
An Efficient Approach to Identify Key

Classes of Software to Assist Initial Program

Comprehension

 By

Muhammad Kamran

(2009-NUST-MS PhD-CSE (E)-04)

Submitted to the Department of Computer Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

in
Computer Software Engineering

Advisor
Dr. Farooque Azam

College of Electrical & Mechanical Engineering
National University of Sciences and Technology

2013

i

APPROVAL

It is certified that the contents and form of thesis entitled “An Efficient Approach

to Identify Key Classes of Software to Assist Initial Program Comprehension”

submitted by Muhammad Kamran, have been found satisfactory for the requirement

of degree.

Advisor: __________________

(Dr. Farooque Azam)

 Committee Member: _________________

(Dr. Aasia Khanum)

Committee Member: _________________

(Dr. Arslan Shaukat)

 Committee Member: _________________

(Dr. Muhammad Abbas)

ii

IN THE NAME OF ALMIGHTY ALLAH

THE MOST BENEFICENT AND THE MOST

MERCIFUL

TO MY PARENTS, WIFE

AND SON

iii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another person,

nor material which to a substantial extent has been accepted for the award of any

degree or diploma at NUST CEME or at any other educational institute, except where

due acknowledgement has been made in the thesis. Any contribution made to the

research by others, with whom I have worked at NUST CEME or elsewhere, is

explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project’s design and conception or in

style, presentation and linguistics which has been acknowledged.

Author Name: Muhammad Kamran

Signature: ______________

iv

ACKNOWLEDGEMENTS

First of all I am extremely thankful to Almighty Allah for giving me courage and

strength to complete this challenging task and to compete with international research

community. I am also grateful to my family, especially my parents who have

supported and encouraged me through their prayers that have always been with me.

I am highly thankful to Dr. Farooque Azam for his valuable suggestions and

continuous guidance throughout my research work.

I am highly grateful to the committee members for their help and guidance

throughout the research work. I am also thankful to all of my teachers who have been

guiding me throughout my course work and have contributed to my knowledge. Their

knowledge, guidance and training helped me a lot to carry out this research work.

I am also thankful to Mr. Amer Shahzad for his keen interest, guidance and

feedback in this research work. I would like to offer my gratitude to all my close

colleagues who have been encouraging me throughout my research work especially

Mr. Muhammad Shahzad.

Muhammad Kamran

v

ABSTRACT

The constant modification of software systems, the increasing size of the software

and the expensive development process are the factors that are responsible for the

increase in the amount of the effort that is being expended on the maintenance phase.

Mostly each maintenance cycle is performed to achieve a specific goal, for instance

improving the efficiency of a procedure, provision of new application features,

assembling existing components into the new software and so on. A programmer will

not be able to achieve any of the above goals unless he understands the particular

software at a sufficient level of detail that allows him to implement the desired change

in the system. The process of exploring the software and its associated artifacts with

the aim to gain knowledge about the inner workings of the system for carrying out the

necessary changes in the system is termed as program comprehension.

The process of building an understanding of the existing system is time consuming

and takes around 40% of the allocated time for a maintenance task. How a new

software developer proceeds to build an initial acquaintance with the original software,

differs a lot and depends on a number of factors like the experience of the individual,

the size and type of the software, the level of detail required to modify the system and

so on. Numerous efforts have been made to reduce the time consumed in the program

comprehension process by providing support to the programmer during this phase. The

key contribution of this thesis is a heuristic approach that can aid the programmer in

searching the key classes of software that are ideal nominees for the initial stages of

the program comprehension process.

Full automation of the process of developing an understanding of the program is not

possible since it involves human learning activity. Therefore, it has been suggested

that the specialized tools should help the programmer discover the software amicably.

The segments of the program that can be attractive from the comprehension viewpoint

must be brought into the notice of the programmer by the exploration tools. In our case

the program discovery tool should pinpoint the key classes of the object-oriented

system that are fundamental to its design.

vi

TABLE OF CONTENTS

ABSTRACT .. V

TABLE OF CONTENTS .. VI

LIST OF PUBLICATIONS ... X

LIST OF FIGURES ... XI

LIST OF TABLES ... XII

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 MOTIVATION ... 1

1.2 BACKGROUND ... 2

1.3 PROBLEM STATEMENT ... 2

1.4 PROPOSED SOLUTION .. 3

1.4.1 DYNAMIC COUPLING BASED SOLUTION ... 3

1.5 PUBLICATION .. 4

1.6 ORGANIZATION OF THE THESIS ... 4

CHAPTER 2 .. 5

LITERATURE REVIEW .. 5

2.1 PROGRAM COMPREHENSION .. 5

2.2 MODELS OF PROGRAM COMPREHENSION ... 7

2.2.1 TOP-DOWN MODEL OF PROGRAM COMPREHENSION ... 7

2.2.2 BOTTOM-UP MODEL OF PROGRAM COMPREHENSION ... 8

2.2.3 INTEGRATED MODEL ... 9

2.3 PROGRAM ANALYSIS APPROACHES FOR COMPREHENSION .. 10

2.3.1 DYNAMIC ANALYSIS VS. STATIC ANALYSIS ... 10

2.4 THE DYNAMIC ANALYSIS APPROACH FOR PROGRAM COMPREHENSION 10

2.4.1 DYNAMIC ANALYSIS FACILITATES TARGET-ORIENTED COMPREHENSION 10

2.4.2 DYNAMIC ANALYSIS REVEALS ACTUAL PICTURE OF POLYMORPHISM (LATE BINDING) 11

vii

2.4.3 TECHNOLOGICAL SUPPORT FOR DYNAMIC ANALYSIS OF PROGRAM 12

2.4.4 THE CONSEQUENCES OF OBSERVING – OBSERVER EFFECT ... 13

2.4.5 THE PERILS OF DYNAMIC ANALYSIS ... 14

2.5 USE OF COUPLING FOR PROGRAM COMPREHENSION .. 15

2.5.1 WHAT IS COUPLING? ... 15

2.5.2 WHY DYNAMIC COUPLING METRICS? .. 16

2.5.3 POSSIBLE VARIATIONS FOR CALCULATING DYNAMIC COUPLING METRICS 16

2.5.4 HOW THE DYNAMIC COUPLING METRICS ARE CALCULATED .. 19

2.6 KEY CLASSES OF SOFTWARE .. 22

2.6.1 EXISTING APPROACHES TO IDENTIFY KEY CLASSES OF SOFTWARE 23

CHAPTER 3 .. 27

OVERVIEW OF TECHNOLOGIES USED IN THIS RESEARCH .. 27

3.1 INTRODUCTION TO THE TECHNOLOGY USED FOR DYNAMIC ANALYSIS 27

3.1.1 AN OVERVIEW OF ASPECTJ ... 27

3.1.2 WHAT ARE JOINPOINTS? ... 28

3.1.3 THE ROLE OF POINTCUTS .. 28

3.1.4 ADVICES ... 33

3.1.5 THE ROLE OF ASPECTS .. 34

3.1.6 WHAT IS LOAD-TIME WEAVING (LTW)?.. 34

CHAPTER 4 .. 37

RESEARCH METHODOLOGY .. 37

4.1 RESEARCH METHODS .. 37

4.1.1 CONDUCTING A SURVEY ... 37

4.1.2 CONTROLLED EXPERIMENTATION ... 38

4.1.3 CASE STUDY ... 38

4.2 THE ORGANIZATION OF THE EXPERIMENTAL SYSTEM ... 39

4.2.1 SELECTION CRITERIA FOR THE CASE STUDY .. 39

4.2.2 SELECTION OF USE CASE FOR TRACING .. 39

4.2.3 THE BASELINE FOR THE EXPERIMENT .. 40

4.2.4 OUTCOME ... 40

viii

4.3 OVERVIEW OF THE 1ST CASE STUDY -- APACHE ANT .. 41

4.3.1 WHAT IS APACHE ANT? .. 41

4.3.2 USE CASE FOR TRACING ... 41

4.3.3 ARCHITECTURE OF ANT .. 42

4.4 OVERVIEW OF THE 2ND CASE STUDY – JAKARTA JMETER ... 44

4.4.1 WHAT IS JAKARTA JMETER? ... 44

4.4.2 USE CASE FOR TRACING ... 45

4.4.3 ARCHITECTURE OF JMETER .. 45

CHAPTER 5 .. 47

THE PROPOSED APPROACH .. 47

5.1 PROBLEMS WITH EXISTING APPROACHES TO IDENTIFY KEY CLASSES 47

5.2 BASIC IDEA BEHIND OUR APPROACH ... 48

5.2.1 HYPOTHESIS .. 48

5.3 IMPLEMENTATION ... 53

5.3.1 START THE SYSTEM USING ASPECTJ LIBRARY .. 53

5.3.2 RUN THE INSTRUMENTED SYSTEM AND CALCULATE METRICS ... 54

5.3.2.1 Algorithm for Calculation of Dynamic Coupling Metric ... 55

5.3.2.2 Flow of activities for calculation of Dynamic Coupling Metric 57

5.3.3 RANK THE RESULTS .. 58

5.3.4 SYSTEM REQUIREMENTS ... 58

5.4 HOW THE PROPOSED APPROACH IS EVALUATED AND VALIDATED 58

5.5 PRACTICAL USE OF OUR APPROACH ... 59

CHAPTER 6 .. 60

RESULTS AND EVALUATION ... 60

6.1 RESULTS OF 1ST CASE STUDY – APACHE ANT ... 60

6.2 EVALUATION OF 1ST CASE STUDY – APACHE ANT ... 62

6.2.1 CRITERIA USED FOR EVALUATION .. 62

6.2.2 PRECISION COMPARISON ... 63

6.2.3 RECALL COMPARISON ... 64

6.2.4 FALLOUT COMPARISON .. 64

ix

6.2.5 F-MEASURE COMPARISON ... 65

6.2.6 TIME USAGE – (EFFORT TO PERFORM THE COMPLETE ANALYSIS, FROM START TO FINISH) 66

6.3 RESULTS OF 2ND CASE STUDY – JAKARTA JMETER ... 68

6.4 EVALUATION OF 2ND CASE STUDY – JAKARTA JMETER ... 69

6.4.1 PRECISION COMPARISON ... 69

6.4.2 RECALL COMPARISON ... 70

6.4.3 FALLOUT COMPARISON .. 70

6.4.4 F-MEASURE COMPARISON ... 71

6.4.5 TIME USAGE – (EFFORT TO PERFORM THE COMPLETE ANALYSIS, FROM START TO FINISH) 72

6.5 AN OUTLINE OF ACHIEVEMENTS IN THIS RESEARCH .. 73

CHAPTER 7 .. 74

CONCLUSION AND FUTURE WORK .. 74

7.1 CONCLUSION ... 74

7.2 CONTRIBUTION ... 75

7.3 FUTURE WORK .. 76

x

LIST OF PUBLICATIONS

[1] Muhammad Kamran, Farooque Azam, Asia Khanum, “Discovering Core
Architecture Classes to Assist Initial Program Comprehension”, Lecture Notes in
Electrical Engineering Volume 211, 2013, pp 3-10, Springer Berlin Heidelberg.

xi

LIST OF FIGURES

Figure 1: A Simple Sequence Diagram .. 19

Figure 2: Another Simple Sequence Diagram ... 20

Figure 3: Slightly Complicated Sequence Diagram ... 21

Figure 4: Key Classes of Object-Oriented Software [8] .. 23

Figure 5: Using WMC and DAC to identify Key Classes [23] 24

Figure 6: A Compacted Call Graph [24] .. 24

Figure 7: HITS Webmining Algorithm [25] .. 25

Figure 8: Indirect Coupling example [12] .. 25

Figure 9: Simple Advice example before/after call of public method 33

Figure 10: Advice example that uses context collected by target 34

Figure 11: Class diagram showing 5 important classes of Apache Ant 43

Figure 12: Core Structure Analogy from Civil Engineering 48

Figure 13: Sample Sequence Diagram to calculate IC_CMS 50

Figure 14: Slightly Complicated Sequence Diagram to Calculate IC_CMS 51

Figure 15: Overview of the Approach ... 53

Figure 16: Load-time weaving of Application Classes using aspectjweaver.jar 54

Figure 17: Flow of activities for calculation of dynamic coupling metric 57

Figure 18: Comparison of Precision % -- Apache Ant .. 63

Figure 19: Comparison of Recall % -- Apache Ant ... 64

Figure 20: Comparison of Fallout % -- Apache Ant .. 65

Figure 21: Comparison of F-Measure % -- Apache Ant .. 66

Figure 22: Comparison of time usage of approaches – Apache Ant 67

Figure 23: Comparison of Precision % -- Jakarta JMeter .. 69

Figure 24: Comparison of Recall % -- Jakarta JMeter ... 70

Figure 25: Comparison of Fallout % -- Jakarta JMeter .. 71

Figure 26: Comparison of F-Measure % -- Jakarta JMeter 72

Figure 27: Comparison of time usage of approaches – Jakarta JMeter 73

xii

LIST OF TABLES

Table 1: Tasks and activities requiring code understanding [6] 6

Table 2: Variations of Dynamic coupling measures [10] .. 17

Table 3: Dynamic Coupling Metrics [10] .. 18

Table 4: Calculating Dynamic Coupling Metrics – Simple Sequence Diagram 19

Table 5: Calculating Dynamic Coupling Metrics – Only Two Classes Involved 20

Table 6: Calculating Dynamic Coupling Metrics – Complex Sequence Diagram .. 22

Table 7: Summary of existing approaches to identify Key Classes of Software 26

Table 8: Pointcuts for call to constructors/methods ... 28

Table 9: Poincuts for execution of constructors/methods .. 29

Table 10: Dynamic coupling measures [10] .. 49

Table 11: Calculating IC_CM and our extended version of IC_CM 50

Table 12: Calculating Dynamic Coupling Metrics .. 52

Table 13: System Specifications .. 58

Table 14: Classes identified by our approach (Top 15%) – Apache Ant 61

Table 15: Comparison of Precision % -- Apache Ant .. 63

Table 16: Comparison of Recall % -- Apache Ant .. 64

Table 17: Comparison of Fallout % -- Apache Ant ... 64

Table 18: Comparison of F-Measure % -- Apache Ant ... 65

Table 19: Details of results for Time Usage – Apache Ant 67

Table 20: Classes identified by our approach (Top 15%) – Jakarta JMeter 68

Table 21: Comparison of Precision % -- Jakarta JMeter ... 69

Table 22: Comparison of Recall % -- Jakarta JMeter .. 70

Table 23: Comparison of Fallout % -- Jakarta JMeter ... 70

Table 24: Comparison of F-Measure % -- Jakarta JMeter 71

Table 25: Details of results for Time Usage – Jakarta JMeter 73

1

CHAPTER 1

INTRODUCTION

An introduction to the research work that has been taken in this thesis is presented

in this chapter. It includes motivation and definition of the problem. Moreover the

objectives and goals are also discussed.

