
i

Feature Selection and Tumor Identification in Brain
Magnetic Resonance Imaging using Hybrid Swarm

Intelligence and Machine Learning

By

ATIQ UR REHMAN

Computer Engineering (MS-69)

ii

Department Of Computer Engineering EME College NUST
Rawalpindi

Session (2011-2013)

A thesis submitted to the faculty of Computer Engineering Department, Electrical and
Mechanical Engineering College, National University of Sciences and Technology, Rawalpindi

in partial fulfillment of the requirements for the degree of Master of Science in Computer
Engineering

 Approved By

Supervisor : Dr. Aasia Khanum

GC Members

1. Dr. Arslan Shokat

2. Dr. Saad Rehman

3. Dr. Farhan Mehmood

Date:

iii

COPY RIGHTS

All the rights of project are reserved to project team. Any illegal reproduction of

project work or thesis may result in civil crime and will be consider as the executed

further under copy right laws.

iv

ACKNOWLEDGEMENT

First I would like to thank Almighty Allah to give me the opportunity and strength to

complete my thesis successfully. I thank my parents for their inspiration and

encouragement through the progress of this work.

I also would like to thank my supervisor, Dr. Aasia Khanum for her many suggestions

and constant support during this work. I am very grateful for those research

opportunities she provided me and I believe this research experience will greatly

benefit my career in the future. I learned from Dr. Aasia Khanum, that persistent

effort and faith are undoubtedly the most important assets.

All of my GC Members, I wish to express my heartiest gratitude to Dr. Arslan Shokat,

Dr. Farhan and Dr. Saad Rehman on their invaluable advice and encouraging support.

They not only supervised me to materialize the work but also showed me the way to

think in different dimensions and work steadily from the very beginning of a research.

Their continuous support helped me to feel my confinement with the topic all

through my research.

Appreciation is extended to all people who answered my questions and provided me

with valuable information and support in my research.

v

ABSTRACT

Automatic classification of Brain MR Images is one of hotspots in the field of Medical Imaging.
Feature Selection of Brain MRI is crucial and it affects the classification results; however
selecting optimal Brain MRI features is difficult. Particle Swarm Optimization (PSO) is an
evolutionary computing technique which was developed observing the social behavior of bird
flocks. PSO is an intelligent technique containing properties like adaptation and self-organizing,
these intelligent properties make PSO one of the best techniques for searching the optimal
solution for optimization problems. The difficulty mentioned above is solved using the Discrete
Binary PSO technique which proved it self quite successful. Population of Particles is generated
and the search strategy is applied so that an efficient feature selection process for Brain MRI is
proposed. Classification of normal and tumor Brain MRI is carried out using PSO and
experimental results show that it obviously reduces the number of features and at the same time
it achieves high accuracy level. Three different classifiers, Support Vector Machine (SVM),
Naïve Bayes Classifier (NB) and K-Nearest Neighbor Classifier (KNN) are utilized to serve as the
‘fitness function’ for PSO. A comparison of achieved accuracy with minimum number of
features for different classifiers serving PSO is also provided. PSO-SVM and PSO-KNN are
observed to achieve better accuracy level using minimum number of selected features than PSO-
NB.

vi

Table Of Contents
Introduction ... 1

CHAPTER 1 ... 2

Magnetic Resonance Imaging and Brain Tumors ... 2

1.1 Brief History Of MRI .. 2

1.2 Brain Tumors .. 2

1.3 MRI Scan of Brain Tumor .. 3

1.4 MRI Signal Generation and Image Acqusition .. 3

CHAPTER 2 ... 7

Particle Swarm Optimization .. 7

2.1 Optimization ... 7

2.2 PSO Algorithm .. 9

2.3 Basic Principle of Discrete Binary PSO ... 12

CHAPTER 3 ... 13

Classifiers .. 14

Support Vector Machine, Naïve Bayes and .. 14

K-Nearest Neighbour .. 14

3.1 Feature Selection: .. 14

3.2 Classification in Machine Learning: ... 14

3.3 Classifiers: ... 15

3.4 Support Vector Machine ... 15

3.4.1 Lagrange Formulation: ... 18

3.4.2 The Solution : Quadratic Programming ... 19

3.4.3 KKT Condition: ... 20

3.5 Naïve Bayes Classifier: ... 20

3.5.1 Bayes Decision Rule : .. 20

3.5.2 Probabilistic Classification : .. 20

3.5.3 Naïve Bayes Classification: ... 21

3.6 K-Nearest Neighbour Classifier: ... 21

3.6.1 KNN Algorithm : ... 22

CHAPTER 4 ... 23

Texture Features .. 23

vii

4.1 Gray Level Coocurrence Matric ... 23

4.2 Features computed : .. 25

CHAPTER 5 ... 29

Implementation and Evaluation .. 29

5.1 Working Of Discrete Binary PSO: ... 31

5.2 PSO-SVM ... 31

5.3 PSO-NBC .. 32

5.4 PSO-KNN ... 32

5.5 Results: .. 33

5.5.1 Normal Brain MRI (T1 weighted): .. 33

5.5.2 Brain with Lesion(Tumor) MRI (T1 weighted): .. 35

Refrences ... Error! Bookmark not defined.

Annex I: .. 40

MATLAB CODE : .. 40

viii

List Of Figures:

FIGURE 1.1 MRI Signal Generation .. 4
FIGURE 1.2 .. 6
FIGURE 1.3 (A) Axial T2-weighted image of IV-grade glioma .. 6
Figure 2.1: Function Maximum .. 8
Figure 2.2 PSO Initial State ... 10
Figure 3.1 four different data points ... 15
Figure 3.2 line seperating data points ... 15
Figure 3.3 different lines seperating four data points ... 16
Figure 3.4 dichotomies with fat margin .. 16
Figure 3.5 geometry of plane and line .. 17
Figure 3.6 Two different classes ... 21
Figure 3.7 (a)Shows claculation of distance from all the samples (b) shows comparison of distance to the
closest k(3) points ... 22
Figure 4.1 geometrical relationships of GLCM meaurements made for four distances 23
Figure 5.1 overall system .. 29
Figure 5.2 Flow chart of feature selection for Brain MRI scan .. 30
Figure 5.3: PSO-SVM ... 31
Figure 5.4: PSO-NBC ... 32
Figure 5.5: PSO-KNN ... 33

ix

List Of Tables:

Tabel 1.1 Protons’ Properties Contributing to MRI Signal Generation ... 3
Table 1.2 Types, Characteristics and Use of Weighted Images .. 5
Table 5.1 PSO-SVM Results .. 37
Table 5.2 PSO-KNN Results .. 37
Table 5.1 PSO-NBC Results ... 38

1

Introduction

Brain MRI has proved to be a successful tool in collecting in-depth detail of brain tissues. Now a
days medical science highly relies on MRI, and automation of this tool has to be more and more
efficient. To make the classification problem of Brain MRI easy and efficient efforts are made
and a lot of contributions in this stream are already provided by different scientists. Brain MRI is
highly sensitive issue and to classify the normal brain images from abnormal ones is quiet
difficult. MRI contains a lot of textural information, so using textural features for classification is
beneficial. Using a number of features for classification is also not desirable, so the evolutionary
computation technique PSO is utilized for feature selection. A subset of features provided by
PSO is passed to different classifiers for classification and the achieved accuracy with minimum
number of features is discussed. Three different classifiers are used, namely Support Vector
Machine (SVM), Naïve Bayes Classifier (NB) and K-Nearest Neighbor Classifier (KNN).

As stated before, an efficient feature selection process is always required to speed up processing
and predictive accuracy for a classifier. We used Discrete Binary Particle Swarm Optimization
(PSO) technique for feature selection of Magnetic Resonance (MR) Brain Images and
classification is carried out on tumor and normal Images. Here PSO is used for feature selection
and Support Vector Machine (SVM), Naïve Bayes Classifier (NB) and K-Nearest Neighbor
Classifier (KNN) serves as fitness functions for PSO. The proposed method is applied to a dataset
of twenty T1 weighted brain MR images (ten normal images and ten tumor images) and desired
classification accuracy is achieved. A comparison of achieved accuracy results for unseen data
(testing performance) is also provided and PSO-SVM is observed to achieve comparatively
better accuracy level then PSO-NB and PSO-KNN.

Feature Selection has always been a challenging task used in machine learning for classification
problem. Feature Selection is a global optimization process in machine learning which reduces
the number of features selected by removing irrelevant, redundant and noisy features. By
omitting these irrelevant features we are left with more efficient features that are helpful in
classification problem. Our main focus is to utilize the textural features provided by Gray Level
Cooccurance Matrix (GLCM). A total of twenty three features are evaluated, among these
twenty two were GLCM based features and one extra wavelet feature is evaluated. All these
features are discussed in detail latter.

2

CHAPTER 1

Magnetic Resonance Imaging and Brain Tumors

This chapter briefly describes the basics of Magnetic Resonance Imaging (MRI), the basic
principle of working of MRI, image acquisition and its use in extracting the in-depth knowledge
of soft tissues, brain in particular. Brain tumors and their types are also discussed shortly.

1.1 Brief History Of MRI
In 1950s phenomenon of Nuclear Magnetic Resonance (NMR) was discovered in bulk matter
and for years it remained applicable only in the field of spectroscopy. In 1970s the concept of
magnetic field gradients was introduced by Lauterbur, he stated that an image based on magnetic
resonance could be produced. By the 1980s whole body magnets were being produced in
England permitting the first in vivo images of human anatomy. Today the technique, known as
MR imaging, is widespread and an estimated 20 million scans are performed worldwide each
year. It provides images with excellent soft-tissue contrast which can be acquired in any imaging
plane, and unlike CT it does not involve the use of ionizing radiation. It is the imaging modality
of choice in brain and spinal cord and is routinely used in many other clinical settings.

Magnetic Resonance Imaging (MRI) provides in-depth detail about the anatomy of soft tissue
organs, so it is helpful in collecting details about brain tumor anatomy and cellular structure
using MRI. This makes it an important tool to help us diagnose the level and kind of disease. We
can easily treat and monitor the disease using this tool. There are certain kinds of brain tumor
which are listed below.

1.2 Brain Tumors
Brain tumor is a kind of abnormal and uncontrollable growth of cells, brain tumors are termed as
primary and secondary depending upon origin of growth of tumor. If the origin of tumor growth
is brain itself then it is termed primary tumor. If the tumor grew from some other part and
reached the brain then it is termed secondary. Primary brain tumors do not grow to the other
parts of body and these can be either malignant or benign, whereas secondary tumors are always
malignant. Both of these types are equally life threatening.

Children and young adults are more likely to be effected by the brain tumors and these are
unfortunately second leading cause of cancer-related deaths .Central Brain Tumor Registry of the
United States (CBTRUS) cites that there were approximately 64,530 cases of primary brain and
central nervous system tumors diagnosed in the year 2011. Overall, exceeding a number of
600,000 people were already living with the disease. [1]

It has always been a challenging task to diagnose the cause of brain tumor and the cause of
occurrence is still unknown. There are a few risk factors that are involved which are head

3

injuries, hereditary syndromes, immunosuppression, prolonged exposure to ionizing radiation,
electromagnetic fields, cell phones, or chemicals like formaldehyde and vinyl chloride. None of
these, however, is proven to actually cause the disease. [2]
Symptoms of brain tumors include persistent headache, nausea and vomiting, eyesight, hearing
and/or speech problems, walking and/or balance difficulties, personality changes, memory
lapses, problems with cognition and concentration, and seizures. [2]

1.3 MRI Scan of Brain Tumor
MRI is a useful tool for tumor detection that provides us detailed information about different
aspects of tumor such as its type, its position and size. For this same reason, MRI is the most
widely used imaging study of choice for the diagnosis procedure, surgery workout and
monitoring of treatment outcomes.

