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ABSTRACT

Web services have been evolved as a versatile and cost effective solution for
exchanging dissimilar data between distributed applications. They have become a
fundamental part of service oriented architecture (SOA). The most challenging
problem being faced by service oriented architecture is to figure out what a service
does and how to use its capabilities without direct negotiation with service provider.
Discovering and exploring web services registered with UDDI registry or Web
Services-Inspection (WS-Inspection) documents requires exact search criteria such as

service category, service name and service URL.

This study focuses on creating a smarter automated web service classification
technique by applying Maximum Entropy machine learning algorithm to attributes of
Web Service Description language (WSDL) documents. WSDL document allows web
services clients to learn operations, communication protocols and correct message
format of service. Manually analyzing WSDL documents is the best approach but
most expensive. Therefore a text mining based approach is suggested for classifying

web services into functional groups.

Keywords — Service oriented architecture (SOA), UDDI registry, WSDL documents, Text
Mining.
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Chapter 1
INTRODUCTION

Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

(‘Choruses from the Rock’ by T.S.Eliot - 1934)

1.1 Overview

Service oriented architecture (SOA) is glue that allows web applications to work in
collaboration. It has become a driving force for Service-oriented Computing (SOC)
paradigm. In heterogeneous environments SOC paradigm uses web services as the basic
building block to support low cost, easy and rapid composition of distributed applications.
Web services leverage existing distributed business processes from tightly coupled to loosely
coupled service oriented architectures. Therefore business processes are no longer limited to

web services within the enterprise’s boundary.
1.2 Background and Motivation

In service-oriented architecture, a service is defined as a software component that
communicates using SOAP and XML-based standard messaging protocols [1]. A web service
exposes its interfaces using Web Service Description Language [2]. In service-oriented
architecture, there are three types of players namely Service Consumers, Service Providers
and Service Registries. A central repository called Universal Description, Discovery and
Integration (UDDI) is used by service providers to publish and register their web services.
UDDI registries are used by web service consumers to locate their required web services and
metadata associated with them.



Majority of service providers including Yahoo and Amazon used to publish their web
services using their own websites instead of public registries or service brokers. Therefore,
there is an increasing trend of searching web services through search engines [3]. The
growing number of web services on web raises a challenging problem of locating desired web
services. Several search engines [4, 5, and 6] provide keyword or query based web service
search facility. They partially match search queries with terms in web service name, location
and other attributes specified in WSDL file. These search queries do not capture ultimate
semantic of web services. Users must be aware of correct and concise keywords to retrieve
the most relevant set of web services. For example, if a user is searching for ZipCode, WSDL

files containing keywords postal code and zip will not be returned in search result.

In recent few years, text mining has gained a lot of attention due to increasing need for
managing vast amount of information in text documents. Semantic text analysis of web
service description (WSDL) files to determine their functionality and capabilities is really
useful for efficient retrieval of web services. Semantics are attached to web services by
annotated them using special markup languages. Plebani, P. adopted language SAWSDL
(Semantic Annotation for WSDL) for annotating WSDL documents with enrich semantics
[7]. Beniamino Di Martino presented schema match making approach for semantic web
service discovery using WSDL descriptions, WSDL-S, WSMO, Ontology Web Language
(OWL) ontologies, SWSF and OWL-S [8]. But manually annotating huge set of available

web services is not a feasible task.

However semantic information of web service can be extracted from its WSDL file. Web
service semantics can be inferred by mining service description, messages, operations and
schema details in WSDL file. Woogle, a web service search engine [9] is build on the basis of
clustering information available in WSDL descriptions, operations and their parameters.
Khalid Elgazzar [3] proposed a novel approach to mine features from WSDL documents and
cluster them into functionality based groups. Marcello Bruno [10] proposed an approach that

uses service textual description to perform automatic classification across specific domains.

1.3  Objective and Contribution



This thesis is aimed at improving discovery of web services by proposing a text mining based
novel approach for web service classification. We intend to create a classification mechanism

that focuses on pre-processing of web service features available in WSDL documents.
Therefore, our main contributions are as follows:

1. We present an approach that extracts contents (specific information from service
name, service documentation, WSDL messages, WSDL ports and WSDL schema)
from WSDL documents in order to classify web services into eight functionally
similar categories. This thesis aims to provider smarter web service curation using
text-mining techniques.

2. We compare our approach with existing classification and clustering techniques and

proves that our approach gives high precision and recall values.
1.4 Outline

Chapter 2 discusses the related work. We present the design and methodology of our
classification approach in chapter 3. Chapter 4 discusses results and detail comparison of our
approach with existing techniques. Finally, chapter 5 concludes this thesis and proposes an

outlook of possible extensions, modifications, and improvements as future work.



Chapter 2
LITERATURE REVIEW

In this chapter, we give a brief overview on the state-of-the-art of existing approaches of web
service classification and clustering. We mainly considered the work that is based on mining
information available in WSDL documents. We describe methodology of each approach and
selected WSDL features.

2.1  Service Oriented Architecture (SOA) an Overview

Service oriented architecture (SOA) allows creation of applications by combining
interoperable and loosely coupled services. It is a style of information system (IS)
architecture. These loosely coupled services inter-operate with components in distributed
environment and are independent of underlying programming language and platform. For
example, a web service might be implemented in J2EE or .Net and application utilizing web

service might be using different language and platform.
Following are the key characteristics of Service Oriented Architecture.

= SOA web services have well defined interfaces written in platform independent XML
documents. Web services are described by a standard known as Web Service
Description Language (WSDL).

= SOA web services communicate with messages defined using XML Schema.
Communication among service providers, service consumers and services normally
takes place in a heterogeneous environment with least knowledge about
communicating neighbour. Therefore, messages between web services are considered
to be the key business documents exchanged between enterprises.

= SOA web services are registered by service providers in service registries. Service
consumers can look up desired services in registry and invoke them. The standard

used for service registry is Universal Description, Definition, and Integration (UDDI).



= Quality of service (QoS) is associated with each SOA web service. Some important

QoS elements include reliable messaging, security requirements and policies

regarding service consumers.

Figure 2.1 illustrates communication of components in Service Oriented Architecture

(SOA)

UDDI Registry

Service Consumer

Responses
/Requests

‘ Service Provider

Figure 2.1: Communication in Service Oriented Architecture (SOA)

IT industry is based on infrastructure that is heterogeneous across system software, operating

systems, applications and application infrastructure. It is not possible to build new

infrastructure for business processes from scratch because enterprises has to quickly respond

to business changes and leverage investments for newer business requirements. Service

oriented architecture is a giant step to address new business requirements in a granular

fashion.

The widespread availability of XML standard based web services has given a new

momentum to Service oriented architecture. Figure 2.2 illustrates the advantages being

offered by core elements of SOA.



Figure 2.2: Core components that make up SOA implementation

Some of the main goals of Service Oriented Architecture are listed below.

Individual business requirements can be implemented directly by web services. The
main advantage offered by this approach is rearrangement of web services according
to changing business workflows. Thus, web services improve overall alignment of
business processes.

Single web service can be used by multiple business applications thus avoiding
duplication of resources, reducing maintenance costs and development time. This will
in turn increase quality and consistency of data.

SOA interfaces improves application integration by providing standard based
application integration and avoid overhead of special information adapters.

“A single source of truth” can be established by SOA that can be validated, protected

and more reliable as compared to multiple distinct data sources.

2.2  Type of Web Services

Knowledge discovery by data mining has gained much importance in recent few years,

especially in mining web service description files.



There are two types of web services

1. Semantic Web Services
Semantic web services describe themselves by using Semantic Web Services
Ontology (SWSO). SWSO is specified using Semantic Web Service Language
(SWSL) [11]. Semantic web services annotate web service description
documents with richer semantic specification in order to provide accurate and
flexible automated web service discovery. Figure 2.3 illustrates process of in

cooperating semantics in WSDL document.

Domain Ontology

Programmer

A\ 4

> {Semantic WSDL Document} ﬁ

{Software Implementation} ﬁ {WSDL Document}

Domain Expert

Figure 2.3: Annotating Semantics in WSDL Document

2. Non Semantic Web Services
Non-semantic web services describe themselves by Web service Description
Language (WSDL). No semantic details are manually added to WSDL

document. Semantic web services are extension of non-semantic web services.

Non-semantic web services have gained more popularity in software development industry
because of their simplicity. Web service discovery techniques vary depending upon web
service description language. High-level match making techniques [11] are used to discover
semantic web services whereas text-mining techniques are used to retrieve non-semantic web

services [3]. This thesis is targeting non-semantic web services classification approach.



2.3 WSDL Document Structure

Non-semantic web services are described by an XML based language called Web Service
Description Language (WSDL) [2]. A web service provider publish its web service by
registering WSDL file and some related documents with UDDI registries. A WSDL

document specifies

— Details of operations required to invoke and consume the web service.
— Physical location of WSDL.
— Binding information of several transports formats as well as protocols between web

service and web service requester.

l Services |C—— > l Ports

!

l Bindings |C—— > l Operations
. e
l \'/

l PortTypes |:>| Operations

l Messages —
© Qontainment
l X
Modifier
@ ————p
l TypeS Reference

Figure 2.4: Block diagram illustrating relationship between WSDL sections.