1.1 Motivation

Software development of an entirely new project is amusing. You can utilize the

power of your ingenuity when building the software from scratch. You are free to

decide the variable set of parameters that include the hardware and software

architecture of the system, the choice of the technology set, the design patterns to be

followed and so on. Moreover, the choice of the programming language can be made

based on the available expertise and the ease of development offered by the language

platform.

Since change is the only constant in this world, therefore changes are inevitable in

the environment in which the software operates. Software must be changed in response

to the changes in the environment to fulfill the expectations of the users and to avoid

the threat of being outdated. The maintenance phase of already built software brings

more miseries to the life of the software developers as compared to the development of

a new software project.

The most challenging and the most expensive (in terms of time usage) part of

software maintenance is the effort to build an understanding of the existing system,

also known as program comprehension. Usually the documentation and other

associated software artifacts are utilized for this process, but in many cases these

artifacts are either not available or they do not reflect the current state of the system.

To help the software developer in this kind of a situation, a solution is discussed in this

thesis that can be used in the early stages of program comprehension process. Our

2

solution is based on the dynamic analysis of the software, in other words we collect the

information from the running software system.

1.2 Background

The programmer needs to build a perceptive association in his mind when

programming a piece of software. This association binds the code that has been written

by him and the system actions he wants to program [19]. On the other hand, while

trying to get acquaintance with the system, in fact a programmer is struggling to figure

out the reverse mapping: i.e. building an association between the external behavior (or

functionality) of the system and the underlying code that is responsible for that

behavior.

The literature suggests that the program comprehension phase is known to consume

between 30 to 60% (depending on the source) of a software engineer’s time. To build

an adequate understanding of a software system, the programmer needs to study the

program code, associated software artifacts and related documents in the program

comprehension phase [2, 3]. The adequate level of understanding is identified as a

level where the programmer knows that the system architecture, design or functionality

will not be hurt by the change that he is making.

1.3 Problem Statement

It has been demonstrated by empirical studies that the majority of experienced

developers track the structural dependencies in the source code when they need to

derive the high-level model related with the upfront task [7].

On the other side, many greenhorn developers, employed to an unknown system

might be trapped in insignificant code easily and do not succeed in finding the vital

program functionality, that could result in low trait software maintenance [7] or

wastage of time.

In this research, we aim to reduce the problem of program comprehension by

providing the programmer with a small number of preliminary classes, which can be

utilized to begin the tracking of structural dependencies in order to gain familiarity

3

with the system. Our main goal is to devise an efficient approach that can assist the

software developer in the initial stages of program comprehension process.

1.4 Proposed Solution

We propose that the key classes of the software are the ideal candidates to start the

program comprehension efforts as these classes implement the key concepts of the

system. We have devised an efficient approach that identifies the key classes of

software using an extended version of dynamic coupling metric.

1.4.1 Dynamic coupling based solution

The alleviation of the afore-mentioned problems has been taken in this thesis. The

underlying thought for utilizing the coupling is the fact that the modules that are

considered important for first round of program comprehension process can be pointed

out by structural dependencies that are present in the system [15]. We have used a

novel variant of a dynamic coupling metric, which requires an execution scenario

offering good code coverage. The dynamic coupling metric provides us with all

interactions that take place at runtime. A high count of coupling in a module indicates

that it requests other modules to do majority of work (delegation) and often serves as a

part of the core structure.

Typically the coupling is measured between two classes/modules of the system,

whereas we are interested in the discovering the entire structural topology (specifically

the core part of the structure) of the application. We have used AspectJ for run-time

analysis of Java applications to retrieve key classes of system by calculating a novel

variant of dynamic coupling metric. The key classes could reveal important structural

properties of the system and hence are strong candidates for the early program

comprehension process. They can be a good starting point to understand additional

classes and their connections.

The outcome of our heuristic is a ranked list containing all those classes of the

system that were instantiated or whose method(s) were called during the execution

scenario. The ranking of the classes is done on the basis of our variant of dynamic

4

coupling metric that takes into account the loading order of the class in the application.

In simple words, the classes are ranked based on their relevance to the initial stages of

program comprehension. The validation of our approach is done using two open

source systems as case study, namely Apache Ant 1.6.1 and Jakarta JMeter 2.0.1. The

results are compared with the results of other analogous experiments performed on the

same Guinea Pig Systems (Apache Ant 1.6.1 and Jakarta JMeter 2.0.1).

1.5 Publication

This thesis has produced the following publication:

• Muhammad Kamran, Farooque Azam, Assia Khanum, “Discovering Core

Architecture Classes to Assist Initial Program Comprehension”, Lecture

Notes in Electrical Engineering Volume 211, 2013, pp 3-10, Springer Berlin

Heidelberg

1.6 Organization of the thesis

The rest of the document is organized as follows:

Chapter 2 is allocated to literature review which discusses different concepts related

to Program Comprehension. The existing approaches for discovering key classes are

also described. In Chapter 3 overview of the technologies used in this thesis is

provided, Chapter 4 discusses the research methodology followed by us. In Chapter 5,

the proposed approach is presented and its implementation details are provided.

Chapter 6 discusses evaluation and results of the implemented system, and in Chapter

7 thesis work is concluded and some future directions for research are discussed.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Program Comprehension

When a programmer is at the start of building an initial knowledge base of a new

system or a subpart of the system, he has to construct an informal, human oriented

view of the objectives of the system. The formation of this view happens in the course

of scrutiny, experimentation, deduction and jigsaw-like assembly [4].

As far as the definition of program comprehension is concerened, we stick to the

definition introduced by [4]:

“A person understands a program when able to explain the program, its structure,

its behavior, its effects on its operation context, and its relationships to its application

domain in terms that are qualitatively different from the tokens used to construct the

source code of the program.”

From the above definition, it can be figured out that the program comprehension

process is correlated to the problem of concept assignment. For a given program, the

individual programmer discovers the human oriented concepts and maps them to their

implementation oriented equivalents [7]. It becomes obvious that the program

comprehension is an extremely individual process. The results differ greatly from one

programmer to another, even when the understanding of the software is being built in

the same way.

The process of building an understanding of a software system is different for

individual programmers. Past experience of the similar nature, the level of knowledge

required for the upfront task, the sheer size of the system to be studied, the

programming language used for the system, prior knowledge of the system under

study, etc. are the factors that affect the program understanding process [5]. Theory

suggests that it is essential to comprehend the whole system prior performing any

modifications, but practical experiences dictate that it is preferable to utilize a target

oriented approach or need-based ploy. That means you are specifically interested in

6

obtaining the understanding of the particular subset of the program that is relevant to

the maintenance task you have. Furthermore, economical constraints imply that this

knowledge should be gained rapidly and comprehensively.

The first thing that we will try to explain in this chapter is the necessity of program

understanding in the maintenance/reengineering phase, after that some prominent

program comprehension theories will be discussed.

The need for program understanding: The understanding of the program is a

necessary requirement for the software (re)engineering activities. Authors in [6] have

made a list of specific scenarios in software maintenance for which program

comprehension is a compulsory requirement [6]. An overview of these maintenance

activities is provided in Table 1.

It is evident from Table 1 that majority of software maintenance activities in routine

necessitate an adequate level of knowledge of the application to be maintained. The

link between software evolution and program comprehension is established by the fact

that majority of software evolution activities involve prior understanding of the

software system.

Since we know that most software maintenance/reengineering processes include a

prior program comprehension phase that can consume up to sixty percent of the

programmer’s time [1, 3], hence the improvement in the efficiency of this phase can

increase the overall efficiency significantly.
Table 1: Tasks and activities requiring code understanding [6]

Maintenance Tasks Activities

Adaptive 1) Gain System Understanding
2) Define requirements for adaptation
3) Develop adaptation design (preliminary and detailed)
4) Change Code, Debugging, Regression testing

Perfective 1) Gain System Understanding
2) Diagnose/Define requirements for improvements
3) Develop perfective design (preliminary and detailed)
4) Change Code, Debugging, Regression testing

Corrective 1) Gain System Understanding
2) Produce/Assess problem hypotheses
3) Fix the code, Regression testing

7

Reuse 1) Gain Problem Understanding
2) Search for a ‘close fit’ solution based on reusable components
3) Obtain reusable components and perform Integration

Code leverage 1) Gain Problem Understanding
2) Search for a ‘predefined components’ based solution
3) Organize solution to raise chances of predefined component usage
4) Obtain predefined components and perform Integration

2.2 Models of Program Comprehension

It has already been mentioned that program comprehension is an extremely

individual process. How a software engineer performs and achieves the targets of his

program understanding process is influenced by a number of factors. Some of the

factors (which can very subjective at times) have been mentioned by [6] are listed

below:

• The experience of the programmer

• Familiarity with the similar solution

• The complexity of the system

• The level of familiarity with the problem domain

• The amount of time available

The existing approaches for the program comprehension process have been

extracted from the studies that lie on the border line of psychology and computer

science. Primarily, these approaches can be broken down into three models of program

comprehension: i) the top-down model, ii) the bottom-up model, iii) the integrated

model (a hybrid of the preceding two models) [6]. Now we will explain each of these

models.

2.2.1 Top-down model of program comprehension

When the code of the software system, its problem domain and/or associated

solution space is known to the programmer, top-down understanding is typically

applied [6]. This originates from the thought that if a piece of code, that performed the

identical or comparable tasks, has already been learnt by the software engineer, then

the structure of the code will have similarities. In a top-down model of program

8

understanding, these similarities in the structure of the code are straightforward to

identify.

In the top-down model, typically a software engineer already has a perceived sketch

of the structure of the software in his mind when he goes about his program

understanding process. This perceived sketch can come from prior encounters with

similar system in the same domain, utilizing comparable technology set, etc. or from

suggested best practices/guidelines in the coding, documentation or associated

artifacts. The ability to associate the current solution with previously seen construct

based on a trigger of memory is called a beacon in program comprehension

terminology. An excellent example of a beacon in software engineering terminology is

design pattern, e.g. a DAO (Data Access Object) pattern, which is a signal about the

organization of the persistence layer in the system.

In the top-down program comprehension model, the perceived sketch of the

structure of the system is concluded in multiple rounds using hypotheses and the

results of hypotheses about the software system. The refinement of hypotheses is done

in iterations, after going through a number of levels, until a match is found in the

associated artifacts (specific entity in the program code, documentation, or

configuration file) [6].

2.2.2 Bottom-up model of program comprehension

The non-familiarity with the code and/or problem domain frequently results in the

choice of bottom-up comprehension model by the software engineer. The two

variations of the bottom-up model are described in this section.

Program model: The authors in [20] found that the initial picture built in mind

when code is completely new to programmers, is the control-flow abstraction of

program known as program model. This initial picture, assembled by means of

beacons in the bottom-up fashion, discovers the major portions of code in the program.

The program model is formed by the amalgamation of microstructures into

macrostructures and by means of cross-referencing. Creation of bigger entities from

small blocks for explanation is amalgamation, whereas cross-referencing builds a

9

relationship of these bigger entities with a higher abstraction level. The example of

cross-referencing can be the chunking of all classes working jointly to form a linked

list. Then understanding the intention behind this linked list is cross-referencing this

list to more abstract level.

Situation model: The situation model is another model that authors in [20] have

identified. This model provides an abstraction of dataflow/functionality while

operating in a bottom-up manner. The understanding of the currently implemented

practices/domain of the system is a pre-requisite for the applicability of this model. A

simple instance of such kind of program comprehension in bottom-up manner is

relating the statement in code stockCount = stockCount - salesCount to a descriptive

statement like “reducing the stock count by the number of sales count”. The

amalgamation of situation knowledge at lower level with the situation knowledge at

higher level can be exercised here as well. As soon as the goal of program is achieved,

the situation model is ended.

2.2.3 Integrated model

The top-down model, bottom-up models (program/situation model) and a

knowledge base constitute the integrated model for code comprehension. Usually, the

human memory serves as the knowledge base and it serves as storage for the

following:

(1) All the knowledge that is gained directly by applying the program

comprehension strategies (top-down or bottom-up)

(2) Any derived or indirectly obtained information.

The most frequently applied model in practice when trying to comprehend

industrial systems is the integrated model. This is because of the fact that particular

segments of the code may be recognizable by the programmer due to past encounters

while there may be segments in the code that are entirely novel.

10

2.3 Program Analysis Approaches for Comprehension

2.3.1 Dynamic Analysis vs. Static Analysis

The examination of the properties of the system (that needs to be studied) using the

knowledge acquired from the running system is known as dynamic analysis, in

software engineering.

The static analysis is positioned opposite to the concept of dynamic analysis. In

static analysis the knowledge about the system is gathered using the artifacts such as

the source code, documentation related to the system, configuration files, etc. to

examine the properties of the system.

The execution trace of the software system needs to be generated as a pre-requisite

to enable dynamic analysis of the software. The structure for the storage of the runtime

information is referred as the execution trace. The software system needs to be

executed using a well-defined execution scenario to record the execution trace. An

execution scenario can be defined as an instance of interaction with the system

covering a subset of use case(s).

2.4 The Dynamic Analysis Approach for Program Comprehension

The dynamic analysis approach is preferred over the static analysis approach for

program comprehension because of the two reasons,

(1) It allows us to use a goal-oriented approach. It provides us a mean to examine

solely the portions of our own interest in the application.

(2) In the abundant presence of polymorphism, dynamic analysis provides concise

measurements in object-oriented systems.

2.4.1 Dynamic Analysis facilitates Target-oriented Comprehension

When dealing with unfamiliar software systems, the use of dynamic analysis

permits to incorporate a target-oriented (or need-based) approach. When the only

available knowledge about the system is of end-user functionality, it is very simple to

run only those execution scenarios (from the entire list of use cases) that are directly

11

related to the functionality which the programmer wants to comprehend. This saves a

lot of time as the execution trace is concise and to the point. Moreover the results of

the analysis are better.

For example, consider the case of a programmer who wants to know how a

document processor like Open Office works internally while the properties of the

selected text are being changed. If we use dynamic analysis for this case, we could

exercise only those scenarios that include selecting a text and then changing its

properties (e.g. change the font). On the other hand, if we do not use this target-

oriented approach and rely on the static analysis of the application, we must

understand the whole application before we can explore the parts that are directly

related to the functionality we are trying to understand.

2.4.2 Dynamic Analysis reveals actual picture of Polymorphism (Late Binding)

Polymorphism is the facility offered by modern object oriented programming

languages that allows the objects of same base class but different derived classes to

implement the same method of base class in different ways in the derived classes. The

actual class to which the object belongs is not required to be known to the programmer

in advance, hence the decision about the class of object and its behavior can be made

at run-time. This introduces the concept of late binding that delays the decision about

the behavior of a particular object until runtime.

The technique of polymorphism permits building programs in much efficient

manner. In addition, the use of polymorphism should make the evolution of software

much simpler and easier. On the other hand, the use of polymorphism can make

matters worse during program comprehension process, as it turns out to be challenging

to understand the exact behavior of the system, without observing the running

software. This is due to the fact that one probable polymorphic method invocation is a

variation-point which is able to produce a large number of different behaviors (the

count of probable behaviors is obtained by adding one to the number of classes that

exist in the class-hierarchy under the base class type). For example, in our first case

study software system (Apache Ant), the base class Task has above one hundred

12

derived classes, every sub-class represents a particular command-line task that may be

performed by the system.

