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ABSTRACT 

 

 Considering  today’s surge of information, the need for well organized knowledge 

bases is increasing rapidly for providing simplified access to knowledge and its 

further processing. In biomedical domain, heaps of information is buried in scientific 

publications and online forums. This calls for representing this information in a more 

expressive semantic way by determining and storing relational information into a 

machine readable form. So, the primary goal of this research endeavor has been to 

build a knowledge base on entities and relations containing amass of formalized 

background knowledge suitable for supporting reasoning in biomedical domain.  

In this work, we introduce a way for easily accessing the knowledge about body parts 

and symptoms of human diseases, along with environmental, social, nutritional and 

diagnostic factors that cause these diseases. The information for this knowledge base 

is extracted from the controlled vocabulary thesaurus “Medical Subject Headings” 

(MeSH), which is published by National Library of Medicine.  

The result is a semantic graph of typed entities and relations between diseases, their 

symptoms, affected body parts and determining factors, with emphasis on 

environmental, social, nutritional and diagnostic factors. The facts stored in our 

ontology are provided to the user in a visual web interface. 

Currently, our ontology contains 53020 individuals, 96835 synonymous terms and 

197731 facts related to seven pre-defined categories of our biomedical ontology. In 

this way, it fulfils an identified need to provide detailed semantic knowledge 

regarding different biomedical sub-domains at one place through one core KB.  
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Chapter 1 

INTRODUCTION 

 

 

 

Where is the wisdom we have lost in knowledge? 

Where is the knowledge we have lost in information?  

(‘Choruses from the Rock’ by T.S.Eliot - 1934) 

 

Knowledge is of no use if it is not represented and shared in a quality way. Sharing and 

passing knowledge helps in achieving the advancements without reinventing the wheel and 

thus results in advancement of humanity as a whole. In past few years, amount of research 

work has grown to great lengths in some fields. Especially, a lot of researches have been 

carried out in biomedical domain and spreading of this knowledge to masses, made an 

important contributory step towards civilization. But most of this knowledge is present in 

scientific publications and only very few people know how to access it. If this knowledge can 

be made accessible to the common people then a lot of advantages can be achieved including, 

diseases’ prevention, early and more accurate disease diagnosis, more effective treatment and 

many more”. 

1.1 Background and Motivation 

Based on the huge pile of health information available on the internet, web has the potential 

of being the ultimate encyclopedic source. But effective retrieval of required results from web 

has always been problematic, due to which we are still far from exploiting this potential [1]. 

Users have to undergo vast amount of difficulties in finding the exact precise information 

from this huge pile of health data. The existing generic search engines (e.g. Google), generic 

catalogues (e.g. Yahoo) and free text based search engines have not been capable of solving 

this issue [2]. Most of the time, the results returned by them are innumerable and completely 

irrelevant, which require a lot of manual working on user’s part. A major reason behind this 
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incapability of search engines is lack of semantic organization of data available on the web 

[3]. So, when the size of the web expands exponentially, it then becomes difficult to retrieve 

the useful information due to this lack of organization. 

Especially, most of the information in biomedical research area is not yet captured in 

databases today, but rather present in structured form in scientific publications and also in 

semi-structured or unstructured form on web. If this knowledge gets effectively provided to 

the population then many diseases can be prevented, diagnosed earlier, and more accurately, 

and thus treated better, and cured more effectively; even epidemics and pandemics could be 

avoided. 

Researchers have long been trying to find the solution to this problem and according to them 

[1] [4] [5] [6] [7]; the best possible way to solve this issue is to move to the concept of 

semantic web. But due to the diversity of terms and their definitions between groups; adding 

semantics to web is not a straight forward task. It asks for achieving a shared and common 

understanding of a domain. So, this leads us to the creation of an ontology, which can be 

applied to various contexts for variety of purposes. Ontologies serve as the backbone of 

semantic web by facilitating knowledge exchange across people and application systems 

[3][4]. 

In recent years, very large common-sense knowledge bases (KB) have been generated 

automatically. They were built by extracting entity-relationship-oriented facts from Web 

sources. Examples thereof are the large collaborative KB Freebase as well as True 

Knowledge, providing a question-answering platform on the commercial side. On the 

research side, DBpedia and YAGO constitute well developed representatives, both containing 

factual information extracted from the Wikipedia. All of these have formal knowledge 

representations, using the Resource Description Framework (RDF) data model. The 

development of RDF started as a project of the World Wide Web Consortium (W3C) in the 

1990s. In the early 2000s, the first complete implementation of RDF was published and it has 

prevailed as a general method for conceptual description or modeling of information 

implemented in Web sources. Further improvements and developments on RDF are 

undertaken by W3C. RDF provides a graph-based data model, making statements about 

resources in the form of so-called RDF triples, “subject-predicate-object”. For example, the 

statement “Asthma has the symptom coughing” can be presented in RDF as the triple 

“asthma” denoted by a subject, “has the symptom” by a predicate, and “coughing” by an 
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object. An RDF-based data model is more suited to certain kinds of knowledge representation 

than the relational model, as a collection of RDF statements generally is represented as a 

labeled and directed multi-graph. Thus, they can be deployed as semantic services such as 

question answering, reasoning and explanation, and knowledge discovery. 

In the biomedical domain, in fact, there already are plenty of biomedical knowledge 

collections available, conveying at least one of these two following kinds of characteristics: 

1) They solely focus on highly specialized aspects, e.g., protein interactions, gene 

expression, and metabolic pathways, but lack general determinants. Some examples 

of these general determinants include environmental factors (e.g. noise pollution), 

social factors (e.g. Adolescent Behavior, Identity crisis, huger, etc.), nutritional 

factors (e.g. Proteins, Deoxyglucose, etc.) and diagnostic factors (e.g. Angiography, 

Autopsy). This kind of knowledge collection, targeting specialized aspects, is covered 

by The MIPS Mammalian Protein-Protein Interaction Database, Gene Ontology, or 

Kyoto Encyclopedia of Genes and Genomes among others. 

2) In essence, most of these mentioned collections are hand-crafted and extensively 

curated by human experts.  

But these features are not suitable for our purpose which is to gather information regarding 

environmental, social, nutritional, and behavioral factors of diseases as well, besides just 

collecting the knowledge about diseases, symptoms and body parts. A biomedical ontology 

would be more useful if it contains semantically rich knowledge regarding different sub-

domains e.g. information about diseases, their symptoms, and contributing factors; all in one 

place. Such ontology would have to be of high quality and be based on an authentic 

information source. It would have to consist of not only the concepts and named entities, but 

also relations among them like, subclassof, typeof and means etc. Along with being 

extensible and reusable, it would have to be application independent as well. Availability of 

such an application can really open the horizon towards more effective and useful 

applications in biomedical domain. 

Thus, we want to dedicate ourselves to the accessibility of the medical expertise for the 

populace by building a biomedical knowledge base on entities and relations regarding 

diseases, their symptoms, affected body parts and determining factors, with emphasis on 

environmental, social, nutritional and diagnostic factors. 
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1.2 Objective and Contribution 

This thesis is aimed to build up an ontology that is based on a widely trusted biomedical 

vocabulary thesaurus named MeSH. We intend to create such a KB that contains information 

regarding body parts and symptoms of human diseases, along with environmental, social, 

nutritional and diagnostic factors that cause these diseases. 

Rather than using the information extraction methods, our approach is to make use of the fact 

that MeSH has tree numbers for each of its vocabulary term. Tree numbers describe the level 

of the term in the taxonomy and make it quite easy to access the taxonomic or hierarchical 

details regarding that term.  These tree numbers help us gather concepts, entities and relations 

keeping in view the MeSH classification. For usefulness of an ontology, one of the basic 

requirements is to arrange the concepts in taxonomy. Though MeSH also has a hierarchy but 

it cannot be used as it is for our ontological needs, because the entities which we want to 

gather for our KB categories are spanned to more than one category in MeSH hierarchy. For 

example: constituent entities for “Nutritional Factors” category of our KB are spanned in 

three MeSH categories named, Chemical and Drugs, Phenomena and Processes, and Food 

and beverages. Therefore we need to re-classify the vocabulary terms of MeSH. Our KB is 

based on data model of entities and binary relations. Three categories of relations which we 

want to collect include subclassof, typeof and means relationship. 

So, our contribution is two-fold: 

1) A core Ontology: We describe how we integrated data from different MeSH 

categories to obtain our core ontology as the storage backend for our system. The 

structure of our KB follows the RDF data model and is inspired by YAGO. 

2) Providing an access point to the knowledge base: The ontology can be queried 

comfortably by using the web browsing interfaces. The browsing interface takes a 

single query input and returns all relations with the respective entities stored in the 

KB. 

1.3 Outline 

Chapter 2 discusses the related work. In chapter 3, we describe in detail the knowledge 

extraction approach that we utilized for gathering the data from MeSH thesaurus. We present 

the design and construction of backbone of our system, the KB, in chapter 4. Chapter 5 

presents an overview of the visual interface that was developed for accessing the knowledge 
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base, contains discussion on the results of our system and also presents the potential 

applications of this knowledge base in different research areas. Finally, chapter 6 concludes 

this thesis and proposes an outlook of possible extensions, modifications, and improvements 

as future work. 

1.4 Summary: 

The problems of effective retrieval of required results from web and lack of availability of 

biomedical research information in databases have long been prevailing in the research 

community. Researchers have long been trying to find the solution to this problem and 

proposed the concept of semantic web as a solution for them. But due to the diversity of 

terms and their definitions between groups; adding semantics to web is not a straight forward 

task. It asks for achieving a shared and common understanding of a domain. So, this leads us 

to the creation of an ontology, which can be applied to various contexts for variety of 

purposes. In the biomedical domain, there already are plenty of biomedical knowledge 

collections available, but none of them provides the knowledge regarding different 

biomedical sub domains at one place. This is what served as a motivation for this research 

work. 
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Chapter 2 

LITERATURE REVIEW 

 

 

In this chapter, we give a brief overview on the state-of-the-art of existing knowledge 

collections. We considered the work on the general domain as well as on the more specific 

ones, especially the biomedical domain. We describe their functionality and elucidate how 

they lack the certain level of details regarding different causative factors of diseases and what 

is lacking in them which is provided through our KB. 

2.1 Overview 

Knowledge representation and capturing relationships has long been a topic of interest in the 

field of artificial intelligence. Since Cyc in 1980s, a lot of knowledge bases have been built 

which differ from each other on bases of varying factors, most common of which are size and 

target domains. 

In recent years, a lot of common sense knowledge bases have been built up automatically by 

extracting entity-relationship targeted facts from web sources. Facts can be described as 

instances of unary, binary or higher-artery relationships. Where, these three kinds of relations 

can be described as: 

 Unary Relations: categorization of individual entities into semantic classes 

 Binary Relations: typed relations between entities with binary relations’ instances 

 Higher-Artery Relations: non-binary relations 

For our KB, we have focused on binary relations which connect two entities that are related 

in a predefined way. 

2.2 General Domain Knowledge Bases 

In general domain, the work on Knowledge bases (KBs) can be categorized into two parts, 

i.e. industrial research side and academic research side [6]. Some of the examples of well 
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developed KBs in industrial research side include Freebase [7] and TrueKnowledge [8]. Both 

of these are based on entity relationship oriented facts from varying web sources [9].  