According to Figure 2.4 definitions in Type section are used by Messages section, PortTypes
use definitions in messages section. PortTypes section is referred by Binding section and in
turn, it is referred by Services section. Operation elements are contained by PortTypes and

Binding sections and port elements are contained by Services section.

The main advantage of WSDL is that it is platform, protocol and language independent. It
does not require use of any specific language for web service implementation. It also supports
message exchange through SOAP over www. We have considered Web Service Description
Language (WSDL) version 1.1 for feature extraction because WSDL version 2.0 is more
complex and not supported by most of software development tools. A sample WSDL file is
presented in Appendix A.1.

A detail description of WSDL features is given below.

2.3.1 Services

A service element describes the name of service and aggregates multiple

service ports.
2.3.2 Messages

Messages specify data being communicated between consumers and providers
of web service. There are two types of messages supported by web service,
input and output messages. Web service parameters are described by input
messages and data returned by web service is described by output messages.

Figure 2.5 illustrates structure of message element.

message

-name

part

-name

-type
-element

Figure 2.5: Structure of WSDL message.



2.3.3

Each message consists of zero or more part elements. Each part element refers

to input/output parameters of web service operation.
PortTypes

A web service can have multiple ports. Ports refer to web service end points
and bindings define the transport protocol for these ports. A port type element
contains a set of operations supported by web service. Each operation contains

input/output parameters. Figure 2.6 illustrates structure of portType element.

portType

-name

N 1
Y Y
operation 1 1 Documentation

A 4

-name

1 1
v A

input output

-name -name
-message -message

Figure 2.6: Structure of WSDL portType

2.34 Types

This element describes language and machine independent data containers for
message exchange. In short, data types used by web service are defined in
Types element. W3C XML Schema specification is used by WSDL to define
data types. Types element is not used if web service uses simple build in types

such as integers and strings. Figure 2.7 illustrates structure of types element.

10



types

1

1

Y

Schema

-xmins

-xmins:wsdl
-targetNamespace
-elementFormDefault

L

N

complexType

Y

-name

-mixed

-abstract

T

1

Y

1

Y

choice

-minOccurs
-maxOccurs

Annotation

Y

1

Documentation

N

Y 1
element

-name N

-type <
Y
1 Sequence
1
1
Figure 2.7: Structure of WSDL types
2.3.5 Bindings

Binding component provide details of data format and transport protocol for a
portType operation. Binding through multiple transport protocols such as
HTTP GET, HTTP POST, or SOAP are available. Multiple bindings can be

specified for a single portType.
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2.4

2.3.6 Documentation

Documentation element gives textual description of web service functionality.

It is not specified in all WSDL documents.
Related Work
2.4.1 Text Classification Algorithms — State of Art

Automatic text classification is becoming an important research topic and yearning
application because of huge set of digital text document that need to be process daily.
In general, automatic text classification plays a vital role in text summarization,

question answering and information extraction.

Intuitively classifying documents into a predefined set of categories is the task of text
classification. More formally, text classification classifies each document Di in a set
of documents {D1, D2, Ds ....Dn} to a category Ci in set of categories {Ci, C,
Cs....Cn}.In the research community the main approach for text classification is based
on supervised machine learning techniques. These techniques require initial data set

of classified documents to build a classifier.

Text classification is done using different machine learning techniques. Many of the
researchers have used different classifiers for example Ant Miner, Support Vector
Machines, Naive Bayes, and K-nearest neighbour etc. Some of them have proposed
new techniques by proposing hybrid classifiers for web service classification. Some
algorithms have proven to perform better than others such as Maximum Entropy and
Support Vector Machine.

Naive Bayesian is often used in automatic text categorization because of its
effectiveness and simplicity [29]. However, text is not modeled properly by Naive
Bayesian which degrades its performance. Ping Bai [30] proposed an improved naive
Bayesian classification algorithm for classifying web text. In common Naive
Bayesian classifier all terms in text are equally important but Ping Bai suggested that
terms in each title are more significant. This approach improves precision of text
classification results.

12



Different text classification approaches have been developed based on principles of
Support vector machine (SVM) algorithm [31]. Text classification by Support vector
machine yields excellent precision but gives poor recall. However recall can be
improved by adjusting threshold associated with SVM. Classification by SVM
requires training by extensively labeled data, but labeling huge training dataset is
resource and time consuming activity. Also high text dimensions results in sparse

feature space. Algorithm performance is negatively affected by these factors.

Maximum entropy is extensively used for natural language processing tasks such as
tagging of parts of speech, text segmentation and language modeling. Maximum
entropy offers a lot of advantages as compared to other supervised machine learning
algorithms such as Naive Bayesian. In [26], Hui Wang performed extensive
experiments to compare performance of Maximum Entropy with Naive Bayes and
Support Vector Machine (SVM). Maximum Entropy consistently outperforms SVM
and Naive Bayesian. This is because Maximum Entropy is robust and does not make
inherent conditional independence assumptions between terms. It gives better

performance than SVM in classification of sparse data.

2.4.2  Web Service Classification/Clustering Approaches

Different web service classification and clustering techniques has been proposed
based on mining textual details in WSDL documents. In [32], Suman Saha proposed a
two-step process of web service classification. In the first step, Tensor Space Model is
used for capturing internal structure and text content of WSDL documents. In the
second step tensor space model of each individual component is combined using
Rough Set approach. This approach obtains two step improvements by using Tensor
space model and Rough set based ensemble classifier. However, only three features
from WSDL files are extracted for classification namely service name, operation
names and input/output names and their descriptions. They do not consider WSDL
Schema and WSDL Messages which reveal important information about functionality

of web service.

loannis Katakis in [33] performed automated classification of web services using

semantic annotations and textual descriptions of OWL-S instead of using WSDL

13



documents. This approach improves overall accuracy of classification by using

extended feature vector and a collection of classifiers.

According to Fangfang Liu [34], very small text fragments in WSDL documents are
not suitable for applying traditional information retrieval techniques. He suggested an
approach for classification of web service operations based on calculating semantic
distance between terms of two web services. Web services are categorized into similar
groups based on semantic distances between WSDL terms, thus improving accuracy

of similarity matrix.

A novel clustering approach is suggested by Jiangang Ma [35] to remove irrelevant
services based on semantic analysis of user query. This approach utilizes Probabilistic
Latent Semantic Analysis to capture semantic of user query and service descriptions

S0 service comparison is performed at concept level.

Woogle [9] is a web service search engine proposed by Xin et al. This engine is
capable of performing similarity search between web services by finding similar and
compos able operations. However, this approach has not used WSDL Types, which

plays an important role in uniquely identifying a web service.

Marcello Bruno [10] proposed automated web service classification technique to map
services to specific domains. This approach also identifies key concepts in WSDL
document and builds a network of relationships between different web service
annotations. In this approach web service classification is performed by Support
Vector Machine algorithm using web service documentation and user queries as

classification features.

The process of text mining for text categorization (text classification, topic spotting)
has gained prominent status in the field of information retrieval in past few years. Liu
and Wong [12] proposed a web service clustering approach by text mining web
service description features such as WSDL contents, web service context, host name
and service name. Clustering/classification process is not significantly affected by
service host name and service context features. This is because service providers
publish their web services mostly on their own website and one site might contain
multiple web services. Therefore, mining host name and surrounding index web pages

does not offer much advantage in determining meaning of web service.

14



Khalid Elgazzar [3] modified Liu and Wong [12] approach by selecting different set
of web service features. These features include WSDL contents, types, messages,
ports and web service name. This technique gives high precision and recall values.
Aparna Konduri [14] proposed a hierarchical clustering approach that uses WordNet
to compute web service semantic similarity. WSDL features used by this approach are
WSDL operation names and WSDL parameter names. This approach does not yield
high precision value because selected features do not covey proper meaning of web

service.

Web service search engines must ensure that every searched web service must have
high precision (usable) and recall (can be discovered). Jing Zhang [15] performed
classification of web services based on structure of Web Service Description
Language (WSDL) file. This approach does not yield good results because of plain
statistic method used for classification. Table 2.1 summarizes WSDL features used by

each web service classification/clustering approach.

Table 2.1: Summarization of WSDL features used by existing techniques

‘ Technique Features ‘
1. An approach to support web service 1.  Web Service Documentation
classification and annotation [10] (WSDL and other provided
documents)
2. User Queries
2. Clustering of web services based on 1.  Operation names
semantic similarity [14] 2. Operation parameter names

(Input/Output)

3. Web service classification 1.  Service name
[15] 2. Service Documentation
3. Operation names and
description
4.  Operation parameters
(Input/Output)

4. Web service clustering using text 1.  WSDL contents
mining techniques [12] 2. WSDL context

3. Service host

15



Service name

5. Clustering WSDL documents to WSDL contents
bootstrap the WSDL types
discovery of web services [3] WSDL messages
WSDL ports

Service name

6. Classification of web services using
Tensor [32]

Service name and description

N R N s

WSDL operation name and

description

3. Operation parameter names and
description (Input/output)

4.  UDDI descriptions

25 XML Parsing

XML (Extensible Mark-up Language) is a language for converting documents in machine-
readable form. Most of the information on internet is shared in the form of XML documents.