Contrary to static analysis, when examining the software by means of dynamic

analysis, the acquired vision of the software is accurate in connection with the

execution scenario. The exhibited behavior belongs to the functionality that has been

utilized. As a result, the number of probable variations is reduced from the superset of

all theoretically possible variations to the small subset of actually executed variations

during the execution-scenario.

2.4.3 Technological Support for Dynamic Analysis of Program

Profilers/Debuggers. A profiler is more often employed to examine the

memory/performance parameters of an application. In contrast, a debugger is

commonly utilized to wade through the running application at the programmer’s

desired level of detail so as to reveal the root cause for unexpected behavior.

In most cases, the built-in provisions of profiler/debugger in virtual machine

environments or the operating system environments are capable of signaling the

start/end of events during the execution. The programmer can easily construct a plugin

for the virtual machine with the aim of being notified of these events and perform

some operation during these events, for example record these events in an execution

trace. The most common events that can be signaled by a profiler or debugger are the

start of a call to a method/procedure, the end of a call to a method/procedure, access to

data members, fields, etc.

AOP. Aspect-oriented programming (AOP) presents a novel concept for program

writing, known as aspect [17]. The aspect provides the facility to implement a cross-

cutting concern which does not plainly fit in to any single class or module of the

application; instead it exists in many classes/modules. The source code written to

implement such concerns could be confined in the advice portion of the aspect,

whereas the point-cut segment of the aspect describes the points for weaving the code

mentioned in the advice.

13

The current implementations of AOP permit the addition of a chunk of code at the

start and/or at the end of a method. This facility is very helpful for writing an aspect

for program tracing. Such aspect can record each method invocation or end of method

call in the execution trace.

Modification of Abstract Syntax Tree. While the source code of an application is

being parsed, modifications can be done in the abstract syntax tree (AST) prior to

producing the AST once more in the form of regular source code. According to our

information, there is no standard mechanism available for such kind of AST

modification. It may be noticed that a few AOP frameworks operate in the same

manner, where the weaving of aspects is done using an Abstract Syntax Tree

modification process [14].

Wrapping of Methods. Method wrappers permit to capture and supplement the

behavior of already available methods with the aim of wrapping additional behavior

around them [16]. In our case, the supplementary behavior of tracing could be

provided by wrapping of methods.

Improvised tracing. All the methods that have been stated earlier, have a planned

and prepared mechanism to perform the tracing operation. Nevertheless, at times, the

scope of points of interest is very restricted within the application. In such cases,

improvised tracing of points of high interest can be an immediate solution.

2.4.4 The Consequences of Observing – Observer Effect

In numerous fields of pure science, observer-effect normally accounts for

amendments that the observation procedure introduces in the phenomenon being

observed. A conventional example of this matter arrives from the studies in quantum

physics, which demonstrates the fact that observation of an electron results in the

modification of its path; since the monitoring light/radiation possesses sufficient

energy that can deviate the path of the electron under observation. A comparable effect

has been identified in studies in social sciences, where the population under study

started to deviate from their original behavior when they realized that they are being

observed.

14

In software engineering research, the analysis of systems under observation has

reported an analogous effect, known as the probe effect [21]. Utilizing dynamic

analysis to observe the system, this effect could reveal itself in various manners:

• Since the software system under observation takes extra amount of time and

memory during execution as compared to its normal execution time and

memory; the user can probably click a button multiple times in anxiety

without waiting for the system to respond. If this happens, then the

execution path of the system could deviate from the normal execution

scenario.

• The other possible threat whose consequences could be more severe is the

impact of the observation process on thread interactions that take place in

the system under observation.

As a general rule of thumb, it is advised that the overhead introduced by the extra

step of observation in the running system should be as little as possible, to reduce the

level of uncertainty generated by the observer effect. One possible option to minimize

the overhead can be the analysis of selective portions of the program that could be

important from program comprehension point of view, for example classes that are

loaded early during start up of program and have strong coupling with other classes.

This approach of analyzing the program during its execution (online analysis) is totally

opposite to the offline (post-mortem) analysis approach in which the program is

executed first and execution trace is generated. Then this execution trace is analyzed

after the program has finished its execution.

2.4.5 The perils of Dynamic Analysis

The dynamic analysis is performed to capture the real picture of the system during

execution, meaning that what is actually happening in the system as the program

proceeds. However, there are situations where dynamic analysis could be problematic.

Now we’ll have a quick look into those problems and the precautionary measures

taken against them.

15

• Most modern systems utilize the multi-threading facility to achieve some

sort of parallelism. To achieve any functionality of the system typically

there are several interactions among the threads in the system. In multi-

processor environments, the threads can execute and interact in parallel,

while the execution and coordination of threads is possible in sequential

manner in uni-processor environments. The storage of all the events that

happened in each thread at one common place (i.e. execution trace) can

create perplexity for the programmer; because the programmer will think

that the two events took place one after the other, while in actual, the events

were generated by entirely different threads. This problem can be solved

easily by storing the information about each active thread separately during

the program execution.

• The use of class loading provisions or reflection methodology is common in

many systems to enable dynamic loading of classes. The dynamic analysis

mechanism based on profiler/debugger usually results in the recording of

calls to the methods of the classloader. The incorrect recording of a few

method calls could be possible in this case. In AspectJ, we can specify the

rules for inclusion and exclusion of classes from tracing. We can easily

exclude classes of least interest using AspectJ.

2.5 Use of Coupling for Program Comprehension

In this research, we aim to provide the programmer with a small number of

preliminary points, which can be utilized to begin the tracking of structural

dependencies in order to gain familiarity with the system. These preliminary points

will be identified using coupling.

2.5.1 What is Coupling?

Constantine et al presented the concept of coupling in the form of a heuristic for

improved module design [22]. Constantine defined coupling as the measurement of

strength of a bond developed by a connection from a particular module to other

16

modules. Since the definition provided by Contantine is a bit casual, so we will adhere

to the definition of coupling in [9] which states that “two things are coupled if and

only if at least one of them ‘acts upon’ the other. X is said to act upon Y if the history

of Y is affected by X, where history is defined as the chronologically ordered states

that a thing traverses in time”.

2.5.2 Why dynamic coupling metrics?

For quite a time, research has been carried out on the subject of coupling

measurements, for example in the perspective of quality metrics. Mostly the coupling

metrics have been estimated statically through the source code (or any other static

model of program structure) by analyzing the dependencies that exist among various

program elements. The precision of coupling metrics that are estimated statically

declines quickly in the presence of dead code, dynamic binding and inheritance. This

loss of precision has compelled for the search of more accurate alternatives like

dynamic coupling measures, a research area in software engineering that is developing

[10]. The following definition of dynamic coupling measures has been used by us:

To define dynamic coupling measures, one needs to perform the analysis of

interactions that take place between objects at runtime. If an object acts on another

object, then the two objects are said to be dynamically coupled. When it is evident

from execution trace that there exists a relationship of method call between the two

objects p and q (provided that the method call was originated from p), we say that

Object p has acted on Object q. Moreover, dynamic coupling exists between two

classes provided that one or more object(s) of one of these classes act upon the other

class object(s) at runtime.

2.5.3 Possible variations for calculating dynamic coupling metrics

There are various means to measure dynamic coupling. Based on the

application context in which these measures are selected for use, the rationale behind

each measure can be presented [10]. The variations of dynamic coupling measures

defined in [10] are presented in Table 2.

17

Table 2: Variations of Dynamic coupling measures [10]

Entity Granularity
(Aggregation Level)

Scope
(Include/Exclude)

Direction

Object Object
Class

(set of) Use case(s)
System

Library objects
Framework objects

Exceptional use cases

Import/Export

Class Class
Inheritance Hierarchy
(set of) Subsystem(s)

System

Library classes
Framework classes

Import/Export

Variation of Entity of Measurement. As measurement of dynamic coupling

is based on the runtime information about the system, the coupling can be computed at

the object as well as the class level [10].

Variation of Strength Level of Coupling. The coupling strength levels

quantify the amount of association between the entities of measurement (objects or

classes). The quantification of the association between the entities of measurement

(objects or classes) may be done at the following levels [10]:

1) Counting Dynamic Messages (All Method Invocations). The run-time

information of a program can be used to determine how many times

each method (of object/class) is invoked by the other method (of

another object/class). This count can then be used to quantify the

strength of the association between the entities of measurement.

2) Counting Distinct Method Invocations. Another simpler option to

quantify the strength of the association is to determine the number of

unique method calls between the entities of measurement. It must be

noticed that each distinct method is counted only once which is

dissimilar from counting all method invocations (that may include

recurrence of method call).

3) Counting Distinct Classes. For a given object/class, count the number

of distinct objects/classes to which it is associated (coupled); utilizing

the run-time information of a program.

18

Variation of Aggregation Level. The aggregation of dynamic coupling

measures can be made at various levels of detail. In the case of dynamic object

coupling, the calculations can be made by means of objects, at the same time the

aggregate coupling at the class level can be computed by adding the coupling of all the

objects of that class. Various sorts of aggregates can be obtained based on the

measurement level. Possible aggregation levels include system level, sub-system(s)

level, package level etc [10].

Variation of Search Space. For calculation of dynamic coupling metrics, we

can make variations in the search space by including/excluding classes in the search

space. For instance, the classes that are linked as a library can be excluded

occasionally if they are not worth investigating [10].

Variation of Direction of Coupling (Import/Export). Suppose we have a

class c1 whose method m1 calls the method m2 of class c2. We can interpret this

coupling relation between the classes c1 and c2 in terms of client-server relation. The

class c1 is the client class that imports the services of server class c2 (which exports

its services for its clients). This is the base idea of import and export coupling [10].

On the basis of possible variations for calculating dynamic coupling measures

(described in section 2.5.3), a total of 12 dynamic coupling metrics have been defined

by [10]. We list only 6 (out of 12) dynamic coupling metrics in Table 3.

Table 3: Dynamic Coupling Metrics [10]

Coupling Direction Measurement Entity Strength Level Metric Name

Import Coupling

Object

Dynamic messages IC_OD

Distinct Method IC_OM

Distinct Classes IC_OC

Class

Dynamic messages IC_CD

Distinct Method IC_CM

Distinct Classes IC_CC

19

2.5.4 How the dynamic coupling metrics are calculated

In Table 3, the names of 6 (out of 12) dynamic coupling metrics from [10] are

presented. Three dynamic coupling metrics namely IC_CM, IC_CC and IC_CC′ have

been referred in the Chapter 6 (Results and Evaluation). We’ll now explain the

calculation of these two metrics using a simple example.

Figure 1: A Simple Sequence Diagram

Figure 1 shows a simple sequence diagram that involves 3 classes namely C1,

C2 and C3. The method m1() of class C1 first calls the method m2A() of class C2.

After the control is returned to method m1(), it next calls the method m2B() of class

C2. Finally method m3() of class C3 is called by the method m1() of class C1. The

dynamic coupling metrics IC_CM, IC_CC and IC_CC′ [12] for class C1 are calculated

as follows:
Table 4: Calculating Dynamic Coupling Metrics – Simple Sequence Diagram

Metric Name Calculation Score

IC_CM(c1) {(m1,c1,m2A,c2), (m1,c1,m2B,c2), (m1,c1,m3,c3)} 3

IC_CC(c1) {(m1,c1,c2) ,(m1,c1,c3)} 2

20

IC_CC′(c1) {(m2A,c1,c2), (m2B,c1, c2), (m3,c1, c3)} 3

Figure 2: Another Simple Sequence Diagram

Figure 2 shows another simple sequence diagram that involves 2 classes

namely C1 and C2. The method m1A() of class C1 first calls the method m2A() of

class C2. After the control is returned to method m1A(), it next calls the method m2B()

of class C2. Now the method m1B() of class C1 is invoked which invokes methods

m2C() and m2D() of Class C2. The dynamic coupling metrics IC_CM, IC_CC and

IC_CC′ [12] for class C1 are calculated as follows:
Table 5: Calculating Dynamic Coupling Metrics – Only Two Classes Involved

Metric Name Calculation Score

IC_CM(c1) { (m1A,c1,m2A,c2), (m1A,c1,m2B,c2),
 (m1B,c1,m2C,c2), (m1B,c1,m2D,c2) } 4

21

IC_CC(c1) { (m1A,c1,c2) , (m1B,c1,c2) } 2

IC_CC′(c1) { (m2A,c1,c2) , (m2B,c1, c2) , (m2C,c1, c2) ,
 (m2D,c1, c2) } 4

Figure 3: Slightly Complicated Sequence Diagram

Figure 3 shows a slightly complicated sequence diagram that involves 3 classes

namely C1, C2 and C3. The method m1A() of class C1 first calls the method m2A() of

class C2, which further calls the method m3A() of class C3. After the control is

returned to method m1A(), it next calls the method m2B() of class C2, which further

calls the method m3A() of class C3. Now the method m1B() of class C1 is invoked

which invokes methods m2C() of Class C2, which further calls method m3C() of Class

C3. Next method m2D() of Class C2 calls the methods m3A() and m3E() of Class C3.

22

The dynamic coupling metrics IC_CM, IC_CC and IC_CC′ [12] for classes C1 and C2

are calculated as follows:
Table 6: Calculating Dynamic Coupling Metrics – Complex Sequence Diagram

Metric Name Calculation Score

IC_CM(c1) { (m1A,c1,m2A,c2), (m1A,c1,m2B,c2),
 (m1B,c1,m2C,c2), (m1B,c1,m2D,c2) } 4

IC_CC (c1) { (m1A,c1,c2) , (m1B,c1,c2) } 2

IC_CC′(c1) { (m2A,c1,c2) , (m2B,c1, c2) , (m2C,c1, c2) ,
 (m2D,c1, c2) } 4

For Class C2

IC_CM(c2)
{ (m2A,c2,m3A,c3), (m2B,c2,m3A,c3),
 (m2C,c2,m3C,c3), (m2D,c2,m3A,c3),
 (m2D,c2,m3E,c3) }

5

IC_CC (c2) { (m2A,c2,c3), (m2B,c2,c3), (m2C,c2,c3), (m2D,c2,c3) } 4

IC_CC′(c2) { (m3A,c2,c3), (m3C,c2,c3), (m3E,c2,c3) } 3

2.6 Key Classes of Software

Usually a software system is composed of many programming constructs including

components, classes, modules etc. These basic elements of programming work

together to achieve a particular functionality and their teamwork produce the idea of

coupling. Highly coupled modules are interconnected with large number of other

modules; as a result considerable amount of effort is required to gain an understanding

of such modules or to perform any type of maintenance of these modules. The basic

desire to achieve low level of coupling between modules originates from this

observation. However, it is evident that a certain level of coupling will be present in

the system all the time because modules/classes have to work in cooperation with each

other to achieve a particular functionality. The classes responsible for facilitating the

cooperation of work (among various classes of the system) tend to have an

administering role in the application and usually possess a high level of coupling. An

analogous concept, known as key classes was used by the author in [8]:

23

“The key concepts of most of the object-oriented systems are implemented by few

classes which are known as key classes. These few classes can be identified easily as

they exhibit some common characteristics. Usually they possess a coordinating role in

the application and hence issue orders to huge number of other classes and utilize

them for implementing the functionality. As a result, there exists a tight coupling

between the key classes and the rest of the system. Moreover, they have a propensity of

being complex, as they realize a great deal of the functionality of the system.”

