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ABSTRACT 

The constant modification of software systems, the increasing size of the software 

and the expensive development process are the factors that are responsible for the 

increase in the amount of the effort that is being expended on the maintenance phase. 

Mostly each maintenance cycle is performed to achieve a specific goal, for instance 

improving the efficiency of a procedure, provision of new application features, 

assembling existing components into the new software and so on. A programmer will 

not be able to achieve any of the above goals unless he understands the particular 

software at a sufficient level of detail that allows him to implement the desired change 

in the system. The process of exploring the software and its associated artifacts with 

the aim to gain knowledge about the inner workings of the system for carrying out the 

necessary changes in the system is termed as program comprehension.  

The process of building an understanding of the existing system is time consuming 

and takes around 40% of the allocated time for a maintenance task. How a new 

software developer proceeds to build an initial acquaintance with the original software, 

differs a lot and depends on a number of factors like the experience of the individual, 

the size and type of the software, the level of detail required to modify the system and 

so on. Numerous efforts have been made to reduce the time consumed in the program 

comprehension process by providing support to the programmer during this phase. The 

key contribution of this thesis is a heuristic approach that can aid the programmer in 

searching the key classes of software that are ideal nominees for the initial stages of 

the program comprehension process. 

Full automation of the process of developing an understanding of the program is not 

possible since it involves human learning activity. Therefore, it has been suggested 

that the specialized tools should help the programmer discover the software amicably. 

The segments of the program that can be attractive from the comprehension viewpoint 

must be brought into the notice of the programmer by the exploration tools. In our case 

the program discovery tool should pinpoint the key classes of the object-oriented 

system that are fundamental to its design. 
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CHAPTER 1 

INTRODUCTION 

An introduction to the research work that has been taken in this thesis is presented 

in this chapter. It includes motivation and definition of the problem. Moreover the 

objectives and goals are also discussed.  

1.1 Motivation 

Software development of an entirely new project is amusing. You can utilize the 

power of your ingenuity when building the software from scratch. You are free to 

decide the variable set of parameters that include the hardware and software 

architecture of the system, the choice of the technology set, the design patterns to be 

followed and so on. Moreover, the choice of the programming language can be made 

based on the available expertise and the ease of development offered by the language 

platform. 

Since change is the only constant in this world, therefore changes are inevitable in 

the environment in which the software operates. Software must be changed in response 

to the changes in the environment to fulfill the expectations of the users and to avoid 

the threat of being outdated. The maintenance phase of already built software brings 

more miseries to the life of the software developers as compared to the development of 

a new software project. 

The most challenging and the most expensive (in terms of time usage) part of 

software maintenance is the effort to build an understanding of the existing system, 

also known as program comprehension. Usually the documentation and other 

associated software artifacts are utilized for this process, but in many cases these 

artifacts are either not available or they do not reflect the current state of the system. 

To help the software developer in this kind of a situation, a solution is discussed in this 

thesis that can be used in the early stages of program comprehension process. Our 
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solution is based on the dynamic analysis of the software, in other words we collect the 

information from the running software system. 

1.2 Background 

The programmer needs to build a perceptive association in his mind when 

programming a piece of software. This association binds the code that has been written 

by him and the system actions he wants to program [19]. On the other hand, while 

trying to get acquaintance with the system, in fact a programmer is struggling to figure 

out the reverse mapping: i.e. building an association between the external behavior (or 

functionality) of the system and the underlying code that is responsible for that 

behavior.  

The literature suggests that the program comprehension phase is known to consume 

between 30 to 60% (depending on the source) of a software engineer’s time. To build 

an adequate understanding of a software system, the programmer needs to study the 

program code, associated software artifacts and related documents in the program 

comprehension phase [2, 3]. The adequate level of understanding is identified as a 

level where the programmer knows that the system architecture, design or functionality 

will not be hurt by the change that he is making. 

1.3 Problem Statement 

It has been demonstrated by empirical studies that the majority of experienced 

developers track the structural dependencies in the source code when they need to 

derive the high-level model related with the upfront task [7]. 

On the other side, many greenhorn developers, employed to an unknown system 

might be trapped in insignificant code easily and do not succeed in finding the vital 

program functionality, that could result in low trait software maintenance [7] or 

wastage of time. 

In this research, we aim to reduce the problem of program comprehension by 

providing the programmer with a small number of preliminary classes, which can be 

utilized to begin the tracking of structural dependencies in order to gain familiarity 
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with the system. Our main goal is to devise an efficient approach that can assist the 

software developer in the initial stages of program comprehension process. 

1.4 Proposed Solution 

We propose that the key classes of the software are the ideal candidates to start the 

program comprehension efforts as these classes implement the key concepts of the 

system. We have devised an efficient approach that identifies the key classes of 

software using an extended version of dynamic coupling metric. 

1.4.1 Dynamic coupling based solution 

The alleviation of the afore-mentioned problems has been taken in this thesis. The 

underlying thought for utilizing the coupling is the fact that the modules that are 

considered important for first round of program comprehension process can be pointed 

out by structural dependencies that are present in the system [15]. We have used a 

novel variant of a dynamic coupling metric, which requires an execution scenario 

offering good code coverage. The dynamic coupling metric provides us with all 

interactions that take place at runtime. A high count of coupling in a module indicates 

that it requests other modules to do majority of work (delegation) and often serves as a 

part of the core structure.  

Typically the coupling is measured between two classes/modules of the system, 

whereas we are interested in the discovering the entire structural topology (specifically 

the core part of the structure) of the application. We have used AspectJ for run-time 

analysis of Java applications to retrieve key classes of system by calculating a novel 

variant of dynamic coupling metric. The key classes could reveal important structural 

properties of the system and hence are strong candidates for the early program 

comprehension process. They can be a good starting point to understand additional 

classes and their connections.  

The outcome of our heuristic is a ranked list containing all those classes of the 

system that were instantiated or whose method(s) were called during the execution 

scenario. The ranking of the classes is done on the basis of our variant of dynamic 
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coupling metric that takes into account the loading order of the class in the application. 

In simple words, the classes are ranked based on their relevance to the initial stages of 

program comprehension. The validation of our approach is done using two open 

source systems as case study, namely Apache Ant 1.6.1 and Jakarta JMeter 2.0.1. The 

results are compared with the results of other analogous experiments performed on the 

same Guinea Pig Systems (Apache Ant 1.6.1 and Jakarta JMeter 2.0.1). 

1.5 Publication 

This thesis has produced the following publication: 

• Muhammad Kamran, Farooque Azam, Assia Khanum, “Discovering Core 

Architecture Classes to Assist Initial Program Comprehension”, Lecture 

Notes in Electrical Engineering Volume 211, 2013, pp 3-10, Springer Berlin 

Heidelberg 

1.6 Organization of the thesis 

The rest of the document is organized as follows:  

Chapter 2 is allocated to literature review which discusses different concepts related 

to Program Comprehension. The existing approaches for discovering key classes are 

also described. In Chapter 3 overview of the technologies used in this thesis is 

provided, Chapter 4 discusses the research methodology followed by us. In Chapter 5, 

the proposed approach is presented and its implementation details are provided. 

Chapter 6 discusses evaluation and results of the implemented system, and in Chapter 

7 thesis work is concluded and some future directions for research are discussed. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Program Comprehension 

When a programmer is at the start of building an initial knowledge base of a new 

system or a subpart of the system, he has to construct an informal, human oriented 

view of the objectives of the system. The formation of this view happens in the course 

of scrutiny, experimentation, deduction and jigsaw-like assembly [4].  

As far as the definition of program comprehension is concerened, we stick to the 

definition introduced by [4]:  

“A person understands a program when able to explain the program, its structure, 

its behavior, its effects on its operation context, and its relationships to its application 

domain in terms that are qualitatively different from the tokens used to construct the 

source code of the program.” 

From the above definition, it can be figured out that the program comprehension 

process is correlated to the problem of concept assignment. For a given program, the 

individual programmer discovers the human oriented concepts and maps them to their 

implementation oriented equivalents [7]. It becomes obvious that the program 

comprehension is an extremely individual process. The results differ greatly from one 

programmer to another, even when the understanding of the software is being built in 

the same way. 

The process of building an understanding of a software system is different for 

individual programmers. Past experience of the similar nature, the level of knowledge 

required for the upfront task, the sheer size of the system to be studied, the 

programming language used for the system, prior knowledge of the system under 

study, etc. are the factors that affect the program understanding process [5]. Theory 

suggests that it is essential to comprehend the whole system prior performing any 

modifications, but practical experiences dictate that it is preferable to utilize a target 

oriented approach or need-based ploy. That means you are specifically interested in 
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obtaining the understanding of the particular subset of the program that is relevant to 

the maintenance task you have. Furthermore, economical constraints imply that this 

knowledge should be gained rapidly and comprehensively.   

The first thing that we will try to explain in this chapter is the necessity of program 

understanding in the maintenance/reengineering phase, after that some prominent 

program comprehension theories will be discussed. 

The need for program understanding: The understanding of the program is a 

necessary requirement for the software (re)engineering activities. Authors in [6] have 

made a list of specific scenarios in software maintenance for which program 

comprehension is a compulsory requirement [6]. An overview of these maintenance 

activities is provided in Table 1.  

It is evident from Table 1 that majority of software maintenance activities in routine 

necessitate an adequate level of knowledge of the application to be maintained. The 

link between software evolution and program comprehension is established by the fact 

that majority of software evolution activities involve prior understanding of the 

software system. 

Since we know that most software maintenance/reengineering processes include a 

prior program comprehension phase that can consume up to sixty percent of the 

programmer’s time [1, 3], hence the improvement in the efficiency of this phase can 

increase the overall efficiency significantly. 
Table 1: Tasks and activities requiring code understanding [6] 

Maintenance Tasks Activities 

Adaptive  1) Gain System Understanding  
2) Define requirements for adaptation 
3) Develop adaptation design (preliminary and detailed)  
4) Change Code, Debugging, Regression testing  

Perfective  1) Gain System Understanding 
2) Diagnose/Define requirements for improvements  
3) Develop perfective design (preliminary and detailed)  
4) Change Code, Debugging, Regression testing  

Corrective  1) Gain System Understanding 
2) Produce/Assess problem hypotheses 
3) Fix the code, Regression testing  
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Reuse  1) Gain Problem Understanding 
2) Search for a ‘close fit’ solution based on reusable components 
3) Obtain reusable components and perform Integration  

Code leverage  1) Gain Problem Understanding 
2) Search for a ‘predefined components’ based solution  
3) Organize solution to raise chances of predefined component usage  
4) Obtain predefined components and perform Integration 

2.2 Models of Program Comprehension 

It has already been mentioned that program comprehension is an extremely 

individual process. How a software engineer performs and achieves the targets of his 

program understanding process is influenced by a number of factors. Some of the 

factors (which can very subjective at times) have been mentioned by [6] are listed 

below:  

• The experience of the programmer 

• Familiarity with the similar solution  

• The complexity of the system 

• The level of familiarity with the problem domain  

• The amount of time available  

The existing approaches for the program comprehension process have been 

extracted from the studies that lie on the border line of psychology and computer 

science. Primarily, these approaches can be broken down into three models of program 

comprehension: i) the top-down model, ii) the bottom-up model, iii) the integrated 

model (a hybrid of the preceding two models) [6]. Now we will explain each of these 

models. 

2.2.1 Top-down model of program comprehension 

When the code of the software system, its problem domain and/or associated 

solution space is known to the programmer, top-down understanding is typically 

applied [6]. This originates from the thought that if a piece of code, that performed the 

identical or comparable tasks, has already been learnt by the software engineer, then 

the structure of the code will have similarities. In a top-down model of program 
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understanding, these similarities in the structure of the code are straightforward to 

identify.  