Freebase contains a huge structured data collection regarding individuals of many 

miscellaneous domains, like, music, media, location, literature.  It takes its information from 

varying web sources including info boxes of Wikipedia, free text, online news centers and 

even approved entries of its community members. 

True knowledge provides a flexible question answering platform to its users. It collects the 

knowledge from user submissions and also from external databases, like Wikipedia. Both true 

knowledge and freebase cover almost same kind of domains, but the major difference among 

them lies in the ways of access provided by them. In contrast to Freebase, True knowledge 

provides a user friendly way of accessing the knowledge i.e. through natural language access. 

For example, in response to user query “When was Michelle Obama born?” as well as for the 

query “Michelle Obama birth date”, the user is provided with the correct result “January 17
th

 

1964”. 

Both KBs, i.e. Freebase and True Knowledge, contain partial biomedical domains’ 

information. If the user tries to query the Freebase for gathering information on “Dyslexia”, 

then he just gets a list of some of the symptoms and risk factors, as shown in table 2.1. 

Alternatively, True Knowledge allows its user to search through queries like “What causes 

Dyslexia?”, “What are risk factors of Dyslexia?”  and “What are symptoms of Dyslexia?”. 

The answers are shown in table 2.1. It is evident from the outputs from both of these 

databases, that they provide details regarding just a few triggers and symptoms, while causes 

were completely omitted in True Knowledge.  

Table 2.1: Results to example query “Dyslexia” in Freebase and True Knowledge. (The 

query was performed in 2013) 

 Risk Factors Causes Symptoms 

 

Freebase 

 Family History of Dyslexia - 

- 

 Speech Disorder 

 Delayed reading ability 

True Knowledge - 

- 

- 

- 

- 

- 

 Speech Disorder 

 Delayed reading ability 
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In the same way, the results for query example “asthma” are shown in Table 2.2. All of the 

results detailed in this table are just risk factors and symptoms. Only a few causes were 

provided by Freebase, and they also were just from the chemical domain.  

Table 2.2: Results to example query “asthma” in Freebase and True Knowledge. (The query 

was performed in 2013) 

 Risk Factors Causes Symptoms 

 

 

 

 

 

 

Freebase 

 Filipino American 

 Native Hawaiians 

 Passive smoking 

 Puerto Ricans in the United 

States 

 Overweight 

 African American 

 Poverty 

 Exposure to allergens 

 Family history of asthma 

 Small for gestational age 

 Family history of atopic 

disease 

 Chronic Inflammation 

of airways 

 Reversible 

bronchoconstriction 

 

 Dyspnea 

 Wheeze 

 Cyanosis 

 Pectus carinatum 

 Short stature 

 Pulsus paradoxus 

 Cardiac arrest 

 Bronchospasm 

 Chest Tightness 

 Nocturnal Cough 

 

 

 

 

True 

Knowledge 

 Adenosine 

 Histamine 

 Mannitol 

 Hippuric acid 

 Cotinine 

 Adenosine phosphosulfate 

 Cholesteryl 

- 

- 

- 

 Cough 

 Cyanosis 

 Wheez 

 pectus carinatum 

 Bronchospasm 

 Cardiac arrest 

 Nocturnal Cough 

 Pulsus paradoxus 

 short stature 

 Dyspnea 

 Chest Tightness 

 Chest hyperinflation 

 Chest expansion poor  

 

Both of these above described query examples as well as many other queries that we have 

performed on both of these databases, have shown that, these databases do not provide 

information regarding different causative factors of diseases, including environmental, social, 

nutritional and diagnostic factors. Freebase provides few environmental factors for some 

diseases, like it provided an environmental factor “exposure to allergens” for query example 

“asthma”, but omits the remaining factors completely. On the other side, True Knowledge 

completely omits all these factors. Besides that, another issue that was found in True 

Knowledge was of repetitive result entries, e.g. in the output of query example “asthma”, it 

http://www.freebase.com/m/03295l
http://www.freebase.com/m/032j30
http://www.freebase.com/m/034zzh
http://www.freebase.com/m/0gkxl2
http://www.freebase.com/m/0gkxl2
http://www.freebase.com/m/01t6qr
http://www.freebase.com/m/0x67
http://www.freebase.com/m/0h948
http://www.freebase.com/m/06gwhj4
http://www.freebase.com/m/06gwhjb
http://www.freebase.com/m/06gwhjj
http://www.freebase.com/m/06gwhjq
http://www.freebase.com/m/06gwhjq
http://www.freebase.com/m/06gx5hy
http://www.freebase.com/m/06gx5hy
http://www.freebase.com/m/06gx5hr
http://www.freebase.com/m/06gx5hr
http://www.freebase.com/m/01cdt5
http://www.freebase.com/m/07mzm6
http://www.freebase.com/m/021fq9
http://www.freebase.com/m/05l8yp
http://www.freebase.com/m/06y96j
http://www.freebase.com/m/087c0d
http://www.freebase.com/m/0gg4h
http://www.freebase.com/m/02_5n7
http://www.freebase.com/m/06gx48m
http://www.freebase.com/m/06gx48f
http://www.evi.com/q/facts_about__adenosine
http://www.evi.com/q/facts_about__histamine_2
http://www.evi.com/q/facts_about__mannitol_2
http://www.evi.com/q/facts_about__cotinine
http://www.evi.com/q/facts_about__adenosine_phosphosulfate
http://www.evi.com/q/facts_about__pectus_carinatum
http://www.evi.com/q/facts_about__bronchospasm
http://www.evi.com/q/facts_about__cardiac_arrest_4
http://www.evi.com/q/facts_about__pulsus_paradoxus
http://www.evi.com/q/facts_about__short_stature
http://www.evi.com/q/facts_about__dyspnea
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shows the symptom “Nocturnal Cough” six times, which shows a lacking in True Knowledge 

KB on data cleaning part. 

On academic research side, the examples of well developed and well kept KBs are DBpedia 

[10] and YAGO [11] [12] [13] [14]. Both of these are based on RDF subject-property-object 

triples from web sources like Wikipedia.  

DBpedia provides structured information regarding people, planet, color, language, etc. Its 

gathers this knowledge from Wikipedia info boxes in up to 97 different languages by utilizing 

the rule based parsing techniques. 

YAGO is a joint research project aimed at extracting structured information regarding people, 

organization, cities, etc. This extensible and large ontology has been built up by unifying 

entities and facts which were derived from both Wikipedia and WordNet. The relational 

knowledge for YAGO were automatically extracted from the category system and info boxes 

of the Wikipedia and unified with taxonomic relations from WordNet.  

YAGO2 is an extension to YAGO and it has incorporated another knowledge source as well, 

which is GeoNames. Besides that, entities, facts and events in this KB are additionally 

anchored in both time and space.  For example, the result of performing a query “Albert 

Einstein” in YAGO2 also provides the details regarding date of birth and place, like, 

wasBornOnDate 1879-03-14 and wasBornIn Ulm. 

All of the above described knowledge bases are based on RDF data model so they serve as a 

very useful asset for semantic services, like reasoning and explanation, knowledge discovery, 

and question answering.  

Considering the vast amount of research work in this area, we can present only a few most 

meaningful and recent ones. For a more detailed overview, we refer the reader to the paper 

titled, “From Information to Knowledge: Harvesting Entities and Relationships from Web 

Sources” by Weikum et al.  

2.3 Biomedical Domain Knowledge Bases 

Judging the effectiveness of KBs in other research fields, several have already been 

developed in biomedical domain as well.  Most of them are well developed and well kept by 

United States National Library of Medicine (NLM), which is one of the 27 institutions of the 

U.S National Institute of Health (NIH). However, most of the existing biomedical collections 



 
 

10 
 

contain information regarding just some specialized areas like protein to protein interactions, 

gene expressions, etc. or only provide some crude taxonomy that lacks the semantic relations. 

Examples of such collections which are focused on a specialized domain, include: 

 PPI [15]: The Mammalian Protein to Protein Interaction database is a manually 

curated collection by Munich Information Center for Protein Sequences (MIPS),and is 

based on data that is extracted by expert curators from existing research material. 

 GO [16][17]: GeneOntology is a structured and controlled collection of vocabularies 

and terms which represent the genes and genes product properties across all species. 

 KEGG [18][19]: Kyoto Encyclopedia of Genes and Genomes is developed mainly for 

providing information regarding gene functions. 

Examples of collections which have a taxonomic detailing, but lack useful semantic relations, 

include: 

 MeSH [20]: Medical Subject Headings is a poly hierarchical vocabulary thesaurus, 

which is developed for indexing the articles for Pubmed/MEDLINE database [21]. 

 UMLS [22]: Unified Medical Languages System is a collection of biomedical 

vocabularies which is developed from MeSH, GO and OMIM along with many other 

sources. 

Besides this, some research work has also been carried out regarding relations between 

diseases and their contributing factors. This research has been conducted in different 

contexts, including relations between genotype and drug response phenotype [23], disease 

gene associations, and also disease and etiological factors [24]. Examples of such collections 

are: 

 OMIM [25][26]: Online Mendelian Inheritance in Man provides up to date 

information regarding human genes, heritable diseases and genetic disorders. 

 GAD [27]: Genetic Association Database provides information regarding associations 

between human genes and complex diseases and disorders. 

 Diseasome [28][29]: Focuses on phenotype and disease gene associations and OMIM 

is one of its information sources. 

Besides these KBs, another one named Public Health Surveillance Knowledgebase (PHSkb) 

is aimed at supporting diseases surveillance by providing easy access to knowledge.  
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Only a small subset of trusted existing biomedical KBs is described above. Most of these are 

hand crafted and are manually curated by human experts. Although, a lot of information 

extraction techniques like pattern matching, natural language processing and statistical 

learning [30, 31, 32, 33, 34, 35, 36] have been introduced recently for creating high quality 

ontology, but they have still not been able to surpass the quality of manually curated ones. 

However the manually integrated KBs have to undergo the challenges of low coverage, high 

integration cost, quality assurance and fast aging [11].  

One thing that is obvious from the above described lists of biomedical KBs is that there is no 

such ontology that can provide the complete detailed information regarding most of the main 

factors (including, environmental, social, nutritional and diagnostic factors) of a disease at 

one place without focusing on a specialized context. If anyone has to access all of these 

varying factors, then he must have to rely on more than one KB, as no core KB having such 

integrated knowledge about contributing factors of diseases have yet been built. And one of 

the major issues that can arise while utilizing more than one KBs together is the mapping of 

diversified entities covered in KBs. So we dedicate ourselves to this problem by building up a 

core biomedical knowledge base containing all of these major causative factors of a disease 

through one KB. 

A summarization of main characteristics of all the above described KBs is presented in Table 

2.3.  