Figure 4: Key Classes of Object-Oriented Software [8]

2.6.1 Existing Approaches to Identify Key Classes of Software

Authors in [23] used the combination of Weighted Methods per Class (WMC) and

Data Abstraction Coupling (DAC) metrics to identify key classes. WMC represents the

total of the complexity score of all methods in class. DAC counts those attributes of

the class whose type is defined by other classes. The authors compared the identified

key classes with original developers’ opinion.

tr

ca

st

Authors in

race of the s

all graph for

Authors o

tructure of t

Figure 5

n [24] propos

ystem. They

r identifying

of [14] prop

the applicat

5: Using WMC

sed the extra

y applied the

important c

Figure 6: A

posed to app

tion to find

C and DAC to

action of com

e HITS web

lasses in a sy

A Compacted C

ply HITS w

key classe

o identify Key

mpacted call

 mining algo

ystem’s arch

Call Graph [2

web mining

s of applica

Classes [23]

l graph from

orithm [25]

hitecture.

24]

algorithm

ation. They

m the executi

on compact

[25] on sta

used 4 sta

24

ion

ted

atic

atic

25

coupling metrics from [13] and compared the results with the design documentation.

They found that the precision and recall was considerably low with the use of static

coupling metrics.

Figure 7: HITS Webmining Algorithm [25]

Authors of [12] proposed a variant of dynamic coupling metric presented by [10] to

identify key classes of application under study. Their proposed variant of dynamic

coupling metric also considered indirect coupling. They compared the results with

original developers’ opinion.

Figure 8: Indirect Coupling example [12]

26

Table 7: Summary of existing approaches to identify Key Classes of Software

S# Authors Approach Drawbacks

1 Bauer et al.,
1999

Static analysis of source code using
static coupling metrics (WMC and
DAC)

Low precision in the
presence of polymorphism

2 Zaidman et al.,
2004

Post execution analysis of execution
trace, extraction of Compacted Call
Graph from execution trace, Applying
HITZ webmining algorithm on this
Compacted Call Graph

Scalability issues due to
huge size of execution
trace

3 Zaidman et al.,
2006

Calculating coupling scores of classes
using Static Analysis of source code,
Creating a Graph of classes using
these coupling scores, Applying HITZ
webmining algorithm on this Graph.

Low precision in the
presence of polymorphism

4 Zaidman et al.,
2008

Post execution Analysis of execution
trace, Calculation of Dynamic
Coupling Metric IC_CC’ for each
class from execution trace, Creating a
Graph of classes using IC_CC’ as
score, applying HITZ webmining
algorithm on this Graph

Scalability issues due to
huge size of execution
trace

27

CHAPTER 3

OVERVIEW OF TECHNOLOGIES USED IN THIS

RESEARCH

3.1 Introduction to the Technology Used For Dynamic Analysis

3.1.1 An overview of AspectJ

AspectJ is an implementation of Aspect Oriented Programming (AOP) in Java

as well as a language specification. The constructs to support aspect oriented concepts

and their semantics are defined by the language specification. The compilation,

debugging and other tools for documentation of code are offered by the language

implementation.

The language constructs in AspectJ are extension of the Java programming

language, hence a Java Program is an AspectJ program as well. The class files

produced by the AspectJ compiler are compliant with the specification of Java byte

code; hence the class files generated by the AspectJ compiler can be interpreted by any

compliant JVM. Since the Java language is available at the base level of AspectJ, all

the provisions in Java are accessible to the programmers, making the use of AspectJ

easier for them.

One of the strongest points of AspectJ has been the availability of effective tool

support. The job of a compiler is done by the aspect weaver. Other useful tools include

the debugger which is aspect-aware, a source code documentation generator and a tool

for visualizing the effect of advice on various parts of the system. In addition, the

AspectJ is now integrated with majority of the eminent IDEs for Java developers (for

instance, Oracle JDeveloper, Netbeans, eclipse etc.) that makes AspectJ a useful

implementation of Aspect Oriented Programming for developers working with Java

language.

28

3.1.2 What are Joinpoints?

The concept of Joinpoints is central to AspectJ; they are defined as

unambiguous, definite points in the execution of program. Prospective joinpoints could

be before/after a method call, checking of a condition, the start of a loop or before/after

assigning the value to a variable. Every joinpoint posseses an associated context, for

instance, a joinpoint before call to a method provides access to the target object and the

arguments passed to the method by using context information.

During the execution of program, any uniquely recognizable point can become a

joinpoint. But AspectJ has placed some restrictions on joinpoints and only those

joinpoints are available that can be utilized in an organized manner. The following

pointcuts can be utilized in AspectJ:

• Call/execution of a method

• Call/execution of a Constructor

• Accessing the variable for reading/writing

• Execution of exception handling routine

• Initialization of class/object

3.1.3 The role of Pointcuts

These are the programming constructs used to select joinpoints, infact they

provide a mean for specifying a group of joinpoints. Another important role of

pointcuts is in exposing the context (of joinpoint) to the implementation of advice.

Pointcuts for call to constructors/methods: These pointcuts interrupt the

execution once the arguments of the method are evaluated, but prior to calling the

method in actual. These pointcuts are declared using the syntax like

call(Method/ConstructorDecleration). These pointcuts are illustrated with the help of

examples in Table 8.
Table 8: Pointcuts for call to constructors/methods

Syntax of Pointcut Description

call(protected String SomeClass.Function1()) Call to Function1() of SomeClass that takes

29

no argument, returns a String, having

protected access

call(* void SomeClass.Function1(..))

Call to Function1() of SomeClass that takes

any argument, returns void, having any access

modifiers

call(* SomeClass.Function1(..))
Call to Function1() of SomeClass that takes

any argument and returns any type

call(* SomeClass.Function1*(..))
Call to any method whose name starts with

Function1 in SomeClass

call(* SomeClass.Function1*(Integer,..))

Call to any method whose name starts with

Function1 in SomeClass but the data type of

first parameter is Integer

call(* *.Function1(..))
Call to Function1() that belongs to any class

in default package

call(SomeClass.new())
Call to no arguments constructor of

SomeClass

call(SomeClass.new(..))
Call to any arguments constructor of

SomeClass

call(SomeClass+.new(..))

Call to any arguments constructor of

SomeClass or its subclass. (wildcard +

indicates the use of subclass)

call(public * org.someorg..*.*(..))

All the public methods of classes that are

declared within the root package of

org.someorg

Pointcuts for execution of constructors/methods These pointcuts intercept the

execution of constructors/methods. Opposite to the pointcuts for call, the body of

constructor/method is represented by pointcuts for execution. These pointcuts are

declared using the syntax of the form execution(Method/ConstructorDecleration).
Table 9: Poincuts for execution of constructors/methods

Pointcut Description

30

execution(public void SomeClass.Function1())

Execution of Function1() in SomeClass that

takes no argument, returns nothing, having

public access

execution(void SomeClass.Function1(..))

Execution of Function1() in SomeClass that

takes any no. and type of arguments, return

type is void, and any access modifiers

execution(* SomeClass.Function1(..))

Execution of Function1() in SomeClass that

takes any argument and returns object of any

type

execution(* SomeClass.Function1*(..))
Execution of any method in SomeClass

whose name starts with Function1

execution(* SomeClass.Function1*(int,..))

Execution of any method in SomeClass

whose name starts with Function1 and the

first argument is of int type

execution(* *.Function1(..))
Execution of Function1() that belongs to any

class in default package

execution(SomeClass.new())
Execution of no arguments constructor of

SomeClass

execution(SomeClass.new(..))
Execution of any arguments constructor of

SomeClass

execution(SomeClass+.new(..))

Execution of any arguments constructor of

SomeClass or one of its subclass. (wildcard

+ indicates the use of subclass)

execution(public * org.someorg..*.*(..))
All the public methods that are declared

within the root package of org.someorg

Pointcuts for access of field The access to a field of the class for

reading/writing is captured by these pointcuts. For instance, every access to the field

named out defined in the class System (may be through the use of the statement

System.out.print) can be captured using such kind of pointcuts. Whether the access of

field is for reading or for writing purpose, you can capture both types of access. For

instance, the access of field xField in SomeClass for the purpose of writing by using a

31

statement like SomeClass.xField = 12 can be captured easily. The pointcut that

captures the access for reading is normally outlined as get(FieldNamePattern),

whereas the pointcut that captures the access for writing takes the shape like

set(FieldNamePattern). Wildcards can be utilized in FieldNamePattern, the way they

have been used in the call/execution pointcuts described above.

Pointcuts for handlers of Exception The specified type of exception handlers

can be captured during execution using these pointcuts. Normally they use the notation

like handler(TypeOfException)Pattern.

Pointcuts for Class-initialization The specified type of static-class

initialization code, that is usually specified in the class definitions using static blocks,

can be captured during its execution through these pointcuts. Normally they are

represented by the notation like staticInitializePattern.

Pointcuts based on Lexical-structure Every joinpoint that lie within the lexical

structure of the method or a class can be captured by such pointcuts. The

within(TypePattern) notation is used to describe the pointcut that captures the code

which comes under the lexical structure of a class (it also includes the inner class). The

withincode(ConstructorMethodPattern) notation is used to describe the pointcut that

captures the code which comes under the lexical structor of constructor or method (it

also includes the local classes).

Pointcuts based on Control-flow These poincuts are used to capture the control

flow of other pointcuts, that is how the program instructions flow during the execution.

For instance, during the execution of program, if method m1 passes the control to

method m2 (in fact by calling m2); then method m2 is said to be in the control flow of

method m1. The call to every method, the access to every field, even the exception

handlers executed as a result of invoking a particular method can be captured using

this kind of pointcut. The cflow(pointcut) notation is used to describe the pointcut

capturing the flow of control for additional pointcuts (including itself). The

cflowbelow(pointcut) notation serves the similar purpose except that the pointcut itself

is not included.

32

Pointcuts for type of argument, target and self The pointcuts are used for

capturing the joinpoints on the basis of the type of argument, the object at the target

and the self-object. The context at the joinpoint can be captured by these contructs

only. The notation of this(ObjectIdentifier/TypePattern) is used to describe the

pointcuts on the basis of self object, whereas the syntax of the form

target(ObjectIdentifier/TypePattern) is used to describe the pointcuts on the basis of

target object. Finally the pointcuts for type of the argument are represented by the

syntax like args(ObjectIdentifier/TypePattern, …).

Pointcuts that are named If the name for the pointcut is specified explicitly,

then it is known as named pointcut. These pointcuts can be reutilized for overriding a

pointcut, in the definition of other pointcuts, definition of a portion of advice and so

on.

Pointcuts having no name (Anonymous) These pointcuts are defined at the

point where they are used, in a manner similar to anonymous class definition. Usually

they are used as a part of definition of another pointcut (or specification of an advice).

The reuse of anonymous pointcuts is not possible just as anonymous classes could not

be resused.

Gathering context information – Access of data in the joinpoint is often

required by the advice implementation. For instance, a certain type of information

about the method and its arguments, commonly known as context, might be required

by the advice to perform a logging operation. The gathering/exposing of context

related information at the execution point is therefore provided by the pointcuts, which

is then passed to advice implementation. The pointcuts of args(), this() and target() are

offered by AspectJ to expose the context.

Reflection – Reflection is supported by AspectJ in a limited form. The information

at the execution point of any pointcut can be examined using reflection supported by

AspectJ. A special object named thisJoinPoint is available in the body of each advice

and the joinpoint related information is encapsulated by this object. The availability of

this reflective information is vital for implementation of debugging aspect (or logging

aspect) for any application.

33

3.1.4 Advices

The code to be executed when program execution reaches the particular

pointcut is specified by advice. Three options are provided by AspectJ for linking the

advice to joinpoint that are before the execution, after the execution or around the

execution of joinpoint. The advice defined using the keyword before is executed prior

to the joinpoint, whereas the advice defined using the keyword after is executed just

past the joinpoint. There is a provision in after advice to specify whether it should be

executed after returning normally(without exception) or after an exception has been

thrown or after both cases (normal and exception). The advice defined using the

keyword around basically surrounds the joinpoint and has the authority to decide

whether the execution of joinpoint should be continued. The decision to carry on with

a changed set of arguments can be made while using around advice.

Here is an example of before and after advice that displays thisJoinPoint and

recent time before and after the call of all public methods in MyClass:

Figure 9: Simple Advice example before/after call of public method

Every call to connection.close() method is captured by the advice in following

example. If the connection pooling has been enabled, the connection is put back to the

pool; else the execution is advanced with the proceed() method. The context

information provided by target() is also utilized in the advice:

34

Figure 10: Advice example that uses context collected by target

3.1.5 The role of Aspects

The role of Aspects in AspectJ is similar to the role of classes in Java; they are

the basic unit of modularization. The pointcuts and advices are encapsulated in an

aspect. There are some similarities between aspects and classes, e.g. an aspect may

possess data members and functions, inherit properties/functions from other aspects or

classes, and can provide implementation of interfaces. On the other hand, a major

difference between a class and an aspect is that an instance for an aspect cannot be

created using the new operator.

Classes are allowed to declare pointcuts using AspectJ. Static pointcuts must be

declared inside a class. On the other hand, the advices are not allowed to be declared

inside class, they must be specified within aspects.

Any aspect and pointcut can be declared as abstract. The pointcut declared

abstract act like the abstract method of a class: it allows you to delay the decisions to

the extending aspects. A derived aspect that extends an abstract aspect can offer the

actual implementation of abstract pointcuts.

3.1.6 What is Load-Time Weaving (LTW)?

In principal, AspectJ is a programming language. It provides the support for

primitive Java types and a novel construct known as aspect. One option of using

AspectJ is writing a program in its language and then compiling the program using its

compiler that will generate standard byte-code (from source files) which can be run

35

easily by JVM. There is also a provision in AspectJ that a pre-compiled jar file of

aspects can be weaved into your application classes. This weaving of application

classes can be performed as an extra step during the build process or even at runtime

when the class is being loaded by the virtual machine. The weaving of application

classes by the AspectJ agent during load time is known as Load-time weaving (LTW).

A pre-compiled aspect library can be used in an easy and very flexible manner

during development with the aid of load-time weaving. The –javaagent option

available since version 5 of JDK is the simplest way to utilize LTW.

