssssssssss s iil
2 Y 2 O iv
POSIX.1 conformance For Android Applications ... iv
List of ADbreviations ... ix
00 1B 01 1= o 1
B IR 10 a0 X0 L U 00) 1
4.1. The Problem StatemeNnt. . msmssasssssssssssass 2
4.1.1. Android applications portability ... 3
4.1.2. 1s Android POSIX COMPLAINCE? ..csmmmsss 3
4.1.3. Earliest Idea invention of POSIX conformance for Androidccccconeernneenn. 3

N ©F0] o1 1] o TU 11 o] o . 4
4.2.1. Proposed ANDROID POSIX.1 Thin layer Model.......ccrmmmenenensesenesnessesnees 4
4.2.2. Sparkling Improvements for Android applications........ccceomeeneereenreeseeseeneenns 5

R N V[0 L7 U] o 6
4.3.1. Motivation for Android appliCatioNS USEIS .ussssmsmsssssssssssssssssssssssssssssssnsnsnns 6
4.3.2. Motivation for AnNdroid deVEIOPErS ...smsmss 6
4.4, PrinCiple 0f POSIX ..sssnss 7
8.1, THESIS SLFUCTUIE weurururusssassssssssssssssssssssssssanass 7
8.2. PUDIICALIONS wiueeescsmssassssssssssssassssssssssssanass 8

08 1B) 010 8
AR L] B U T 00) o 9
2.1. Literature FeVICWcimmsmmssmsssasssses 9
/208 U S 1 4 =2V 4 T b) (PP 9
2.1.1.1. ANAroid FEATUTESccoiereeeereeeeereesseeeessesseseessssssessssssesssessssssssssessssssessssssssssssssssssssssanes 9
2.1.1.2. Android (Operating SYStEIM)couuereereerreesrseesresseessesseessesssesssessssssessesssesssssessees 10
2.1.1.3. ANdroid ATChItECTUTIE ...ttt ssssssaees 11
2.1.1.4. The Android PlatfOrIm ...t sssssesaees 12
2.1.1.5. ADPPLICAIONS ..ttt essesess s esesesses s st s sssasessnsans 14
2.1.1.6. Application FrameWOTrKesssssssssessesssesssssssesssssssssssssans 14
2.1.1.7. LIDTATIES ccorieureerresrereessereessesssesseessesssssessesssesssessssssessssssesssessesssessessssssssssssssessssssessssssesseees 15
2.1.1.8. Android RUNETIME.......coceeereecerseerereseessessessesssesssessesssessssssssssessssssessssssesssessesssees 16
2.1.1.9. LINUX KEINEL .ottt ssses s sanees 16
2.1.1.10. ReqUITed tOOIS...crerrrirriesesessessessssssssssessessssssssssssssssssssssssssssssssssssssessssssssssens 16
2.1.1.11. Market application resStriCtions.......e e essessssssesssesssssssesans 18
2.1.1.12. Download the Android SDKereeereeseeeesseeseeseesssssessesssessesssessnees 19
2.1.1.13. WhY ANATOIA7 ..cerrrerereireieesesesessessesssesses st st ssse s sssssssssssssssssesssssssssssns 19

200 00 5 70 R) =) o OO 19
1.1.1.1.1. All applications are created equal........urmenenrenrenenenseneneseeesesssensens 19
1.1.1.1.2. Breaking down application boundaries...........ouemeeneeesnsesseenns 20
1.1.1.1.3. Fast & easy application development.......cemenmeeneereenmeeseesesseesseessesseenns 20

1.1.2. What POSIX IS i ssnns 20

1.1.2.1. List of POSIX base standards........sssssssssssens 22
1.2. Chapter SUMMETIYccuummmsmmssmssssssssssssssssssssssssssassans 24
00 1 B2 1 01) 25
2. Proposed methodology....... s 25
2.2. Problem Statement ..o 25
2.2.1. Android applications portability.........—————— 26
2.2.2. Is Android POSIX COMPLAINCE?......ccucsssssmsssnss 27
2.2.3. Earliest Idea invention of POSIX conformance for Android..........ceuues. 27
2.3. Proposed framewWorK..... s 27
2.3.1. ANDROID POSIX.1 Thin layer MOdel........ccueereenmeemersseessesssseessesssessesssseenns 27
2.1.2. Selection of POSIX.1 standard........enensesensessesesssssesssssssssssssssssees 32
2.1.3. Selection of binding lanGUAGEc.couuerereereererneererseesseeees s ssesssessesssesasees 32
2.1.4. Finding the POSIX LiDTari€s.....ersnsessesssssesesessssssssssssssssssssessesssssssnns 33
2.2, Chapter SUNMIMATY ...cmmmmmsssasssssasass 34
08 4 1 01 1) o 35
3. Implementation of ANDROID POSIX.1 Thin layer Model..........ccocvrsnrnrurasansnns 35
3.1. The POSIX Development Environment........omme 35
3.2. List of Android applications used as sampleccucmrmnmsnsmsssmssssssessssssns 35
3.3. Android Application template for POSIX.1......cconmmnmsmnmsmsmsmsmsmsmssssssssssssnnss 41
3.3.1. Used some core Portable funCtions........ssssssssens 43
3.3.2. Opening and Closing Files fuNCtioNS.......cueenemenenesenesseesssesesssessssees 43

3.4. Sample examples code matching with Android Application template
100 gl 0 1]) 0 44
3.5. Tested Sample EXamPIes ... 48
3.6. Chapter SUMMATYccusmsssassssssssssssssssasss 56
08 1 B) 01 1) 58
4. Analysis and ReSUILS ... sssssssssses 58
4.1. Functioning Outside the Standards.........cccinmnn———— 58
4.2. Quantified Feasibility analysis ... 59
4.2.1. Resulting impact factor for Android developerseneeereeseesreennees 62
4.3. Chapter SUMMATY ...ccomsmsmsmsmsmsssnssns 63
L0 1 B2 1 01) 64
LT 00 4 U 1103 o) 4 64
LR TR Vol 1) 1)) 11 1= L 64
5.2, LimitationsS..icmsssnsssassssssssasseses 65
5.3. Future WorkKu... s 65
2 23 (=) 1 Lo 68

vi

List of Figures

FIGUuIe. 2.1 DAIVIK VM [7].coueeoeerrereseernerissessessssesssssssessansess 11
Figure. 2.2 ANAroid ArCRIEECTUI [8] ... creeereirissersssrissirisssesssisisssesisssssssesisssssssssssssessssssssssssasses 14
Figure. 2.3 ANAroid EMUIATOT [7] cooeueeeeeererereeeserisserseressesserissesassssssessassees 18
Figure. 2.4 gcc-POSIX compilers for teSt @NVIFONIMENLowrereernsrcsseessssissesssssissesssssassesssssssseses 21
Figure. 2.5 XCOA@ USEA QS LESE IDEc.cerreerseirissersssssssisisssesssssssssesissssssssssssssssassssssssssssssssssssasees 21
Figure. 3.1 Proposed POSIX.1 thin [QYer MOAElcereoverreersrerreerserseensersssesssssssesassesseses 28
Figure. 3.2 Application framework diQGTAMorossessssissssssssissssssssissssssssssssssssssssssssssssssses 29
Figure. 3.3 gcc compiler information used for application tesSting............oeensereseeens 31
Figure. 4.1 Text File creations, opening and closing code of sample Android POSIX.1

00 2] 1] Lol 1 10 1 N 44
Figure. 5.1 Example of portable APPlICATIONceeeeeverereerserreerserseensersssesssessssessssssssesassssssses 59
Figure. 5.2 Worldwide Smartphone Sales to End User by Operating source: Gartner

(FEDTUATY 2013)[23].eeeeeeeerseeeeireseeiseeriseessesassesssssassessssssssesssassssssssassssnes 60
Figure. 5.3 Android MArKet SNATE [21] eeeseeeeerreersseriseerserissessesissessssssssessssssssesssssssssssssssssses 60
Figure.5.4 POSIX.1 thin layer Model resulting impact fACCOTS........cowrumeerimmeersserismeerssersneens 63
Figure. 6.1 proposed Android OS POSIX compliant Model..............eoereroreesnerreersssrennenns 66

vii

List of Tables

Table 2.1: SDK list [12] 19
Table 2.2: POSIX Standards list, 23
Table 2.3: POSIX.1 functional commands [2] 23
Table 4.1: Development environment specifications 35
Table 4.2: Hello application framework 37
Table 4.3: Timer application framework 38
Table 4.4:File creator application framework 39
Table 4.5: Multithreading application framework 41
Table 4.6: Android POSIX.1 application template 43
Table 4.7: matching of POSIX.1 compliant Android application with POSXI.1 template
48
Table 4.8: Tested sample Android applications code and output comparison 56
Table 5.1: Market share analysis for Android developers [6] 61

Table 5.2: Comparative analysis of applications development time and manpower for
Android developers, 62

viil

List of Abbreviations

POSIX Portable Operating System Interface
API Application Programming Interface
Ul User interface

(OK] Operating system

pthreads POSIX thread

VM Virtual machine

AOSP Android Open Source Project

IDE Integrated development environment
AVD Android virtual device

SDK Software development kit

AOSP Android Open Source Project

ix

Chapter 1

1. Introduction

In these days Smartphone’s are becoming the vital need and very soon it will be used as
replacement of laptop and desktops. Mobile phone with built-in operating system is
called smart phone.A Smartphone gives additional advanced computing competence plus
connectivity than a simple phone.[1]. Presently, Android smart phones are becoming
extra stylish by giving functionalities that once anticipated from laptop as well as desktop
computing systems. [2] Using Google play Android smart phones are providing new and
unimaginable functionalities to users. Mobile computing is real time computing. But
mobile computing did not compete with Desktop OS because the Desktop users are still
large in number plus it becomes the necessary need of user thus Mobile OS companies
are still trying hard to make their space in the Desktop OS environment. Android is most
famous and open source mobile operating system. It covers nearly 60% of mobile market
but even Android OS (operating system) had the compatibility limitations. Therefore the
need of standardization and portability is very essential. Android applications have
multiple dependences so this limits the Android application utilization. One of the best

possible solutions for catering these limitations is POSIX.

POSIX is a worldwide standard with a precise explanation plus a set of declarations. It is
used for verifying compliance. A POSIX conformance application can easily shift from
machine to machine with a very high assurance of low maintenance plus accurate
operation. POSIX is the only way to go, when your desired software to run on the largest

achievable collection of hardware as well as operating systems. [3]

POSIX conformance for android Application is the basic aim of this research in, which
multiple Android applications are, used as sample input with the POSIX Application
Programming Interface (API) standards. The research agenda based on the POSIX.1 thin
layer model, which gives the POSIX conformance for Android applications. This

POSIX.1 thin layer model hierarchy is:

Selection of POSIX standard for Android Applications (POSIX.1).
Need of POSIX.1 binding language.