2.4 Summary 

After going through an overview of the state-of-the-art of existing knowledge collections of 

general as well as biomedical domain, it gets clear that none of them is capable of providing 

certain level of details regarding different causative factors of diseases at one place through 

one core KB, without focusing on a specialized context. So, this leads us to the idea of 

creating a core KB, that can provide integrated knowledge regarding, diseases, symptoms, 

body parts and causative factors (environmental, social, nutritional, diagnostics factors) of 

diseases. 
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Table 2.3: Summarization of characteristics of major existing knowledge bases 

KB Domain Source Size 

General Domain 

Freebase Music, literature, 

location, media, etc 
 Wikipedia free text and info 

boxes 

 online news centers 

 community contributions 

 other domain specific pages 

Entities: > 10 million 

Facts: > 358 million 

True 

Knowledge 

Music, literature, 

location, media, 

etc. 

 Wikipedia 

 WordNet 

 GeoNames  

 Community contributions 

Entities: >13.3  million 

Facts: >437.8 million 

DBpedia People, Eucaryotes, 

Disease, Planet, 

Color, Language, 

Event, 

Award, etc. 

Wikipedia in up to 97 languages Entities: >3.5 million 

Facts: >672 million
1
 

YAGO People, 

Organizations, 

Cities, etc. 

 Wikipedia 

 WordNet 

Entities: >10 million 

Facts: >80 million 

YAGO2 Domain of YAGO 

+ time, place 
 Wikipedia 

 WordNet 

 GeoNames 

Entities: ~9.8 million 

Facts: >80 million 

Biomedical Domain 

PPI db of MIPS Protein to protein 

interaction 

Scientific literature N.A 

GO GenBank Genes, gene product 

genes 

Scientific publications, direct 

submissions from individual 

laboratories, bulk submissions 

from 

large-scale sequencing centers 

N.A 

KEGG Genomes, 

Enzymatic 

pathways, chemicals 

N.A >11 mil genes, 

~134,000 pathway 

maps, 375 human 

diseases, 9.336 drugs 

OMIM genes, genetic 

disorders, including 

phenotype 

description and body 

parts 

Manually generated by scientists 

and physicians 

~18,597 genes 

MeSH  General medical 

subjects for indexing 

articles for PubMed 

database 

PubMed publications ~25,186 entities 

Diseasome Human disease 

network 

OMIM >4,213 diseases, 

>91,182 genes 

UMLS General biomedicine GO, OMIM, MeSH, etc Entities: >1 million 

Facts: >12 million 

                                                           
1
 286 million of these 672 million facts were extracted from English Wikipedia, while remaining 386 million 

were gathered from other languages 
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Chapter 3 

DATA GATHERING 

 

3.1 Problem Definition 

The first and most important step for effective implementation of an ontology is to make-

ready the data. This chapter will focus on identifying our data source and its attributes. 

Besides, the problem of data reliability will also be addressed here.  

Good data leads to good results and bad data is always misleading. Especially for building an 

ontology, the quality and reliability of data matters a lot, as this is what eventually results in 

effectiveness, reliability and coverage of an ontology. The data we begin with takes the form 

of an input and this input serves as the backbone of ontology. Our target requirement out of 

this data is to present it in our ontology in such a semantic way that it triggers a learning 

process that describe the concept that is ‘intelligible’ in that it can be understood, discussed, 

and disputed; ‘operational’ in that it can be applied to actual examples. With this in mind, 

vast varieties of biomedical data sources publically available were considered. But after 

careful preliminary analysis, research was narrowed down to one data source named MeSH, 

controlled by NLM. This data source was selected because it is free to use, well documented, 

well updated and well maintained with huge set of attributes for a pile of diseases. Moreover, 

accuracy and reliability of entities recorded from this source is very high because it is a 

medical vocabulary thesaurus that is well controlled by NLM and contains medical subjects 

in a well organized hierarchical structure. All these advantages have made our knowledge and 

relation extraction easy.  

Considering the availability of a few other reliable sources like UMLS and OMIM, we could 

have gone a bit further by incorporating data from these sources as well and would have 

extended the coverage of our ontology, but effective knowledge modeling of our ontology 

was preferred over increasing the sample-space and incorporating the data from these other 

sources into our well modeled and well based knowledge base is now left as a future work. 
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Data issue is bit tricky; therefore, we will consider the data problem in two stages. First stage 

is how to retrieve the data from MeSH and second is how to manage retrieved data in a 

Relational Database (RDBMS), while maintaining our ontological semantic requirements, i.e. 

extracting the relationships between gathered entities. This chapter will focus on describing 

the first stage only, and second stage will be explained in next chapter named “Knowledge 

Base”.  

Without going in to the details of data taxonomy that is needed in our ontology, we will focus 

on the problem of gathering the data from MeSH.  

MeSH [20] is a controlled biomedical vocabulary thesaurus that is published and 

continuously revised and updated by NLM. It was created by NLM, more than 40 years ago, 

for indexing and searching MEDLINE database of journal articles. It enables retrieval 

systems, such as NLM's PubMed, to provide subject searching of the data. MeSH consists of 

sets of terms naming descriptors in a hierarchical structure that permits searching at various 

levels of specificity. MeSH descriptors are arranged in both an alphabetic and a hierarchical 

structure. At the most general level of hierarchical structure are very broad headings such as 

"Anatomy" or "Mental Disorders." More specific headings are found at more narrow levels of 

the twelve-level hierarchy, such as "Ankle" and "Conduct Disorder." There are 26,853 

descriptors in 2013 MeSH. All of this MeSH information can be accessed through 

hierarchically maintained MeSH Tree Structure available at their official website, whose 

snapshot and web link is mentioned in figure 3.1. All of the detailed information regarding 

each constituent descriptor of this MeSH Tree is described in descriptor records, as depicted 

in figure 3.2.  

Some of the most common and important constituents of these descriptor records are 

presented and explained as under: 

1) MeSH Heading: A preferred unique term for the descriptor that is used to represent it 

in other elements 

2) Unique Id: Seven-character alpha-numeric string uniquely identifying a descriptor 

3) Tree Number: Alpha-numeric string referring to location of a term naming descriptor 

within a MeSH Descriptor hierarchy, along with providing a way to access the details 

of all of its root descriptors. For example, the tree number for body region foot is 

“A01.378.610.250”. This tree number lets you access the details of all of its root 
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descriptors by telling you the tree number for all of those root descriptors, as depicted in table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A snapshot of MeSH Tree Structure, Accessed on 5/6/2013 (http://www.nlm.nih.gov/mesh/trees.html) 
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Figure 3.2: MeSH Descriptor Record of Body Region, Foot 

Table 3.1: Tree numbers of all Root Descriptors extracted from Tree Number of one 

MeSH Descriptor, i.e. Foot 

MeSH Hierarchy Level Tree Number  MeSH Heading 

Level 1  [A01] Body Regions  

Level 2   [A01.378]  Extremities  

Level 3   [A01.378.610] Lower Extremity 

Level 4  [A01.378.610.250] Foot 

 

This whole process of chunking out the tree numbers of all root descriptors is 

explained in detail in Figure 3.3. 

 

 

   

 

 

Figure 3.3: Chunking Tree numbers of root descriptors from tree number of a MeSH 

descriptor named “Foot” 

 

 

[A01.378] (Extremities) 

[A01.378.610] (Lower Extremity) 

[A01] (Body Regions) 

[A01.378.610.250] (Foot) 
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Tree numbers are also used for browsing the MeSH vocabulary and for inclusive 

searches by retrieval systems using MeSH. Moreover, MeSH follows the phenomena 

of polyhierarchy, so according to this, a descriptor can have more than one Tree 

Numbers [37], [38], [39], which means that a descriptor can belong to more than one 

category at a time. 

4) Annotation: Contains free-text information regarding a term naming descriptor 

5) Entry Term: Entry Terms in MeSH are names of substances that are considered 

equivalent to a term naming descriptor for retrieval purposes. They are provided in 

descriptor records, if exist. 

6) See Also: Free-text element which refers a user from a Descriptor to other terms 

which have related roots 

MeSH provides us the data in two ways; in well maintained and well documented XML files; 

and through MeSH online browser. First of all we tried to extract data from XML files 

through different tools, but did not get successful in that, because of two main issues: 

1. MeSH data and its attributes that we needed to extract were scattered in different 

MeSH XML files, which were quite large in size. None of the existing XML files 

reading/ editing tools had even been able to successfully read such large files, let 

alone edit them. 

2. Besides that, we needed to extract data with its attributes according to our hierarchical 

needs. For example, we wanted to collect data from a few manually decided 

subclasses of MeSH category “Diseases” and combine it with one of the subclass of a 

MeSH category named “Psychiatry and Psychology”. Gathering data in such a way 

from the predefined MeSH taxonomy was quite difficult to do with any tool.   

So, we opted for crawling MeSH data from the MeSH tree structure available through their 

official website, whose snapshot and web link are already depicted above in figure 3.1. We 

programmed a customized web crawler for this task and extracted the required data with its 

attributes from that browser. At this stage, one MeSH attribute that helped us a lot in crawling 

the required data effectively, is MeSH “Tree Numbers”. MeSH taxonomy is maintained by 

this “Tree Number” attribute, as each MeSH entry term has this attribute and it shows the 

level of occurrence of that term in MeSH hierarchy. We build up our crawler logic around 

this fact and crawled data by following this “Tree Number” attribute. All of the crawled data 

was gathered in an SQL database table. The data from this table was then utilized for second 
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data stage that was mentioned earlier in this chapter, i.e. how to manage retrieved data in a 

Relational Database (RDBMS), while maintaining our ontological semantic requirements, i.e. 

extracting the relationships between gathered entities. This second stage is deferred till next 

chapter.  

3.2 Tools – Microsoft SQL Server 2008, Microsoft Visual Studio 2010 

Microsoft SQL server 2008 database served as the backend of our customized crawler and the 

actual crawler was programmed through Microsoft Visual Studio 2010, in C#.  

A code snippet for the customized data crawler that was written as a console application in 

.Net is presented in Appendix A.1.  

3.3 Summary 

Good data leads to good results and bad data is always misleading. Especially for building an 

ontology, the quality and reliability of data matters a lot, as this is what eventually results in 

effectiveness, reliability and coverage of an ontology. The data we begin with takes the form 

of an input and this input serves as the backbone of ontology. Keeping this in mind, we 

selected the most trusted biomedical thesaurus MeSH as our Information source and collected 

all of the required biomedical entities’ details from its web browser into an SQL database, 

through our customized crawler.  
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Chapter 4 

KNOWLEDGE BASE 

 

 

The main aim of this research endeavor was to build up a core biomedical ontology that 

provides information regarding diseases, body parts, symptoms of human diseases, along 

with environmental, social, nutritional and diagnostic factors that cause these diseases. So, in 

this chapter, we present a detailed description of structure of our KB and then explain that 

how we integrated data from different MeSH categories to obtain our core ontology as the 

storage backend for our system. And then finally, the data cleaning step for our KB is 

presented. 

4.1 Overview 

We built up our biomedical ontology in Microsoft SQL server 2008. A formal definition and 

description of the knowledge structure of our KB is described as under. 

4.1.1 Problem Definition 

We aim to build up such a biomedical ontology that contains following information: 

 Individuals: Including candidates for body parts, symptoms, diseases, 

environmental factors, social factors, nutritional factors and diagnostic factors 

 Classes: all of the individuals are arranged in a hierarchy and are connected to 

each other through classes 

 Relations: Individuals are linked to each other through three kind of binary 

relations, including, subclassof, typeof and means relations. 