1.4 MRI Signal Generation and Image Acquisition

Traditional MRI approach uses three different physical properties of tissue protons (which are
listed in Table 1.1) to produce signals that are used to acquire images of different contrast areas,
which tells us the anatomy and physiology of the organ under investigation (Brain in our case).
[3]

Proton density Number of hydrogen protons per unit volume
of tissue

T1 relaxation time Time needed to recover 63% of the
longitudinal magnetization

T1 relaxation time Time needed for 63% of the traverse
magnetization to be lost

Table 1.1 Protons’ Properties Contributing to MRI Signal Generation

Positively-charged particles called Protons are present inside the nucleus of an atom. Human
body is mainly made up of water, therefore hydrogen element is present in abundance in human
body, as each atom of hydrogen has one proton. To understand the process of formation of MRI
signal, we can think of this proton as a very small magnet bar that is moving like a spinning top.
This tiny magnet bar can be described as a two-dimensional (2D) vector–also called a spin
vector–with respect to a Cartesian coordinate system. [4]

In the absence of a magnetic field, the orientation of the spin vector is random. MRI scanners
produce a strong static magnetic field (B0), if the spin vector is placed in such strong field B0
then it tends to align itself parallel with B0. As a result of this, its component along the y-axis
(longitudinal magnetization) has some value which is not zero but the component along the x-
axis (transverse magnetization) is zero, as a result of this no signal can be produced. [4], [5]

4

When a pulse of radio frequency (RF) is applied, energy is absorbed by the spin vector and it causes the
spin vector to move away from the alignment that was formed by spin vector with B0. If the oscillation
frequency of the proton matches with the frequency of applied RF pulse then the phenomenon known as
resonance occurs. By doing this both the longitudinal and transverse magnetizations have some values
other than zero and a signal can be generated (Figure 1.1). [5]

FIGURE 1.1 MRI Signal Generation (A) Spin vector (brown arrow) aligned parallel with the
main magnetic field (B

0
). Transverse magnetization is zero, and no signal is generated. (B) Spin

vector out of alignment, following the application of an RF pulse. Transverse magnetization is
different from zero, and a signal can be generated.

A process called relaxation occurs when RF pulse is removed from B0 because by doing so the

energy absorbed by the spin vector is released. On releasing this energy the spin vector again
aligns itself with the main magnetic field (B0). When it happens, the transverse magnetization
decreases, and the longitudinal magnetization recovers. T1-relaxation time is 63% of the time
required to recover the longitudinal magnetization. T2-relaxation time is 63% of the time in
which transverse magnetization is lost. Both T1- and T2-relaxation times are specific to different
types of tissue, and are directly proportional to the magnet’s field strength. [5]

 T1 and T2 are the two main components of the MRI signal. Proton density is also a third main
component it is the total number of hydrogen protons per unit volume of the tissue being
scanned. Contrast is generated using these three components. This is all done simultaneously, so
the image formed is confusing and difficult to read. To handle this problem the contrast is
weighted towards one of the three signal components. As a result, the images that can be
obtained are: T1-weighted, T2-weighted, and proton density-weighted. [3], [5]

Contrast is obtained in different ways:

 Creating differences in the T1 recovery times of tissues (T1-weighted images).[6]

 Creating differences in the T2 decay times of tissues (T2-weighted images).[6]

5

 From differences in the proton density of tissues (proton-weighted images).[6]

While reading an MRI scan, the bright areas are the high-fat-content tissues in T1-weighted
images, whereas dark areas are the high-water-content tissues. The opposite is the case for T2-
weighted images. Particularly T2-weighted images are useful for pathological investigation
studies. Whereas, T1-weighted images are good for anatomical investigations, although they can
be used for pathology, if combined with contrast enhancement. Gadolinium (Gd) is currently the
standard contrast agent due to its ability to cross the blood-brain barrier (BBB). [6]

 Bright areas are the high-proton-density tissues in proton-weighted images, this can be the
cerebrospinal fluid, and dark areas are the low-proton-density tissues, such as cortical bone.
Proton-density images are used to view anatomy and some pathology. [6]

 (Table 1.2, provides an overview of the key features of T1, T2, and proton-weighted images.)

Image Type

Contrast Tissue Appearance Best For
T1-weighted

Mainly due to
differences in
T1 recovery
times

High-fat-content tissues
appear as bright areas of
high signal intensity
(hyperintense)

High-water-content tissues
appear as dark areas of low
signal intensity
(hypointense)

Anatomy and, if
used with contrast
enhancement, also
pathology

T2-
weighted

Mainly due to
differences in T2
decay times

High-fat-content tissues
appear as dark areas of low
signal intensity
(hypointense)
High-water-content tissues
appear as bright areas of
high signal intensity (hyper-
intense)

pathology

Proton-density
weighted

Mainly due to
differences in proton
density

Low-proton-density tissues
appear as dark areas of low
signal intensity
(hypointense)
High-proton-density tissues
appear as bright areas of
high signal intensity (hyper-
intense)

Anatomy, and
some pathology

Table 1.2 Types, Characteristics and Use of Weighted Images*

*Data from Westbrook C. MRI at a Glance. Wiley-Blackwell; 2010.

6

Examples of T1- and T2-weighted MR Brain Images are shown in Figure-1.2 and Figure-1.3

FIGURE 1.2. (A) Axial T2-weighted image of low-grade glioma in the right hemisphere,
showing the lesion as a bright area of high-signal intensity. (B) The same glioma on a T1-
weighted image with contrast enhancement, showing the lesion as a dark area of low-signal
intensity. (Photo courtesy of Professor Wolfgang Wick and Professor Martin Bendszus, of the
Neurooncology Department of Heidelberg University, Germany.)

FIGURE 1.3 (A) Axial T2-weighted image of IV-grade glioma (glioblastoma) in the right
hemisphere, showing the lesion as a bright area of high-signal intensity. (B) The same
glioblastoma on a T1-weighted image with contrast enhancement, showing the lesion as a
dark area of low-signal intensity. (Photo courtesy of Professor Wolfgang Wick and Professor
Martin Bendszus, of the Neurooncology Department of Heidelberg University, Germany.)

7

CHAPTER 2

Particle Swarm Optimization

PSO is a population based global optimization procedure that deals with problems in which a
best solution is represented as a point or surface in an m-dimensional space, developed by
Kennedy and Eberhart in 1995 [7]. Basically PSO was initiated using two different ideas, first is
the idea of swarm intelligence based on experiencing the significant details of collective habits
by certain kind of animals, birds and fish, and other idea is the field of evolutionary computation.

This chapter explains the PSO algorithm and its use in feature selection in detail. As PSO is an
optimization technique so let’s start with optimization.

2.1 Optimization

Optimization is a method in which maximum or minimum value of a function or a process is
obtained. Different fields of science like mathematics, economics, and particularly engineering
utilize this efficient technique for maximizing performance efficiency. Both minimization and
maximization of a function f are referred as optimization [9].

Mathematically, we can define a minimization process as:

:݂ ݊݁ݒ݅ܩ Թ ՜ Թ

ŷ ݀݊݅ܨ א Թݐ݄ܽݐ ݄ܿݑݏ ݂ሺŷሻ ݂ሺݕሻ, ݕ א Թ

Similarly, maximization process of a function f is defined as:

:݂ ݊݁ݒ݅ܩ Թ ՜ Թ

ŷ ݀݊݅ܨ א Թݐ݄ܽݐ ݄ܿݑݏ ݂ሺŷሻ ݂ሺݕሻ, ݕ א Թ

The domain (Թ) of f defined above is actually the search space[9]. Each element (of this
domain) is called a ‘candidate solution’ in the search space, with ŷ being the optimal solution.
The number of dimensions of the search space is denoted by the value n, and thus the number of
parameters involved in the optimization problem. The objective function is actually the function
f itself, which maps the search space to the function space. Since a function has only one output,
this function space is usually one-dimensional. The function space is then mapped to the one-

8

dimensional fitness space, providing a single fitness value for each set of parameters. This single
fitness value determines the optimality of the set of parameters for the desired task. In most
cases, the function space can be directly mapped to the fitness space. However, the distinction
between function space and fitness space is important in cases such as multi-objective
optimization tasks, which include several objective functions drawing input from the same
parameter space[11,9, 10].

There are a lot of calculus techniques by which one can easily find the minima and maxima of a
known differentiable function f . In real-life optimization tasks, finding an objective function to
be optimized is a difficult task and in most of the cases it is unknown. Instead, the parameters
(candidate solution) are applied to an objective function which is a kind of “black box” and
receive an output value. Solution’s fitness is basically the result of this evaluation of a candidate
solution. The final task of an optimization process is to find the parameters in the search space
that can minimize or maximize this fitness. [11,8]

Figure 2.1 shown below is a simple example of function optimization. This figure shows a
selected region the function f, demonstrated as the curve seen in the diagram. This function maps
from a one-dimensional parameter space—the set of real numbers R on the horizontal x-axis—to
a one-dimensional function space— the set of real numbers R on the vertical y-axis. The x-axis
represents the candidate solutions, and the y-axis represents the results of the objective function
when applied to these candidate solutions. This type of diagram demonstrates what is called the
fitness landscape of an optimization problem [11,9]. The fitness landscape plots the n-
dimensional parameter space against the one-dimensional fitness for each of these
parameters.[11]

Figure 2.1: Function Maximum

Figure 1 also shows the presence of a local maximum in addition to the marked global
maximum. A local maximum is a candidate solution that has a higher value from the objective
function than any candidate solution in a particular region of the search space. For example, if
we choose the interval [0,2.5] in Figure 1, the objective function has a local maximum located at

9

the approximate value x = 1.05. Many optimization algorithms are only designed to find the local
maximum, ignoring other local maxima and the global maximum.[11]

2.2 PSO Algorithm

The particle swarm optimization (PSO) algorithm is an optimization algorithm that works by
maintaining different candidate solutions (particles) in search space at the same time, that is it
keeps several candidate solutions in the search space simultaneously. It uses a number of
particles that constitute a swarm which is trying to find out the best solution while moving in a
search space. There are a number of iterations that are performed on this search space of
candidate solution depending upon the achieved or desired optimum solution. Each candidate
solution is evaluated against the desired objective function during each iteration (this determines
the fitness of the candidate solution). As PSO was originated by observing the social behavior of
different species like fish and birds, so each candidate solution is considered as a ‘bird’ (particle)
‘flying’ (searching) in a ‘landscape’ (search space) finding the best solution that fulfils an
objective function (e-g finding food in case of birds and finding maximum or minimum value in
case of optimization).

Initially the candidate solution is chosen at random among the entire search space.
Five-particle PSO searching the global minimum in a one-dimensional search space is shown in
Figure 2.2.