Using aop.xml to configure Load-time Weaving – The configuration of

AspectJ agent for load-time weaving is done by aop.xml file(s) that must be placed

within the search path of class loader. Every aop.xml file includes a listing of aspects

utilized for weaving application classes, type patterns indicating types to be considered

for weaving, and other initial settings to configure the weaver. There are two main

sections in the aop.xml file: one or more aspects for the weaving process are defined in

the aspects section. The inclusion/exclusion of aspects in the weaving process is

controlled from here. The types to be woven and supplementary weaver options are

defined in the weaver section.

The easiest manner to declare the aspect (for its use by the weaver) is to

mention the aspect type (in a fully qualified manner) in the aspect element of aop.xml

file. Aspects can be declared and defined inline using the aop.xml file to configure the

weaver. Concrete-aspect element is used to define such inline aspects. If the inline

aspect extends some abstract aspect, then an implementation must be provided for the

abstract poincuts that have been inherited. With this useful mechanism, the

configuration of auxiliary infrastructure aspects can be easily externalized to cater the

situations where the pointcut definition itself is part of the service configuration.

There can be multiple include and exclude elements defined in the aspect tag.

(The default implementation uses all the defined aspects for weaving). The aspects that

will be utilized by the weaver can be restricted by specifying include or exclude

elements. The aspects qualifying the include pattern are utilized, where as the aspects

qualifying the exclude pattern are ignored during weaving.

36

It may be noted that all aspects are affected by include and exclude elements,

regardless of the fact that they are defined in the same aop.xml file or a different

aop.xml file. After the application of this filtering mechanism, in case an aspect has

not been declared, a lint warning is generated to help preventing unanticipated

behavior.

The specification of the types that need to be woven and the passing of

parameters to the weaver is done using the weaver element. The weaver weaves all the

visible types in the absence of any include element specification. The byte-code of

classes can be saved to disk using the dump element both before (in case of runtime

weaving) and after the weaving process to help diagnosing the problem.

37

CHAPTER 4

RESEARCH METHODOLOGY

Up till now, we have discussed the theoretical foundations of our approach to

discover the key classes that can be quite useful in the early stages of program

comprehension. This chapter first provides an introduction to the research

methodology used by us. Next we present an overview of the open source case study

that we have used in the experiment to compare the performance of our proposed

solution with the other approaches.

4.1 Research Methods

The study of software engineering on the basis of observations and experiences

is known as Empirical software engineering. In empirical software engineering

researchers try to ascertain a scientific approach for the given problem of software

engineering.

An important role is played by the empirical studies within the software

engineering research. An empirical study can be carried out in many ways, depending

upon the research project. Following research methods are widely used in the field of

software engineering for empirical studies:

4.1.1 Conducting a Survey

A survey is commonly used to capture the broader picture of the happenings

over a large group of projects. Hence, the survey approach can help in the evaluation

of a software technology over a large scale. The survey based approach has the benefit

that it can confirm/reject the results of research by generalizing a large number of

projects, using statistical analysis approach.

38

4.1.2 Controlled Experimentation

In a formal experiment, the factors that affect the phenomenon under

investigation need to be controlled. For instance, suppose we desire to investigate that

whether programs written in language A (say C++) results in better quality code than

the programs written in language B. In this case, we need to make sure that the factor

of skill level of the programmers (the subjects of experiment) is equal for both types of

programmers.

4.1.3 Case Study

Case study based approach outshines other research methods when it comes to

gaining an insight to a complex problem. This approach can be used to extend the past

experiences or refine the knowledge obtained by previous research. A thorough

contextual analysis of a few circumstances and their association is emphasized in the

case study. It facilitates deep understanding of a particular case or problem, thus

enabling the analysis of many variables and capturing the reality in detail. The

potential of a case study to obtain detailed knowledge makes it a strong explorative

mechanism to establish new research as well.

The research method of case study has been used by researchers in diverse

disciplines for many years. It has been widely used in the field of computer

science/software engineering. In fact, the historical data demonstrates that it has been

the most common empirical validation model in the field of empirical software

engineering. An important application of case studies is the industrial evaluation of

tools and methods of software engineering.

Since we are proposing an extension to the previous research on dynamic

coupling metric and we want to compare our proposed approach with the previous

research accomplished in the past, so the case study based approach best suites our

needs. Hence we have used the case study based approach in our research.

39

4.2 The organization of the experimental system

4.2.1 Selection criteria for the case study

Two open source software system were adopted for the experiments conducted

during this research. These systems were selected as a case study based on the

following two factors that made these software systems specifically attractive for the

evaluation of our approach to aid initial program comprehension:

• The open access and free availability of software facilitates the repeatability

of the same or analogous experiments in future research projects.

• The existence of detailed design documentation is extremely helpful to

validate the results of experiments in program comprehension. In addition,

the free availability of this detailed design documentation has an added

advantage of ensuring repeatability.

Finally, Apache Ant 1.6.1 and Jakarta JMeter 2.0.1 were selected by us since

they match closely with the criteria mentioned above. Critics may propagate that

nearly all open source systems will posses these properties, but our vote for this

specific case study was also driven by the fact that that this software system has been

used in other analogous experiments, which provided us with a baseline for our

experiment and made the comparative analysis easier for us.

4.2.2 Selection of Use Case for Tracing

The selection of the use case for tracing and calculation of metric is a necessary

pre-requisite for dynamic analysis. At one side, a usage scenario covering major

functionalities of the system can be advantageous in the reverse engineering process of

huge systems. Alternatively, a scenario that only covers the functionality that is of

major concern to the reverse engineer can be useful to minimize the size of solution set

(which is a ranked list of classes in our case, sorted by their importance level).

Consequently, it permits the use of target based approach to fully concentrate on the

focal point during program comprehension efforts. In our research context, we suggest

40

to select use case(s) covering major functionalities of the system to increase the

chances of detecting majority of the key classes of the system.

4.2.3 The baseline for the experiment

The availability of detailed design documentation and the results of other

analogous experiments in [11, 12] performed on the same software systems(Apache

Ant and Jakarta JMeter) provided us with a baseline to be used in our experiment. The

baseline includes the classes identified by the original authors of the code and/or the

developers currently maintaining the system as must-to-comprehend classes in order to

perform any type of maintenance of the system. Nevertheless, this baseline is still an

approximation as it reflects the point of view of highly skilled programmers that may

be entirely different from the opinion of a greenhorn maintainer struggling to get a

grasp on the system.

The major advantage of this baseline is that it allows us to perform an intrinsic

assessment of our approach. By intrinsic assessment we mean that we have used the

point of view of original developers of the system for comparison with the results

acquired by our approach.

4.2.4 Outcome

The outcome of our proposed heuristic is an ordered list of classes arranged in

descending order with respect to their significance. We have opted to present the top

15% classes to the developer from the entire list of classes because of the following

reasons:

• The design documents have brought this thing into our knowledge that

nearly 10% of the system classes must be comprehended prior to perform

any significant modification in the system. We have gained an additional

margin of 5% because we are using a heuristic.

• Because of the cognitive constraints, the volume of data provided to the

developer to start his comprehension efforts should be minimal. The

developer should not be overloaded with information.

41

• The third reason was that by raising the margin to 20%, we observed a very

minor increase in recall. On the other hand, the precision fell significantly.

4.3 Overview of the 1st Case Study -- Apache Ant

4.3.1 What is Apache Ant?

Apache Ant is an eminent tool that has been mostly utilized for building

software projects on Java platform. Ant runs as a single thread. There is no graphical

user interface for its execution because it is invoked through command line interface.

A large number of external libraries are utilized by Ant (XML library by Apache

Xerces is just one example), however its own footprint is comparatively small. It is

quite flexible and can be extended by the user. It is based on XML and the build files

for the projects have a specific XML format.

Regardless of the fact that it is an open source product, Ant is being utilized in

open source as well as industrial systems. Besides, it has also been made available in

various Integrated Development Environments (e.g. Netbeans, JDeveloper, eclipse

etc.) designed to work with Java Platform. The basic distribution of Ant has been

extended in various manners and one of its flavors known as nANT has been ported to

the .NET platform as well.

We have used the version 1.6.1 of Apache Ant that ships with the source code.

There are 1216 classes in this version of Ant which are written in Java. The number of

classes specific to Ant is 403 that have nearly 83 KLOC. The distribution contains a

large number of classes that belong to the frameworks or libraries used by Ant for

supporting tasks such as manipulation of regular expression (Apache ORO) and XML

parsing (Apache Xerces).

4.3.2 Use Case for Tracing

In our experiment with Apache Ant, we selected the use case of building the

source project of Ant using its own binary release. One hundred and twenty seven

(127) classes were involved in this scenario. Keeping in view that a total of 403 classes

42

constitute the Ant build, the figure of 127 appears to be quite small in the initial

glimpse. This gap in the expected and actual number of classes that took part in the

scenario can be explained by the existence of some extraordinarily broad and deep

inheritance hierarchies in the architecture of Ant. For instance, there are 104 subclasses

that directly inherit the Task class. Every individual subclass is responsible for

handling a particular type of command line task for example mkdir, rmdir, etc. Since

majority of usage scenarios do not exercise all of the available commands (the usage of

some commands is not even possible at one time e.g. the commands implemented for

heterogeneous platforms or version management systems), hence it can be safely said

that our scenario (covering 127 classes) exercises the major portion of the functionality

offered by the Ant system.

The following two basic reasons were behind our choice of this specific usage

scenario:

• A fair portion of features are practiced in this scenario. In addition, it

incorporates the build commands that are used in most cases such as make

directory, delete directory, copy folders/files, creating a jar file and so on.

• It is very easy to perform and/or repeat this scenario with the help of

build.xml file that is present in every source release of Ant.

4.3.3 Architecture of Ant

In this section, we will discuss the role played by the five important classes (that

are deemed significant by original developers) during the execution of the build file.

The information about these classes has been extracted from the detailed design

documentation that is available freely:

1. Project: The instance of Project class is created as soon as Ant is started by the

Main class. The parsing of build.xml file is done by the Project instance with the

assistance of supplementary objects. Targets and Elements are contained in the

xml file for build.

2. Target: All the targets described using the build.xml files are instantiated as

objects of this class. When the parsing of build.xml is finished, the build model

43

is composed an instance of project that may have numerous targets or at least

one target that serves as default target for events at upper level.

3. UnknownElement: Every parsed element is temporarily placed in objects of

class UnknownElement. In the course of parsing, the instances of class

UnknownElement are stored along with the specific Target (which is related to

them) in a data structure similar to tree. At the end of the phase of parsing, all

dependencies are resolved. At this time, the method named makeObject()

belonging to this class is called. The correct type of object is instantiated by this

method according to the values of data placed in the objects of this class.

4. RuntimeConfigurable: There exists a RuntimeConfigurable instance for each

corresponding UnknownElement instance. The information regarding the

configuration of element is contained in it. The instances of class

RuntimeConfigurable are also stored along with the specific Target (which is

related to them) in a data structure similar to tree.

5. Task It is the parent class for UnknownElement. It also serves as a base class for

every task instantiated by using the method named makeObject() of class

UnknownElement.

Figure 11: Class diagram showing 5 important classes of Apache Ant

44

We have made an effort to capture the relationship between the five

aforementioned classes in Figure 11. The complete list of classes included in the

baseline for Ant case study, extracted from the detailed design documentation is as

follows:

1. Project

2. Target

3. Task

4. RuntimeConfigurable

5. UnknownElement

6. Introspection Helper

7. ProjectHelper2

8. ProjectHelperImpl

9. ElementHandler

10. Main

4.4 Overview of the 2nd Case Study – Jakarta JMeter

4.4.1 What is Jakarta JMeter?

Jakarta JMeter 2.0.1 is a java-based desktop application built to test the web

applications. It can be utilized for functional verification of software system; also it

helps to perform load-testing (i.e. to assess performance of the application). Mainly, it

is utilized for testing web-based applications, however, it is capable of handling SQL

queries as well that are made through JBDC. In addition, the flexible architecture

allows plugins to be created for additional protocols. Results of performance

measuring can be presented in a variety of graphs, while results of the functional

testing are simple text files with output similar to output from regression tests.

JMeter is a desktop application which posseses a rich GUI to exercise the

features, threads are utilized in abundance and majority of the functionality is supplied

by the standard Java API (e.g. web-related functionality). The source code of version

45

2.0.1 of Jakarta JMeter comprises of nearly 700 classes, whereas the core part of

Jakarta JMeter software is made of 490 classes (23 KLOC).

4.4.2 Use Case for Tracing

The use case that was exercised for tracing in this case study consists of testing a

HyperText Transfer Protocol (HTTP) connection to localhost (JBoss Server) hosting

Ant documentation pages. Actually, we organized JMeter application in such a way

that it tested the above HTTP connection one-hundred times and at the end the results

were visualized in a simple graph. Without the tracing operation enabled, the time

taken by the use case was 82 seconds. It is worth mentioning here that several threads

were instantiated to initiate 100 HTTP connections so that concurrent access by

multiple users can be simulated for the web application. Hence the JMeter case study

serves as an instance of multi-threaded software system.

4.4.3 Architecture of JMeter

Now we will discuss the tasks performed by the key classes (that are judged by

original authors of code as key classes) of JMeter.

The TestPlanGUI, as evident from its name is a user-interface component. It

allows the addition and customization of tests. JMeterGUIComponent class holds each

test that has been added. When the creation of TestPlan has been finished by the end

user, the JMeterGUIComponents contain this information which is then placed in

TestElement classes for further processing.

The objects of TestElement class are saved in JMeterTreeModel which is a tree

datastructure. The JMeterEngine now takes this tree datastructure and instantiate

JMeterThread(s) for every test with the assistance of TestCompiler. The ThreadGroups

are used to form logical grouping of JMeterThreads. In addition, a TestListener is

instantiated for each test which is used to catch the results of JMeterThread(s).

46

The complete list of classes included in the baseline for JMeter case study,

extracted from the detailed design documentation is as follows:

1. AbstractAction

2. JMeterEngine

3. JMeterTreeModel

4. JMeterThread

5. JMeterGuiComponent

6. PreCompiler

7. Sampler

8. SampleResult

9. TestCompiler

10. TestElement

11. TestListener

12. TestPlan

13. TestPlanGui

14. ThreadGroup

47

CHAPTER 5

THE PROPOSED APPROACH

In this chapter, first we describe the problems with the existing approaches to

identify key classes. Then we have described the basic idea and the implementation of

our proposed approach to discover key classes of software. The introduction to the

technology (AspectJ) that we have used to implement our approach is already provided

in Chapter 3. Here we explain the algorithm used to implement our approach. The

basic idea for resolving the problem of key class identification and the rationale behind

the use of such idea is described as well.

5.1 Problems with Existing Approaches to Identify Key Classes

The approaches based on static coupling metrics have the disadvantage that they

lose precision in the presence of polymorphism in object-oriented system [14].

The approaches based on dynamic coupling metrics suffer from scalability issues

due to the huge size of the execution trace [14].