 Facts: Facts about individuals are recorded in our KB. Whenever two 

individuals are connected through a relation then the resultant is called a fact. 

The constituent individuals of a fact are called its arguments. Some examples 

of the kind of facts that shall be included in our KB are listed in Table 4.1.  
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Table 4.1:  Facts Example 

Argument 1 Relation 
 

Argument 2 

Dyslexia, Acquired 
subclassof Delirium, Dementia, Amnestic 

Dyslexia, Acquired 
subclassof Cognitive Disorders 

Dyslexia, Acquired 
subclassof Dyslexia 

Dyslexia, Acquired typeof Communication Disorders 

Dyslexia, Acquired typeof Language Disorders 

Dyslexia, Acquired 
typeof Learning Disorders 

Dyslexia, Acquired 
typeof Neurobehavioral Manifestations 

Dyslexia, Acquired 
means Reading Disability, Acquired 

Dyslexia, Acquired 
means Alexia, Acquired 

Dyslexia, Acquired means Word Blindness, Acquired 

 

4.1.2 The Knowledge Model 

Knowledge representation has long been a topic of interest in AI and many models 

have been proposed up till now ranging from Frames, KL-ONE to description logics, 

RDFS and OWL [37][38]. Among these existing data models, web ontology language 

(OWL) and its basis RDFS are considered the state-of-the-art formalism in knowledge 

representation. Considering this, we designed our KB in SQL, following the RDF-

format, as it was adapted in YAGO [11].  

YAGO expresses the entities and relations between entities, i.e. facts, in a consistent 

RDF style semantic graph. According to knowledge model of YAGO, all objects are 

expressed as entities, which are further grouped into predefined classes. These entities 

are then linked through a type relation between classes and their instances and also by 

subclassof relation between class and subclass. Besides that, binary relation can hold 

between two entities.  

For example, to say this that “Dyslexia, Acquired is a sub class of the class named 

Cognitive Disorders”, the recorded binary relation will be, “Dyslexia, Acquired” stands 

in “subclassof” relation with the entity “Cognitive Disorders”. This triple of relation 

and entities is called fact, as presented below: 
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subClassOf(Dyslexia, Acquired, Cognitive Disorders) 

 The two entities which are part of a fact are called arguments of the fact. 

4.1.3 Contribution 

Our KB has two main tables named, individuals and facts. All of the distinct entities 

are included in individuals table, while all of the facts, connecting these individuals 

through relations, are recorded in facts table. Besides that, we also introduced another 

table named synonymous terms, which according to its name is meant to record all of 

the possible naming variants of an entity. 

The synonymous terms are mostly missing in most of the KBs and hence affect the 

effectiveness and usage of those KBs to a great extent, in text mining tasks like, 

named entity recognition. This issue arises because of the diversity of biomedical 

entry terms. So, by gathering and recording these synonymous terms in our KB, we 

aim to cope with this issue, so that our KB does not have this limitation and it can 

then be utilized for achieving effective named entity recognition in text mining tasks. 

This will result in improving the effectiveness and usage of our KB.  

4.1.4 Sources 

Our KB contains information regarding different sub domains. Along with diseases 

and its symptoms, it also provides details regarding different causative factors of 

diseases, including environmental, social, nutritional and diagnostic factors. Besides 

the normal English representations, the special names and even codes are also 

recorded in our KB.  

As we wanted to extract all of the information regarding diseases and all of these 

variant factors, so no other source could have served as a better starting point for our 

KB than a biomedical thesaurus like MeSH. Therefore, we chose MeSH to be the 

backbone of our KB. MeSH [20] is a controlled biomedical vocabulary thesaurus that 

is published and continuously revised and updated by NLM. It was created by NLM, 

more than 40 years ago, for indexing and searching MEDLINE database of journal 

articles. It enables retrieval systems, such as NLM's PubMed, to provide subject 

searching of the data. 
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All the information in MeSH is described in descriptor records as depicted in figure 

4.1.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: MeSH Descriptor Record of Dyslexia, Acquired 

It is evident from this figure 4.1, that each MeSH entity has Unique ID, MeSH 

Heading, and Tree Number. As is evident from the name, Unique ID is the unique 

identifier of a descriptor, MeSH Heading is the preferred unique term for the 

descriptor that is used to represent it in other elements and Tree Number represents 

the level or position of an entity within the MeSH taxonomy. Besides that, Entry 

Terms are also provided in descriptor records, if they exist. Entry Terms in MeSH are 

names of substances that are considered equivalent for retrieval purposes. Moreover, 

MeSH follows the phenomena of polyhierarchy, so according to this, a descriptor can 

have more than one Tree Numbers [39], which means that a descriptor can belong to 

more than one category at a time. 

4.2 Knowledge Base Construction 

4.2.1 Knowledge Base Structure 

The structure for our knowledge base is depicted in detail in figure 4.2, which also 

shows that how the information from MeSH descriptor record is mapped to the 
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different columns of three of our KB tables named Individuals, Synonymous Terms 

and Facts. 

 

Figure 4.2: Knowledge Base Structure and Steps for Integration of Data from MeSH 

4.2.2 Steps for Knowledge Extraction from MeSH 

All of the MeSH entities are categorized in 16 classes, as depicted in figure 4.3. Based 

on the sub domains required for our KB, we grouped the required MeSH entities in 

Diseases, Symptoms, Body Parts, Environmental Factors, Social Factors, Nutritional 

Factors and Diagnostic Factors. We manually selected the constituent MeSH classes 

for each of our KB classes and noted down their tree numbers for accessing the 

required data of each of those MeSH classes from the sql database in which we 

crawled the MeSH data (as described in chapter 3). A data selection criterion for each 

of our KB categories based on Tree Numbers is described in detail in Table 4.2.  

The basic steps which we followed for storing MeSH entities data into Individuals 

and Synonymous Terms tables of our KB are described as under: 

1) The Unique ID and MeSH Heading of each required entity is recorded in 

Individuals table as a concept. 
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Table 4.2: KB Categories and Their Constituents from MeSH Identified With Tree 

Numbers 

Category Constituents 

Body Parts All sub classes of Anatomy[A01…..A21] 

Symptoms Signs and symptoms[C23.888] 

Diseases 1. Mental Disorders [F03] 

2. All subclasses of Diseases Except Signs and symptoms 

[C01…C22, C23.300, C23.550, C24, C25, C26] 

Environmental 

Factors 

1. Sub classes of Chemicals and Drugs [D01…D05, D20, D23, 

D25, D26, D27]  

2. Following subclasses of phenomena and processes: 

a. Astronomical Phenomena [G01.060]  

b. Geological Phenomena [G01.311]  

c. Radiation [G01.750]  

3. All sub classes of organisms [B01…B05] 

4. Environment and Public Health [N06] 

5. Technology, industry and agriculture [J01] 

Social Factors 1. Subclasses of Health Care [N01….N05] 

2. Subclasses of Psychiatry and Psychology [F01, F02, F04] 

3. Sub classes of Anthropology, Education, Sociology and Social 

Phenomena [I01… I03] 

Nutritional 

Factors 

1. Subclasses of Chemicals and Drugs [D06, D08, D09, D10,D12, 

D13]  

2. Following subclasses of phenomena and processes: 

a. Nutritional Physiological Phenomena [G07.610] 

b. Nutrition Processes [G07.700.620] 

3. Food and Beverages [J02] 

Diagnostic 

Factors 

Sub classes of Analytical, Diagnostic and Therapeutic Techniques 

and Equipment [E01….E07]  

 

2) For effectively recording all the synonyms in our KB, we stored Unique ID, 

MeSH Heading and all the Entry Terms of a descriptor record into the 

SynonymousTerms table as instances of a concept. For Example, entries made 

in Synonymous Terms table for Unique ID D004411 are depicted in Table 4.3: 

Table 4.3: Synonyms for Unique Id D004411 

Unique Id Term 

D004411_0 Acquired Global Dyslexia 

D004411_0 Acquired Spelling Dyslexia  

D004411_0 Alexia, Acquired 

D004411_0 Dyslexia, Acquired 

D004411_0 Reading Disability, Acquired 

D004411_0 Word Blindness, Acquired 
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Figure 4.3: MeSH Categories and their constituents
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3) For differentiating between concepts and instances in our KB, a “_0” suffix was 

concatenated with each instance’s Unique ID. For example, if: 

Concept:    D004411          Dyslexia, Acquired 

Then: 

Instance:    D004411_0       Dyslexia, Acquired 

4.2.3 Relations’ Extraction 

For populating the Facts table, we followed the MeSH taxonomy given by Tree Numbers 

and took following steps regarding each kind of relation: 

4.2.3.1 The Subclassof Relation 

The subclassof relation is meant to associate each entity with its associated parent 

entities. As explained earlier in previous chapter, this is accomplished through “Tree 

Number” attribute of an entity term, which helps us in identifying all of the parents. 

For example, the parent of an entity “Foot” having Tree number “A01.378.610.250” 

is an entity named “Lower Extremity” whose tree number is “A01.378.610”, which 

can be chunked out from Tree number of “Foot” in the following way, as shown in 

figure 4.4: 

 

 

Figure 4.4: Identifying the Parent of an Entity 

We kept the above scenario in mind and wrote out the SQL script (as shown in 

Appendix A.2) for collecting the subclassof relations for our KB from the MeSH 

crawled data which was stored in a separate SQL table (explained in chapter 3).   

With the help of this script, the Unique ID of each entity class is connected to the 

directly associated upper classes by subclassof relation. For Example: entries made in 

Facts table for Unique ID D004411 are depicted in Table 4.4, which intend to state 

that Dyslexia, Acquired(D004411) is subclass of Dyslexia (D004410) and Delirium, 

Dementia, Amnestic, Cognitive Disorders (D019965). 

 

 

 
   Parent Entity -> 
 
 
   Child Entity -> A01.378.610.250 

 

A01.378.610 



 
 

27 
 

Table 4.4: Facts for Unique Id D004411With Subclassof Relation 

Fact Id Argument 1 Relation Argument 2 

29312 D004411 subclassof D004410 

29313 D004411 subclassof D019965 

 

4.2.3.2 The Typeof Relation 

The typeof relation is meant to associate each entity with all of its associated root 

entities. By root entities, we mean all of the predecessor entities of that entity term. 

This is also accomplished through “Tree Number” attribute of an entity term, which 

helps us in identifying all of the associated root entities also called instances. For 

example, the instances of an entity “Foot” having Tree number “A01.378.610.250” 

are entities: “Lower Extremity [A01.378.610]”, “Extremities [A01.378]”, “Body 

Regions [A01]”,  which can be chunked out from Tree number of “Foot” in the 

following way, as shown in figure 4.5: 

 

 

 

 

 

Figure 4.5: Identifying the instances of an Entity 

We kept the above scenario in mind and wrote out the SQL script (as shown in 

Appendix A.2) for collecting the typeof relations for our KB from the MeSH crawled 

data which was stored in a separate SQL table (explained in chapter 3).   

