

BUILDING A CORE BIOMEDICAL ONTOLOGY ON DISEASES,

BODY PARTS, SYMPTOMS AND ENVIRONMENTAL, SOCIAL,

NUTRITIONAL AND DIAGNOSTIC FACTORS OF DISEASES

by

Andleeb Shahnaz

2011-NUST-MS PhD-CSE(E)-03

MS-11(CSE)

Submitted to Department of Computer Engineering

in fulfillment of the requirements for the degree of

Masters of Science

in

Computer Software Engineering

Thesis Supervisor

Dr. Usman Qamar

College of Electrical and Mechanical Engineering

National University of Science and Technology

May 2013

This page is intentionally left blank

i

ACKNOWLEDGEMENTS

"Those who do not thank people, they do not thank Allah." (Al-Tirmidhi 1878).

There is an old saying ‘It takes a village to raise a child’ and I am not an exception. It is with

the grace of Almighty that I was led into the company of the following people, whose

generosity, enthusiasm, and good shepherding sustained me in producing this work: Dr.

Shoab Ahmed Khan, Dr. Usman Qamar, Dr. Saad Rehman, Dr. Muhammad Abbass and all

those people who generously shared their knowledge and expertise with me. I am beholden to

my family for their love and continuing encouragement. My friends always backed me up

very strongly. Therefore, I thank every single one of them for their support.

ii

To my Parents, Advisors and colleagues.

iii

ABSTRACT

 Considering today’s surge of information, the need for well organized knowledge

bases is increasing rapidly for providing simplified access to knowledge and its

further processing. In biomedical domain, heaps of information is buried in scientific

publications and online forums. This calls for representing this information in a more

expressive semantic way by determining and storing relational information into a

machine readable form. So, the primary goal of this research endeavor has been to

build a knowledge base on entities and relations containing amass of formalized

background knowledge suitable for supporting reasoning in biomedical domain.

In this work, we introduce a way for easily accessing the knowledge about body parts

and symptoms of human diseases, along with environmental, social, nutritional and

diagnostic factors that cause these diseases. The information for this knowledge base

is extracted from the controlled vocabulary thesaurus “Medical Subject Headings”

(MeSH), which is published by National Library of Medicine.

The result is a semantic graph of typed entities and relations between diseases, their

symptoms, affected body parts and determining factors, with emphasis on

environmental, social, nutritional and diagnostic factors. The facts stored in our

ontology are provided to the user in a visual web interface.

Currently, our ontology contains 53020 individuals, 96835 synonymous terms and

197731 facts related to seven pre-defined categories of our biomedical ontology. In

this way, it fulfils an identified need to provide detailed semantic knowledge

regarding different biomedical sub-domains at one place through one core KB.

Keywords – Biomedical ontology, Ontology creation, Knowledge integration, Semantic knowledge,

Biomedical sub-domains.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS, i

DEDICATION, ii

ABSTRACT, iii

1. INTRODUCTION,1

 1.1 Background and Motivation, 1

 1.2 Objective and Contribution, 4

 1.3 Outline, 4

 1.4 Summary, 5

2. LITERATURE REVIEW, 6

 2.1 Overview, 6

 2.2 General Domain Knowledge Bases, 6

 2.3 Biomedical Domain Knowledge Bases, 9

 2.4 Summary, 11

3. DATA GATHERING, 13

 3.1 Problem Definition, 13

 3.2 Tools – Microsoft SQL Server 2008, Microsoft Visual Studio 2010, 18

 3.3 Summary, 18

4. KNOWLEDGE BASE, 19

 4.1 Overview, 19

 4.1.1 Problem Definition, 19

 4.1.2 The Knowledge Model 20

 4.1.3 Contribution, 21

 4.1.4 Sources, 21

 4.2 Knowledge Base Construction , 22

 4.2.1 Knowledge Base Structure, 22

 4.2.2 Steps for Knowledge Extraction from MeSH, 23

 4.2.2 Relations’ Extraction, 26

 4.2.2.1 The Subclassof Relation, 26

 4.2.2.2 The Typeof Relation, 27

 4.2.2.3 The Means Relation, 28

TABLE OF CONTENTS

 4.2.3 Data Cleaning, 29

 4.3 Summary, 29

5. RESULTS AND DISCUSSION, 30

 5.1 Overview, 30

 5.2 Comparison to Major Existing Biomedical Knowledge Bases, 30

 5.3 Accessing the Knowledge Base, 32

 5.3.1
Tools – Microsoft Sql Server 2008, Microsoft Visual Studio

2008, 32

 5..3.2 Knowledge Base Exploration, 32

 5.4 Application Areas of our Knowledge Base, 32

 5.4.1 Overview, 32

 5.4.2 Major Application Areas, 34

6. CONCLUSION AND FUTURE WORK, 36

 6.1 Overview, 36

 6.2 Conclusion, 37

 6.2 Future Work, 38

APPENDIX, 39

 A.1 Code Snippet for our Customized Crawler, 39

 A.2 Script for Extracting “subclassof”, “typeof”, and “means” relation, 57

 A.3 Sample Results for Different Categories of Our Ontology, 59

BIBLIOGRAPHY, 67

LIST OF FIGURES

Figure 3.1 A snapshot of MeSH Tree Structure, Accessed on 5/6/2013

(http://www.nlm.nih.gov/mesh/trees.html)

15

Figure 3.2 MeSH Descriptor Record of Body Region, Foot 16

Figure 3.3 Chunking Tree numbers of root descriptors from tree number of a

MeSH descriptor named “Foot”

16

Figure 4.1 MeSH Descriptor Record of Dyslexia, Acquired 22

Figure 4.2 Knowledge Base Structure and Steps for Integration of Data from

MeSH

23

Figure 4.3 MeSH Categories and their constituents 25

Figure 4.4 Identifying the Parent of an Entity 26

Figure 4.5 Identifying the instances of an Entity 27

Figure 5.1 Browsing Interface for Our KB 34

http://www.nlm.nih.gov/mesh/trees.html

LIST OF TABLES

Table 2.1
Results to example query “Dyslexia” in Freebase and True

Knowledge. (The query was performed in 2013)

7

Table 2.2
Results to example query “asthma” in Freebase and True

Knowledge. (The query was performed in 2013)

8

Table 2.3 Summarization of characteristics of major existing knowledge bases 12

Table 3.1
Tree numbers of all Root Descriptors extracted from Tree Number

of one MeSH Descriptor, i.e. Foot

16

Table 4.1 Facts Example 20

Table 4.2
KB Categories and Their Constituents from MeSH Identified With

Tree Numbers

24

Table 4.3 Synonyms for Unique Id D004411 26

Table 4.4 Facts for Unique Id D004411With Subclassof Relation 27

Table 4.5 Facts for Unique Id D004411With Typeof Relation 28

Table 5.1
Total Number Of Individuals, Synonymous Terms And Facts In Our

KB

30

Table 5.2 Comparison of our KB with other major existing biomedical KBs 33

LIST OF ABBREVIATIONS

Abbreviation Illustration

ACM Association for Computing Machinery

GAD Genetic Association Database

GO Gene Ontology

IEEE Institute of Electrical and Electronic Engineers

KB Knowledge Base

KEGG Kyoto Encyclopedia of Genes and Genomes

MeSH Medical Subject Headings

MIPS Mammalian Protein – Protein Interaction Database

NIH National Institute of Health

NLM National Library of Medicine

OMIM Online Mendelian Inheritance in Man

OWL Web Ontology Language

PHSkb Public Health Surveillance Knowledge Base

RDBMS Relational Database Management System

RDF Resource Description Framework

SQL Structured Query Language

UMLS Unified Medical Languages System

US United States

W3C World Wide Web Consortium

XML Extensible Markup Language

1

Chapter 1

INTRODUCTION

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

(‘Choruses from the Rock’ by T.S.Eliot - 1934)

Knowledge is of no use if it is not represented and shared in a quality way. Sharing and

passing knowledge helps in achieving the advancements without reinventing the wheel and

thus results in advancement of humanity as a whole. In past few years, amount of research

work has grown to great lengths in some fields. Especially, a lot of researches have been

carried out in biomedical domain and spreading of this knowledge to masses, made an

important contributory step towards civilization. But most of this knowledge is present in

scientific publications and only very few people know how to access it. If this knowledge can

be made accessible to the common people then a lot of advantages can be achieved including,

diseases’ prevention, early and more accurate disease diagnosis, more effective treatment and

many more”.

1.1 Background and Motivation

Based on the huge pile of health information available on the internet, web has the potential

of being the ultimate encyclopedic source. But effective retrieval of required results from web

has always been problematic, due to which we are still far from exploiting this potential [1].

Users have to undergo vast amount of difficulties in finding the exact precise information

from this huge pile of health data. The existing generic search engines (e.g. Google), generic

catalogues (e.g. Yahoo) and free text based search engines have not been capable of solving

this issue [2]. Most of the time, the results returned by them are innumerable and completely

irrelevant, which require a lot of manual working on user’s part. A major reason behind this

2

incapability of search engines is lack of semantic organization of data available on the web

[3]. So, when the size of the web expands exponentially, it then becomes difficult to retrieve

the useful information due to this lack of organization.

Especially, most of the information in biomedical research area is not yet captured in

databases today, but rather present in structured form in scientific publications and also in

semi-structured or unstructured form on web. If this knowledge gets effectively provided to

the population then many diseases can be prevented, diagnosed earlier, and more accurately,

and thus treated better, and cured more effectively; even epidemics and pandemics could be

avoided.

Researchers have long been trying to find the solution to this problem and according to them

[1] [4] [5] [6] [7]; the best possible way to solve this issue is to move to the concept of

semantic web. But due to the diversity of terms and their definitions between groups; adding

semantics to web is not a straight forward task. It asks for achieving a shared and common

understanding of a domain. So, this leads us to the creation of an ontology, which can be

applied to various contexts for variety of purposes. Ontologies serve as the backbone of

semantic web by facilitating knowledge exchange across people and application systems

[3][4].

In recent years, very large common-sense knowledge bases (KB) have been generated

automatically. They were built by extracting entity-relationship-oriented facts from Web

sources. Examples thereof are the large collaborative KB Freebase as well as True

Knowledge, providing a question-answering platform on the commercial side. On the

research side, DBpedia and YAGO constitute well developed representatives, both containing

factual information extracted from the Wikipedia. All of these have formal knowledge

representations, using the Resource Description Framework (RDF) data model. The

development of RDF started as a project of the World Wide Web Consortium (W3C) in the

1990s. In the early 2000s, the first complete implementation of RDF was published and it has

prevailed as a general method for conceptual description or modeling of information

implemented in Web sources. Further improvements and developments on RDF are

undertaken by W3C. RDF provides a graph-based data model, making statements about

resources in the form of so-called RDF triples, “subject-predicate-object”. For example, the

statement “Asthma has the symptom coughing” can be presented in RDF as the triple

“asthma” denoted by a subject, “has the symptom” by a predicate, and “coughing” by an

3

object. An RDF-based data model is more suited to certain kinds of knowledge representation

than the relational model, as a collection of RDF statements generally is represented as a

labeled and directed multi-graph. Thus, they can be deployed as semantic services such as

question answering, reasoning and explanation, and knowledge discovery.

In the biomedical domain, in fact, there already are plenty of biomedical knowledge

collections available, conveying at least one of these two following kinds of characteristics:

1) They solely focus on highly specialized aspects, e.g., protein interactions, gene

expression, and metabolic pathways, but lack general determinants. Some examples

of these general determinants include environmental factors (e.g. noise pollution),

social factors (e.g. Adolescent Behavior, Identity crisis, huger, etc.), nutritional

factors (e.g. Proteins, Deoxyglucose, etc.) and diagnostic factors (e.g. Angiography,

Autopsy). This kind of knowledge collection, targeting specialized aspects, is covered

by The MIPS Mammalian Protein-Protein Interaction Database, Gene Ontology, or

Kyoto Encyclopedia of Genes and Genomes among others.

2) In essence, most of these mentioned collections are hand-crafted and extensively

curated by human experts.

