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ABSTRACT 

 

Path planning or motion planning is a fundamental aspect of autonomous vehicle navigation. An 

important problem in the design of miniature air vehicles (MAVs) is obstacle avoidance. In this 

research, path planning of micro air vehicle (MAV) in static environment is carried out, keeping 

in view that MAV has the global knowledge of its environment i.e. terrain map is pre-loaded in 

it. Path Planning involves the computation of a collision free path from start to goal point 

without considering robot dynamics and kinematic constraints like max velocity, max turn angle 

etc. Static environment means that target and obstacles which encountered during flight will be 

fixed. 

We design an optimal and power efficient path planner for path planning of micro air vehicle in 

static environment having multiple obstacles (circles in 2D & spheres in 3D). Optimal path 

means a path with minimum path length. Power efficient path means it has minimum number of 

turn points on its way towards the goal, as with each waypoint actuator is switched on & off 

which consumes the vehicle battery power. We further refined our path in order to get more 

optimal results keeping in view that we do not have to compromise on its power efficiency. 
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INTRODUCTION 

Historical Overview – Unmanned Air Vehicles (UAV) 

It has been more than a century, when the piloted aircraft took its first flight in 1903. Since then 

the progression in the aircraft flight has been amazing. Meanwhile, this amazing development of 

piloted flight further leads into unmanned aircrafts which provide reconnaissance and discover 

those places which were not in the access of the humans. These unmanned aircrafts today are 

named as unmanned aerial vehicles or unmanned air vehicles. It keeps the humans away from 

those positions which proves risky to their lives. 

The concept of unmanned air vehicles generated even before the piloted flights. In 1863, Charles 

Perley in America intended for taking bombs in a hot air balloon. But actually it wasn’t used in a 

real combat. In 1883, Doughlas Archibald actually made a kite which could take photographs. 

Later this kite was used by the US army against Spain during a war to take snaps of the critical 

enemy locations. Nevertheless the US Navy Curtiss trainer aircraft was the first unmanned 

aircraft and was controlled through the radio signals. It could carry 400 pound bomb and to a 

range of 90 kilometers. But it wasn’t used. 

The first UAV which was used in a real combat was German’s V-1, which had a warhead of 

2000 pounds and had a range of 250 kilometers. It was used against the British during the World 

War-II. Since then, many countries successfully made UAV’s particularly for surveillance 

purposes. At first, the UAV’s were remotely controlled but today they are autonomous as well. 

Interestingly, they are not now restricted to military uses only but they are also being used for 

civilian applications like surveillance, inspection, rescue and communications etc. Now, there is 

a strong desire for Micro air Vehicles (MAV), which is a type of UAV, to provide some of the 

useful applications in an effective manner. 
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Fig 1.1 Unmanned Air Vehicle [a] 

 

Micro Air Vehicle (MAV) 

A micro air vehicle or micro aerial vehicle (MAV) is a class of unmanned aerial 

vehicles (UAV) that has a limitation in its size. Modern MAV can be as small as 15 centimeters. 

Defense Advanced Research Projects Agency (DARPA) of USA, started a program in 1997 to 

encourage the design and development of MAVs for their possible use in military and civilian 

applications [33]. As the name suggests, DARPA limited the weight, dimensions even the 

payload and mission capabilities. The size cannot exceed 15cm in any dimension, weight cannot 

be more than 100g and 20% should be designated for the payload. Research is also going on 

Nano Air Vehicle (NAV) which has the size limitation of 7.5cm, weight limitation of 10g. 

In International MAV flight competitions, size and weight limitations for MAV is still not in that 

range as prescribed by DARPA.  In Germany, an international competition on MAV was held in 

July 2010. The requirements of the competition were: 

http://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
http://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
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INDOOR EVENT: 

Table 0-1 MAV specification for indoor event 

Specification Max. Size Max. Weight 

Rotary Wing MAV 70cm 1 kg 

Flapping Wing MAV 70cm 1 kg 

Fixed Wing MAV 80cm 1 kg 

 

OUTDOOR EVENT: 

Table 0-2 MAV specification for outdoor event 

Specification Max. Size Max. Weight 

Rotary Wing MAV 100cm 5 kg 

Flapping Wing MAV 100cm 5 kg 

Fixed Wing MAV 100cm 5 kg 

 

1.2.1 Classification of MAV 

Based on the propulsion and configuration methods, the MAV can be classified into three main 

types, which are as follows: 

a) Fixed Wing MAV: Here the thrust is provided by the power plant through propellers etc, 

whereas the lift is generated by the wings. Neither vertical takeoff nor landing is possible. 
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Fig 1.2 Fixed Wing MAV [b] 

 

b) Rotary Wing MAV: Both the lift and thrust are produced by the rotors. Both Vertical 

takeoff and landing can be done. 

 

Fig 1.3 Rotary Wing MAV [c] 

 



5 

 

c) Flapping Wing MAV: Both lift and thrust are generated by wings. 

 

 

Fig 1.4 Flapping Wing MAV [d] 

 

1.2.2 Technical Challenges of MAV 

Current challenges for the development of MAV are as follows [33]: 

Physical Integration: For MAV, there is no greater challenge than the physical integration of 

MAV. Putting all the equipments on a single, small MAV body is a tough challenge to ask. 

Micro Electro Mechanical Systems (MEMS) are developing at a fast pace and are used in the 

physical integration of MAV. Even then, the individual modules for a specific function would 

take a lot of volume than actually available. 

Flight Control: In flight control, the designer deals with the most number of unknowns. 

Stabilization of platform and its guidance requires a high speed and self controlling systems. 

Power and propulsive systems: It has Poor length to diameter ratios and due to the low Reynolds 

number, it has low propulsive efficiency as well. Battery power or exotic technologies like fuel 

cells may be required. 
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Navigation: Mission constraints do not allow real time interaction of man and machine for 

guidance and navigation of MAV. In addition, vehicle agility or response to gusts may diminish 

human operators ability. So advances in small scale navigation systems along with 

guidance/control systems are essential to overcome this. 

Communication: Due to small vehicle size, small antenna size, limits power availability and 

support the bandwidth requirement (2-4 megabits per second) for image transmission. Image 

compression may reduce the bandwidth but also increases online processing and leads to higher 

power requirements. 

1.2.3 Applications Of MAV 

MAV has numerous applications, mainly due to their ability to operate at low speed with high 

agility. Few of the applications are given as under: 

1) Military 

a) Convert imaging in confined areas by infiltration. 

b) Biological, chemical and radioactive agent detection. 

c) Detection of remote precision mines. 

d) Enhanced communication in urban area fighting. 

e) Reconnaissance over the hill, woods or river. 

 

2) Civilian 

a) Track vehicle with suspected terrorist. 

b) Monitoring the abduction situation. 

c) Inspection of high rising buildings. 

d) Monitoring of traffic. 

e) Rescue and fire missions. 

f) Power/ communication lines inspection. 
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INTRODUCTION TO NAVIGATION  

Motivation 

From last two decades, significant work has been carried out on the navigations and 

guidance of micro air vehicles (MAV) and unmanned air vehicle (UAV). The research in path 

planning is divided into two main directions. These are optimal path planning means ‘shortest 

possible path to the goal’ and it does not take computational cost into consideration and the other 

is real time sub optimal path planning in which the computational cost is the major area of focus. 