In the top-down model, typically a software engineer already has a perceived sketch 

of the structure of the software in his mind when he goes about his program 

understanding process. This perceived sketch can come from prior encounters with 

similar system in the same domain, utilizing comparable technology set, etc. or from 

suggested best practices/guidelines in the coding, documentation or associated 

artifacts. The ability to associate the current solution with previously seen construct 

based on a trigger of memory is called a beacon in program comprehension 

terminology. An excellent example of a beacon in software engineering terminology is 

design pattern, e.g. a DAO (Data Access Object) pattern, which is a signal about the 

organization of the persistence layer in the system.  

In the top-down program comprehension model, the perceived sketch of the 

structure of the system is concluded in multiple rounds using hypotheses and the 

results of hypotheses about the software system. The refinement of hypotheses is done 

in iterations, after going through a number of levels, until a match is found in the 

associated artifacts (specific entity in the program code, documentation, or 

configuration file) [6]. 

2.2.2 Bottom-up model of program comprehension 

The non-familiarity with the code and/or problem domain frequently results in the 

choice of bottom-up comprehension model by the software engineer. The two 

variations of the bottom-up model are described in this section.  

Program model: The authors in [20] found that the initial picture built in mind 

when code is completely new to programmers, is the control-flow abstraction of 

program known as program model. This initial picture, assembled by means of 

beacons in the bottom-up fashion, discovers the major portions of code in the program. 

The program model is formed by the amalgamation of microstructures into 

macrostructures and by means of cross-referencing. Creation of bigger entities from 

small blocks for explanation is amalgamation, whereas cross-referencing builds a 
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relationship of these bigger entities with a higher abstraction level. The example of 

cross-referencing can be the chunking of all classes working jointly to form a linked 

list. Then understanding the intention behind this linked list is cross-referencing this 

list to more abstract level. 

Situation model: The situation model is another model that authors in [20] have 

identified. This model provides an abstraction of dataflow/functionality while 

operating in a bottom-up manner. The understanding of the currently implemented 

practices/domain of the system is a pre-requisite for the applicability of this model. A 

simple instance of such kind of program comprehension in bottom-up manner is 

relating the statement in code stockCount = stockCount - salesCount to a descriptive 

statement like “reducing the stock count by the number of sales count”. The 

amalgamation of situation knowledge at lower level with the situation knowledge at 

higher level can be exercised here as well. As soon as the goal of program is achieved, 

the situation model is ended. 

2.2.3 Integrated model 

The top-down model, bottom-up models (program/situation model) and a 

knowledge base constitute the integrated model for code comprehension. Usually, the 

human memory serves as the knowledge base and it serves as storage for the 

following: 

(1) All the knowledge that is gained directly by applying the program 

comprehension strategies (top-down or bottom-up)  

(2) Any derived or indirectly obtained information.  

The most frequently applied model in practice when trying to comprehend 

industrial systems is the integrated model. This is because of the fact that particular 

segments of the code may be recognizable by the programmer due to past encounters 

while there may be segments in the code that are entirely novel. 
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2.3 Program Analysis Approaches for Comprehension 

2.3.1 Dynamic Analysis vs. Static Analysis 

The examination of the properties of the system (that needs to be studied) using the 

knowledge acquired from the running system is known as dynamic analysis, in 

software engineering. 

The static analysis is positioned opposite to the concept of dynamic analysis. In 

static analysis the knowledge about the system is gathered using the artifacts such as 

the source code, documentation related to the system, configuration files, etc. to 

examine the properties of the system. 

The execution trace of the software system needs to be generated as a pre-requisite 

to enable dynamic analysis of the software. The structure for the storage of the runtime 

information is referred as the execution trace. The software system needs to be 

executed using a well-defined execution scenario to record the execution trace. An 

execution scenario can be defined as an instance of interaction with the system 

covering a subset of use case(s). 

2.4 The Dynamic Analysis Approach for Program Comprehension 

The dynamic analysis approach is preferred over the static analysis approach for 

program comprehension because of the two reasons,  

(1) It allows us to use a goal-oriented approach. It provides us a mean to examine 

solely the portions of our own interest in the application. 

(2) In the abundant presence of polymorphism, dynamic analysis provides concise 

measurements in object-oriented systems. 

2.4.1 Dynamic Analysis facilitates Target-oriented Comprehension 

When dealing with unfamiliar software systems, the use of dynamic analysis 

permits to incorporate a target-oriented (or need-based) approach. When the only 

available knowledge about the system is of end-user functionality, it is very simple to 

run only those execution scenarios (from the entire list of use cases) that are directly 
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related to the functionality which the programmer wants to comprehend. This saves a 

lot of time as the execution trace is concise and to the point. Moreover the results of 

the analysis are better. 

For example, consider the case of a programmer who wants to know how a 

document processor like Open Office works internally while the properties of the 

selected text are being changed. If we use dynamic analysis for this case, we could 

exercise only those scenarios that include selecting a text and then changing its 

properties (e.g. change the font). On the other hand, if we do not use this target-

oriented approach and rely on the static analysis of the application, we must 

understand the whole application before we can explore the parts that are directly 

related to the functionality we are trying to understand. 

2.4.2 Dynamic Analysis reveals actual picture of Polymorphism (Late Binding)  

Polymorphism is the facility offered by modern object oriented programming 

languages that allows the objects of same base class but different derived classes to 

implement the same method of base class in different ways in the derived classes. The 

actual class to which the object belongs is not required to be known to the programmer 

in advance, hence the decision about the class of object and its behavior can be made 

at run-time. This introduces the concept of late binding that delays the decision about 

the behavior of a particular object until runtime.  

The technique of polymorphism permits building programs in much efficient 

manner. In addition, the use of polymorphism should make the evolution of software 

much simpler and easier. On the other hand, the use of polymorphism can make 

matters worse during program comprehension process, as it turns out to be challenging 

to understand the exact behavior of the system, without observing the running 

software. This is due to the fact that one probable polymorphic method invocation is a 

variation-point which is able to produce a large number of different behaviors (the 

count of probable behaviors is obtained by adding one to the number of classes that 

exist in the class-hierarchy under the base class type). For example, in our first case 

study software system (Apache Ant), the base class Task has above one hundred 
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derived classes, every sub-class represents a particular command-line task that may be 

performed by the system.  

Contrary to static analysis, when examining the software by means of dynamic 

analysis, the acquired vision of the software is accurate in connection with the 

execution scenario. The exhibited behavior belongs to the functionality that has been 

utilized. As a result, the number of probable variations is reduced from the superset of 

all theoretically possible variations to the small subset of actually executed variations 

during the execution-scenario. 

2.4.3 Technological Support for Dynamic Analysis of Program 

Profilers/Debuggers. A profiler is more often employed to examine the 

memory/performance parameters of an application. In contrast, a debugger is 

commonly utilized to wade through the running application at the programmer’s 

desired level of detail so as to reveal the root cause for unexpected behavior.  

In most cases, the built-in provisions of profiler/debugger in virtual machine 

environments or the operating system environments are capable of signaling the 

start/end of events during the execution. The programmer can easily construct a plugin 

for the virtual machine with the aim of being notified of these events and perform 

some operation during these events, for example record these events in an execution 

trace. The most common events that can be signaled by a profiler or debugger are the 

start of a call to a method/procedure, the end of a call to a method/procedure, access to 

data members, fields, etc. 

AOP. Aspect-oriented programming (AOP) presents a novel concept for program 

writing, known as aspect [17]. The aspect provides the facility to implement a cross-

cutting concern which does not plainly fit in to any single class or module of the 

application; instead it exists in many classes/modules. The source code written to 

implement such concerns could be confined in the advice portion of the aspect, 

whereas the point-cut segment of the aspect describes the points for weaving the code 

mentioned in the advice.  
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The current implementations of AOP permit the addition of a chunk of code at the 

start and/or at the end of a method. This facility is very helpful for writing an aspect 

for program tracing. Such aspect can record each method invocation or end of method 

call in the execution trace. 

Modification of Abstract Syntax Tree. While the source code of an application is 

being parsed, modifications can be done in the abstract syntax tree (AST) prior to 

producing the AST once more in the form of regular source code. According to our 

information, there is no standard mechanism available for such kind of AST 

modification. It may be noticed that a few AOP frameworks operate in the same 

manner, where the weaving of aspects is done using an Abstract Syntax Tree 

modification process [14]. 

Wrapping of Methods. Method wrappers permit to capture and supplement the 

behavior of already available methods with the aim of wrapping additional behavior 

around them [16]. In our case, the supplementary behavior of tracing could be 

provided by wrapping of methods. 

Improvised tracing. All the methods that have been stated earlier, have a planned 

and prepared mechanism to perform the tracing operation. Nevertheless, at times, the 

scope of points of interest is very restricted within the application. In such cases, 

improvised tracing of points of high interest can be an immediate solution. 

2.4.4 The Consequences of Observing – Observer Effect 

In numerous fields of pure science, observer-effect normally accounts for 

amendments that the observation procedure introduces in the phenomenon being 

observed. A conventional example of this matter arrives from the studies in quantum 

physics, which demonstrates the fact that observation of an electron results in the 

modification of its path; since the monitoring light/radiation possesses sufficient 

energy that can deviate the path of the electron under observation. A comparable effect 

has been identified in studies in social sciences, where the population under study 

started to deviate from their original behavior when they realized that they are being 

observed.  
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In software engineering research, the analysis of systems under observation has 

reported an analogous effect, known as the probe effect [21]. Utilizing dynamic 

analysis to observe the system, this effect could reveal itself in various manners: 

• Since the software system under observation takes extra amount of time and 

memory during execution as compared to its normal execution time and 

memory; the user can probably click a button multiple times in anxiety 

without waiting for the system to respond. If this happens, then the 

execution path of the system could deviate from the normal execution 

scenario. 

• The other possible threat whose consequences could be more severe is the 

impact of the observation process on thread interactions that take place in 

the system under observation. 

As a general rule of thumb, it is advised that the overhead introduced by the extra 

step of observation in the running system should be as little as possible, to reduce the 

level of uncertainty generated by the observer effect. One possible option to minimize 

the overhead can be the analysis of selective portions of the program that could be 

important from program comprehension point of view, for example classes that are 

loaded early during start up of program and have strong coupling with other classes. 

This approach of analyzing the program during its execution (online analysis) is totally 

opposite to the offline (post-mortem) analysis approach in which the program is 

executed first and execution trace is generated. Then this execution trace is analyzed 

after the program has finished its execution. 

2.4.5 The perils of Dynamic Analysis 

The dynamic analysis is performed to capture the real picture of the system during 

execution, meaning that what is actually happening in the system as the program 

proceeds. However, there are situations where dynamic analysis could be problematic. 

Now we’ll have a quick look into those problems and the precautionary measures 

taken against them. 
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• Most modern systems utilize the multi-threading facility to achieve some 

sort of parallelism. To achieve any functionality of the system typically 

there are several interactions among the threads in the system. In multi-

processor environments, the threads can execute and interact in parallel, 

while the execution and coordination of threads is possible in sequential 

manner in uni-processor environments. The storage of all the events that 

happened in each thread at one common place (i.e. execution trace) can 

create perplexity for the programmer; because the programmer will think 

that the two events took place one after the other, while in actual, the events 

were generated by entirely different threads. This problem can be solved 

easily by storing the information about each active thread separately during 

the program execution. 

• The use of class loading provisions or reflection methodology is common in 

many systems to enable dynamic loading of classes. The dynamic analysis 

mechanism based on profiler/debugger usually results in the recording of 

calls to the methods of the classloader. The incorrect recording of a few 

method calls could be possible in this case. In AspectJ, we can specify the 

rules for inclusion and exclusion of classes from tracing. We can easily 

exclude classes of least interest using AspectJ. 