Conversion of sample examples of Android in POSIX binding language and test it

> w e

Establishment of template for Android applications (POSIX thin layer model for
Android applications)

4.1. The Problem statement

Android is open source OS introduce by Google. Android is still developing. Now a days
it is becoming gradually more important to design software with an open system
architecture utilizing industry adopted standards. So development of open system is

dependent on these factors.

e Inefficient usage of manpower: Firstly, one developer deploys the whole system
from zero. As the size of the project increases there is always more need of
manpower.

e Portability problem: Secondly, software does not run in separate environment; it
must co-exist with the vast amount of commercially available software and can be
run on available OS.

e Maintainability problems: software application always required the multiple
alterations at different level of development and post development.

e Need of standardization: lastly the biggest problem facing in these days is
implementation of standards because portability and maintainability only fruitful

when software developer follows the standards.

But Android performance is not enough, In addition, performance-analyzing environment
has not been developed yet, and then its performance cannot be discussed well. Android
OS addresses multiples challenges of today’s software development process like
interoperability, portability and compatibility issues. The major question is here, is
Android application market is usable for all OS. Android applications standardization is
major dilemma for Android market. Android applications for all OS are core idea of this

research. But HOW is big question here. Thus Android applications need the openly

published standard interfaces for competing these hybrids issues in Android OS. We are
applying the Android applications standardizations by using the POISX.POSIX is based
on UNIX, a well-established technology. POSIX defines a standard way for an
application to interface to the operating system. [4] POSIX, the Portable Operating
System Interface .The goal of POSIX is the source-code portability of applications: it
means transform an application from one operating system to another by simple
conversion. This Thin layer model of POSIX.1 provides the portability for Android

applications that can be run on any operating system.

4.1.1. Android applications portability

Android is conceded as the most popular mobile platform. Android user can use all the
Google apps. There are more than 600,000 apps and games available on Google Play
store. [5] But the sorrowful act is limitation of these 600,00 apps only for the Android
OS. All of this work need conformance for any operating system according to the users
and developers need. Because developers are also trying to employ Android in a range of
other embedded systems, which have usually depend on the benefits of true real-time
operating systems performance, boot-up time, real-time response, reliability, and no

unseen maintenance costs.

4.1.2. 1s Android POSIX COMPLAINCE?

Android is considering a partial POSIX compliance. Limited POSIX threads (pthreads)
library is implemented in Android Bionic library. It provides built-in support for
pthreads, but implementation is very restricted. So Android applications conformance is

very inspiring, which never has done yet.

4.1.3. Earliest Idea invention of POSIX conformance for Android

Android used the non standard Bionic library which restricted the android applications to
only for android OS. So best into our knowledge this proposed model first time in the

history trying to merge the mobile OS Android applications with desktop POSIX OS. All
this innovation has been done under the umbrella of POSIX.1 that means standardization

and consistency.
4.2. Contribution

4.2.1. Proposed ANDROID POSIX.1 Thin layer Model

POSIX, the Portable Operating System Interface. The goal of POSIX is the source-code
portability of applications: it means transform an application from one operating system
to another by simple conversion. This goal is unattainable since most applications,
especially the real-world ones, require more operating system support than you can find
in any particular standard. The above unfeasible objective is now achievable through
POSIX. POSIX is called useful.” Useful," here, means "an aid to portability," and this
brings us to the goal of POSIX: source-code portability of applications. The main
intention of this work is that it will provide portability for the Android real world
applications. Basically android is a Linux-based operating system designed primarily for
touch screen mobile devices such as Smartphone’s and tablet computers. But after the
development of this thin layer model of POSIX.1.Android applications will become
portable (POSIX compliance) and can be run on any operating system. This model
provides the benefit to users as well as Android developers by increasing the number of
users of android applications and reduces the developer time and cost because of
portability and equivalence.

ANDROID Application

Application layer Ul layer

Source code conversion with respect
to POSIX.1 binding language.

LINUX, UNIX, WINDOWS/0OS

Figure 1.1Proposed Android POSIX.1 thin layer model

4.2.2. Sparkling Improvements for Android applications

e Android applications portability
0 POSIX .1 thin layer model is initiation point for Android applications

portability to different operating systems.

e Android applications reusability
o POSIX .1 thin layer model provides the reusability of the Android
applications on multiple operating systems.
e Transformation
o POSIX .1 thin layer model is a standard way of transformation of
application from one operation system to another with damaging the
application internal structure.
e Extend the Android market usage
o POSIX .1 thin layer model gives the diversity to the Android application

market.

4.3. Motivation

ANDROID POSIX.1 Thin layer Model is immense development for users as well as
developers because now user can use any application from Android market without
concerning its mobile and desktop OS. Secondly developer needs to follow the POSIX.1

code template and its application available for mobile user plus desktop users.

4.3.1. Motivation for Android applications users

On Mobile World Congress Google ambassador said that Android growth rate is 250%,
including 850,000 Android devices turn on every day. [6] We talk about usage of the
Android applications user its same above. So measurement of enhancement in the
Android market users including the Desktop OS users are countless and become the blast
of user in the Android market.

4.3.2. Motivation for Android developers

At this point there are three basic motivational points for developer

e Increase numbers of Android application user

0 Android user +desktop OS user=double numbers of user

e Double the revenue of Android developer
0 As the numbers of user double so no doubt the revenue double. Like
Android user are 3,000 apps per day and Desktop OS user 15,00 App per
day so total number of apps is 4,500 now multiple developer app cost.
e Reduce the manpower of developer
o0 Last but not least once the developer develop the app and it will be use

again and again obviously it is reducing the manpower of developer

4.4. Principle of POSIX

POSIX is contract, interface or working like bridge between an application and the
operating system. How to write applications programs or how to write operating
systems is not responsibility of the POSIX.

. The standard is written in terms of Standard C. The standard does not require that an
implementation support Standard C. FORTRAN and ADA interfaces to POSIX be
being developed.

. There was no intention to specify all aspects of an operating system. Only functions
used by ordinary applications are included. There are no system administration
functions.

. The standard has been absolute implementation at the source code level. But it does
not give the 100% assurance that the object or binary code will run underneath a
distinctive conforming implementation environment. This concerns even to two equal

machines with the identical operating system.

8.1. Thesis structure

Chapter 1 This chapter provides the overview of the POSIX conformance for Android
applications proposed model. Also include the problem statement in which usage
of POSIX conformance for Android OS is briefly explains then contributions to

our work are briefly stated.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

This chapter describes the lecture review about the Android and POISX.1.

This chapter includes the proposed methodology in which selection of
appropriate POSIX standard for android and programming language for POSIX is
prepared.

The chapter first basically implementing POSIX.1 Thin layer Model and then
looks into the Android Applications template for POSIX.1 and finally sample
example code conversion and matching it with Android Applications template for
POSIX.

This chapter is concerned with analysis and results of the proposed model.

This chapter presents the summery and conclusions.

8.2. Publications

Research work of ANDROID POSIX.1 Thin layer Model are accepted in the
IOSR Journal of Computer Engineering (IOSR-JCE).

We got another acceptance notification from the 2013 9th International
Conference on Natural Computation (ICNC 2013), to be held jointly with the
2013 10th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD 2013), from 23-25 July 2013 in Shenyang, China (impact factor 1.6).

We also got acceptance notification from IEEE Technically Co-Sponsored
Science and Information Conference 2013, London UK.

Chapter 2

2. Related work

2.1. Literature review

Basically Android is not POSIX compliant but some time it called partially POSIX
compliant so this work is very restraining in lecture. Till now there is no such thing
implemented for any MOBILE Operation System especially for Android. There are some
software’s like blue stack that provides the portability for Android applications but the
concept of standardization is not applied like POSIX there and secondly all these type of
software’s work like application file run and exit but not gives the compatibility with
underlying machine OS. May be it would be done in future for window mobile OS
because of Microsoft company has its own desktop OS although in that case there is
nothing for open source mobile OS. Hence there is no implementation related work. Now
this chapter explains the brief history of Android OS, application development
framework for Android and POSIX its standards and APIs. While the process of

margining this innovative ides is presenting in the next chapter of implementation.

2.1.1. The Android

Android is a software stack intended for mobile devices it comprises an operating system,
middleware and key functions. The Android SDK offers the tools in addition to APIs
essential to start developing applications lying on the Android platform via the Java

programming language. [7]

2.1.1.1. Android Features

Android has the following features

e Application framework facilitating reuse plus replacement of components
e Dalvik virtual machine optimized for mobile devices

e Integrated browser stand on the open source WebKit engine

e Optimized graphics powered through a custom 2D graphics library; 3D graphics
based on the OpenGL ES 1.0 specification

e SQLite for Database

e Media sustain for common audio, video, also still image formats (MPEG4, H.264,
MP3, AAC)

e Telephony GSM (hardware dependent)

e GPS, Camera, and accelerometer (hardware dependent)

e Prosperous development environment as well as a device emulator, tools in favor of
debugging, memory along with performance profiling, furthermore a plug-in for the
Eclipse IDE. [7]

2.1.1.2. Android (operating system)

Google introduced the Android in the mobile devices. Google Inc. Purchased the early
developer of the software, Android Inc in 2005. Android's mobile operating system is
established at the Linux kernel. Google as well as other partners of the Open Handset
Alliance act as a team on Android's development plus release The Android Open Source

Project (AOSP) is tasked among the maintenance and additional growth of Android. [8].

Android virtual machine performance is greatly improved than the java virtual machine

in many perspectives similar to energy intake. [9]

The presentation of the Android circulation on 5 November 2007 was revealed among the
founding of the Open Handset Alliance, a grouping of 80 hardware, software, and
telecom companies dedicated to advancing open standards for mobile devices. [8]

All the Java applications running on top of a Java-based, object-oriented application
framework on top of Java interior libraries running on a Dalvik virtual machine
characterizing JIT compilation is part of Android. C written Libraries contain the surface
manager, Open Core media framework, Bionic libc, SQLite relational database
management system, WebKit layout engine, SGL graphics engine, SSL, with OpenGL
ES 2.0 3D graphics API. [8]

10

2.1.1.3. Android Architecture

Linux kernel is used in Android for compilation. Java programming language is used for
written the Android applications, and virtual machine (VM) run the applications. It's
significant to note down that the VM is not a JVM as may assume, although Dalvik
Virtual Machine is an open source technology. All Android application run inside an
instance of the Dalvik VM, which in turn resides inside a Linux-kernel managed process,

as shown below.