One has to decide which direction is to follow, keeping in view the problem statement. In past, 

people for planning in the static environment, go for the optimal path, irrespective of the number 

of turn points that the vehicle has to take during its flight. That work well for the most UAV’s, 

but in the case of a MAV, the major area of concern is to decrease the no. of waypoints (turn 

points) in reaching the goal, as with each waypoint actuator is switched on & off which consume 

the vehicle battery power and MAV cannot afford to have a larger battery keeping in view its 

small weight and size. So for the purpose of MAV path planning, researchers try to short down 

the number of waypoints in its path and in doing so, they might lose optimality. 

In this thesis, for the purpose of MAV navigation, we will be focusing on achieving both 

optimality and at the same time having the minimum number of waypoints in the proposed 

algorithm so that we don’t have to trade off between anyone of these. So for this purpose, we 

developed a hybrid algorithm that combines Depth First search approach (DFS) and velocity 

obstacle method (VO) and finds an optimal and at the same time power efficient path for the 

MAV in an obstacle rich environment. Many hybrid algorithms have been used for the ground 

robots and UAV’s in past and have shown good results. 

Navigation  

  Navigation is a problem of finding a collision free path for a robot system from one 

configuration to another. The focus is to successfully achieve a goal through a high level 

language and which is then converted by the robot into low level motion primitives to complete 

the task. 
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Fig 2.1 Micro air vehicle navigating in an urban environment [2]. 

 

1.2.1 Types of Navigation 

Navigation is further divided into two categories: Path Planning and Trajectory Planning 

[18]. 

a) Path Planning: It does not consider robot dynamics and kinematic constraints like max 

velocity, max acceleration, max turn angle etc. 

b) Trajectory Planning: It does consider system’s dynamics and kinematic constraints. 

1.2.2 Types of Obstacles 

There are two types of obstacles that will be encountered during the flight. 

a) Priori Known Obstacle: These are the fixed obstacles which the robot deals with during 

the flight. Offline path planning can be done if there are fixed obstacles in the 

environment. Offline path planning means trajectory can be developed before the flight 

and the robot does not need to readjust its preplanned path during the flight. The 
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environment which has only fixed obstacles is called static environment. Off course, in 

this case the computational expense is low. 

 

b) Pop up Obstacles: The moving obstacles in the environment is termed as the pop up 

obstacles. The environment is then called the dynamic environment. Online path planning 

needs to be done for this kind of scenario as the moving obstacles continuously change 

their position. Calculations and path needs to be adjusted online by the robot. . It then 

leads to an offset path. Offset path is that MAV path which it follows after changing its 

original path due to the moving obstacles. The distance between the original path and the 

offset path is termed as the offset of the original path. Here the computational cost is very 

high as compared to the offline path planning problem. 

1.2.3 Difference between Navigation and Guidance 

a.  Navigation: It is the process of finding a collision free path when the target is fixed. 

b.  Guidance: It is the process of finding a collision free path when the target is moving e.g. 

guided missiles. 

1.2.4 Fundamentals of Navigation 

Whatever technique may be used for the navigations of MAV, there are some key fundamentals 

which must be kept in mind. These are: 

a) Maximum turn angle limitation of MAV should not exceed. 

b) It must choose an optimal path. 

c) Path plan from starting point to end point should be given. 

1.2.5 Principles of Navigation 

 Regardless of the technique used for the purpose of planning a path, there are four basic 

principles which must be followed. These are: 

a) It guarantee obstacle avoidance. 

b) It stays within the complex constraints of flight dynamics. 
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c) It computes new trajectory immediately after detection of a pop up obstacle in current 

trajectory. 

d) It arrives at the goal in minimum time or shortest distance.  

1.2.6 Non-Holonomic Motion 

If the robot is having some constraints like velocity constraints in its motion e.g. a car 

does not move sideways, then both the constraint and vehicle are called non-holonomic. MAV 

also has a non-holonomic motion.  

1.2.7 Omni Directional Motion 

If the vehicle can move in any direction, then it will be termed as Omni Directional 

Motion.  

1.2.8 Configuration Space 

Configuration space and configuration of a robot are one of the most critical concepts of 

motion planning. A configuration describes the state of the robot, and the space which describes 

set of all possible configurations is called configuration space C [18]. For example:  

If the robot is considered as a single point which is translating in a 2-dimensional plane, then 

configuration workspace C is a plane, and it requires two parameters (x, y) for its representation. 

If the robot is considered as a single point which is translating in a 3-dimensional space, then 

configuration workspace C represents a space, and it requires three parameters (x, y, z) for its 

representation. 

If the robot is taken as a 2-dimensional shape, having the ability of both translation and rotation, 

then the configuration space is still 2-dimensional and it requires three parameters (x, y, θ) for its 

representation. 

If the robot is taken as a 3-dimensional shape, having the ability of both translation and rotation, 

then the configuration space is 3-dimensional and it requires six parameters (x, y, θ, α, β, γ) for 

its representation. 

http://en.wikipedia.org/wiki/Configuration_space
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2.2.8.1 Configuration Space Obstacle 

 It is a set of configuration points for which the robot intersects any obstacle in its 

workspace. It is represented by Cobs. 

2.2.8.2 Free Configuration Space 

 It is a set of configuration points for which the robot does not intersect any obstacle in its 

workspace. Also if we take the complement of Cobs in C, then we will be having free 

configuration space and vice versa. It is represented by Cfree. 

2.2.9 Complete Path Planner 

If a path planner either finds a solution for the given problem or gives the output that 

there is no path that exists for the given problem, then it is said to be a complete path planner. 

The research in path planning is divided into two main directions. These are optimal path 

planning which do not take computational cost into consideration and the other is real time sub 

optimal path planning. An optimal path means ‘shortest possible path’. The difference in a robot 

and a MAV path planning is that a MAV has to maintain a certain velocity to minimize its time 

of span, which suggests that there might be some difficulties in following a path with sharp turn 

or vertices. This turn is basically the smallest size circular turn that the vehicle is capable of 

making. Many common path planning algorithms are inefficient when applied to micro air 

vehicle due to their turn radius and airspeed constraints. 

An effective path planner is the one that has the power to deal directly with the combination of 

the expected motion of the obstacles, the uncertainties in its location and how these uncertainty 

changes with time. So as to achieve the desired path for the MAV, several steps must be taken 

into account. Without these directions, MAV path planning will be in some unknown directions. 

These important steps are: 

a) MAV kinematics 

b) terrain information 

c) threat information 
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These are the factors which actually form the flight constraints that must be handled in motion 

planning procedure.  