2.5 Use of Coupling for Program Comprehension 

In this research, we aim to provide the programmer with a small number of 

preliminary points, which can be utilized to begin the tracking of structural 

dependencies in order to gain familiarity with the system. These preliminary points 

will be identified using coupling. 

2.5.1 What is Coupling? 

Constantine et al presented the concept of coupling in the form of a heuristic for 

improved module design [22]. Constantine defined coupling as the measurement of 

strength of a bond developed by a connection from a particular module to other 
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modules. Since the definition provided by Contantine is a bit casual, so we will adhere 

to the definition of coupling in [9] which states that “two things are coupled if and 

only if at least one of them ‘acts upon’ the other. X is said to act upon Y if the history 

of Y is affected by X, where history is defined as the chronologically ordered states 

that a thing traverses in time”. 

2.5.2 Why dynamic coupling metrics? 

For quite a time, research has been carried out on the subject of coupling 

measurements, for example in the perspective of quality metrics. Mostly the coupling 

metrics have been estimated statically through the source code (or any other static 

model of program structure) by analyzing the dependencies that exist among various 

program elements. The precision of coupling metrics that are estimated statically 

declines quickly in the presence of dead code, dynamic binding and inheritance. This 

loss of precision has compelled for the search of more accurate alternatives like 

dynamic coupling measures, a research area in software engineering that is developing 

[10]. The following definition of dynamic coupling measures has been used by us: 

To define dynamic coupling measures, one needs to perform the analysis of 

interactions that take place between objects at runtime. If an object acts on another 

object, then the two objects are said to be dynamically coupled. When it is evident 

from execution trace that there exists a relationship of method call between the two 

objects p and q (provided that the method call was originated from p), we say that 

Object p has acted on Object q. Moreover, dynamic coupling exists between two 

classes provided that one or more object(s) of one of these classes act upon the other 

class object(s) at runtime. 

2.5.3 Possible variations for calculating dynamic coupling metrics 

There are various means to measure dynamic coupling. Based on the 

application context in which these measures are selected for use, the rationale behind 

each measure can be presented [10]. The variations of dynamic coupling measures 

defined in [10] are presented in Table 2. 
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Table 2: Variations of Dynamic coupling measures [10] 

Entity Granularity  
(Aggregation Level) 

Scope 
(Include/Exclude) 

Direction 

Object Object 
Class 

(set of) Use case(s) 
System 

Library objects 
Framework objects 

Exceptional use cases 

Import/Export 

Class Class  
Inheritance Hierarchy  
(set of) Subsystem(s)  

System 

Library classes 
Framework classes 

Import/Export 

 

Variation of Entity of Measurement. As measurement of dynamic coupling 

is based on the runtime information about the system, the coupling can be computed at 

the object as well as the class level [10]. 

Variation of Strength Level of Coupling. The coupling strength levels 

quantify the amount of association between the entities of measurement (objects or 

classes). The quantification of the association between the entities of measurement 

(objects or classes) may be done at the following levels [10]: 

1) Counting Dynamic Messages (All Method Invocations). The run-time 

information of a program can be used to determine how many times 

each method (of object/class) is invoked by the other method (of 

another object/class). This count can then be used to quantify the 

strength of the association between the entities of measurement.  

2) Counting Distinct Method Invocations. Another simpler option to 

quantify the strength of the association is to determine the number of 

unique method calls between the entities of measurement. It must be 

noticed that each distinct method is counted only once which is 

dissimilar from counting all method invocations (that may include 

recurrence of method call). 

3) Counting Distinct Classes. For a given object/class, count the number 

of distinct objects/classes to which it is associated (coupled); utilizing 

the run-time information of a program. 
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Variation of Aggregation Level. The aggregation of dynamic coupling 

measures can be made at various levels of detail. In the case of dynamic object 

coupling, the calculations can be made by means of objects, at the same time the 

aggregate coupling at the class level can be computed by adding the coupling of all the 

objects of that class. Various sorts of aggregates can be obtained based on the 

measurement level. Possible aggregation levels include system level, sub-system(s) 

level, package level etc [10].  

Variation of Search Space. For calculation of dynamic coupling metrics, we 

can make variations in the search space by including/excluding classes in the search 

space. For instance, the classes that are linked as a library can be excluded 

occasionally if they are not worth investigating [10]. 

Variation of Direction of Coupling (Import/Export). Suppose we have a 

class c1 whose method m1 calls the method m2 of class c2. We can interpret this 

coupling relation between the classes c1 and c2 in terms of client-server relation. The 

class c1 is the client class that imports the services of server class c2 (which exports 

its services for its clients). This is the base idea of import and export coupling [10]. 

On the basis of possible variations for calculating dynamic coupling measures 

(described in section 2.5.3), a total of 12 dynamic coupling metrics have been defined 

by [10]. We list only 6 (out of 12) dynamic coupling metrics in Table 3. 

  
Table 3: Dynamic Coupling Metrics [10] 

Coupling Direction Measurement Entity Strength Level Metric Name 

Import Coupling 

Object 

Dynamic messages IC_OD 

Distinct Method IC_OM 

Distinct Classes IC_OC 

Class 

Dynamic messages IC_CD 

Distinct Method IC_CM 

Distinct Classes IC_CC 
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2.5.4 How the dynamic coupling metrics are calculated 

In Table 3, the names of 6 (out of 12) dynamic coupling metrics from [10] are 

presented. Three dynamic coupling metrics namely IC_CM, IC_CC and IC_CC′ have 

been referred in the Chapter 6 (Results and Evaluation). We’ll now explain the 

calculation of these two metrics using a simple example. 

 
Figure 1: A Simple Sequence Diagram 

 

Figure 1 shows a simple sequence diagram that involves 3 classes namely C1, 

C2 and C3. The method m1() of class C1 first calls the method m2A() of class C2. 

After the control is returned to method m1(), it next calls the method m2B() of class 

C2. Finally method m3() of class C3 is called by the method m1() of class C1. The 

dynamic coupling metrics IC_CM, IC_CC and IC_CC′ [12] for class C1 are calculated 

as follows: 
Table 4: Calculating Dynamic Coupling Metrics – Simple Sequence Diagram 

Metric Name Calculation Score 

IC_CM(c1) {(m1,c1,m2A,c2), (m1,c1,m2B,c2), (m1,c1,m3,c3)} 3 

IC_CC(c1) {(m1,c1,c2) ,(m1,c1,c3)} 2 
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IC_CC′(c1) {( m2A,c1,c2), (m2B,c1, c2), (m3,c1, c3)} 3 

 

 
Figure 2: Another Simple Sequence Diagram 

 

Figure 2 shows another simple sequence diagram that involves 2 classes 

namely C1 and C2. The method m1A() of class C1 first calls the method m2A() of 

class C2. After the control is returned to method m1A(), it next calls the method m2B() 

of class C2. Now the method m1B() of class C1 is invoked which invokes methods 

m2C() and m2D() of Class C2. The dynamic coupling metrics IC_CM, IC_CC and 

IC_CC′ [12] for class C1 are calculated as follows: 
Table 5: Calculating Dynamic Coupling Metrics – Only Two Classes Involved 

Metric Name Calculation Score 

IC_CM(c1) { (m1A,c1,m2A,c2), (m1A,c1,m2B,c2),        
   (m1B,c1,m2C,c2), (m1B,c1,m2D,c2) } 4 
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IC_CC(c1) { (m1A,c1,c2) , (m1B,c1,c2) } 2 

IC_CC′(c1) { ( m2A,c1,c2) , (m2B,c1, c2) , (m2C,c1, c2) ,  
   (m2D,c1, c2) } 4 

 

 

 
Figure 3: Slightly Complicated Sequence Diagram 

 

Figure 3 shows a slightly complicated sequence diagram that involves 3 classes 

namely C1, C2 and C3. The method m1A() of class C1 first calls the method m2A() of 

class C2, which further calls the method m3A() of class C3. After the control is 

returned to method m1A(), it next calls the method m2B() of class C2, which further 

calls the method m3A() of class C3. Now the method m1B() of class C1 is invoked 

which invokes methods m2C() of Class C2, which further calls method m3C() of Class 

C3. Next method m2D() of Class C2 calls the methods m3A() and m3E() of Class C3. 
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The dynamic coupling metrics IC_CM, IC_CC and IC_CC′ [12] for classes C1 and C2 

are calculated as follows: 
Table 6: Calculating Dynamic Coupling Metrics – Complex Sequence Diagram 

Metric Name Calculation Score 

IC_CM(c1) { (m1A,c1,m2A,c2), (m1A,c1,m2B,c2),        
   (m1B,c1,m2C,c2), (m1B,c1,m2D,c2) } 4 

IC_CC (c1) { (m1A,c1,c2) , (m1B,c1,c2) } 2 

IC_CC′(c1) { ( m2A,c1,c2) , (m2B,c1, c2) , (m2C,c1, c2) ,  
   (m2D,c1, c2) } 4 

For Class C2 

IC_CM(c2) 
{ (m2A,c2,m3A,c3), (m2B,c2,m3A,c3),        
   (m2C,c2,m3C,c3), (m2D,c2,m3A,c3),   
  (m2D,c2,m3E,c3) } 

5 

IC_CC (c2) { (m2A,c2,c3), (m2B,c2,c3), (m2C,c2,c3), (m2D,c2,c3) } 4 

IC_CC′(c2) { (m3A,c2,c3), (m3C,c2,c3),  (m3E,c2,c3) } 3 

 

2.6 Key Classes of Software 

Usually a software system is composed of many programming constructs including 

components, classes, modules etc. These basic elements of programming work 

together to achieve a particular functionality and their teamwork produce the idea of 

coupling. Highly coupled modules are interconnected with large number of other 

modules; as a result considerable amount of effort is required to gain an understanding 

of such modules or to perform any type of maintenance of these modules. The basic 

desire to achieve low level of coupling between modules originates from this 

observation. However, it is evident that a certain level of coupling will be present in 

the system all the time because modules/classes have to work in cooperation with each 

other to achieve a particular functionality. The classes responsible for facilitating the 

cooperation of work (among various classes of the system) tend to have an 

administering role in the application and usually possess a high level of coupling. An 

analogous concept, known as key classes was used by the author in [8]:  
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“The key concepts of most of the object-oriented systems are implemented by few 

classes which are known as key classes. These few classes can be identified easily as 

they exhibit some common characteristics. Usually they possess a coordinating role in 

the application and hence issue orders to huge number of other classes and utilize 

them for implementing the functionality. As a result, there exists a tight coupling 

between the key classes and the rest of the system. Moreover, they have a propensity of 

being complex, as they realize a great deal of the functionality of the system.” 

 
Figure 4: Key Classes of Object-Oriented Software [8] 

2.6.1 Existing Approaches to Identify Key Classes of Software 

Authors in [23] used the combination of Weighted Methods per Class (WMC) and 

Data Abstraction Coupling (DAC) metrics to identify key classes. WMC represents the 

total of the complexity score of all methods in class. DAC counts those attributes of 

the class whose type is defined by other classes. The authors compared the identified 

key classes with original developers’ opinion.  
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coupling metrics from [13] and compared the results with the design documentation. 

They found that the precision and recall was considerably low with the use of static 

coupling metrics. 

 
Figure 7: HITS Webmining Algorithm [25] 

 

Authors of [12] proposed a variant of dynamic coupling metric presented by [10] to 

identify key classes of application under study. Their proposed variant of dynamic 

coupling metric also considered indirect coupling. They compared the results with 

original developers’ opinion. 

