
AN INNOVATIVE MODEL FOR CONTROL OF
COMPLEX DISTRIBUTED POWER NETWORKS

by

Syed Mohammed Alamdar Raza

A thesis submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

National University of Sciences and Technology

2010

ACKNOWLEDGMENTS

I very humbly thank Allah Almighty for His blessings in giving me the wisdom,

knowledge and understanding without which I would not have ventured into this research work. I

seek Him further, to broaden my vision and enlighten me more in my career.

I express my deepest sense of appreciation for Dr Muhammad Akbar, the research

supervisor of this thesis, for his supervision, guidance and encouragement in carrying out this

study. My special thanks to Dr Farrukh Kamran, who provided me the understanding and

inculcated interest in this entirely new but most prevailing field. Patronage of both of them was

inevitable who were like beacon of guidance during entire course of my research. Also, my special

thanks to the members of the guidance committee, namely Dr M N Jafri, and Dr Saeed Murtaza for

their valuable suggestions. Their advice and critical review was indeed a great help in shaping this

paper. I am extremely grateful to them for providing immensely useful guidance at all times during

compilation of the thesis and conduct of research. I also thank HEC for financial support.

I would like to express my sincere thanks to Brig Ashraf, Col (R)Raja Iqbal, Col Naveed

Khattak and Lt Col Attique who made wholehearted contributions to facilitate in compilation of

this thesis.

Besides, I thank my teachers, friends and family members for their moral support and

patience which enabled and encouraged me to complete this work.

To

My Children

Desaar, Kumail and Fizza

List of Figures

Figure Caption Page

2.1 General Scheme for Controlling a System 10

2.2 Hierarchically Structured Agent Architecture 13

3.1 Vertically Integrated Hierarchy 37

3.2 Abstract Agent Design 53

4.1 Object Model of Agent System 61

5.1 Standard Representation of Use-cases 67

5.2 Agent System/ Sub Systems 67

6.1 State Machine Model 84

6.2 Reactive Power Calculation 86

6.3 Data Filtering / Manipulation 88

7.1 System for Simulation 92

7.2 Bus and Generator Data of System 93

7.3 Line and Load Data of Selected System 94

7.4 Load Flow of Power System 103

7.5 System in Synchronism 108

7.6 Delay in Remedial Action on Increase in Load 109

7.7 Achievement of Synchronism with Series Compensation 110

7.8 Enhancement of Load Beyond Capacity of Series Compensator 110

7.9 Synchronism on Dropping of Load from line 111

7.10 Three Bus Multiple Generator Model 111

7.11 Excessive Loading of Synchronous Generator on Fault 112

7.12 Series Compensation Incorporation by Agent 113

7.13 Reduced Loading on Fault with Compensation 113

7.14 Line Opening at Double the Rated Load 114

7.15 reduction of Loading on Opening of Line 114

List of Tables

Table Caption Page

3.1 Multi-scale Time Hierarchy of Power Systems 38

5.1 Data Collection 70

5.2 Real Power Calculation 70

5.3 Reactive Power Calculation 71

5.4 Interfacing for Data Structures 71

5.5 Automated Negotiation 72

5.6 Data Filtering/ Manipulation 72

5.7 Risk Management 72

5.8 Conversion of Event to Alarm 73

5.9 Circuit Protection 74

5.10 Fault Isolation Inhibition Signal Generation 74

5.11 Model Updating of Fault Isolation 74

5.12 Initiate Inhibition Signal for Protection Agent 75

5.13 Command Decipher 75

5.14 Consistency Check 76

5.15 Provision of Compensation 76

5.16 Restoration of Network 77

5.17 Generation Control 77

5.18 Optimization for Stability 78

5.19 f, v,Φ Stability 78

5.20 Inhibition Signal Generation for Stability 79

5.21 Model Updation of Reconfiguration Agent 79

5.22 Initiate Inhibition Signal of Power Generation Control 79

Chapter # 1

 Introduction

1.1 Background

Shifting to a post-fossil energy setup is no small task. Merely the logistics side of the

problem encompasses many challenging requirements such as replacing crude oil, coal and gas-

fired power plants with environment friendly, renewable energy technologies. It is not only a

matter of removing one and plugging in the other. Renewable energy sources often require huge

spaces to produce useful amounts of power, and need to be located in areas most suitable to their

generation needs (bright regions for solar, airy for turbines and the ocean for wave etc.) and

hence be located in far flung areas. These may be supposed to provide power to limited and

isolated pockets or may be connected to the main grid. In both the scenarios there are definite

peculiar control requirements for local or distributed power system networks.