2.3 Literature Review: 

Previous work in micro air vehicle motion planning includes Rapidly-exploring Random 

Tree (RRT) algorithm used by S. M. LaValle [7] and Peng Cheng [10] which randomly 

generates waypoints to span a configuration space. A sequence of waypoints is connected to the 

goal by avoiding obstacles that come on its way. Control inputs are applied to the states existing 

in the tree. However, it ends up in an open-loop solution. The modified RRT algorithm 

developed by Stephen Griffiths [6] differs from the basic RRT planner in a way that here the 

output states are being searched rather the inputs and generates as many waypoints on its path. 

For each waypoint path, it follows the desired MAV trajectory and make it sure that are only 

feasible paths in the search tree. Each branch of the tree is checked to ensure that the MAV has 

the collision free path throughout the configuration space. Another improved RRT algorithm that 

has been implemented by Jeffery B. Saunders [4] differs from the basic algorithm. The basic 

RRT algorithm which is an open loop path planner produces control inputs that are time-

parameterized, in moving from initial position to the goal position. So in this paper, extended 

RRTs were used in closed-loop path planning where MAV detected and avoided the obstacles 

successfully. Girish Chowdhary and John Ottander [1] discusses methods, algorithm and results 

for navigation and control of micro air vehicle  in GPS denied areas by using guidance, 

Navigation & Control (GNC) laws which takes information from available range sensors. The 

beauty of this method lies in the fact that for complex problem of indoor navigations, simple 

GNC laws proves to be efficient and robust. However, it has some limitations particularly with 

the design of those PID controllers that are dependent on range measurements only and these 

measurements are not as effective as the human pilots. Yohannes Ketema and Yiyuan J. Zhao [3] 

investigated that how wind patterns may affect the design of MAV trajectories. The effect of 

wind on MAV trajectory is done from the point of view of controllability and reachability sets 

for a given point. Controllability set is the set of points which helps in reaching at a given point 

within a given amount of time. Reachability set is the set of points in space where MAV can 

reach within a given amount of time and from a given location. The proposed problem 

formulation results in trajectories that arrive at the target state if possible, and to a nearby state, if 
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not. But they increase in the computation expense by catering too much waypoints on its way to 

the goal. For MAV navigation, Sayan Ghosh and Abhishek Halder [8] proposes  a fuzzy 

quadtree based path planner. Results show that these planners are more effective than the 

quadtree planner. This algorithm can significantly reduce both space and time complexity and 

still yield an optimal and safe path for the vehicle. Keeping in view the MAV’s kinematics and 

dimensions, the formulation done here shows how to take the minimum quad length. Here pixel 

level computation does not considered and also as compared to the conventional planner, 

execution time is less. Thus this proposed method results in a faster, cheaper and better solution 

for MAV path planning problem. Gargantini [12] proposes a computationally efficient method 

by using quadtree framework method. Here initially an image of the workspace is taken. Then 

that image is broken into quadtrees. Nodes or quads having obstacles are colored black and rest 

of the free passing nodes are colored white. Tree generated by connecting free nodes. It leads to 

a complete path but lacks optimality. Sayan Ghosh and Abhishek Halder [8] proposes a fuzzy 

quadtree based path planner. Keeping in view the MAV’s kinematics and dimensions, the 

formulation done here shows how to take the minimum quad length. Results show that these 

planners are more effective than the original quadtree planner. This algorithm significantly 

reduced both space and time complexity and still yielded an optimal and safe path as compared 

to the original quadtree planner. Here pixel level computation is not considered and also as 

compared to the conventional planner, execution time is less. Jeffery Saunders and Randal Beard 

[9] proposes a method for reactive obstacle avoidance for multiple obstacles with a guidance 

strategy based on observations, made in the image plane. Trajectory is generated in the form of 

tiers. The first tier reacts instantaneously to detect obstacles using a reactive guidance strategy 

based on a feedback control law. The second tier plans a waypoint path around obstacles locally 

in the body frame of the MAV. The third tier creates a global path from the current state till the 

end. Integration of these tiers into the fully function obstacle avoidance system will accomplish 

all goals of a trajectory generator but leads to a very high computation time. Rong Zhu and 

Zhaoying [11] proposed a path planning method by generating Delaunay weighted tree that 

expects to be an optimal and safe path for a MAV navigating in an urban terrain. In this method, 

polygonal obstacles are considered which shows good results for the urban terrain which results 

in less computation time while achieving closer to an optimized path if not the optimal. Ryan 

Donovan Hurley [2] proposes anew solution for MAV navigations in which vehicle’s path is 
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generated using two parts. In the first part, they combine 3-D motion primitives by using rapidly 

exploring random trees (RRT). This part travels along the obstacles. The second portion of the 

part uses 3-D Dubins Path to travel from the end of a tree branch to the goal or end point. The 

beauty of this work is that with no obstacle, the first portion i.e. RRTs can be excluded from the 

planning algorithm, thus making it computationally very efficient path planner. However Dubins 

approach showed one drawback that it could not be used to compute motion in which vehicle 

could move in the reverse direction. Paolo Fiorini and Zvi Shiller [13] proposes a new method in 

order to decrease the computational inefficiency of the algorithm by using velocity obstacle 

method. In this method, spherical obstacles are considered. A collision cone is drawn from the 

vehicle to the spherical obstacle and a velocity is set from the initial point in the direction of the 

goal. If that velocity lies inside the collision cone, then the new direction of the velocity is set in 

the direction of the closest tangent. The geometric nature of velocity obstacle method makes it 

suitable for planning of multiple mobile robots and such applications. Zhuoning Dong, Zongji 

Chen [17] proposes a hybrid algorithm that combines virtual force and A* search algorithm. A* 

was used to avoid the local minima problem that comes in the virtual force method. The solution 

provides an sub-optimal path but with good computational efficiency. 

2.4 Research Objective 

The objective of this research is to develop an optimal, fast and at the same time an 

inexpensive algorithm for the purpose of micro air vehicle navigation in static environment. 

Inexpensive algorithm means having minimum number of waypoints along the path. The method 

will be robust and will work for different combinations of obstacles position, initial and goal 

positions of the robot.  

2.5 Contribution 

Micro air vehicle is a very emerging area in research nowadays because of its 

applications in civil, military and rescue missions. Due to the state of the art technology and 

resources, remarkable work and achievements have been achieved but a lot of research has to be 

done yet. Research is being carried out from the last 12 years about the navigation of MAV. 

MAV path planning needs to provide an optimal and power efficient path.  
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In this report, an efficient path planner for the purpose of MAV path planning in static 

environment has been proposed. Results have shown that it proves to be an optimal and power 

efficient path planner. The robustness of this algorithm also ensures it performs well in different 

scenarios. 
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3. AN OVERVIEW OF NAVIGATION ALGORITHMS 

3.1 Obstacle Avoidance 

A key problem in the process of path planning is the obstacle avoidance. There are many 

algorithms which have their own worth when it comes to avoiding an obstacle. All of these 

algorithms try to avoid the obstacle with minimum path deviations and proving out to be a 

complete path planner. If a path planner either finds a solution for the given problem or gives the 

output that there is no path that exists for the given problem, then it is said to be a complete path 

planner. 