 
Figure 8: Indirect Coupling example [12] 
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Table 7: Summary of existing approaches to identify Key Classes of Software 

S# Authors Approach Drawbacks 

1 Bauer et al., 
1999 

Static analysis of source code using 
static coupling metrics (WMC and 
DAC) 

Low precision in the 
presence of polymorphism 

2 Zaidman et al., 
2004 

Post execution analysis of execution 
trace, extraction of Compacted Call 
Graph from execution trace, Applying 
HITZ webmining algorithm on this 
Compacted Call Graph 

Scalability issues due to 
huge size of execution 
trace 

3 Zaidman et al., 
2006 

Calculating coupling scores of classes 
using Static Analysis of source code, 
Creating a Graph of classes using 
these coupling scores, Applying HITZ 
webmining algorithm on this Graph. 

Low precision in the 
presence of polymorphism 

4 Zaidman et al., 
2008 

Post execution Analysis of execution 
trace, Calculation of Dynamic 
Coupling Metric IC_CC’ for each 
class from execution trace, Creating a 
Graph of classes using IC_CC’ as 
score, applying HITZ webmining 
algorithm on this Graph 

Scalability issues due to 
huge size of execution 
trace 

 



27 

 

CHAPTER 3 

OVERVIEW OF TECHNOLOGIES USED IN THIS 

RESEARCH 

3.1 Introduction to the Technology Used For Dynamic Analysis 

3.1.1 An overview of AspectJ 

AspectJ is an implementation of Aspect Oriented Programming (AOP) in Java 

as well as a language specification. The constructs to support aspect oriented concepts 

and their semantics are defined by the language specification. The compilation, 

debugging and other tools for documentation of code are offered by the language 

implementation. 

The language constructs in AspectJ are extension of the Java programming 

language, hence a Java Program is an AspectJ program as well. The class files 

produced by the AspectJ compiler are compliant with the specification of Java byte 

code; hence the class files generated by the AspectJ compiler can be interpreted by any 

compliant JVM. Since the Java language is available at the base level of AspectJ, all 

the provisions in Java are accessible to the programmers, making the use of AspectJ 

easier for them. 

One of the strongest points of AspectJ has been the availability of effective tool 

support. The job of a compiler is done by the aspect weaver. Other useful tools include 

the debugger which is aspect-aware, a source code documentation generator and a tool 

for visualizing the effect of advice on various parts of the system. In addition, the 

AspectJ is now integrated with majority of the eminent IDEs for Java developers ( for 

instance, Oracle JDeveloper, Netbeans, eclipse etc.) that makes AspectJ a useful 

implementation of Aspect Oriented Programming for developers working with Java 

language. 
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3.1.2 What are Joinpoints? 

The concept of Joinpoints is central to AspectJ; they are defined as 

unambiguous, definite points in the execution of program. Prospective joinpoints could 

be before/after a method call, checking of a condition, the start of a loop or before/after 

assigning the value to a variable. Every joinpoint posseses an associated context, for 

instance, a joinpoint before call to a method provides access to the target object and the 

arguments passed to the method by using context information. 

During the execution of program, any uniquely recognizable point can become a 

joinpoint. But AspectJ has placed some restrictions on joinpoints and only those 

joinpoints are available that can be utilized in an organized manner. The following 

pointcuts can be utilized in AspectJ:  

• Call/execution of a method 

• Call/execution of a Constructor 

• Accessing the variable for reading/writing 

• Execution of exception handling routine 

• Initialization of class/object 

3.1.3 The role of Pointcuts 

These are the programming constructs used to select joinpoints, infact they 

provide a mean for specifying a group of joinpoints. Another important role of 

pointcuts is in exposing the context (of joinpoint) to the implementation of advice. 

Pointcuts for call to constructors/methods: These pointcuts interrupt the 

execution once the arguments of the method are evaluated, but prior to calling the 

method in actual. These pointcuts are declared using the syntax like 

call(Method/ConstructorDecleration). These pointcuts are illustrated with the help of 

examples in Table 8. 
Table 8: Pointcuts for call to constructors/methods 

Syntax of Pointcut Description 

call(protected String SomeClass.Function1()) Call to Function1() of SomeClass that takes 
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no argument, returns a String, having 

protected access  

call(* void SomeClass.Function1(..)) 

Call to Function1() of SomeClass that takes 

any argument, returns void, having any access 

modifiers  

call(* SomeClass.Function1(..)) 
Call to Function1() of SomeClass that takes 

any argument and returns any type  

call(* SomeClass.Function1*(..)) 
Call to any method whose name starts with 

Function1 in SomeClass 

call(* SomeClass.Function1*(Integer,..)) 

Call to any method whose name starts with 

Function1 in SomeClass but the data type of 

first parameter is Integer  

call(* *.Function1(..)) 
Call to Function1() that belongs to any class 

in default package  

call(SomeClass.new()) 
Call to no arguments constructor of 

SomeClass 

call(SomeClass.new(..)) 
Call to any arguments constructor of 

SomeClass 

call(SomeClass+.new(..)) 

Call to any arguments constructor of 

SomeClass or its subclass. (wildcard + 

indicates the use of subclass) 

call(public * org.someorg..*.*(..)) 

All the public methods of classes that are 

declared within the root package of 

org.someorg  

 

Pointcuts for execution of constructors/methods These pointcuts intercept the 

execution of constructors/methods. Opposite to the pointcuts for call, the body of 

constructor/method is represented by pointcuts for execution. These pointcuts are 

declared using the syntax of the form execution(Method/ConstructorDecleration). 
Table 9: Poincuts for execution of constructors/methods 

Pointcut Description 
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execution(public void SomeClass.Function1()) 

Execution of Function1() in SomeClass that 

takes no argument, returns nothing, having 

public access  

execution(void SomeClass.Function1(..)) 

Execution of Function1() in SomeClass that 

takes any no. and type of arguments, return 

type is void, and any access modifiers  

execution(* SomeClass.Function1(..)) 

Execution of Function1() in SomeClass that 

takes any argument and returns object of any 

type  

execution(* SomeClass.Function1*(..)) 
Execution of any method in SomeClass 

whose name starts with Function1  

execution(* SomeClass.Function1*(int,..)) 

Execution of any method in SomeClass 

whose name starts with Function1 and the 

first argument is of int type 

execution(* *.Function1(..)) 
Execution of Function1() that belongs to any 

class in default package 

execution(SomeClass.new()) 
Execution of no arguments constructor of 

SomeClass 

execution(SomeClass.new(..)) 
Execution of any arguments constructor of 

SomeClass 

execution(SomeClass+.new(..)) 

Execution of any arguments constructor of 

SomeClass or one of its subclass. (wildcard 

+ indicates the use of subclass) 

execution(public * org.someorg..*.*(..)) 
All the public methods that are declared 

within the root package of org.someorg 

 

Pointcuts for access of field The access to a field of the class for 

reading/writing is captured by these pointcuts. For instance, every access to the field 

named out defined in the class System (may be through the use of the statement 

System.out.print) can be captured using such kind of pointcuts. Whether the access of 

field is for reading or for writing purpose, you can capture both types of access. For 

instance, the access of field xField in SomeClass for the purpose of writing by using a 
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statement like SomeClass.xField = 12 can be captured easily. The pointcut that 

captures the access for reading is normally outlined as get(FieldNamePattern), 

whereas the pointcut that captures the access for writing takes the shape like 

set(FieldNamePattern). Wildcards can be utilized in FieldNamePattern, the way they 

have been used in the call/execution pointcuts described above. 

Pointcuts for handlers of Exception The specified type of exception handlers 

can be captured during execution using these pointcuts. Normally they use the notation 

like handler(TypeOfException)Pattern.  

Pointcuts for Class-initialization The specified type of static-class 

initialization code, that is usually specified in the class definitions using static blocks, 

can be captured during its execution through these pointcuts. Normally they are 

represented by the notation like staticInitializePattern. 

Pointcuts based on Lexical-structure Every joinpoint that lie within the lexical 

structure of the method or a class can be captured by such pointcuts. The 

within(TypePattern) notation is used to describe the pointcut that captures the code 

which comes under the lexical structure of a class (it also includes the inner class). The 

withincode(ConstructorMethodPattern) notation is used to describe the pointcut that 

captures the code which comes under the lexical structor of constructor or method (it 

also includes the local classes). 

Pointcuts based on Control-flow These poincuts are used to capture the control 

flow of other pointcuts, that is how the program instructions flow during the execution. 

For instance, during the execution of program, if method m1 passes the control to 

method m2 (in fact by calling m2); then method m2 is said to be in the control flow of 

method m1. The call to every method, the access to every field, even the exception 

handlers executed as a result of invoking a particular method can be captured using 

this kind of pointcut. The cflow(pointcut) notation is used to describe the pointcut 

capturing the flow of control for additional pointcuts (including itself). The 

cflowbelow(pointcut) notation serves the similar purpose except that the pointcut itself 

is not included. 
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Pointcuts for type of argument, target and self The pointcuts are used for 

capturing the joinpoints on the basis of the type of argument, the object at the target 

and the self-object. The context at the joinpoint can be captured by these contructs 

only. The notation of this(ObjectIdentifier/TypePattern) is used to describe the 

pointcuts on the basis of self object, whereas the syntax of the form 

target(ObjectIdentifier/TypePattern) is used to describe the pointcuts on the basis of 

target object. Finally the pointcuts for type of the argument are represented by the 

syntax like args(ObjectIdentifier/TypePattern, …). 

Pointcuts that are named If the name for the pointcut is specified explicitly, 

then it is known as named pointcut. These pointcuts can be reutilized for overriding a 

pointcut, in the definition of other pointcuts, definition of a portion of advice and so 

on. 

Pointcuts having no name (Anonymous) These pointcuts are defined at the 

point where they are used, in a manner similar to anonymous class definition. Usually 

they are used as a part of definition of another pointcut (or specification of an advice). 

The reuse of anonymous pointcuts is not possible just as anonymous classes could not 

be resused. 

Gathering context information – Access of data in the joinpoint is often 

required by the advice implementation. For instance, a certain type of information 

about the method and its arguments, commonly known as context, might be required 

by the advice to perform a logging operation. The gathering/exposing of context 

related information at the execution point is therefore provided by the pointcuts, which 

is then passed to advice implementation. The pointcuts of args(), this() and target() are 

offered by AspectJ to expose the context. 

Reflection – Reflection is supported by AspectJ in a limited form. The information 

at the execution point of any pointcut can be examined using reflection supported by 

AspectJ. A special object named thisJoinPoint is available in the body of each advice 

and the joinpoint related information is encapsulated by this object. The availability of 

this reflective information is vital for implementation of debugging aspect (or logging 

aspect) for any application. 
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3.1.4 Advices 

The code to be executed when program execution reaches the particular 

pointcut is specified by advice. Three options are provided by AspectJ for linking the 

advice to joinpoint that are before the execution, after the execution or around the 

execution of joinpoint. The advice defined using the keyword before is executed prior 

to the joinpoint, whereas the advice defined using the keyword after is executed just 

past the joinpoint. There is a provision in after advice to specify whether it should be 

executed after returning normally(without exception) or after an exception has been 

thrown or after both cases (normal and exception). The advice defined using the 

keyword around basically surrounds the joinpoint and has the authority to decide 

whether the execution of joinpoint should be continued. The decision to carry on with 

a changed set of arguments can be made while using around advice. 