 If the alternate energy resources are used in conjunction with the conventional power

generation setups in main grids, control for distributed power networks will be required. A setup

of diverse, scattered sources of power generation is generally called "distributed energy network"

and it has defined advantages over the existing, mainly centralized infrastructure. Distributed

energy can be more strong against an accident or attack on the power grid. Failure of a 5 MW

wind turbine would be undesirable, yet it will not be as disastrous as suddenly taking a 1000 MW

coal power plant off the grid. Distributed power also permits more resource flexibility. The more

varied the resources used to produce electricity, the less likely are outages resulting from limited

availability of one of them. This is particularly more important due to the varied nature of air and

solar energy. Output from a particular wind or solar farm will rise and fall with local conditions,

but the overall availability of electric power from various locations and resources can still be

consistent.

Resorting to distributed energy is currently more complicated than centralised power.

Some of the contributing factors are managing the difficulties related to variable power

generation, changing usage patterns, distances involved, enormous increase in nodes of network

and multiplicity of sources. In addition to dealing with variable, dispersed inputs, distributed

networks will have to allow efficient routing of power, with lesser idle or unused generators.

These would allow an overall lower level of generation to support continued levels of operation.

The distributed power system computerised networks will be a fundamental part of post-oil era

powered with green and environment friendly resources. Moreover, like computer networks, a

successful grid would like to have a setup, where the intelligence of the system can be placed

close to all important locations of requirement where decisions are to be made, instead of

centralized network intelligence.

Since power network is a large-scale system consisting of many subsystems, it is no

longer the best solution to manage by using only the centralized control schemes or loosely

decentralized control schemes. The reliability of the control system framework, which is highly

coupled and interconnected with subsystems, decreases since a single failure can bring down the

entire system. In order to overcome these problems, the control system should operate at a higher

level of automation, flexibility, and robustness based on a new methodology which can work

effectively in a large-scale distributed complex system. Recently, there has been a growing

interest in distributed agent systems to deal successfully with the complexity and distributed

problems in power systems. Each agent system can be assigned special functions to solve the

distributed problems. Moreover, in the multiagent system the agents can work to solve problems,

which are beyond the capabilities or knowledge of an individual agent. There have been many

applications of agent-oriented mechanisms in control and monitoring systems. Agent based

system can help in solving the distributed control problems by allocating responsibilities to

various locations. The multiagent system also helps in monitoring the condition of system and

providing effective asset management by diagnostics and protection against faults. Both areas are

built upon the multiagent system properties, such as proactive, reactive, and social properties, as

well as other fundamental properties.
A major concern for the networked sensing and actuation of a large-scale system is the

complexity, due to the number of components and their interaction patterns and communication

delays. This complexity is raised when a control system is required to become intelligent by

implementing a completely new variety of knowledge processing functions. The multiagent

system paradigm, as the state-of-the-art software engineering concept provides a comprehensive

and unifying framework for building large-scale control systems. However, a review of the

technical literature reveals a lack of design methodologies for multiagent systems, though few

software development platforms are available with limited features. This points to the need for a

new system design methodology for the control of large scale systems such as distributed power

networks. A distributed system control concept has, therefore, been presented here as an

effective methodology to control a large-scale distributed power network. An organization for

the system has been described as the foundation of the distributed control system. It has several

functions that provide efficient ways to control locally, and to accommodate and overcome the

complexity in the large-scale distributed systems.