 In this work, we have considered the obstacles to be static i.e. not moving. A brief 

discussion various obstacle avoidance algorithms are given below. We know there are many 

conventional methods for obstacle avoidance used in motion planning techniques for similar 

scenario i.e. fixed target point and static obstacles. A few of these methods are: 

3.1.1 Bug Algorithm 

 Bug algorithms are the earliest and simplest sensor based path planners. These algorithms 

consider a robot as a point moving in the plane having contact sensors or a zero range for 

checking of an obstacle in the workspace. It does not use the range sensors. These algorithms are 

very straight forward and easy to implement. Results have proven that their success is guaranteed 

whenever it finds a path [18]. These algorithms follow two main principles. First is to move on a 

straight line and second is to follow a certain boundary. It follows the idea of navigating towards 

the goal and going around the obstacles. It can only detect an obstacle when it touches the 

obstacle. During navigation, the robot moves along a certain line towards the goal until it reaches 

the goal or obstructed by an obstacle. If it hits an obstacle, it then circumnavigates that obstacle. 

It then finds the nearest point to the goal, on going through the obstacle perimeter and traverses 

back to the original straight line path that would have been followed if there was no obstacle.  
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Fig 3.1: Path follows by a basic bug Algorithm [18] 

 

3.1.2 Tangent Bug Algorithm 

It is very much simpler to the basic bug algorithm but unlike the basic bug algorithms, which use 

tactile sensing, this method uses range sensing. This method requires only local knowledge of the 

environment, and of course can be useful even of whole environment is known [18]. This 

method governs when and how much to follow the boundary of obstacle and when to move 

towards the goal. It computes tangents on the boundary of an obstacle at any point, and moves 

the robot in that direction. These algorithms are restricted to two-directional configuration spaces 

and cannot work in the three-dimensional workspace. 

 

 



18 

 

 

Fig 3.2: Path follows by a tangent Bug Algorithm [18] 

 

 

3.1.3 Artificial Potential Fields 

In this method, we need global knowledge of the environment. It defines a gradient vector field 

for each point in the workspace. As the name suggests, it gives each point in workspace a 

gradient of some function. The goal or target generates an artificial attractive field and the 

obstacles generate repulsive field. Based on these two types of field, a resultant field is computed 

which helps navigation. The robot or vehicle moves in the direction of minimum resultant field 

i.e. the net attractive force acting on it. The most common problem of artificial potential field is 

that it ends up with local minima [18]. It is the case which happens when the total force acting on 

all the points in the workspace is zero and the robot has not reached its destination yet and it has 

no other point in the space to proceed which has some force value. The potential function of a 

point is constructed by 
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U(n) = Uattractive (n) +  Urepulsive (n)  ………………………….. (3.1) 

Where 

U(n) = total potential force of a point 

Uattractive (n) = attractive force that a node gets from the goal node. 

Urepulsive (n) =  repulsive force that a node gets from the obstacle. 

 

 

 

  Fig 3.3: Combination of attractive and repulsive linear potential fields [18] 

 

3.1.4 Navigation Potential Field 

The artificial potential fields method discussed above, has resultant field based on an 

attractive and some repulsive fields (equal to number of obstacles). This resultant field should 

ideally have only 1 minimum i.e. the goal. But in fact, the potential field method suffers from 
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problem of local minima, which are points that are not goal but have locally minimum resultant 

field and the robot or vehicle gets stuck in it because it cannot move to a direction of minimum 

field anymore. 

To avoid this problem, a method namely Navigation Field is used. This method also generates an 

artificial field, governed by its analytical relations by using knowledge of goal and obstacles. 

This method ensures to have only 1 global minimum and that is goal [18]. A function will be 

called a navigation function if: 

a) It is smooth. 

b) It has only one minimum in the configuration space and that minima must be the goal 

point ideally. 

c) It is uniformly maximal on free space boundary. 

 

3.1.5 Cell Decomposition 

In cell decomposition method (which has further specialized versions Exact Cell 

Decomposition and Approximate Cell Decomposition) is another method that requires global 

knowledge of the environment. In this method the environment is broken down to smaller 

regions called cells [18]. The boundaries of the cells which are shared often tell a physical 

meaning. Those cells which share the common boundary are adjacent cells. An adjacency graph 

depicts the adjacency relationship of these decomposed cells. When the cells decomposition is 

done, then path planning with these cells is done in two steps; 

a) First, the path planner determines those cells which occupy the start and goal nodes. 

b) Second, it searches for the obstacle free path by joining these decomposed cells in the 

adjacency graph.   

Two of the most common cell decomposition methods are: 

a) Trapezoidal Decomposition: It decomposes the cells into number of polygons for planner 

configuration space. 

b) Morse Decomposition: It shows more versatility with the representations of nonpolygonal 

and nonplanar spaces. 
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Fig 3.4: Trapezoidal Decomposition [18] 

 

 

 

Fig 3.5: Morse Decomposition [18] 
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3.1.6 Roadmaps 

Methods like Cell Decomposition use knowledge of that particular scenario to compute a 

feasible path from start to goal point. For different scenarios, the whole process is repeated every 

time which is not efficient if a vehicle has to plan its path frequently in a given environment. To 

address this problem, Roadmaps method is used. In this method, we build a roadmap of the given 

environment, which is similar to the concept of roads and highways used by humans [18]. Once a 

roadmap is built for an environment, then for every path planning scenario, we connect the 

vehicle start position with roadmap. The path of vehicle is planned on the roadmap till the point 

which is close and can be connected to the goal position. The most common roadmap is the 

visibility map. It applies to configuration spaces having polygonal obstacles. All different types 

of roadmaps has their own graph representation. 

 

 

 

Fig 3.6: Visibility map representation [18] 
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3.1.7 Probabilistic Roadmaps 

In probabilistic roadmaps, we do not use a fixed computational method to generate a 

roadmap. Rather we generate random possible samples or configurations or positions of the 

vehicle. The points which are found to be inside an obstacle are removed. We keep adding 

random points or samples till a path from start to goal is found by joining these points [18]. 

The probabilistic roadmap planner works in two phases. These are 

a) Construction Phase: In this phase, a roadmap (graph) is made, approximating different 

paths that can be followed in the workspace. 

b) Query Phase: In this phase, the start and goal nodes are connected to the roadmap, and 

the final  path is obtained by a search algorithm 

 

 

 

Fig 3.7: Probabilistic Roadmaps representation [18] 
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3.1.8 Velocity Obstacle Method 

The velocity obstacle method takes an input the current position of the vehicle, its 

velocity and information of obstacles and returns a feasible velocity which ensures that there is 

no collision with obstacles. It takes only circular obstacles in 2D and spherical obstacles in 3D. It 

converts vehicle into point vehicle. Radius of obstacles is increased as much the vehicles 

dimensions are reduced. Here, the length of vehicle is larger than its width (which is true for 

most of car-like nonholonomic vehicles). Also it increases the obstacle radius equal to the length 

of vehicle, because that is the larger dimension and it will give some safety margin as well. If Ro 

is the original radius of the obstacle, new radius of obstacle in C-Space will be ‘Ro + Ln’ 

where Ln is the length of the vehicle. Next, a collision cone is made. It is the cone defined by the 

tangents, drawn on new c-space obstacle from the point vehicle. If the original velocity of the 

vehicle lies inside the collision cone, then new velocity is generated in the direction of closest 

tangent [22]. 