But these features are not suitable for our purpose which is to gather information regarding

environmental, social, nutritional, and behavioral factors of diseases as well, besides just

collecting the knowledge about diseases, symptoms and body parts. A biomedical ontology

would be more useful if it contains semantically rich knowledge regarding different sub-

domains e.g. information about diseases, their symptoms, and contributing factors; all in one

place. Such ontology would have to be of high quality and be based on an authentic

information source. It would have to consist of not only the concepts and named entities, but

also relations among them like, subclassof, typeof and means etc. Along with being

extensible and reusable, it would have to be application independent as well. Availability of

such an application can really open the horizon towards more effective and useful

applications in biomedical domain.

Thus, we want to dedicate ourselves to the accessibility of the medical expertise for the

populace by building a biomedical knowledge base on entities and relations regarding

diseases, their symptoms, affected body parts and determining factors, with emphasis on

environmental, social, nutritional and diagnostic factors.

4

1.2 Objective and Contribution

This thesis is aimed to build up an ontology that is based on a widely trusted biomedical

vocabulary thesaurus named MeSH. We intend to create such a KB that contains information

regarding body parts and symptoms of human diseases, along with environmental, social,

nutritional and diagnostic factors that cause these diseases.

Rather than using the information extraction methods, our approach is to make use of the fact

that MeSH has tree numbers for each of its vocabulary term. Tree numbers describe the level

of the term in the taxonomy and make it quite easy to access the taxonomic or hierarchical

details regarding that term. These tree numbers help us gather concepts, entities and relations

keeping in view the MeSH classification. For usefulness of an ontology, one of the basic

requirements is to arrange the concepts in taxonomy. Though MeSH also has a hierarchy but

it cannot be used as it is for our ontological needs, because the entities which we want to

gather for our KB categories are spanned to more than one category in MeSH hierarchy. For

example: constituent entities for “Nutritional Factors” category of our KB are spanned in

three MeSH categories named, Chemical and Drugs, Phenomena and Processes, and Food

and beverages. Therefore we need to re-classify the vocabulary terms of MeSH. Our KB is

based on data model of entities and binary relations. Three categories of relations which we

want to collect include subclassof, typeof and means relationship.

So, our contribution is two-fold:

1) A core Ontology: We describe how we integrated data from different MeSH

categories to obtain our core ontology as the storage backend for our system. The

structure of our KB follows the RDF data model and is inspired by YAGO.

2) Providing an access point to the knowledge base: The ontology can be queried

comfortably by using the web browsing interfaces. The browsing interface takes a

single query input and returns all relations with the respective entities stored in the

KB.

1.3 Outline

Chapter 2 discusses the related work. In chapter 3, we describe in detail the knowledge

extraction approach that we utilized for gathering the data from MeSH thesaurus. We present

the design and construction of backbone of our system, the KB, in chapter 4. Chapter 5

presents an overview of the visual interface that was developed for accessing the knowledge

5

base, contains discussion on the results of our system and also presents the potential

applications of this knowledge base in different research areas. Finally, chapter 6 concludes

this thesis and proposes an outlook of possible extensions, modifications, and improvements

as future work.

1.4 Summary:

The problems of effective retrieval of required results from web and lack of availability of

biomedical research information in databases have long been prevailing in the research

community. Researchers have long been trying to find the solution to this problem and

proposed the concept of semantic web as a solution for them. But due to the diversity of

terms and their definitions between groups; adding semantics to web is not a straight forward

task. It asks for achieving a shared and common understanding of a domain. So, this leads us

to the creation of an ontology, which can be applied to various contexts for variety of

purposes. In the biomedical domain, there already are plenty of biomedical knowledge

collections available, but none of them provides the knowledge regarding different

biomedical sub domains at one place. This is what served as a motivation for this research

work.

6

Chapter 2

LITERATURE REVIEW

In this chapter, we give a brief overview on the state-of-the-art of existing knowledge

collections. We considered the work on the general domain as well as on the more specific

ones, especially the biomedical domain. We describe their functionality and elucidate how

they lack the certain level of details regarding different causative factors of diseases and what

is lacking in them which is provided through our KB.

2.1 Overview

Knowledge representation and capturing relationships has long been a topic of interest in the

field of artificial intelligence. Since Cyc in 1980s, a lot of knowledge bases have been built

which differ from each other on bases of varying factors, most common of which are size and

target domains.

In recent years, a lot of common sense knowledge bases have been built up automatically by

extracting entity-relationship targeted facts from web sources. Facts can be described as

instances of unary, binary or higher-artery relationships. Where, these three kinds of relations

can be described as:

 Unary Relations: categorization of individual entities into semantic classes

 Binary Relations: typed relations between entities with binary relations’ instances

 Higher-Artery Relations: non-binary relations

For our KB, we have focused on binary relations which connect two entities that are related

in a predefined way.

2.2 General Domain Knowledge Bases

In general domain, the work on Knowledge bases (KBs) can be categorized into two parts,

i.e. industrial research side and academic research side [6]. Some of the examples of well

7

developed KBs in industrial research side include Freebase [7] and TrueKnowledge [8]. Both

of these are based on entity relationship oriented facts from varying web sources [9].

Freebase contains a huge structured data collection regarding individuals of many

miscellaneous domains, like, music, media, location, literature. It takes its information from

varying web sources including info boxes of Wikipedia, free text, online news centers and

even approved entries of its community members.

True knowledge provides a flexible question answering platform to its users. It collects the

knowledge from user submissions and also from external databases, like Wikipedia. Both true

knowledge and freebase cover almost same kind of domains, but the major difference among

them lies in the ways of access provided by them. In contrast to Freebase, True knowledge

provides a user friendly way of accessing the knowledge i.e. through natural language access.

For example, in response to user query “When was Michelle Obama born?” as well as for the

query “Michelle Obama birth date”, the user is provided with the correct result “January 17
th

1964”.

Both KBs, i.e. Freebase and True Knowledge, contain partial biomedical domains’

information. If the user tries to query the Freebase for gathering information on “Dyslexia”,

then he just gets a list of some of the symptoms and risk factors, as shown in table 2.1.

Alternatively, True Knowledge allows its user to search through queries like “What causes

Dyslexia?”, “What are risk factors of Dyslexia?” and “What are symptoms of Dyslexia?”.

The answers are shown in table 2.1. It is evident from the outputs from both of these

databases, that they provide details regarding just a few triggers and symptoms, while causes

were completely omitted in True Knowledge.

Table 2.1: Results to example query “Dyslexia” in Freebase and True Knowledge. (The

query was performed in 2013)

 Risk Factors Causes Symptoms

Freebase

 Family History of Dyslexia -

-

 Speech Disorder

 Delayed reading ability

True Knowledge -

-

-

-

-

-

 Speech Disorder

 Delayed reading ability

8

In the same way, the results for query example “asthma” are shown in Table 2.2. All of the

results detailed in this table are just risk factors and symptoms. Only a few causes were

provided by Freebase, and they also were just from the chemical domain.

Table 2.2: Results to example query “asthma” in Freebase and True Knowledge. (The query

was performed in 2013)

 Risk Factors Causes Symptoms

Freebase

 Filipino American

 Native Hawaiians

 Passive smoking

 Puerto Ricans in the United

States

 Overweight

 African American

 Poverty

 Exposure to allergens

 Family history of asthma

 Small for gestational age

 Family history of atopic

disease

 Chronic Inflammation

of airways

 Reversible

bronchoconstriction

 Dyspnea

 Wheeze

 Cyanosis

 Pectus carinatum

 Short stature

 Pulsus paradoxus

 Cardiac arrest

 Bronchospasm

 Chest Tightness

 Nocturnal Cough

True

Knowledge

 Adenosine

 Histamine

 Mannitol

 Hippuric acid

 Cotinine

 Adenosine phosphosulfate

 Cholesteryl

-

-

-

 Cough

 Cyanosis

 Wheez

 pectus carinatum

 Bronchospasm

 Cardiac arrest

 Nocturnal Cough

 Pulsus paradoxus

 short stature

 Dyspnea

 Chest Tightness

 Chest hyperinflation

 Chest expansion poor

Both of these above described query examples as well as many other queries that we have

performed on both of these databases, have shown that, these databases do not provide

information regarding different causative factors of diseases, including environmental, social,

nutritional and diagnostic factors. Freebase provides few environmental factors for some

diseases, like it provided an environmental factor “exposure to allergens” for query example

“asthma”, but omits the remaining factors completely. On the other side, True Knowledge

completely omits all these factors. Besides that, another issue that was found in True

Knowledge was of repetitive result entries, e.g. in the output of query example “asthma”, it

http://www.freebase.com/m/03295l
http://www.freebase.com/m/032j30
http://www.freebase.com/m/034zzh
http://www.freebase.com/m/0gkxl2
http://www.freebase.com/m/0gkxl2
http://www.freebase.com/m/01t6qr
http://www.freebase.com/m/0x67
http://www.freebase.com/m/0h948
http://www.freebase.com/m/06gwhj4
http://www.freebase.com/m/06gwhjb
http://www.freebase.com/m/06gwhjj
http://www.freebase.com/m/06gwhjq
http://www.freebase.com/m/06gwhjq
http://www.freebase.com/m/06gx5hy
http://www.freebase.com/m/06gx5hy
http://www.freebase.com/m/06gx5hr
http://www.freebase.com/m/06gx5hr
http://www.freebase.com/m/01cdt5
http://www.freebase.com/m/07mzm6
http://www.freebase.com/m/021fq9
http://www.freebase.com/m/05l8yp
http://www.freebase.com/m/06y96j
http://www.freebase.com/m/087c0d
http://www.freebase.com/m/0gg4h
http://www.freebase.com/m/02_5n7
http://www.freebase.com/m/06gx48m
http://www.freebase.com/m/06gx48f
http://www.evi.com/q/facts_about__adenosine
http://www.evi.com/q/facts_about__histamine_2
http://www.evi.com/q/facts_about__mannitol_2
http://www.evi.com/q/facts_about__cotinine
http://www.evi.com/q/facts_about__adenosine_phosphosulfate
http://www.evi.com/q/facts_about__pectus_carinatum
http://www.evi.com/q/facts_about__bronchospasm
http://www.evi.com/q/facts_about__cardiac_arrest_4
http://www.evi.com/q/facts_about__pulsus_paradoxus
http://www.evi.com/q/facts_about__short_stature
http://www.evi.com/q/facts_about__dyspnea

9

shows the symptom “Nocturnal Cough” six times, which shows a lacking in True Knowledge

KB on data cleaning part.

On academic research side, the examples of well developed and well kept KBs are DBpedia

[10] and YAGO [11] [12] [13] [14]. Both of these are based on RDF subject-property-object

triples from web sources like Wikipedia.

DBpedia provides structured information regarding people, planet, color, language, etc. Its

gathers this knowledge from Wikipedia info boxes in up to 97 different languages by utilizing

the rule based parsing techniques.

YAGO is a joint research project aimed at extracting structured information regarding people,

organization, cities, etc. This extensible and large ontology has been built up by unifying

entities and facts which were derived from both Wikipedia and WordNet. The relational

knowledge for YAGO were automatically extracted from the category system and info boxes

of the Wikipedia and unified with taxonomic relations from WordNet.

YAGO2 is an extension to YAGO and it has incorporated another knowledge source as well,

which is GeoNames. Besides that, entities, facts and events in this KB are additionally

anchored in both time and space. For example, the result of performing a query “Albert

Einstein” in YAGO2 also provides the details regarding date of birth and place, like,

wasBornOnDate 1879-03-14 and wasBornIn Ulm.

All of the above described knowledge bases are based on RDF data model so they serve as a

very useful asset for semantic services, like reasoning and explanation, knowledge discovery,

and question answering.

Considering the vast amount of research work in this area, we can present only a few most

meaningful and recent ones. For a more detailed overview, we refer the reader to the paper

titled, “From Information to Knowledge: Harvesting Entities and Relationships from Web

Sources” by Weikum et al.