10

 Figure 2.2 PSO Initial State

 The five particles chosen at random initially are marked ‘x’ on the curve and the curve actually
is the objective function, and search space is all the possible solutions along the x-axis. The
objective function (the curve) is actually unseen by PSO, so the algorithm has no knowledge
whether a particle is close-to or far away from the optimum solution. PSO will evaluate all the
five particles against the objective function, and will make decisions on the resultant fitness
values.

There are certain parameters which are tracked by PSO, these include the position and velocity
of a particle. PSO keeps track of the achieved fitness value by every candidate solution, the best
solution or the fitness value achieved by a particle is known as the ‘personal best’ value. The
position of candidate solution which achieved the personal best is memorized. Another important
parameter that is to be kept in record is the ‘global best’ value, it is the best value achieved so far
by any of the particle among all the particles in the swarm. The record of global best value
achieved and position of the particle which achieved this global best value are maintained.

Both the global best and personal best value are updated during every iteration of the algorithm if
applicable. That is if during the next iteration the new values of personal best and global best are
better than the older ones, these are replaced.

The PSO algorithm consists of three basic steps, which are iterated until some stopping criteria is
fulfilled [8]:

1. Compute the fitness of each particle against the objective function.
2. Update personal best and global best fitness and positions of particles.
3. Update velocities and positions of particles in the swarm.

In the first step the fitness evaluation of each particle is conducted ageing the objective function,
and in second step the newly computed fitness are compared with the previously computed

11

fitness, and satisfying the objective function older personal best and global best values are
replaced with the new ones.

The optimization ability of PSO highly depends upon the updates of velocities and positions of
the particles. The velocity of a particle is updated using equation (2.1).

Viሺt 1ሻ ൌ W כ Viሺtሻ C1 כ r1 כ ሾpሺtሻ െ Xiሺtሻሿ C2 כ r2 כ ሾgሺtሻ െ Xiሺtሻሿ (2.1)

 ‘i’ is the index of the particle whose velocity is to be updated.
 Vi(t) is the velocity of particle ‘i’ at time t.
 Xi(t) is the position of particle ‘i’ at time t.
 The variable W is a user specified value mostly between (0 ≤ W ≤ 1.2).
 The variables C1 and C2 are also user specified in between (0 ≤ C1 ≤ 2 and 0 ≤ C2 ≤ 2).
 G(t) is the swarm’s global best value at time t.
 P(t) is the personal best value of a particle at time t.

There are a total of three terms involved in the update of velocity of particles and all of these
three terms have different roles in PSO algorithm. The first term ‘W*Vi(t)’ is responsible to keep
the direction of a particle same as it was originally moving. This term is known as the inertia
component. The value of the inertia constant W is responsible to dampen the particle or to
accelerate it in its original direction [12].
“Generally, lower values of the inertial coefficient speed up the convergence of the swarm to
optima, and higher values of the inertial coefficient encourage exploration of the entire search
space” [11].

The second part of equation is known as the ‘cognitive component’ (C1*r1*[p(t)−Xi(t)]), this is
actually the memory of a particle. The regions in which the particle experienced personal best
fitness are memorized and the particle is moved towards this region. C1 is the ‘cognitive
coefficient’ which is responsible for the stepsize the particle takes to move towards the personal
best fitness solution. Usually the value of C1 is kept close to 2.

The third part of equation is known as the ‘social component’ (C2*r2*[g(t)−Xi(t)]). The regions
in which the swarm experienced global best fitness are memorized and the particle is moved
towards this region. C2 is the ‘social coefficient’ which is responsible for the step size the
particle takes to move towards the global best fitness solution. Usually the value of C2 is also
kept close to 2.

A stochastic influence is generally induced by the two random values r1 and r2 in cognitive and
social components. These two random values will cause the particle to move in a manner which
is semi-random in nature, it will be influenced by the directions of both the personal best fitness
value of a particle and the global best fitness value of swarm.

12

If it is desired that the particles must not move beyond the region of search space a technique
known as ‘velocity clamping’ is used so that the maximum velocity of a particle is limited[8]. If
the search space is limited to a range of [-Xmax , Xmax] then the velocity is limited to a range [-
k*Xmax , k*Xmax]. The value of constant k is kept in-between 0 < k ≤ 1. In most of the cases the
search space is likely to bound between [Xmin, Xmax] in such a scenario the maximum velocity
is limited to Vmax = k × (Xmax − Xmin)/2.

After updating the velocity of a particle next is the update of its position, this can be done using
the following equation:

ܺ݅ሺݐ 1ሻ ൌ ܺ݅ሺݐሻ ܸ݅ሺݐ 1ሻ (2.2)

There are certain stopping criterion which when fulfilled the PSO algorithm stop its execution
until then this task of updating velocities and positions of particles is repeated. The stopping
criterion may include the total number of iterations or the achievement of targeted fitness value.

2.3 Basic Principle of Discrete Binary PSO
There are basically two kinds of optimization problems one is the continuous optimization
problem which can be solved using the standard PSO technique, other is the combination
optimization problem this is solved using the discrete binary version of PSO technique [19]. The
discrete binary version of PSO also makes use of population of individuals and tries to find the
best position by searching the entire swarm. For finding the best position it makes use of the
individual’s best position and the swarm’s best position. [19]

Suppose a swarm of size N is created and the dimension of the search space is M, then the
position of particle is described as ܺ݅ሺݔଵ, ଶݔ ڮ , ெ is one bit binary number eitherݔ ெሻ whereݔ
0 or 1. If ݔெ is 1 it means that the feature at this location is selected, if it is zero than the feature
is not selected. The personal best position of the particle is denoted by P݅ሺଵ, ଶ ڮ , ெሻ and
the globle best position of the swarm is dented by݅ܩሺ݃ଵ, ݃ଶ ڮ , ݃ெሻ. The particles velocity is
updated according to equation (2.1) and position of the particles is updated according to equation
(2.3) and (2.4).

If (rand() < S(Vi(t)))

 ெ = 1ݔ

Else

 ெ = 0 (2.3)ݔ

S(Vi(t)) = 1/(1+exp(-Vi(t))) (2.4)

13

rand() is a random number with uniform distribution U(0,1). [19]

The fitness function for PSO is the evaluation of position of the particle which in this case is the
measure of testing error achieved by the classifier after using the position of particle for
classification. This is defined in equation (2.5).

Fitness = TE (ݔଵ, ଶݔ ڮ , ெሻ (2.5)ݔ

The entire procedure followed to use PSO as a feature selection technique (Flow Chart) is
discussed in the implementation section latter.

14

CHAPTER 3

Classifiers

Support Vector Machine, Naïve Bayes and

K-Nearest Neighbor

This particular chapter is about the three different classifiers used to serve the purpose of fitness
function for PSO. All the three classifiers SVM, NBC and KNN are separately discussed in
detail, their working and use as a classifier is discussed. It also discusses feature selection and
classification in machine learning briefly.

3.1 Feature Selection:
When we have a number of features to discriminate between different classes the system
becomes computationally intensive, so we must reduce the number of features. Feature selection
is a process of selecting a subset of features from a large number of features. The subset of
features selected is such that it is powerful to discriminate among different classes. Feature
selection is one of most challenging task in machine learning or pattern recognition. It is actually
the process of selecting most efficient and powerful subset of features which can easily
discriminate different classes. The features from different classes should maintain ideally a large
distance. By following the feature selection process we actually omit the irrelevant and
redundant features, the main aim is actually to left with most useful features.

Feature selection is a search technique that searches for the best features among a number of
features, best features are selected on the basis of an evaluation measure. Features are evaluated
against an objective function and are selected based on their performance. The objective is to
find the minimum number of features with high efficiency, the number of features selected
should be minimum and the performance should be maximum.

3.2 Classification in Machine Learning:
The term classification is applied to identification, recognition, and discrimination of objects or
patterns on the basis of their attributes. In machine learning classification ‘classifies’ an
observation based on the previous knowledge. The system is trained using the attributes
(features) of the training data, and is tested using both the training data and unseen testing data.
The error due to training data is known as training error, and error due to testing data is known as
testing error. The training error of a classifier is usually low because the classifier is trained

15

using the same data, aim is to reduce the testing error because this data is unseen data for the
classifier.

3.3 Classifiers:
Three classifiers are used here which are, support vector machine (SVM), naïve bayes classifier
(NBC) and k nearest neighbor (KNN) classifier. These are discussed in detail below:

3.4 Support Vector Machine
Support Vector Machine (SVM) is an arguably most efficient classification method in machine
learning. A very nice package of optimization techniques are used to derive the solution which
has a very intuitive interpretation. Main theme of SVM derives from the maximization of margin
and finding the best possible margin.

Let us suppose that we have a linearly separable dataset consisting of four points shown in figure
3.1, there are different lines that will be separating these four data points in to two groups.

Figure 3.1 four different data points

The addition to the problem is to find the line that has some advantage over all the other possible
lines separating these points. For example if we choose the line shown in figure 3.2, indeed this
is not the perfect line for separation because the margin of error (yellow color) is very small.

Figure 3.2 line separating data points

Few other possible lines that can be used for separation are shown in figure 3.3 with their
margins of error.

16

 Figure 3.3 different lines separating four data points

As far as the training error is concerned it will be zero either we use any of the lines for
separation of the data points, but the testing error using these lines will be different and other
than zero. The logic behind SVM is to choose the line with widest (fat) margin, because chances
are high that the new points will be on the correct side of the line if margin of error is kept wide.

So the first step to find a line with fat margin is to find a ‘w’ which can maximize the margin and
classify the points correctly. For this let’s assume that we have three points’ dichotomies (2^3=8
dichotomies from growth function) with fat margins as in figure 3.4:

Figure 3.4 dichotomies with fat margin

If we have to use a classifier that has to choose a fat margin i-e a margin which should be at least
of a certain width, so the dichotomies with lesser width than the required are not allowed. By
requiring the margin to be at least something a restriction is made on the growth function. Fat
margin apply fewer dichotomies possible, so we can say that if we are able to classify using fat
margin we will require small VC dimension.

17

Margin is the distance from a plane to a point, let xn is the nearest data point to the line, and the
line is given by the linear equation (3.1)

ݔ்ݓ ൌ 0 (3.1)

If the dimensions are high this line is actually referred to as plane. Now we require estimating the
distance between the plane and the nearest point as this distance will be actually the margin.

Two preliminary technicalities are invoked here which will simplify the analysis latter on:

1). Normalize w.

|ݔ்ݓ| ൌ 1 (3.2)

2). Pull out w0.

Now the equation for the plane is:

ݔ்ݓ ܾ ൌ 0 (3.4)

Where|ݔ்ݓ ܾ| ൌ 1, and we have to estimate the distance between the point and the plane, the
geometry for this is shown in figure 3.5:

Figure 3.5 geometry of plane and line

The vector w is perpendicular to the plane in X space. If we take two points x’ and x” on the
plane these will satisfy the equation (3.4) of the plane and equations (3.5) and (3.6) are obtained.

Ԣݔ்ݓ ܾ ൌ 0 (3.5)

and

"ݔ்ݓ ܾ ൌ 0 (3.6)

The difference between equations (3.5) and (3.6) provides:

18

Ԣݔሺ்ݓ െ ሻ"ݔ ൌ 0 (3.7)

So the vector w is orthogonal to the vector (x’ – x”).