Here is an example of before and after advice that displays thisJoinPoint and 

recent time before and after the call of all public methods in MyClass: 

 
Figure 9: Simple Advice example before/after call of public method 

 

Every call to connection.close() method is captured by the advice in following 

example. If the connection pooling has been enabled, the connection is put back to the 

pool; else the execution is advanced with the proceed() method. The context 

information provided by target() is also utilized in the advice:  
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Figure 10: Advice example that uses context collected by target 

3.1.5 The role of Aspects 

The role of Aspects in AspectJ is similar to the role of classes in Java; they are 

the basic unit of modularization. The pointcuts and advices are encapsulated in an 

aspect. There are some similarities between aspects and classes, e.g. an aspect may 

possess data members and functions, inherit properties/functions from other aspects or 

classes, and can provide implementation of interfaces. On the other hand, a major 

difference between a class and an aspect is that an instance for an aspect cannot be 

created using the new operator.  

Classes are allowed to declare pointcuts using AspectJ. Static pointcuts must be 

declared inside a class. On the other hand, the advices are not allowed to be declared 

inside class, they must be specified within aspects. 

Any aspect and pointcut can be declared as abstract. The pointcut declared 

abstract act like the abstract method of a class: it allows you to delay the decisions to 

the extending aspects. A derived aspect that extends an abstract aspect can offer the 

actual implementation of abstract pointcuts. 

3.1.6 What is Load-Time Weaving (LTW)? 

In principal, AspectJ is a programming language. It provides the support for 

primitive Java types and a novel construct known as aspect. One option of using 

AspectJ is writing a program in its language and then compiling the program using its 

compiler that will generate standard byte-code (from source files) which can be run 
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easily by JVM. There is also a provision in AspectJ that a pre-compiled jar file of 

aspects can be weaved into your application classes. This weaving of application 

classes can be performed as an extra step during the build process or even at runtime 

when the class is being loaded by the virtual machine. The weaving of application 

classes by the AspectJ agent during load time is known as Load-time weaving (LTW).  

A pre-compiled aspect library can be used in an easy and very flexible manner 

during development with the aid of load-time weaving. The –javaagent option 

available since version 5 of JDK is the simplest way to utilize LTW.  

Using aop.xml to configure Load-time Weaving – The configuration of 

AspectJ agent for load-time weaving is done by aop.xml file(s) that must be placed 

within the search path of class loader. Every aop.xml file includes a listing of aspects 

utilized for weaving application classes, type patterns indicating types to be considered 

for weaving, and other initial settings to configure the weaver. There are two main 

sections in the aop.xml file: one or more aspects for the weaving process are defined in 

the aspects section. The inclusion/exclusion of aspects in the weaving process is 

controlled from here. The types to be woven and supplementary weaver options are 

defined in the weaver section. 

The easiest manner to declare the aspect (for its use by the weaver) is to 

mention the aspect type (in a fully qualified manner) in the aspect element of aop.xml 

file. Aspects can be declared and defined inline using the aop.xml file to configure the 

weaver. Concrete-aspect element is used to define such inline aspects. If the inline 

aspect extends some abstract aspect, then an implementation must be provided for the 

abstract poincuts that have been inherited. With this useful mechanism, the 

configuration of auxiliary infrastructure aspects can be easily externalized to cater the 

situations where the pointcut definition itself is part of the service configuration. 

There can be multiple include and exclude elements defined in the aspect tag. 

(The default implementation uses all the defined aspects for weaving). The aspects that 

will be utilized by the weaver can be restricted by specifying include or exclude 

elements. The aspects qualifying the include pattern are utilized, where as the aspects 

qualifying the exclude pattern are ignored during weaving. 
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It may be noted that all aspects are affected by include and exclude elements, 

regardless of the fact that they are defined in the same aop.xml file or a different 

aop.xml file. After the application of this filtering mechanism, in case an aspect has 

not been declared, a lint warning is generated to help preventing unanticipated 

behavior. 

The specification of the types that need to be woven and the passing of 

parameters to the weaver is done using the weaver element. The weaver weaves all the 

visible types in the absence of any include element specification. The byte-code of 

classes can be saved to disk using the dump element both before (in case of runtime 

weaving) and after the weaving process to help diagnosing the problem. 
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CHAPTER 4 

RESEARCH METHODOLOGY 

Up till now, we have discussed the theoretical foundations of our approach to 

discover the key classes that can be quite useful in the early stages of program 

comprehension. This chapter first provides an introduction to the research 

methodology used by us. Next we present an overview of the open source case study 

that we have used in the experiment to compare the performance of our proposed 

solution with the other approaches. 

4.1 Research Methods 

The study of software engineering on the basis of observations and experiences 

is known as Empirical software engineering. In empirical software engineering 

researchers try to ascertain a scientific approach for the given problem of software 

engineering. 

An important role is played by the empirical studies within the software 

engineering research. An empirical study can be carried out in many ways, depending 

upon the research project. Following research methods are widely used in the field of 

software engineering for empirical studies: 

4.1.1 Conducting a Survey 

A survey is commonly used to capture the broader picture of the happenings 

over a large group of projects. Hence, the survey approach can help in the evaluation 

of a software technology over a large scale. The survey based approach has the benefit 

that it can confirm/reject the results of research by generalizing a large number of 

projects, using statistical analysis approach. 
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4.1.2 Controlled Experimentation 

In a formal experiment, the factors that affect the phenomenon under 

investigation need to be controlled. For instance, suppose we desire to investigate that 

whether programs written in language A (say C++) results in better quality code than 

the programs written in language B. In this case, we need to make sure that the factor 

of skill level of the programmers (the subjects of experiment) is equal for both types of 

programmers. 

4.1.3 Case Study 

Case study based approach outshines other research methods when it comes to 

gaining an insight to a complex problem. This approach can be used to extend the past 

experiences or refine the knowledge obtained by previous research. A thorough 

contextual analysis of a few circumstances and their association is emphasized in the 

case study. It facilitates deep understanding of a particular case or problem, thus 

enabling the analysis of many variables and capturing the reality in detail. The 

potential of a case study to obtain detailed knowledge makes it a strong explorative 

mechanism to establish new research as well. 

The research method of case study has been used by researchers in diverse 

disciplines for many years. It has been widely used in the field of computer 

science/software engineering. In fact, the historical data demonstrates that it has been 

the most common empirical validation model in the field of empirical software 

engineering. An important application of case studies is the industrial evaluation of 

tools and methods of software engineering. 

Since we are proposing an extension to the previous research on dynamic 

coupling metric and we want to compare our proposed approach with the previous 

research accomplished in the past, so the case study based approach best suites our 

needs. Hence we have used the case study based approach in our research. 
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4.2 The organization of the experimental system 

4.2.1 Selection criteria for the case study 

Two open source software system were adopted for the experiments conducted 

during this research. These systems were selected as a case study based on the 

following two factors that made these software systems specifically attractive for the 

evaluation of our approach to aid initial program comprehension:  

• The open access and free availability of software facilitates the repeatability 

of the same or analogous experiments in future research projects. 

• The existence of detailed design documentation is extremely helpful to 

validate the results of experiments in program comprehension. In addition, 

the free availability of this detailed design documentation has an added 

advantage of ensuring repeatability. 

Finally, Apache Ant 1.6.1 and Jakarta JMeter 2.0.1 were selected by us since 

they match closely with the criteria mentioned above. Critics may propagate that 

nearly all open source systems will posses these properties, but our vote for this 

specific case study was also driven by the fact that that this software system has been 

used in other analogous experiments, which provided us with a baseline for our 

experiment and made the comparative analysis easier for us. 

4.2.2 Selection of Use Case for Tracing 

The selection of the use case for tracing and calculation of metric is a necessary 

pre-requisite for dynamic analysis. At one side, a usage scenario covering major 

functionalities of the system can be advantageous in the reverse engineering process of 

huge systems. Alternatively, a scenario that only covers the functionality that is of 

major concern to the reverse engineer can be useful to minimize the size of solution set 

(which is a ranked list of classes in our case, sorted by their importance level). 

Consequently, it permits the use of target based approach to fully concentrate on the 

focal point during program comprehension efforts. In our research context, we suggest 
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to select use case(s) covering major functionalities of the system to increase the 

chances of detecting majority of the key classes of the system. 

4.2.3 The baseline for the experiment 

The availability of detailed design documentation and the results of other 

analogous experiments in [11, 12] performed on the same software systems(Apache 

Ant and Jakarta JMeter) provided us with a baseline to be used in our experiment. The 

baseline includes the classes identified by the original authors of the code and/or the 

developers currently maintaining the system as must-to-comprehend classes in order to 

perform any type of maintenance of the system. Nevertheless, this baseline is still an 

approximation as it reflects the point of view of highly skilled programmers that may 

be entirely different from the opinion of a greenhorn maintainer struggling to get a 

grasp on the system. 

The major advantage of this baseline is that it allows us to perform an intrinsic 

assessment of our approach. By intrinsic assessment we mean that we have used the 

point of view of original developers of the system for comparison with the results 

acquired by our approach. 

4.2.4 Outcome 

The outcome of our proposed heuristic is an ordered list of classes arranged in 

descending order with respect to their significance. We have opted to present the top 

15% classes to the developer from the entire list of classes because of the following 

reasons: 

• The design documents have brought this thing into our knowledge that 

nearly 10% of the system classes must be comprehended prior to perform 

any significant modification in the system. We have gained an additional 

margin of 5% because we are using a heuristic.  

• Because of the cognitive constraints, the volume of data provided to the 

developer to start his comprehension efforts should be minimal. The 

developer should not be overloaded with information. 



41 

 

• The third reason was that by raising the margin to 20%, we observed a very 

minor increase in recall. On the other hand, the precision fell significantly. 

4.3 Overview of the 1st Case Study -- Apache Ant 

4.3.1 What is Apache Ant? 

Apache Ant is an eminent tool that has been mostly utilized for building 

software projects on Java platform. Ant runs as a single thread. There is no graphical 

user interface for its execution because it is invoked through command line interface. 

A large number of external libraries are utilized by Ant (XML library by Apache 

Xerces is just one example), however its own footprint is comparatively small. It is 

quite flexible and can be extended by the user. It is based on XML and the build files 

for the projects have a specific XML format. 

Regardless of the fact that it is an open source product, Ant is being utilized in 

open source as well as industrial systems. Besides, it has also been made available in 

various Integrated Development Environments (e.g. Netbeans, JDeveloper, eclipse 

etc.) designed to work with Java Platform. The basic distribution of Ant has been 

extended in various manners and one of its flavors known as nANT has been ported to 

the .NET platform as well. 

We have used the version 1.6.1 of Apache Ant that ships with the source code. 

There are 1216 classes in this version of Ant which are written in Java. The number of 

classes specific to Ant is 403 that have nearly 83 KLOC. The distribution contains a 

large number of classes that belong to the frameworks or libraries used by Ant for 

supporting tasks such as manipulation of regular expression (Apache ORO) and XML 

parsing (Apache Xerces). 

4.3.2 Use Case for Tracing 

In our experiment with Apache Ant, we selected the use case of building the 

source project of Ant using its own binary release. One hundred and twenty seven 

(127) classes were involved in this scenario. Keeping in view that a total of 403 classes 
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constitute the Ant build, the figure of 127 appears to be quite small in the initial 

glimpse. This gap in the expected and actual number of classes that took part in the 

scenario can be explained by the existence of some extraordinarily broad and deep 

inheritance hierarchies in the architecture of Ant. For instance, there are 104 subclasses 

that directly inherit the Task class. Every individual  subclass is responsible for 

handling a particular type of command line task for example mkdir, rmdir, etc. Since 

majority of usage scenarios do not exercise all of the available commands (the usage of 

some commands is not even possible at one time e.g. the commands implemented for 

heterogeneous platforms or version management systems), hence it can be safely said 

that our scenario (covering 127 classes) exercises the major portion of the functionality 

offered by the Ant system. 