Lirmax et

Linus process

Dkt Ynus Maohine

Andrad appdatisn

Figure. 2.1 Dalvik VM [7]
An Android application consists of one or more of the following classifications:
a. Activities

All applications with visible Ul are executed with an activity. An activity is in progress,

when a user selects an application from the home screen or application launcher. [7]

b. Services

11

For long time running application services are used, like that a network monitor and up

date-checking application. [7]
c. Content providers

The content providers normally use a database server. A content provider's work is to
handle approach to persisted data, like an SQLite database. If application is so
straightforward, it is not essentially develop a content provider. But for building a
superior application or one that offers data available to multiple activities and

applications, hence accessing the data of data is responsibility of a content provider. [7]
d. Broadcast receivers

Data or respond to an event an Android application always initiated process, like that the

receipt of a text message.

AndroidManifest.xml in an Android application is used for implementation.
AndroidManifest.xml includes the essential configuration information to correctly install
it to the device. It contains the necessary class names plus types of events the application
is capable to process, in addition to the compulsory permissions the application wants to
run. Such declarative safety assists decrease the probability so as to a scoundrel
application can produce any harmful consequences on your device. [7]

2.1.1.4. The Android platform

Android invincible properties, it would be comfortable to mix up it with a desktop
operating system. On the foundation of the Linux kernel Android is a layered
environment. Android-layered environment gives the constant functionality the user

interface subsystem comprises:

e Windows
o Views
e Widgets for displaying common elements such as edit boxes, lists, and drop-down

lists

12

Android possesses a strong array of connectivity opportunities like WiFi, wireless data
over a cellular connection and Bluetooth (for example, GPRS, EDGE, and 3G). The most
fashionable method in Android applications is to connect to Google Maps to show an
address exactly inside an application. Android software stack is also help for location-
based services (such as GPS) plus accelerometers, while all Android devices are not

ready with the necessary hardware. Implementation required the camera for support.

A built upon WebKit in Android provides an embeddable browser, the similar open

source browser engine enriching the iPhone's Mobile Safari browser.

Traditionally, graphics/media, and data storage methods are basic fields where mobile
applications are struggling. Built-in support for 2-D and 3-D graphics, including the
OpenGL library in Android addresses the graphics challenges. Secondly the famous open

source SQL.ite database is used for erased data-storage. [8]

The following diagram shows the major components of the Android operating system.

Each section is described in more detail below.

13

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location Motification

i b Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media Core Libraries

Framework

OpenGL | ES FreeType Machine

sGL SS5L

LINUX KERNEL

Display

Flash Memory Binder (IPC)
Driver

Camera Driver k :
2 Driver Driver

WiFi Driver Audio Power

Keypad Driver Drivers Management

Figure.2.2Android Architecture [8]

2.1.1.5. Applications

Android equipped with a collection of basic applications like an SMS program, calendar,
maps, browser, email client, contacts, and many more. Java programming language is

used for writing all these applications. [10]

2.1.1.6. Application Framework

Android gives developers the capability to construct tremendously rich plus inventive

applications by providing an open development platform.

14

It provides the countless free advantages like device hardware used, access location
information, run background services, set alarms, add notifications to the status bar, along

with much, much more to developer.

Developers have complete rights to the similar framework APIs used by the main
applications. The concept of the reusability is very beautifully implemented here by
application architecture. Like any application can broadcast its functionalities and those
functionalities can be used by any other application. Component replacement also used
same process. [10]

2.1.1.7. Libraries

Android comprises a collection of C/C++ libraries. These libraries are used by a variety
of Android system components. Android application frameworks are used for showing
these resources. Some of the core libraries are listed below:

e System C library — A standard C system library (libc) is implemented, which is
BSD-derived implementation of the standard C system library. This library

supports embedded Linux-based devices.

e Media Libraries- established on PacketVideo's OpenCORE; these libraries
support all the popular audio and video formats as well as static image files, plus
MPEG4, H.264, MP3, AAC, AMR, JPG, along with PNG.

e Surface Manager - manages approaches to the show subsystem as well as
flawlessly multipart 2D and also 3D graphic layers from several applications

e LibWebCore - a new web browser engine powers both the Android browser in
addition to an embeddable web view.

e SGL - the core 2D graphics engine

o FreeType - vector font rendering plusbitmap

15

e SQLite - a influential as well as lightweight relational database engine accessible

to each applications [10]

2.1.1.8. Android Runtime

For developing the Android Applications developers needed the set of fundamental
functionality libraries. These core libraries very similar to the java programming core

libraries.

At the run time each Android application executes in one process. This process creates it
particular instance in the Dalvik virtual machine. This is the beauty of Dalvik virtual
machine that it can efficiently run multiple instances of the multiple applications. The
Dalvik VM converts the java files into .dex format. The .dex format file is using the only

footprint of memory in the device and gives the optimal result.

Linux kernel is responsible of the Dalvik VM, which gives the incredible functionality

like that threading plus low-level memory management. [10]

2.1.1.9. Linux Kernel

Linux 2.6 kernel is used in the Android. Linux kernel provides the fundamental services
like memory management, security, process management and network stack. Linux

kernel is interface or bridge between the software stack and hardware. [10]

2.1.1.10. Required tools

For developing the Android application Android SDK and the Eclipse IDE is used. For
developing the Android application developer can used any of the following operating

systems.

e Microsoft Windows

16

e MacOS X

e Linux

Eclipse IDE and the Android Developer Tools is standardized way to develop the
Android application. Java language is used for development of the application. Instead of
java VM Android used the Dalvik VM. Eclipse IDE is terrifically rich Java environment
that includes code suggestion hints, context-sensitive help and many more. After the
compilation of the Android code developer Toolkit attached the all required packages

The SDK is developer Toolkit that is unpacked into the mobile device of the user. The

SDK have the following features:
1. Android. Jar

All the important Android SDK classes to execute the any android application are
provided by the Android.jar.

2. Docs directory and Documention.html

All the information and helpful links for development of application are given into these
java documents. These java documents are available locally in the IDE and externally

from the web can access easily.
3. Samples directory

Multiple sample examples with source code are available in the sample directory. These
examples used multiple APIs and very helpful for the premature developer. Sample
directory is idea innovation spot for starting Android application development.

4. Tools directory

adb utility (Android Debug Bridge) is example of tool directory. Android also provides

the access of the command-line through command line tools.

5. Usb_driver

17

For testing the developed Android application the developer needs to connect the IDE
with the mobile device. All the essential drivers like the G1 or the Android Dev 1
unlocked development phone for employ the connection between the device and
development environment is provided by usb_driver These files are only required for

developers using the Windows platform.

Android SDK port the Android applications on mobile or Emulator that used for testing

the applications .the below figure shows the Emulator. [8]

Figure.2.3Android Emulator [7]

2.1.1.11. Market application restrictions

Android OS is open source but applications in the Android market are not open source.

All the Android devices first of all accept the Google licensing agreement and then it

18

allows for downloading the application from market. Still hardware dependencies exist
there. At this time more then 1.5 billions of Android application users are there. [11]

2.1.1.12. Download the Android SDK

Windows Android-sdk_r12- 36486190 bytes 8d6c104a34cd2577
windows.zip c5506¢55d981aebf
Installer_r12- 36531492 bytes 367f0ed4ecd70aefc
windows.exe (Rec 290d1f7dcb578ab
ommended)

Mac OS X (Intel) ~ Android-sdk r12- = 30231118 bytes 341544e4572b4b1
mac_x86.zip afab123ab817086e

7

Linux (i386) Android-sdk_r12- 30034243 bytes f8485275a8dee3d1

linux_x86.tgz 929936ed538ee99a

Table 2.1: SDK list [12]
2.1.1.13. Why Android?

2.1.1.13.1. Open

Android provides the enormous opportunities for developers to build the marvelous
applications with unbeatable qualities. The openness offers the developers to utilize the
all the benefits of mobile devices. Linux kernel is base of the Android. Besides that,
Dalvik VM supports them for fighting the challenges related to the memory utilization
and mobile hardware resource management. Injecting new technologies benefits into the

Android is only possible because of the open source OS. [13]

1.1.1.1.1. All applications are created equal

There is no difference between the 3" party applications and Android core applications in

Android devices. It means Android gives the equality for all the applications regardless of

19

its type. Any core application can be replace with 3" party application depend on the user
need and demand. All the applications have equal rights in the Google market. [13]

1.1.1.1.2. Breaking down application boundaries

There are no boundaries for the developer in the Android IDE. Developer can develop
any application using any core or 3™ party libraries. Sample examples are Cloud

computing applications, SQlite using application. [13]

1.1.1.1.3. Fast & easy application development

Development of the application in the Android is quite easy and fast. It offers the
countless built-in tools and libraries for the developer. So developer can easily make the

Android applications with magnificent functionalities. [13]

1.1.2. What POSIX Is

Portable operating system interface is bridge between the two different environment
applications. After using the POISX you are basically connecting the very distinct
environment applications and make the impossible tack by help of it. POSIX basically

dependent on:

a. A Compilation System:A compiler, basically. Real live POSIX systems are supposed
to support a standard language. For this purpose the compiling language is C. for
getting the POSIX support in any application each system have a variety of way of
compiling code, for each occurrence. For instance, under LynxOS one invokes the
compiler (GNU C) with gcc -mposix1b, and under QNX the POSIX.4 facilities are
available by default. Using the compilation system in the approved fashion makes the

POSIX environment available to the program. [14]

20

= ™

Target: ibBb-apple-darwinll

Configured with: Sprivate/var/tmp/llvmgccd2/ 1 1lvmgocd2-2336.11~67,
2 ——mandir=/share/man —-—-enable-languages=c,objc,c++,0bj—c++ ——pri
11 ——enable-llvm=/private/var/tmp/ 1 lvmgccd 2/ 1 lvmgoccd2-2336.11~67,
ple-darwinll ——with—-gxx-include-dir=/usr/include/c++/4.2.1
Thread model: posix

gcc version 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2:
TAYYABAs-MacBook-Pro:Desktop tayvabanafeess m