Parsing and uploading XML data is a common activity between heterogeneous and
distributed applications.

Web service description files are also written using Extensible Mark-up Language so we need
to parse them before being passed to text pre-processing phase. For this we perform analysis
of various XML parsers specifically WSDL parsers.

25.1 XML Parsing APIs

There are different APIs for parsing XML files. Some of these are listed below.
1. Simple API for XML (SAX)

SAX is an event-driven and lexical interface in which contents of document are read
serially and callbacks are sent to handler object methods of user’s design. Although
SAX is an efficient parser APl but random information from XML is difficult to
extract. This is because it burdens application author by keeping track of part of
XML document being processed.

16



2. Pull Parsing (XPP)

Xml Pull Parser is used when all xml elements need to be processed efficiently and
quickly. XPP is the simplest way of parsing xml because it is just one grade up from
XML tokenization. Tokenization and buried pull interface is part of every SAX

parser. XPP exposes this buried layer to allow faster XML parsing.
3. Document Object Model (DOM)

Document Object Model is an application-programming interface that represent
entire document as a tree of node objects. Most implementations of DOM are
memory intensive as entire XML document need to be loaded into memory for tree
construction before objects are being accessed. Nevertheless, most of the available
XML parsers make use of DOM because of its platform and language neutral

interface.
4. Data Binding

Data binding is a type of XML parser in which XML elements are converted into
hierarchy of custom typed classes. This contrasts from Document Object Model,
which creates generic objects from XML elements. Data binding identifies errors at

compile time rather than run time thus simplifying implementation.
2.5.2 'WSDL Parsing APIs

Classification of web services require parsing of WSDL files. As constituents of
WSDL are already well defined so it feasible to extract desired web service
information using existing WSDL parsing APIs. Different APIs have been developed
for efficient parsing of WSDL files using XML parsers described in Section 2.5.1. A

brief overview of some of these APIs is given below.

1. Apache Woden

Apache Woden [27] is DOM-based XML parser that implements a Java class library
for reading, processing and writing WSDL documents. Currently it supports WSDL
version 2.0 but later it will be providing support for past, present and future versions

of WSDL documents. Thus, Apache Woden delivers a “framework” that can
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accommodate future and past WSDL specifications by saving the effort to rewrite

entire processor.

2. Membrane SOA Model

Membrane SOA Model [21] is an object model and Java API for parsing XML
Schema and WSDL files. It also provides support for analysis and comparison of
schema and WSDL documents. WSDL version 1.1 is supported by membrane SOA

Model. It is a lightweight java API that provide following rich set of features.

. WSDL document creation

. Schema document creation

. SOAP request creation

. SOAP Request Template creation

" WSDL document parsing

" WSDL document manipulation

. Comparison of two WSDL documents

" Comparison of two WSDL Schema documents

3. Java APIs for WSDL (JWSDL)

JWSDL is a Java API for reading, writing, modifying, creating and re-organizing
WSDL documents. It is not designed to perform syntactic validation of WSDL
documents. However, it can be used for validating WSDL file semantically. It is
dependent upon org.w3c.dom interfaces. JWSDL is designed to represent incomplete

and incorrect WSDL documents in WSDL editors and tools.

2.6  Text Pre-processing

In text pre-processing, original textual information is converted into ready structure for data

mining. Real word data is noisy and inconsistent that may lead mining process to inaccurate

result. Therefore pre-processing is required to extract accurate and consistent features from

data. In other words, pre-processing is the process of slotting in textual documents to an

information retrieval system (IR). An efficient pre-processor provides high IR performance

(high precision and recall). It presents documents effectively in terms of space and time. This

is the most complex and critical phase that converts each document as a set of index terms.

The main purpose of pre-processing is to categorize textual documents into relevant groups.
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Quality of generated index terms determines efficiency and effectiveness of data mining

process [17].

Some text pre-processing methods are described below.
2.6.1 Tokenization

Tokenization is the foremost stage of Morphological Analyses. It is the process of
splitting a stream of text into words, symbols and phrases called tokens. This
dataset of tokens is given as input to next pre-processing steps. Although text is
stored in machine-readable format, meaningless characters like hyphen, comma,

brackets etc. need to be eliminated by tokenization [17].
2.6.2 Stemming

Stemming is the process of reducing words to their stem/root. The hypothesis
behind stemming is that words originating from same stem or root often convey
similar meanings. For example words:

—  Printer

—  Printing

—  Prints and

- Printed are reduced to stem Print.

Stemming improves IR by matching similar words and reduces indexing size by
combining words with same root. Porter stemmer algorithm [18] is most commonly
used for stemming. This algorithm consists of five sequential phases and various
conventions are used to apply rules during each phase for example select a rule from
group of rules that can be applied to longest suffix. Rules being followed in first

phase are illustrated in Figure 2.8.
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* caresses --> caress
* ponies --> poni
* caress --> caress

e cats --> cat

Figure 2.8: First phase rule set for Porter stemmer algorithm

2.6.3 Lemmatization

Lemmatization is the process of reducing varied or derivational forms of a word to a
common root form. It seems that both stemming and lemmatization perform similar

task but there is significant difference.

A crude heuristic process is used by stemming to cut off ends of words with the aim
of achieving its goal correctly but often it eliminates derivational affixes. However,
lemmatization reduces words to a valid dictionary form by using vocabulary and
performing morphological analysis of words. This valid dictionary form is known as
lemma. For example, consider a token saw, stemming would reduce it to word s,
whereas lemmatization will return either saw or see depending on whether the word is
used as noun or as verb. In short, different inflectional forms of word (lemma) are
collapsed by lemmatization whereas stemming [19] collapse only derivationally
related words. Figure 2.9 illustrates steps for lemmatization of noun and verb phrases

used by Badam-Osor Khaltar [28] for information retrieval.
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Input a phrase

Lemmatization for verb phrases
! N
| " Checkif a suffx exists i the phrase '—-E Verb suffix dlﬂtlﬂnﬂl}j
I Yes
| . :J
| Remove the suffix and extract a content word H’E suffix segmentation rule
|
I
I . Insert an eliminated vowel |1—-E Vowel insertion rule j
I
I Y 1
| s Check if the content word s a verb '-'r Verb dictionary j
b e e st D Ll

NIL, Check if a suffix exists in the phrase I"'F“”“ suffix dictionary

Yes

—

i—

Identify loanword

HIjmnu‘nrd identification rule

—

Remove the suffix and extract a content word

'—-@ suffix segmentation rule

Insert an eliminated vowel

o Output the content word

Figure 2.9: Steps for lemmatization of noun and verb phrases.

Most of web service classification and clustering approaches make use of stemming

rather than lemmatization. Our suggested approach has used lemmatization rather

than stemming and has achieved high precision and recall values.
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2.6.4 Stop Word Elimination

In English language, there are a number of words that do not contribute to the
meaning of sentence and can be easily eliminated. These words are known as Stop
Words. Stop words are useless in IR and text mining. Examples of stop words are
about, a, an, by etc. There are about 400-500 hundred stop words in English language
[16].

Search engines eliminate stop words from a search query because stop words force
much less traffic than keywords. In short, high density of stop words reduces

importance of contents for search engines.

File Edit Search View Encoding Llanguage Settings Macro Run TedtFX Plugine Window ?
P a4 hhe gl rx|BEIS '_J|0 MEEavEY

(=] Stop Word Elimination b ‘

1 Search engines eliminate stop words from a search query because stop words force much less

traffic than keywords. In short hight density of stop words reduces importance of contents

3 for search engines.

5 Search engines eliminate stop words search query stop words force traffic keywords In short
& hight density stop words reduces importance contentsz search engines

4 I

Normal text fil 362 chars 376 bytes & lines Ln:4 Col:1 Sel:0 (0 bytes) in0 ranges Dos\Windows ANSI INS

Figure 2.10: Demonstration of stop words elimination

In Figure 2.10, second paragraph shows elimination of stop words from first
paragraph. Second paragraph is shorter than first one: 32 words versus 23.This
indicate that almost 30 — 40 percent of words are stop words and this text does not
help search engines in text mining. This is why precision is improved by removing
stop words from textual information because text mining is more focused and to the
point [9].

2.6.5 Function Word Elimination

Function words are also known as synsemantic, grammatical or structure-class words.

These words express grammatical and structural relationships with other words in a

22



sentence. They do not have substantial lexical meaning but act as glue to hold

sentences together. Therefore, they can be easily removed from textual information

without affecting meaning of sentence or document. Words that are not function

words are called lexical words, content words or auto semantic words [20]. Function

words are independent of each other and Poison distribution model can be used for

distinguishing content words from function words [12]. Function words can also be

eliminated by creating your own function list from publically available function lists.

Table 2.2 illustrates function list compiled by flesl.net.

Table 2.2: List of function (closed words) words categorized into their word

classes.