2.3 Biomedical Domain Knowledge Bases

Judging the effectiveness of KBs in other research fields, several have already been

developed in biomedical domain as well. Most of them are well developed and well kept by

United States National Library of Medicine (NLM), which is one of the 27 institutions of the

U.S National Institute of Health (NIH). However, most of the existing biomedical collections

10

contain information regarding just some specialized areas like protein to protein interactions,

gene expressions, etc. or only provide some crude taxonomy that lacks the semantic relations.

Examples of such collections which are focused on a specialized domain, include:

 PPI [15]: The Mammalian Protein to Protein Interaction database is a manually

curated collection by Munich Information Center for Protein Sequences (MIPS),and is

based on data that is extracted by expert curators from existing research material.

 GO [16][17]: GeneOntology is a structured and controlled collection of vocabularies

and terms which represent the genes and genes product properties across all species.

 KEGG [18][19]: Kyoto Encyclopedia of Genes and Genomes is developed mainly for

providing information regarding gene functions.

Examples of collections which have a taxonomic detailing, but lack useful semantic relations,

include:

 MeSH [20]: Medical Subject Headings is a poly hierarchical vocabulary thesaurus,

which is developed for indexing the articles for Pubmed/MEDLINE database [21].

 UMLS [22]: Unified Medical Languages System is a collection of biomedical

vocabularies which is developed from MeSH, GO and OMIM along with many other

sources.

Besides this, some research work has also been carried out regarding relations between

diseases and their contributing factors. This research has been conducted in different

contexts, including relations between genotype and drug response phenotype [23], disease

gene associations, and also disease and etiological factors [24]. Examples of such collections

are:

 OMIM [25][26]: Online Mendelian Inheritance in Man provides up to date

information regarding human genes, heritable diseases and genetic disorders.

 GAD [27]: Genetic Association Database provides information regarding associations

between human genes and complex diseases and disorders.

 Diseasome [28][29]: Focuses on phenotype and disease gene associations and OMIM

is one of its information sources.

Besides these KBs, another one named Public Health Surveillance Knowledgebase (PHSkb)

is aimed at supporting diseases surveillance by providing easy access to knowledge.

11

Only a small subset of trusted existing biomedical KBs is described above. Most of these are

hand crafted and are manually curated by human experts. Although, a lot of information

extraction techniques like pattern matching, natural language processing and statistical

learning [30, 31, 32, 33, 34, 35, 36] have been introduced recently for creating high quality

ontology, but they have still not been able to surpass the quality of manually curated ones.

However the manually integrated KBs have to undergo the challenges of low coverage, high

integration cost, quality assurance and fast aging [11].

One thing that is obvious from the above described lists of biomedical KBs is that there is no

such ontology that can provide the complete detailed information regarding most of the main

factors (including, environmental, social, nutritional and diagnostic factors) of a disease at

one place without focusing on a specialized context. If anyone has to access all of these

varying factors, then he must have to rely on more than one KB, as no core KB having such

integrated knowledge about contributing factors of diseases have yet been built. And one of

the major issues that can arise while utilizing more than one KBs together is the mapping of

diversified entities covered in KBs. So we dedicate ourselves to this problem by building up a

core biomedical knowledge base containing all of these major causative factors of a disease

through one KB.

A summarization of main characteristics of all the above described KBs is presented in Table

2.3.

2.4 Summary

After going through an overview of the state-of-the-art of existing knowledge collections of

general as well as biomedical domain, it gets clear that none of them is capable of providing

certain level of details regarding different causative factors of diseases at one place through

one core KB, without focusing on a specialized context. So, this leads us to the idea of

creating a core KB, that can provide integrated knowledge regarding, diseases, symptoms,

body parts and causative factors (environmental, social, nutritional, diagnostics factors) of

diseases.

12

Table 2.3: Summarization of characteristics of major existing knowledge bases

KB Domain Source Size

General Domain

Freebase Music, literature,

location, media, etc
 Wikipedia free text and info

boxes

 online news centers

 community contributions

 other domain specific pages

Entities: > 10 million

Facts: > 358 million

True

Knowledge

Music, literature,

location, media,

etc.

 Wikipedia

 WordNet

 GeoNames

 Community contributions

Entities: >13.3 million

Facts: >437.8 million

DBpedia People, Eucaryotes,

Disease, Planet,

Color, Language,

Event,

Award, etc.

Wikipedia in up to 97 languages Entities: >3.5 million

Facts: >672 million
1

YAGO People,

Organizations,

Cities, etc.

 Wikipedia

 WordNet

Entities: >10 million

Facts: >80 million

YAGO2 Domain of YAGO

+ time, place
 Wikipedia

 WordNet

 GeoNames

Entities: ~9.8 million

Facts: >80 million

Biomedical Domain

PPI db of MIPS Protein to protein

interaction

Scientific literature N.A

GO GenBank Genes, gene product

genes

Scientific publications, direct

submissions from individual

laboratories, bulk submissions

from

large-scale sequencing centers

N.A

KEGG Genomes,

Enzymatic

pathways, chemicals

N.A >11 mil genes,

~134,000 pathway

maps, 375 human

diseases, 9.336 drugs

OMIM genes, genetic

disorders, including

phenotype

description and body

parts

Manually generated by scientists

and physicians

~18,597 genes

MeSH General medical

subjects for indexing

articles for PubMed

database

PubMed publications ~25,186 entities

Diseasome Human disease

network

OMIM >4,213 diseases,

>91,182 genes

UMLS General biomedicine GO, OMIM, MeSH, etc Entities: >1 million

Facts: >12 million

1
 286 million of these 672 million facts were extracted from English Wikipedia, while remaining 386 million

were gathered from other languages

13

Chapter 3

DATA GATHERING

3.1 Problem Definition

The first and most important step for effective implementation of an ontology is to make-

ready the data. This chapter will focus on identifying our data source and its attributes.

Besides, the problem of data reliability will also be addressed here.

Good data leads to good results and bad data is always misleading. Especially for building an

ontology, the quality and reliability of data matters a lot, as this is what eventually results in

effectiveness, reliability and coverage of an ontology. The data we begin with takes the form

of an input and this input serves as the backbone of ontology. Our target requirement out of

this data is to present it in our ontology in such a semantic way that it triggers a learning

process that describe the concept that is ‘intelligible’ in that it can be understood, discussed,

and disputed; ‘operational’ in that it can be applied to actual examples. With this in mind,

vast varieties of biomedical data sources publically available were considered. But after

careful preliminary analysis, research was narrowed down to one data source named MeSH,

controlled by NLM. This data source was selected because it is free to use, well documented,

well updated and well maintained with huge set of attributes for a pile of diseases. Moreover,

accuracy and reliability of entities recorded from this source is very high because it is a

medical vocabulary thesaurus that is well controlled by NLM and contains medical subjects

in a well organized hierarchical structure. All these advantages have made our knowledge and

relation extraction easy.

Considering the availability of a few other reliable sources like UMLS and OMIM, we could

have gone a bit further by incorporating data from these sources as well and would have

extended the coverage of our ontology, but effective knowledge modeling of our ontology

was preferred over increasing the sample-space and incorporating the data from these other

sources into our well modeled and well based knowledge base is now left as a future work.

14

Data issue is bit tricky; therefore, we will consider the data problem in two stages. First stage

is how to retrieve the data from MeSH and second is how to manage retrieved data in a

Relational Database (RDBMS), while maintaining our ontological semantic requirements, i.e.

extracting the relationships between gathered entities. This chapter will focus on describing

the first stage only, and second stage will be explained in next chapter named “Knowledge

Base”.

Without going in to the details of data taxonomy that is needed in our ontology, we will focus

on the problem of gathering the data from MeSH.

MeSH [20] is a controlled biomedical vocabulary thesaurus that is published and

continuously revised and updated by NLM. It was created by NLM, more than 40 years ago,

for indexing and searching MEDLINE database of journal articles. It enables retrieval

systems, such as NLM's PubMed, to provide subject searching of the data. MeSH consists of

sets of terms naming descriptors in a hierarchical structure that permits searching at various

levels of specificity. MeSH descriptors are arranged in both an alphabetic and a hierarchical

structure. At the most general level of hierarchical structure are very broad headings such as

"Anatomy" or "Mental Disorders." More specific headings are found at more narrow levels of

the twelve-level hierarchy, such as "Ankle" and "Conduct Disorder." There are 26,853

descriptors in 2013 MeSH. All of this MeSH information can be accessed through

hierarchically maintained MeSH Tree Structure available at their official website, whose

snapshot and web link is mentioned in figure 3.1. All of the detailed information regarding

each constituent descriptor of this MeSH Tree is described in descriptor records, as depicted

in figure 3.2.

Some of the most common and important constituents of these descriptor records are

presented and explained as under:

1) MeSH Heading: A preferred unique term for the descriptor that is used to represent it

in other elements

2) Unique Id: Seven-character alpha-numeric string uniquely identifying a descriptor

3) Tree Number: Alpha-numeric string referring to location of a term naming descriptor

within a MeSH Descriptor hierarchy, along with providing a way to access the details

of all of its root descriptors. For example, the tree number for body region foot is

“A01.378.610.250”. This tree number lets you access the details of all of its root

15

descriptors by telling you the tree number for all of those root descriptors, as depicted in table 3.1.

Figure 3.1: A snapshot of MeSH Tree Structure, Accessed on 5/6/2013 (http://www.nlm.nih.gov/mesh/trees.html)

16

Figure 3.2: MeSH Descriptor Record of Body Region, Foot

Table 3.1: Tree numbers of all Root Descriptors extracted from Tree Number of one

MeSH Descriptor, i.e. Foot

MeSH Hierarchy Level Tree Number MeSH Heading

Level 1 [A01] Body Regions

Level 2 [A01.378] Extremities

Level 3 [A01.378.610] Lower Extremity

Level 4 [A01.378.610.250] Foot

This whole process of chunking out the tree numbers of all root descriptors is

explained in detail in Figure 3.3.

Figure 3.3: Chunking Tree numbers of root descriptors from tree number of a MeSH

descriptor named “Foot”

[A01.378] (Extremities)

[A01.378.610] (Lower Extremity)

[A01] (Body Regions)

[A01.378.610.250] (Foot)

17

Tree numbers are also used for browsing the MeSH vocabulary and for inclusive

searches by retrieval systems using MeSH. Moreover, MeSH follows the phenomena

of polyhierarchy, so according to this, a descriptor can have more than one Tree

Numbers [37], [38], [39], which means that a descriptor can belong to more than one

category at a time.

4) Annotation: Contains free-text information regarding a term naming descriptor

5) Entry Term: Entry Terms in MeSH are names of substances that are considered

equivalent to a term naming descriptor for retrieval purposes. They are provided in

descriptor records, if exist.

6) See Also: Free-text element which refers a user from a Descriptor to other terms

which have related roots

MeSH provides us the data in two ways; in well maintained and well documented XML files;

and through MeSH online browser. First of all we tried to extract data from XML files

through different tools, but did not get successful in that, because of two main issues:

1. MeSH data and its attributes that we needed to extract were scattered in different

MeSH XML files, which were quite large in size. None of the existing XML files

reading/ editing tools had even been able to successfully read such large files, let

alone edit them.

2. Besides that, we needed to extract data with its attributes according to our hierarchical

needs. For example, we wanted to collect data from a few manually decided

subclasses of MeSH category “Diseases” and combine it with one of the subclass of a

MeSH category named “Psychiatry and Psychology”. Gathering data in such a way

from the predefined MeSH taxonomy was quite difficult to do with any tool.

So, we opted for crawling MeSH data from the MeSH tree structure available through their

official website, whose snapshot and web link are already depicted above in figure 3.1. We

programmed a customized web crawler for this task and extracted the required data with its

attributes from that browser. At this stage, one MeSH attribute that helped us a lot in crawling

the required data effectively, is MeSH “Tree Numbers”. MeSH taxonomy is maintained by

this “Tree Number” attribute, as each MeSH entry term has this attribute and it shows the

level of occurrence of that term in MeSH hierarchy. We build up our crawler logic around

this fact and crawled data by following this “Tree Number” attribute. All of the crawled data

was gathered in an SQL database table. The data from this table was then utilized for second

18

data stage that was mentioned earlier in this chapter, i.e. how to manage retrieved data in a

Relational Database (RDBMS), while maintaining our ontological semantic requirements, i.e.

extracting the relationships between gathered entities. This second stage is deferred till next

chapter.