If we take a single point x on the plane the distance between the point ݔ and the plane w is the
projection of ݔ – x on w. For projection the unit vector in the direction of w is ݓෝ :

ෝݓ ൌ ௪
||௪||

 (3.8)

Now simply we have the dot product with unit vector which is the distance = | ݓෝ .| (– xݔ) ்

ൌ ݁ܿ݊ܽݐݏ݅݀ ଵ
||௪||

ݔ்ݓ| െ ݔ்ݓ| ൌ ଵ
||௪||

ݔ்ݓ| ܾ െ െ ݔ்ݓ ܾ| ൌ ଵ
||௪||

 (3.9)

This distance is the margin and the optimization problem is to maximize the margin.

 Maximize ଵ
||௪||

 subject to minୀଵ,ଶ,….ே ݔ்ݓ| ܾ | ൌ 1

If all the points are classified correctly we can replace |ݔ்ݓ ܾ | by ݕ ሺݔ்ݓ ܾ ሻ
where ݕ are the true labels. So our optimization problem now changes to:

 Minimize ଵ
ଶ

ݔ்ݓ ሺݕ subject to ݓ்ݓ ܾ ሻ 1 for n=1,2,……..,N (3.10)

Until now the problem is constrained and it is the inequality constraint not the equality
constraint. Lagrange is introduced here under the inequality constraint which is referred as KKT
(Karush-Kuhn-Tucker) conditions.

3.4.1 Lagrange Formulation:

Minimize ܮሺݓ, ܾ, ሻߙ ൌ ଵ
ଶ

∑ – ݓ்ݓ ߙ
ே
ୀଵ ሺݕ ሺݔ்ݓ ܾ ሻ െ 1ሻ (3.11)

 w.r.t w and b and maximize it w.r.t ߙ 0

 Differentiate equation ሺ3.11ሻ w. r. t to w and equate it to zero we get equation ሺ3.12ሻ

ܮݓߘ ൌ ∑ – ݓ ߙ
ே
ୀଵ ݔ ݕ ൌ 0 (3.12)

 Similarly taking partial derivative w.r.t b we have:

 డ
డ

 ൌ – ∑ ߙ
ே
ୀଵ ൌݕ 0 (3.13)

19

Substituting equations (3.12) and (3.13) in original Lagrange equation (3.11) we will get rid of w
and b and left only with α.

ൌ ݓ ∑ ߙ
ே
ୀଵ ∑ From equation (3.12) andݔ ݕ ߙ

ே
ୀଵ ൌݕ 0 from equation (3.13) putting in

equation (3.11):

ሻߙሺܮ ൌ ∑ ߙ
ே
ୀଵ – ଵ

ଶ
 ∑ ∑ ߙ

ே
ୀଵ ߙ

ே
ୀଵ (3.14)ݔݔ ݕ ݕ

We are left with a simple quadratic from in terms of α. If we put back the constraints:

Maximize w.r.t α: subject to α ≥ 0 for n=1,2,……..,N and

 ߙ

ே

ୀଵ

 ൌݕ 0

3.4.2 The Solution: Quadratic Programming
The aim is to translate the objectives and constraints discussed above into the coefficients which
can be passed to the quadratic programming easily and solved. If we take negative of the
maximization problem defined in equation (3.14) we get the minimization problem for quadratic
programming, so:

 ൌఈ
 ଵ

ଶ
 ∑ ∑ ߙ

ே
ୀଵ ߙ

ே
ୀଵ ݔݔ ݕ ݕ െ ∑ ߙ

ே
ୀଵ (3.15)

If we transform equation (3.15) in matrix form we get the following:

்ߙ
ଶ
ଵ

ఈ
 ൦

2ݔ1ݔ2ݕ1ݕ 1ݔ1ݔ1ݕ1ݕ ڮ ݊ݔ1ݔ݊ݕ1ݕ
2ݔ2ݔ2ݕ2ݕ 1ݔ2ݔ1ݕ2ݕ ڮ ݊ݔ2ݔ݊ݕ2ݕ

…
2ݔ݊ݔ2ݕ݊ݕ 1ݔ݊ݔ1ݕ݊ݕ ڮ ݊ݔ݊ݔ݊ݕ݊ݕ

൪ ߙ ሺെ1்ሻ(3.16) ߙ

Subject to ߙ்ݕ ൌ 0 (linear constraint)

(Lower bound) 0 ߙ ∞ (Upper bound)

Quadratic programming returns α :

α = α1,…….αn ; ݓ ൌ ∑ ߙ
ே
ୀଵ ݔ ݕ

20

3.4.3 KKT Condition:
ݔ்ݓ ሺݕሺߙ ܾ ሻ-1ሻ ൌ 0 (3.17)

ߙ 0 ֜ ࢚࢘ࢉࢋ࢜ ࢚࢛࢙࢘ ݏ݅ ݔ

3.5 Naïve Bayes Classifier:
A naïve bayes classifier (NBC) is a probability based classifier which applies the “Bayes
theorem” and strong independence assumption for classification. NBC makes a strong
independence assumption about the features which states that the presence of a certain feature
cannot influence or is unrelated to the presence of another feature or vice versa. For example a
fruit having ‘green colour’, ‘round shape’ and ‘10” diameter’ may be considered a watermelon.
NBC takes each of these features independently to contribute to the probability that this fruit
belongs to the class ‘watermelon’.

Despite their naive design and apparently oversimplified assumptions, naive Bayes classifiers
have worked quite well in many complex real-world situations. “In 2004, an analysis of the
Bayesian classification problem showed that there are sound theoretical reasons for the
apparently implausible efficacy of naive Bayes classifiers.”[13] Still, a comprehensive
comparison with other classification algorithms in 2006 showed that Bayes classification is
outperformed by other approaches, such as boosted trees or random forests. [14]

3.5.1 Bayes Decision Rule:
ݎ݅ݎ݁ݐݏܲ ൌ ݄݈݈݀݅݁݇݅ כ ݎ݅ݎ ൊ ݁ܿ݊݁݀݅ݒܧ

 ܲሺܹളܣሻ ൌ ܲሺܣളܹሻ כ ܲሺܹሻ ൊ ܲሺܣሻ (3.18)

3.5.2 Probabilistic Classification:
MAP (Maximum A Posterior) Classification Rule:

Assign a to כݓ if:

 ܲሺܹ ൌ ܣളכݓ ൌ ܽሻ ܲሺܹ ൌ ܣളݓ ൌ ܽሻ and כݓ ് ݓ ,ݓ ൌ ,ଵݓ ଶݓ ڮ (3.19)ݓ

Apply Bayesian rule to convert:

ܲሺܹളܣሻ ൌ ܲሺܣളܹሻ כ ܲሺܹሻ ൊ ܲሺܣሻ ן ܲሺܣളܹሻ כ ܲሺܹሻ
ܲሺܹളܣሻ ן ܲሺܣളܹሻ כ ܲሺܹሻ ൌ ܲ൫ܣଵ,ܣଶ, ڮ ڮ ളܹ൯ܣ כ ܲሺܹሻ (3.20)

Difficulty is learning the joint probability ܲ൫ܣଵ,ܣଶ, ڮ ڮ ളܹ൯ so naïve bayes comes to rescueܣ
:

21

3.5.3 Naïve Bayes Classification:
NBC makes the assumption that all input features are independent so we have:

 ܲ൫ܣଵ,ܣଶ, ڮ ڮ ളܹ൯ܣ ൌ ܲሺܣଵളܹሻܲሺܣଶളܹሻ ڮ ڮ ڮ ܲሺܣളܹሻ (3.21)

When we blend the MAP classification rule equation (3.19) in equation (3.21) we get:

 ሾܲሺܽଵളכݓሻ ڮ ܲሺܽളכݓሻሿܲሺכݓሻ ሾܲሺܽଵളݓሻ ڮ ܲሺܽളݓሻሿܲሺݓሻ,……

כݓ ..… ് ݓ ,ݓ ൌ ,ଵݓ ଶݓ ڮ (3.22)ݓ

Which tells that we assign a label by independently calculating all the probabilities of features
provided, combining them and finding the greater value.

NBC Algorithm has a training phase, input to which is a training data and output of this phase is
conditional probability tables. During testing phase an unknown instance is given and this is
assigned a class label using the lookup tables generated during the training phase.

3.6 K-Nearest Neighbor Classifier:
KNN classifier is one of the simplest classifier in machine learning, yet it is widely used for
classification in many problems. KNN classifies the new observation based on the ‘majority
voting’ of its neighbors. The variable term K is the number of neighbors which are considered
for classification and these are kept odd so that the decision can be made on majority votes and a
confusing condition of equal votes does not occur. KNN Algorithm is described below:

Let’s we have two classes and we have to classify a new observation as shown in figure 3.6:

Figure 3.6 Two different classes

KNN algo will simply measure all the distances between the new observation and the sample
space, then it will consider only K closest neighbors and will assign the label based on the
majority, for example if k=3, and among the closest three neighbors two belong to class ‘X’ and
one belong to class ‘Y’ the new observation will be labeled ‘X’.

22

 Figure 3.7 (a) Figure 3.7 (b)

Figure 3.7 (a) Shows calculation of distance from all the samples (b) shows comparison
of distance to the closest k (3) points

The distance measured is the Euclidean distance, if we have two features a and b, new
observation will have features a’ and b’ the Euclidean distance measured will be as follows:

݁ܿ݊ܽݐݏ݅݀ ݈݊ܽ݁݀݅ܿݑ݁ ൌ ඥሺܽ′ െ ܽሻଶ ሺܾ′െ ܾሻଶ

3.6.1 KNN Algorithm:

For every testing sample

Calculate the Euclidean distance

Extract the K closest samples

Find common class label

Assign class label

End

23

CHAPTER 4

Texture Features

Chapter 4 is all about the textural features based on gray level Coocurrence matrix (GLCM) used
for classification of Brain MR Images. It contains all the mathematical equations for all the
features used and a brief introduction about the GLCM.