 

 

Fig 3.8: Velocity Obstacle Method implementation [22] 
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3.2 Brief description of Search algorithms  

  A search algorithm is an algorithm for finding an optimal solution from the best available 

collection of items for a particular problem. These items might be stored in a database as records 

or they might be search space elements. The most common search algorithms which are used 

extensively for the purpose of UAV/MAV path planning are A* search algorithm and  

dijkstra algorithm.  

3.2.1 A* Search Algorithm 

A* is a search algorithm which is commonly used in the problem of finding an optimal 

path and graph traversal. Due to its better performance and accuracy, it is widely used in a search 

problem. This algorithm is first introduced by Peter Hart, Nils Nilsson and Bertram Raphael in 

1968. It is an extension of Edsger Dijkstra's algorithm  and heuristic function used in A* search 

is for the purpose to increase the speed of Dijkstra's algorithm which was introduced in 1959. 

Due to the use of heuristics in its searching approach, A* achieves better performance than the 

dijkstra’s algorithm. It along with other search algorithms examines a number of possible paths 

and gives an optimal solution. The total cost of each node traversed has a distance which is 

usually denoted by f(x) and is defined as “the sum of cost of current node from starting node and 

the heuristic cost from that node to the destination node”. 

f(x) = g(x) + h(x) …………………………….. (3.2) 

Where 

g(x) = cost of the current node from the starting node. 

h(x) = A "heuristic estimate" of the distance of that visited node to the goal node. 

The h(x) value of the function f(x) should be an admissible heuristic, i.e. it should not 

overestimate the distance to the goal. Normally, it is taken as the straight line distance between 

the current node and the goal node, since it actually gives the shortest distance between two 

points.  
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3.2.2 Dijkstra Algorithm 

Dijkstra's algorithm was first conceived in 1956 by a Dutch scientist, named Edsger 

Dijkstra. It was then published in 1959 as a graph search algorithm which can solve the problem 

of finding a shortest path among number of possible outcomes. Through dijkstra algorithm, for a 

particular node in the graph, it finds the path having lowest cost with every other vertex. It can 

also be used for finding costs of shortest paths from a single vertex to a single destination vertex 

by stopping the algorithm once the shortest path to the destination vertex has been determined.  

A* Search algorithm is an extension of dijkstra algorithm which was formulated in 1968 by 

 Peter Hart, Bertram Raphael and Nils Nilsson. Also one can say that dijkstra algorithm is a 

special case of A*, having h(x) value equal to zero. For dijkstra algorithm:  

f(x) = g(x)  …………………………… (3.3) 

Where 

g(x) = cost of the current node from the starting node. 

 

This is the basic difference between A* search algorithm and dijkstra algorithm that in dijkstra 

we do not take the heuristic function h (x) which is the straight line distance between the current 

node and the goal node. A* search algorithm is more a generalization of Dijkstra's algorithm 

which can be minimized on the size of the sub-graph which has to be explored. 

A* search shows better results by using  heuristic function. It has been successfully used 

for both land and aerial navigation. It gives the optimal path out of all possible solutions. For 

original A* to implement, the decomposition of the workspace is required especially from aerial 

navigation point of view as it gives different set of waypoints and by taking the combination of 

best waypoints, it leads to an optimal path. The workspace can be decomposed by using 

Delaunay triangulation method, voronoi diagrams etc. Through Delaunay triangulation, 

polygonal obstacles can be easily modeled and the workspace can be divided into flyable and 

obstacle triangles [11]. It shows very less computational expense but leads to a sub-optimal path. 

The Voronoi graph similar to Delaunay also provides a method to create waypoint path. These 

voronoi graphs and Delaunay are then searched through the proposed path planning algorithms 

normally A* search, dijkstra algorithm, eppstein’s k-best paths algorithm etc [16]. The final path 
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will may be the optimal considering the limitation of generated waypoints through the 

decomposition method and it may help in online path planning in which one might tackle with 

the moving obstacles and goal as in the case of guided missiles but from static environment point 

of view, it leads to a sub-optimal path and it may also have extra waypoints to be coped with 

during flight.  

The proposed algorithm developed in this work does not use any voronoi graph or 

Delaunay triangulations to create waypoints for the path planner instead it emit rays in the 

direction of goal. It is a hybrid type of an algorithm in which two driving steps (algorithms) are 

blended together in order to get the best results. As in the case of [17] in which the researchers 

have used a hybrid algorithm by combining virtual force and A* search algorithm in order to 

cater the problem of local minima which comes in the case of virtual force algorithm and tried to 

get an optimal solution. The hybrid algorithm also results in the increase of computational cost. 

In the proposed algorithm, the combinations of rays which give the best result are picked. More 

the number of rays are emitted in the configuration space, more will be the optimality but it will 

be less computationally efficient. But computational inefficiency is not something to bother 

about in our case as we are dealing in an environment which is static. Also this proposed 

algorithm not only helps in achieving an optimal path but a power efficient path i.e. it generates 

minimum number of waypoints on its way to goal which is the sole requirement for an MAV 

path planner.  

3.3 Proposed Algorithm (theory) 

The proposed algorithm’s search is different from [16] in which A* search algorithm is used, in a 

way that here the workspace is not decomposed into any polygons or quads and the original 

workspace remains as it is. In our proposed algorithm, we have tried to cut down the number of 

waypoints (turn points) for the MAV in order to make the system more power efficient and at the 

same time, we do not have to trade off on an optimal solution. In this thesis, we have used a 

hybrid approach that combines velocity obstacle method (VO) and depth first search (DFS) to 

navigate from initial position to goal position. VO method is normally used in dynamic 

environments [22] where we have pop up obstacles in addition to priori known obstacles on our 

way to the goal. DFS is a search technique that expands its first child node of the search tree and 

goes deeper and deeper until it finds the goal node. DFS is usually preferred to perform where 
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there is a limited depth and due to the fact that MAV has limited memory availability so one 

typically cannot use large data structures which other search algorithms do have for keeping 

track of the set of all previously visited nodes. So for the purpose of MAV path planning, we 

prefer DFS over other known search algorithms like A*, dijkstra etc. 