The following two basic reasons were behind our choice of this specific usage 

scenario: 

• A fair portion of features are practiced in this scenario. In addition, it 

incorporates the build commands that are used in most cases such as make 

directory, delete directory, copy folders/files, creating a jar file and so on. 

• It is very easy to perform and/or repeat this scenario with the help of 

build.xml file that is present in every source release of Ant. 

4.3.3 Architecture of Ant 

In this section, we will discuss the role played by the five important classes (that 

are deemed significant by original developers) during the execution of the build file. 

The information about these classes has been extracted from the detailed design 

documentation that is available freely: 

1. Project: The instance of Project class is created as soon as Ant is started by the 

Main class. The parsing of build.xml file is done by the Project instance with the 

assistance of supplementary objects. Targets and Elements are contained in the 

xml file for build. 

2. Target: All the targets described using the build.xml files are instantiated as 

objects of this class. When the parsing of build.xml is finished, the build model 
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is composed an instance of project that may have numerous targets or at least 

one target that serves as default target for events at upper level. 

3. UnknownElement: Every parsed element is temporarily placed in objects of 

class UnknownElement. In the course of parsing, the instances of class 

UnknownElement are stored along with the specific Target (which is related to 

them) in a data structure similar to tree. At the end of the phase of parsing, all 

dependencies are resolved. At this time, the method named makeObject() 

belonging to this class is called. The correct type of object is instantiated by this 

method according to the values of data placed in the objects of this class.  

4. RuntimeConfigurable: There exists a RuntimeConfigurable instance for each 

corresponding UnknownElement instance. The information regarding the 

configuration of element is contained in it. The instances of class 

RuntimeConfigurable are also stored along with the specific Target (which is 

related to them) in a data structure similar to tree. 

5. Task It is the parent class for UnknownElement. It also serves as a base class for 

every task instantiated by using the method named makeObject() of class 

UnknownElement. 

 
Figure 11: Class diagram showing 5 important classes of Apache Ant 
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We have made an effort to capture the relationship between the five 

aforementioned classes in Figure 11. The complete list of classes included in the 

baseline for Ant case study, extracted from the detailed design documentation is as 

follows: 

1. Project 

2. Target 

3. Task 

4. RuntimeConfigurable 

5. UnknownElement 

6. Introspection Helper  

7. ProjectHelper2  

8. ProjectHelperImpl  

9. ElementHandler  

10. Main 

4.4 Overview of the 2nd Case Study – Jakarta JMeter 

4.4.1 What is Jakarta JMeter? 

Jakarta JMeter 2.0.1 is a java-based desktop application built to test the web 

applications. It can be utilized for functional verification of software system; also it 

helps to perform load-testing (i.e. to assess performance of the application). Mainly, it 

is utilized for testing web-based applications, however, it is capable of handling SQL 

queries as well that are made through JBDC. In addition, the flexible architecture 

allows plugins to be created for additional protocols. Results of performance 

measuring can be presented in a variety of graphs, while results of the functional 

testing are simple text files with output similar to output from regression tests.  

JMeter is a desktop application which posseses a rich GUI to exercise the 

features, threads are utilized in abundance and majority of the functionality is supplied 

by the standard Java API (e.g. web-related functionality). The source code of version 
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2.0.1 of Jakarta JMeter comprises of nearly 700 classes, whereas the core part of 

Jakarta JMeter software is made of 490 classes (23 KLOC). 

4.4.2 Use Case for Tracing 

The use case that was exercised for tracing in this case study consists of testing a 

HyperText Transfer Protocol (HTTP) connection to localhost (JBoss Server) hosting 

Ant documentation pages. Actually, we organized JMeter application in such a way 

that it tested the above HTTP connection one-hundred times and at the end the results 

were visualized in a simple graph. Without the tracing operation enabled, the time 

taken by the use case was 82 seconds. It is worth mentioning here that several threads 

were instantiated to initiate 100 HTTP connections so that concurrent access by 

multiple users can be simulated for the web application. Hence the JMeter case study 

serves as an instance of multi-threaded software system. 

4.4.3 Architecture of JMeter 

Now we will discuss the tasks performed by the key classes (that are judged by 

original authors of code as key classes) of JMeter. 

The TestPlanGUI, as evident from its name is a user-interface component. It 

allows the addition and customization of tests. JMeterGUIComponent class holds each 

test that has been added. When the creation of TestPlan has been finished by the end 

user, the JMeterGUIComponents contain this information which is then placed in 

TestElement classes for further processing. 

The objects of TestElement class are saved in JMeterTreeModel which is a tree 

datastructure. The JMeterEngine now takes this tree datastructure and instantiate 

JMeterThread(s) for every test with the assistance of TestCompiler. The ThreadGroups 

are used to form logical grouping of JMeterThreads. In addition, a TestListener is 

instantiated for each test which is used to catch the results of JMeterThread(s). 
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The complete list of classes included in the baseline for JMeter case study, 

extracted from the detailed design documentation is as follows: 

1. AbstractAction  

2. JMeterEngine  

3. JMeterTreeModel  

4. JMeterThread  

5. JMeterGuiComponent  

6. PreCompiler  

7. Sampler  

8. SampleResult  

9. TestCompiler  

10. TestElement  

11. TestListener  

12. TestPlan  

13. TestPlanGui  

14. ThreadGroup 
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CHAPTER 5 

THE PROPOSED APPROACH 

In this chapter, first we describe the problems with the existing approaches to 

identify key classes. Then we have described the basic idea and the implementation of 

our proposed approach to discover key classes of software. The introduction to the 

technology (AspectJ) that we have used to implement our approach is already provided 

in Chapter 3. Here we explain the algorithm used to implement our approach. The 

basic idea for resolving the problem of key class identification and the rationale behind 

the use of such idea is described as well. 

5.1 Problems with Existing Approaches to Identify Key Classes 

The approaches based on static coupling metrics have the disadvantage that they 

lose precision in the presence of polymorphism in object-oriented system [14]. 

The approaches based on dynamic coupling metrics suffer from scalability issues 

due to the huge size of the execution trace [14]. 

•  The size of the execution trace was 2 GB in the case study of Ant 

• The time to calculate the metric from this 2 GB of data was 45 minutes 

• The I/O overhead of the tracing operation was very high  

o   e.g. execution of Ant took 23 seconds without tracing. 

o   whereas execution of Ant took just under one hour with tracing. 

 

Our main goal in this research is to devise an efficient approach to identify key 

classes that could overcome the scalability issues introduced by the existing 

approaches based on dynamic coupling metrics. It is evident that the main cause of the 

scalability issues is the offline analysis approach or the so called post-mortem analysis 

(i.e. running the program, generating the execution trace and then extracting the 

coupling information from those large text-based files whose size is in gigabytes). So 

we propose the online analysis approach in which the dynamic coupling information 

is calculated in parallel to the execution of the program using AspectJ. 
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5.2 Basic Idea behind our Approach 

It has already been mentioned that we are searching for key classes that posses 

a central place in the architecture of the system. Our expectation is that these classes 

have a supervisory role in the application, giving instructions to large number of 

classes and dictating them the work to perform. These classes will be requesting the 

other classes for their services, which imply that the key classes will be tightly coupled 

with other classes. 

5.2.1 Hypothesis 

Our hypothesis is that the key classes posses a coordinating role in the 

application as they manage and request services of large number of other classes, so 

they must be loaded in the application prior to other classes from which they request 

services. So the sequence in which the classes are loaded in the application must also 

be taken into consideration (in addition to coupling information) to identify the key 

classes.  

 
Figure 12: Core Structure Analogy from Civil Engineering 

We have built an analogy from civil engineering structures like 

bridge/buildings that the core part of the structure is laid first and the rest of the 

structure is based on that core part. So we proposed that the classes loaded during the 

start up that have strong coupling with other classes are most likely to be key classes 

and are prime candidates for early program comprehension. 
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The existing dynamic coupling metrics do not take into account the 

loading order of the class in application. So we have to extend the definition of 

existing dynamic coupling metric for this purpose. In [10] a total of twelve metrics 

have been defined by authors. We have used the definition of one metric named 

IC_CM (explained in Section 2.5.3) from their work and extended this metric to meet 

our objective of finding the key classes of the system according to loading order of the 

classes. We will now provide the definition of the metric from [10] and then discuss 

our proposed extension. 

 
Table 10: Dynamic coupling measures [10] 

C  Set of classes in the system. 

M Set of methods in the system. 

RMC RMC ك M × C Refers to methods being defined in classes. 

IV IV ك M × C × M × C The set of possible method invocations. 

IC_CM(c1)   #{(m1, c1, m2, c2) | (׌ (m1, c1), (m2, c2) א RMC ) ר c1 ≠ c2 ר (m1, c1, m2, c2) א IV} 

Our Extended Version of IC_CM 

IC_CMS(c1)  #{(m1, c1,lo, m2, c2) | (׌ (m1, c1), (m2, c2) א RMC , lo א N  ,m1, c1) ר c1 ≠ c2 ר (
m2, c2) א IV} 
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Figure 13: Sample Sequence Diagram to calculate IC_CMS 

 

Figure 13 shows a simple sequence diagram that involves 3 classes namely C1, 

C2 and C3. The method m1() of class C1 first calls the method m2() of class C2. 

Method m2() next calls the method m3() of class C3. It is obvious that the object of 

class C1 is loaded 1st, object of class C2 is loaded 2nd while object of class C3 is 

loaded 3rd. The dynamic coupling metrics IC_CM and IC_CMS for classes C1 and C2 

are calculated as follows: 
Table 11: Calculating IC_CM and our extended version of IC_CM 

Metric Name Calculation Score 

IC_CM(c1) {(m1,c1,m2,c2)} 1 

IC_CM(c2) {(m2,c2,m3,c3)} 1 

IC_CMS(c1) {(m1,c1, 0, m2,c2)} 1 

IC_CMS(c2) {(m2,c2, 1, m3,c3)} 1 
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Figure 14: Slightly Complicated Sequence Diagram to Calculate IC_CMS 

 

Figure 14 shows a slightly complicated sequence diagram that involves 3 

classes namely C1, C2 and C3. The method m1A() of class C1 first calls the method 

m2A() of class C2, which further calls the method m3A() of class C3. After the control 

is returned to method m1A(), it next calls the method m2B() of class C2, which further 

calls the method m3A() of class C3. Now the method m1B() of class C1 is invoked 

which invokes methods m2C() of Class C2, which further calls method m3C() of Class 

C3. Next method m2D() of Class C2 calls the methods m3A() and m3E() of Class C3. 

The dynamic coupling metrics IC_CM, IC_CC, IC_CC′ [12] and IC_CMS for classes C1 

and C2 are calculated as follows: 
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Table 12: Calculating Dynamic Coupling Metrics 

Metric Name Calculation Score 

IC_CM(c1) { (m1A,c1,m2A,c2), (m1A,c1,m2B,c2),        
   (m1B,c1,m2C,c2), (m1B,c1,m2D,c2) } 4 

IC_CC (c1) { (m1A,c1,c2) , (m1B,c1,c2) } 2 

IC_CC′(c1) { ( m2A,c1,c2) , (m2B,c1, c2) , (m2C,c1, c2) ,  
   (m2D,c1, c2) } 4 

IC_CMS(c1) { (m1A,c1, 0, m2A,c2), (m1A,c1, 0, m2B,c2),        
   (m1B,c1, 0, m2C,c2), (m1B,c1, 0, m2D,c2) } 4 

For Class C2 

IC_CM(c2) 
{ (m2A,c2,m3A,c3), (m2B,c2,m3A,c3),        
   (m2C,c2,m3C,c3), (m2D,c2,m3A,c3),   
  (m2D,c2,m3E,c3) } 

5 

IC_CC (c2) { (m2A,c2,c3), (m2B,c2,c3), (m2C,c2,c3), (m2D,c2,c3) } 4 

IC_CC′(c2) { (m3A,c2,c3), (m3C,c2,c3),  (m3E,c2,c3) } 3 

IC_CMS(c2) 
{ (m2A,c2, 1, m3A,c3), (m2B,c2, 1, m3A,c3),        
   (m2C,c2, 1, m3C,c3), (m2D,c2, 1, m3A,c3),   
  (m2D,c2, 1, m3E,c3) } 

5 

 

Our variant of IC_CM. We have made a variation of the IC_CM metric with 

the inclusion of a new numeric parameter that is initialized with a value of zero and is 

incremented each time an object of a distinct class is initialized. We name this 

parameter as “loading_order”. Whenever a constructor of any class is called during 

the execution of program, we first check if the constructor of this class is being called 

for the first time? If yes, we say that this class is being loaded for the first time in the 

application so we add this class to the list of distinct classes that have already been 

loaded. The numeric parameter (loading_order) is incremented by one and is stored 

along with the other information like source/target of method/class. 