4.1 Gray Level Coocurrence Matrix

“In statistical texture analysis, texture features are computed from the statistical distribution of
observed combinations of intensities at specified positions relative to each other in the image.
According to the number of intensity points (pixels) in each combination, statistics are classified
into first-order, second-order and higher-order statistics.”[16]

The Gray Level Coocurrence Matrix (GLCM) method is a way of extracting second order
statistical texture features. [16]

“A GLCM is a matrix where the number of rows and columns is equal to the number of gray
levels, G, in the image. The matrix element P(i, j | ∆x,∆y) is the relative frequency with which
two pixels, separated by a pixel distance (∆x,∆y), occur within a given neighborhood, one with
intensity i and the other with intensity j. One may also say that the matrix element P(i, j | d, θ)
contains the second order statistical probability values for changes between gray levels i and j at
a particular displacement distance d and at a particular angle (θ).”[16]

“Because a G × G matrix (or histogram array) must be accumulated for each sub-image/window
and for each separation parameter set (d, θ), it is usually computationally necessary to restrict the
(d, θ)-values to be tested to a limited number of values. Figure 4.1 illustrates the geometrical
relationships of GLCM measurements made for four distances d (d = max{| ∆x |, | ∆y |}) and
angles of θ = 0, π/4, π /2 and 3 π /4 radians under the assumption of angular symmetry.”[16]

 Figure 4.1 geometrical relationships of GLCM measurements made for four distances

24

A number of texture features may be extracted from the GLCM (see Haralick et al. 1973 [15],
Conners et al. 1984 [17]). We use the following notation:

 G is the number of gray levels used.
 μ is the mean value of P.
 μx, μy, _x and _y are the means and standard deviations of Px and Py.
 Px(i) is the ith entry in the marginal-probability matrix obtained by summing the rows of

P (i,j): [16]
P(i,j):

P୶ሺ୧ሻୀ∑ Pሺ୧,୨ሻGషభ
ౠసబ

P୷ሺ୨ሻୀ∑ Pሺ୧,୨ሻGషభ
సబ

௫ߤ ൌ ݅ܲሺ݅, ݆ሻ
ீିଵ

ୀ

ீିଵ

ୀ

ൌ ሺ݅ሻݔܲ݅
ீିଵ

ୀ

௬ߤ ൌ ݆ܲሺ݅, ݆ሻ
ீିଵ

ୀ

ீିଵ

ୀ

ൌ ሺ݆ሻݕ݆ܲ
ீିଵ

ୀ

௫ߪ
ଶ ൌ ሺ݅ െ ௫ሻଶߤ ܲሺ݅, ݆ሻ

ீିଵ

ୀ

ൌ ൫ ௫ܲሺ݅ሻ െ ௫ሺ݅ሻ൯ଶߤ
ீିଵ

ୀ

ீିଵ

ୀ

௬ߪ
ଶ ൌ ൫݆ െ ௬൯ଶߤ ܲሺ݅, ݆ሻ

ீିଵ

ୀ

ൌ ቀ ௬ܲሺ݆ሻ െ ௬ሺ݆ሻቁߤ
ଶ

ீିଵ

ୀ

ீିଵ

ୀ

And

௫ܲା௬ሺ݇ሻ ൌ ܲሺ݅, ݆ሻ ڮ ڮ ڮ ݅ ݆ ൌ ݇
ீିଵ

ୀ

ீିଵ

ୀ

For k=0,1,2…………2(G-1)

௫ܲ‐௬ሺ݇ሻ ൌ ܲሺ݅, ݆ሻ ڮ ڮ ڮ ള݅ ݆ള ൌ ݇
ீିଵ

ୀ

ீିଵ

ୀ

For k=0,1,2…………(G-1)

25

4.2 Features computed:

The following features are used:

Homogeneity, Angular Second Moment (ASM):

ܯܵܣ ൌ ሼܲሺ݅, ݆ሻሽ
ீିଵ

ୀ

ଶீିଵ

ୀ

ASM is a measure of homogeneity of an image. A homogeneous scene will
contain only a few gray levels, giving a GLCM with only a few but relatively
high values of P(i, j). Thus, the sum of squares will be high.

Contrast:

ݐݏܽݎݐ݊ܥ ൌ ݊ଶ ቐ ܲሺ݅, ݆ሻ
ீ

ୀଵ

ீ

ୀଵ

ቑ
ீିଵ

ୀ

, |݅ െ ݆| ൌ ݊

This measure of contrast or local intensity variation will favour contributions
from P(i, j) away from the diagonal, i.e. i≠ j. Returns a measure of the intensity contrast between
a pixel and its neighbor over the whole image.

Range = [0 (size (GLCM, 1)-1) ^2]

Contrast is 0 for a constant image.

Local Homogeneity, Inverse Difference Moment (IDM):

ܯܦܫ ൌ
1

1 ሺ݅ െ ݆ሻଶ ܲሺ݅, ݆ሻ
ீିଵ

ୀ

ீିଵ

ୀ

IDM is also influenced by the homogeneity of the image. Because of the weighting factor
(1+(i−j)2)−1 IDM will get small contributions from inhomogeneous areas (i≠ j). The result is a
low IDM value for inhomogeneous images, and a relatively higher value for homogeneous
images. Returns a value that measures the closeness of the distribution of elements in the GLCM
to the GLCM diagonal.

Range = [0 1]

26

Homogeneity is 1 for a diagonal GLCM.

Entropy:

ݕݎݐ݊ܧ ൌ െ ܲሺ݅, ݆ሻ
ீିଵ

ୀ

ீିଵ

ୀ

ൈ ,൫ܲሺ݈݅݃ ݆ሻ൯

Inhomogeneous scenes have low first order entropy, while a homogeneous scene has high
entropy.

Correlation:

݊݅ݐ݈ܽ݁ݎݎܥ ൌ
ሼ݅ ൈ ݆ሽ ൈ ܲሺ݅, ݆ሻ െ ൛ߤ௫ ൈ ௬ൟߤ

௫ߪ ൈ ௬ߪ

ீିଵ

ୀ

ீିଵ

ୀ

Correlation is a measure of gray level linear dependence between the pixels at the specified
positions relative to each other. Returns a measure of how correlated a pixel is to its neighbor
over the whole image.
Range = [-1 1]

Correlation is 1 or -1 for a perfectly positively or negatively correlated image. Correlation
is Nan for a constant image.

Energy:

Energy =

Returns the sum of squared elements in the GLCM.

Range = [0 1]

Energy is 1 for a constant image.

 Sum of Squares, Variance:

݁ܿ݊ܽ݅ݎܸܽ ൌ ሺ݅ െ ,ሻଶܲሺ݅ߤ ݆ሻ
ீିଵ

ୀ

ீିଵ

ୀ

27

This feature puts relatively high weights on the elements that differ from the average value of P
(i, j).

Sum Average:

݁݃ܽݎ݁ݒܣ ൌ ݅ ௫ܲା௬

ଶீିଶ

ୀ

ሺ݅ሻ

Sum Entropy:

ݕݎݐ݊݁ ݉ݑݏ ൌ െ ௫ܲା௬

ଶீିଶ

ୀ

ሺ݅ሻ݈݃ ቀ ௫ܲା௬ሺ݅ሻቁ

 Difference Entropy:

ݕݎݐ݊݁ ݁ܿ݊݁ݎ݂݂݁݅݀ ൌ െ ௫ܲା௬

ீିଵ

ୀ

ሺ݅ሻ݈݃ ቀ ௫ܲା௬ሺ݅ሻቁ

Inertia:

ܽ݅ݐݎ݁݊ܫ ൌ ሼ݅ െ ݆ሽଶ ൈ ܲሺ݅, ݆ሻ
ீିଵ

ୀ

ீିଵ

ୀ

Cluster Shade:

݄ܵܽ݀݁ ൌ ൛݅ ݆ െ ௫ߤ െ ௬ൟଷߤ ൈ ܲሺ݅, ݆ሻ
ீିଵ

ୀ

ீିଵ

ୀ

Cluster Prominence:

݁ܿ݊݁݊݅݉ݎܲ ൌ ൛݅ ݆ െ ௫ߤ െ ௬ൟସߤ ൈ ܲሺ݅, ݆ሻ
ீିଵ

ୀ

ீିଵ

ୀ

Autocorrelation:

28

If we take the cross-correlation (measure of similarity of two waveforms) of a signal with itself
we get the autocorrelation. “It is a mathematical tool for finding repeating patterns, such as the
presence of a periodic signal which has been buried under noise, or identifying the missing
fundamental frequency in a signal implied by its harmonic frequencies”.[18]

Information measure of correlation

1ሻܥܯܫ1ሺ ݊݅ݐ݈ܽ݁ݎݎܿ ݂ ݁ݎݑݏܽ݁݉ ݊݅ݐܽ݉ݎ݂݊ܫ ൌ ுିுଵ
௫ሼு,ுሽ

2ሻܥܯܫ2ሺ ݊݅ݐ݈ܽ݁ݎݎܿ ݂ ݁ݎݑݏܽ݁݉ ݊݅ݐܽ݉ݎ݂݊ܫ ൌ ඥሺ1 െ 2ܻܺܪሾെ2.0ሺݔ݁ െ ሻሿሻܻܺܪ

ܻܺܪ ൌ െ ݈݃݃ଶ݃ ݂ ݏ݁݅ݎݐ݊݁ ݁ݎܽ ܻܪ ݀݊ܽ ݁ݎ݄݁ݓ ݃௫ܽ݊݀݃௬

1ܻܺܪ ൌ െ ݈݃݃ଶሼ݃௫ሺ݅ሻ

݃௬ሺ݆ሻሽ

2ܻܺܪ ൌ െ ݃௫ሺ݅ሻ݃௬ሺ݆ሻሽ݈݃ଶሼ݃௫ሺ݅ሻ

݃௬ሺ݆ሻሽ

Maximum probability

ݕݐ݈ܾܾ݅݅ܽݎ ݉ݑ݉݅ݔܽܯ ൌ ܲሺ݅, ݆ሻ,
ெ

Inverse difference normalized
Inverse difference moment normalized

These are all the twenty two textural features which were worked out and among all these few
proved to be the best features for classification of Brain MR Images. PSO selected among these
features the best features, so that the complexity and computational time to classify the images is
reduced.

29

CHAPTER 5

Implementation and Evaluation

This chapter describes the implementation details and performance evaluation of the proposed
algorithms. Previous Chapters contain the basic details of the hybrid techniques which are
implemented and evaluated. All the hybrid techniques PSO-SVM, PSO-NB and PSO-KNN are
evaluated against the achieved classification accuracy for unseen data using least number of
textural features. In our proposed techniques PSO serves the purpose of reducing the number of
features i –e feature selection whereas different classifiers i-e SVM, NB and KNN server as the
fitness function for PSO.

Selected Features are passed to the different classifiers for classification of T1 Brain MRI and
the classifiers classify normal images from the tumor images. Testing error is computed which is
passed to the PSO and it uses the testing error as its fitness function.

An overall system used is shown in figure 5.1:

 PC

Figure 5.1 overall system

The source is the dataset of T1 Brain MRI, a total of 362 images (217 x 181) are used among
which 181 are the normal brain images and 181 are the tumor images. This dataset is taken from
the Internet Brain Segmentation Repository (IBSR) which is quiet reliable data source for our
purpose. There are hundreds of publications using data provided by IBSR (listed on their official
website).

All the work is carried on Intel(R) (Core(TM) i5-2410M CPU @ 2.30 GHz, with 4.00 GB of
RAM) PC. MATLAB 7.8.0 (R2009a) is used for simulation purpose.

Output of our system is the reduced feature subset with high classification accuracy. Different
feature subsets with different classification accuracy are obtained.

Detailed flow chart of all the procedure followed is shown in figure 5.2.

Details of different constants initialized in PSO are given in last section (Results).

Source

Output

30

 Particles

 Error

 Yes

 No

Figure 5.2 Flow chart of feature selection for Brain MRI scan

Read image samples

Extract features

Is the stop criterion
satisfied?

Output feature selection results

Classification of brain MRI

SVM
NB

KNN

Initialize Particle Swarm

Compute Fitness of each Particle

Update personal best position of each Particle

Update global best position of swarm

Compute velocity of each particle

Compute position of each particle

31

5.1 Working of Discrete Binary PSO:
The procedure is described as follows:

1) Initialize all the PSO constants as well as the position and velocity matrices of the swarm.
2) Evaluate the fitness of each particle by sending it to a classifier for classification.
3) After evaluation compare the error obtained by the particular particle by it’s previously

achieved error, if the new error is less than the older than replace the position of the
particle with it’s new position(update personal best position).