Prepositions Pronouns Determiners
about in I it the a/an
across inside you we some any
against into he they this each
along near me us that no
around of her them every half
at off him our/ours all twice
behind on my their/theirs both two
beside onto mine itself one second
besides over her ourselves first another
by through hers themselves other last
despite to his something next few
down toward myself nothing many little
during with himself someone much less
for within herself more least
from without anything most own

everything several
anyone no
everyone

ones

such
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Conjunctions Modal Verbs Adverbs
and or can might here therefore
but S0 may would there however
after before will should today besides
when since shall must tomorrow | moreover
as while could now though
because | although then otherwise
if though Primary Verbs always else
what who be never instead
where whose do sometimes | anyway
which have usually incidentally
how often meanwhile
than

Thus, there is need to develop a precise and refined model for web service classification,

which has a strong pre-processing base, and a concise set of WSDL features. Because

selecting a large set of features or a very limited set greatly impacts accuracy of

classification.
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Chapter 3
PROPOSED CLASSIFICATION APPROACH

The main aim of this research is to provide a compact web service classification approach
based on pre-processed and mined information from WSDL files. Therefore, in this chapter,
we present a detailed description of our approach and explain that how we carried out pre-
processing of features extracted from WSDL file. Then finally, how data is classified into

categories.
3.1 Overview

We build our system using Java Platform SE 7 in Eclipse. Our proposed system mainly

consists of three phases.

1. WSDL Feature Extractor

ro

Text Pre-processor

w

Web Service Classifier

Response

Our Approach

Feature Extraction

Web Service —
Search Engine

Feature Pre-processing Classify New
Web Services
WSDL l
Repository .
Web Service Classified
Classification WSDLs

Figure 3.1: Schematic block diagram illustrating architecture of our classification approach

25




Figure 3.1 illustrates architectural model of our proposed approach to aid web service search
engines in classifying WSDL documents. WSDL documents are downloaded from internet
and offline pre-processing is performed to classify them into functionally similar groups. A
WSDL document may be assigned to multiple categories (Ranking Classification) but
proposed approach in this thesis assign single category to each WSDL document (Hard
Classification). Search engines can use this approach to build up their web service repository

by determining domain or group of newly arrived web services.

Feature Extractor Text Pre-Processor

WSDL File Tokenization

l Word Splitter
WSDL Parser ¢

WSDL

Renositor

l Stop word

Remonval

Ports [ Message ][ Schem ¢

: _ Function Word
[ Servic I Service } Removal

e Documentatio ¢

l Lemmatization

Dumped
WSDL

Web Service Classifier

Vector Formation

v

Classifier

Classified

Web Services

Figure 3.2: Framework of web service classification
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Figure 3.2 illustrates steps during each phase of classification approach. Following sections

give a detail understanding of each phase.
3.2 Feature Extractor

We started by reading WSDL documents from WSDL repository. WSDL documents will be
processed for extracting relevant features. In this phase, contents of WSDL document are

parsed to extract

Service name

Service documentation
WSDL schema
WSDL messages
WSDL port types.

o > w D e

Specific and selected information is extracted from each element of WSDL documents.

Complex Types are the most informative element in WSDL documents [9]. Each element of
WSDL schema consists of name and type attribute. However element type attribute is not
being used as a source of information in our classification approach. This differ our approach
from Khalid Elgazzar’s [3] where element types are extracted to find similarity between pair
of web services. Following information from WSDL schema is extracted as part of WSDL

content.

1. Name attribute of complex type.

2. Documentation content of element in sequence of complex type.

3. Documentation content of complex types.

4. Documentation content of elements in schema.

Figure 3.3 shows a small portion of WSDL schema extracted from WaterService web service

(provided in Appendix A.1).
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InputParameters Input parameters for the tool

Show Parameters [Show parameters in output alignment, as in genewise.]

Show Pretty ASCII [Show pretty ASCII alignment viewing, as in genewise.] First
Sequence [The first DNA sequence to be aligned can be entered directly into the form.
The sequence must be in a recognized format eg. GCG, FASTA, EMBL, GenBank.
Partially formatted sequences are not accepted. Adding a return to the end of the
sequence may help certain applications understand the input. Note that directly using
data from word processors may yield unpredictable results as hidden/control
characters may be present. There is a limit of 1MB for the sequence entry.] Second
Sequence [The second DNA sequence to be aligned can be entered directly into the
form. The sequence must be in a recognized format eg. GCG, FASTA, EMBL,
GenBank. Partially formatted sequences are not accepted. Adding a return to the end
of the sequence may help certain applications understand the input. Note that directly
using data from word processors may yield unpredictable results as hidden/control
characters may be present. There is a limit of 1MB for the sequence entry.]
ArrayOfString wsResultTypes List of renderers available to output the result of the
job wsResultType Details about a renderer used to output the result of the job A short
description of the renderer A suggested file suffix to be used when saving the data
formatted by the renderer ..........

Figure 3.3: WSDL Schema extracted from WaterService web service

From each message element, following information is extracted.
1. Name attribute of part.

2. Element attribute of part.

Figure 3.4 shows WSDL messages extracted from WaterService web service.

runResponse tns:runResponse runRequest tns:run
getStatusResponse tns:getStatusResponse
getStatusRequest tns:getStatus getResultTypesResponse
tns:getResultTypesResponse getResultTypesRequest
tns:getResultTypes getResultResponse
tns:getResultResponse getResultRequest tns:getResult
getParameterDetailsResponse
tns:getParameterDetailsResponse

getParameterDetailsRequest  tns:getParameterDetails

get Response tns:get Response get Request tns:get

Figure 3.4: WSDL Messages extracted from WaterService web service




Information extracted from port types include:

Name attribute of portType.
Documentation content of portType.
Name attribute of each operation in portType.

Documentation content of each operation in portType.

o > w Dp e

Name attribute of input/output parameters in each operation.

Figure 3.5 shows WSDL port types extracted from WaterService web service.

Submit an analysis job runRequest runResponse getStatus Get the
status of a submitted job

getStatusRequest getStatusResponse getResultTypes Get the list of
renderers available to output a job result (i.e. the list of available
output types) getResultTypesRequestgetResultTypesResponse
getResult Get a job result formatted using a particular renderer
getResultRequest getResultResponse getParameters List the names
of the parameters available before submission
getParametersRequest getParametersResponse
getParameterDetails Get some details about a parameter (e.g.
name, description, values, etc.)

getParameterDetailsRequest getParameterDetailsResponse

Figure 3.5: WSDL PortTypes extracted from WaterService web service

This information including Service Name and Service Documentation is dumped into a text
file. These dumped WSDL contents are used as a base for web service classification. Null

values of any attribute are not included.

WSDL documents are parsed using Membrane SOA Model [21]. It is a Java API for reading
and analyzing XML Schema and WSDL documents.

3.3  Text Pre-processor

The goal of pre-processing phase is to enhance the quality of information available for
classification. Information in text file might be inconsistent and may lead mining process to
inaccurate results. During this phase different pre-processing steps are applied to extract

accurate and consistent information. The end product of this phase is a text file which is
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efficient in terms of both time and space and maintains good information retrieval (IR)

performance.
We use following steps for pre-processing on dumped WSDL contents.
3.3.1 Tokenization

Tokenization caters for consistency in textual information. Java string tokenization is
used to convert block of characters into dataset of words. All the former pre-

processing steps require dataset of words.
3.3.2  Word Splitter

Word splitter performs splitting of concatenated words based on their case. For
example, a web service has operation named ValidateAddressResponse. This name is
meaningless unless it is split into words validate, Address and Response. Word splitter
is introduced as a new pre-processing step which is not used by existing web service

clustering and classification techniques [3, 9, 10, 12, and 14].
3.3.3 Stop Word Removal

The next step in pre-processing is filtering stop words from textual information. Stop
list contains prepositions and articles which are insignificant and can be easily

removed from document. SMART stop word list [22] is used to eliminate stop words.
3.3.4 Function Word Removal

Stop words list typically eliminates function words but there are a few function words
which are not stop words. This step eliminates rest of function words by performing
comparison of SMART stop word list [22] and publically available function word list
[23].

3.3.5 Lemmatization

The last step of pre-processing is lemmatization. Lemmatization is performed using
Stanford CoreNLP. Stanford CoreNLP is an integrated framework that provides a
suite of tools for natural language processing [24].

We have used lemmatization instead of stemming for converting words to their base

forms. Web service classification results show that lemmatization significantly
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improves precision and recall. Figure 4.6 shows a small portion of WaterService after

pre-processing.

Water Service block aligner align sequence assumption sequence share number
colinear block conservation separated potentially large vary length sequence
Dispatcher Service run submit analysis job run Request run response Status get
status submit job get Status Request Status Response result type get list renderer
available output job result list available output type get result type Request
result type response result get job result format use particular renderer get result
request result response parameter list name parameter available submission get
Parameter Request Parameter Response Parameter Detail get detail parameter
description value get Parameter Detail Request Parameter Detail Response run
response parameter tn run response run request parameter tn run Status
Response parameter show Pretty.