3.2 Tools – Microsoft SQL Server 2008, Microsoft Visual Studio 2010

Microsoft SQL server 2008 database served as the backend of our customized crawler and the

actual crawler was programmed through Microsoft Visual Studio 2010, in C#.

A code snippet for the customized data crawler that was written as a console application in

.Net is presented in Appendix A.1.

3.3 Summary

Good data leads to good results and bad data is always misleading. Especially for building an

ontology, the quality and reliability of data matters a lot, as this is what eventually results in

effectiveness, reliability and coverage of an ontology. The data we begin with takes the form

of an input and this input serves as the backbone of ontology. Keeping this in mind, we

selected the most trusted biomedical thesaurus MeSH as our Information source and collected

all of the required biomedical entities’ details from its web browser into an SQL database,

through our customized crawler.

19

Chapter 4

KNOWLEDGE BASE

The main aim of this research endeavor was to build up a core biomedical ontology that

provides information regarding diseases, body parts, symptoms of human diseases, along

with environmental, social, nutritional and diagnostic factors that cause these diseases. So, in

this chapter, we present a detailed description of structure of our KB and then explain that

how we integrated data from different MeSH categories to obtain our core ontology as the

storage backend for our system. And then finally, the data cleaning step for our KB is

presented.

4.1 Overview

We built up our biomedical ontology in Microsoft SQL server 2008. A formal definition and

description of the knowledge structure of our KB is described as under.

4.1.1 Problem Definition

We aim to build up such a biomedical ontology that contains following information:

 Individuals: Including candidates for body parts, symptoms, diseases,

environmental factors, social factors, nutritional factors and diagnostic factors

 Classes: all of the individuals are arranged in a hierarchy and are connected to

each other through classes

 Relations: Individuals are linked to each other through three kind of binary

relations, including, subclassof, typeof and means relations.

 Facts: Facts about individuals are recorded in our KB. Whenever two

individuals are connected through a relation then the resultant is called a fact.

The constituent individuals of a fact are called its arguments. Some examples

of the kind of facts that shall be included in our KB are listed in Table 4.1.

20

Table 4.1: Facts Example

Argument 1 Relation

Argument 2

Dyslexia, Acquired
subclassof Delirium, Dementia, Amnestic

Dyslexia, Acquired
subclassof Cognitive Disorders

Dyslexia, Acquired
subclassof Dyslexia

Dyslexia, Acquired typeof Communication Disorders

Dyslexia, Acquired typeof Language Disorders

Dyslexia, Acquired
typeof Learning Disorders

Dyslexia, Acquired
typeof Neurobehavioral Manifestations

Dyslexia, Acquired
means Reading Disability, Acquired

Dyslexia, Acquired
means Alexia, Acquired

Dyslexia, Acquired means Word Blindness, Acquired

4.1.2 The Knowledge Model

Knowledge representation has long been a topic of interest in AI and many models

have been proposed up till now ranging from Frames, KL-ONE to description logics,

RDFS and OWL [37][38]. Among these existing data models, web ontology language

(OWL) and its basis RDFS are considered the state-of-the-art formalism in knowledge

representation. Considering this, we designed our KB in SQL, following the RDF-

format, as it was adapted in YAGO [11].

YAGO expresses the entities and relations between entities, i.e. facts, in a consistent

RDF style semantic graph. According to knowledge model of YAGO, all objects are

expressed as entities, which are further grouped into predefined classes. These entities

are then linked through a type relation between classes and their instances and also by

subclassof relation between class and subclass. Besides that, binary relation can hold

between two entities.

For example, to say this that “Dyslexia, Acquired is a sub class of the class named

Cognitive Disorders”, the recorded binary relation will be, “Dyslexia, Acquired” stands

in “subclassof” relation with the entity “Cognitive Disorders”. This triple of relation

and entities is called fact, as presented below:

21

subClassOf(Dyslexia, Acquired, Cognitive Disorders)

 The two entities which are part of a fact are called arguments of the fact.

4.1.3 Contribution

Our KB has two main tables named, individuals and facts. All of the distinct entities

are included in individuals table, while all of the facts, connecting these individuals

through relations, are recorded in facts table. Besides that, we also introduced another

table named synonymous terms, which according to its name is meant to record all of

the possible naming variants of an entity.

The synonymous terms are mostly missing in most of the KBs and hence affect the

effectiveness and usage of those KBs to a great extent, in text mining tasks like,

named entity recognition. This issue arises because of the diversity of biomedical

entry terms. So, by gathering and recording these synonymous terms in our KB, we

aim to cope with this issue, so that our KB does not have this limitation and it can

then be utilized for achieving effective named entity recognition in text mining tasks.

This will result in improving the effectiveness and usage of our KB.

4.1.4 Sources

Our KB contains information regarding different sub domains. Along with diseases

and its symptoms, it also provides details regarding different causative factors of

diseases, including environmental, social, nutritional and diagnostic factors. Besides

the normal English representations, the special names and even codes are also

recorded in our KB.

As we wanted to extract all of the information regarding diseases and all of these

variant factors, so no other source could have served as a better starting point for our

KB than a biomedical thesaurus like MeSH. Therefore, we chose MeSH to be the

backbone of our KB. MeSH [20] is a controlled biomedical vocabulary thesaurus that

is published and continuously revised and updated by NLM. It was created by NLM,

more than 40 years ago, for indexing and searching MEDLINE database of journal

articles. It enables retrieval systems, such as NLM's PubMed, to provide subject

searching of the data.

22

All the information in MeSH is described in descriptor records as depicted in figure

4.1.

Figure 4.1: MeSH Descriptor Record of Dyslexia, Acquired

It is evident from this figure 4.1, that each MeSH entity has Unique ID, MeSH

Heading, and Tree Number. As is evident from the name, Unique ID is the unique

identifier of a descriptor, MeSH Heading is the preferred unique term for the

descriptor that is used to represent it in other elements and Tree Number represents

the level or position of an entity within the MeSH taxonomy. Besides that, Entry

Terms are also provided in descriptor records, if they exist. Entry Terms in MeSH are

names of substances that are considered equivalent for retrieval purposes. Moreover,

MeSH follows the phenomena of polyhierarchy, so according to this, a descriptor can

have more than one Tree Numbers [39], which means that a descriptor can belong to

more than one category at a time.

4.2 Knowledge Base Construction

4.2.1 Knowledge Base Structure

The structure for our knowledge base is depicted in detail in figure 4.2, which also

shows that how the information from MeSH descriptor record is mapped to the

23

different columns of three of our KB tables named Individuals, Synonymous Terms

and Facts.

Figure 4.2: Knowledge Base Structure and Steps for Integration of Data from MeSH

4.2.2 Steps for Knowledge Extraction from MeSH

All of the MeSH entities are categorized in 16 classes, as depicted in figure 4.3. Based

on the sub domains required for our KB, we grouped the required MeSH entities in

Diseases, Symptoms, Body Parts, Environmental Factors, Social Factors, Nutritional

Factors and Diagnostic Factors. We manually selected the constituent MeSH classes

for each of our KB classes and noted down their tree numbers for accessing the

required data of each of those MeSH classes from the sql database in which we

crawled the MeSH data (as described in chapter 3). A data selection criterion for each

of our KB categories based on Tree Numbers is described in detail in Table 4.2.

The basic steps which we followed for storing MeSH entities data into Individuals

and Synonymous Terms tables of our KB are described as under:

1) The Unique ID and MeSH Heading of each required entity is recorded in

Individuals table as a concept.

24

Table 4.2: KB Categories and Their Constituents from MeSH Identified With Tree

Numbers

Category Constituents

Body Parts All sub classes of Anatomy[A01…..A21]

Symptoms Signs and symptoms[C23.888]

Diseases 1. Mental Disorders [F03]

2. All subclasses of Diseases Except Signs and symptoms

[C01…C22, C23.300, C23.550, C24, C25, C26]

Environmental

Factors

1. Sub classes of Chemicals and Drugs [D01…D05, D20, D23,

D25, D26, D27]

2. Following subclasses of phenomena and processes:

a. Astronomical Phenomena [G01.060]

b. Geological Phenomena [G01.311]

c. Radiation [G01.750]

3. All sub classes of organisms [B01…B05]

4. Environment and Public Health [N06]

5. Technology, industry and agriculture [J01]

Social Factors 1. Subclasses of Health Care [N01….N05]

2. Subclasses of Psychiatry and Psychology [F01, F02, F04]

3. Sub classes of Anthropology, Education, Sociology and Social

Phenomena [I01… I03]

Nutritional

Factors

1. Subclasses of Chemicals and Drugs [D06, D08, D09, D10,D12,

D13]

2. Following subclasses of phenomena and processes:

a. Nutritional Physiological Phenomena [G07.610]

b. Nutrition Processes [G07.700.620]

3. Food and Beverages [J02]

Diagnostic

Factors

Sub classes of Analytical, Diagnostic and Therapeutic Techniques

and Equipment [E01….E07]

2) For effectively recording all the synonyms in our KB, we stored Unique ID,

MeSH Heading and all the Entry Terms of a descriptor record into the

SynonymousTerms table as instances of a concept. For Example, entries made

in Synonymous Terms table for Unique ID D004411 are depicted in Table 4.3:

Table 4.3: Synonyms for Unique Id D004411

Unique Id Term

D004411_0 Acquired Global Dyslexia

D004411_0 Acquired Spelling Dyslexia

D004411_0 Alexia, Acquired

D004411_0 Dyslexia, Acquired

D004411_0 Reading Disability, Acquired

D004411_0 Word Blindness, Acquired

25

Figure 4.3: MeSH Categories and their constituents

26

3) For differentiating between concepts and instances in our KB, a “_0” suffix was

concatenated with each instance’s Unique ID. For example, if:

Concept: D004411 Dyslexia, Acquired

Then:

Instance: D004411_0 Dyslexia, Acquired

4.2.3 Relations’ Extraction

For populating the Facts table, we followed the MeSH taxonomy given by Tree Numbers

and took following steps regarding each kind of relation:

4.2.3.1 The Subclassof Relation

The subclassof relation is meant to associate each entity with its associated parent

entities. As explained earlier in previous chapter, this is accomplished through “Tree

Number” attribute of an entity term, which helps us in identifying all of the parents.

For example, the parent of an entity “Foot” having Tree number “A01.378.610.250”

is an entity named “Lower Extremity” whose tree number is “A01.378.610”, which

can be chunked out from Tree number of “Foot” in the following way, as shown in

figure 4.4:

Figure 4.4: Identifying the Parent of an Entity

We kept the above scenario in mind and wrote out the SQL script (as shown in

Appendix A.2) for collecting the subclassof relations for our KB from the MeSH

crawled data which was stored in a separate SQL table (explained in chapter 3).

With the help of this script, the Unique ID of each entity class is connected to the

directly associated upper classes by subclassof relation. For Example: entries made in

Facts table for Unique ID D004411 are depicted in Table 4.4, which intend to state

that Dyslexia, Acquired(D004411) is subclass of Dyslexia (D004410) and Delirium,

Dementia, Amnestic, Cognitive Disorders (D019965).

 Parent Entity ->

 Child Entity -> A01.378.610.250

A01.378.610

27

Table 4.4: Facts for Unique Id D004411With Subclassof Relation

Fact Id Argument 1 Relation Argument 2

29312 D004411 subclassof D004410

29313 D004411 subclassof D019965

4.2.3.2 The Typeof Relation

The typeof relation is meant to associate each entity with all of its associated root

entities. By root entities, we mean all of the predecessor entities of that entity term.

This is also accomplished through “Tree Number” attribute of an entity term, which

helps us in identifying all of the associated root entities also called instances. For

example, the instances of an entity “Foot” having Tree number “A01.378.610.250”

are entities: “Lower Extremity [A01.378.610]”, “Extremities [A01.378]”, “Body

Regions [A01]”, which can be chunked out from Tree number of “Foot” in the

following way, as shown in figure 4.5:

Figure 4.5: Identifying the instances of an Entity

We kept the above scenario in mind and wrote out the SQL script (as shown in

Appendix A.2) for collecting the typeof relations for our KB from the MeSH crawled

data which was stored in a separate SQL table (explained in chapter 3).