• The size of the execution trace was 2 GB in the case study of Ant

• The time to calculate the metric from this 2 GB of data was 45 minutes

• The I/O overhead of the tracing operation was very high

o e.g. execution of Ant took 23 seconds without tracing.

o whereas execution of Ant took just under one hour with tracing.

Our main goal in this research is to devise an efficient approach to identify key

classes that could overcome the scalability issues introduced by the existing

approaches based on dynamic coupling metrics. It is evident that the main cause of the

scalability issues is the offline analysis approach or the so called post-mortem analysis

(i.e. running the program, generating the execution trace and then extracting the

coupling information from those large text-based files whose size is in gigabytes). So

we propose the online analysis approach in which the dynamic coupling information

is calculated in parallel to the execution of the program using AspectJ.

48

5.2 Basic Idea behind our Approach

It has already been mentioned that we are searching for key classes that posses

a central place in the architecture of the system. Our expectation is that these classes

have a supervisory role in the application, giving instructions to large number of

classes and dictating them the work to perform. These classes will be requesting the

other classes for their services, which imply that the key classes will be tightly coupled

with other classes.

5.2.1 Hypothesis

Our hypothesis is that the key classes posses a coordinating role in the

application as they manage and request services of large number of other classes, so

they must be loaded in the application prior to other classes from which they request

services. So the sequence in which the classes are loaded in the application must also

be taken into consideration (in addition to coupling information) to identify the key

classes.

Figure 12: Core Structure Analogy from Civil Engineering

We have built an analogy from civil engineering structures like

bridge/buildings that the core part of the structure is laid first and the rest of the

structure is based on that core part. So we proposed that the classes loaded during the

start up that have strong coupling with other classes are most likely to be key classes

and are prime candidates for early program comprehension.

49

The existing dynamic coupling metrics do not take into account the

loading order of the class in application. So we have to extend the definition of

existing dynamic coupling metric for this purpose. In [10] a total of twelve metrics

have been defined by authors. We have used the definition of one metric named

IC_CM (explained in Section 2.5.3) from their work and extended this metric to meet

our objective of finding the key classes of the system according to loading order of the

classes. We will now provide the definition of the metric from [10] and then discuss

our proposed extension.

Table 10: Dynamic coupling measures [10]

C Set of classes in the system.

M Set of methods in the system.

RMC RMC ك M × C Refers to methods being defined in classes.

IV IV ك M × C × M × C The set of possible method invocations.

IC_CM(c1) #{(m1, c1, m2, c2) | (׌ (m1, c1), (m2, c2) א RMC) ר c1 ≠ c2 ר (m1, c1, m2, c2) א IV}

Our Extended Version of IC_CM

IC_CMS(c1) #{(m1, c1,lo, m2, c2) | (׌ (m1, c1), (m2, c2) א RMC , lo א N ,m1, c1) ר c1 ≠ c2 ר (
m2, c2) א IV}

50

Figure 13: Sample Sequence Diagram to calculate IC_CMS

Figure 13 shows a simple sequence diagram that involves 3 classes namely C1,

C2 and C3. The method m1() of class C1 first calls the method m2() of class C2.

Method m2() next calls the method m3() of class C3. It is obvious that the object of

class C1 is loaded 1st, object of class C2 is loaded 2nd while object of class C3 is

loaded 3rd. The dynamic coupling metrics IC_CM and IC_CMS for classes C1 and C2

are calculated as follows:
Table 11: Calculating IC_CM and our extended version of IC_CM

Metric Name Calculation Score

IC_CM(c1) {(m1,c1,m2,c2)} 1

IC_CM(c2) {(m2,c2,m3,c3)} 1

IC_CMS(c1) {(m1,c1, 0, m2,c2)} 1

IC_CMS(c2) {(m2,c2, 1, m3,c3)} 1

51

Figure 14: Slightly Complicated Sequence Diagram to Calculate IC_CMS

Figure 14 shows a slightly complicated sequence diagram that involves 3

classes namely C1, C2 and C3. The method m1A() of class C1 first calls the method

m2A() of class C2, which further calls the method m3A() of class C3. After the control

is returned to method m1A(), it next calls the method m2B() of class C2, which further

calls the method m3A() of class C3. Now the method m1B() of class C1 is invoked

which invokes methods m2C() of Class C2, which further calls method m3C() of Class

C3. Next method m2D() of Class C2 calls the methods m3A() and m3E() of Class C3.

The dynamic coupling metrics IC_CM, IC_CC, IC_CC′ [12] and IC_CMS for classes C1

and C2 are calculated as follows:

52

Table 12: Calculating Dynamic Coupling Metrics

Metric Name Calculation Score

IC_CM(c1) { (m1A,c1,m2A,c2), (m1A,c1,m2B,c2),
 (m1B,c1,m2C,c2), (m1B,c1,m2D,c2) } 4

IC_CC (c1) { (m1A,c1,c2) , (m1B,c1,c2) } 2

IC_CC′(c1) { (m2A,c1,c2) , (m2B,c1, c2) , (m2C,c1, c2) ,
 (m2D,c1, c2) } 4

IC_CMS(c1) { (m1A,c1, 0, m2A,c2), (m1A,c1, 0, m2B,c2),
 (m1B,c1, 0, m2C,c2), (m1B,c1, 0, m2D,c2) } 4

For Class C2

IC_CM(c2)
{ (m2A,c2,m3A,c3), (m2B,c2,m3A,c3),
 (m2C,c2,m3C,c3), (m2D,c2,m3A,c3),
 (m2D,c2,m3E,c3) }

5

IC_CC (c2) { (m2A,c2,c3), (m2B,c2,c3), (m2C,c2,c3), (m2D,c2,c3) } 4

IC_CC′(c2) { (m3A,c2,c3), (m3C,c2,c3), (m3E,c2,c3) } 3

IC_CMS(c2)
{ (m2A,c2, 1, m3A,c3), (m2B,c2, 1, m3A,c3),
 (m2C,c2, 1, m3C,c3), (m2D,c2, 1, m3A,c3),
 (m2D,c2, 1, m3E,c3) }

5

Our variant of IC_CM. We have made a variation of the IC_CM metric with

the inclusion of a new numeric parameter that is initialized with a value of zero and is

incremented each time an object of a distinct class is initialized. We name this

parameter as “loading_order”. Whenever a constructor of any class is called during

the execution of program, we first check if the constructor of this class is being called

for the first time? If yes, we say that this class is being loaded for the first time in the

application so we add this class to the list of distinct classes that have already been

loaded. The numeric parameter (loading_order) is incremented by one and is stored

along with the other information like source/target of method/class.

It should be noted that although the scores for classes C1 and C2 is same (i.e.

1), for IC_CM and IC_CMS. But our extended version of IC_CM gives priority to

class C1, since it is loaded prior to class C2 in the application. Whereas the original

version of IC_CM fails to note this distinction and treats classes C1 and C2 at equal

level because of equal coupling score.

5

ap

co

fa

in

m

ex

re

ex

re

(a

ca

5.

lo

tr

li

in

In

co

.3 Implem

The techn

pproach desc

oupling met

acilities prov

nvocations i

method m1 o

xecution sce

ecorded afte

xists betwee

educed by m

as done in of

alculations.

.3.1 Start th

We have u

oad-time we

reated as a b

brary withou

nvasive; the

nstead the te

ompiling the

Start the
using LT

mentation

nology discu

cribed in thi

ric is calcula

vided by A

.e. the coup

f c1 calling

enario. If me

er each call

en the two cl

many times. M

ffline analys

he System u

used Aspect

aving of app

black-box, s

ut modifying

source cod

echnique can

e source cod

e System
W Library

ussed in Ch

s thesis. In p

ated during

AspectJ. Our

pling betwee

the method

ethod m1 of

because we

lasses (c1 and

Moreover, th

sis) is avoide

Figure 15

using Aspect

tJ for dynam

plications. W

since any ap

g the applica

de of the app

n be applied

de. The only

E
•

•

hapter 3 is

proposed me

program ex

r approach

en two class

m2 of c2 is

c1 calls the

e have alrea

d c2). Due to

he extra cycl

ed that save

: Overview of

tJ Library

mic analysis

While using

pplication ca

ation code. T

plication is

to the deplo

requirement

Execute the Sc
• Run the Instrum
System
• Calculate the D
Coupling Metric

used in th

ethodology, o

ecution usin

uses the co

ses c1 and c

recorded on

method m2

dy captured

o this proces

le of reading

s a major po

f the Approach

of the syste

load-time w

an be monito

This implies

not a pre-re

yed applicat

t of our appr

cenario
mented

Dynamic
cs

he implemen

our variant o

ng the metho

oncept of di

2 that exists

nly once dur

of c2 many t

d that a run-

sing time ov

g large execu

ortion of the

h

em [45]. Asp

weaving, the

ored/traced

that our tec

equisite for

tion without

roach is the a

Rank

ntation of t

of the dynam

od intercepti

istinct meth

s because of

ring the enti

times, it is n

-time coupli

verhead can

ution trace f

 time spent

pectJ suppo

 application

using Aspec

hnique is no

our approac

modifying/r

addition of o

the Results

53

the

mic

ion

od

f a

ire

not

ing

be

file

on

rts

n is

ctJ

on-

ch.

re-

our

54

custom built aspect library to the application class-path and the launch of the system

with load-time aspect weaving enabled.

Figure 16: Load-time weaving of Application Classes using aspectjweaver.jar

The above figure explains the load-time weaving process for application classes.

The -javaagent option of the JVM is utilized to specify that the application classes will

be transformed by the specified aspect library using the aspectjweaver.jar. The Aspect

Instance finds the join-points in the application classes that are to be loaded by the

JVM. Next the advice code is weaved at the specified point-cuts in the application

classes. In the final step, the JVM loads the modified version of the application classes

(weaved classes) that will now execute according to the advice.

5.3.2 Run the Instrumented System and Calculate Metrics

When we run the instrumented System, AspectJ allows us to intercept each and

every method call and provides us with the relevant information like the name of the

class, name of the method, method signature, line number of code etc. [45]. System

classes and class libraries can be excluded easily to filter unwanted classes. It can also

be specified that only specified classes of the application should be intercepted.

Inclusion/exclusion of classes is at the programmer’s discretion. We have built our

approach around on-line analysis of the application, since we calculate the metrics in

55

parallel to program execution. This is opposite to off-line analysis approach in which

the system is executed first and after the execution is finished the execution traces are

analyzed to extract the information. As the system gets executed, we record relevant

information in a linked list like data-structure.

5.3.2.1 Algorithm for Calculation of Dynamic Coupling Metric

1. Start with the entry point of the application (e.g. main method).

2. Assign an initial value of 0 to the “loading_order” variable.

3. Initialize loaded_classes_list with zero size list.

4. Before the execution of any method/constructor, do the following:

a. Get the name of the previously called method/class from stack_list.

b. Get the name of the currently called method/class.

c. Record the coupling relationship between previously called method/class

(m1/c1) and the currently called method/class (m2, c2) in the form of (m1,

c1, m2, c2, loading_order). The repetition is not considered, only the

distinct combinations of (m1, c1, m2, c2, loading_order) are recorded.

d. Check if this class is present in the loaded_classes_list?

If No,

i. Assign the value of “loading_order” variable to this class.

ii. Add this class to the loaded_classes_list.

iii. Increment the value of loading_order variable.

iv. Add this method to the invoked_methods_list of this class.

If Yes,

i. Add this method to the invoked_methods_list of this class (if not

already added)

5. Add the currently method/class to the stack_list.

6. Repeat the steps 4 and 5 till the end of the application.

7. At the end of the application you will have the following:

56

a. The order in which the classes are loaded by the application in

loaded_classes_list.

b. Each class will have the list of methods that are invoked during the

execution scenario in invoked_methods_list of that class.

c. The coupling relationship between classes in the form of (m1, c1, m2, c2,

loading_order). It is again emphasized that the repetition is not

considered; only the distinct combinations of (m1, c1, m2, c2,

loading_order) are recorded.

57

5.3.2.2 Flow of activities for calculation of Dynamic Coupling Metric

Figure 17: Flow of activities for calculation of dynamic coupling metric

58

5.3.3 Rank the Results

At the end of the execution, we rank the classes according to their metric value (i.e.

classes are sorted on the loading_order ascending and count of invoked methods of

other classes descending) and display the top fifteen percent results to the user [45].

5.3.4 System Requirements

System prototype is developed using Eclipse IDE and java development kit 6. For

running this software prototype there is a requirement of Java Runtime Environment 6

and database handling is done using Oracle 10g which must be installed and database

should be configured for proper running of this software. In tabular form, the

specification of the system on which experiment was conducted is given in Table 13.
Table 13: System Specifications

System Processor AMD Athlon Dual-Core QL-62 2.0 GHz

Hard Disk 150 GB

RAM 4 GB

Operating System Windows 2000 Server, Windows 2003 Server,
Windows XP, Windows 7

Runtime Environment Java Runtime Environment 6

Database Server Oracle 10g

Case Study Softwares Apache Ant 1.6.1
Jakarta JMeter 2.0.1

AspectJ Version AspectJ 1.6.7

IDE Eclipse Galileo

5.4 How the proposed approach is evaluated and validated

We have performed an intrinsic evaluation of our approach using open source

software as case study (details in Chapter 6). Following three major evaluation criteria

have been used to evaluate the approach:

59

• The recall of the approach (or retrieval power of the approach).

• The precision of the approach.

• The time consumed in the complete process.

Similarly, the validation of the proposed approach is performed with the help

of precision and recall. In addition, we have computed the amount of effort in our

approach which could help in figuring out the return on investment in terms of time.

5.5 Practical use of our approach

In order to obtain the benefits of our approach, the programmer working on the

new software can use the following steps:

• Choose a major use case of the system.

• Start the system using our AspectJ library.

• Run the selected use case of the system.

• Our heuristic will determine and present the key classes to the programmer

as a ranked list.

• The programmer can use these classes as a starting point for his

comprehension process.

60

CHAPTER 6

RESULTS AND EVALUATION

In this chapter results of the developed prototype system are evaluated against the

existing approaches. For this purpose the evaluation criteria is identified and our

approach is compared with the results reported by the experiments conducted on the

same software system.

6.1 Results of 1st Case Study – Apache Ant

To evaluate the accuracy of our heuristic, we have used as baseline the most

important classes, provided by [11, 12] (extracted from design documents of Apache

Ant 1.6.1 and Jakarta JMeter 2.0.1) in their experiment of finding key classes of a

software system.

The top 15% classes identified by our approach are presented in Table 14. The 15%

mark is set by the authors in [12]; they argue that the documentation of Apache Ant

mentions that nearly 10% of the total classes are deemed important by the original

authors of Apache Ant. Hence the 15% mark is quite reasonable for the evaluation of

the approach.

There are 19 classes that have been marked as key classes by our approach. Out of

these 19 classes, 9 classes were identified correctly as shown in the Table 14 on next

page. Whereas 10 classes are false positives.