Figure 3.6: Information in WaterService after pre-processing phase.

3.4 Web Service Classifier

During this phase web services are classified into functionally similar categories. Automatic
classification of web services not only help in service publication (for classification of new
services) but also help in service retrieval (to focus user queries to a limited set of related web

service categories)

Web service classifier is implemented using MALLET (MAchine Learning for LanguagE
Toolkit) [25] .It is an open source Java library for natural language processing, document
clustering and classification. The classification of web services into domain specific groups is
performed using algorithm Maximum Entropy. But before applying Maximum Entropy,
MALLET maps information to be classified into feature vectors. So, this phase consists of

two steps.
3.4.1 Vector Formation

Prior to performing classification with MALLET, pre-processed textual information
of web services is converted into a list of feature vectors. A single list may contain
complete data which is split at classification time into testing and training portions or
user can create two separate lists for testing and training data. In our approach we are

using single list of feature vectors.
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One feature vector is generated per document, each word in document represent a
dimension in vector and vector value at each position is sum of word occurrences in

the document.
3.4.2 Classifier

After creation of feature vectors list, MALLET is used to perform web service
classification. MALLET supports different classification algorithms including Naive

Bayesian, Maximum Entropy and Decision Tree.

Maximum Entropy gives less classification error as compared to Naive Bayesian [26].
We perform classification of dataset using Maximum Entropy and Naive Bayesian
and statistics indicate that Maximum Entropy gives more accurate results with less
standard error. So we use Maximum Entropy as our supervised classification
algorithm. Table 3.1 shows classification results of categories during trial 3 of
Percentage Split results. Classification results for all trials of Percentage Split are

included in Appendix C.

Table 3.1: Confusion Matrix for Classification of Dataset Categories

Category Predicted Results
0| 1|2 |3|4|5]|6/|7]|Total
0 | AddressAndLocation | 9 | O | O | O | O |O0]|O0]|O 9
1 | Currency, Stock, | 2 | 5] 0] 0|0]|]0]0]|O0 7
Finance
2 | Data Retrieval 002901 3|0|0]| 33
% 3 | Fax And Messaging 10|03 |0]2]|01]0 6
% 4 | Graphics Ad| 0| O | O[O |5]0]0]1 6
g Multimedia
< 5 | Microarrays 0|03 |0|0}|10{0|0]| 13
6 | Sequence Analysis 0 0|0 |0]|0]2]20|0 22
7 | Value Manipulation| 0 | 0 | 0O | O | O | 0|0 |7 7
And Unit Converter
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In this thesis, we have proposed a modified approach for web service classification. This
chapter clearly specifies which properties of WSDL documents contribute to form WSDL
content feature and how these contents are pre-processed to remove unwanted textual
information. During the last phase, classifier is trained and new web services are classified

into functionally similar groups.
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Chapter 4
CLASSIFICATION RESULTS AND COMPARISON

4.1 Overview

Now when we have already gone through feature extraction, pre-processing and finally
classification steps, this chapter will focus on evaluating the effectiveness of our

classification approach with reference to its comparison with existing techniques.
4.2 Data Preparation

In our approach, WSDL documents are used as main source of data repository because web
service is completely described by information carried by these XML files. However,
retrieving adequate and suitable WSDL files from Internet to satisfy needs of repository was
a hard task.

Although a number of UDDI registries exist but often the set of services retrieved is useless.
Most of the obtained services have dummy documentation and are trivial. We collect real-
world web services from Internet. These web services are downloaded from web service

publisher websites such as http://www.xmethods.net, http://www.webservicex.net,

www.biocatalogue.org and http://www.webservicelist.com. A set of 350 web services is

composed and manually classified into eight categories to serve as a comparison point for our
classification approach. The data is organized in directories, one directory for each category.

Table 4.1 gives names of categories and web services included in each category.

Table 4.1: Dataset Categories and their web services

Sr. No. Category No. of Web Services
1. Address and Location 44
2. Currency and Stock 41
3. Fax and Messaging 20
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4, Graphics and Multimedia 21

5. Sequence Analysis 88

6. Value Manipulation and 20
Unit Converter

7. Microarray 25

8. Data Retrieval 93

Web services are collected from different sources instead of single source to keep the concept

generic.

4.3 Experimental Results

After being done with all text mining process, classification is performed using Maximum

Entropy with Gaussian Prior Variance equals to 1.0.

Maximum entropy needs to be trained with pre-classified dataset of web services. In our case,

feature vectors of 350 web services are formed and then classification is performed using

Maximum entropy. Ten folds cross validation is used to determine accuracy of algorithm.

Table 4.2 shows mean precision and recall values for each category in dataset.

Table 4.2: Mean precision and recall for classification of dataset categories

No. Category Precision Recall
1 Address And Location 81.02% 83.13%
2 Currency, Stock, Finance 85.36% 81.52%
3 Data Retrieval 91.54% 89%

4 Fax And Messaging 95.91% 74.53%
5 Graphics and Multimedia 70.5% 63.85%
6 Microarrays 80% 84.55%
7 Sequence Analysis 99.98% 100%

8 Value Manipulation and Unit 95.488% 93.0%

Converter
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Precision and recall has been calculated using following equations.

True Positive
True Positive + False Positive

Precision =

True Positive

Recall =
True Positive + False Negative

The relationship of terms True Positive, True Negative, False Positive and False Negative is

illustrated in Table 4.3.

Table 4.3: Relationship between Positive and Negative Results

Predicted Category (Observation)

Actual True Positive False Negative

Category (Correct result) (Missing result)

(Expectation)

False Positive True Negative
(Unexpected result) | (Correct absence of
result)

A snapshot of cross validation results is shown in Appendix B. Table 4.4 shows mean

accuracy, standard error and standard deviation of test and training data.

Table 4.4: Statistics of Training and Test Data

Data Set Mean Accuracy | Standard Error | Standard Deviation
(%) (%) (%)

Training Set 100 0.00 0.00

Testing Set 88.60 1.679 5.30
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4.4  Comparison to Exiting Classification and Clustering Techniques

A hefty list of existing web service classification and clustering techniques was presented in
chapter 2. All of them focus on different features in WSDL document as depicted in Table
2.1 and almost similar steps for pre-processing information. The main driving force of this
research work was to reduce feature set used for classification and to provide a more compact
and accurate pre-processing approach. Secondly Maximum Entropy is being used for text
classification [26] but it has not been applied yet for classification and clustering of web
services. Utilizing Maximum Entropy for web service classification has significantly

improved results.

The main difference of our approach with existing approaches is that it reduces feature set by

using only one feature (WSDL contents) for web service classification.
Table 4.5 shows comparison of our approach with techniques [10, 14, and 15].

Table 4.5: Performance comparison with existing techniques

Approach Accuracy No of Tested web
classified/clustered Services
categories
An Approachto  Propose nearest three 11 205
support Web classes out of 11 with
Service likelihood of 83%
Classification and
Annotation
[10]
Clustering of web 70% 5 8
services based on
semantic
similarity
[14]
Web Service 30%-40% 8 500
Classification
[15]
Our Approach 88.6% 8 350

In order to compare our approach with [3, 12], we created a dataset of web services belonging
to five categories Address Validation, Credit Card Check, Currency Exchange, Email
verification and Weather [3]. This is because these approaches lack implementation details

and do not specify mean accuracy of result. However, they have specified precision and recall
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for above mentioned web service categories. Most of these web services are obsolete and
their WSDL documents are not available so only 38 valid WSDL files were downloaded.
Table 4.6 illustrates performance comparison for Liu and Wong’s [12] and Khalid Elgazzar’s

[3] approach versus our approach relative to five manually identified categories in dataset.

Table 4.6: Performance evaluation related to five identified categories

Category Wei Liu, Wilson Wong Khalid Elgazzar, Our Approach
Approach Ahmed E. Hassan,
[12] Patrick Martin
Approach
3]

Precision Recall Precision Recall Precision | Recall
Currency 84.2% 88.9% 90% 94.7% 92.8% 89%
Exchange
Weather 70% 87.5% 94.1% 100% 93.98% 100%
Address 60% 93.7% 83.3% 93.7% 67% 80%
Validation
Email 58.3% 87.5% 80% 100% 87.5% 88%
Verification
Credit Card 60% 90% 90% 90% 75% 50%
Services

We have noted that low precision and recall of our approach for “Credit Card Services” and
“Address Validation” categories in Table 4.6 is due to unavailability of enough training data.
Our approach has high precision and recall in case of “Currency Exchange”, “Weather” and
“Email Verification” categories. This indicates that our approach performs well by only
selecting one feature (WSDL contents) for web service classification. The impact of using
modified pre-processing approach on WSDL contents has improved classification reliability

by enhancing recall and precision.
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4.6 Analysis of Results

Looking at the performance of our approach and existing web service clustering and
classification approaches, we have noted that our approach yields high precision and recall

for all identified categories.