With the help of this script, the Unique Id of each entity class is connected to its 

instances by typeof relation. By instance, we mean the upper classes of an entity class 

as well as all of the predecessors of those upper classes. For example: entries made in 

Facts table for Unique ID D004411 are depicted in Table 4.5. All of these entries 

intend to state that Dyslexia, Acquired (D004411) is a typeof Mental Disorders 

 

[A01.378] (Extremities) 

[A01.378.610] (Lower Extremity) 

[A01] (Body Regions) 

[A01.378.610.250] (Foot) 
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(D001523), Communication Disorders (D003147), Dyslexia (D004410), Language 

Disorders (D007806), Learning Disorders (D007859), Nervous System Diseases 

(D009422), Neurologic Manifestations (D009461), Signs and Symptoms (D012816), 

Mental Disorders Diagnosed in Childhood (D019952), Neurobehavioral 

Manifestations (D019954) and Delirium, Dementia, Amnestic, Cognitive Disorders 

(D019965). 

Table 4.5: Facts for Unique Id D004411With Typeof Relation 

Fact Id Argument 1 Relation Argument 2 

29314 D004411 typeof D001523 

29315 D004411 typeof D003147 

29316 D004411 typeof D004410 

29317 D004411 typeof D007806 

29318 D004411 typeof D007859 

29319 D004411 typeof D009422 

29320 D004411 typeof D009461 

29321 D004411 typeof D012816 

29323 D004411 typeof D019952 

29324 D004411 typeof D019954 

29325 D004411 typeof D019965 

4.2.2.3 The Means Relation 

This relation is intended to associate all of the synonymous terms. This was 

accomplished by connecting the Unique ID of each entity class to its corresponding 

MeSH Heading and Entry Terms by means relation. For this purpose, we utilized the 

Individuals and Synonymous Terms table and write out an SQL script (presented in 

Appendix A.2) for gathering these relations. For example, entry made in Facts table 

for Unique ID D004411 is: D004411 means D004411_0. In this entry, D004411 

corresponds to Dyslexia, Acquired and D004411_0 corresponds to the instances of 

D004411from Individuals and Synonymous Terms table. So, according to this logic, 

D004411 means (i) Dyslexia, Acquired, (ii) Acquired Global Dyslexia, (iii) Acquired 

Spelling Dyslexia, (iv) Alexia, Acquired, (v) Reading Disability, Acquired, and (vi) 

Word Blindness, Acquired. 
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4.2.3 Data Cleaning 

After gathering all of this data in our KB, we moved to the data cleaning step and 

removed all of the duplicates from all three of our tables.  

4.3 Summary 

After getting the data from our information source MeSH into an SQL table, the KB structure 

was built up and then all the biomedical entities were organized in “individuals” table. After that, 

all of the synonymous terms were effectively recorded in “synonymous terms” table and then 

finally, the “subclassof”, “typeof” and “means” relations regarding the gathered biomedical 

entities of our KB, were collected through SQL scripting. 
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Chapter 5 

RESULTS AND DISCUSSION 

 

Now when we have already gone through the data extraction and relation gathering steps, this 

chapter will focus on evaluating the effectiveness of the resulting ontology with reference to its 

comparison to the existing KBs. 

5.1 Overview 

After getting done with all of the knowledge extraction process, the resulting KB contains the 

required data. The total number of individuals, synonymous terms and facts recorded in our KB 

are presented in Table 5.1.  

Table 5.1: Total Number Of Individuals, Synonymous Terms And Facts In Our KB 

Individuals 53020 

Synonymous 

Terms 

96835 

Facts 197731 

 

Considering the availability of a few reliable sources other than MeSH; like UMLS and OMIM, 

we could have gone a bit further and would have extended the coverage of our ontology, but 

effective knowledge modeling of our ontology was preferred over increasing the sample-space 

and incorporating the data from these other sources into our well modeled and well based 

knowledge base is now left as a future work.  

5.2 Comparison to Major Exiting Biomedical KBs 

A hefty list of existing biomedical ontologies was presented in chapter 2. All of them focus on 

different biomedical sub domains. None of them provided an integrated semantic knowledge 

regarding different biomedical sub-domains at one place. E.g. knowledge regarding most of the 

main factors (including, environmental, social, nutritional and diagnostic factors) of a disease has 

not yet been collected at one place without focusing on a specialized context. If anyone has to 

access all of these varying factors, then he must have to rely on more than one KB, as no core 

KB having such integrated knowledge about contributing factors of diseases have yet been built. 
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And one of the major issues that can arise while utilizing more than one KBs together, is the 

mapping of diversified entities covered in KBs. This issue was the main driving force and 

motivation that lead us to this research work. So, in contrast to all of the existing KBs including: 

1) ones that are focused on a specialized domain (e.g. PPI, GO, KEGG) 

2) that have a taxonomic detailing but lack useful semantic relation (e.g. MeSH, UMLS) 

3) that contain details regarding relations of specialized contexts, like relations between genotype 

and drug response phenotype, or disease gene associations (e.g. OMIM, GAD, Diseasome).   

Our ontology: 

1) does not focus on any specialized domain and caters to all the diseases, their symptoms and 

causative factors (including environmental, social, nutritional and diagnostic factors) on the 

whole. 

2) besides just classifying the biomedical data in predefined categories, provides knowledge 

regarding three kind of semantic relations, including, subclassof, typeof  and means relation 

3) instead of just focusing on relations or causative factors of some specialized context like, 

genotype and drug response phenotype, or disease gene associations; contains an integrated 

knowledge regarding the general and most common causative factors of diseases i.e. 

environmental, social, nutritional and diagnostic factors 

Most of these above mentioned KBs are hand crafted and are manually curated by human 

experts. A lot of information extraction techniques like pattern matching, natural language 

processing and statistical learning [30, 31, 32, 33, 34, 35, 36] have been introduced recently for 

creating high quality ontology, but they have still not been able to surpass the quality of 

manually curated ones. However the manually integrated KBs have to undergo the challenges of 

low coverage, high integration cost, quality assurance and fast aging [11]. Keeping this in view, 

the selection of a quality ontology that has reliable information is quite a challenging task. 

United States National Library of Medicine (NLM) is one of the 27 institutions of the U.S 

National Institute of Health (NIH) and is considered one of the best in the research domain of 

biomedicine and bioinformatics for developing and controlling several most frequently used and 

trusted biomedical KBs. MeSH is also controlled by NLM and is frequently updated and revised, 

so this leverages for our concerns regarding the reliability, quality assurance and fast aging 

issues regarding MeSH being our knowledge source. Therefore, in contrast to the above 
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mentioned KBs, our ontology has not been manually curated and is based on data from a trusted 

medical thesaurus MeSH. 

A summarization of main differences between our KB and other existing biomedical KBs, is 

presented in table 5.2.  

5.3 Accessing the Knowledge Base 

For effective visualization of the data gathered in our KB, we provide a web browsing interface. 

The interface makes sure that the knowledge stored in our KB is clearly represented. In this 

chapter it is explained in detail with the help of different example scenarios. 

5.3.1 Tools – Microsoft Sql Server 2008, Microsoft Visual Studio 2010 

As is detailed in chapter 4, our KB was built up in Microsoft SQL server 2008, so this 

database served as the backend of our browsing tool and the actual browsing tool was 

programmed through Microsoft Visual Studio 2010, in C#.  

5.3.2 Knowledge Base Exploration 

Through this browsing tool, users can comfortably access the information regarding 

constituents of different categories of our KB. User can simply enter the name of that 

entity which he wants to search for and as a result he obtains fact’s details regarding all 

three kind of relation categories i.e. subclassof, typeof and means relation. Besides that, it 

is also mentioned that to which KB category does this entered search term belongs. For 

instance, if the user enters the search term “Dyslexia, Acquired”, then system will render 

results as depicted in figure 5.1. 

User can even click one of the entities from the results and then that entity becomes the 

search term and all its related information is displayed.  

For a comprehensive description of the kind of knowledge currently accessible through 

our KB, some examples of the possible queries on our KB are described in natural 

language as follows: 

 Dyslexia, AcquiredIsA          ? 

The answer to this query will include all entities which are in the “subClassOf” 

relationship with “Dyslexia, Acquired”. 

 Dyslexia, AcquiredHasSynonyms      ? 
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OR 

Dyslexia, Acquired      Means      ? 

OR 

Dyslexia, AcquiredIsAlsoCalled      ? 

OR 

Dyslexia, AcquiredIsTheSameAs      ? 

The answer to these queries will include all entities which are in the “means” 

relationship with “Dyslexia, Acquired”. 

 Dyslexia, AcquiredIsRelatedTo         ? 

OR 

Dyslexia, Acquired      BelongsTo                 ? 

The answer to these queries will include all entities which are in the “TypeOf” 

relationship with “Dyslexia, Acquired”. 

Sample results for all of the categories of our ontology are presented in Appendix A.3. 

5.4 Application Areas of our Knowledge Base 

5.4.1 Overview 

In past few years, use of ontological background knowledge has increased manifolds in 

lot of domains. By judging its effectiveness in other domains, ontologies have become a 

hot topic in biomedical domain as well. But, until now, most of the ontologies were 

focused on a few sub domains of biomedicine. Considering this, our KB is intended to 

provide information regarding varying biomedical sub domains. 

As we all know that information on web is scattered and mixed with pile of noisy 

unstructured texts and media [1]. This serves as a hindrance in effectively utilizing this 

vast amount of medical literature. For example, if user initiates a simple web search 

regarding a disease and wants to know its symptoms and contributory factors, then all he 
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Table5.2: comparison of our KB with other major existing biomedical KBs 

 

KB 

 

Domain 

 

Source 

 

Size 

Semantic 

Relations 

Causative 

Factors of 

Diseases 

Our Core 

Ontology 

Diseases, 

Symptoms, Body 

Parts, Nutritional 

Factors, 

Environmental 

Factors, Social 

Factors, 

Diagnostic 

Factors 

MeSH 53020 

Individuals, 

96835 

Synonymous 

terms, 

197731 

Facts 

Included Included, i.e. 

Nutritional 

Factors, 

Environmental 

Factors, Social 

Factors, 

Diagnostic 

Factors 

PPI db of 

MIPS 

Protein to protein 

interaction 

Scientific literature N.A Not 

included 

Not included 

GO 

GenBank 

Genes, gene 

product genes 

Scientific 

publications, direct 

submissions from 

individual 

laboratories, bulk 

submissions from 

large-scale 

sequencing centers 

N.A Contains 

relations of 

specialized 

context 

Not included 

KEGG Genomes, 

Enzymatic 

pathways, 

chemicals 

N.A >11 mil 

genes, 

~134,000 

pathway 

maps, 375 

human 

diseases, 

9.336 drugs 

Contains 

relations of 

specialized 

context 

Not included 

OMIM genes, genetic 

disorders, 

including 

phenotype 

description and 

body parts 

Manually generated 

by scientists and 

physicians 

~18,597 

genes 

Contains 

relations of 

specialized 

context, 

e.g. 

relations 

between 

genotype 

and drug 

response 

phenotype 

Contains 

causative 

factors of 

specialized 

context, e.g. 

only genetic 

disorders that 

can lead to a 

disease 

MeSH  General medical 

subjects for 

indexing articles 

for PubMed 

database 

PubMed 

publications 

~25,186 

entities 

Not 

included 

Included as a 

separate entry 

term 

Diseasome Human disease 

network 

OMIM >4,213 

diseases, 

>91,182 

genes 

Contains 

relations of 

specialized 

context 

Not included 

 



 
 

35 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Browsing Interface for Our KB 

is provided is with a huge pile of articles and papers. Even over viewing those links is 

bound to take him lot of months, let alone to extract the required answers. So, if all of this 

information regarding body parts, diseases, their symptoms and contributory factors is all 

compiled in one machine readable KB, then it can have enormous benefits. 