Figure.2.4 gcc-POSIX compilers for test environment

Headers: A set of headers that defines the POSIX interface supported on the
particular system. These are usually files in /usr/include, but they could be elsewhere,
especially when the user are cross developing (building programs on one machine
with the intention of running them on another, totally different machine); they might
not even be files in the traditional sense. [14] #include <stdio.h> was used header file

in given example

5 file—cre.xcodeproj — [¢] main.c
] g Build file-cre: Succeeded | Today at 11:10 AM
Breakpoints Ernject 1
H-HH | B | Dﬁle—cr\e > file—cre » |—£| main.c » Mo Selection
Finclude<=stdio.h>
int main{)
FILE =fTp;
char ch;
int cj;
fp=Ffopen{"data.txt","w');
printf{"“nTHIS DATA WRITTEWN TO A FILE:");
while{{ch=getchar{)) !=EOF)
putci{ch, fpl;
fclosed{fpl;
fp=Ffopen{"data.txt","r");
c = getc{fp) ;
while (c!= EOF)
4
putchari{c);
c = getc{fpl;
printf(\nTHIS DATA WRITTEN TO A FILE:"+c); . Format string is not a string lizaral (g
3
fclosel{fpl;:
+
=1 1] | k3 % | Mo Selection
Auto = L=} All Output > Clear

Figure.2.5Xcode used as test IDE

21

C. Libraries: Libraries are pre-compiled, vendor-supplied objects that implement the
POSIX functionality for any one. The libraries are linked into the application when it
is built, or in the case of dynamically shared libraries, when user runs the program.
[14]

d. A Run-Time System: Once user has built the program, the run-time, or operating
system, allows him/her to run the application. For most of you UNIX folks, the
runtime system is the same system under which built the application. You compile the
application and then you run it, just like that. However, it's important to realize that
you may compile your application in one place and run it in an entirely different
environment. Especially in the real-time world, it's common to build an application in
a user-friendly environment, such as SunOS on a SPARC or HP-UX on a Precision
machine—or even MS-DOS (everything's relative). [14]

1.1.2.1. List of POSIX base standards.

POSIX.2 Shell and Utilities

POSIX.4 Real-time Extensions

POSIX.4b Additional Real-time Extensions

POSIX.7 System Administration

POSIX.12 Protocol Independent Network Interfaces

22

POSIX.17 Directory Services

Table 2.2: POSIX Standards list

POSIX.1 on the other hand, is not considered to be basic functionality that all systems
need in order to be useful (regardless of my personal opinion). Therefore, POSIX.1 is
structured as a set of well-defined options that a vendor can support, or not. The only

parts of POSIX.1 that aren't optional are some additions to the basic POSIX.1 signal

mechanism. POSIX.1 options.

_POSIX_PRIORITY_SCHEDULING Process scheduling control:
sched_setparam, sched getparam,
sched_setscheduler, sched_getscheduler,
sched_yield,

sched_get_priority_max,
sched_get_priority_min,
sched_rr_get_interval

_POSIX_MAPPED_FILES Files mapped as memory: mmap, munmap,
ftruncate, msync (if and only
if _POSIX_SYNCHRONIZED_10)

Table2.3: POSIX.1 functional commands [2]

a. Compile-Time Checking: the checking of an operating system's POSIX support at
compile time, either from code in your application or in a totally separate

conformance-checking application that you run at the same time. A generic

23

conformance checker is a useful program because it's not tied to a particular
application. Each optional piece of POSIX comes with a constant, which defines
its existence, and perhaps other symbols, which define its size and shape.
Existence is defined in <unistd.h>, and the numeric parameters (size and shape)

for each option are given in <limits.h>. [14]

1.2. Chapter summery

In this chapter we discussed the Android OS, its structure and Android applications basic
subparts. After that we gave the information about what is POSIX its basic components
and list POSIX standards. For implementing the POSIX conformance for Android
application understanding of POISX.1 and Android is compulsory.

24

Chapter 3

2. Proposed methodology

POSIX is an international standard with an exact definition and a set of assertions, which
can be used to verify compliance. A conforming POSIX application can move from
system to system with a very high confidence of low maintenance and correct operation.
If you want software to run on the largest possible set of hardware and operating systems,
POSIX is the way to go. POSIX is based on UNIX System V and Berkeley UNIX, but it
is not itself an operating system. POSIX describes the contract between the application
and the operating system. POSIX does not say how to write applications programs or
how to write the operating system. Instead, POSIX defines the interface between
applications and their libraries. POSIX does not talk about "system calls" or make any
distinction between the kernel and the user.

2.2. Problem statement

Android is open source OS introduce by Google. Android is still developing. Now a days
it is becoming gradually more important to design software with an open system
architecture utilizing industry adopted standards. So development of open system is

dependent on these factors.

e Inefficient usage of manpower: Firstly, one developer deploys the whole system
from zero. As the size of the project increases there is always more need of
manpower.

e Portability problem: Secondly, software does not run in separate environment; it
must co-exist with the vast amount of commercially available software and can be
run on available OS.

e Maintainability problems: software application always required the multiple

alterations at different level of development and post development.

25

e Need of standardization: lastly the biggest problem facing in these days is
implementation of standards because portability and maintainability only fruitful

when software developer follows the standards.

But Android performance is not enough, In addition, performance-analyzing environment
has not been developed yet, and then its performance cannot be discussed well. Android
OS addresses multiples challenges of today’s software development process like
interoperability, portability and compatibility issues. The major question is here, is
Android application market is usable for all OS. Android applications standardization is
major dilemma for Android market. Android applications for all OS are core idea of this
research. But HOW is big question here. Thus Android applications need the openly
published standard interfaces for competing these hybrids issues in Android OS. We are
applying the Android applications standardizations by using the POISX.POSIX is
established on UNIX, a well-established technology. POSIX defines a standard way for
an application to interface to the operating system. [4] POSIX, the Portable Operating
System Interface .The goal of POSIX is the source-code portability of applications: it
means transform an application from one operating system to another by simple
conversion. This Thin layer model of POSIX.1 provides the portability for Android

applications that can be run on any operating system.

2.2.1. Android applications portability

Android is conceded as the most popular mobile platform. Android user can use all the
Google apps. There are more than 600,000 apps and games available on Google Play
store. [5] But the sorrowful act is limitation of these 600,00 apps only for the Android
OS. All of this work need conformance for any operating system according to the users
and developers need. Because developers are also trying to employ Android in a range of
other embedded systems, which have usually depend on the benefits of true real-time
operating systems performance, boot-up time, real-time response, reliability, and no

unseen maintenance costs.

26

2.2.2. Is Android POSIX COMPLAINCE?

Android is considering a partial POSIX compliance. Limited POSIX threads (pthreads)
library is implemented in Android Bionic library. It provides built-in support for
pthreads, but implementation is very restricted. So Android applications conformance is
very inspiring, which never has done yet.

2.2.3. Earliest Idea invention of POSIX conformance for Android

Android used the non standard Bionic library which restricted the android applications to
only for android OS. So best into our knowledge this proposed model first time in the
history trying to merge the mobile OS Android applications with desktop POSIX OS. All
this innovation has been done under the umbrella of POSIX.1 that means standardization

and consistency.
2.3. Proposed framework

2.3.1. ANDROID POSIX.1 Thin layer Model

POSIX, the Portable Operating System Interface .The goal of POSIX is the source-code
portability of applications: it means transform an application from one operating system
to another by simple conversion. This goal is unattainable since most applications,
especially the real-world ones, require more operating system support than you can find
in any particular standard. The above unfeasible objective is now achievable through
POSIX. POSIX is called useful.” Useful," here, means "an aid to portability," and this
brings us to the goal of POSIX: source-code portability of applications. The main
intention of this work is that it will provide portability for the Android real world
applications. Basically android is a Linux-based operating system designed primarily for
touch screen mobile devices such as Smartphone’s and tablet computers. But after the
development of this thin layer model of POSIX.1.Android applications will become

portable (POSIX compliance) and can be run on any operating system. This model

27

provides the benefit to users as well as Android developers by increasing the number of
users of android applications and reduces the developer time and cost because of

portability and equivalence.

ANDROID Application

Application layer Ul layer

Source code conversion with respect ||’
to POSIX.1 binding language.

LINUX, UNIX, WINDOWS/0S

Figure.2.1 Proposed POSIX.1 thin layer model

28

2.1.1.1. Android application

Normally android application has two parts

e Application layer

e Ul layer
Because of limitation of POSIX.1 we deal only with application framework. Application
framework enables the reusability and replacement of Android components [15]. There

are two main part of this framework

Application
Framwork

User
Interface(UI)
layer

Application
layer

Figure.2.2 Application framework diagram

The application layer comprising:

e All the essential components of the framework is define here
e Information about the necessary features of the device
e All the application source code related to functionality of the application and

behavior of the application define here.

Fundamentally application framework is key to open any Android application because it
has access of all sub components of an application and offers the open development
platform. [16] ANDROID POSIX.1 Thin layer Model only took the application

framework of android application and send it to under layer of code conversion.

29

2.1.1.2. POSIX binding language code conversion

Basically there is no standard tool available for conversion of code according to the
binding language. Secondly most of the binding language of POSIX is very extinct.
Porting an existing application to run on a new system requires two major steps. These
tasks can range from very easy to almost impossible. First, you have to transport the
program to the target computer. Second, you have to modify the program to run in the
new environment. The POSIX standard can help you in both steps. [17] There are
multiple binding languages of POSIX like IEEE POSIX.5 committee is defining the
ADA interface to POSIX and the IEEE POSIX.9 committee is defining the FORTRAN
interface to POSIX.POSIX.1 standard is written in terms of the C programming language.
POSIX supports two programming environments. One is based on the traditional
Clanguage. The other is based on the Standard C language defined by American National
Standard for Information Systems—Programming Language—C, X3.159-1989. Standard
C defines the C language in a more precise way and allows for more portability than
traditional C. The POSIX. 1 Standard Document is dedicated to POSIX. 1, which
produced an IEEE standard in 1988 and an international standard in 1990. The full legal
name is: IEEE Std. 1003.1-1990 Standard for Information Technology—Portable
Operating System Interface (POSIX)—PART 1. System Application Programming
Interface (API) [C Language]. Today, there are many Standard C compilers on the
market and most platforms support one or more of them. This research is implemented on

the gcc compiler. [14] Information about compiler is:

30

Developer/usr/llvm-gcc-4.2 --mandir=/share/man --enable-
languages=c,objc,c++,0bj-c++ --program-prefix=llvm- --
program-transform-name=/~[cg][*.-]1*S/s/S/-4.2/ —with-

slibdir=/usr/lib --build=i686-apple-darwinll --enable-llvm=/
private/var/tmp/llvmgcc42/livmgcc42-2336.11~67/dst-
llvmCore/Developer/usr/local --program-prefix=i686-apple-
darwinll- --host=x86_64-apple-darwinll --target=i686-
apple-darwinll --with-gxx-include-dir=/usr/include/c++/
4.2.1Thread model: posixgcc version 4.2.1 (Based on Apple
Inc. build 5658) (LLVM build 2336.11.00)

Figure.2.3gcc compiler information used for application testing

POSIX is a superset of standard C library.POSIX.1-2008 defers to the ISO C standard.
[18]

2.1.1.3. Compile-time checking

The POISX compliant OS check the application POSIX compatibility or user need to tell
the OS its POISX application so firstly at compile-time define the symbols which classify
it’'s a POISX application. This symbol is called #define_ POSIX_SOURCE.This
definition tells your system that you want the POSIX definitions that were in effect for
the September, 1993version of POSIX. You don't care about POSIX work that happened
after that, and you don't care about anythingother than POSIX.