 
Fig 3.9: Depth First Search Tree [e] 

 

We emit number of rays in the workspace from the starting point and check each ray for 

the closest point to the goal (the point which makes shortest distance to the goal), before striking 

an obstacle. Either we will reach the goal, or the closest point to goal will become our turning 

point. From each turn point on a single ray, we again emit rays, and repeat the process of finding 

the next turning point, or the goal point. We may end up with many rays reaching the goal. So a 

set of all the rays which we have traversed till reaching the goal will make our path. Finally we 

will choose the path with the least cost just like A*.  We also refined that shortest path ray 

further in order to achieve optimality as it will be clear in the simulation results that with the 

proposed search technique, we may not get the optimal path but after refining, we get the optimal 

solution. After refining our path, we may further increase the computational cost of the algorithm 
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but that should not bother us as we are dealing in a known environment in which we have fixed 

obstacles and a fixed goal point. After further refining our proposed algorithm, the cost does not 

only improve but also the power efficient. That is why this proposed search algorithm has its 

worth when it comes to MAV path planning problem. Modification in the A* has been done 

previously [14],[15] and with good results but none has tried to refine it further which leaves a 

serious mark on its optimality. The proposed search algorithm takes input of vehicle initial 

position, goal position and obstacles position and returns a path which is optimal. 

Normally, the researchers have taken the cost as distance with the effort to minimize the number 

of turn points. But in our case, we have taken the cost as distance plus the turn point cost with the 

turn point has been assigned with a multiplying factor. We have taken this factor as 10 

Cost = total distance + (no. of turning points*10) 

We can define the cost function as:  

J = 
1

.
n

i

di a T


  ……………………………….. (3.4) 

Where 

d ∈ 2     

n = total no of paths 

di = length of the ith path 

a = no. of turns 

T = turn point cost 

The block diagram of our proposed algorithm is given below. 

When we found multiple paths in reaching goal point, the best path would be that path which has 

minimum cost and that would be calculated as: 
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 Best_Path = min ( J 1
, J 2

 , J 3
 , …………… J n

)  ………………… (3.5) 

 

 

Fig 3.10: Block diagram of the proposed algorithm 
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3.4 Proposed Algorithm (Description) 

 The methods discussed above all are for the scenario similar like ours, but there is a basic 

difference in our case i.e. we do not just want to reach the goal, rather we want to reach the goal 

in minimum number of turns. This is not addressed by planning methods discussed above. And 

for vehicles like MAV, this becomes a rather different task to generate such a method by 

avoiding obstacles. 

In our proposed algorithm, we emit number of rays in the workspace from the starting point in 

order to reach the goal. Also we emit rays in the direction of the obstacle tangent point in order 

to ensure the optimality. One of the rays is headed towards the goal point. If there is no obstacle 

in the path, then that ray will be our path. 
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Fig 3.11: Proposed algorithm (greater angle between rays) 

 

In fig 3.12, we emit rays in different directions and we can see that there is no obstacle in the 

direction of that ray which is heading towards the goal. So we will end up with straight line 

navigation despite of the fact that there were number of obstacles on its way but none of the 

obstacles was in the goal heading ray direction.  

The angle between the rays plays a critical role in algorithm’s optimality and computational 

efficiency. More the angle between the rays, more it will be computationally efficient but less 

will be its optimality. There will be a tradeoff between algorithm’s optimality and computational 

efficiency but in either case power efficiency of the algorithm will not be sacrificed. 

 

 

 

Fig 3.12: Proposed algorithm (lesser angle between rays) 
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Here we can see that, we have applied more rays in the workspace but it has given us the same 

result to that when applied to the earlier case which has rays with the larger angle or has 

minimum number of rays. This is simply because the goal heading ray has not been obstructed 

by any obstacle and we have the same path as we got previously with the lesser number of rays. 

This concludes that if the goal heading ray has not been obstructed, then we will have only one 

solution, no matters what angle between the rays has been taken. It only adds the computational 

cost if we keep on increasing the number of rays in the workspace. 

The pseudo code for obstacle avoidance for MAVis given below: 

 for i = no of obstacles 

Distance of 2P  from obstacle_centre  =  obstacle_centre - 2P  

if (Distance of 2P  from obstacle_centre  < radius of obstacle) 

Path is not safe; 

2P  = turnpoint1 

else 

 Path is safe 

 2P  = 1P  + incremental step; 

end if 

end for 

 

 

3.5 TANGENT POINTS GENERATION 

It is important to ensure the optimality of the path. So we generate some rays which are tangent 

to the obstacles and these tangent rays tend to give us the optimal results. Here we use equation 

of a circle and the cosine law to find the tangent points on a circle.  

Equation of Circle: 

x
2
  +   y

2

  =  r
2
  ………………………….. (3.6) 
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We know the radius of the circle and we know the circle points in x-axis. Points for x-axis lies in 

the range given below.  

circle_x_points = (center_x – rad) : 0.1 : (center_x + rad); 

So from the above equation of circle, we will find y-values of the circle. 

1y    = center_y + 
2 2(rad ( )x xpocircle ints center  ; 

2y  = center_y - 
2 2(rad ( )x xpocircle ints center  ;  

Now, from the Law of Cosine, we will find the tangent points on the respective circle. 

a
2
 = b

2
 + c

2
- CosAbc*2  ……………………………….. (3.7) 

where 

a = distance or length from start point to centre of circle 

b =  length from start point to tangent point 

c = radius of circle 

A = tangent angle 
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Fig 3.13: Tangent point generation 

 

The pseudo code for tangent point generation on the obstacles for MAV is given below: 

for  i = 1: length( 1y  ) 

Startpoint _center_distance =  sqrt ( (circle_center_y – start_point_y ) 2   + 

(circle_center_x – start_point_x ) 2 );  

tangent_line_1 = sqrt ( 1y  - start_point_y) 2  + (circle_x_point -  start_point_x) 2 ); 

tangent_angle_1 = (rad 2   + tangent_line_1 2   - Startpoint _center_distance 2 ) 

/(2*rad*tangent_line_1); 

if (tangent_angle_1 = 90) 

tangent1_xpoint = circle_x_point; 

tangent1_ypoint = circle_y_point; 
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end if 

end for 

for  j = 1: length( 2y  ) 

Startpoint _center_distance =  sqrt ( (circle_center_y – start_point_y ) 2   + 

(circle_center_x – start_point_x ) 2 );  

tangent_line_2 = sqrt ( 2y  - start_point_y) 2  + (circle_x_point -  start_point_x) 2 ); 

tangent_angle_2 = (rad 2   + tangent_line_2 2   - Startpoint _center_distance 2 ) 

/(2*rad*tangent_line_2); 

if (tangent_angle_2 = 90) 

tangent2_xpoint = circle_x_point; 

tangent2_ypoint = circle_y_point; 

end if 

end for 

 

Here for each value of y-points of a circle, we will keep on checking that at what point it makes 

the angle 90. That particular y-point and its corresponding x-point will be our tangent point. 