When compared with approach [12], we have reduced the feature set from four features to
one feature. Liu and Wong’s used feature WSDL content but they do not clearly specify
whether WSDL contents refers to documentation content in each tag or names of attributes.
However our approach clearly specified which attributes and documentation contents
contribute to WSDL content feature. Secondly different types of web services are published
by providers on same web site so using service context and service host name features might
mislead meaning of web service. So these two features does are not selected in our approach

and results are improved significantly.

Khalid Elgazzar’s [3] improved Liu and Wong’s approach [12] by using a different set of
features by replacing service context and service host features with WSDL types, messages
and ports. WSDL contents include all contents of WSDL file after tag removal. Compared
with our approach we do not include all the information in WSDL file as part of WSDL
contents. We extract service name, service documentation, WSDL types, messages, and ports
and combine them to form WSDL contents instead of using them separately. Khalid
Elgazzar’s used type attribute of WSDL types instead of using name attribute but in our
approach we have used name attribute. Type attribute might be misleading because two web
services belonging to same category might have different input types for same type of
operations. For example, operations of a zipcode web service might take zipcode as a number
while another zipcode web service might takes a string as parameter. Also Khalid Elgazzar’s
applied pre-processing techniques to only WSDL content feature; however a clear
examination of WSDL ports, messages and types reveal that pre-processing is also required

to mine accurate information from these features as well.

When compared with existing techniques, our approach suggested two new steps in pre-
processing WSDL contents. Firstly we replaced stemming with lemmatization and proved
that there is improvement in precision and recall. Secondly we introduce Word Splitter which
split the compound words on the basis of their case. It is a common observation that most of
the web service developers use compound words for operation names, messages and complex

types. So Word Splitter plays an important role in improving classification results of our
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approach. Aparna Konduri [14] performed classification of web services based on semantic
similarity between web service operations and operation names. However, this approach

yields low accuracy because of using limited set of WSDL information.

Our approach uses Maximum Entropy for web service classification. Maximum Entropy has
been used for text categorization but so far it has not been used for classifying web services.
This makes our approach comparable with Macello Brunu [10] approach. He suggested a
classification approach using SVM but uses only a limited set of information from WSDL
document resulting in low accuracy of classification. This approach does not always locate
correct category of web service but often indicate a limited group of categories to which web

service might belong.
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Chapter 5
CONCLUSION AND FUTURE WORK

5.1 Overview

Web Services are very common nowadays because of extensive use of Service Oriented
Architecture (SOA) to support business processes. Application developers utilize existing
web services to compose new custom web services. Therefore finding the desired set of web

services is becoming a challenging and emergent research problem.

Thus, we dedicated ourselves to provide a web service classification approach that helps user
to get web services of their desired domain and also allows search engines to enhance their

repositories by classifying new set of web services.
5.2 Conclusion

In this research work, we have described the whole process of WSDL parsing, pre-processing
and classification. The variation of this approach with existing techniques lies in selecting
different WSDL feature, varied pre-processing methodology and Maximum Entropy

classifier for web service classification.

Our approach starts with reading and parsing WSDL documents, specific information from
WSDL definition, WSDL documentation, WSDL messages, WSDL portTypes and WSDL
schema is extracted to form WSDL content feature. This feature is passed through various
pre-processing steps including tokenization, word splitter, stop word removal, function word
removal and at the end lemmatizer. Information from lemmatizer is fed into classifier which
create feature vector of information and pass all feature vectors of WSDL documents to
Maximum Entropy classifier. Maximum Entropy splits vectors into training and testing

datasets and performs classification of web services into pre defined categories.

41



Classification of web service into functionally similar categories can effectively reduce the
headache of search engines. Our proposed approach text mine different types of information
from WSDL file and use this information for effective web service classification. In order to
realize the approach, different challenging tasks such as dataset collection, measuring
effectiveness of different WSDL parsers and lemmatizers and then selecting the appropriate

one are resolved.

Effective web service classification is an important issue for non-semantic web services. In
this thesis, we propose a machine learning approach that improves classification of non-
semantic web services by performing mining of WSDL contents. This approach has reduced
the feature set used by existing techniques for web service classification and clustering. Our
classification results proves that instead of using different WSDL features separately and
assigning them different weight, careful selection of suitable attributes from WSDL
document and using them collectively as a single feature can still improves classification

accuracy.

All the existing techniques utilize stemming for pre-processing WSDL contents, but we have
used Lemmatization and Word Splitter for pre-processing. These two steps enhances
accuracy of our suggested classification model. This is evident by comparison with existing

techniques in Chapter 4.

This approach is validated on dataset of 350 web services manually categorized into 8
categories namely Address and Location, Currency and Stock, Fax and Messaging, Graphics
and Multimedia, Sequence Analysis, Value Manipulation and Unit Converter, Microarray
and Data Retrieval yielding accuracy up to 88%. Experiments show that quality of retrieved

information is improved as compared with existing approaches.

Our classification approach can be used by web service search engines for classification of

new services as well as to focus user queries to a refined set of web service categories.
5.3 Future Work

As future work, we plan to use same pre-processing approach for classification of semantic
web services and classification of web pages. Another improvement is the use of Support
Vector Machine (SVM) algorithm for web service classification with same pre-processing
approach. This allows comparison of Maximum Entropy and Support Vector Machine

algorithms for classification of web services.
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At present, there is no universal dataset available for classification of web services. Our
technique and all the existing techniques downloaded their own set of web services for
verification of their results. However, a better and more accurate comparison can be
performed if a standard set of web services is available. More work can be performed in
future on our approach when such a standard dataset is available.

Last but not least, additional pre-processing capabilities such as converting abbreviation to
their augmentations, replacing misspelled words with the correct ones etc. can be
implemented to provide more accurate mining of WSDL contents.
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APPENDICES

Appendix A.1: Sample WSDL File of Water Service

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions
name="WaterService"
targetNamespace="http://soap.jdispatcher.ebi.ac.ukR"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://soap. jdispatcher.ebi.ac.ukr"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdlL/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<wsdl:documentation>DNA Block Aligner (DBA) aligns two sequences under
the assumption that the sequences share a number of colinear blocks of
conservation separated by potentially large and varied lengths of DNA in
the two sequences.
</wsdl:documentation>
<wsdl:types>
<xsd:schema xmlns="http://soap.jdispatcher.ebi.ac.ukR"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"”
attributeFormDefault="unqualified"” elementFormDefault="unqualified"
targetNamespace="http://soap.jdispatcher.ebi.ac.uk">
<xsd:complexType name="InputParameters">
<xsd:annotation>
<xsd:documentation xml:lang="en"> Input parameters for the
tool</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element minOccurs="0"
maxOccurs="1" name="para"
nillable="true" type="xsd:boolean">
<xsd:annotation>
<xsd:documentation xml:lang="en">Show Parameters [Show parameters in output
alignmment, as in genewise.]</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element minOccurs="0"
maxOccurs="1" name="pretty"
nillable="true" type="xsd:boolean">
<xsd:annotation>
<xsd:documentation xml:lang="en">Show Pretty ASCII [Show pretty ASCII
alignment viewing, as in genewise.]</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element minOccurs="0"
maxOccurs="1" name="asequence"
nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">First Sequence [The first DNA sequence to
be aligned can be entered directly into the form. The sequence must be in a
recognised format eg. GCG, FASTA, EMBL, GenBank. Partially formatted
sequences are not accepted. Adding a return to the end of the sequence may
help certain applications understand the input. Note that directly using
data from word processors may yield unpredictable results as hidden/control
characters may be present. There is a limit of 1MB for the sequence entry.]
</xsd:documentation>
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</xsd:annotation>

</xsd:element>

<xsd:element minOccurs="0"

maxOccurs="1" name="bsequence"

nillable="true" type="xsd:string">

<xsd:annotation>

<xsd:documentation xml:lang="en">Second Sequence [The second DNA sequence
to be aligned can be entered directly into the form. The sequence must be
in a recognised format eg.GCG, FASTA, EMBL, GenBank. Partially formatted
sequences are not accepted. Adding a return to the end of the sequence may
help certain applications understand the input.Note that directly using
data from word processors may yield unpredictable results as hidden/control
characters may be present. There is a limit of 1MB for the sequence entry.]
</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ArrayOfString">

<xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="0" name="string"
nillable="true" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="wsResultTypes">

<xsd:annotation>

<xsd:documentation xml:lang="en">List of renderers available to output the
result of the job</xsd:documentation>
</xsd:annotation>

<xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="0
type="wsResultType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="wsResultType">
<xsd:annotation>

<xsd:documentation xml:lang="en">Details about a renderer used to output
the result of the job</xsd:documentation>

</xsd:annotation>
<xsd:sequence>
<xsd:element maxOccurs="1
type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">A short description of the
renderer</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element maxOccurs="1" minOccurs="1" nillable="false" name="fileSuffix"
type="xsd:string">

<xsd:annotation>

<xsd:documentation xml:lang="en">A suggested file suffix to be used when
saving the data formatted by the renderer</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element maxOccurs="1" minOccurs="1" nillable="false" name="identifier"
type="xsd:string">

<xsd:annotation>

<xsd:documentation xml:lang="en">The renderer identifier to be used when
invoking the getResult() method</xsd:documentation>