4) Now compare the fitness of the particle with entire swarm, if the achieved error is
minimum then replace the global best position with this position of the particle.

5) Update the velocity of each particle.
6) Update position of each particle.
7) Exit if the desired efficiency with minimum number of features is achieved otherwise

goto step 2.

5.2 PSO-SVM
In PSO-SVM (particle swarm optimization- support vector machine) the PSO is used for feature
selection of brain images and SVM is used as an evaluation of the features. Features are selected
based on the classification accuracy achieved by SVM.

The block diagram of the process is shown below in figure 5.3:

Figure 5.3: PSO-SVM

The first step is to input MR brain image to the system, next different features are extracted from
the image. These all extracted features are passed on to PSO which selects a subset of features
and passes it to SVM for evaluation. SVM evaluates the provided subset of features by
classifying the test brain images in to two classes’ i-e ‘normal image’ or ‘tumor image’. Until a
desired level of accuracy is achieved the process of selecting new subset of features and
evaluating these using SVM is repeated.

Untill desired
accuracy achieved

Subset of
features

Evaluation
using SVM

FS using
PSO

Feature
extraction

Input
image

32

A total of ten images are used to train the SVM, among these ten images five are normal images
and five are tumor images. The features used to train SVM are only those selected by PSO. After
training SVM a set of ten unseen images are classified using SVM, again among these unseen
test images five are normal images and five are tumor images. The testing accuracy is computed
on the basis of classification done by SVM (using features provided by PSO). This process of
selecting new subset of features and evaluating these on classification performance by SVM is
repeated until a desired accuracy is achieved. When the desired level of accuracy is achieved
with minimum number of features the process stops. After performing classification testing error
is computed and this error is sent back to PSO which uses it as an objective function. So the
objective function of PSO is to minimize the testing error of the classifier.

5.3 PSO-NBC
This process makes use of PSO-NBC(particle swarm optimization- Naïve Bayes Classifier), here
again PSO is used to select features and NBC servers as an evaluator by classifying the images
using subset of features provided by PSO.

Block diagram of PSO-NBC is shown below in figure 5.4:

 Figure 5.4: PSO-NBC

The whole process of PSO-NBC is executed in a similar manner as PSO-SVM, the only
difference is the use of NBC as an evaluator instead of PSO. Classification is performed using
NBC and testing error computed is feeded as an objective function to be optimized by PSO.

5.4 PSO-KNN
PSO-KNN (particle swarm optimization- k nearest neighbor) also makes use of PSO for feature
selection and KNN is used as a classifier. Testing accuracy is computed and error is given as a
feedback to PSO.

The block diagram of PSO-KNN is shown below in figure 5.5:

Input
image

Feature
extraction

FS using
PSO

Evaluation
using NB

Subset of
features

Untill desired
accuracy achieved

33

 Figure 5.5: PSO-KNN

Rest of all the process in PSO-KNN is similar to PSO-SVM and PSO-NBC.

5.5 Results:
Few Brain MRI snapshots used for evaluation are shown below:

5.5.1 Normal Brain MRI (T1 weighted):

Input
image

Feature
extraction

FS using
PSO

Evaluation
using KNN

Subset of
features

Untill desired
accuracy achieved

34

35

5.5.2 Brain with Lesion (Tumor) MRI (T1 weighted):

36

*Data from Internet Brain Segmentation Repository

PSO initialization Constants:

C1= 2

C2=2

W=0.5 (inertial constant)

Swarm size=1000

37

PSO-SVM

Sr.
No.

Efficiency Number of
features

Features

1 100 %
Unseen Data

six Cluster prominence, Dissimilarity, Entropy,
Difference variance, Inverse difference normalized
, Inverse difference moment normalized

2 100 %
Unseen Data

six Contrast, Energy, Sum average, Difference
variance, Information measure of Correlation1,
Information measure of Correlation2, Inverse
difference normalized.

3 90 %
Unseen Data

six Autocorrelation, Dissimilarity, Sum of squares:
Variance, Sum entropy, Information measure of
correlation1, Inverse difference moment
normalized

4 90 %
Unseen Data

seven Correlation, Dissimilarity, Maximum probability,
Information measure of correlation1, Information
measure of correlation2, Inverse difference
normalized, Inverse difference moment normalized

Table 5.1 PSO-SVM Results

PSO-KNN

Sr.
No.

Efficiency Number of
features

Features

1 100 %
Unseen Data

five Contrast, Energy, Difference Entropy,
Homogeneity, Inverse difference normalized.

2 90 %
Unseen Data

five Contrast ,Correlation matlab, Difference entropy,
Information measure of correlation1, Inverse
difference moment normalized

3 80 %
Unseen Data

five Correlation matlab, Correlation paper, Energy
Difference variance, Inverse difference moment
normalized

4 80 %
Unseen Data

six Correlation matlab, Correlation paper,
Dissimilarity, Maximum probability, Difference
variance, Difference entropy

Table 5.2 PSO-KNN Results

38

PSO-NBC

Sr.
No.

Efficiency Number of
features

Features

1 50%
Unseen Data

three Homogeneity, Sum of squares: Variance,
Difference entropy.

2 90%
Seen Data

four Homogeneity, Sum of squares: Variance,
Difference entropy, Inverse difference normalized.

Table 5.1 PSO-NBC Results

0

20

40

60

80

100

120

PSO‐SVM PSO‐NB PSO‐KNN

efficiency

number of features

Number Of Features VS maximum Efficiency for unseen data

39

References
1) Central Brain Tumor Registry of the United States (CBTRUS). Fact Sheet. Available at:

http://www.cbtrus.org. Accessed April 4, 2011.
2) Viner J. Brain Tumors. University of California, San Francisco Department of Neurosurgery.

Available at: http://nursing.ucsfmedicalcenter.org/education/classMaterial/34_2.pdf. Accessed
April 6, 2011.

3) Andreasen NC, ed. Brain Imaging: Applications in Psychiatry. Washington, DC: American
Psychiatric Press; 1989.

4) Debatin JF, McKinnon GC, eds. Ultrafast MRI: Techniques and Applications. Berlin, Germany:
Springer-Verlag; 1998.

5) Westbrook C, Roth CK, Talbot J, eds. MRI in Practice. 3rd ed. Oxford, United Kingdom: Wiley-
Blackwell; 2005.

6) Westbrook C. MRI at a Glance. Hoboken, NJ: Wiley-Blackwell; 2010.
7) Kennedy, J. and R.C. Eberhart, 1995. Particle Swarm Optimization. Proc. IEEE, International

Conference on Neural Networks. Piscataway.
8) Frans van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, University of

Pretoria,2001.
9) James Kennedy, Russell Eberhart, and Yuhui Shi. Swarm Intelligence. Morgan Kaufmann, 2001.
10) E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolutionary multiobjective optimization,

2002.
11) James Blondin, Particle Swarm Optimization: A Tutorial, September 4, 2009
12) Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. Proceedings of the IEEE

International Conference on Evolutionary Computation, pages 69–73, 1998.
13) ^ Zhang, Harry. "The Optimality of Naive Bayes". FLAIRS2004 conference.
14) ^ Caruana, R.; Niculescu-Mizil, A. (2006). "An empirical comparison of supervised learning

algorithms". Proceedings of the 23rd international conference on Machine
learning. CiteSeerX:10.1.1.122.5901.

15) 1. R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features of Image Classification,
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-3, no. 6, Nov. 1973

16) Fritz Albregtsen, Statistical Texture Measures Computed from Gray Level Coocurrence Matrices,
Image Processing Laboratory Department of Informatics University of Oslo,November 5, 2008.

17) R.W. Conners, M.M. Trivedi, and C.A. Harlow,”Segmentation of a High-Resolution Urban
Scene Using Texture Operators”,Computer Vision, Graphics, and Image Processing, Vol. 25, pp.
273-310, 1984.

18) http://en.wikipedia.org/wiki/Autocorrelation
19) Linyi Li,”feature selection for residential area recognition in high resolution images

based on particle swarm optimization”,school of remote sensing and information engineering
Wuhan university Wuhan, China

40

Annex I:
MATLAB CODE :
clear all
close all
clc

%% Load brain images with tumour/lesion (MRI T1)
[imaVOL,scaninfo] = loadminc('G:\Ms-69\thesis\New folder\lesion
subjects\t1_icbm_normal_1mm_pn0_rf20.mnc');

%% Load normal brain images (MRI T1)
[imaVOLL,scaninfoo] = loadminc('G:\Ms-69\thesis\New folder\lesion
subjects\t1_ai_msles2_1mm_pn0_rf20.mnc');

x1=imaVOL(:,:,1:10); %read first 10 normal images
x2=imaVOLL(:,:,1:10);%read first 10 abnormal images
x(:,:,1:10)=x2; %concatinate both type of images in one matrix x
x(:,:,11:20)=x1;

s1='tumour';%labeling
s2='normal';
S1={s1;s1;s1;s1;s1;s1;s1;s1;s1;s1;s2;s2;s2;s2;s2;s2;s2;s2;s2;s2};% true
labels

f_mat=zeros(20,22); % initialize feature matrix (20 data samples 22 features)

for v=1:20

glcm = graycomatrix(x(:,:,v),'Offset',[1 0]);% calculate gray level co
occurance matrix for all images
[out(v)] = GLCM_Features1(glcm,0);%computing features
end

for v=1:20 %extracting all the features in 20 * 22 matrix(20 images,22
features (all data))
f_mat(v,1) = getfield(out,{1,v}, 'autoc');
f_mat(v,2) = getfield(out,{1,v}, 'contr');
f_mat(v,3) = getfield(out, {1,v},'corrm');
f_mat(v,4) = getfield(out,{1,v}, 'corrp');
f_mat(v,5) = getfield(out,{1,v}, 'cprom');
f_mat(v,6) = getfield(out,{1,v}, 'cshad');
f_mat(v,7) = getfield(out,{1,v}, 'dissi');
f_mat(v,8) = getfield(out,{1,v}, 'energ');
f_mat(v,9) = getfield(out,{1,v}, 'entro');
f_mat(v,10) = getfield(out,{1,v}, 'homom');
f_mat(v,11) = getfield(out, {1,v},'homop');
f_mat(v,12) = getfield(out, {1,v},'maxpr');
f_mat(v,13) = getfield(out,{1,v}, 'sosvh');
f_mat(v,14) = getfield(out,{1,v}, 'savgh');
f_mat(v,15) = getfield(out,{1,v}, 'svarh');
f_mat(v,16) = getfield(out,{1,v}, 'senth');
f_mat(v,17) = getfield(out,{1,v}, 'dvarh');

41

f_mat(v,18) = getfield(out,{1,v}, 'denth');
f_mat(v,19) = getfield(out,{1,v}, 'inf1h');
f_mat(v,20) = getfield(out,{1,v}, 'inf2h');
f_mat(v,21) = getfield(out,{1,v}, 'indnc');
f_mat(v,22) = getfield(out,{1,v}, 'idmnc');
end
energy=zeros(1,20);
for h=1:20
[cll,clh,chl,chh]=dwt2(x(:,:,h),'db1');
 energy(h) = sum(abs(cll(:)).^2);
end
f_mat=[f_mat energy'];
%% PSO

 w = 0.5; % Inertial Constant
 C1 = 2; % Constant 1
 C2 = 2; % Constant 2

Np=1000; %number of particles

posi=round(rand(Np,23)); %generating binary numbers (particles)
pbest=posi;%initializing personal best values randomly