With the help of this script, the Unique Id of each entity class is connected to its

instances by typeof relation. By instance, we mean the upper classes of an entity class

as well as all of the predecessors of those upper classes. For example: entries made in

Facts table for Unique ID D004411 are depicted in Table 4.5. All of these entries

intend to state that Dyslexia, Acquired (D004411) is a typeof Mental Disorders

[A01.378] (Extremities)

[A01.378.610] (Lower Extremity)

[A01] (Body Regions)

[A01.378.610.250] (Foot)

28

(D001523), Communication Disorders (D003147), Dyslexia (D004410), Language

Disorders (D007806), Learning Disorders (D007859), Nervous System Diseases

(D009422), Neurologic Manifestations (D009461), Signs and Symptoms (D012816),

Mental Disorders Diagnosed in Childhood (D019952), Neurobehavioral

Manifestations (D019954) and Delirium, Dementia, Amnestic, Cognitive Disorders

(D019965).

Table 4.5: Facts for Unique Id D004411With Typeof Relation

Fact Id Argument 1 Relation Argument 2

29314 D004411 typeof D001523

29315 D004411 typeof D003147

29316 D004411 typeof D004410

29317 D004411 typeof D007806

29318 D004411 typeof D007859

29319 D004411 typeof D009422

29320 D004411 typeof D009461

29321 D004411 typeof D012816

29323 D004411 typeof D019952

29324 D004411 typeof D019954

29325 D004411 typeof D019965

4.2.2.3 The Means Relation

This relation is intended to associate all of the synonymous terms. This was

accomplished by connecting the Unique ID of each entity class to its corresponding

MeSH Heading and Entry Terms by means relation. For this purpose, we utilized the

Individuals and Synonymous Terms table and write out an SQL script (presented in

Appendix A.2) for gathering these relations. For example, entry made in Facts table

for Unique ID D004411 is: D004411 means D004411_0. In this entry, D004411

corresponds to Dyslexia, Acquired and D004411_0 corresponds to the instances of

D004411from Individuals and Synonymous Terms table. So, according to this logic,

D004411 means (i) Dyslexia, Acquired, (ii) Acquired Global Dyslexia, (iii) Acquired

Spelling Dyslexia, (iv) Alexia, Acquired, (v) Reading Disability, Acquired, and (vi)

Word Blindness, Acquired.

29

4.2.3 Data Cleaning

After gathering all of this data in our KB, we moved to the data cleaning step and

removed all of the duplicates from all three of our tables.

4.3 Summary

After getting the data from our information source MeSH into an SQL table, the KB structure

was built up and then all the biomedical entities were organized in “individuals” table. After that,

all of the synonymous terms were effectively recorded in “synonymous terms” table and then

finally, the “subclassof”, “typeof” and “means” relations regarding the gathered biomedical

entities of our KB, were collected through SQL scripting.

30

Chapter 5

RESULTS AND DISCUSSION

Now when we have already gone through the data extraction and relation gathering steps, this

chapter will focus on evaluating the effectiveness of the resulting ontology with reference to its

comparison to the existing KBs.

5.1 Overview

After getting done with all of the knowledge extraction process, the resulting KB contains the

required data. The total number of individuals, synonymous terms and facts recorded in our KB

are presented in Table 5.1.

Table 5.1: Total Number Of Individuals, Synonymous Terms And Facts In Our KB

Individuals 53020

Synonymous

Terms

96835

Facts 197731

Considering the availability of a few reliable sources other than MeSH; like UMLS and OMIM,

we could have gone a bit further and would have extended the coverage of our ontology, but

effective knowledge modeling of our ontology was preferred over increasing the sample-space

and incorporating the data from these other sources into our well modeled and well based

knowledge base is now left as a future work.

5.2 Comparison to Major Exiting Biomedical KBs

A hefty list of existing biomedical ontologies was presented in chapter 2. All of them focus on

different biomedical sub domains. None of them provided an integrated semantic knowledge

regarding different biomedical sub-domains at one place. E.g. knowledge regarding most of the

main factors (including, environmental, social, nutritional and diagnostic factors) of a disease has

not yet been collected at one place without focusing on a specialized context. If anyone has to

access all of these varying factors, then he must have to rely on more than one KB, as no core

KB having such integrated knowledge about contributing factors of diseases have yet been built.

31

And one of the major issues that can arise while utilizing more than one KBs together, is the

mapping of diversified entities covered in KBs. This issue was the main driving force and

motivation that lead us to this research work. So, in contrast to all of the existing KBs including:

1) ones that are focused on a specialized domain (e.g. PPI, GO, KEGG)

2) that have a taxonomic detailing but lack useful semantic relation (e.g. MeSH, UMLS)

3) that contain details regarding relations of specialized contexts, like relations between genotype

and drug response phenotype, or disease gene associations (e.g. OMIM, GAD, Diseasome).

Our ontology:

1) does not focus on any specialized domain and caters to all the diseases, their symptoms and

causative factors (including environmental, social, nutritional and diagnostic factors) on the

whole.

2) besides just classifying the biomedical data in predefined categories, provides knowledge

regarding three kind of semantic relations, including, subclassof, typeof and means relation

3) instead of just focusing on relations or causative factors of some specialized context like,

genotype and drug response phenotype, or disease gene associations; contains an integrated

knowledge regarding the general and most common causative factors of diseases i.e.

environmental, social, nutritional and diagnostic factors

Most of these above mentioned KBs are hand crafted and are manually curated by human

experts. A lot of information extraction techniques like pattern matching, natural language

processing and statistical learning [30, 31, 32, 33, 34, 35, 36] have been introduced recently for

creating high quality ontology, but they have still not been able to surpass the quality of

manually curated ones. However the manually integrated KBs have to undergo the challenges of

low coverage, high integration cost, quality assurance and fast aging [11]. Keeping this in view,

the selection of a quality ontology that has reliable information is quite a challenging task.

United States National Library of Medicine (NLM) is one of the 27 institutions of the U.S

National Institute of Health (NIH) and is considered one of the best in the research domain of

biomedicine and bioinformatics for developing and controlling several most frequently used and

trusted biomedical KBs. MeSH is also controlled by NLM and is frequently updated and revised,

so this leverages for our concerns regarding the reliability, quality assurance and fast aging

issues regarding MeSH being our knowledge source. Therefore, in contrast to the above

32

mentioned KBs, our ontology has not been manually curated and is based on data from a trusted

medical thesaurus MeSH.

A summarization of main differences between our KB and other existing biomedical KBs, is

presented in table 5.2.

5.3 Accessing the Knowledge Base

For effective visualization of the data gathered in our KB, we provide a web browsing interface.

The interface makes sure that the knowledge stored in our KB is clearly represented. In this

chapter it is explained in detail with the help of different example scenarios.

5.3.1 Tools – Microsoft Sql Server 2008, Microsoft Visual Studio 2010

As is detailed in chapter 4, our KB was built up in Microsoft SQL server 2008, so this

database served as the backend of our browsing tool and the actual browsing tool was

programmed through Microsoft Visual Studio 2010, in C#.

5.3.2 Knowledge Base Exploration

Through this browsing tool, users can comfortably access the information regarding

constituents of different categories of our KB. User can simply enter the name of that

entity which he wants to search for and as a result he obtains fact’s details regarding all

three kind of relation categories i.e. subclassof, typeof and means relation. Besides that, it

is also mentioned that to which KB category does this entered search term belongs. For

instance, if the user enters the search term “Dyslexia, Acquired”, then system will render

results as depicted in figure 5.1.

User can even click one of the entities from the results and then that entity becomes the

search term and all its related information is displayed.

For a comprehensive description of the kind of knowledge currently accessible through

our KB, some examples of the possible queries on our KB are described in natural

language as follows:

 Dyslexia, AcquiredIsA ?

The answer to this query will include all entities which are in the “subClassOf”

relationship with “Dyslexia, Acquired”.

 Dyslexia, AcquiredHasSynonyms ?

33

OR

Dyslexia, Acquired Means ?

OR

Dyslexia, AcquiredIsAlsoCalled ?

OR

Dyslexia, AcquiredIsTheSameAs ?

The answer to these queries will include all entities which are in the “means”

relationship with “Dyslexia, Acquired”.

 Dyslexia, AcquiredIsRelatedTo ?

OR

Dyslexia, Acquired BelongsTo ?

The answer to these queries will include all entities which are in the “TypeOf”

relationship with “Dyslexia, Acquired”.

Sample results for all of the categories of our ontology are presented in Appendix A.3.

5.4 Application Areas of our Knowledge Base

5.4.1 Overview

In past few years, use of ontological background knowledge has increased manifolds in

lot of domains. By judging its effectiveness in other domains, ontologies have become a

hot topic in biomedical domain as well. But, until now, most of the ontologies were

focused on a few sub domains of biomedicine. Considering this, our KB is intended to

provide information regarding varying biomedical sub domains.

As we all know that information on web is scattered and mixed with pile of noisy

unstructured texts and media [1]. This serves as a hindrance in effectively utilizing this

vast amount of medical literature. For example, if user initiates a simple web search

regarding a disease and wants to know its symptoms and contributory factors, then all he

34

Table5.2: comparison of our KB with other major existing biomedical KBs

KB

Domain

Source

Size

Semantic

Relations

Causative

Factors of

Diseases

Our Core

Ontology

Diseases,

Symptoms, Body

Parts, Nutritional

Factors,

Environmental

Factors, Social

Factors,

Diagnostic

Factors

MeSH 53020

Individuals,

96835

Synonymous

terms,

197731

Facts

Included Included, i.e.

Nutritional

Factors,

Environmental

Factors, Social

Factors,

Diagnostic

Factors

PPI db of

MIPS

Protein to protein

interaction

Scientific literature N.A Not

included

Not included

GO

GenBank

Genes, gene

product genes

Scientific

publications, direct

submissions from

individual

laboratories, bulk

submissions from

large-scale

sequencing centers

N.A Contains

relations of

specialized

context

Not included

KEGG Genomes,

Enzymatic

pathways,

chemicals

N.A >11 mil

genes,

~134,000

pathway

maps, 375

human

diseases,

9.336 drugs

Contains

relations of

specialized

context

Not included

OMIM genes, genetic

disorders,

including

phenotype

description and

body parts

Manually generated

by scientists and

physicians

~18,597

genes

Contains

relations of

specialized

context,

e.g.

relations

between

genotype

and drug

response

phenotype

Contains

causative

factors of

specialized

context, e.g.

only genetic

disorders that

can lead to a

disease

MeSH General medical

subjects for

indexing articles

for PubMed

database

PubMed

publications

~25,186

entities

Not

included

Included as a

separate entry

term

Diseasome Human disease

network

OMIM >4,213

diseases,

>91,182

genes

Contains

relations of

specialized

context

Not included

35

Figure 5.1: Browsing Interface for Our KB

is provided is with a huge pile of articles and papers. Even over viewing those links is

bound to take him lot of months, let alone to extract the required answers. So, if all of this

information regarding body parts, diseases, their symptoms and contributory factors is all

compiled in one machine readable KB, then it can have enormous benefits.

5.4.2 Major Application Areas

Some of those prospective applications and benefits of our KB are described as under:

1) A comprehensive machine readable encyclopedia that can be queried in a highly

precised and expressive way just like a semantic database.

2) Helping in document classification by integrating supervised or semi supervised

learning techniques with our background KB.

3) Providing a way to carry out entity relationship oriented semantic web search, by

helping in two ways: (i) detection of entities and relations from web pages, (ii)

reasoning about detected entities and relations in probabilistic logics.

4) Enabling effective entity disambiguation or word sense disambiguation (e.g. [40])

by accurately and quickly mapping the text phrases onto named entities in our

KB.

36

5) A medium for effectively gathering more related information from biomedical

literature and growing our KB.