Since equation of a circle is a quadratic equation, so it will give us two tangent points on the 

circle from a particular start point 

Now coming back to the ray generation scheme, if the goal heading ray has been obstructed by 

an obstacle, then the optimality of the algorithm will depend on the number of rays that are 

spread in the workspace. Obviously, more the number of rays, more will be its optimality and 

lesser it will be a computationally efficient algorithm. 
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Fig 3.14: Ray heading goal is obstructed 

 

In fig 3.15, we can see that the goal heading ray is obstructed by an obstacle in its path, so we 

have to choose a path other than that ray which gives us the best optimal solution. Here clearly, 

we can see that it gives us the optimal solution and it gives us the best solution out of these 

inputs just like A* search and dijkstra algorithm. So for achieving further optimality, we refined 

our path so that we could get the better result out of it. One important thing to note that in 

achieving the best result, the robot just has to deviate from its path one time only. So by this 

proposed algorithm, we not just only getting the optimal results but also the power efficient 

solution as with each waypoint actuator is switched on & off which consume the vehicle battery 

power and we are doing just that.  
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Now we will see how the refined path will help in further reducing our cost.  

 

 

Fig 3.15: Proposed algorithm with the Refined Path 

 

We can see that after refining our path, we have made our algorithm stronger in claiming that it 

has achieved an optimal path keeping in view that number of turn points to that of the original 

proposed algorithm has not been increased.  

In refining, we check for the ray1 and ray2 that if we can further cut down our path. We check 

from ray1 on ray2 that which point from ray1 makes more difference from the original unrefined 

path keeping in view the position of all the obstacles. That combination of points on ray1 and 

ray2 are now our new path which we have termed as the refined path. 

The pseudo code for refining path is given below: 

for i = 1:P1_array 
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P1_array  = Ray1_points; 

for j = 1:P2_array 

P2_array  = Ray2_points;  

If (path_from_P1_array_to_ P2_array = obstacle free path) 

 New path = start_point to P1_array, P1_array to P2_array, P2_array to goal point;  

end if 

end for 

end for 

If (refined path < unrefined path) 

 New_path = refined path 

Else  

 New_path = unrefined path 

end if 

 

 

 

 

 

 

 

 

 



40 

 

4. IMPLEMENTATION 

4.1. Two Dimensional path planning 

 The proposed algorithm explained in Chapter 3 has been applied for path planning of 

MAV in static environment both in 2D and 3D. The implementation of the proposed algorithm 

for path planning in 2D and 3D is explained in this chapter. 

In our proposed algorithm, we emit number of rays in different directions in the workspace from 

the starting point in order to reach the goal. Then we applied depth first search algorithm in order 

to find the optimal solution. We will see in this chapter how the angle between the two rays or 

the number of rays emitted in the workspace affect the overall optimality of the algorithm. Also 

we will check the difference in cost between the refined and unrefined paths. Here green and red 

marks are showing the start point and red point respectively. We took circles as our obstacles as 

shown in the diagram below.  
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Fig. 4.1  UnRefined Path 1 

 

Here in the fig 4.1, we have not refined our path and this unrefined path is giving us the total cost 

129.5 +10=139.5. From the naked eye, we can see it is not the shortest path available but with 

only one turning point, it has the added advantage over the shortest path which we will see in the 

fig 4.2  

We take another look of difference in cost of refined and unrefined path. 

 

 

Fig. 4.2  Refined Path 1 

 

Here in the fig 4.2, RP stands for refined path which appears to be the shortest path but it has one 

extra turning point when we compare it to the unrefined path. Now according to our new cost 

definition, the total cost of the refined path is 124.3016 + 20 = 144.3016. This cost is clearly 

more than the unrefined cost which was 139.5. So our algorithm will give us the unrefined path 
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as our best path which has more distance but due to less number of turning points, it has lower 

cost than the refined path. Now we will see another example of the difference between the 

refined cost and the unrefined cost in fig 4.3. 

 

 

Fig. 4.3 UnRefined Path 2 

 

Here in the fig 4.3, we have not refined our path and this unrefined path is giving us the total cost 

92 + 10 = 102. Here 92 is the distance cost and 10 is the turning point cost. From the naked eye, 

we can see it is not the shortest path available but with only one turning point, it has the added 

advantage over the shortest path which we will see in the fig 4.4. 
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Fig. 4.4 Refined Path2 

 

Here in the fig 4.4, RP stands for refined path which appears to be the shortest path but it has one 

extra turning point when we compare it to the unrefined path. Now according to our new cost 

definition, the total cost of the refined path is 84.1322 + 20 = 104.1322. This cost is clearly more 

than the unrefined cost which was 102. So our algorithm will give us the unrefined path as our 

best path which has more distance but due to less number of turning points, it has lower cost than 

the refined path. Now we will see another example of the difference between the refined cost and 

the unrefined cost in fig 4.5 and 4.6. 
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Fig. 4.5 UnRefined Path 3 

 

Here in the fig 4.5, we have not refined our path and this unrefined path is giving us the total cost 

183+10=193. Here 183 is the distance cost and 10 is the turning point cost. From the naked eye, 

we can see it is not the shortest path available but with only one turning point, it has the added 

advantage over the path that looks to be the shortest path which we will see in the fig 4.6. 
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Fig. 4.6 Refined Path 3 

 

Here in the fig 4.6, RP stands for refined path which appears to be the shortest path but it has one 

extra turning point when we compare it to the unrefined path. Now according to our new cost 

definition, the total cost of the refined path is 182 + 20 = 202. This cost is clearly more than the 

unrefined cost which was 193. So our algorithm will give us the unrefined path as our best path 

which has more distance but due to less number of turning points, it has lower cost than the 

refined path. Now we will see another example of the difference between the refined cost and the 

unrefined cost in fig 4.7 and 4.8. 
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Fig. 4.7 UnRefined Path 4 

 

Here in the fig 4.7, we have not refined our path and this unrefined path is giving us the total cost 

112 + 10 = 122. Here 112 is the distance cost and 10 is the turning point cost. From the naked 

eye, we can see it is not the shortest path available but with only one turning point, it has the 

added advantage over the path that looks to be the shortest path which we will see in the fig 4.8. 
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Fig. 4.8 Refined Path 4 

 

Here in the fig 4.8, RP stands for refined path which appears to be the shortest path but it has one 

extra turning point when we compare it to the unrefined path. Now according to our new cost 

definition, the total cost of the refined path is 106.81 + 20 = 126.8086. This cost is clearly more 

than the unrefined cost which was 122. So our algorithm will give us the unrefined path as our 

best path which has more distance but due to less number of turning points, it has lower cost than 

the refined path. Now we will see another example of the difference between the refined cost and 

the unrefined cost in fig 4.9 and 4.10. 
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Fig. 4.9 UnRefined Path 4 

 

Here in the fig 4.9, we have not refined our path and this unrefined path is giving us the total cost 

208 + 10 = 218. Here 208 is the distance cost and 10 is the turning point cost. From the naked 

eye, we can see it is not the shortest path available but with only one turning point, it has the 

added advantage over the path that looks to be the shortest path which we will see in the fig 4.10 
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. 