V=rand(Np,23);%initialize velocities of particles
Vmax=1;%maximum velocity

e=ones(1,Np);
ee=ones(1,Np);

for ii=1:100 %total number of iterations
for j=1:Np
 E=my_svm(posi(j,:),f_mat);
 %E=my_naive(posi(j,:),f_mat);
 %E=my_knn(posi(j,:),f_mat);
 ee(j)=E;
 if ee(j)<e(j)%if error improved update personal best
 pbest(j,:)=posi(j,:);
 else
 pbest(j,:)=pbest(j,:);
 end
end
e=ee;

indx=0;

for k=1:Np %finding the global best among all the particles
 if ee(k)==min(ee)
 indx=k;
 break
% else
% indx=indx;
 end
end

42

gbest=posi(indx,:);%saving global best in gbest

if ee(indx)==0 && sum(gbest)<=3 %if error less than 10% with only 4 features
STOP
 break
end

for p=1:Np
 for i=1:23
V(p,i) = w*(V(p,i) + rand * C1 * (pbest(p,i)-posi(p,i)) + rand * C2 *
(gbest(i) - posi(p,i)));%update velocities of particles

if V(p,i)<=Vmax && V(p,i)>=-Vmax %velocity clamping
 V(p,i)=V(p,i);
elseif V(p,i)<=-Vmax
 V(p,i)=-Vmax;
else
 V(p,i)=Vmax;
end

SV=1/(1+exp(-V(p,i)));%update position of particles
if rand<SV
 posi(p,i)=1;
else
 posi(p,i)=0;
end

 end
end
end

 function error=my_svm(data,f_mat)
X=zeros(20,1);
for i=1:23
 if data(1,i)==0
 X=X;
 else
 X=[X f_mat(:,i)];
 end
end
[R C]=size(X);
X=X(:,2:C);% left only with features with particle position '1'

xx=[X(1:5,:);X(11:15,:)];
s1='tumour';
s2='normal';
S={s1;s1;s1;s1;s1;s2;s2;s2;s2;s2};
%S1={s1;s1;s1;s2;s2;s2};

43

svmstruct=svmtrain(xx,S);% training SVM with 10 images 5 normal and 5
abnormal
clas=svmclassify(svmstruct,[X(6:10,:);X(16:20,:)]);% testing SVM for unseen
data
e=strcmp(clas,S);% finding errors
error=(10-sum(e))/10;%computing error
end

function error=my_naive(data,f_mat)
X=zeros(20,1);
for i=1:23
 if data(1,i)==0
 X=X;
 else
 X=[X f_mat(:,i)];
 end
end
[R C]=size(X);
X=X(:,2:C);

xx=[X(1:5,:);X(11:15,:)];
s1='tumour';
s2='normal';
S={s1;s1;s1;s1;s1;s2;s2;s2;s2;s2};

O1 = NaiveBayes.fit(xx,S);
 C1 = O1.predict([X(6:10,:);X(16:20,:)]);
 e=strcmp(C1,S);
error=(10-sum(e))/10;
end

function error=my_knn(data,f_mat)

X=zeros(20,1);
k=5;
for i=1:23
 if data(1,i)==0
 X=X;
 else
 X=[X f_mat(:,i)];
 end
end
[R C]=size(X);
X=X(:,2:C);

xx=[X(1:5,:);X(11:15,:)];
s1='tumour';
s2='normal';
S={s1;s1;s1;s1;s1;s2;s2;s2;s2;s2};
Class = knnclassify([X(6:10,:);X(16:20,:)], xx, S, k);
 e=strcmp(Class,S);
error=(10-sum(e))/10;

44

end

function [out] = GLCM_Features1(glcmin,pairs)
%
% GLCM_Features1 helps to calculate the features from the different GLCMs
% that are input to the function. The GLCMs are stored in a i x j x n
% matrix, where n is the number of GLCMs calculated usually due to the
% different orientation and displacements used in the algorithm. Usually
% the values i and j are equal to 'NumLevels' parameter of the GLCM
% computing function graycomatrix(). Note that matlab quantization values
% belong to the set {1,..., NumLevels} and not from {0,...,(NumLevels-1)}
% as provided in some references
% http://www.mathworks.com/access/helpdesk/help/toolbox/images/graycomatrix
% .html
%
% Although there is a function graycoprops() in Matlab Image Processing
% Toolbox that computes four parameters Contrast, Correlation, Energy,
% and Homogeneity. The paper by Haralick suggests a few more parameters
% that are also computed here. The code is not fully vectorized and hence
% is not an efficient implementation but it is easy to add new features
% based on the GLCM using this code. Takes care of 3 dimensional glcms
% (multiple glcms in a single 3D array)
%
% If you find that the values obtained are different from what you expect
% or if you think there is a different formula that needs to be used
% from the ones used in this code please let me know.
% A few questions which I have are listed in the link
% http://www.mathworks.com/matlabcentral/newsreader/view_thread/239608
%
% I plan to submit a vectorized version of the code later and provide
% updates based on replies to the above link and this initial code.
%
% Features computed
% Autocorrelation: [2] (out.autoc)
% Contrast: matlab/[1,2] (out.contr)
% Correlation: matlab (out.corrm)
% Correlation: [1,2] (out.corrp)
% Cluster Prominence: [2] (out.cprom)
% Cluster Shade: [2] (out.cshad)
% Dissimilarity: [2] (out.dissi)
% Energy: matlab / [1,2] (out.energ)
% Entropy: [2] (out.entro)
% Homogeneity: matlab (out.homom)
% Homogeneity: [2] (out.homop)
% Maximum probability: [2] (out.maxpr)
% Sum of sqaures: Variance [1] (out.sosvh)
% Sum average [1] (out.savgh)
% Sum variance [1] (out.svarh)
% Sum entropy [1] (out.senth)
% Difference variance [1] (out.dvarh)
% Difference entropy [1] (out.denth)

45

% Information measure of correlation1 [1] (out.inf1h)
% Informaiton measure of correlation2 [1] (out.inf2h)
% Inverse difference (INV) is homom [3] (out.homom)
% Inverse difference normalized (INN) [3] (out.indnc)
% Inverse difference moment normalized [3] (out.idmnc)
%
% The maximal correlation coefficient was not calculated due to
% computational instability
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
%
% Formulae from MATLAB site (some look different from
% the paper by Haralick but are equivalent and give same results)
% Example formulae:
% Contrast = sum_i(sum_j((i-j)^2 * p(i,j))) (same in matlab/paper)
% Correlation = sum_i(sum_j((i - u_i)(j - u_j)p(i,j)/(s_i.s_j))) (m)
% Correlation = sum_i(sum_j(((ij)p(i,j) - u_x.u_y) / (s_x.s_y))) (p[2])
% Energy = sum_i(sum_j(p(i,j)^2)) (same in matlab/paper)
% Homogeneity = sum_i(sum_j(p(i,j) / (1 + |i-j|))) (as in matlab)
% Homogeneity = sum_i(sum_j(p(i,j) / (1 + (i-j)^2))) (as in paper)
%
% Where:
% u_i = u_x = sum_i(sum_j(i.p(i,j))) (in paper [2])
% u_j = u_y = sum_i(sum_j(j.p(i,j))) (in paper [2])
% s_i = s_x = sum_i(sum_j((i - u_x)^2.p(i,j))) (in paper [2])
% s_j = s_y = sum_i(sum_j((j - u_y)^2.p(i,j))) (in paper [2])
%
%
% Normalize the glcm:
% Compute the sum of all the values in each glcm in the array and divide
% each element by it sum
%
% Haralick uses 'Symmetric' = true in computing the glcm
% There is no Symmetric flag in the Matlab version I use hence
% I add the diagonally opposite pairs to obtain the Haralick glcm
% Here it is assumed that the diagonally opposite orientations are paired
% one after the other in the matrix
% If the above assumption is true with respect to the input glcm then
% setting the flag 'pairs' to 1 will compute the final glcms that would
result
% by setting 'Symmetric' to true. If your glcm is computed using the
% Matlab version with 'Symmetric' flag you can set the flag 'pairs' to 0
%
% References:
% 1. R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features of
% Image Classification, IEEE Transactions on Systems, Man and Cybernetics,
% vol. SMC-3, no. 6, Nov. 1973
% 2. L. Soh and C. Tsatsoulis, Texture Analysis of SAR Sea Ice Imagery
% Using Gray Level Co-Occurrence Matrices, IEEE Transactions on Geoscience
% and Remote Sensing, vol. 37, no. 2, March 1999.
% 3. D A. Clausi, An analysis of co-occurrence texture statistics as a
% function of grey level quantization, Can. J. Remote Sensing, vol. 28, no.
% 1, pp. 45-62, 2002
% 4. http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
%
%
% Example:
%

46

% Usage is similar to graycoprops() but needs extra parameter 'pairs' apart
% from the GLCM as input
% I = imread('circuit.tif');
% GLCM2 = graycomatrix(I,'Offset',[2 0;0 2]);
% stats = GLCM_features1(GLCM2,0)
% The output is a structure containing all the parameters for the different
% GLCMs
%
% [Avinash Uppuluri: avinash_uv@yahoo.com: Last modified: 11/20/08]

% If 'pairs' not entered: set pairs to 0
if ((nargin > 2) || (nargin == 0))
 error('Too many or too few input arguments. Enter GLCM and pairs.');
elseif ((nargin == 2))
 if ((size(glcmin,1) <= 1) || (size(glcmin,2) <= 1))
 error('The GLCM should be a 2-D or 3-D matrix.');
 elseif (size(glcmin,1) ~= size(glcmin,2))
 error('Each GLCM should be square with NumLevels rows and NumLevels
cols');
 end
elseif (nargin == 1) % only GLCM is entered
 pairs = 0; % default is numbers and input 1 for percentage
 if ((size(glcmin,1) <= 1) || (size(glcmin,2) <= 1))
 error('The GLCM should be a 2-D or 3-D matrix.');
 elseif (size(glcmin,1) ~= size(glcmin,2))
 error('Each GLCM should be square with NumLevels rows and NumLevels
cols');
 end
end

format long e
if (pairs == 1)
 newn = 1;
 for nglcm = 1:2:size(glcmin,3)
 glcm(:,:,newn) = glcmin(:,:,nglcm) + glcmin(:,:,nglcm+1);
 newn = newn + 1;
 end
elseif (pairs == 0)
 glcm = glcmin;
end

size_glcm_1 = size(glcm,1);
size_glcm_2 = size(glcm,2);
size_glcm_3 = size(glcm,3);