6) Utilizing our ontological knowledge structure for the purpose of data cleaning (e.g

for data warehouses) [41] and record linkage (also known as entity resolution)

[42].

7) A comprehensive source for providing aid in machine translation (e.g. [43])

related tasks.

8) Serving as a backbone for natural language question answering browsing (e.g.

[44] [45]).

37

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Overview

Knowledge is of no use if it is not represented and shared in a quality way. Sharing and passing

knowledge helps in achieving the advancements without reinventing the wheel and thus results

in advancement of humanity as a whole. In past few years, amount of research work has grown

to great lengths in some fields. Especially, a lot of researches have been carried out in biomedical

domain and spreading of this knowledge to masses, made an important contributory step towards

civilization. But most of this knowledge is present in scientific publications and only very few

people know how to access it. If this knowledge can be made accessible to the common people

then a lot of advantages can be achieved including, diseases’ prevention, early and more accurate

disease diagnosis, more effective treatment and many more”.

Based on the huge pile of health information available on the internet, web has the potential of

being the ultimate encyclopedic source. But effective retrieval of required results from web has

always been problematic, due to which users are still far from exploiting this potential. Users

have to undergo vast amount of difficulties in finding the exact precise information from this

huge pile of health data.

Especially, most of the information in biomedical research area is not yet captured in databases

today, but rather present in structured form in scientific publications and also in semi-structured

or unstructured form on web. If this knowledge gets effectively provided to the population then

many diseases can be prevented, diagnosed earlier, and more accurately, and thus treated better,

and cured more effectively; even epidemics and pandemics could be avoided.

Researchers have long been trying to find the solution to this problem and according to them [1]

[4] [5] [6] [7]; the best possible way to solve this issue is to move to the concept of semantic

web. But due to the diversity of terms and their definitions between groups; adding semantics to

web is not a straight forward task. It asks for achieving a shared and common understanding of a

domain. So, this leads us to the creation of an ontology, which can be applied to various contexts

38

for variety of purposes. Ontologies serve as the backbone of semantic web by facilitating

knowledge exchange across people and application systems.

Thus, we dedicated ourselves to the accessibility of the medical expertise for the populace by

building a biomedical knowledge base on entities and relations regarding diseases, their

symptoms, body parts and determining factors, with emphasis on environmental, social,

nutritional and diagnostic factors.

6.2 Conclusion

In this research work, we have described the whole process of creation of a biomedical

knowledge base containing entities and relationships (subclassof, typeof, means) regarding body

parts, diseases, their symptoms and causative factors. The varying causative factors which are

covered through this KB include environmental factors, social factors, nutritional factors and

diagnostic factors.

The problems of effective retrieval of required results from web and lack of availability of

biomedical research information in databases have long been prevailing in the research

community. Researchers have long been trying to find the solution to this problem and proposed

the concept of semantic web as a solution for them. But due to the diversity of terms and their

definitions between groups; adding semantics to web was not a straight forward task. It asks for

achieving a shared and common understanding of a domain. So, these lead us to the creation of

an ontology, which can be applied to various contexts for variety of purposes.

In the biomedical domain, there already were plenty of biomedical knowledge collections

available. After going through an overview of the state-of-the-art of existing knowledge

collections of general as well as biomedical domain, we noticed that none of them was capable

of providing certain level of details regarding different causative factors of diseases at one place

through one core KB, without focusing on a specialized context. So, this gave birth to this idea of

creating a core KB, that can provide integrated knowledge regarding, diseases, symptoms, body

parts and causative factors (environmental, social, nutritional, diagnostics factors) of diseases.

Good data leads to good results and bad data is always misleading. Especially for building an

ontology, the quality and reliability of data matters a lot, as this is what eventually results in

effectiveness, reliability and coverage of an ontology. The data we begin with takes the form of

an input and this input serves as the backbone of ontology. Keeping this in mind, we selected the

most trusted biomedical thesaurus MeSH as our Information source and collected all of the

39

required biomedical entities’ details from its web browser into an SQL database, through our

customized crawler.

After crawling the data from our information source, MeSH theasaurus, into an SQL database,

the KB structure was built up and then all the biomedical entities from that crawled data were

organized in “individuals” table. After that, all of the related entry terms for these organized

entities of our KB, were effectively recorded in “synonymous terms” table and then finally, the

“subclassof”, “typeof” and “means” relations regarding the gathered biomedical entities of our

KB, were collected through SQL scripting. Facts or relations regarding each MeSH entity were

quickly and accurately collected by effectively querying the MeSH Tree Numbers of entities.

For providing a detailed understanding of ontologies to the readers, we presented a

comprehensive introduction to the existing knowledge bases and knowledge representation

techniques in both general and biomedical domain. Besides tha, the data model and source for

our KB were also clearly mentioned and explained in detail to avoid any confusions.

Nonetheless, our KB can still be further improved and extended increasing its effectiveness and

coverage.

6.3 Future Work

One of the major improvement areas is source of the KB. Currently, our KB is utilizing only

MeSH thesaurus as the core source, so it would be quite interesting and useful to do the refined

integration of data from some other trusted knowledge sources as well. This might result in

improvement regarding coverage of our KB, in a way that more diseases, symptoms, body parts

and factors get collected as well. Besides that, some improvement in knowledge model of our

KB might also result in a more faithful knowledge representation from respective taxonomies.

In addition to that, an important contribution would be to record the relations between those

entities which belong to different classes, e.g. to record relations between entities of class

“Diseases” and class “Diagnostic Factors”. This kind of relations can be effectively collected

from scientific research material by utilizing some text mining techniques.

Last but not least, additional visualization capabilites can be implemented to provide better

access to the knowledge base. Among others, this includes a redesigning of our Web interface

towards a clearer and more sophisticated layout.

40

APPENDICES

Appendix A.1: Code Snippet for our Customized Crawler

Crawler.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.IO;
using System.Collections.Specialized;
using ExtractThesis.Functions;

namespace Utility.Parser
{
 public class CCrawler
 {
 private CookieContainer _cookieContainer;

 public CCrawler()
 {
 _cookieContainer = new CookieContainer();
 }

 public byte[] ProcessPostResponseGetBinary(Dictionary<string, string> post, string _url)
 {
 if (_url == String.Empty)
 throw new Exception("ProcessPostResponse: URL not provided");

 ASCIIEncoding encoding = new ASCIIEncoding();
 StringBuilder postData = new StringBuilder();
 bool first = true;

 foreach (KeyValuePair<string, string> p in post)
 {
 if (first)

41

 {
 postData.Append(p.Key + "=" + p.Value);
 first = false;
 }
 else
 postData.Append("&" + p.Key + "=" + p.Value);
 }

 byte[] data = encoding.GetBytes(postData.ToString());

 // Prepare web request...
 HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url);
 myRequest.Method = "POST";

 myRequest.CookieContainer = _cookieContainer;

 myRequest.ContentType = "application/x-www-form-urlencoded";
 myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)";
 myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8";
 myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5");
 myRequest.Headers.Add("Accept-Encoding: gzip,deflate");
 myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7");
 myRequest.KeepAlive = true;
 myRequest.Headers.Add("Keep-Alive: 300");

 myRequest.ContentLength = data.Length;
 Stream newStream = myRequest.GetRequestStream();

 // Send the data.
 newStream.Write(data, 0, data.Length);
 newStream.Close();

 myRequest.CookieContainer = _cookieContainer;

 HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse();
 _cookieContainer = myRequest.CookieContainer;

 Stream remoteStream = myResponse.GetResponseStream();

 MemoryStream localStream = new MemoryStream();

42

 byte[] buffer = new byte[1024];
 int bytesRead;
 int bytesProcessed = 0;
 do
 {
 bytesRead = remoteStream.Read(buffer, 0, buffer.Length);
 localStream.Write(buffer, 0, bytesRead);
 bytesProcessed += bytesRead;
 } while (bytesRead > 0);

 byte[] output = new byte[localStream.Length];

 localStream.Position = 0;

 localStream.Read(output, 0, Convert.ToInt32(localStream.Length));
 return output;
 }

 public string ProcessPostResponse(Dictionary<string, string> post, string _url)
 {
 if (_url == String.Empty)
 throw new Exception("ProcessPostResponse: URL not provided");

 ASCIIEncoding encoding = new ASCIIEncoding();
 StringBuilder postData = new StringBuilder();
 bool first = true;

 foreach (KeyValuePair<string, string> p in post)
 {
 if (first)
 {
 postData.Append(p.Key + "=" + p.Value);
 first = false;
 }
 else
 postData.Append("&" + p.Key + "=" + p.Value);
 }

 byte[] data = encoding.GetBytes(postData.ToString());

 // Prepare web request...

43

 HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url);
 myRequest.Method = "POST";

 myRequest.CookieContainer = _cookieContainer;

 myRequest.ContentType = "application/x-www-form-urlencoded";
 myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)";
 myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8";
 myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5");
 myRequest.Headers.Add("Accept-Encoding: gzip,deflate");
 myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7");
 myRequest.KeepAlive = true;
 myRequest.Headers.Add("Keep-Alive: 300");

 myRequest.ContentLength = data.Length;
 Stream newStream = myRequest.GetRequestStream();
 // Send the data.
 newStream.Write(data, 0, data.Length);
 newStream.Close();

 myRequest.CookieContainer = _cookieContainer;

 HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse();
 _cookieContainer = myRequest.CookieContainer;
 StreamReader reader = new StreamReader(myResponse.GetResponseStream());
 return reader.ReadToEnd().Trim();
 }

 public string ProcessPostResponseNoHeaders(Dictionary<string, string> post, string _url)
 {
 if (_url == String.Empty)
 throw new Exception("ProcessPostResponse: URL not provided");

 ASCIIEncoding encoding = new ASCIIEncoding();
 StringBuilder postData = new StringBuilder();
 bool first = true;

 foreach (KeyValuePair<string, string> p in post)
 {
 if (first)
 {

44

 postData.Append(p.Key + "=" + p.Value);
 first = false;
 }
 else
 postData.Append("&" + p.Key + "=" + p.Value);
 }

 byte[] data = encoding.GetBytes(postData.ToString());

 // Prepare web request...
 HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url);
 myRequest.Method = "POST";

 myRequest.CookieContainer = _cookieContainer;

 myRequest.ContentType = "application/x-www-form-urlencoded";
 myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)";
 myRequest.KeepAlive = true;
 myRequest.Headers.Add("Keep-Alive: 300");

 myRequest.ContentLength = data.Length;
 Stream newStream = myRequest.GetRequestStream();

 // Send the data.
 newStream.Write(data, 0, data.Length);
 newStream.Close();

 myRequest.CookieContainer = _cookieContainer;

 HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse();
 _cookieContainer = myRequest.CookieContainer;
 StreamReader reader = new StreamReader(myResponse.GetResponseStream());
 return reader.ReadToEnd().Trim();
 }

 public string ProcessPostResponseNoHeaders(List<NVP> post, string _url)
 {
 if (_url == String.Empty)
 throw new Exception("ProcessPostResponse: URL not provided");

 ASCIIEncoding encoding = new ASCIIEncoding();

45

 StringBuilder postData = new StringBuilder();
 bool first = true;

 foreach (NVP p in post)
 {
 if (first)
 {
 postData.Append(p.Name + "=" + p.Value);
 first = false;
 }
 else
 postData.Append("&" + p.Name + "=" + p.Value);
 }

 byte[] data = encoding.GetBytes(postData.ToString());

 // Prepare web request...
 HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url);
 myRequest.Method = "POST";

 myRequest.CookieContainer = _cookieContainer;

 myRequest.ContentType = "application/x-www-form-urlencoded";
 myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)";
 myRequest.KeepAlive = true;
 myRequest.Headers.Add("Keep-Alive: 300");

 myRequest.ContentLength = data.Length;
 Stream newStream = myRequest.GetRequestStream();

 // Send the data.
 newStream.Write(data, 0, data.Length);
 newStream.Close();

 myRequest.CookieContainer = _cookieContainer;

 HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse();
 _cookieContainer = myRequest.CookieContainer;
 StreamReader reader = new StreamReader(myResponse.GetResponseStream());
 return reader.ReadToEnd().Trim();