1.2 Problem Statement and Objectives

Green power based and conventional generation setups and infrastructure networks,

encompassing vast distances, with fully centralized control will warrant full duplex, high baud

rate communication channels with features of duplicity and redundancy, especially if the systems

are interactive. These setups are susceptible to frequent failures owing to the fact that

malfunctioning of one part of the network will disseminate unpredictably in no time not even

sparing the central control. Consequently the central control will suffer from the same trouble

which, it primarily is expected to rectify.

The increasing complexity and interconnectedness of such systems poses fresh challenges

for reliable and safe operation. Not a single entity can have control over distributed and highly

interactive networks especially in real time. Moreover typical mathematical models that are

employed for simulation and control are not able to properly handle the complexity and

interconnection of more complex power networks. In most of the cases there are no procedures

for understanding behaviour of the complex systems. Handling of disturbances in all these

networks, along with avoiding of cascading effects through out and between networks requires a

fundamental understanding of system’s dynamics, and ability to exercise effective distributed

control.

The challenge of managing distributed and interconnected systems therefore demands

devising techniques capable of carrying out decentralized analysis of problems and intervening

locally to fix and save the problems from propagating through distributed power networks, such

as making use of multiagent systems.

An agent is a computer software program that is autonomous and situated in some

distributed environment in order to meet its design objectives. Since the agents are faced

with different environments, they are designed differently for the given environment. In a large-

scale distributed complex system, the agent’s autonomous properties can reduce the complexity

by reducing the coupling problems between the subsystems. Furthermore, the proactive, reactive,

and robust properties can be well suited for applications in a dynamic and unreliable situation.

Since the agent is situated in an environment that is a distributed power network, it needs a

perception and effecter to act and react. First, the sensed raw data is processed and mapped into a

scenario. Then an objective (a sub-goal) is initialized under the situation to achieve the main goal

which is the optimal operation. After confirming the objective, the best plan is chosen for the

objective (sub-goal) in the decision-making. Depending on the plan, an algorithm module is

selected to launch it. Finally, the action made by the algorithm module effects through the

effecter into the environment.

The objectives for this research are to propose Object, Use-case and State Machine

models of a concept based upon agent system for control of distributed power system network.

The proposed system should identify the requirement of different agents considering them as

entities fully described with attributes and functions. The proposed model should specify

interaction of different agents and events and should be able to serve as a basis for identification

of requirements for control of distributed power networks.

The objectives also include simulation of a typical power system for establishing the

requirement of distributed control thereby highlighting the advantages achievable through

making in-situ decisions rather than relying on central control for retaining synchronism in

generators and avoiding overloading of the system especially under increasing load conditions..

1.3 Approach

An agent system for multi faceted distributed generation setup has been proposed

identifying role and requirements of each agent. The Object Model, treating various agents as

Entity/ Object has been proposed showing their interaction/ interfacing. Each entity has been

elaborated with its attributes. In addition, the services expected from each agent are highlighted.

The Use-case Model is proposed showing assigned role of each agent. Each use-case has been

elaborated with its purpose, data handling, stimuli and responses. A lay out of the sub-systems of

each of the proposed main agents has also been included. An elaborate State Machine Model is

proposed showing behavior of system in real time scenarios and identifying different states,

events and interactions. Finally a power system is simulated using Matlab/ Simulink platform to

establish requirements of a local agent decision for assuring stability by resorting to decisions

best suited to the environment. Static and dynamic load flow analysis of the selected system for

ascertaining instantaneous values of each bus voltage along with its phase angle, active power

and reactive power at each bus has been carried out using Newton Raphson technique. Rotor

angle and speed of generators are found at defined intervals in pre fault, post fault, and on fault

conditions as per defined intervals in various scenarios of load increase utilizing swing equation.

Remedial measures commensurate with nature of disturbance are taken by distributed control to

save the system from going out of synchronism or becoming overloaded. Expected delayed

responses by central control or no responses and consequences thereof including system going

out of synchronism or becoming overloaded etc have been demonstrated.