% checked
out.autoc = zeros(1,size_glcm_3); % Autocorrelation: [2]
out.contr = zeros(1,size_glcm_3); % Contrast: matlab/[1,2]
out.corrm = zeros(1,size_glcm_3); % Correlation: matlab
out.corrp = zeros(1,size_glcm_3); % Correlation: [1,2]
out.cprom = zeros(1,size_glcm_3); % Cluster Prominence: [2]
out.cshad = zeros(1,size_glcm_3); % Cluster Shade: [2]
out.dissi = zeros(1,size_glcm_3); % Dissimilarity: [2]
out.energ = zeros(1,size_glcm_3); % Energy: matlab / [1,2]
out.entro = zeros(1,size_glcm_3); % Entropy: [2]

47

out.homom = zeros(1,size_glcm_3); % Homogeneity: matlab
out.homop = zeros(1,size_glcm_3); % Homogeneity: [2]
out.maxpr = zeros(1,size_glcm_3); % Maximum probability: [2]

out.sosvh = zeros(1,size_glcm_3); % Sum of sqaures: Variance [1]
out.savgh = zeros(1,size_glcm_3); % Sum average [1]
out.svarh = zeros(1,size_glcm_3); % Sum variance [1]
out.senth = zeros(1,size_glcm_3); % Sum entropy [1]
out.dvarh = zeros(1,size_glcm_3); % Difference variance [4]
%out.dvarh2 = zeros(1,size_glcm_3); % Difference variance [1]
out.denth = zeros(1,size_glcm_3); % Difference entropy [1]
out.inf1h = zeros(1,size_glcm_3); % Information measure of correlation1 [1]
out.inf2h = zeros(1,size_glcm_3); % Informaiton measure of correlation2 [1]
%out.mxcch = zeros(1,size_glcm_3);% maximal correlation coefficient [1]
%out.invdc = zeros(1,size_glcm_3);% Inverse difference (INV) is homom [3]
out.indnc = zeros(1,size_glcm_3); % Inverse difference normalized (INN) [3]
out.idmnc = zeros(1,size_glcm_3); % Inverse difference moment normalized [3]

% correlation with alternate definition of u and s
%out.corrm2 = zeros(1,size_glcm_3); % Correlation: matlab
%out.corrp2 = zeros(1,size_glcm_3); % Correlation: [1,2]

glcm_sum = zeros(size_glcm_3,1);
glcm_mean = zeros(size_glcm_3,1);
glcm_var = zeros(size_glcm_3,1);

% http://www.fp.ucalgary.ca/mhallbey/glcm_mean.htm confuses the range of
% i and j used in calculating the means and standard deviations.
% As of now I am not sure if the range of i and j should be [1:Ng] or
% [0:Ng-1]. I am working on obtaining the values of mean and std that get
% the values of correlation that are provided by matlab.
u_x = zeros(size_glcm_3,1);
u_y = zeros(size_glcm_3,1);
s_x = zeros(size_glcm_3,1);
s_y = zeros(size_glcm_3,1);

% % alternate values of u and s
% u_x2 = zeros(size_glcm_3,1);
% u_y2 = zeros(size_glcm_3,1);
% s_x2 = zeros(size_glcm_3,1);
% s_y2 = zeros(size_glcm_3,1);

% checked p_x p_y p_xplusy p_xminusy
p_x = zeros(size_glcm_1,size_glcm_3); % Ng x #glcms[1]
p_y = zeros(size_glcm_2,size_glcm_3); % Ng x #glcms[1]
p_xplusy = zeros((size_glcm_1*2 - 1),size_glcm_3); %[1]
p_xminusy = zeros((size_glcm_1),size_glcm_3); %[1]
% checked hxy hxy1 hxy2 hx hy
hxy = zeros(size_glcm_3,1);
hxy1 = zeros(size_glcm_3,1);
hx = zeros(size_glcm_3,1);
hy = zeros(size_glcm_3,1);
hxy2 = zeros(size_glcm_3,1);

%Q = zeros(size(glcm));

48

for k = 1:size_glcm_3 % number glcms

 glcm_sum(k) = sum(sum(glcm(:,:,k)));
 glcm(:,:,k) = glcm(:,:,k)./glcm_sum(k); % Normalize each glcm
 glcm_mean(k) = mean2(glcm(:,:,k)); % compute mean after norm
 glcm_var(k) = (std2(glcm(:,:,k)))^2;

 for i = 1:size_glcm_1

 for j = 1:size_glcm_2

 out.contr(k) = out.contr(k) + (abs(i - j))^2.*glcm(i,j,k);
 out.dissi(k) = out.dissi(k) + (abs(i - j)*glcm(i,j,k));
 out.energ(k) = out.energ(k) + (glcm(i,j,k).^2);
 out.entro(k) = out.entro(k) - (glcm(i,j,k)*log(glcm(i,j,k) +
eps));
 out.homom(k) = out.homom(k) + (glcm(i,j,k)/(1 + abs(i-j)));
 out.homop(k) = out.homop(k) + (glcm(i,j,k)/(1 + (i - j)^2));
 % [1] explains sum of squares variance with a mean value;
 % the exact definition for mean has not been provided in
 % the reference: I use the mean of the entire normalized glcm
 out.sosvh(k) = out.sosvh(k) + glcm(i,j,k)*((i - glcm_mean(k))^2);

 %out.invdc(k) = out.homom(k);
 out.indnc(k) = out.indnc(k) + (glcm(i,j,k)/(1 + (abs(i-
j)/size_glcm_1)));
 out.idmnc(k) = out.idmnc(k) + (glcm(i,j,k)/(1 + ((i -
j)/size_glcm_1)^2));
 u_x(k) = u_x(k) + (i)*glcm(i,j,k); % changed 10/26/08
 u_y(k) = u_y(k) + (j)*glcm(i,j,k); % changed 10/26/08
 % code requires that Nx = Ny
 % the values of the grey levels range from 1 to (Ng)
 end

 end
 out.maxpr(k) = max(max(glcm(:,:,k)));
end
% glcms have been normalized:
% The contrast has been computed for each glcm in the 3D matrix
% (tested) gives similar results to the matlab function

for k = 1:size_glcm_3

 for i = 1:size_glcm_1

 for j = 1:size_glcm_2
 p_x(i,k) = p_x(i,k) + glcm(i,j,k);
 p_y(i,k) = p_y(i,k) + glcm(j,i,k); % taking i for j and j for i
 if (ismember((i + j),[2:2*size_glcm_1]))
 p_xplusy((i+j)-1,k) = p_xplusy((i+j)-1,k) + glcm(i,j,k);
 end
 if (ismember(abs(i-j),[0:(size_glcm_1-1)]))
 p_xminusy((abs(i-j))+1,k) = p_xminusy((abs(i-j))+1,k) +...
 glcm(i,j,k);

49

 end
 end
 end

% % consider u_x and u_y and s_x and s_y as means and standard deviations
% % of p_x and p_y
% u_x2(k) = mean(p_x(:,k));
% u_y2(k) = mean(p_y(:,k));
% s_x2(k) = std(p_x(:,k));
% s_y2(k) = std(p_y(:,k));

end

% marginal probabilities are now available [1]
% p_xminusy has +1 in index for matlab (no 0 index)
% computing sum average, sum variance and sum entropy:
for k = 1:(size_glcm_3)

 for i = 1:(2*(size_glcm_1)-1)
 out.savgh(k) = out.savgh(k) + (i+1)*p_xplusy(i,k);
 % the summation for savgh is for i from 2 to 2*Ng hence (i+1)
 out.senth(k) = out.senth(k) - (p_xplusy(i,k)*log(p_xplusy(i,k) +
eps));
 end

end
% compute sum variance with the help of sum entropy
for k = 1:(size_glcm_3)

 for i = 1:(2*(size_glcm_1)-1)
 out.svarh(k) = out.svarh(k) + (((i+1) -
out.senth(k))^2)*p_xplusy(i,k);
 % the summation for savgh is for i from 2 to 2*Ng hence (i+1)
 end

end
% compute difference variance, difference entropy,
for k = 1:size_glcm_3
% out.dvarh2(k) = var(p_xminusy(:,k));
% but using the formula in
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
% we have for dvarh
 for i = 0:(size_glcm_1-1)
 out.denth(k) = out.denth(k) - (p_xminusy(i+1,k)*log(p_xminusy(i+1,k)
+ eps));
 out.dvarh(k) = out.dvarh(k) + (i^2)*p_xminusy(i+1,k);
 end
end

% compute information measure of correlation(1,2) [1]
for k = 1:size_glcm_3
 hxy(k) = out.entro(k);
 for i = 1:size_glcm_1

 for j = 1:size_glcm_2

50

 hxy1(k) = hxy1(k) - (glcm(i,j,k)*log(p_x(i,k)*p_y(j,k) + eps));
 hxy2(k) = hxy2(k) - (p_x(i,k)*p_y(j,k)*log(p_x(i,k)*p_y(j,k) +
eps));
% for Qind = 1:(size_glcm_1)
% Q(i,j,k) = Q(i,j,k) +...
% (glcm(i,Qind,k)*glcm(j,Qind,k) /
(p_x(i,k)*p_y(Qind,k)));
% end
 end
 hx(k) = hx(k) - (p_x(i,k)*log(p_x(i,k) + eps));
 hy(k) = hy(k) - (p_y(i,k)*log(p_y(i,k) + eps));
 end
 out.inf1h(k) = (hxy(k) - hxy1(k)) / (max([hx(k),hy(k)]));
 out.inf2h(k) = (1 - exp(-2*(hxy2(k) - hxy(k))))^0.5;
% eig_Q(k,:) = eig(Q(:,:,k));
% sort_eig(k,:)= sort(eig_Q(k,:),'descend');
% out.mxcch(k) = sort_eig(k,2)^0.5;
% The maximal correlation coefficient was not calculated due to
% computational instability
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
end

corm = zeros(size_glcm_3,1);
corp = zeros(size_glcm_3,1);
% using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x s_y
for k = 1:size_glcm_3
 for i = 1:size_glcm_1
 for j = 1:size_glcm_2
 s_x(k) = s_x(k) + (((i) - u_x(k))^2)*glcm(i,j,k);
 s_y(k) = s_y(k) + (((j) - u_y(k))^2)*glcm(i,j,k);
 corp(k) = corp(k) + ((i)*(j)*glcm(i,j,k));
 corm(k) = corm(k) + (((i) - u_x(k))*((j) - u_y(k))*glcm(i,j,k));
 out.cprom(k) = out.cprom(k) + (((i + j - u_x(k) - u_y(k))^4)*...
 glcm(i,j,k));
 out.cshad(k) = out.cshad(k) + (((i + j - u_x(k) - u_y(k))^3)*...
 glcm(i,j,k));
 end
 end
 % using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x
 % s_y : This solves the difference in value of correlation and might be
 % the right value of standard deviations required
 % According to this website there is a typo in [2] which provides
 % values of variance instead of the standard deviation hence a square
 % root is required as done below:
 s_x(k) = s_x(k) ^ 0.5;
 s_y(k) = s_y(k) ^ 0.5;
 out.autoc(k) = corp(k);
 out.corrp(k) = (corp(k) - u_x(k)*u_y(k))/(s_x(k)*s_y(k));
 out.corrm(k) = corm(k) / (s_x(k)*s_y(k));
% % alternate values of u and s
% out.corrp2(k) = (corp(k) - u_x2(k)*u_y2(k))/(s_x2(k)*s_y2(k));
% out.corrm2(k) = corm(k) / (s_x2(k)*s_y2(k));
end