The POSIX_C_SOURCE definition simply tell the compiler that you're not interested in
any symbols other than those defined by POSIX or ANSI C. but don’t worry about other
needed symbols because its not for other all modules of the program that’s work fine.

This is the basic reason of modularization.

31

2.1.1.4. Run-time checking

The run-time checking is totally different from compile-time checking. Basically here we
used the POISX APIs and header files like system header and local headers file.

2.1.1.5. Run the Android application on the POSIX compliant OS

After the language conversion now Android application is ready for running any POISX

compliant desktop OS.

2.1.2. Selection of POSIX.1 standard

In the large list of POISX standards selection of any one POISX standards is very
difficult but we select the POSIX.1 because it gives two type of conformance
conformance-conformance to POSIX.1, C Language Binding (C Standard Language-
Dependent System Support), or to POSIX. 1,C Language Binding (Common-Usage C
Language-Dependent System Support). An ISO/IEC Conforming POSIX.1 Application is
an application that uses only the facilities described in this standard and approved

Conforming Language bindings for any IS0 or IEC standard. [19]

2.1.3. Selection of binding language

Standard C language is used as the binding language for POSIX.1 but the questions are

here

e Standard Clanguage
e Difference between POSIX and Standard C Library

32

2.1.3.1. Why Standard C language?

The Standard C libraries are important. POSIX supplies only one part of the
programming toolkit. We need the libraries provided as part of Standard C in order to
write interesting programs. It is not worth wasting brain cells remembering which tools
are in the Standard C box and which are in the POSIX box. It is better to remember our
tools by function. This is like sorting our tools into screwdrivers and wrenches instead of
Craftsman tools and Stanley tools.

2.1.3.2. Are there any Difference Between POSIX and Standard C Library?

POSIX contain a lot of things. For example, threads, semaphores, file system access API,
etc. there are very minimalist of operating system libraries in the Standard C library (i.e.,
ANSI/ ISO C) For example, standard C library have no such function, which handle the
multi threading .So, the implementation of the IPC inter process communication is
restricted. It means it has no ability to tackle with multi-processing operating system. But
we need the complete toolkit for implementation. POSIX is a superset of standard C
library. POSIX defines a library of functions for conforming programs to use. Many of
these functions are also defined in the Standard C library. Each function in the library

requires you to include at least one header. This is done with a statement like:
#include <stdio.h>

Many systems support multiple development environments. How do you get the POSIX
headers? You must define the symbol _POSIX_ SOURCE before including any of the

standard headers. The best way to do this is to place the statement.
#Define POSIX_SOURCE 1 at the start of each file.

2.1.4. Finding the POSIX Libraries

33

The POSIX libraries are part of the standard system libraries. You can indicate that you
want all vendor extensions hidden from you by defining the symbol _POSIX_SOURCE

with the statement:
#Define _POSIX_SOURCE 1

According to the rules of Standard C, only those symbols that are in the base standard or
are enabled by a specific #define feature test are allowed to be visible. However, many
vendors require a special command to get the Standard C behavior. They include their
added value by default. By defining POSIX_SOURCE you should protect yourself from
this added value. Every conforming POSIX system must provide a "conformance

document” that describes its implementation.

2.2. Chapter summary

In this chapter we first defined the problem statement then proposed an Android POSIX.1
thin layer model to overcome the problem of portability and standardization of android
applications. Next we illustrated design and working of the Android POSIX.1 thin layer
model and description of this model sub components. At The end reason of selection of
the appropriate POISX.1 standard and selection of standard C language for the POISX.1

also discussed here.

34

Chapter 4

3. Implementation of ANDROID POSIX.1 Thin layer Model

3.1. The POSIX Development Environment

POSIX provides portability at the source level. This means that you transport your source
program to the target machine, compile it with the Standard C compiler using conforming
headers, and link it with the standard libraries. The system vendor provides the compiler,
the libraries, and headers. Strictly speaking, these are all black boxes and you do not need
to know how they work. For POSIX .1 thin layer model implementation we used the

following specifications.

Macintosh Macintosh

Table 3.1: Development environment specifications

3.2. List of Android applications used as sample

For this model we start the implementation from very simple to the complex one like

multithreading [20].

e Hello world
e Timer
o Text file creator, save data on it and display the text on the terminal

e Multithreading example [20]

35

The reasons of start test from very simple Android application to complex one Android

application are

Is Android application will be POSIX compliant is a question itself. So we
implement the very first sample example in both environment then we move
forward that why it is part of our research work.

The User interface means graphical user interface of POISX is not very
supportive for android applications

There is no such engine or converter that convert the whole application layer of
android application.

All the gcc complier is not POSIX and all the desktop OS are not POISX
compliant

All the implement applications are very simple in Android environment but
POSIX APIs are limited in numbers. Even for hello example POSIX standard C
language have specified code.

File creator and multithreading is very important example because it used very
frequent OS calls. The IEEE Std 1003.1b-1993(pp.103) also used these examples

for implementation.

36

Hello world Android application layer

® Eclipse File Edit Run Soi
8 00 L]
|- a8 A&] 3
—— ~
[# Package Explorer £3 Ol
B&|. T
¥ -2 hellofirst
¥ [src
¥ 4 com.example.hellofirst
» [J] Helloworld. java
> G@gen [Generated Java Files]
b =i Android 4.2
= Android Dependencies e
. assets
‘r%hin
b = dexedlibs
» [res

|21 AndroidManifest.xmil
=| classes.dex
|=| hellofirst.apk
=l Jarlist.cache
|=| resources.ap_

¥ = libs
ﬂ;android—support—u-i.jar

POISX conformance Hello world
example

#define POSIXSOURCE 1
#include <stdio.h>

int main(int argc, constchar
E argvll)

printf("%s","Hello,
WorldI\n');
returnO;

by

e 9% s Write the argument (assumed to
be a pointer to a null-terminated
character string) to the output
stream.

e Now it is fully portable for all
language like French or Japanese
also

Table 3.2: Hello application framework

37

Timer Android application layer

® Eclipse File Edit Run

Soi

8 0 6

| CH~

‘l":l_% date
v SBsrc
¥ B com.aden
»> m DateActivity. java
» E8 gen [Generated Java Files]
b = Intel Atom x86 System Image [Andrg
w =i Android Dependencies
> |§: annotations.jar — fUsers/tayyabar
P= assets
w = hin
b = dexedlLibs
> = res
1] AndroidManifest.omil
=] classes.dex
=| date.apk
=l jarlist.cache
|=| resources.ap_
» 9:‘:;- res
<] AndroidManifest.xmil
proguard —project.txt
project.properties

&8 | =ar] &]t

—

N

|

POISX conformance Timer Android
example

#define _POSIXSOURCE 1
#include <stdio.h>
#include <time.h>
main(argc,argv)

int argc;

char **argv;

structtm *tmptr;
time_t timer;
timer = time(NULL);
tmptr =
localtime(&timer);
printf("'The current time
is:\n%s",
ctime(&timer));
if (tmptr ->tm_isdst)
printf("'Daylight savings
time\n™);
else
printf("'Standard time\n');
exit(0);
+

Table 3.3: Timer application framework

38

File creator Android application layer POISX conformance file
creatorAndroid example

® Eclipse File Edit Run S |#define
_POSIX_SOURCE 1

8 0O #include<stdio.h>
— . ; int main(Q){
[£ Package Explorer 58 = B c_;har ch;
- int c;
=5 |
v = file fp=fopen('data.txt",
¥ [src "W'_') .
2 com printfF(""\nTHIS DATA
v & WRITTEN TO A
com.tayyaba FILE- ,,) .
B [J] FileActivity.java AL
> 22 gen [Generated Java Files] V!Vgllzcl)gg(Ch—getchar())
b =i Android 2.3.3 pUtC(Ch,fp);
b =0 Android Dependencies fClOSG(fp);
= assets fp=fopen(‘'data.txt",
w = bin "r';
» = dexedlibs c = fgetc(fp) ;
> =res while (c!= EOF)
|2 AndroidManifest.xmil
=| classes.dex pUtChar(C) .

c = fgetc(fp);
printFC"\nTHIS DATA
WRITTEN TO A

. %_resnurces.ap_ FlLEI"+C);

}rclose(fp);}

= file.apk
=| jarlist.cache

Table 3.4:File creator application framework

39

® Eclipse File Edit Run

800 51 Jav
el 88zl
ftg Package Explorer 23 =0

B&|e ¥

¥ H#src
TI-E com.tayyaba.multithreading
> lT_] MainActivity.java
> [J] Pijava
[E'Lﬁgen [Generated Java Files]
b = Android 4.2
b =, Android Dependencies
2=, assets
b = bin
b = libs
v G@ res
b = drawable-hdpi
b (= drawable-Idpi
P = drawable-mdpi
P = drawable-xhdpi
¥ = layout
|3 main.xmi
P = menu
b = values
b (ovalues-v1l
b (ovalues-v1d
/7 AndroidManifest.xml
@ ic_launcher-web.png
proguard-project.txt
project.properties

#include <pthread.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#define NTHREADS 5
struct thread_data {
int my_id;
pthread t tid;
int status;};
structthread_data
thread_data[NTHREADS] ;
void *Thread(void *);
void Error(constchar
*str, ...);
void *
Thread(void *v)

structthread_data *p
= (structthread_data *)v;
int n;

printf('start thread
%d\n"", p->my id);

for (n = 0; n
<1000000000; ++n)

p->status = p->my id

+ 1;
printf("'end thread

%d\n"", p->my id);

return v;}

int

main(int argc, char

**argv)

{int e, n;
pthread_attr_t attr;
structthread_data

*res;

if

(pthread_attr_init(&attr)

Error("pthread_attr_1

nit");
for (n = 0; n <NTHREADS;
++n)

thread_data[n]-my_id
:n;
it (e =

pthread_create(&thread da
ta[n]-tid, &attr, Thread,

40

(void *)&thread_data[n]))

Error("'pthread_create
O/Od"s e);}
for (n = 0; n <NTHREADS;
++n) {if
(pthread_join(thread data
[n]-tid, (void **)&res))

Error("pthread_join'™)
printf(*'das war
thread %d, status %d\n',

res-
>my i1d, res-
>status);}return0O;}
void
Error(constchar *str,

{va_ list ap;

int e;

e = errno;
va_start(ap, str);
vfprintf(stderr, str,
ap);

va_end(ap);
fprintf(stderr, "\n");

it (e) {

errno = e;

perror(‘'system
error');

fprintf(stderr,
"errno %d\n', errno);

yexit(l):}

Table 3.5: Multithreading application framework

This step includes the conversion of the sample-tested example Android application
framework into POISX.1 template. Using the C library POISX threads. [29] This is point-
to-point conversion like headers of Android replace with according to standard C into

system header or local headers, variable into local variables etc.