1.4 Outline of the Thesis

The thesis is organized into eight chapters. Chapter 1 is introduction to the thesis and

Chapter 2 is based upon a literature survey to account for developments made in control of

interconnected power systems and presents critical literature review. Different control aspects

concerning the issue under discussion have been highlighted.

Chapter 3 reviews control of real time systems and multiagents with an exhaustive

discussion on drawbacks of existing system in the wake of increased complexity and feasibility

of utilising distributed systems for control of complex power networks, identifying dividends

which can be accrued by utilising multiagents.

In Chapter 4, important features of requirement engineering have been taken up

culminating into features of object modelling. It is followed by a discussion on object model of

multiagent system proposed for control of distributed power network.

The model of system use which interacts dynamically with environment, as

recommended by UML, being a scenario based technique for requirement elicitation has been

covered in detail in chapter 5.

Chapter 6 describes concepts dealing with flow, interaction and sequencing of operations

applied to the proposed state machine model of multiagent system for control of distributed

network.

Chapter 7 includes the simulation of a power system, static and dynamic load flow

analysis of the selected system, solution of relevant swing equation and demonstration of

advantages of distributed control as compared to central control or no control.

Chapter 8 comprises of conclusion of the thesis describing the extent of work carried out

and recommendations for future work.

Chapter # 2

Models for Control and Literature Survey

2.1 Introduction

In 1978, Sandell et al carried out a survey of a variety of alternates for decentralized

control [1]. It was found that a fine amalgamation of professional assimilation and scrutiny may

be used to define in a reasonable fashion an adhoc control mechanism in respect of a dynamic

system. The authors reached at the conclusion that procedures were required that could present a

design engineer with many acceptable control structure options for further consideration.

In this chapter a resume and scrutiny of the previous work carried out in the field of

control and management of distributed and multi machine power systems are given. A brief

review of various techniques of modeling a problem of control has also been included. The

contents of this chapter have been taken from [1] and [30].

2.2 Control Methodologies

Here various types of concepts finding importance in overall control methodologies have

been evaluated. The main task of control problems, models that can be employed, models

formulating a problem, and agent architectures finding utility in handling these problems have

been assigned due consideration.

2.2.1 Main Task of Control

From the control point of view, a system is to behave in a defined manner. This must

fulfill an assignment, that can encompass approaching certain goals while ensuring that none of

the constraints which are possible are contradicted.

Assignments can be identified by a person or some other object, or these may follow

from certain characteristics of behavior of the system. Objectives can be either immediate goals

or long term goals, e.g., to bring the system in a given state, or to maximize the long-term

performance or to minimize the operation costs in long term. It is important that tasks should

have one goal. These can possess many goals which can possibly be contradicting. In such

scenario these are known as multi objective tasks.

By keeping in view the dynamics of the system and probable constraints placed on the

actions, tasks to be carried out on the system are to be selected such that the requisite actions

expected of the system are achieved. Actions that achieve the goal are found and process

formulates Dynamic Control Problem (DCP). A standard DCP setting is shown in Figure 2.1. In

order to determine an action such that system performance tends to approach the expected

behavior as close as possible the control agent measures the state of the system.

The general DCP can be formulated as:

Find the actions such that the goal is achieved optimally
subject to

Figure 2.1 General Scheme for Controlling a System

a model of the dynamic system
with defined inter actions and states.

This problem can be seen as an optimization problem, since the actions have to be chosen

such that they achieve the goal in the best possible way. It is important that the goal remains

independent of the definite model of the dynamic system. With a view to obtaining the goal it

may be presumed that there exists a system model of the system under analysis. Ths model can

be utilised to accurately identify the goal and to make a prediction about the system behavior

given certain actions. A control problem model defines the exact control problem often based on

the system model. The problem can be solved by agents using control problem model. Agent

architecture provides the organization of agents which adapt some communication protocol.

2.2.2 System Models

State of the system, behavior of the physical system, actions on the system, and possible

disturbances are described by a dynamic system model. There may be limits on possible actions

and states in addition to system dynamics, which means the models are merely relevant in a

given operating domain. The constraints can be due to limitations which are technical,

regulatory and measures of safety etc. Models of system may change with time, which means,

the structural parameters of the model are not bound to stay constant.