46

 }

 public string ProcessGetResponse(Dictionary<string, string> post, string _url)
 {
 if (_url == String.Empty)
 throw new Exception("ProcessGetResponse: URL not provided");

 ASCIIEncoding encoding = new ASCIIEncoding();
 StringBuilder queryString = new StringBuilder();
 bool first = true;

 foreach (KeyValuePair<string, string> p in post)
 {
 if (first)
 {
 queryString.Append("?" + p.Key + "=" + p.Value);
 first = false;
 }
 else
 queryString.Append("&" + p.Key + "=" + p.Value);
 }

 // Prepare web request...
 HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url + queryString.ToString());
 myRequest.Method = "GET";
 myRequest.CookieContainer = _cookieContainer;

 myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)";
 myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8";
 myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5");
 myRequest.Headers.Add("Accept-Encoding: gzip,deflate");
 myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7");
 myRequest.KeepAlive = true;
 myRequest.Headers.Add("Keep-Alive: 300");
 myRequest.ContentType = "application/x-www-form-urlencoded";

 HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse();
 _cookieContainer = myRequest.CookieContainer;

 StreamReader reader = new StreamReader(myResponse.GetResponseStream());
 return reader.ReadToEnd().Trim();

47

 }
 public string ProcessResponse(string _url)
 {
 if (_url == String.Empty)
 throw new Exception("ProcessResponse: URL not provided");

 // Prepare web request...
 HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url);
 myRequest.Method = "GET";
 myRequest.CookieContainer = _cookieContainer;

 myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)";
 myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8";
 myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5");
 myRequest.Headers.Add("Accept-Encoding: gzip,deflate");
 myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7");
 myRequest.KeepAlive = true;
 myRequest.Headers.Add("Keep-Alive: 300");
 myRequest.ContentType = "application/x-www-form-urlencoded";

 HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse();
 _cookieContainer = myRequest.CookieContainer;

 StreamReader reader = new StreamReader(myResponse.GetResponseStream());
 return reader.ReadToEnd().Trim();
 }

 public string ProcessResponseNoHeaders(string _url)
 {
 if (_url == String.Empty)
 throw new Exception("ProcessResponse: URL not provided");

 // Prepare web request...
 HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url);
 myRequest.Method = "GET";
 myRequest.CookieContainer = _cookieContainer;

 myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)";

48

 HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse();
 _cookieContainer = myRequest.CookieContainer;

 StreamReader reader = new StreamReader(myResponse.GetResponseStream());
 return reader.ReadToEnd().Trim();
 }

 public string ProcessResponseCCHeadliner(string _url)
 {
 if (_url == String.Empty)
 throw new Exception("ProcessResponse: URL not provided");

 // Prepare web request...
 HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create(_url);
 myRequest.Method = "GET";
 myRequest.CookieContainer = _cookieContainer;

 myRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705;)";
 myRequest.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8";
 myRequest.Headers.Add("Accept-Language: en-us,en;q=0.5");
 myRequest.Headers.Add("Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7");
 myRequest.KeepAlive = true;
 myRequest.Headers.Add("Keep-Alive: 300");
 myRequest.ContentType = "application/x-www-form-urlencoded";

 HttpWebResponse myResponse = (HttpWebResponse)myRequest.GetResponse();
 _cookieContainer = myRequest.CookieContainer;

 StreamReader reader = new StreamReader(myResponse.GetResponseStream());
 return reader.ReadToEnd().Trim();
 }

 public string ProcessResponseAuthenticateNTLMSecurity(string username, string password, string url)
 {
 string ReturnValue = "";

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.Method = "GET";
 request.KeepAlive = true;

49

 request.Accept = @"*/*";

 if (string.IsNullOrEmpty(username) == false && string.IsNullOrEmpty(password) == false)
 {
 NetworkCredential credential = new NetworkCredential(username, password);
 CredentialCache credentialCache = new CredentialCache();
 credentialCache.Add(new Uri(url), "NTLM", credential);
 request.Credentials = credentialCache;
 }

 HttpWebResponse response = null;
 string res = "";
 try
 {
 response = (HttpWebResponse)request.GetResponse();
 StreamReader reader = new StreamReader(response.GetResponseStream());
 res = reader.ReadToEnd().Trim();
 }
 catch
 {
 throw;
 }

 return res;
 }

 public CookieContainer CookieContainer
 {
 get { return _cookieContainer; }
 set { _cookieContainer = value; }
 }
 }
}

50

Process.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ExtractThesis.Functions;
using Utility.Parser;
using HtmlAgilityPack;
using System.Web;
using ExtractThesis;
using MoreLinq;
using System.Threading;

namespace ExtractThesis.NLM
{
 public class Process
 {
 public static int MAX_RECURSION = 950;
 public static int RECURSION = 0;
 public static ExtractThesisEntities DBContext;
 public static List<NVP> filteredList = new List<NVP>();

 public static CCrawler craw = new CCrawler();

 public static void Work()
 {
 DBContext = new ExtractThesisEntities();

 //Step 1 : Read All links from Page 1
 List<NVP> linkCollection = DoMainPage();

 List<NVP> completeItemList = new List<NVP>();
 //Step 2 : Read out every page from Step 1
 foreach (NVP p in linkCollection)
 {
 completeItemList.AddRange(DoSecondPage(p));
 }

51

//Step 3: Read through Entire Link List and Build Category Chart in filteredList

 foreach (NVP i in completeItemList)
 {
 RecursiveReadAllItems(i.Value);
 }
 }

 public static List<NVP> DoMainPage()
 {
 string url = "http://www.nlm.nih.gov/mesh/trees.html";
 string html = craw.ProcessGetResponse(new Dictionary<string, string>(), url);
 List<NVP> linkCollection = new List<NVP>();

 HtmlDocument doc = new HtmlDocument();
 doc.LoadHtml(html);

 HtmlNodeCollection treeItems = doc.DocumentNode.SelectNodes("html/body/div[@id='wrapper-fluid']/div[@id='container-
fluid']/div[@id='main-body']/div[@id='body']/ol/li");

//Read from Tree Nodes and fill Name Value Pairs with Links and Name
 foreach (HtmlNode nTree in treeItems)
 {
 HtmlNodeCollection ns = nTree.SelectNodes("ul/li");
 foreach (HtmlNode n in ns)
 {
 string Name = n.InnerText;
 string Link = "";
 if (n.SelectSingleNode("a[1]").Attributes["href"] != null)
 Link = "http://www.nlm.nih.gov" + n.SelectSingleNode("a[1]").Attributes["href"].Value;
 linkCollection.Add(new NVP("", Name, Link));
 }
 }

 return linkCollection;
 }

52

public static NVP[] DoSecondPage(NVP page)
 {
 string html = craw.ProcessGetResponse(new Dictionary<string, string>(), page.Value);
 HtmlDocument doc = new HtmlDocument();
 doc.LoadHtml(html);

 HtmlNode ul = doc.DocumentNode.SelectSingleNode("html/body/div[@id='wrapper-fluid']/div[@id='container-
fluid']/div[@id='main-body']/div[@id='body']/ul[@class='Level1']");
 List<NVP> allItems = ReadSecondPageRecursive(1, ul);

 return allItems.ToArray();
 }

 public static List<NVP> ReadSecondPageRecursive(int Level, HtmlNode ul)
 {
 NVP listItem = null;
 List<NVP> SecondPageList = new List<NVP>();
 HtmlNodeCollection lis = ul.SelectNodes("li");
 foreach (HtmlNode li in lis)
 {
 string Name = "";
 string Link = "";

 if (li.SelectSingleNode("a").Attributes["href"] != null)
 {
 Name = li.SelectSingleNode("a").InnerText;
 Link = li.SelectSingleNode("a").Attributes["href"].Value;
 listItem = new NVP(Level.ToString(), Name, Link);
 }

 HtmlNode innerUL = li.SelectSingleNode("ul");
 if (innerUL != null)
 {
 listItem.InnerValues = ReadSecondPageRecursive(++Level, innerUL);
 }

 if (listItem != null)
 {
 SecondPageList.Add(listItem);
 }
 }

53

 return SecondPageList;
 }

 public static string GetTermFromURL(string url)
 {
 string term = "";
 string[] urlSplits = url.Split(new char[] { '?', '&', '=' }, StringSplitOptions.RemoveEmptyEntries);
 for (int i = 0; i < urlSplits.Length; i++)
 {
 string termSearcher = urlSplits[i].ToLower();
 if (termSearcher.Equals("term") && urlSplits.Length > i)
 {
 term = urlSplits[i + 1];
 }
 }

 return term.ToLower();
 }

 public static void RecursiveReadAllItems(string url)
 {
 if (++RECURSION > MAX_RECURSION)
 {
 --RECURSION;
 return;
 }

 if (String.IsNullOrEmpty(url))
 {
 --RECURSION;
 return;
 }
 else
 {
 string html = "";
 bool readSuccess = false;

 for (int o = 0; o < 10; o++)
 {
 try

54

 {
 html = craw.ProcessGetResponse(new Dictionary<string, string>(), url);
 readSuccess = true;
 }
 catch
 {
 readSuccess = false;
 Thread.Sleep(5000);
 }
 if (readSuccess)
 break;
 }

 if (!readSuccess)
 {
 throw new Exception("Internet Error, Cannot Proceed...");
 }

 HtmlDocument doc = new HtmlDocument();
 doc.LoadHtml(html);
 HtmlNodeCollection infoTableTRs = doc.DocumentNode.SelectNodes("html/body/table/tr");

 string term = GetTermFromURL(url);

 if (infoTableTRs != null)
 {
 NVP details = new NVP();

 foreach (HtmlNode tr in infoTableTRs)
 {
 string th = tr.SelectSingleNode("th") != null ? tr.SelectSingleNode("th").InnerText.Trim() : "";
 string td = tr.SelectSingleNode("td") != null ? tr.SelectSingleNode("td").InnerText.Trim() : "";

 if (th.ToLower().Trim().StartsWith("mesh heading"))
 {
 details.MeshHeading = td;
 }
 else if (th.ToLower().Trim().StartsWith("tree number"))
 {
 details.TreeNumber = td;
 }

55

 else if (th.ToLower().Trim().StartsWith("annotation"))
 {
 details.Annotation = td;
 }
 else if (th.ToLower().Trim().StartsWith("scope note"))
 {
 details.ScopeNote = td;
 }
 else if (th.ToLower().Trim().StartsWith("date of entry"))
 {
 details.DateOfEntry = td;
 }
 else if (th.ToLower().Trim().StartsWith("entry term"))
 {
 details.EntryTerm = td;
 }
 else if (th.ToLower().Trim().StartsWith("unique id"))
 {
 details.UniqueID = td;
 }
 }

 var u = DBContext.FilteredLists.FirstOrDefault(d => d.Term == term);

 if (u == null)
 {
 details.Term = term;
 details.URL = url;
 filteredList.Add(details);

//Step 4 : Instantly Flush to Database
 foreach (NVP i in filteredList)
 {
 FilteredList l = new FilteredList();
 l.Category = i.Category;
 l.Term = i.Term;
 l.AllowableQualifiers = i.AllowableQualifiers;
 l.Annotation = i.Annotation;
 l.DateOfEntry = i.DateOfEntry;
 l.EntryCombination = i.EntryCombination;

56

 l.EntryTerm = i.EntryTerm;
 l.HistoryNote = i.HistoryNote;
 l.MeshHeading = i.MeshHeading;
 l.PreviousIndexing = i.PreviousIndexing;
 l.ScopeNote = i.ScopeNote;
 l.TreeNumber = i.TreeNumber;
 l.UniqueID = i.UniqueID;
 l.URL = url;
 DBContext.AddToFilteredLists(l);
 }

 DBContext.SaveChanges();
 filteredList.Clear();
 }
 }

 //Secondary Scan
 var scanCheck = DBContext.Scans.FirstOrDefault(d => d.Term == term);
 if (scanCheck == null)
 {
 Scan sc = new Scan();
 sc.Term = term;
 DBContext.AddToScans(sc);
 }
 DBContext.SaveChanges();