3.3. Android Application template for POSIX.1

POSIX.1 template is not stringent. It would be change according to the Application or

need of the developer. But the #define _POSIX_SOURCE 1 is compulsory part of any

application. [20]

41

/* Feature test switches */ define the _POSIX_SOURCE macro to enable the

: POSIX symbols and disable all unspecified symbols.
#define _POSIX_SOURCE 1

/* Local headers */ Most projects have at least one project header. These
define common data structures and symbols that are
used in many files.

/I* File scope variables */ These are variable that are shared by several functions
in the same file.

/* External functions */ There should be a prototype for each user-written
external function that you use.

Place signal catching functions in one place. Signals
: : : are an unusual calling mechanism and often hard to
/* Signal catching functions | gehug. Unless you point it out clearly in your source
*/ code, it may not be obvious that something is a signal
catching function.

[* Main */ There is a main() function in this file

42

Table 3.6: Android POSIX.1 application template

3.3.1. Used some core Portable functions

The fgetc(), getc() and getchar() Functions are very portable. For example in file creation,
deletion and read data from it .the application used these functions for reading data from
created file.

while (c!= EOF)

{
putchar(c);

The call fgetc(stream) returns the next character from stream. If stream is at end-of-file,
EOF is returned.The getc() function is the same as fgetc() except it may be implemented
as a macro. These functions are very portable. So through these portable functions we are

able to write a portable calls like for reading a data from text file

char *fgets(char *s, int n, FILE *stream);

3.3.2. Opening and Closing Files functions

The fopen() function is used to connect a file with a stream:

fp=fopen("data.txt","w");
e Create text file with name data and

e w Create new file for writing. If a file with this name already exists, its contents

are lost.

43

Some systems make a distinction between text files and binary files. While there is no
such distinction in POSIX, a 'b' may be appended to the mode string to indicate binary.
The b does not do anything but may be useful for compatibility with non-POSIX systems.
If you are creating a binary file, include the b to make your program more portable. Most

systems that do not support the b option will just ignore it.

Upon success, the fopen() function returns a pointer to a file descriptor. This pointer is
used only as an argument to other functions. Do not attempt to manipulate the object it

points at. If the open fails, fopen() returns a null pointer.

When you are finished with a file, you should close it. The call fclose(stream) will
complete any pending processing, release system resources, and end access to the file. If

there are no errors, fclose() returns zero. It returns EOF if any errors are detected.

int main(){
FILE *fp;
char ch;
int c;
fp=fopen("data.txt","w");
printf("\nTHIS DATA WRITTEN TO A FILE:");
while((ch=getchar())!=EOF)
putc(ch,fp);
fclose(fp);

Figure.3.1 Text File creations, opening and closing code of sample Android
POSIX.1 application

3.4. Sample examples code matching with Android Application template for
POSIX.1

Template \ Hello world Example

/* Feature test switches */ #define _POSIXSOURCE 1
#define _POSIX_SOURCE 1

/* System headers */ #include <stdio.h>

44

/* Main */

Template

/* Feature test switches */
#define POSIX_SOURCE 1

int main(int argc, constchar *

argvlD)
{

printf('%s™,"Hello, World!\n');
returnO;}

Text file creator example

#define _POSIX_SOURCE 1

[* System headers */

#include<stdio.h>

/* Main */
/* Functions */

int main(){

fp=fopen(“'data.txt","w'");
printfF(""\nTHIS DATA WRITTEN TO A
FILE:");
while((ch=getchar())!=EO0F)
putc(ch,fp);
fclose(fp);

fp=fopen(“'data.txt”™,"r'");
= fgetc(fp) ;

while (c'= EOF)

putchar(c);

c = fgetc(fp);
printfFC'\nTHIS DATA WRITTEN TO A
FILE:z"+cC);
fclose(fp):;}

/* File scope variables */

FILE *fp;
char ch;
int c;

/* External functions */

Template

/* Feature test switches */
#define POSIX_SOURCE 1

fclose(fp);
putchar(c);
fopen('data.txt","r'");

Timer example

#define _POSIX SOURCE 1

[* System headers */

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

45

/* Main */
/* External functions */

main (argc,argv)

structtm *tmptr;

timer = time(NULL);

tmptr = localtime(&timer);
printf("'The current time is:\n%s",
ctime(&timer));
iIT (tmptr ->tm_isdst)
printf('Daylight savings time\n™);
else
printf("'Standard time\n');
exit(EXIT_SUCCESS); }

/* File scope variables */

int argc;
char **argv;

/* Structures and unions */

structtm *tmptr;
time_t timer;

Template Multithreading example

/* Feature test switches */
#define _POSIX_SOURCE 1

#define _POSIX SOURCE 1

/* System headers */

#include <pthread.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#define NTHREADS 5

/* Structures and unions */

struct thread data {
int my_id;
pthread t tid;
int status;

j &

structthread data

thread_data[NTHREADS];

void *Thread(void *);
void Error(constchar *str, ...);

void *
Thread(void *v)

{
structthread data *p =
(structthread_data *)v;
int n;

printf(*'start thread %d\n", p-
>my id);

46

for (n = 0; n <1000000000; ++n)

p:>status = p->my_id + 1;
printf('end thread %d\n", p-

>my 1d);
return v;
}
/* Main */ int
/* External variables */ main(int argc, char **argv)
[* External functions */ { - .
int e, n;

pthread attr_t attr;
structthread data *res;

if (pthread _attr_init(&attr))
Error(pthread_attr_init");

for (n = 0; n <NTHREADS; ++n) {
thread _data[n].my_id = n;
it (e =
pthread create(&thread data[n].tid,
&attr, Thread,

(void *)&thread datal[n]))
Error("'pthread_create
%d", e);
}

for (n = 0; n <NTHREADS; ++n) {
if
(pthread_join(thread data[n].tid,
(void **)&res))
Error("pthread_join');
printf(*'das war thread %d,
status %d\n",
res->my id, res-
>status);
}returnO;}

/* Signal catching functions */

void
Error(constchar *str, ...)

va_list ap;
int e;
e = errno;
va_start(ap, str);
vfprintf(stderr, str, ap);
va_end(ap);
fprintf(stderr, "\n");
it (e) {
errno = e;
perror(’'system error™);
fprintf(stderr, "errno %d\n',

47

errno);}
exit(1l);}

Table 3.7: matching of POSIX.1 compliant Android application with POSXI.1

template

3.5. Tested Sample Examples

The sample examples are running in two different environments. Before applying the

POSIX .1 thin layer model. These applications run in to the Eclipse INDIGO version with
Android virtual device (AVD) Intel Atom x86 with API level 10.

After Appling the POSIX .1 thin layer model these are tested in to Xcode with gcc

complier version is mention in previous Fig.9 at Macintosh OS. So results of the testing

applications are very adorable. Resultant applications are compatible and reusable.

Sample Example Applications Comparison Table

Text File creator POSIX Conformance
Android application

File creator Android application

#define POSIX SOURCE 1
#include<stdio.h>
int main(Q){
FILE *fp;
char ch;
int c;

fp fopen('data.txt,"w'");
prlntf("\nTHIS DATA WRITTEN TO A
FILE:"™);
while((ch=getchar())=EOF)
putc(ch,fp);
fclose(fp);
//char *fgets(char *s,
*stream);

int n, FILE

fp=fopen(“'data.txt","'r'");
c = fgetc(fp)
while (cl!= EOF)

putchar(c);
= fgetc(fp);

package com.tayyaba

import java.io.BufferedReader;

import java.io.FileNotFoundException;
import java.io.lOException;

import java.io.InputStream;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.EditText;
import android.widget. TextView;
import android.widget. Toast;

public class FileActivity extends Activity
{private static final String TAG =
FileActivity.class.getName();

48

printf("\nTHIS DATA WRITTEN TO A
FILE:"+C);

fclose(fp);
}

private static final String
FILENAME = "myFileTayyaba.txt";

@Override

public void onCreate(Bundle

savedinstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);}
public void SaveText(View view){

// EditText ET =

(EditText)findViewByld(R.id.editText1);

EditText ET =
(EditText)findViewByld(R.id.editText1);

String
textToSaveString =
ET.getText().toString()

//String
textToSaveString = "Hello Android
tayyaba";

writeToFile(textToSaveString);

String
textFromFileString = readFromFile();

if (
textToSaveString.equals(textFromFileStri
ng))

Toast.makeText(getApplicationCo
ntext(), "both string are equal”,
Toast. LENGTH_SHORT).show();
else
Toast.makeText(getApplicationCo
ntext(), "there is a problem",
Toast. LENGTH_SHORT).show();

Toast.makeText(this,"Text Saved
I" Toast. LENGTH_LONG).show();}

private void writeToFile(String
data) {

try {

OutputStreamWriter
outputStreamWriter = new
OutputStreamWriter(openFileOutput(FIL
ENAME, Context. MODE_PRIVATE));

outputStreamWriter.write(data);

Log.e(TAG, "File write : ");
outputStreamWriter.close();}
catch (IOException e) {

Log.e(TAG, "File write failed: " +

49

e.toString());} }
private String readFromFile() {

String ret ="";
try {
InputStream inputStream =
openFilelnput(FILENAME);
if (inputStream !'=null’) {
InputStreamReader
inputStreamReader = new
InputStreamReader(inputStream);
BufferedReader bufferedReader =
new BufferedReader(inputStreamReader);
String receiveString = "";
StringBuilder stringBuilder = new
StringBuilder();

while ((receiveString =
bufferedReader.readLine()) '=null) {

stringBuilder.append(receiveStrin
g);}inputStream.close();

ret = stringBuilder.toString();