61

Table 14: Classes identified by our approach (Top 15%) – Apache Ant

Our identified classes Baseline Classes [11,12]
Project Project
UnknownElement UnknownElement
AntTypeDefinition
ComponentHelper
Main Main
ElementHandler ElementHandler
IntrospectionHelper IntrospectionHelper
Property
FileUtils
ProjectHelper2
PropertyHelper
DefaultLogger
ProjectHelper ProjectHelper
ProjectHandler
RuntimeConfigurable RuntimeConfigurable
TargetHandler
RootHandler
Task Task
Target Target
 TaskContainer

62

6.2 Evaluation of 1st Case Study – Apache Ant

6.2.1 Criteria Used for Evaluation

Following are the main criteria on which proposed approach is evaluated and

compared to existing techniques:

i. Precision

Precision is the proportion of classes that lies within the baseline in all the

discovered classes.

݊݋݅ݏ݅ܿ݁ݎܲ ൌ N୳୫ୠୣ୰ ୭୤ ୰ୣ୪ୣ୴ୟ୬୲ ୡ୪ୟୱୱୣୱ ୰ୣ୲୰୧ୣ୴ୣୢ
N୳୫ୠୣ୰ ୭୤ ୰ୣ୲୰୧ୣ୴ୣୢ ୡ୪ୟୱୱୣୱ

 (1)

ii. Recall

Recall is the fraction of the classes, which are relevant to the baseline, that are

successfully retrieved.

ܴ݈݈݁ܿܽ ൌ ே௨௠௕௘௥ ௢௙ ௥௘௟௘௩௔௡௧ ௖௟௔௦௦௘௦ ௥௘௧௥௜௘௩௘ௗ
ே௨௠௕௘௥ ௢௙ ௥௘௟௘௩௔௡௧ ௖௟௔௦௦௘௦

 (2)

iii. Fallout

It is the proportion of all non-relevant classes present in the retrieved classes.

ݐݑ݋݈݈ܽܨ ൌ ே௨௠௕௘௥ ௢௙ ௡௢௡ି௥௘௟௘௩௔௡௧ ௖௟௔௦௦௘௦ ௥௘௧௥௜௘௩௘ௗ
ே௨௠௕௘௥ ௢௙ ௥௘௧௥௜௘௩௘ௗ ௖௟௔௦௦௘௦

 (3)

iv. F Measure

This is the weighted harmonic mean of precision and recall. It trades off

between precision and recall.

ܨ ൌ ൫ఉమାଵ൯௉ோ
ఉమ௉ାோ

 (4)

v

6.

T

M
N
P
%

v. The ef

.2.2 Precisio

Precision

Table.

Metric
Name

recision
%

Graphical

0
5
10
15
20
25
30
35
40
45
50

o Where

o The d

and rec

ffort (Time) i

on Compari

of our appr

Tab

IC_CM IC_

21

form of the

Figu

0
5
0
5
0
5
0
5
0
5
0

21

C

where

e F is F-meas

efault well a

call uses the

it takes to pe

ison

roach is com

ble 15: Compa

CC IC

37

above table

ure 18: Compa

37 37

Compar

sure, P is pre

adjusted F-m

 parameters:

 or

erform the co

mpared with

arison of Preci

_CC'
IC_C
HIT

37

is given in F

arison of Prec

32

42

ison of P

ecision and R

measure that

:

omplete ana

h other app

ision % -- Apa

CM +
S

IC_C
HITS

32

Figure 18.

ision % -- Ap

47 47

Precision

R is recall

fairly weigh

alysis, from s

proaches in

ache Ant

CC +
S

IC_CC
HITS

42

ache Ant

n %

Pr

 (

hts precision

 (

start to finish

the followi

C' + Our
Approa

47

ecision %

63

(5)

(6)

h.

ng

ach

47

6.

T

M
N

R

6.

T

M
N

F

.2.3 Recall C

Recall of

Table.

Metric
Name

Recall %

Graphical

.2.4 Fallout

Fallout of

Table.

Metric
Name

allout %

Graphical

1
2
3
4
5
6
7
8
9

Comparison

our approa

Ta

IC_CM IC_

40

form of the

Fig

Compariso

f our approa

Ta

IC_CM IC_

79

form of the

0
0
0
0
0
0
0
0
0
0

40

n

ach is comp

able 16: Comp

CC IC

70

above table

gure 19: Comp

on

ach is comp

able 17: Comp

CC IC

63

above table

70 70

Compa

pared with e

parison of Rec

_CC'
IC_C
HIT

70

is given in F

parison of Rec

pared with e

arison of Fall

_CC'
IC_C
HIT

63

is given in F

60
80

arison of

existing app

call % -- Apac

CM +
S

IC_C
HITS

60

Figure 19.

call % -- Apac

existing app

out % -- Apac

CM +
S

IC_C
HITS

68

Figure 20.

90 9

f Recall %

proaches in

che Ant

CC +
S

IC_CC
HITS

80

che Ant

proaches in

che Ant

CC +
S

IC_CC
HITS

58

90

%

the followi

C' + Our
Approa

90

the followi

C' + Our
Approa

53

Recall %

64

ing

ach

90

ing

ach

53

6.

T

M
N

F

.2.5 F-meas

F-measure

Table.

Metric
Name

-Measure

Graphical

0
10
20
30
40
50
60
70
80

Fig

sure Compa

e of our app

Tabl

IC_CM IC_

27

form of the

0
0
0
0
0
0
0
0
0

79

gure 20: Comp

arison

proach is co

le 18: Compar

CC IC

48

above table

63 63

parison of Fall

ompared wit

rison of F-Mea

_CC'
IC_C
HIT

48

is given in F

68
58

Fall Out

lout % -- Apa

th other app

asure % -- Ap

CM +
S

IC_C
HITS

41

Figure 21.

53 53

t %

ache Ant

proaches in

pache Ant

CC +
S

IC_CC
HITS

55

3

F

the followi

C' + Our
Approa

61

Fall Out %

65

ng

ach

61

6.

to

m

in

pu

m

th

bu

in

th

W

ov

el

th

of

sh

te

.2.6 Time U

In this crit

o build the A

machine to b

nvolved in o

ublished re

measurement

he results of

uild was 23

nformation,

hat the existi

With our app

verhead invo

levated to 10

he original e

f 156. On th

hows that ne

erm of time u

Figur

Usage – (effo

teria time is

Ant source pr

build the sam

our approach

sults of the

t is taken as

f previous e

seconds; bu

the executio

ing approach

proach the or

olved in mea

0 minutes (6

xecution tim

he basis of th

ew technique

usage.

0
10
20
30
40
50
60
70

2

re 21: Compar

ort to perfor

measured fo

roject withou

me Ant sour

h. The time

e experimen

a relative m

experiments

ut with overh

on time elev

h has increas

riginal execu

asuring the d

600 seconds

me by a facto

his principle

e presented

27

48

rison of F-Me

rm the comp

or the norma

ut instrumen

rce project w

e for all exis

nts conduct

measure, not

reported tha

head involve

vated to 60 m

sed the origi

ution time o

dynamic cou

). It is notic

or of 23 whi

all of the me

in this thesi

48
41

F‐Measur

easure % -- Ap

plete analys

al execution t

ntation as we

with the ov

sting approa

ted by the

as an absolu

at the origin

ed in measur

minutes (36

inal executio

of Ant build

upling inform

ceable that o

ch is far mo

easurements

is is far bette

55 6

re %

pache Ant

sis, from sta

time taken b

ell as the tim

erhead of in

aches was ta

respective

ute measure

nal execution

ring the dyn

600 seconds)

on time by a

was 26 seco

mation, the e

ur approach

ore efficient t

 are taken an

er than the e

61 61

art to finish)

by the machi

me taken by t

nstrumentati

aken from t

author. Tim

. For instanc

n time of A

namic coupli

). It is evide

a factor of 15

onds; but w

execution tim

h has increas

than the fact

nd their resu

existing one

66

)

ine

the

ion

the

me

ce,

Ant

ing

ent

56.

ith

me

sed

tor

ults

in

I
I
I
I
I
I
O

APPROAC

IC_CM
IC_CC
IC_CC`
IC_CM + HIT
IC_CC + HIT
IC_CC` + HI
Our Approach

Graphical

2

4

6

8

10

12

Table
CH

EXE
(

TS
TS
TS
h

form of the

Figure 22:

0

20

40

60

80

00

20

105 1

C

19: Details of
ORIGINAL

ECUTION TI
(SECONDS)

(A)
23
23
23
23
23
23
15

above table

Comparison

105 105 1

Compari

f results for Ti

IME
)

E
W

is given in F

of time usage

105 105

ison of T

ime Usage – A
EXECUTION
WITH APPR

(SECON
(B)

6300
6300
6300
6300
6300
6300
600

Figure 22.

of approache

105

6

Time Usa

Apache Ant
N TIME
ROACH

NDS)

0
0
0
0
0
0

s – Apache An

age

Time (

OVERHEA
FACTOR

(B/A)

273
273
273
273
273
273
40

nt

(Minutes)

67

AD
R

68

6.3 Results of 2nd Case Study – Jakarta JMeter

The top 15% classes identified by our approach in the experiment with Jakarta

JMeter are presented in Table 20.

Table 20: Classes identified by our approach (Top 15%) – Jakarta JMeter

Our identified classes Baseline Classes [11,12]
JMeter
SaveService
JMeterProperty
JMeterTreeModel JMeterTreeModel
TestElement TestElement
AbstractTestElement
Arguments
LoopController
HTTPSampler
HTTPSamplerBase
SampleResult SampleResult
TestPlanGui TestPlanGui
ArgumentsPanel
JMeterEngine JMeterEngine
TestPlan TestPlan
ValueReplacer
Command
GuiPackage
MainFrame
TestListener TestListener
TestCompiler TestCompiler
ListenerNotifier
ThreadGroup ThreadGroup
JMeterGUIComponent JMeterGUIComponent
MenuFactory
JMeterThread JMeterThread
SamplePackage
Sampler Sampler
 AbstractAction
 PreCompiler

th

W

6

6.

T

M
N
P
%

There are

hese 28 cla

Whereas 16 c

6.4 Evaluat

.4.1 Precisio

Precision

Table.

Metric
Name

recision
%

Graphical

0

5

10

15

20

25

30

35

40

45

50

IC_

28 classes th

sses, 12 cla

classes are fa

tion of 2nd

on Compari

of our appr

Table

IC_CM IC_

7

form of the

Figure

7
11

_CM IC_CC

hat have bee

asses were

alse positives

d Case Stu

ison

roach is com

e 21: Compari

CC IC

11

above table

e 23: Compari

36

 IC_CC'

en marked a

identified c

s.

dy – Jaka

mpared with

ison of Precisio

_CC'
IC_C
HIT

36

is given in F

ison of Precisi

18

IC_CM +
HITS

IC_
H

Precisio

as key classe

correctly as

arta JMete

h other app

on % -- Jakar

CM +
S

IC_C
HITS

18

Figure 23.

ion % -- Jaka

25

46

_CC +
HITS

IC_CC'
HITS

on %

es by our app

shown in

er

proaches in

rta JMeter

CC +
S

IC_CC
HITS

25

rta JMeter

43

' +
S

Our
Approach

proach. Out

the Table 2

the followi

C' + Our
Approa

46

Precisio

69

of

20.

ng

ach

43

n %

6.

T

M
N

R

6.

T

M
N

F

.4.2 Recall C

Recall of

Table.

Metric
Name

Recall %

Graphical

.4.3 Fallout

Fallout of

Table.

Metric
Name

allout %

Graphical

0
10
20
30
40
50
60
70
80
90

100

Comparison

our approa

Tabl

IC_CM IC_

14

form of the

Figu

Compariso

f our approa

Tabl

IC_CM IC_

93

form of the

14

n

ach is comp

le 22: Compar

CC IC

21

above table

re 24: Compa

on

ach is comp

le 23: Compar

CC IC

89

above table

21

71

pared with e

rison of Recal

_CC'
IC_C
HIT

71

is given in F

arison of Reca

pared with e

rison of Fallou

_CC'
IC_C
HIT

64

is given in F

36

5

Recall %

existing app

ll % -- Jakarta

CM +
S

IC_C
HITS

36

Figure 24.

ll % -- Jakart

existing app

ut % -- Jakart

CM +
S

IC_C
HITS

82

Figure 25.

50

93

%

proaches in

a JMeter

CC +
S

IC_CC
HITS

50

ta JMeter

proaches in

ta JMeter

CC +
S

IC_CC
HITS

75

86

the followi

C' + Our
Approa

93

the followi

C' + Our
Approa

54

Recall %

70

ing

ach

86

ing

ach

57

6.

T

M
N

F

.4.4 F-meas

The F-mea

Table.

Metric
Name

-Measure

Graphical

0
10
20
30
40
50
60
70
80
90
100

Figur

sure Compa

asure of our

Table 2

IC_CM IC_

25

form of the

93 8

re 25: Compar

arison

approach is

24: Comparis

CC IC

45

above table

89

64

rison of Fallou

 compared w

son of F-Measu

_CC'
IC_C
HIT

45

is given in F

82

Fallou

ut % -- Jakart

with other ap

ure % -- Jaka

CM +
S

IC_C
HITS

37

Figure 26.

75

54

t %

ta JMeter

pproaches in

arta JMeter

CC +
S

IC_CC
HITS

52

57

n the followi

C' + Our
Approa

61

Fallou

71

ng

ach

58

ut %

6.

to

m

ou

re

ta

pr

Ja

co

ev

of

JM

co

no

w

m

th

.4.5 Time U

In this crit

o execute th

machine to ex

ur approach

esults of the

aken as a re

revious expe

akarta JMete

oupling info

vident that th

f 54. With

Meter was

oupling info

oticeable tha

which is far m

measurement

hesis is far b

0
10
20
30
40
50
60
70

Figure

Usage – (effo

teria time is

he use case

xecute the sa

h. The time

e experiment

elative measu

eriments rep

er was 82 se

ormation, the

he existing a

our approac

50 seconds

ormation, th

at our appro

more efficien

ts are taken

etter than th

0
0
0
0
0
0
0
0

25

4

26: Comparis

ort to perfor

measured fo

without in

ame use case

for all exi

ts conducted

ure, not as

ported that th

econds; but w

e execution

approach ha

ch the origin

s; but with

e execution

ach has incr

nt than the fa

and their re

e existing on

45 45

F‐

son of F-Meas

rm the comp

or the norma

strumentatio

e with the ov

sting approa

d by the res

an absolute

he original e

with overhea

time elevate

s increased t

nal executio

overhead i

time elevat

reased the or

actor of 54. O

esults shows

ne in term of

37

52

‐Measur

sure % -- Jaka

plete analys

al execution t

on as well a

verhead of in

aches was t

spective auth

measure. F

execution tim

ad involved

ed to 75 min

the original

on time of s

involved in

ted to 5 min

riginal execu

On the basis

s that new te

f time usage

61 58

re %

arta JMeter

sis, from sta

time taken b

as the time

nstrumentati

taken from

hor. Time m

or instance,

me for select

in measurin

nutes (4500

execution tim

same use ca

measuring

nutes (300 s

ution time b

s of this prin

echnique pre

.