"

name="type"

n

minOccurs="0" nillable="true" name="description”
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</xsd:annotation>

</xsd:element>

<wsdl:message name="runResponse">

<wsdl:part name="parameters" element="tns:runResponse"></wsdl:part>
</wsdl:message>

<wsdl:message name="runRequest">

<wsdl:part name="parameters"” element="tns:run"></wsdl:part>
</wsdl:message>

<wsdl:message name="getStatusResponse">

<wsdl:part name="parameters"” element="tns:getStatusResponse"></wsdl:part>
</wsdl:message>

<wsdl:message name="getStatusRequest">

<wsdl:part name="parameters" element="tns:getStatus"></wsdl:part>
</wsdl:message>

<wsdl:message name="getResultTypesResponse">

<wsdl:part name="parameters"
element="tns:getResultTypesResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="getResultTypesRequest">

<wsdl:part name="parameters" element="tns:getResultTypes"></wsdl:part>
</wsdl:message>

<wsdl:message name="getResultResponse">

<wsdl:part name="parameters"” element="tns:getResultResponse"></wsdl:part>
</wsdl:message>

<wsdl:message name="getResultRequest">

<wsdl:part name="parameters" element="tns:getResult"></wsdl:part>
</wsdl:message>

<wsdl:message name="getParameterDetailsResponse">

<wsdl:part element="tns:getParameterDetailsResponse"”
name="parameters"></wsdl:part>

</wsdl:message>

<wsdl:message name="getParameterDetailsRequest">

<wsdl:part element="tns:getParameterDetails" name="parameters"></wsdl:part>
</wsdl:message>

<wsdl:message name="getParametersResponse">

<wsdl:part element="tns:getParametersResponse"”
name="parameters"></wsdl:part>

</wsdl:message>

<wsdl:message name="getParametersRequest">

<wsdl:part element="tns:getParameters" name="parameters"></wsdl:part>
</wsdl:message>

<wsdl:portType name="JDispatcherService">

<wsdl:operation name="run">

<wsdl:documentation>Submit an analysis job</wsdl:documentation>
<wsdl:input name="runRequest" message="tns:runRequest"></wsdl:input>
<wsdl:output name="runResponse"” message="tns:runResponse"></wsdl:output>
</wsdl:operation>

<wsdl:operation name="getStatus">

<wsdl:documentation>Get the status of a submitted job</wsdl:documentation>
<wsdl:input name="getStatusRequest"”
message="tns:getStatusRequest"></wsdl:input>

<wsdl:output name="getStatusResponse”
message="tns:getStatusResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getResultTypes">

<wsdl:documentation>Get the list of renderers available to output a job
result (i.e. the list of available output types)</wsdl:documentation>
<wsdl:input name="getResultTypesRequest"
message="tns:getResultTypesRequest"></wsdl:input>
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<wsdl:output name="getResultTypesResponse"”
message="tns:getResultTypesResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getResult">
<wsdl:documentation>Get a job result formatted using a particular
renderer</wsdl:documentation>
<wsdl:input name="getResultRequest"
message="tns:getResultRequest"></wsdl:input>
<wsdl:output name="getResultResponse"
message="tns:getResultResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getParameters">
<wsdl:documentation>List the names of the parameters available before
submission</wsdl:documentation>
<wsdl:input message="tns:getParametersRequest"”
name="getParametersRequest"></wsdl:input>
<wsdl:output message="tns:getParametersResponse"”
name="getParametersResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getParameterDetails">
<wsdl:documentation>Get some details about a parameter (e.g. name,
description, values, etc.)</wsdl:documentation>
<wsdl:input message="tns:getParameterDetailsRequest"
name="getParameterDetailsRequest"></wsdl:input>
<wsdl:output message="tns:getParameterDetailsResponse"
name="getParameterDetailsResponse"></wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="JDispatcherServiceHttpBinding"
type="tns:JIDispatcherService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="run">
<wsdl:documentation>Submit an analysis job</wsdl:documentation>
<soap:operation soapAction="urn:Run" />
<wsdl:input name="runRequest">
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="runResponse">
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:service name="JDispatcherService">
<wsdl:port name="JDispatcherServiceHttpPort"
binding="tns:JDispatcherServiceHttpBinding">
<soap:address location="http://www.ebi.ac.uk/Tools/services/soap/wise2dba”
/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>
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Appendix A.2: Cross Validation Results

Trial @ Training MaxEntTrainer,gaussianPriorVariance=1.0 with 308 instances
Trial @ Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial @ Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial @ Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.9411764705882353

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 4 . . . . . . . |4
1 Currency,Stock,Finance . 1 . .1 . . .2
2 Data Retrieval . . 5 . .1 . . |6
3 Fax And Messaging . . .4 . . . . |4
4 Graphics and Multimedia . . . . 3 . . . |3
5 Microarrays . . . . . 2 . . ]2
6 Sequence Analysis . . . . . .9 . |9
7 Value Manipulation and Unit Convertor . . . . . . . 4 |4

Trial @ Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.9411764705882353

-------------------- Trial 1 -----------cc-mouun-

Trial 1 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 308 instances
Trial 1 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 1 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 1 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8529411764705882

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 1 . . . . . .1 |2
1 Currency,Stock, Finance . 3 . . . . . .3
2 Data Retrieval . .11 . 1 1 . . |13
3 Fax And Messaging . .12 . . . .3
4 Graphics and Multimedia . . . .2 . .1 |3
5 Microarrays . . . . .2 . .2
6 Sequence Analysis . . . . .1 7 . |8
7 Value Manipulation and Unit Convertor . . . . . . . . |eo

Trial 1 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8529411764705882

-------------------- Trial 2 --------------------

Trial 2 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 307 instances
Trial 2 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 2 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 2 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8571428571428571
label © 1 2 3 4 5 6 7 |total
0 AddressAndLocation 4 . . . . . . . |4
1 Currency,Stock, Finance . 4 1 . . . . . |5
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2 Data Retrieval . . 9 . . 3 . . |12
3 Fax And Messaging . . .3 . . . .3
4 Graphics and Multimedia . . . .1 . . .1
5 Microarrays . . 1 . . 2 . . |3
6 Sequence Analysis . . . . . . 6 . |s
7 Value Manipulation and Unit Convertor . . . . . . . 1 |1

Trial 2 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8571428571428571

Trial 3 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 308 instances
Trial 3 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 3 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 3 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.7647058823529411

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 1 . . 1 1 . .3
1 Currency,Stock, Finance 1 5 1 . 1 . . . |8
2 Data Retrieval . 1 5 . . 1 . . |7
3 Fax And Messaging . . . 1 . . . . |1
4 Graphics and Multimedia . . . .2 . . .2
5 Microarrays . . 1 . . . . . |1
6 Sequence Analysis . . . . . 1 16 . |11
7 Value Manipulation and Unit Convertor . . . . . . . 1 |1

Trial 3 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.7647058823529411

Trial 4 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 308 instances
Trial 4 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 4 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 4 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8529411764705882

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 6 . . . . . . . |6
1 Currency,Stock,Finance . 1 . . . . . .1
2 Data Retrieval 1 . 11 . .1 . . |13
3 Fax And Messaging . . .1 . . . .1
4 Graphics and Multimedia . . . . .1 . .1
5 Microarrays . . . . .3 . .3
6 Sequence Analysis . . . . . . 3 . |3
7 Value Manipulation and Unit Convertor 1 1 . . . . . 4 |6

Trial 4 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8529411764705882

Trial 5 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 308 instances
Trial 5 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
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Trial 5 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 5 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.9411764705882353

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 2 1 . . . . . . |3
1 Currency,Stock,Finance . 4 . . . . . . |4
2 Data Retrieval . . 1o . . . . . |1e
3 Fax And Messaging . . 1 3 . . . . |4
4 Graphics and Multimedia . . . . . . . . e
5 Microarrays . . . . . 3 . . |3
6 Sequence Analysis . . . . . . 106 . |1e
7 Value Manipulation and Unit Convertor . . . . . . . . e

Trial 5 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.9411764705882353

-------------------- Trial 6 -----------cccoooun-

Trial 6 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 308 instances
Trial 6 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 6 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 6 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.9117647058823529

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 6 . . . 1 . . . |7
1 Currency,Stock,Finance 1 3 . . . . . . |4
2 Data Retrieval . . 8 . . . . . |8
3 Fax And Messaging . . . 1 . . . . |1
4 Graphics and Multimedia . . . .3 . . .3
5 Microarrays . . 1 . . 2 . . |3
6 Sequence Analysis . . . . . . 7 . |7
7 Value Manipulation and Unit Convertor . . . . . . . 1 |1

Trial 6 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.9117647058823529

-------------------- Trial 7 --------------------

Trial 7 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 307 instances
Trial 7 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 7 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 7 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8857142857142857

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 5 . . . . . . . |5
1 Currency,Stock,Finance . 3 . . . . . .3
2 Data Retrieval . . 8 . . . . . |8
3 Fax And Messaging . . . 2 . . . . |2
4 Graphics and Multimedia . 1 2 . . 1 . . |4
5 Microarrays . . . . . 2 . . ]2
6 Sequence Analysis . . . . . . 10 . |1e
7 Value Manipulation and Unit Convertor . . . . . . . 1 |1