TextView tv =
(TextView)findViewByld(R.id.textViewl
);

tv.setText("text file data:"+ret);

Log.e(TAG, "Can read file: " +

ret.toString());

¥

¥
catch (FileNotFoundException e) {

Log.e(TAG, "File not found: " +
e.toString());
¥
catch (IOException e) {
Log.e(TAG, "Can
not read file: " + e.toString());

}

return ret;

¥
¥

Output

50

All Output 3 Clear | (0 W O

THIS DATA WRITTEN TO A FILE:hellohello

. 8.0.0 5554:hhello

Save

2 data:hi i am tayyaba

4 72 X' cvbnmexa

7123 @ . Done

]

Standard time display POSIX Conformance
Android Application

Standard time display Android
Application

51

#detine _POSIXS0URCE 1
#include <stdio.h=
#include <time.h=
main{arge,argy)

int argc;

char #*argqv;

{

3

struct tm *tmptr;
time_t timer;
timer = time(NULL);
tmptr = localtime{&timer);
printf("The current time is:\n%s",
ctime(&timer));
if (tmptr -> tm_isdst)
printf("Daylight savings time\n");
else
printf("Standard time\n");
exit(8);

publicclass DateActivity extends
Activity {

/** Called when the activity is first
created. */

@Override
publicvoid onCreate(Bundle
savedlnstanceState) {
super.onCreate(savedInstanceState);

/IsetContentView(R.layout.main);

Calendar ¢ = Calendar.getInstance();

System.out.printIn("The current time
is: "+c.getTime());
SimpleDateFormat df = new
SimpleDateFormat("EEE LLL dd
HH:mm:ss");

String formattedDate =
df.format(c.getTime());

// Now we display formattedDate

value in TextView

TextView txtView = new
TextView(this);

txtView.setText("The current time is:
"+formattedDate+" "+"Standard time");

txtView.setGravity(Gravity.CENTER);
txtView.setTextSize(20);
setContentView(txtView);

3

52

OUTPUT

All Qutput »

The current tine 1s:
Tue Feb 12 12:47:20 2013
Standard tine

800 5554:hhello

The current time fis: Tue Feb 12
18:37:22 Standard time

Multithreading POSIX Conformance
Android Application

Android Multithreading application

#define POSIX SOURCE 1
#include <pthread.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>

#define NTHREADS 5

struct thread data {
int my_id;
pthread t tid;
int status;

¥

structthread_data
thread_data[NTHREADS];

void *Thread(void *);
void Error(constchar *str,

void *
Thread(void *v)

{
structthread_data *p =

s

package
com.tayyaba.multithreading;

import
import
import

android.os.Bundle;
android.os.Handler;
android.os.Message;
import android.app.Activity;
import android.util.Log;
importandroid.view.Menu;
import
android.widget.TextView;
publicclass MainActivity
extends Activity {

TextView txt;

// our handler

Handler handler =

newHandler() {

@Override

publicvoid
handleMessage(Message msg) {

// get the bundle and
extract data by key
Bundle b =

53

(structthread _data *)v;
int n;

printf('start thread %d\n",

p->my id);
for (n = 0; n <1000000000;
++n)
p:>status = p->my_1d + 1;
printf('end thread %d\n*, p-
>my 1d);
return v;
}
int

main(int argc, char **argv)

int e, n;
pthread attr_t attr;
structthread data *res;

if
(pthread_attr_init(&attr))
Error("pthread_attr_init");

/*
it ((e =
pthread attr_setscope(&attr,
PTHREAD_SCOPE_SYSTEM)))

Error(*'pthread_attr_setscope
%d, e);
*/

for (n = 0; n <NTHREADS;

++n) {

thread data[n].my id = n;
if (e =
pthread create(&thread data[n].t
id, &attr, Thread,

(void *)&thread_data[n]))
Error(“pthread_create
%d™, e);
by

for (n = 0; n <NTHREADS;
++n) {
it

(pthread_join(thread data[n].tid
, (void **)&res))
Error(“pthread_join™);

msg.-getData();
String key =
b.getString(""My Key™);
txt.setText(txt.getText()
+ "new " + key

+System.getProperty("'line.sepa
rator'));

}
¥

/** Called when the
activity is first created. */

@Override

publicvoid
onCreate(Bundle
savedlnstanceState) {

super .onCreate(savedlnsta
nceState);

setContentView(R. layout.main);
txt = (TextView)
findViewByld(R.1d.txt);

}

@Override

protectedvoid onStart() {

super.onStart();

super.onStop();

// create a new thread

booleanbackground = true;

Thread backgroundl =

new Thread(new Runnable() {

@Override
publicvoid run(Q) {
for (int 1 = 0; 1 < 10;
i++) {
try {
Thread.sleep(1000);

Message msg = new Message();

Bundle b = new Bundle();

b.putString(""My Key™, "My

54

printf(*'das war thread %d,
status %d\n",
res->my id, res-
>status);

returnO;

}

void
Error(constchar *str, ...)

va_list ap;
int e;

e = errno;
va_start(ap, str);
vfprintf(stderr, str, ap);
va_end(ap);
fprintf(stderr, "\n");
it (e) {
errno = e;
perror(‘'system error');
fprintf(stderr, "errno
%d\n", errno);

}

exit(l);

thread#: " +
String.valueOf(i));
msg.setData(b);
handler.sendMessage(msg) ;

catch (Exception e)

{
Log.v("Error™,
e.toString());
}

backgroundl.start();
backgroundl. interrupt();

System.out.printIn(’"thread
kill™);

Output

55

All Dutput 5

start thread
start thread
start thread
start thread
start thread
end thread 3
end thread 2
end thread 1

W@

multithreadi

new My threadi#:
new My threadid#:
new My threadd#:
new My threadi#:
new My threadd#:
new My threadi#:
new My thread+#:
new My threadi#:
new My threadi#:

5554:card

&5 Ml 45 12:30 am

end thread 4

@ Dedamﬂon@(unsole W St iﬂ@ Errmlug‘lil Ml Explurer‘ °f
(g hiormesages, Acceos o e, et i g, g ottt sope et ¢ HQM

!Lﬂﬂme M Agpicaion Ty Tt

LELILE, JUvlL08)
EROEEEM W 08 contopooniltl, Mdoichietine — of con.ondrold kel os. Lootelnit pw
EROBEAM W 00 contopoboniltl, boichietine ot dolvlk systen tivebtart moin(otive
DO BH0 0 108 con oo il Process Senting sigral, 210 108 816 9
[R-DBSH0 U 08 contopoboiltl, Sstomot— join
[R-OBSEM 20 00 contopoboiltL, Sstonodt dustroy thread
FENOTH3 M0 00 ontopenoaltl, Gstomod thread
TR0 0 contoyobamlt ror o lorg. Iterrgtedbcaption
TR0 0 0 ontopebonltl, Sstemat— thread il
TR0 St 5 0% conboyobamilt, Erver join.lorg Iterrgtedtcaption

Table 3.8: Tested sample Android applications code and output comparison

3.6. Chapter summary

56

In this chapter we have briefly explained the actual implementation of ANDROID
POSIX.1 Thin layer Model. The information about the development environment is given
and all sample examples Android applications layers are explained there. After that
template is described for Android application for converting in to POISX. Then sample
examples code match with this template. At the end sample example code snippetsare

presented. Analysis and comparison of the sample examples code also explained.

57

Chapter 5

4. Analysis and Results

Essentially we are trying to provide the standardization (through POSIX) and portability
of Android applications on multiple operating systems. Android Application developers
have the opportunity to establish a template that assists in producing code with consistent
format. Because a well-structured program is portable among the different programmers
who may maintain it. Placing program elements in a consistent order makes finding

things easier. [17] Consequently the concluded points of this experiment are:

e Portability
o POSIX .1 thin layer model is initiation point for Android application
portability to different operating systems.

Reusability
o POSIX .1 thin layer model provides the reusability of the Android

applications on multiple operating systems.

Standardization
0 POSIX .1 thin layer model is a standard way of transformation of

application with damaging the application internal structure.

Diversity
0 POSIX .1 thin layer model gives the diversity to the Android application

market.

4.1. Functioning Outside the Standards

Most programs have only a few areas, which need to go outside of the standards. Keep
those area isolated to a few modules. Keep most of the code POSIX conforming. For
example, | have a File creation, deletion and read file data Android application, which

create file, read its data and delete it. The program'’s structure is shown in Figure 11.

58

Core program OS Interfacej POSIX,

o fp=fopen("data.tx Macintosh
tll,llwll ;

o fclose(fp);

User Interface J| Terminal
Macintosh

Figure.4.1Example of portable application

Modules in the Program Core do not have any knowledge of the user interface. If | need,
for Example, to get data from the user to write on file, I call fopen(*data.txt","w"); .That
is one of the routines I wrote in the user interface module. On a system with a graphic
user interface, like Android there is text box for taking data from user and the system
with out graphic user interface there is a terminal used for taking the data from the user.

But the core functionality of the programs is same

Most of the program remains unchanged over several operating systems and user
interfaces. | can build a version for different operating systems and user interfaces by

changing that module.

4.2. Quantified Feasibility analysis

At this time Android covers the 53% of the Smartphone market share as shown in figure
in 12. [27]. But we turn into 100% by introducing POSIX.1 Thin layer Model. It provides
the viability for Android mobile users as well as developers. After implementation of this
POSIX.1 Thin layer Model the Android applications can run on any operating system so
the Android covers the 100% market, which means the revenue according to figure 12 it
would be double. The statistical result is given in the table.12. This model focuses on the
Android mobile users and Android developer through reusability and standardization

59

Worldwide Smartphone Sales to End Users by Operating

8.80% 1-80%

W Android
wios
Research In Motion

i Microsoft

Figure.4.2Worldwide Smartphone Sales to End User by Operating source:
Gartner (February 2013)[23]

Nowadays Android developers because of open source SDK and API support prioritize
an Android market. [23] The Android applications market revenue increasing very
rapidly [21]. Like in figure.1 Android market growth is 861.5%, which is tremendous.
But question is here Why are restricting Android market only to the Mobile OS.