 HtmlNodeCollection tables = doc.DocumentNode.SelectNodes("html/body/table[2]");

 if (tables != null)
 {
 for (int i = 0; i < tables.Count; i++)
 {
 HtmlNodeCollection trs = tables[i].SelectNodes("tr");
 foreach (HtmlNode tr in trs)
 {
 HtmlNode tdLinkNode = tr.SelectSingleNode("td[@colspan='4']/a");
 if (tdLinkNode != null && tdLinkNode.Attributes["href"] != null)
 {
 string newURL = "http://www.nlm.nih.gov" + tdLinkNode.Attributes["href"].Value;
 string newterm = GetTermFromURL(newURL);

57

 Scan check = DBContext.Scans.FirstOrDefault(d => d.Term == newterm);

 if (check == null)
 RecursiveReadAllItems(newURL);
 }
 }
 }
 }
 }
 }
 }
}

58

Appendix A.2: Script for Extracting “subclassof”, “typeof”, and “means” relation

DECLARE @tmp_MHeading nvarchar(MAX)

 DECLARE @tmp_MTreeNumber nvarchar(1000)

 DECLARE @MHeading_List cursor

 DECLARE @tmpTypeOfMHeading_Predecessor nvarchar(MAX)

 DECLARE @tmpTypeOfMHeading_Leaf nvarchar(MAX)

 DECLARE @TypeOfMHeading_List cursor

 DECLARE @tmp_MUniqueID_Leaf nvarchar(250)

 DECLARE @tmp_MUniqueID_Parent nvarchar(250)

 DECLARE @tmp_ParentMHeading nvarchar(250)

 DECLARE @tmp_TrimmedLeafTreeNumber nvarchar(1000)

 set @MHeading_List = CURSOR FOR

 select MeshHeading, TreeNumber from FilterListSorted where TreeNumber LIKE 'E07%'

 OPEN @MHeading_List

 FETCH NEXT FROM @MHeading_List into @tmp_MHeading,@tmp_MTreeNumber

 WHILE (@@FETCH_STATUS = 0)

 BEGIN

 --Getting the UniqueId of LeafMeSHHeading

 SELECT @tmp_MUniqueID_Leaf = UniqueId FROM FilteredList WHERE MeshHeading = @tmp_MHeading

 --INSERTING subclassof RELATIONS

 IF(len(@tmp_MTreeNumber) <> 3)

 BEGIN

 SET @tmp_TrimmedLeafTreeNumber =substring(@tmp_MTreeNumber, 1, len(@tmp_MTreeNumber)-4)

 SELECT @tmp_ParentMHeading = MeshHeading

 FROM FilterListSorted

 WHERE TreeNumber LIKE @tmp_TrimmedLeafTreeNumber

 SELECT @tmp_MUniqueID_Parent = UniqueID

 FROM FilteredList

 WHERE MeshHeading = @tmp_ParentMHeading

 INSERT INTO Relations(Argument1,Relation,Argument2)

 VALUES (@tmp_MUniqueID_Leaf,'subclassof', @tmp_MUniqueID_Parent)

59

 END

 --INSERTING means RELATIONS

 INSERT INTO Relations(Argument1,Relation,Argument2)

 VALUES (@tmp_MUniqueID_Leaf,'means', @tmp_MUniqueID_Leaf + '_0')

 --INSERTING Typeof RELATIONS

 set @TypeOfMHeading_List = CURSOR FOR

 SELECT DISTINCT f2.MeshHeading AS MeSHHeading_Predecessor,f1.MeshHeading AS MeSHHeading_Leaf

 FROM FilterListSorted AS f1,FilterListSorted AS f2

 WHERE f1.TreeNumber LIKE Convert(nvarchar(500),f2.TreeNumber) + '%'

 AND f1.MeshHeading = @tmp_MHeading

 OPEN @TypeOfMHeading_List

 FETCH NEXT FROM @TypeOfMHeading_List into @tmpTypeOfMHeading_Predecessor, @tmpTypeOfMHeading_Leaf

 WHILE (@@FETCH_STATUS = 0)

 BEGIN

 IF(@tmpTypeOfMHeading_Predecessor <> @tmpTypeOfMHeading_Leaf)

 BEGIN

 INSERT INTO Relations(Argument1,Relation,Argument2)

 SELECT @tmp_MUniqueID_Leaf,'typeof',f1.UniqueID

 FROM FilteredList f1

 WHERE f1.MeshHeading = @tmpTypeOfMHeading_Predecessor

 END

 FETCH NEXT FROM @TypeOfMHeading_List into @tmpTypeOfMHeading_Predecessor, @tmpTypeOfMHeading_Leaf

 END

 FETCH NEXT FROM @MHeading_List into @tmp_MHeading,@tmp_MTreeNumber

 END

 CLOSE @MHeading_List

 DEALLOCATE @MHeading_List

60

Appendix A.3: Sample Results for Different Categories of Our Ontology

1. Diseases

61

2. Symptoms

62

3. Body Parts

63

4. Environmental Factors

64

65

5. Social Factors

66

6. Nutritional Factors

67

7. Diagnostic Factors

68

BIBLIOGRAPHY

1. Weikum, Gerhard, and Martin Theobald. "From information to knowledge: harvesting

entities and relationships from web sources." Proceedings of the twenty-ninth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems. ACM, 2010.

2. Soualmia, Lina Fatima, Christine Golbreich, and S. J. Darmoni. "Representing the MeSH

in OWL: Towards a semiautomatic migration." Proceedings of the KR 2004 Workshop

on Formal Biomedical Knowledge Representation. 2004..

3. Hu, Wenyang. Ontology-based web informatics system. Diss. University of Florida,

2002.

4. Flouris, Giorgos, et al. "Ontology change: Classification and survey." Knowledge

Engineering Review 23.2 (2008): 117-152.

5. Lenat, Douglas B. "CYC: A large-scale investment in knowledge infrastructure."

Communications of the ACM 38.11 (1995): 33-38.

6. Ye, Min, et al. "Text Mining for Building a Biomedical Knowledge Base on Diseases,

Risk Factors, and Symptoms.", 2011.

7. Freebase: An entity graph of people, places and things. http://www.freebase.com/.

8. True knowledge: The internet answer engine. http://www.trueknowledge.com/.

9. Wikipedia: The Free Encyclopedia. http://www.wikipedia.org/.

10. Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and

Zachary Ives, “DBpedia: a nucleus for a web of open data”, In Proceedings of

International Semantic Web Conference 2007, 2007.

11. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: a core of semantic

knowledge”, In Proceedings of the 16th international conference on World Wide Web,

WWW '07, pages 697-706. ACM, 2007. ACM ID: 1242667.

http://www.freebase.com/
http://www.trueknowledge.com/
http://www.wikipedia.org/

69

12. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. “YAGO: a large ontology

from wikipedia and WordNet”, Web Semantics: Science, Services and Agents on the

World Wide Web, 6(3):203-217, September 2008.

13. Johannes Ho_art, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. “Yago2:

A spatially and temporally enhanced knowledge base fromWikipedia”, Research Report

MPI-I-2010-5-007, Max-Planck-Institut for Informatik, Saarbrucken, November 2010.

14. Wang, Yafang, et al. "Timely yago: harvesting, querying, and visualizing temporal

knowledge from wikipedia." Proceedings of the 13th International Conference on

Extending Database Technology. ACM, 2010.

15. Pagel, Philipp, et al. "The MIPS mammalian protein–protein interaction database."

Bioinformatics 21.6 (2005): 832-834.

16. Harris, M. A., et al. "The Gene Ontology (GO) database and informatics resource."

Nucleic acids research 32.Database issue (2004): D258.

17. Gene Ontology Consortium. The gene ontology (GO) project in 2006. Nucleic Acids

Research, 34(Database issue):D322{326, January 2006. PMID:16381878.

18. Minoru Kanehisa and Susumu Goto. KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Research, 28(1):27 {30, January 2000.

19. KEGG: The Kyoto Encyclopedia of Genes and Genomes. http://www.genome.jp/kegg/.

20. MeSH: Medical Subject Headings. http://www.nlm.nih.gov/mesh/.

21. PubMed: U.S. National Library of Medicine National Institutes of Health.

http://www.ncbi.nlm.nih.gov/pubmed/.

22. Olivier Bodenreider. The uni_ed medical language system (umls): integrating biomedical

terminiology. Nucleic Acids Research, 32(suppl 1):D267-D270, 2004.

http://www.genome.jp/kegg/
http://www.nlm.nih.gov/mesh/
http://www.ncbi.nlm.nih.gov/pubmed/

70

23. Russ B Altman. PharmGKB: a logical home for knowledge relating genotype to drug

response phenotype. Nature Genetics, 39, April 2007.

24. Yueyi Liu, Paul Wise, and Atul Butte. The "etiome": identification and clustering of

human disease etiological factors. BMC Bioinformatics, 10(Suppl 2):S14, 2009.

25. Ada Hamosh, Alan F. Scott, Joanna S. Amberger, Carol A. Bocchini, and Victor A.

McKusick. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human

genes and genetic disorders. In Nucleic Acids Res, pages D514-517, January 2005

26. OMIM: Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/omim.

27. Kevin G. Becker, Kathleen C. Barnes, Tiffani J. Bright, and S. Alex Wang. The Genetic

Association Database. Nature Genetics, 36(5):431-432, May 2004.

28. Albert-L_aszl_o Barab_asi. Network medicine - from obesity to the “diseasome”. New

England Journal of Medicine, 357(4):404-407, 2007.

29. Kwang-Il Goh, Michael E. Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-

Laszlo Barabasi. The human disease network. PROCEEDINGS OF THE NATIONAL

ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 104(21):8685-

8690, May 2007.

30. F. M. Suchanek, G. Ifrim, and G. Weikum. “Combining linguistic and statistical analysis

to extract relations from web documents”, In KDD, 2006.

31. O. Etzioni, M. J. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland,

D. S. Weld, and A. Yates, “Web-scale information extraction in KnowItAll”. In WWW,

2004.

32. M. J. Cafarella, D. Downey, S. Soderland, and O. Etzioni, “KnowItNow: Fast, scalable

information extraction from the web”, In EMNLP, 2005.

http://www.ncbi.nlm.nih.gov/omim

71

33. E. Agichtein and L. Gravano, “Snowball: extracting relations from large plain-text

collections”, In ICDL, 2000.

34. R. Snow, D. Jurafsky, and A. Y. Ng, “Semantic taxonomy induction from heterogenous

evidence”, In ACL, 2006.

35. P. Pantel and M. Pennacchiotti, “Espresso: Leveraging generic patterns for automatically

harvesting semantic relations”, In ACL, 2006.

36. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, “GATE: A framework and

graphical development environment for robust NLP tools and applications”, In ACL,

2002.

37. S. Russell and P. Norvig, “Artificial Intelligence: a Modern Approach”, Prentice Hall,

2002.

38. S. Staab and R. Studer, “Handbook on Ontologies”, Springer, 2004.

39. Spiteller, Verena, "Documentation of the project “MeSH”, Vienna University of

Technology, 2007.

40. R. C. Bunescu and M. Pasca, “Using encyclopedic knowledge for named entity

disambiguation”, In EACL, 2006.

41. S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identification of fuzzy duplicates”, In

ICDE, 2005.

42. W. W. Cohen and S. Sarawagi, “Exploiting dictionaries in named entity extraction:

combining semi-markov extraction processes and data integration methods”, In KDD,

2004.

43. N. Chatterjee, S. Goyal, and A. Naithani, “Resolving pattern ambiguity for english to

hindi machine translation using WordNet”, In Workshop on Modern Approaches in

Translation Technologies, 2005.

72

44. W. Hunt, L. Lita, and E. Nyberg, “Gazetteers, wordnet, encyclopedias, and the web:

Analyzing question answering resources”, Technical Report CMU-LTI-04-188,

Language Technologies Institute, Carnegie Mellon, 2004.

45. G. Ifrim and G. Weikum, “Transductive learning for text classification using explicit

knowledge models”, In PKDD, 2006.