F‐Me

art to finish)

by the machi

taken by t

on involved

the publish

measurement

the results

ted use case

ng the dynam

seconds). It

me by a fact

ase for Jakar

the dynam

seconds). It

y a factor of

nciple all of t

esented in th

easure %

72

)

ine

the

d in

hed

is

of

of

mic

t is

tor

rta

mic

is

f 6

the

his

I
I
I
I
I
I
O

6

APPROAC

IC_CM
IC_CC
IC_CC`
IC_CM + HIT
IC_CC + HIT
IC_CC` + HI
Our Approach

Graphical

6.5 An outl

• A n

con

• An

dyn

• The

oth

0
10
20
30
40
50
60
70
80

Table 25
CH

EXE
(

TS
TS
TS
h

form of the

Figure 27: C

line of ach

new variant

nsideration th

n implement

namic coupl

e precision,

her analogou

0
0
0
0
0
0
0
0
0

75

5: Details of re
ORIGINAL

ECUTION TI
(SECONDS)

(A)
82
82
82
82
82
82
50

above table

Comparison of

hievements

t of a dynam

he loading o

tation of the

ing metric d

recall and p

us experimen

75 75

T

esults for Tim

IME
)

E
W

is given in F

f time usage of

s in this re

mic coupling

order of the c

e approach

during progra

performance

nts performed

75 75

Time (m

me Usage – Jak
EXECUTION
WITH APPR

(SECON
(B)

4500
4500
4500
4500
4500
4500
300

Figure 27.

f approaches –

esearch

g metric is

class in the a

to calculate

am execution

of our appro

d on the sam

75

4

ins)

karta JMeter
N TIME
ROACH

NDS)

0
0
0
0
0
0

– Jakarta JMe

introduced t

application.

e the new v

n is provided

oach is comp

me software s

Tim

OVERHEA
FACTOR

(B/A)

54
54
54
54
54
54
6

eter

that takes in

variant of t

d.

pared with t

system.

me (mins)

73

AD
R

nto

the

the

74

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter research work is concluded and some future directions are

described. The chapter is of vital importance because it provides a bird’s eye-view of

the methodology and gives future directions for new researchers.

7.1 Conclusion

Traversing the entire set of classes in the project in order to find those few

classes that provide substantial glimpse of the inner workings of the software is

challenging for new programmers. Our technique for Discovering Key Classes can be

of great help in this situation, since it provides the facility to identify automatically

those few classes (from the entire set of classes in the system) that are ideal nominees

for initial program comprehension. An open source software known as Apache Ant has

been used for experimentation in our approach. This particular software was selected

as case study because the results of other analogous experiments performed on the

same system were available for comparison of our approach with other approaches.

We have used the same baseline to evaluate our approach that was used by the authors

in analogous experiments.

The concept of dynamic coupling and the analogy of core structure from civil

engineering are fundamental to our proposed approach. On the basis of these two

principles, our approach collects information from the guinea pig system (Apache Ant)

at runtime. The results of our experiment have shown that using runtime coupling

information and considering the loading order of the class in the application, we

successfully recalled 90 percent of the key classes of the guinea pig system. In

addition, the precision level of our approach was slightly under 50 percent with such

level of recall.

In this research we have conceived and implemented a helpful technique for a

software engineer who aims to get acquaintance with a completely new software

75

project. The key classes identified by our heuristic provide a miniature number of

points to the user to pursue his quest for obtaining comprehensive understanding of the

system.

7.2 Contribution

In this thesis, we have presented a new approach for coupling based analysis of

object-oriented systems. The runtime coupling relationships among object-oriented

software components and the loading order of the classes in the application is

considered to calculate dynamic coupling metric. We have used dynamic analysis

technique in our approach to instrument the object-oriented system. We have

demonstrated an efficient approach to measure the runtime coupling relationships

among object-oriented software components and successfully applied the measure to

the problem of initial program comprehension.

We have also introduced a variant of dynamic coupling metric for object-

oriented software. This coupling metric is derived from the framework of dynamic

coupling by [10] with slight modification. An open source case study has been used to

validate this metric and it has been demonstrated that this metric is useful in initial

stages of program comprehension.

Another achievement is that we have practically applied the results of dynamic

coupling metric to the initial program comprehension problem. During this research

we have developed an algorithm to find efficient solution to the program

comprehension problem utilizing dynamic coupling metric.

This research serves as a proof of concept that shows the pragmatism and

efficacy of coupling-based investigation of software systems using an open source case

study.

This thesis has produced the following publication:

• Muhammad Kamran, Farooque Azam, Assia Khanum, “Discovering Core
Architecture Classes to Assist Initial Program Comprehension”, Lecture
Notes in Electrical Engineering Volume 211, 2013, pp 3-10, Springer Berlin
Heidelberg

76

7.3 Future Work

A number of research directions have already been identified by us for future

work. These routes will allow the refinement in the validation of our approach for

discovering key classes. In the first place, we want to conduct a controlled experiment

that can be used to evaluate the significance of these key classes in the comprehension

process of a large software system, when the programmer possesses no prior

knowledge of the application. In addition, we plan to test the approach on a diverse set

of applications belonging to different problem domains.

An attractive research direction for future could be the use of dynamic coupling

for reverse engineering of applications. Sufficient details are being produced by this

research through dynamic analysis to reverse engineer the design of software. To

reverse engineer the structural characteristics of the system, the use of coupling

information (including the component interactions) could be very helpful.

To assess the reusability of a class or the relationship of class with the relevant

classes, ranking of classes is often helpful. A mechanism for ranking components of

software is called Component Rank that analyzes real usage relationships among the

components and promulgates their importance by means of usage relationships.

Coupling measures can be utilized for ranking of components and/or classes. They

should be able to identify the use of a component and any dependent components.

Since the coupling metrics have the potential to detect how a class is utilized as well as

its dependencies, they can be of great use for ranking classes with respect to the

reusability. A tightly coupled component is less likely to be a reusable component,

whereas a loosely coupled component can be an ideal candidate for reusable

component.

77

REFERENCES

[1] Spinellis D. Code Reading: The Open Source Perspective. Addison-Wesley:

Boston, MA, USA, 2003.

[2] Wilde N. Faster reuse and maintenance using software reconnaissance.

Technical Report, Technical Report SERC-TR-75F, Software Engineering

Research Center, CSE-301, University of Florida, CIS Department, Gainesville, FL

1994. URL citeseer.nj.nec.com/wilde94faster.html.

[3] Corbi TA. Program understanding: Challenge for the 90s. IBM Systems

Journal 1990; 28(2):294–306.

[4] Biggerstaff TJ, Mitbander BG, Webster D. The concept assignment problem in

program understanding. Proceedings of the International Conference on Software

Engineering (ICSE), IEEE Computer Society: Los Alamitos, CA, USA, 1993; 482–

498.

[5] Lakhotia A. Understanding someone else’s code: Analysis of experiences.

Journal of Systems and Software Dec 1993; 23(3):269–275.

[6] von Mayrhauser A, Vans AM. Program comprehension during software

maintenance and evolution. IEEE Computer Aug 1995; 28(8):44–55.

[7] Robillard MP, Coelho W, Murphy GC. How effective developers investigate

source code: an exploratory study. IEEE Transactions on Software Engineering

2004; 30(12):889–903.

[8] Tahvildari L, Kontogiannis K. Improving design quality using meta-pattern

transformations: A metric-based approach. Journal of Software Maintenance and

Evolution: Research and Practice 2004; 16(4–5):331–361.

[9] Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE

Transactions on Software Engineering 1994; 20(6):476–493.

[10] Arisholm E, Briand L, Foyen A. Dynamic coupling measurement for object-

oriented software. IEEE Transactions on Software Engineering 8 2004; 30(8):491–

506.

[11] Zaidman A, Calders T, Demeyer S, Paredaens J. Applying webmining

techniques to execution traces to support the program comprehension process.

78

Proceedings of the European Conference on Software Maintenance and

Reengineering (CSMR), IEEE Computer Society: Los Alamitos, CA, USA, 2005;

134–142.

[12] Zaidman, A. and Demeyer, S., Automatic identification of key classes in a

software system using webmining techniques, Journal of Software Maintenance and

Evolution: Research and Practice, vol. 20, no. 6, 2008, pp. 387-417.

[13] Briand LC, Daly JW, W¨ust JK. A unified framework for coupling

measurement in object-oriented systems. IEEE Transactions on Software

Engineering 1999; 25(1):91–121.

[14] Zaidman A, Du Bois B, Demeyer S. How webmining and coupling metrics can

improve early program compehension. Proceedings of the International Conference

on Program Comprehension (ICPC), IEEE Computer Society: Los Alamitos, CA,

USA, 2006; 74–78.

[15] Robillard MP. Automatic generation of suggestions for program investigation.

SIGSOFT Software Engineering Notes 2005; 30(5):11–20.

[16] Greevy O, Ducasse S. Correlating features and code using a compact two-sided

trace analysis approach. Proceedings of the European Conference on Software

Maintenance and Reengineering (CSMR), IEEE Computer Society: Los Alamitos,

CA, USA, 2005; 314–323.

[17] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-

M., and Irwin, J. (1997). Aspect-oriented programming. In Proceedings European

Conference on Object-Oriented Programming, volume 1241 of LNCS, pages 220–

242. Springer-Verlag.

[18] Storey, M.-A. D., Wong, K., and Muller, H. A. (2000). How do program

understanding tools affect how programmers understand programs? Science of

Computer Programming, 36(2–3):183–207.

[19] Renieris, M. and Reiss, S. P. (1999). ALMOST: Exploring program traces. In

Proc. 1999 Workshop on New Paradigms in Information Visualization and

Manipulation, pages 70–77. http://citeseer.nj.nec.com/renieris99almost.html.

79

[20] Pennington, N. (1987). Stimulus structures and mental pre-presentations in

expert comprehension of computer programs. Cognitive Psychology, 19:295–341.

[21] Andrews, J. (1998). Testing using log file analysis: tools, methods, and issues.

In Proceedings of the 13th International Conference on Automated Software

Engineering (ASE’98), page 157. IEEE Computer Society.

[22] Yourdon, E. and Constantine, L. L. (1979). Structured Design: Fundamentals

of a Discipline of Computer Program and System Design. Prentice Hall.

[23] M. Bauer. Analysing Software Systems by Using Combinations of Metrics[C].

In Proceedings of ECOOP’99 Workshops, Springer-Verlag LNCS 1743, Lisbon,

1999, 170-171.

[24] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan Paredaens, Selective

Introduction of Aspects for Program Comprehension, In Proceedings WARE'04

(WCRE Workshop on Aspect Reverse Engineering), 2004

[25] Kleinberg JM. Authoritative sources in a hyperlinked environment. Journal of t

he AC M 1999; 46(5):604–632. URL citeseer.ist.psu.edu/article/

kleinberg98authoritative.html.

[26] Lehman M, Belady L. Program evolution: processes of software change.

Academic Press Professional, Inc.:San Diego, CA, USA, 1985.

[27] Demeyer S, Ducasse S, Nierstrasz O. Object-Oriented Reengineering Patterns.

Morgan Kaufmann, 2003.

[28] Ko AJ, Myers BA, Coblenz MJ, Aung HH. An exploratory study of how

developers seek, relate, and collect relevant information during software

maintenance tasks. IEEE Transactions on Software Engineering 2006; 32:971–987.

[29] Systä T. On the relationships between static and dynamic models in reverse

engineering java software. Proceedings of the Working Conference on Reverse

Engineering (WCRE), IEEE Computer Society: Los Alamitos, CA, USA, 1999;

304–313.

[30] Eisenbarth T, Koschke R, Simon D. Locating features in source code. IEEE

Transactions on Software Engineering 2003; 29(3):210–224.

80

[31] Richner T, Ducasse S. Using dynamic information for the iterative recovery of

collaborations and roles. Proceedings of the International Conference on Software

Maintenance (ICSM), IEEE Computer Society: Los Alamitos, CA, USA, 2002; 34–

43.

[32] Eisenbarth, T., Koschke, R., and Simon, D. (2001). Aiding program

comprehension by static and dynamic feature analysis. In 17th International

Conference on Software Maintenance (ICSM’01), pages 602–611. IEEE Computer

Society.

[33] El-Ramly, M., Stroulia, E., and Sorenson, P. (2002). From run-time behavior to

usage scenarios: an interaction-pattern mining approach. In Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 315–324. ACM Press.

[34] Gargiulo, J. and Mancoridis, S. (2001). Gadget: A tool for extracting the

dynamic structure of java programs. In Proceedings of the Thirteenth International

Conference on Software Engineering & Knowledge Engineering (SEKE’01), pages

244–251.

[35] Gschwind, T., Oberleitner, J., and Pinzger, M. (2003). Using run-time data for

program comprehension. In Proceedings of the 11th IEEE International Workshop

on Program Comprehension (IWPC’03), pages 245–250. IEEE Computer Society.

[36] Systä, T. (2000a). Static and Dynamic Reverse Engineering Techniques for

Java Software Systems. PhD thesis, University of Tampere.

[37] P. Jalote. An Integrated Approach to Software Engineering. Springer-Verlag,

New York NY, 1991.

[38] Jeff Offutt, Mary Jean Harrold, and P. Kolte. A software metric system for

module coupling. The Journal of Systems and Software, 20(3):295-308, 1993.

[39] P. G. Frankl and E. J.Weyuker. An applicable family of data flow testing

criteria. IEEE Transactions on Software Engineering, 14(10):1483-1498, 1988.

[40] Zhenyi Jin and Jeff Offutt. Coupling-based criteria for integration testing. The

Journal of Software Testing, Verification, and Reliability, 8(3):133-154, 1998.

81

[41] Murphy GC, Notkin D, Sullivan K. Software reflexion models: bridging the

gap between source and highlevel models. Proceedings of the ACM SIGSOFT

Symposium on Foundations of Software Engineering (FSE), ACM: New York, NY,

USA, 1995; 18–28.

[42] Walker RJ, Murphy GC, Freeman-Benson B, Wright D, Swanson D, Isaak J.

Visualizing dynamic software system information through high-level models.

Proceedings of the Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), ACM SIGPLAN Notices, vol. 33, ACM:

New York, NY, USA, 1998; 271–238.

[43] Ducasse S, Lanza M, Bertuli R. High-level polymetric views of condensed run-

time information. Proceedings of the European Conference on Software

Maintenance and Reengineering (CSMR), IEEE Computer Society: Los Alamitos,

CA, USA, 2004; 309–318.

[44] Greevy O, Lanza M, Wysseier C. Visualizing live software systems in 3D.

Proceedings of the Symposium on Software visualization (SoftVis), ACM: New

York, NY, USA, 2006; 47–56.

[45] Muhammad Kamran, Farooque Azam, Asia Khanum, “Discovering Core

Architecture Classes to Assist Initial Program Comprehension”, Lecture Notes in

Electrical Engineering Volume 211, 2013, pp 3-10, Springer Berlin Heidelberg.