5.4.2 Major Application Areas 

Some of those prospective applications and benefits of our KB are described as under:  

1) A comprehensive machine readable encyclopedia that can be queried in a highly 

precised and expressive way just like a semantic database. 

2) Helping in document classification by integrating supervised or semi supervised 

learning techniques with our background KB. 

3) Providing a way to carry out entity relationship oriented semantic web search, by 

helping in two ways: (i) detection of entities and relations from web pages, (ii) 

reasoning about detected entities and relations in probabilistic logics. 

4) Enabling effective entity disambiguation or word sense disambiguation (e.g. [40]) 

by accurately and quickly mapping the text phrases onto named entities in our 

KB. 
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5) A medium for effectively gathering more related information from biomedical 

literature and growing our KB. 

6) Utilizing our ontological knowledge structure for the purpose of data cleaning (e.g 

for data warehouses) [41] and record linkage (also known as entity resolution) 

[42]. 

7) A comprehensive source for providing aid in machine translation (e.g. [43]) 

related tasks.  

8) Serving as a backbone for natural language question answering browsing (e.g. 

[44] [45]). 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Overview 

Knowledge is of no use if it is not represented and shared in a quality way. Sharing and passing 

knowledge helps in achieving the advancements without reinventing the wheel and thus results 

in advancement of humanity as a whole. In past few years, amount of research work has grown 

to great lengths in some fields. Especially, a lot of researches have been carried out in biomedical 

domain and spreading of this knowledge to masses, made an important contributory step towards 

civilization. But most of this knowledge is present in scientific publications and only very few 

people know how to access it. If this knowledge can be made accessible to the common people 

then a lot of advantages can be achieved including, diseases’ prevention, early and more accurate 

disease diagnosis, more effective treatment and many more”. 

Based on the huge pile of health information available on the internet, web has the potential of 

being the ultimate encyclopedic source. But effective retrieval of required results from web has 

always been problematic, due to which users are still far from exploiting this potential. Users 

have to undergo vast amount of difficulties in finding the exact precise information from this 

huge pile of health data. 

Especially, most of the information in biomedical research area is not yet captured in databases 

today, but rather present in structured form in scientific publications and also in semi-structured 

or unstructured form on web. If this knowledge gets effectively provided to the population then 

many diseases can be prevented, diagnosed earlier, and more accurately, and thus treated better, 

and cured more effectively; even epidemics and pandemics could be avoided. 

Researchers have long been trying to find the solution to this problem and according to them [1] 

[4] [5] [6] [7]; the best possible way to solve this issue is to move to the concept of semantic 

web. But due to the diversity of terms and their definitions between groups; adding semantics to 

web is not a straight forward task. It asks for achieving a shared and common understanding of a 

domain. So, this leads us to the creation of an ontology, which can be applied to various contexts 
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for variety of purposes. Ontologies serve as the backbone of semantic web by facilitating 

knowledge exchange across people and application systems. 

Thus, we dedicated ourselves to the accessibility of the medical expertise for the populace by 

building a biomedical knowledge base on entities and relations regarding diseases, their 

symptoms, body parts and determining factors, with emphasis on environmental, social, 

nutritional and diagnostic factors. 

6.2 Conclusion 

In this research work, we have described the whole process of creation of a biomedical 

knowledge base containing entities and relationships (subclassof, typeof, means) regarding body 

parts, diseases, their symptoms and causative factors. The varying causative factors which are 

covered through this KB include environmental factors, social factors, nutritional factors and 

diagnostic factors. 

The problems of effective retrieval of required results from web and lack of availability of 

biomedical research information in databases have long been prevailing in the research 

community. Researchers have long been trying to find the solution to this problem and proposed 

the concept of semantic web as a solution for them. But due to the diversity of terms and their 

definitions between groups; adding semantics to web was not a straight forward task. It asks for 

achieving a shared and common understanding of a domain. So, these lead us to the creation of 

an ontology, which can be applied to various contexts for variety of purposes.   

In the biomedical domain, there already were plenty of biomedical knowledge collections 

available. After going through an overview of the state-of-the-art of existing knowledge 

collections of general as well as biomedical domain, we noticed that none of them was capable 

of providing certain level of details regarding different causative factors of diseases at one place 

through one core KB, without focusing on a specialized context. So, this gave birth to this idea of 

creating a core KB, that can provide integrated knowledge regarding, diseases, symptoms, body 

parts and causative factors (environmental, social, nutritional, diagnostics factors) of diseases. 

Good data leads to good results and bad data is always misleading. Especially for building an 

ontology, the quality and reliability of data matters a lot, as this is what eventually results in 

effectiveness, reliability and coverage of an ontology. The data we begin with takes the form of 

an input and this input serves as the backbone of ontology. Keeping this in mind, we selected the 

most trusted biomedical thesaurus MeSH as our Information source and collected all of the 
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required biomedical entities’ details from its web browser into an SQL database, through our 

customized crawler.  

After crawling the data from our information source, MeSH theasaurus, into an SQL database, 

the KB structure was built up and then all the biomedical entities from that crawled data were 

organized in “individuals” table. After that, all of the related entry terms for these organized 

entities of our KB, were effectively recorded in “synonymous terms” table and then finally, the 

“subclassof”, “typeof” and “means” relations regarding the gathered biomedical entities of our 

KB, were collected through SQL scripting. Facts or relations regarding each MeSH entity were 

quickly and accurately collected by effectively querying the MeSH Tree Numbers of entities. 

For providing a detailed understanding of ontologies to the readers, we presented a 

comprehensive introduction to the existing knowledge bases and knowledge representation 

techniques in both general and biomedical domain. Besides tha, the data model and source for 

our KB were also clearly mentioned and explained in detail to avoid any confusions.  

Nonetheless, our KB can still be further improved and extended increasing its effectiveness and 

coverage. 

6.3 Future Work 

One of the major improvement areas is source of the KB. Currently, our KB is utilizing only 

MeSH thesaurus as the core source, so it would be quite interesting and useful to do the refined 

integration of data from some other trusted knowledge sources as well. This might result in 

improvement regarding coverage of our KB, in a way that more diseases, symptoms, body parts 

and factors get collected as well. Besides that, some improvement in knowledge model of our 

KB might also result in a more faithful knowledge representation from respective taxonomies. 

In addition to that, an  important contribution would be to record the relations between those 

entities which belong to different classes, e.g. to record relations between entities of class 

“Diseases” and class “Diagnostic Factors”. This kind of relations can be effectively collected 

from scientific research material by utilizing some text mining techniques. 

Last but not least, additional visualization capabilites can be implemented to provide better 

access to the knowledge base. Among others, this includes a redesigning of our Web interface 

towards a clearer and more sophisticated layout. 
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APPENDICES 

Appendix A.1: Code Snippet for our Customized Crawler 

Crawler.cs 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Net; 
using System.IO; 
using System.Collections.Specialized; 
using ExtractThesis.Functions; 
 
 
namespace Utility.Parser 
{ 
    public class CCrawler 
    { 
        private CookieContainer _cookieContainer; 
 
        public CCrawler() 
        { 
            _cookieContainer = new CookieContainer(); 
        } 
 
        public byte[] ProcessPostResponseGetBinary(Dictionary<string, string> post, string _url) 
        { 
            if (_url == String.Empty) 
                throw new Exception("ProcessPostResponse: URL not provided"); 
 
            ASCIIEncoding encoding = new ASCIIEncoding(); 
            StringBuilder postData = new StringBuilder(); 
            bool first = true; 
 
            foreach (KeyValuePair<string, string> p in post) 
            { 
                if (first) 
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                { 
                    postData.Append(p.Key + "=" + p.Value); 
                    first = false; 
                } 
                else 
                    postData.Append("&" + p.Key + "=" + p.Value); 
            } 
 
            byte[] data = encoding.GetBytes(postData.ToString()); 
 
            // Prepare web request... 
            HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url); 
            myRequest.Method = "POST"; 
 
            myRequest.CookieContainer = _cookieContainer; 
 
            myRequest.ContentType = "application/x-www-form-urlencoded"; 
            myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)"; 
            myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; 
            myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5"); 
            myRequest.Headers.Add("Accept-Encoding: gzip,deflate"); 
            myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7"); 
            myRequest.KeepAlive = true; 
            myRequest.Headers.Add("Keep-Alive: 300"); 
 
            myRequest.ContentLength = data.Length; 
            Stream newStream = myRequest.GetRequestStream(); 
 
            // Send the data. 
            newStream.Write(data, 0, data.Length); 
            newStream.Close(); 
 
            myRequest.CookieContainer = _cookieContainer; 
 
            HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse(); 
            _cookieContainer = myRequest.CookieContainer; 
 
            Stream remoteStream = myResponse.GetResponseStream(); 
 
            MemoryStream localStream = new MemoryStream(); 
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            byte[] buffer = new byte[1024]; 
            int bytesRead; 
            int bytesProcessed = 0; 
            do 
            { 
                bytesRead = remoteStream.Read(buffer, 0, buffer.Length); 
                localStream.Write(buffer, 0, bytesRead); 
                bytesProcessed += bytesRead; 
            } while (bytesRead > 0); 
 
            byte[] output = new byte[localStream.Length]; 
 
            localStream.Position = 0; 
 
            localStream.Read(output, 0, Convert.ToInt32(localStream.Length)); 
            return output; 
        } 
 
        public string ProcessPostResponse(Dictionary<string, string> post, string _url) 
        { 
            if (_url == String.Empty) 
                throw new Exception("ProcessPostResponse: URL not provided"); 
 
            ASCIIEncoding encoding = new ASCIIEncoding(); 
            StringBuilder postData = new StringBuilder(); 
            bool first = true; 
 
            foreach (KeyValuePair<string, string> p in post) 
            { 
                if (first) 
                { 
                    postData.Append(p.Key + "=" + p.Value); 
                    first = false; 
                } 
                else 
                    postData.Append("&" + p.Key + "=" + p.Value); 
            } 
 
            byte[] data = encoding.GetBytes(postData.ToString()); 
 
            // Prepare web request... 
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            HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url); 
            myRequest.Method = "POST"; 
 
            myRequest.CookieContainer = _cookieContainer; 
 
            myRequest.ContentType = "application/x-www-form-urlencoded"; 
            myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)"; 
            myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; 
            myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5"); 
            myRequest.Headers.Add("Accept-Encoding: gzip,deflate"); 
            myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7"); 
            myRequest.KeepAlive = true; 
            myRequest.Headers.Add("Keep-Alive: 300"); 
 
            myRequest.ContentLength = data.Length; 
            Stream newStream = myRequest.GetRequestStream(); 
            // Send the data. 
            newStream.Write(data, 0, data.Length); 
            newStream.Close(); 
 
            myRequest.CookieContainer = _cookieContainer; 
 
            HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse(); 
            _cookieContainer = myRequest.CookieContainer; 
            StreamReader reader = new StreamReader(myResponse.GetResponseStream()); 
            return reader.ReadToEnd().Trim(); 
        } 
 
        public string ProcessPostResponseNoHeaders(Dictionary<string, string> post, string _url) 
        { 
            if (_url == String.Empty) 
                throw new Exception("ProcessPostResponse: URL not provided"); 
 
            ASCIIEncoding encoding = new ASCIIEncoding(); 
            StringBuilder postData = new StringBuilder(); 
            bool first = true; 
 
            foreach (KeyValuePair<string, string> p in post) 
            { 
                if (first) 
                { 
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                    postData.Append(p.Key + "=" + p.Value); 
                    first = false; 
                } 
                else 
                    postData.Append("&" + p.Key + "=" + p.Value); 
            } 
 
            byte[] data = encoding.GetBytes(postData.ToString()); 
 
            // Prepare web request... 
            HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url); 
            myRequest.Method = "POST"; 
 
            myRequest.CookieContainer = _cookieContainer; 
 
            myRequest.ContentType = "application/x-www-form-urlencoded"; 
            myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)"; 
            myRequest.KeepAlive = true; 
            myRequest.Headers.Add("Keep-Alive: 300"); 
 
            myRequest.ContentLength = data.Length; 
            Stream newStream = myRequest.GetRequestStream(); 
 
            // Send the data. 
            newStream.Write(data, 0, data.Length); 
            newStream.Close(); 
 
            myRequest.CookieContainer = _cookieContainer; 
 
            HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse(); 
            _cookieContainer = myRequest.CookieContainer; 
            StreamReader reader = new StreamReader(myResponse.GetResponseStream()); 
            return reader.ReadToEnd().Trim(); 
        } 
 
        public string ProcessPostResponseNoHeaders(List<NVP> post, string _url) 
        { 
            if (_url == String.Empty) 
                throw new Exception("ProcessPostResponse: URL not provided"); 
 
            ASCIIEncoding encoding = new ASCIIEncoding(); 
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            StringBuilder postData = new StringBuilder(); 
            bool first = true; 
 
            foreach (NVP p in post) 
            { 
                if (first) 
                { 
                    postData.Append(p.Name + "=" + p.Value); 
                    first = false; 
                } 
                else 
                    postData.Append("&" + p.Name + "=" + p.Value); 
            } 
 
 
            byte[] data = encoding.GetBytes(postData.ToString()); 
 
            // Prepare web request... 
            HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url); 
            myRequest.Method = "POST"; 
 
            myRequest.CookieContainer = _cookieContainer; 
 
            myRequest.ContentType = "application/x-www-form-urlencoded"; 
            myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)"; 
            myRequest.KeepAlive = true; 
            myRequest.Headers.Add("Keep-Alive: 300"); 
 
            myRequest.ContentLength = data.Length; 
            Stream newStream = myRequest.GetRequestStream(); 
 
            // Send the data. 
            newStream.Write(data, 0, data.Length); 
            newStream.Close(); 
 
            myRequest.CookieContainer = _cookieContainer; 
 
            HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse(); 
            _cookieContainer = myRequest.CookieContainer; 
            StreamReader reader = new StreamReader(myResponse.GetResponseStream()); 
            return reader.ReadToEnd().Trim(); 
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        } 
 
        public string ProcessGetResponse(Dictionary<string, string> post, string _url) 
        { 
            if (_url == String.Empty) 
                throw new Exception("ProcessGetResponse: URL not provided"); 
 
            ASCIIEncoding encoding = new ASCIIEncoding(); 
            StringBuilder queryString = new StringBuilder(); 
            bool first = true; 
 
            foreach (KeyValuePair<string, string> p in post) 
            { 
                if (first) 
                { 
                    queryString.Append("?" + p.Key + "=" + p.Value); 
                    first = false; 
                } 
                else 
                    queryString.Append("&" + p.Key + "=" + p.Value); 
            } 
 
            // Prepare web request... 
            HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url + queryString.ToString()); 
            myRequest.Method = "GET"; 
            myRequest.CookieContainer = _cookieContainer; 
 
            myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)"; 
            myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; 
            myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5"); 
            myRequest.Headers.Add("Accept-Encoding: gzip,deflate"); 
            myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7"); 
            myRequest.KeepAlive = true; 
            myRequest.Headers.Add("Keep-Alive: 300"); 
            myRequest.ContentType = "application/x-www-form-urlencoded"; 
 
            HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse(); 
            _cookieContainer = myRequest.CookieContainer; 
 
            StreamReader reader = new StreamReader(myResponse.GetResponseStream()); 
            return reader.ReadToEnd().Trim(); 
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        } 
        public string ProcessResponse(string _url) 
        { 
            if (_url == String.Empty) 
                throw new Exception("ProcessResponse: URL not provided"); 
 
            // Prepare web request... 
            HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url); 
            myRequest.Method = "GET"; 
            myRequest.CookieContainer = _cookieContainer; 
 
            myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)"; 
            myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; 
            myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5"); 
            myRequest.Headers.Add("Accept-Encoding: gzip,deflate"); 
            myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7"); 
            myRequest.KeepAlive = true; 
            myRequest.Headers.Add("Keep-Alive: 300"); 
            myRequest.ContentType = "application/x-www-form-urlencoded"; 
 
 
            HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse(); 
            _cookieContainer = myRequest.CookieContainer; 
 
            StreamReader reader = new StreamReader(myResponse.GetResponseStream()); 
            return reader.ReadToEnd().Trim(); 
        } 
 
        public string ProcessResponseNoHeaders(string _url) 
        { 
            if (_url == String.Empty) 
                throw new Exception("ProcessResponse: URL not provided"); 
 
            // Prepare web request... 
            HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url); 
            myRequest.Method = "GET"; 
            myRequest.CookieContainer = _cookieContainer; 
 
            myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)"; 
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            HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse(); 
            _cookieContainer = myRequest.CookieContainer; 
 
            StreamReader reader = new StreamReader(myResponse.GetResponseStream()); 
            return reader.ReadToEnd().Trim(); 
        } 
 
        public string ProcessResponseCCHeadliner(string _url) 
        { 
            if (_url == String.Empty) 
                throw new Exception("ProcessResponse: URL not provided"); 
 
            // Prepare web request... 
            HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url); 
            myRequest.Method = "GET"; 
            myRequest.CookieContainer = _cookieContainer; 
 
            myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)"; 
            myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; 
            myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5"); 
            myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7"); 
            myRequest.KeepAlive = true; 
            myRequest.Headers.Add("Keep-Alive: 300"); 
            myRequest.ContentType = "application/x-www-form-urlencoded"; 
 
 
            HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse(); 
            _cookieContainer = myRequest.CookieContainer; 
 
            StreamReader reader = new StreamReader(myResponse.GetResponseStream()); 
            return reader.ReadToEnd().Trim(); 
        } 
 
        public string ProcessResponseAuthenticateNTLMSecurity(string username, string password, string url) 
        { 
            string ReturnValue = ""; 
 
            HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url); 
            request.Method = "GET"; 
            request.KeepAlive = true; 
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            request.Accept = @"*/*"; 
 
            if (string.IsNullOrEmpty(username) == false && string.IsNullOrEmpty(password) == false) 
            { 
                NetworkCredential credential = new NetworkCredential(username, password); 
                CredentialCache credentialCache = new CredentialCache(); 
                credentialCache.Add(new Uri(url), "NTLM", credential); 
                request.Credentials = credentialCache; 
            } 
 
            HttpWebResponse response = null; 
            string res = ""; 
            try 
            { 
                response = (HttpWebResponse)request.GetResponse(); 
                StreamReader reader = new StreamReader(response.GetResponseStream()); 
                res = reader.ReadToEnd().Trim(); 
            } 
            catch 
            { 
                throw; 
            } 
 
            return res; 
        } 
 
        public CookieContainer CookieContainer 
        { 
            get { return _cookieContainer; } 
            set { _cookieContainer = value; } 
        } 
    } 
} 
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Process.cs 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using ExtractThesis.Functions; 
using Utility.Parser; 
using HtmlAgilityPack; 
using System.Web; 
using ExtractThesis; 
using MoreLinq; 
using System.Threading; 
 
namespace ExtractThesis.NLM 
{ 
    public class Process 
    { 
        public static int MAX_RECURSION = 950; 
        public static int RECURSION = 0; 
        public static ExtractThesisEntities DBContext; 
        public static List<NVP> filteredList = new List<NVP>(); 
 
        public static CCrawler craw = new CCrawler(); 
 
        public static void Work() 
        { 
            DBContext = new ExtractThesisEntities(); 
 
            //Step 1 : Read All links from Page 1 
            List<NVP> linkCollection = DoMainPage(); 
 
 
            List<NVP> completeItemList = new List<NVP>(); 
            //Step 2 : Read out every page from Step 1 
            foreach (NVP p in linkCollection) 
            { 
                completeItemList.AddRange(DoSecondPage(p)); 
            } 
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//Step 3: Read through Entire Link List and Build Category Chart in filteredList 

            foreach (NVP i in completeItemList) 
            { 
                RecursiveReadAllItems(i.Value); 
            } 
        } 
 
        public static List<NVP> DoMainPage() 
        { 
            string url = "http://www.nlm.nih.gov/mesh/trees.html"; 
            string html = craw.ProcessGetResponse(new Dictionary<string, string>(), url); 
            List<NVP> linkCollection = new List<NVP>(); 
 
            HtmlDocument doc = new HtmlDocument(); 
            doc.LoadHtml(html); 
 
            HtmlNodeCollection treeItems = doc.DocumentNode.SelectNodes("html/body/div[@id='wrapper-fluid']/div[@id='container-
fluid']/div[@id='main-body']/div[@id='body']/ol/li"); 
 
             
 

//Read from Tree Nodes and fill Name Value Pairs with Links and Name 
            foreach (HtmlNode nTree in treeItems) 
            { 
                HtmlNodeCollection ns = nTree.SelectNodes("ul/li"); 
                foreach (HtmlNode n in ns) 
                { 
                    string Name = n.InnerText; 
                    string Link = ""; 
                    if (n.SelectSingleNode("a[1]").Attributes["href"] != null) 
                        Link = "http://www.nlm.nih.gov" + n.SelectSingleNode("a[1]").Attributes["href"].Value; 
                    linkCollection.Add(new NVP("", Name, Link)); 
                } 
            } 
 
            return linkCollection; 
        } 
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public static NVP[] DoSecondPage(NVP page) 
        { 
            string html = craw.ProcessGetResponse(new Dictionary<string, string>(), page.Value); 
            HtmlDocument doc = new HtmlDocument(); 
            doc.LoadHtml(html); 
 