It should be noted that although the scores for classes C1 and C2 is same (i.e. 

1), for IC_CM and IC_CMS. But our extended version of IC_CM gives priority to 

class C1, since it is loaded prior to class C2 in the application. Whereas the original 

version of IC_CM fails to note this distinction and treats classes C1 and C2 at equal 

level because of equal coupling score. 
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custom built aspect library to the application class-path and the launch of the system 

with load-time aspect weaving enabled. 

 
Figure 16: Load-time weaving of Application Classes using aspectjweaver.jar 

 

The above figure explains the load-time weaving process for application classes. 

The -javaagent option of the JVM is utilized to specify that the application classes will 

be transformed by the specified aspect library using the aspectjweaver.jar. The Aspect 

Instance finds the join-points in the application classes that are to be loaded by the 

JVM. Next the advice code is weaved at the specified point-cuts in the application 

classes. In the final step, the JVM loads the modified version of the application classes 

(weaved classes) that will now execute according to the advice. 

5.3.2 Run the Instrumented System and Calculate Metrics 

When we run the instrumented System, AspectJ allows us to intercept each and 

every method call and provides us with the relevant information like the name of the 

class, name of the method, method signature, line number of code etc. [45]. System 

classes and class libraries can be excluded easily to filter unwanted classes. It can also 

be specified that only specified classes of the application should be intercepted. 

Inclusion/exclusion of classes is at the programmer’s discretion. We have built our 

approach around on-line analysis of the application, since we calculate the metrics in 
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parallel to program execution. This is opposite to off-line analysis approach in which 

the system is executed first and after the execution is finished the execution traces are 

analyzed to extract the information. As the system gets executed, we record relevant 

information in a linked list like data-structure. 

 

5.3.2.1 Algorithm for Calculation of Dynamic Coupling Metric 

1. Start with the entry point of the application (e.g. main method). 

2. Assign an initial value of 0 to the “loading_order” variable. 

3. Initialize loaded_classes_list with zero size list. 

4. Before the execution of any method/constructor, do the following: 

a. Get the name of the previously called method/class from stack_list. 

b. Get the name of the currently called method/class. 

c. Record the coupling relationship between previously called method/class 

(m1/c1) and the currently called method/class (m2, c2) in the form of (m1, 

c1, m2, c2, loading_order). The repetition is not considered, only the 

distinct combinations of (m1, c1, m2, c2, loading_order) are recorded. 

d. Check if this class is present in the loaded_classes_list? 

If No,  

i. Assign the value of “loading_order” variable to this class. 

ii. Add this class to the loaded_classes_list. 

iii. Increment the value of loading_order variable. 

iv. Add this method to the invoked_methods_list of this class. 

If Yes,  

i. Add this method to the invoked_methods_list of this class (if not 

already added) 

5. Add the currently method/class to the stack_list. 

6. Repeat the steps 4 and 5 till the end of the application. 

7. At the end of the application you will have the following: 
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a. The order in which the classes are loaded by the application in 

loaded_classes_list. 

b. Each class will have the list of methods that are invoked during the 

execution scenario in invoked_methods_list of that class. 

c. The coupling relationship between classes in the form of (m1, c1, m2, c2, 

loading_order). It is again emphasized that the repetition is not 

considered; only the distinct combinations of (m1, c1, m2, c2, 

loading_order) are recorded. 
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5.3.2.2 Flow of activities for calculation of Dynamic Coupling Metric 

 
Figure 17: Flow of activities for calculation of dynamic coupling metric 
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5.3.3 Rank the Results 

At the end of the execution, we rank the classes according to their metric value (i.e. 

classes are sorted on the loading_order ascending and count of invoked methods of 

other classes descending) and display the top fifteen percent results to the user [45]. 

5.3.4 System Requirements 

System prototype is developed using Eclipse IDE and java development kit 6. For 

running this software prototype there is a requirement of Java Runtime Environment 6 

and database handling is done using Oracle 10g which must be installed and database 

should be configured for proper running of this software. In tabular form, the 

specification of the system on which experiment was conducted is given in Table 13. 
Table 13: System Specifications 

System Processor AMD Athlon Dual-Core QL-62 2.0 GHz 

Hard Disk 150 GB 

RAM 4 GB 

Operating System Windows 2000 Server, Windows 2003 Server, 
Windows XP, Windows 7 

Runtime Environment Java Runtime Environment 6 

Database Server Oracle 10g 

Case Study Softwares Apache Ant 1.6.1 
Jakarta JMeter 2.0.1 

AspectJ Version AspectJ 1.6.7 

IDE Eclipse Galileo 

 

5.4 How the proposed approach is evaluated and validated 

We have performed an intrinsic evaluation of our approach using open source 

software as case study (details in Chapter 6). Following three major evaluation criteria 

have been used to evaluate the approach: 
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• The recall of the approach (or retrieval power of the approach).  

• The precision of the approach. 

• The time consumed in the complete process. 

Similarly, the validation of the proposed approach is performed with the help 

of precision and recall. In addition, we have computed the amount of effort in our 

approach which could help in figuring out the return on investment in terms of time.  

5.5 Practical use of our approach 

In order to obtain the benefits of our approach, the programmer working on the 

new software can use the following steps: 

• Choose a major use case of the system. 

• Start the system using our AspectJ library.  

• Run the selected use case of the system.  

• Our heuristic will determine and present the key classes to the programmer 

as a ranked list.  

• The programmer can use these classes as a starting point for his 

comprehension process. 

 



60 

 

CHAPTER 6 

RESULTS AND EVALUATION 

In this chapter results of the developed prototype system are evaluated against the 

existing approaches. For this purpose the evaluation criteria is identified and our 

approach is compared with the results reported by the experiments conducted on the 

same software system. 

6.1 Results of 1st Case Study – Apache Ant 

To evaluate the accuracy of our heuristic, we have used as baseline the most 

important classes, provided by [11, 12] (extracted from design documents of Apache 

Ant 1.6.1 and Jakarta JMeter 2.0.1) in their experiment of finding key classes of a 

software system. 

The top 15% classes identified by our approach are presented in Table 14. The 15% 

mark is set by the authors in [12]; they argue that the documentation of Apache Ant 

mentions that nearly 10% of the total classes are deemed important by the original 

authors of Apache Ant. Hence the 15% mark is quite reasonable for the evaluation of 

the approach. 

There are 19 classes that have been marked as key classes by our approach. Out of 

these 19 classes, 9 classes were identified correctly as shown in the Table 14 on next 

page. Whereas 10 classes are false positives. 
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Table 14: Classes identified by our approach (Top 15%) – Apache Ant 

Our identified classes Baseline Classes [11,12] 
Project Project 
UnknownElement UnknownElement 
AntTypeDefinition  
ComponentHelper  
Main Main 
ElementHandler ElementHandler 
IntrospectionHelper IntrospectionHelper 
Property  
FileUtils  
ProjectHelper2  
PropertyHelper  
DefaultLogger  
ProjectHelper ProjectHelper 
ProjectHandler  
RuntimeConfigurable RuntimeConfigurable 
TargetHandler  
RootHandler  
Task Task 
Target Target 
 TaskContainer 
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6.2 Evaluation of 1st Case Study – Apache Ant 

6.2.1 Criteria Used for Evaluation 

Following are the main criteria on which proposed approach is evaluated and 

compared to existing techniques: 

i. Precision 

Precision is the proportion of classes that lies within the baseline in all the 

discovered classes. 

 

݊݋݅ݏ݅ܿ݁ݎܲ ൌ N୳୫ୠୣ୰ ୭୤ ୰ୣ୪ୣ୴ୟ୬୲ ୡ୪ୟୱୱୣୱ ୰ୣ୲୰୧ୣ୴ୣୢ
N୳୫ୠୣ୰ ୭୤ ୰ୣ୲୰୧ୣ୴ୣୢ ୡ୪ୟୱୱୣୱ

        (1) 

 

ii. Recall 

Recall is the fraction of the classes, which are relevant to the baseline, that are 

successfully retrieved. 

 

ܴ݈݈݁ܿܽ ൌ ே௨௠௕௘௥ ௢௙ ௥௘௟௘௩௔௡௧ ௖௟௔௦௦௘௦ ௥௘௧௥௜௘௩௘ௗ
ே௨௠௕௘௥ ௢௙ ௥௘௟௘௩௔௡௧ ௖௟௔௦௦௘௦

                (2) 

 

iii. Fallout 

It is the proportion of all non-relevant classes present in the retrieved classes. 

 

ݐݑ݋݈݈ܽܨ ൌ ே௨௠௕௘௥ ௢௙ ௡௢௡ି௥௘௟௘௩௔௡௧ ௖௟௔௦௦௘௦ ௥௘௧௥௜௘௩௘ௗ
ே௨௠௕௘௥ ௢௙ ௥௘௧௥௜௘௩௘ௗ ௖௟௔௦௦௘௦

   (3) 

 

iv. F Measure 

This is the weighted harmonic mean of precision and recall. It trades off 

between precision and recall. 

ܨ ൌ ൫ఉమାଵ൯௉ோ
ఉమ௉ାோ

                                                                           (4)      
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6.3 Results of 2nd Case Study – Jakarta JMeter 

The top 15% classes identified by our approach in the experiment with Jakarta 

JMeter are presented in Table 20. 

 
Table 20: Classes identified by our approach (Top 15%) – Jakarta JMeter 

Our identified classes Baseline Classes [11,12] 
JMeter   
SaveService   
JMeterProperty   
JMeterTreeModel  JMeterTreeModel  
TestElement  TestElement  
AbstractTestElement   
Arguments   
LoopController   
HTTPSampler   
HTTPSamplerBase   
SampleResult  SampleResult  
TestPlanGui  TestPlanGui  
ArgumentsPanel   
JMeterEngine  JMeterEngine  
TestPlan  TestPlan  
ValueReplacer   
Command   
GuiPackage   
MainFrame   
TestListener  TestListener  
TestCompiler  TestCompiler  
ListenerNotifier   
ThreadGroup  ThreadGroup  
JMeterGUIComponent  JMeterGUIComponent  
MenuFactory   
JMeterThread  JMeterThread  
SamplePackage   
Sampler  Sampler  
 AbstractAction 
 PreCompiler 

 



th

W

6

6.

T

M
N
P
%

 

There are 

hese 28 cla

Whereas 16 c

6.4 Evaluat

.4.1 Precisio

Precision 

Table. 