2.2.3 Control Problem Models

The overall goal may consist of one central goal, a variety of decentralized goals, or

hierarchical goals commensurate with system model structure. While resorting to a central goal

there is a wholesome goal for the entire system. When parts of system in a wholesome system

hold their own exclusive goals, decentralized goals become relevant. Hierarchical goals become

relevant when subsystems possess goals which (partially) overlie, or when goals for a system can

be ascertained on various levels of abstraction/ detail. The goals generally have a close

association to the overall system.

Three varied classes of control problem models can be identified including, a central

problem model consisting of a single DCP. The other model comprises of a decentralized

problem of multiple smaller, independent, DCPs. If the smaller DCPs have no conflicting goals,

the combination of the problems is equivalent to the overall DCP. However, if there are

conflicting goals, the combination of the problems need not be equivalent. Lastly, a hierarchical

problem model consists of a number of abstraction layers, in which higher layers contain more

abstract DCPs, and lower layers more concrete DCPs. The higher layers depend on information

from lower layers and vice versa.

2.2.4 Types of Agent Architectures

Solution of DCPs can be accomplished by using agents or controllers. Agents are

softwares of problem solution that have many abilities including reasoning, learning, and

communicating with others so as to find a solution to a given problem. Agents possess set of

actions containing skills and they also have an information set containing their knowledge

(including information from sensing and communicating)[2].

Architectures are used to organize agents, for example., via links of communication

including, central agent architecture, having only single agent, a decentral agent architecture,

having many agents possessing nil interaction with one another, and a hierarchical agent

architecture, where there are various layers of agents. Higher layers may supervise and receive

information from lower layers. Layers located at lower level can receive instructions from and

offer information to upper layers. Agents situated on the similar level/ layer can be permitted to

interact directly with one another, as well as via the layers located at upper level. Figure 2.2

depicts a typical example of hierarchically structured agent architecture [3].

Targets for levels located at lower level agents are defined by those located at upper

level. Physical systems are handled by agents assigned the lowest level in the hierarchy. Besides

structured in layers, Agents may also be categorized in groups within which they are allowed to

interact with each other without seeking approval of any other entity. While finalising

hierarchical architectures, it is not only essential to ascertain information that can be

communicated, but also the order in which the information can be approached by agents, ie,

communication protocol is the requirement.

2.3 Control of Distributed Power Systems and Networks

Figure 2.2: Hierarchically Structured Agent Architecture

Many scientists have considered using prediction as part of a distributed control

architecture. Few of the examples of these are architectures in which a single predictive

controller is used as replacement of decentralized PID controllers [4], multiple different

controllers are manually engineered as replacement of decentralized PID controllers [5-6], or

prediction is used as supervisory layer in a cascaded setting [7-8]. The control architectures

involved are typically engineered with insight in the specific application domain. Other

architectures consider multiple subsystems that depend on one another, and that employ Model

Prediction Control (MPC) in order to optimize system performance [9-21]. Methods described

by them are general in nature, less application specific, and hence relevant to different scenarios.

A comprehensive and decentralized control methodology is, therefore, a much desired option.

Agent-based models provide understanding of large scale, behaviour of complex power

infrastructures which is non linear for better control of disturbances mainly concerning cascading

[3]. Assignment of different responsibilities to subsystem is the key to simpler independent

bahaviour of individual components. In succeeding paragraphs, system model decomposition,

control problem decomposition and problem assignment techniques etc as handled in different

research papers will be discussed.

2.3.1 System Model Decomposition

Typically there are two ways in which a decentralized or hierarchical system model is

formed, based on the way the overall system is considered. The central system model will be

applicable. It means a centralized system model has to be constructed and then defragmented

into many subsystems without affecting structural properties present in the model of system.