Fig. 4.10 Refined Path 4 

 

Here in the fig 4.10, RP stands for refined path which appears to be the shortest path but it has 

one extra turning point when we compare it to the unrefined path. Now according to our new 

cost definition, the total cost of the refined path is 200.0812 + 20 = 220.0812. This cost is clearly 

more than the unrefined cost which was 218. So our algorithm will give us the unrefined path as 

our best path which has more distance but due to less number of turning points, it has lower cost 

than the refined path. Now we will see another example of the difference between the refined 

cost and the unrefined cost in fig 4.11 and 4.12. 
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Fig. 4.11 UnRefined Path 5 

 

Here in the fig 4.9, we have not refined our path and this unrefined path is giving us the total cost 

185.5 + 10 = 195.5. Here 185.8 is the distance cost and 10 is the turning point cost. From the 

naked eye, we can see it is also the shortest path available and with only one turning point and it 

cannot be further refined as it is giving us the shortest solution. So here refined path will be same 

as the unrefined path, i.e. 185.5 +10= 195.5.  Now we will see another example of the difference 

between the refined cost and the unrefined cost in fig 4.13 and 4.14. 
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Fig. 4.12 UnRefined Path 6 

 

Here in the fig 4.12, we have not refined our path and this unrefined path is giving us the total 

cost 215 + 10 = 225. Here 215 is the distance cost and 10 is the turning point cost. From the 

naked eye, we can see it is not the shortest path available but with only one turning point, it has 

the added advantage over the path but it has way too much distance cost as compared to the 

refined path which will clearly indicate that it will not be our best path but the best path will be 

the refined path which we will see in the fig 4.13. 
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Fig. 4.13 Refined Path 6 

 

Here in the fig 4.13, RP stands for refined path which appears to be the shortest path but it has 

one extra turning point when we compare it to the unrefined path. Now according to our new 

cost definition, the total cost of the refined path is 175.8982+20= 195.8982. This cost is clearly 

less than the unrefined cost which was 225. So our algorithm will give us the refined path as our 

best path which has less distance than the unrefined path, so finally, it has lower cost than the 

unrefined path. Now we will see another example of the difference between the refined cost and 

the unrefined cost in fig 4.14. 
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Fig. 4.11 UnRefined Path 7 

 

Here in the fig 4.9, we have not refined our path and this unrefined path is giving us the total cost 

107.5 + 10 = 117.5. Here 107.5 is the distance cost and 10 is the turning point cost. From the 

naked eye, we can see it is also the shortest path available and with only one turning point and it 

cannot be further refined as it is giving us the shortest solution. So here refined path will be same 

as the unrefined path, i.e. 107.5 + 10 = 117.5. 
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5. COMPARISON AND CONCLUSION 

5.1 Comparison of Results 

In this thesis, we have proposed a new method for the problem of finding a collision free 

path for a MAV moving in a static environment. Static environment means that both the 

obstacles and the target are fixed and that MAV has the global knowledge of its environment i.e. 

terrain map is pre-loaded in it. We took circles as our obstacles in 2D. Circles are the bounded 

circles. Any shape of the obstacle can be replaced by the bounded circles in 2D. The main 

advantage of the proposed algorithm is its simplicity of architecture, optimality, power efficiency 

and most importantly, its decision making whether to pick the refined path as best solution or the 

unrefined path which usually have lesser number of turn points as the best solution. This is a true 

advantage in a way that previously when researchers try to make their algorithm power efficient, 

they lose optimality with a considerable amount. Further refining of the proposed path helps in 

achieving the best results which might not be delivered from the unrefined path. 

However, the robustness of this algorithm also ensures it performs well in all scenarios. 

In this section, a comparison of results of this algorithm having both refined path and the 

unrefined path will be done with each other. We will not compare our algorithm results to the 

any other algorithm available in literature as no algorithm can give us the best solution in each 

and every scenario and also due to the fact we have changed our cost definition according to the 

need of the MAV flight as our cost definition is  

Cost = total distance + (no. of turning points*10) 

So comparison with the other existing algorithm will not justify our algorithm’s intelligent 

approach rather we will show how our algorithm behaves in a particular scenario when it has to 

pick a path from refined and the unrefined path. Although we have done it already in the 

previous chapter but just to conclude our debate, we are presenting the difference in this section 

also. 
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Fig. 5.1  UnRefined Path  

 

Here in the fig 5.1, we have not refined our path and this unrefined path is giving us the total cost 

129.5 +10 = 139.5. From the naked eye, we can see it is not the shortest path available but with 

only one turning point, it has the added advantage over the shortest path which we will see in the 

fig 5.2. 
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Fig. 5.2  Refined Path  

 

Here in the fig 5.2, RP stands for refined path which appears to be the shortest path but it has one 

extra turning point when we compare it to the unrefined path. Now according to our new cost 

definition, the total cost of the refined path is 124.3016 + 20 = 144.3016. This cost is clearly 

more than the unrefined cost which was 139.5. So our algorithm will give us the unrefined path 

as our best path which has more distance but due to less number of turning points, it has lower 

cost than the refined path.  

So this comparison will justify our debate that how critical are the turning points when it comes 

to MAV path planning. 
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5.2 Conclusions 

In this thesis, we proposed a hybrid algorithm that combines VO method and DFS 

algorithm for the path planning of micro air vehicle (MAV) in static environment. MAV path 

planner needs to provide an optimal and power efficient path. Power efficient means it consume 

minimum power on its way towards goal. So to minimize this power as much as possible, 

researchers have done a lot of work. MAV path planner is being established based on the 

minimum number of turn points on its way to the goal as with each turn point actuator is 

switched on & off which consume the vehicle battery power and also the planner provides an 

optimal path. 

In this thesis, we proposed a path planner which provides the best results in terms of 

optimality and power efficiency and also it is an intelligent search algorithm which tells us the 

best solution out of the refined and unrefined path based on the cost function which has been 

presented for the NAV navigation scheme. It may take a bit longer time for the algorithm to 

execute but it does not bother us as the planner is made for the path planning in static 

environment in which the environment is known and path planning can be done offline. There is 

always a tradeoff between algorithm’s optimality, power efficiency and computational 

efficiency. For the case of offline path planning, we can compromise on computational 

efficiency. 

Detailed simulations results show the effectiveness of this algorithm. Different scenarios 

are presented in results of the algorithm to show the robustness. This also shows that the 

proposed method can be easily applied for any environment. The results have shown that it 

works best and has given better results in terms of optimality and power efficiency. 

5.3 Recommendations and Future Work 

 The proposed algorithm is a hybrid algorithm which has been implemented on software. 

In future, it would be implemented on the hardware as well. In this thesis, we have designed our 

algorithm for 2-D environment where we have taken circles as obstacles. In future, we will also 

look to add this hybrid approach in 3-D environment where we will replace circles as obstacles 

with spheres as obstacles.  
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As this work is done in static environment where the obstacles are fixed, the work or algorithm 

can be implemented in a dynamic environment where obstacles are moving which will give us 

more realistic results as normally we deal with flying objects in 3-D space. 

This work can also be applied on unmanned ground vehicles (UGVs) and unmanned underwater 

vehicles (UUVs) as the algorithm is not only restricted to micro air vehicles. 
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