Metric 
Name 

recision 
% 

 

Graphical 

0

5

10

15

20

25

30

35

40

45

50

IC_

28 classes th

sses, 12 cla

classes are fa

tion of 2nd

on Compari

of our appr

Table

IC_CM IC_

7 

form of the 

Figure

7
11

_CM  IC_CC

hat have bee

asses were 

alse positives

d Case Stu

ison 

roach is com

e 21: Compari

_CC IC_

11

above table 

e 23: Compari

36

  IC_CC' 

en marked a

identified c

s. 

dy – Jaka

mpared with

ison of Precisio

_CC' 
IC_C
HIT

36

is given in F

ison of Precisi

18

IC_CM + 
HITS 

IC_
H

Precisio

as key classe

correctly as 

arta JMete

h other app

on % -- Jakar

CM + 
S 

IC_C
HITS

18

Figure 23. 

ion % -- Jaka

25

46

_CC + 
HITS 

IC_CC'
HITS

on % 

es by our app

shown in 

er 

proaches in 

rta JMeter 

CC + 
S 

IC_CC
HITS 

25

rta JMeter 

43

' + 
S 

Our 
Approach 

proach. Out 

the Table 2

the followi

C' + Our 
Approa

46 

Precisio

69 

of 

20. 

ng 

ach

43

 

n % 



6.

T

M
N

R

6.

T

M
N

F

 

.4.2 Recall C

Recall of 

Table. 

Metric 
Name 

Recall % 
 

Graphical 

.4.3 Fallout 

Fallout of

Table. 

Metric 
Name 

allout % 
 

Graphical 

0
10
20
30
40
50
60
70
80
90

100

Comparison

our approa

Tabl

IC_CM IC_

14 

form of the 

Figu

Compariso

f our approa

Tabl

IC_CM IC_

93 

form of the 

14

n 

ach is comp

le 22: Compar

_CC IC_

21

above table 

re 24: Compa

on 

ach is comp

le 23: Compar

_CC IC_

89

above table 

21

71

pared with e

rison of Recal

_CC' 
IC_C
HIT

71

is given in F

arison of Reca

pared with e

rison of Fallou

_CC' 
IC_C
HIT

64

is given in F

36

5

Recall %

existing app

ll % -- Jakarta

CM + 
S 

IC_C
HITS

36

Figure 24. 

ll % -- Jakart

existing app

ut % -- Jakart

CM + 
S 

IC_C
HITS

82

Figure 25. 

50

93

% 

proaches in 

a JMeter 

CC + 
S 

IC_CC
HITS 

50

ta JMeter 

proaches in 

ta JMeter 

CC + 
S 

IC_CC
HITS 

75

86

the followi

C' + Our 
Approa

93 

 

the followi

C' + Our 
Approa

54 

Recall % 

70 

ing 

ach

86

ing 

ach

57



6.

T

M
N

F

 

.4.4 F-meas

The F-mea

Table. 

Metric 
Name 

-Measure 
 

Graphical 

0
10
20
30
40
50
60
70
80
90
100

Figur

sure Compa

asure of our 

Table 2

IC_CM IC_

25 

form of the 

93 8

re 25: Compar

arison 

approach is

24: Comparis

_CC IC_

45

above table 

89

64

rison of Fallou

 compared w

son of F-Measu

_CC' 
IC_C
HIT

45

is given in F

82

Fallou

ut % -- Jakart

with other ap

ure % -- Jaka

CM + 
S 

IC_C
HITS

37

Figure 26. 

75

54

t % 

ta JMeter 

pproaches in

arta JMeter 

CC + 
S 

IC_CC
HITS 

52

57

n the followi

C' + Our 
Approa

61 

Fallou

71 

 

ng 

ach

58

ut % 



6.

to

m

ou

re

ta

pr

Ja

co

ev

of

JM

co

no

w

m

th

 

.4.5 Time U

In this crit

o execute th

machine to ex

ur approach

esults of the

aken as a re

revious expe

akarta JMete

oupling info

vident that th

f 54. With 

Meter was 

oupling info

oticeable tha

which is far m

measurement

hesis is far b

0
10
20
30
40
50
60
70

Figure 

Usage – (effo

teria time is 

he use case 

xecute the sa

h. The time 

e experiment

elative measu

eriments rep

er was 82 se

ormation, the

he existing a

our approac

50 seconds

ormation, th

at our appro

more efficien

ts are taken 

etter than th

0
0
0
0
0
0
0
0

25

4

26: Comparis

ort to perfor

measured fo

without in

ame use case

for all exi

ts conducted

ure, not as 

ported that th

econds; but w

e execution 

approach ha

ch the origin

s; but with 

e execution 

ach has incr

nt than the fa

and their re

e existing on

45 45

F‐

son of F-Meas

rm the comp

or the norma

strumentatio

e with the ov

sting approa

d by the res

an absolute 

he original e

with overhea

time elevate

s increased t

nal executio

overhead i

time elevat

reased the or

actor of 54. O

esults shows

ne in term of

37

52

‐Measur

sure % -- Jaka

plete analys

al execution t

on as well a

verhead of in

aches was t

spective auth

measure. F

execution tim

ad involved 

ed to 75 min

the original 

on time of s

involved in 

ted to 5 min

riginal execu

On the basis

s that new te

f time usage

61 58

re % 

arta JMeter 

sis, from sta

time taken b

as the time 

nstrumentati

taken from 

hor. Time m

or instance, 

me for select

in measurin

nutes (4500 

execution tim

same use ca

measuring 

nutes (300 s

ution time b

s of this prin

echnique pre

. 

F‐Me

 

art to finish)

by the machi

taken by t

on involved

the publish

measurement 

the results 

ted use case 

ng the dynam

seconds). It

me by a fact

ase for Jakar

the dynam

seconds). It 

y a factor of

nciple all of t

esented in th

easure % 

72 

) 

ine 

the 

d in 

hed 

is 

of 

of 

mic 

t is 

tor 

rta 

mic 

is 

f 6 

the 

his 



I
I
I
I
I
I
O

6

 

APPROAC

IC_CM 
IC_CC 
IC_CC` 
IC_CM + HIT
IC_CC + HIT
IC_CC` + HI
Our Approach

 

Graphical 

6.5 An outl

• A n

con

• An

dyn

• The

oth

0
10
20
30
40
50
60
70
80

Table 25
CH 

EXE
(

TS 
TS 
TS 
h 

form of the 

Figure 27: C

line of ach

new variant

nsideration th

n implement

namic coupl

e precision, 

her analogou

0
0
0
0
0
0
0
0
0

75

5: Details of re
ORIGINAL 

ECUTION TI
(SECONDS)

(A) 
82 
82 
82 
82 
82 
82 
50 

above table 

Comparison of

hievements

t of a dynam

he loading o

tation of the

ing metric d

recall and p

us experimen

75 75

T

esults for Tim

IME 
) 

E
W

is given in F

f time usage of

s in this re

mic coupling

order of the c

e approach 

during progra

performance 

nts performed

75 75

Time (m

me Usage – Jak
EXECUTION
WITH APPR

(SECON
(B)

4500
4500
4500
4500
4500
4500
300

Figure 27. 

f approaches –

esearch 

g metric is 

class in the a

to calculate

am execution

of our appro

d on the sam

75

4

ins) 

karta JMeter 
N TIME 
ROACH 

NDS) 

0 
0 
0 
0 
0 
0 

– Jakarta JMe

introduced t

application. 

e the new v

n is provided

oach is comp

me software s

Tim

OVERHEA
FACTOR

(B/A) 

54 
54 
54 
54 
54 
54 
6 

 
eter 

that takes in

variant of t

d. 

pared with t

system. 

me (mins) 

73 

AD 
R 

nto 

the 

the 



74 

 

CHAPTER 7 

CONCLUSION AND FUTURE WORK 

In this chapter research work is concluded and some future directions are 

described. The chapter is of vital importance because it provides a bird’s eye-view of 

the methodology and gives future directions for new researchers.  

7.1 Conclusion 

Traversing the entire set of classes in the project in order to find those few 

classes that provide substantial glimpse of the inner workings of the software is 

challenging for new programmers. Our technique for Discovering Key Classes can be 

of great help in this situation, since it provides the facility to identify automatically 

those few classes (from the entire set of classes in the system) that are ideal nominees 

for initial program comprehension. An open source software known as Apache Ant has 

been used for experimentation in our approach. This particular software was selected 

as case study because the results of other analogous experiments performed on the 

same system were available for comparison of our approach with other approaches. 

We have used the same baseline to evaluate our approach that was used by the authors 

in analogous experiments. 

The concept of dynamic coupling and the analogy of core structure from civil 

engineering are fundamental to our proposed approach. On the basis of these two 

principles, our approach collects information from the guinea pig system (Apache Ant) 

at runtime. The results of our experiment have shown that using runtime coupling 

information and considering the loading order of the class in the application, we 

successfully recalled 90 percent of the key classes of the guinea pig system. In 

addition, the precision level of our approach was slightly under 50 percent with such 

level of recall. 

In this research we have conceived and implemented a helpful technique for a 

software engineer who aims to get acquaintance with a completely new software 
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project. The key classes identified by our heuristic provide a miniature number of 

points to the user to pursue his quest for obtaining comprehensive understanding of the 

system. 

7.2 Contribution 

In this thesis, we have presented a new approach for coupling based analysis of 

object-oriented systems. The runtime coupling relationships among object-oriented 

software components and the loading order of the classes in the application is 

considered to calculate dynamic coupling metric. We have used dynamic analysis 

technique in our approach to instrument the object-oriented system. We have 

demonstrated an efficient approach to measure the runtime coupling relationships 

among object-oriented software components and successfully applied the measure to 

the problem of initial program comprehension. 

We have also introduced a variant of dynamic coupling metric for object-

oriented software. This coupling metric is derived from the framework of dynamic 

coupling by [10] with slight modification. An open source case study has been used to 

validate this metric and it has been demonstrated that this metric is useful in initial 

stages of program comprehension. 

Another achievement is that we have practically applied the results of dynamic 

coupling metric to the initial program comprehension problem. During this research 

we have developed an algorithm to find efficient solution to the program 

comprehension problem utilizing dynamic coupling metric. 

This research serves as a proof of concept that shows the pragmatism and 

efficacy of coupling-based investigation of software systems using an open source case 

study. 

This thesis has produced the following publication: 

• Muhammad Kamran, Farooque Azam, Assia Khanum, “Discovering Core 
Architecture Classes to Assist Initial Program Comprehension”, Lecture 
Notes in Electrical Engineering Volume 211, 2013, pp 3-10, Springer Berlin 
Heidelberg 
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7.3 Future Work 

A number of research directions have already been identified by us for future 

work. These routes will allow the refinement in the validation of our approach for 

discovering key classes. In the first place, we want to conduct a controlled experiment 

that can be used to evaluate the significance of these key classes in the comprehension 

process of a large software system, when the programmer possesses no prior 

knowledge of the application. In addition, we plan to test the approach on a diverse set 

of applications belonging to different problem domains. 

An attractive research direction for future could be the use of dynamic coupling 

for reverse engineering of applications. Sufficient details are being produced by this 

research through dynamic analysis to reverse engineer the design of software. To 

reverse engineer the structural characteristics of the system, the use of coupling 

information (including the component interactions) could be very helpful. 

To assess the reusability of a class or the relationship of class with the relevant 

classes, ranking of classes is often helpful. A mechanism for ranking components of 

software is called Component Rank that analyzes real usage relationships among the 

components and promulgates their importance by means of usage relationships. 

Coupling measures can be utilized for ranking of components and/or classes. They 

should be able to identify the use of a component and any dependent components. 

Since the coupling metrics have the potential to detect how a class is utilized as well as 

its dependencies, they can be of great use for ranking classes with respect to the 

reusability. A tightly coupled component is less likely to be a reusable component, 

whereas a loosely coupled component can be an ideal candidate for reusable 

component. 
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