This approach is known as top-down approach where a linear dynamic system is decomposed

analytically into a similar set of subsystems with inputs which are coupled[10,22]. The other is

centralized system model considered implicitly. This typically involves modeling a subsystem

and the relations with other subsystems directly ie the decomposition into subsystems is based on

engineering understanding. In this case one resorts to a bottom-up approach and the subsystems

are conceived without first bearing in mind a model for the overall system [9,11,16-17].

In general, a system can be subdivided by bearing in mind various time scales in a system

and identifying weak couplings between subsystems [1]. No specific methods are available to

resort to decomposition.

2.3.1.1 Decentralized Model Decomposition

In decentralized decomposition, all subsystems are independent of one another. However,

many scientist use the word decentralized to address a group of subsystems that can

communicate with one another. These subsystems are a special case of a hierarchical system

model. Purely decentralized model decomposition is only possibly when two subsystems are

completely independent of each other or when they are assumed to be independent of each other.

The term decentralized should not be confused with the more general term distributed. The latter

refers to systems consisting of subsystems in general, and not in particular to systems consisting

of strictly independent subsystems.

2.3.1.2 Hierarchical Model Decomposition

 Hierarchical system model decomposition arises when coupled subsystems depend on

each other. Higher levels in a hierarchy may be more abstract or may span a longer time period

(e.g., they may have a lower communication, computation, or control rate). The coupling

between subsystems can have different foundations. Sometimes the coupling is based on

physical variables and modeled explicitly. In this case control of a system is divided in different

sections as subsystems. In each subsystem model the controls and state of a neighboring

subsystem are taken into account. Multi-vehicle formation stabilization can also be considered

where system models of the vehicles (including constraints) are uncoupled [23]. However, one

layer higher, at a more abstract level, the state vectors of the subsystems are coupled due to

constraints that make the vehicles drive in a formation. Similarly optimal dynamic routing of

messages is considered in a store-and-forward packet switching network [18]. The nodes in the

network are seen as subsystems with connections to neighboring subsystems. In particular, by

reformulating the subsystem model they get rid of constraints. Yet at other times the coupling is

more artificial and does not have a clear physical meaning. As an example, subsystem model is

defined for each section in a distribution network and compatibility equations between

subsystems are to be satisfied. The decentralized approach is based on an augmented Lagrangian

formulation, where the flow balancing equations are dualized. In this formulation, the

Lagrangian multipliers become the coupling variables [11,16].

2.3.2 Control Problem Decomposition

Generally the structure of the system model and the structure of the problem cannot be

distinguished. A control problem is therefore associated with the goal of each sub system. It is

believed that it is not always necessary to allocate a problem of control with each subsystem.

One can opt to define goals over a number of subsystems, instead of separately for each

subsystem Analytical decomposition of a centralized goal can ascertain goals for subsystems. It

can be better understood with example of worst-case approach which is taken by defining for

each subsystem, a subproblem of finding the Lagrangian multipliers that maximize the problem

of finding the controls. The multipliers must minimize the augmented Lagrangian [11,16], and

an ad-hoc engineered subproblem goal specially where a goal is formulated for each subsystem

[18].

Specific goals are not considered for the lowest layer at occasions [23]. However, a

centralized goal is identified on the subsystems of the lowest level [10] at a level higher than it,

or exchange of predictions on the bounds of agents’ state trajectories [19-20]. This way the

agents possess information regarding the trajectories that the subsystem of the other agents are

likely to make. Through this prediction of behaviour of all other agents can be done while still

keeping the control problem decomposition to subsystems.

2.3.3 Agent Design and Problem Assignment

The information set of the agents is generally assumed to contain sufficient information

for solving the subproblems. The action sets of agents are assumed to be sufficient in this regard

[11,16,18]. There are two options available in case an agent does not possess access to certain

information that it needs directly . These options include: collect the data via communication, or

devise mechanism to predict the information. In the proposed model of control of distributed

power networks, each agent has been assigned the capability to send request for obtaining

required information from any other agent. The available information will be passed on, after

carrying out updation and as per data structure of the requesting agent [24].