Trial 7 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8857142857142857
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Trial 8 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 308 instances
Trial 8 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished

Trial 8 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=

1.0

Trial 8 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix

Confusion Matrix, row=true, column=predicted accuracy=0.9411764705882353

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 5 . . . .1 . . |6
1 Currency,Stock,Finance 1 3 . . . . . . |4
2 Data Retrieval . .7 . . . . .7
3 Fax And Messaging . . . 1 . . . . |1
4 Graphics and Multimedia . . . . 3 . . . |3
5 Microarrays . . . . . 2 . . ]2
6 Sequence Analysis . . . . . .7 . |7
7 Value Manipulation and Unit Convertor . . . . . . . 4 |4

Trial 8 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.9411764705882353

-------------------- Trial 9 ----------mmmmeeeee

Trial 9 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 308 instances
Trial 9 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished

Trial 9 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=

1.0

Trial 9 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix

Confusion Matrix, row=true, column=predicted accuracy=0.9117647058823529

label © 1 2 3 4 5 6 7 |total
0 AddressAndLocation 4 . . . . . . . |4
1 Currency,Stock,Finance 1 6 . . . . . .7
2 Data Retrieval . . 8 . .1 . . |9
3 Fax And Messaging . . . . . . . . |eo
4 Graphics and Multimedia . . . . 1 . . . |1
5 Microarrays . . 1 . . 3 . . |4
6 Sequence Analysis . . . . . . 7 . |7
7 Value Manipulation and Unit Convertor . . . . . . . 2 |2

Trial 9 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.9117647058823529

MaxEntTrainer,gaussianPriorVariance=1.0

Summary. train accuracy mean = 1.0 stddev = 0.0 stderr = 0.0

Summary. test accuracy mean = 0.8860504201680672 stddev = 0.05309594557478448
stderr = 0.016790412253665708
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Appendix A.3: Percentage Split Results

-------------------- Trial @ --------------------

Trial @ Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances
Trial @ Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial @ Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial @ Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8932038834951457

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 11 1 . . . . . . |12
1 Currency,Stock,Finance . 13 . . . . . . |13
2 Data Retrieval . 2 23 1 2 | 28
3 Fax And Messaging 1 . . 5 1 . . . |7
4 Graphics and Multimedia 1 . . .4, . . |5
5 Microarrays . . 1 . . 9 . . |1le
6 Sequence Analysis . . . . . . 24 . |24
7 Value Manipulation and Unit Convertor 1 . . . . . . 3 |4

Trial @ Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8932038834951457

-------------------- Trial 1 -----------cccoooun-

Trial 1 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances
Trial 1 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 1 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 1 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8737864077669902

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 9 . . . . . . . ]9
1 Currency,Stock,Finance 2 5 . . . . . .7
2 Data Retrieval . .29 . 1 3 . . |33
3 Fax And Messaging 1 . .03 .2 . . |6
4 Graphics and Multimedia . . . . 5 . . 1 |6
5 Microarrays . . 3 . . 1o . . |13
6 Sequence Analysis . . . . . 2 20 . |22
7 Value Manipulation and Unit Convertor . . . . . . . 7 |7

Trial 1 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8737864077669902

-------------------- Trial 2 --------------------

Trial 2 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances
Trial 2 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished

Trial 2 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
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Trial 2 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8737864077669902
label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 13 2 . . . . . . |15
1 Currency,Stock,Finance 2 10 . . . . . R )
2 Data Retrieval . . 21 . 1 2 . . |24
3 Fax And Messaging . . . 6 . . . . |6
4 Graphics and Multimedia 2 1 1 . 3 1 . . |8
5 Microarrays . . . . . 7 . . |7
6 Sequence Analysis . . . . . . 26 . |26
7 Value Manipulation and Unit Convertor . 1 . . . . . 4 |5

Trial 2 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8737864077669902

Trial 3 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances
Trial 3 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 3 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 3 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8543689320388349

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 7 1 1 . 1 1 . .12
1 Currency,Stock,Finance . 8 1 . 1 . . . |1e
2 Data Retrieval . .27 . .3 . . |30
3 Fax And Messaging 1 5 1 . . .7
4 Graphics and Multimedia 2 4 1 . .7
5 Microarrays . . 1 . 7 . . |8
6 Sequence Analysis . . . . . . 28 . |28
7 Value Manipulation and Unit Convertor . . . . . . . 2 |2

Trial 3 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8543689320388349

Trial 4 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances

Trial 4 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished

Trial 4 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0

Trial 4 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8446601941747572

label © 1 2 3 4 5 6 7 |total
0 AddressAndLocation 7 4 . 1 1 1 . . |14
1 Currency,Stock, Finance 2 11 . . 1 . . . |14
2 Data Retrieval . . 29 . . . . . |29
3 Fax And Messaging . . 1 7 . . . . |8
4 Graphics and Multimedia 2 1 1 . . |4
5 Microarrays . . 1 . . 4 . . |5
6 Sequence Analysis . . . . . . 25 . |25
7 Value Manipulation and Unit Convertor 1 . . . . . . 3 |4

Trial 4 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8446601941747572
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Trial 5 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances
Trial 5 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 5 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 5 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.912621359223301

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 12 2 . . . . . . |14
1 Currency,Stock,Finance 1 10 . .1 . . R )
2 Data Retrieval . 1 25 . . 1 . . |27
3 Fax And Messaging . . . 3 . 1 . . |4
4 Graphics and Multimedia . . . . 5 . . 1 |e
5 Microarrays . . 1 . . 5 . . |6
6 Sequence Analysis . . . . . . 25 . |25
7 Value Manipulation and Unit Convertor . . . . . . . 9 |9

Trial 5 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.912621359223301

Trial 6 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances
Trial 6 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 6 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 6 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8932038834951457

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 8 1 . .1, . . |1e
1 Currency,Stock,Finance 1 7 1 . 1 . . . |1e
2 Data Retrieval . . 29 . .3 . . 132
3 Fax And Messaging . . .3 2 . . . |5
4 Graphics and Multimedia . 1 . . 5 . . . |6
5 Microarrays . . . . . 9 . . ]9
6 Sequence Analysis . . . . . . 26 . |26
7 Value Manipulation and Unit Convertor . . . . . . . 5 |5

Trial 6 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8932038834951457

Trial 7 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances
Trial 7 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 7 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 7 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.970873786407767

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 13 . . . . . . . |13
1 Currency,Stock,Finance . 14 . . . . . . |14
2 Data Retrieval . .23 . .1 . . |24
3 Fax And Messaging 1 . . 4 . . . . |5
4 Graphics and Multimedia . . . . 8 . . 1 |9
5 Microarrays . . . . . 8 . . |8
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6 Sequence Analysis . . . . . . 24 . |24
7 Value Manipulation and Unit Convertor . . . . . . . 6 |6

Trial 7 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.970873786407767

-------------------- Trial 8 ----------cmmmeeee

Trial 8 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances
Trial 8 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished
Trial 8 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0
Trial 8 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8155339805825242

label © 1 2 3 4 5 6 7 |total

0 AddressAndLocation 12 1 . .01 1 . . |15
1 Currency,Stock,Finance 2 11 1 . . . . . |1a
2 Data Retrieval . 1 23 . 2 2 . . |28
3 Fax And Messaging . . .4 . . . |4
4 Graphics and Multimedia 2 . 2 1 4 . . . |9
5 Microarrays . . 3 . . 3 . . |6
6 Sequence Analysis . . . . . . 19 . |19
7 Value Manipulation and Unit Convertor . . . . . . . 8 |8

Trial 8 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8155339805825242

Trial 9 Training MaxEntTrainer,gaussianPriorVariance=1.0 with 239 instances

Trial 9 Training MaxEntTrainer,gaussianPriorVariance=1.0 finished

Trial 9 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 training data accuracy=
1.0

Trial 9 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 Test Data Confusion Matrix
Confusion Matrix, row=true, column=predicted accuracy=0.8446601941747572

label © 1 2 3 4 5 6 7 |total
0 AddressAndLocation 11 . . . 1 . . . |12
1 Currency,Stock, Finance 2 7 . . 1 . . . |1e
2 Data Retrieval 2 22 1 . 2 . . |27
3 Fax And Messaging 1 1 . . . .2
4 Graphics and Multimedia 2 . . 5 1 . 1 ]9
5 Microarrays . .2 . .7 . . |9
6 Sequence Analysis . . . . . . 23 . |23
7 Value Manipulation and Unit Convertor . . . . . . .11 |12

Trial 9 Trainer MaxEntTrainer,gaussianPriorVariance=1.0 test data accuracy=
0.8446601941747572

MaxEntTrainer,gaussianPriorVariance=1.0

Summary. train accuracy mean = 1.0 stddev = 0.0 stderr = 0.0

Summary. test accuracy mean = 0.8776699029126214 stddev = 0.04123642831377731
stderr = 0.01304010360417928
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