Global Mobkile Applications Store Ranking in 2010 and 2009
(Ranking by Revenue in Milions of U.S. Dollars}

2010 2009 2010 2010 Year-Over-Year
Hanlu. Store Ftevenue Share Revenue Share Growth
2

Apple App Store 52.8% 51,782 52 T% 131.9%
BlackBerry App World 4.3% $165 360 3%
3 Moka Ovi Store 51 3 1.5% 5105 4.9% 719.4%
4 Google Android Market 511 1.3% g102 4.7% B851.5%
Total 5828 100.0% 52,155 100.0% 160.2%

Source: IHS Screen Digest February 2071

Figure.4.3Android market share [21]

The market of the desktop OS is very large as shown in the below table.12.but if we
merge both these markets only for the Android the result is very magnificent in the form

of revue however also in the form of manpower reduction which shown in the table.13.

60

Windows 7 44 55% 53.1% 97.65%

Windows 5.17% 53.1% 58.27%
Vista

Windows 8 2.67% 53.1% B55.77%

Mac OS X 1.93% 53.1% 55.03%
10.7

Table 4.1: Market share analysis for Android developers [6]

The above table gives the brief assessment for developer after usage of Android POISX.1
thin layer model.It clearly shown that POISX Desktop OS users and mobile OS users

covered very impressive percentage of market and after combing these target markets the
revenue of the developer is twice.

6-7 developers 30 days (min) 3 developers 15 days (min)

Entertainment 120 days (max) 60 days (max)

61

Productivity 10-11 30 days (min) 5-6 developers 15 days (min)
developers

120 days (max) 60 days (max)

Table 4.2: Comparative analysis of applications development time and
manpower for Android developers

Android POISX.1 thin layer model also provides the reusability concept for developer in
reducing the manpower since usage of the core functional modules. Theses core
functional modules use by developer again and again in multiples Android applications.
Secondly developer developed the application at once according to the POISX.1 template
and its will be available for the mobile OS user as well as for Desktop OS users. The
above table had shownextraordinarily results that the manpower would be half after

implementation of this model.

4.2.1. Resulting impact factor for Android developers

The feasibility study of the POSIX.1 thin layer Model clearly revealed a lot of benefits
for developers. The resultantinfluencing factors are shown in below figure 14

62

Resuability

Reduce time of POSIX Desktop

development 0S users
Android
developers
remuneration

100% market
Reduce share for
Manpower Android

developers

Standardization

Figure.4.4 POSIX.1 thin layer Model resulting impact factors

4.3. Chapter summary

In this chapter we narrated the different statistical and dynamic factor of this POSIX.1

Thin layer Model .we evaluated perform of this model from different point of views like

users and developers. The resulting impact factors are shown in the form of tables. These

results are rough estimates, which may be varies with respect of usage.

63

Chapter 6

5. Conclusion

Right now, Android is the most famous operating system out of the numerous Linux
supported mobile operating systems (e.g., Maemo) [22]. POSIX .1 thin layer model
assigns the Android applications to a wider marketplace without restricting to them with
only mobile computing. In this work, the main theme of research provides the portability
to the Android Application with POSIX.1 standard. In summary introducing this thin
layer POSIX.1 model expands the market for Android applications as well as adds real-
time capability and higher reusability. This meticulous work provides the new horizon for
developers in form of increasing revenue as well as reduces the manpower. Basically we
are trying to vanish the dependencies of Android applications by providing the standard

approach.

5.1. Achievement

This layer resolved compatibility challenges for Android applications .Now Android
application would be accessible for any Android mobile OS in addition to POISX
desktop OS.

Android applications for all POSIX Desktop OS. It means one Android application

market is serviceable for mobile OS user along with Desktop OS users.

According to the research point of view Android POISX.1 thin layer model award the
mobile computing new horizon of research. This research lead to solve the real time
mobile computing problem like portability, reusability and transformation, secondly it
increase the Android market revenue in addition to target market enrichment by adding
the POISX desktop users.

The one research paper related to this research is accepted in IOSR Journal of Computer
Engineering (IOSR-JCE).

64

We got another acceptance notification from the 2013 9th International Conference on
Natural Computation (ICNC 2013), to be held jointly with the 2013 10th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2013), from 23-25 July
2013 in Shenyang, China (impact factor 1.6).

5.2. Limitations

We have faced multiple limitations related to POSIX as well as related to theAndroid

applications.

e POSIX have a list of standards and some of these standards are not still verified
with IEEE. Secondly POISX bonding languages are very extinct so POISX
programming is very difficult tasks.

e With passing each day POSIX standards are modified very frequently. These
abrupt changes in standards becomes the developer life miserable.

e A lot of Android applications are GUI dependent and POISX .1 support very
limited GUI features so need of GUI functions in POISX .1.

e There is no standard tool or engine for langue conversion from java to standard C.

5.3. Future work

Till now there is only Application layer (code) implementation through this model but the
need of implementation of Ul layer is very stimulating and tempting. Although XML
code conversion is very difficult and C library limitation for interface. [30] The Hardware

acceleration for Graphics subsystem is also in require for completing implementation.

Second option is related to making the Android OS POSIXcompliant. This is not an easy
task as there are a lot of limitations of Android hardware restriction, Android devices

variety plus DVM usage that caused the performance drawback [26] but the proposed

65

model is one of best solution for all these limitations. The small size of usage hardware is
obvious but implementation is not impossible by executing the Standard C library instead
of using C/C++ for code conversion. [28] This is only the idea but achievement needs

more attention. The very rough model is presented below figure.

Figure. 5.1 proposed Android OS POSIX compliant model

In this model we are try to introduce a new layer, which called the Java POISX APIs
layer. This layer simply converts the all java APIs into POISX APIs but still in java

language .so DVM consider it as java command and convert it into dex. Format.

At the runtime Dalvik virtual machine and the Java core libraries are part of the Android.
The Dalvik virtual machine is an interpreter for byte code that has been converted from
Java byte code to Dalvik byte code. [24] Dalvik itself is compiled to native code whereas
the core libraries are written in Java, thus interpreted by Dalvik. It means conversion of

java to C/C++ done here. But we are try to convert the Android OS POISX .One solution

66

is the POSIX package. This package provides access to the POSIX API from Java.
However essential question is that where put this POISX APIs library for Java?

As shown in above figure .15 we put the java POSIX APIs layer that Basically DVM do
the conversion of java applications to .dex format means conversion of java to C/C++ .so
DVM has not problem if there is any JAVA API so if we put the JAVA POSIX API [25]
layer which convert the all java simple APIs to POISX APIs but still in the java
language.So DVM very easily do it conversion because DVM consider it a java API.

67

References

[1] Google Android - An Open Handset Alliance Project, 2008.
http://code.google.com/android/

[3] Donald A. Lewine, “POSIX Programmer's Guide Writing Portable UNIX
Programs with the POSIX.1 Standard”, 1991,pp.31-36

[5] What is Android,
Http://www.android.com/about/. Accessed March 2013

Chapter 2

[8] Android operating system,

Http://en.wikipedia.org/wiki/Android_ (operating_system). Accessed December

68

2012

[9] Kolin Paul, Tapas Kumar Kundu "Android on Mobile Devices: An Energy
Perspective,” 10th IEEE International Conference on Computer and Information
Technology, 2010.

[10] | Android, the world's most popular mobile platform,
Http://developer.android.com/about/index.html.Accessed December 2012

[11] | Android market analysis,
Http://en.wikipedia.org/wiki/Android_Market.Accessed December 2012

[12] | SDK for Android developers,
Http://developer.android.com/sdk/eclipse-adt.html.Accessed December 2012

[13] | Introduction of Android,
Http://www.android.com/about/. Accessed December 2012

[14] | Bill O. Gallmeister, “POSIX. 4: Programming for the Real World”, 1995.ppt.4,
19-20,22,23

Chapter 3

[15] | App framework,
http://developer.android.com/about/versions/index.html. Accessed December
2012

[16] | Kyosuke Nagata, Saneyasu Yamaguchi “An Android Application Launch
Analyzing System”, (2012,IEEE)

[17] | Donald A. Lewine, “POSIX Programmer's Guide Writing Portable UNIX
Programs with the POSIX.1 Standard”, 1991,pp.16-17, 25

[18] | POSIX. 1: ISO/IEC 9945-1:1990 IEEE Std. 1003.1-1990

69

[19] | IEEE Std 1003.1b-1993 (Formerly known as IEEE P1003.4) (Includes IEEE Std
1003.1-1990)

Chapter 4

[20] | IEEE Portable Applications Standards Committee, P1003.13: Infonnaiion
Technology - Siandardized Applications Environment Profile - POSIX Real-time
Application Support (AEP) (Draft 5) (Feb 1992).

[21] | Apple's rivals battle for iOS scraps as app market sales grow to $2.2 billion,
Http://appleinsider.com/articles/11/02/18/rim_nokia_and_googles_android_battle
_for_apples_ios_scraps_as_app_market_sales_grow _to_2_ 2 billion.html.Access
ed March 2012

[27] | Android Market news,

Http://www.gartner.com/newsroom/id/2335616.Accessed March 2012

[29] | Frank Mueller, “A library implementation of POSIX threads under UNIX”,
Proceedings of the USENIS Conference (Jan 1993) 29-41.

Chapter 5

[23] | Chung-Shih, Yi-Kai, Chin-Yuen, Ying-Dian, and Gong-Da,”An Innovative ICT
Service Creation Approach based on IMS and Android Collaboration”.
(2009,IEEE)

Chapter 6

[22] | E. Oliver, “A Survey of Platforms for Mobile Networks Research. Mobile
Computing and Communications Review”, December 2008, pp. 56-63.

[24] | Namseung Lee, Sung-Soo Lim, “A Whole Layer Performance Analysis Method

70

[25]

[26]

[28]

[30]

for Android Platforms”, (2011 IEEE).

Java POSIX APIs,
Http://bmsi.com/java/posix/posix-1.2.2/doc/index.html.Accessed March 2012

Leonid, Aubrey-Derrick, Hans-Gunther, Ahmet Camtepe and Sahin Albayrak,”
Developing and Benchmarking Native Linux Applications on Android,” Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Volume 7, pp 381-392, 2009.

E. Cooper and R. Draves, “C threads”. TR CMU-CS-88- 154, Carnegie Melloii
University, Dept. of CS (1988).

J. B. Fenwick, Jr., B. L. Kurtz, and J. Hollingsworth, “Teaching mobile
computing and developing software to support computer science education,” in
Proceedings of the 42nd ACM technical symposium on Computer science
education, ser. SIGCSE ’11. New York, NY, USA: ACM, 2011, pp. 589-594.
[Online]. Available: http://doi.acm.org/10.1145/1953163.1953327

71

72