            HtmlNode ul = doc.DocumentNode.SelectSingleNode("html/body/div[@id='wrapper-fluid']/div[@id='container-
fluid']/div[@id='main-body']/div[@id='body']/ul[@class='Level1']"); 
            List<NVP> allItems = ReadSecondPageRecursive(1, ul); 
 
            return allItems.ToArray(); 
        } 
 
        public static List<NVP> ReadSecondPageRecursive(int Level, HtmlNode ul) 
        { 
            NVP listItem = null; 
            List<NVP> SecondPageList = new List<NVP>(); 
            HtmlNodeCollection lis = ul.SelectNodes("li"); 
            foreach (HtmlNode li in lis) 
            { 
                string Name = ""; 
                string Link = ""; 
 
                if (li.SelectSingleNode("a").Attributes["href"] != null) 
                { 
                    Name = li.SelectSingleNode("a").InnerText; 
                    Link = li.SelectSingleNode("a").Attributes["href"].Value; 
                    listItem = new NVP(Level.ToString(), Name, Link); 
                } 
 
                HtmlNode innerUL = li.SelectSingleNode("ul"); 
                if (innerUL != null) 
                { 
                    listItem.InnerValues = ReadSecondPageRecursive(++Level, innerUL); 
                } 
 
                if (listItem != null) 
                { 
                    SecondPageList.Add(listItem); 
                } 
            } 
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            return SecondPageList; 
        } 
 
        public static string GetTermFromURL(string url) 
        { 
            string term = ""; 
            string[] urlSplits = url.Split(new char[] { '?', '&', '=' }, StringSplitOptions.RemoveEmptyEntries); 
            for (int i = 0; i < urlSplits.Length; i++) 
            { 
                string termSearcher = urlSplits[i].ToLower(); 
                if (termSearcher.Equals("term") && urlSplits.Length > i) 
                { 
                    term = urlSplits[i + 1]; 
                } 
            } 
 
            return term.ToLower(); 
        } 
 
        public static void RecursiveReadAllItems(string url) 
        { 
            if (++RECURSION > MAX_RECURSION) 
            { 
                --RECURSION; 
                return; 
            } 
 
            if (String.IsNullOrEmpty(url)) 
            { 
                --RECURSION; 
                return; 
            } 
            else 
            { 
                string html = ""; 
                bool readSuccess = false; 
 
                for (int o = 0; o < 10; o++) 
                { 
                    try 
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                    { 
                        html = craw.ProcessGetResponse(new Dictionary<string, string>(), url); 
                        readSuccess = true; 
                    } 
                    catch 
                    { 
                        readSuccess = false; 
                        Thread.Sleep(5000); 
                    } 
                    if (readSuccess) 
                        break; 
                } 
 
                if (!readSuccess) 
                { 
                    throw new Exception("Internet Error, Cannot Proceed..."); 
                } 
 
                HtmlDocument doc = new HtmlDocument(); 
                doc.LoadHtml(html); 
                HtmlNodeCollection infoTableTRs = doc.DocumentNode.SelectNodes("html/body/table/tr"); 
 
                string term = GetTermFromURL(url); 
 
                if (infoTableTRs != null) 
                { 
                    NVP details = new NVP(); 
 
                    foreach (HtmlNode tr in infoTableTRs) 
                    { 
                        string th = tr.SelectSingleNode("th") != null ? tr.SelectSingleNode("th").InnerText.Trim() : ""; 
                        string td = tr.SelectSingleNode("td") != null ? tr.SelectSingleNode("td").InnerText.Trim() : ""; 
 
                        if (th.ToLower().Trim().StartsWith("mesh heading")) 
                        { 
                            details.MeshHeading = td; 
                        } 
                        else if (th.ToLower().Trim().StartsWith("tree number")) 
                        { 
                            details.TreeNumber = td; 
                        } 
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                        else if (th.ToLower().Trim().StartsWith("annotation")) 
                        { 
                            details.Annotation = td; 
                        } 
                        else if (th.ToLower().Trim().StartsWith("scope note")) 
                        { 
                            details.ScopeNote = td; 
                        } 
                        else if (th.ToLower().Trim().StartsWith("date of entry")) 
                        { 
                            details.DateOfEntry = td; 
                        } 
                        else if (th.ToLower().Trim().StartsWith("entry term")) 
                        { 
                            details.EntryTerm = td; 
                        } 
                        else if (th.ToLower().Trim().StartsWith("unique id")) 
                        { 
                            details.UniqueID = td; 
                        } 
                    } 
 
                    var u = DBContext.FilteredLists.FirstOrDefault(d => d.Term == term); 
 
                    if (u == null) 
                    { 
                        details.Term = term; 
                        details.URL = url; 
                        filteredList.Add(details); 
 
                         

//Step 4 : Instantly Flush to Database 
                        foreach (NVP i in filteredList) 
                        { 
                            FilteredList l = new FilteredList(); 
                            l.Category = i.Category; 
                            l.Term = i.Term; 
                            l.AllowableQualifiers = i.AllowableQualifiers; 
                            l.Annotation = i.Annotation; 
                            l.DateOfEntry = i.DateOfEntry; 
                            l.EntryCombination = i.EntryCombination; 
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                            l.EntryTerm = i.EntryTerm; 
                            l.HistoryNote = i.HistoryNote; 
                            l.MeshHeading = i.MeshHeading; 
                            l.PreviousIndexing = i.PreviousIndexing; 
                            l.ScopeNote = i.ScopeNote; 
                            l.TreeNumber = i.TreeNumber; 
                            l.UniqueID = i.UniqueID; 
                            l.URL = url; 
                            DBContext.AddToFilteredLists(l); 
                        } 
 
                        DBContext.SaveChanges(); 
                        filteredList.Clear(); 
                    } 
                } 
 
                //Secondary Scan 
                var scanCheck = DBContext.Scans.FirstOrDefault(d => d.Term == term); 
                if (scanCheck == null) 
                { 
                    Scan sc = new Scan(); 
                    sc.Term = term; 
                    DBContext.AddToScans(sc); 
                } 
                DBContext.SaveChanges(); 
 
                HtmlNodeCollection tables = doc.DocumentNode.SelectNodes("html/body/table[2]"); 
 
                if (tables != null) 
                { 
                    for (int i = 0; i < tables.Count; i++) 
                    { 
                        HtmlNodeCollection trs = tables[i].SelectNodes("tr"); 
                        foreach (HtmlNode tr in trs) 
                        { 
                            HtmlNode tdLinkNode = tr.SelectSingleNode("td[@colspan='4']/a"); 
                            if (tdLinkNode != null && tdLinkNode.Attributes["href"] != null) 
                            { 
                                string newURL = "http://www.nlm.nih.gov" + tdLinkNode.Attributes["href"].Value; 
                                string newterm = GetTermFromURL(newURL); 
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                                Scan check = DBContext.Scans.FirstOrDefault(d => d.Term == newterm); 
 
                                if (check == null) 
                                    RecursiveReadAllItems(newURL); 
                            } 
                        } 
                    } 
                } 
            } 
        } 
    } 
} 
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Appendix A.2: Script for Extracting “subclassof”, “typeof”, and “means” relation 

DECLARE @tmp_MHeading nvarchar(MAX) 

 DECLARE @tmp_MTreeNumber nvarchar(1000) 

 DECLARE @MHeading_List cursor 

 DECLARE @tmpTypeOfMHeading_Predecessor nvarchar(MAX) 

 DECLARE @tmpTypeOfMHeading_Leaf nvarchar(MAX) 

 DECLARE @TypeOfMHeading_List cursor 

 DECLARE @tmp_MUniqueID_Leaf nvarchar(250) 

 DECLARE @tmp_MUniqueID_Parent nvarchar(250) 

 DECLARE @tmp_ParentMHeading nvarchar(250) 

 DECLARE @tmp_TrimmedLeafTreeNumber nvarchar(1000) 

 

 set @MHeading_List = CURSOR FOR  

    select MeshHeading, TreeNumber from FilterListSorted where TreeNumber LIKE 'E07%'  

 

 OPEN @MHeading_List  

 

 FETCH NEXT FROM @MHeading_List into @tmp_MHeading,@tmp_MTreeNumber 

 

 WHILE (@@FETCH_STATUS = 0)  

 BEGIN 

  --Getting the UniqueId of LeafMeSHHeading 

  SELECT @tmp_MUniqueID_Leaf = UniqueId FROM FilteredList WHERE MeshHeading = @tmp_MHeading 

     

  --INSERTING subclassof RELATIONS 

  IF(len(@tmp_MTreeNumber) <> 3) 

  BEGIN 

   SET @tmp_TrimmedLeafTreeNumber =substring(@tmp_MTreeNumber, 1, len(@tmp_MTreeNumber)-4) 

    

   SELECT @tmp_ParentMHeading = MeshHeading 

   FROM FilterListSorted 

   WHERE TreeNumber LIKE @tmp_TrimmedLeafTreeNumber 

    

   SELECT @tmp_MUniqueID_Parent = UniqueID 

   FROM FilteredList 

   WHERE MeshHeading = @tmp_ParentMHeading 

    

   INSERT INTO Relations(Argument1,Relation,Argument2) 

   VALUES (@tmp_MUniqueID_Leaf,'subclassof', @tmp_MUniqueID_Parent)  
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  END 

   

  --INSERTING means RELATIONS 

  INSERT INTO Relations(Argument1,Relation,Argument2) 

  VALUES (@tmp_MUniqueID_Leaf,'means', @tmp_MUniqueID_Leaf + '_0') 

   

  --INSERTING Typeof RELATIONS 

  set @TypeOfMHeading_List = CURSOR FOR  

  SELECT DISTINCT f2.MeshHeading AS MeSHHeading_Predecessor,f1.MeshHeading AS MeSHHeading_Leaf 

  FROM FilterListSorted AS f1,FilterListSorted AS f2  

  WHERE f1.TreeNumber LIKE Convert(nvarchar(500),f2.TreeNumber) + '%' 

  AND f1.MeshHeading = @tmp_MHeading 

     

  OPEN @TypeOfMHeading_List 

  FETCH NEXT FROM @TypeOfMHeading_List into @tmpTypeOfMHeading_Predecessor, @tmpTypeOfMHeading_Leaf 

 

  WHILE (@@FETCH_STATUS = 0)  

  BEGIN 

   IF(@tmpTypeOfMHeading_Predecessor <> @tmpTypeOfMHeading_Leaf) 

   BEGIN 

    INSERT INTO Relations(Argument1,Relation,Argument2) 

    SELECT @tmp_MUniqueID_Leaf,'typeof',f1.UniqueID 

    FROM FilteredList f1 

    WHERE f1.MeshHeading = @tmpTypeOfMHeading_Predecessor 

   END  

  FETCH NEXT FROM @TypeOfMHeading_List into @tmpTypeOfMHeading_Predecessor, @tmpTypeOfMHeading_Leaf  

  END 

     

  FETCH NEXT FROM @MHeading_List into @tmp_MHeading,@tmp_MTreeNumber 

 END  

 

 CLOSE @MHeading_List 

 DEALLOCATE @MHeading_List
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Appendix A.3: Sample Results for Different Categories of Our Ontology 

1. Diseases 
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2. Symptoms 
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3. Body Parts 
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4. Environmental Factors 
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5. Social Factors 
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6. Nutritional Factors 
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7. Diagnostic Factors 
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