Optimal partitioning of agents into groups has drawn much of the interest of

researchers[12]. Removing the communication channel amongst agents (at least among agents

in different sub-groups) is of essential value to a group of scientists [22]. By minimising

communication between agents, they can work better at their own speeds. However this

requirement must be weighed against the total cost of control actions. The authors have

suggested a formulation wherein this trade-off can be inconsequentially implemented by finding

an arrangement assigning agents to groups. Sensitivity-based criterion has also been proposed for

considering how information must be communicated to the groups [22]. In systems having

grouped agents, the closed-loop control action sensitivity when compared with measurement of

output is used as a criterion for deciding regarding a given output measurement which should be

made available to a particular group of agents.

Specific agents are generally tasked to solve each control subproblem. Generally the

designs for agent architectures are prepared being offline which do not change online [10]. The

information that agents can exchange amongst each other is determined before hand such as by

minimizing a communication cost, or objective function at system’s overall level depending

upon the requirement to be handled using artificial intelligence etc. The agent-based model

covered in this thesis also proposes use of evolutionary softwares and genetic algorithms for

prediction and objective function minimization. Each agent, however, has been assigned multiple

tasks instead of increasing number of agents by allocating specific tasks to each agent [24].

2.3.4 Synchronous and Asynchronous Iterative Solutions by Agents

When decisions are to be taken among agents with conflicting goals, it is easier and

realistic to reach at a solution through iterations [12]. Considering the decisions of its

neighboring agents, every agent revises its decisions. Agents arrive at optimal decisions

independently if the dynamic subsidiary problems are not coupled. However, if this is not the

case, there are two methods to handle couplings: synchronously or asynchronously.

In the synchronous case precedence Constraints are placed as binding on the iterations in

case of synchronous method. This necessitates that the faster agents wait for slower agents.

Serial synchronous methods and parallel synchronous methods can mutually be distinguished. In

serial method one agent can take a step at a time whereas in the parallel case agents have to wait

for all other agents to finish the step in hand before proceeding.

Asynchronous treatment preferred over the synchronous case because it permits all

agents to run at their own speed, and hence the agents spend no time waiting for one another.

This, however, is achieved at the cost of uncertainty in information, since agents may not know

precisely regarding actions of other agents. Asynchronous iterations can be noticed in state

machine model of Figure 6.1, where state of automated negotiations and risk management

continuously revises the information it holds through iterations, on reconfiguration of network,

provision of ancillary services at identified nodes and on receipt of results from evolutionary

programming/optimization for minimum power transfer [25].

Parallel synchronization can be dealt in two-step algorithm. On adapting this approach

every agent handles its subproblem first, using some values or parameters of the previous step.

With the help of information from other agents these values/ parameters are optimized. In the

next or second step this information is made available in which each agent exchanges

information regarding its parameters with other agents [11,16]. In few cases agents also

communicate and share their future plans to each other at the end of each optimization step [19-

20,23]. Worst-case disturbances acquire priority because agents prefer to solve local min-max

problems to optimize performance with respect to these. To acquire conservative solutions and

predictions, parameterized feedback of state is introduced into the multiagent formulation of

MPC. Agents’ capabilities can be incorporated with a view to joining the trajectory formulaton

with operational constraints and stabilization of dynamics of vehicles. This is done by adding a

potential function reflecting the state information of a possibly moving obstacle or other agent to

the cost function [26]. Efforts to incorporate optimization features through synchronous or

asynchronous iterations for revising/improving the information and decisions by individual

agents have thus proved quite useful.

2.3.5 Choice of Action by Agents

Agents can opt to use various methods of physically choosing actions to perform at a

given point of time or scenario. As far as a typical single-agent MPC is concerned, the agent opts

to invoke the very first action of the sequence found as a result of solving the control problem

assigned to it. While studying multiagent MPC, however, there are many available options since

an agent may like to adopt suggestions from agents sitting in neighborhood regarding its actions.

Agents can fully exercise option to select their actions and implement them such as, by merely

opting the first action taken from the sequential list of optimal actions. A higher-layer agent can

also be considered which collects data from various layers located at lower level to update

parameters for each agent exclusively[11,16].

 Actions of a particular agent may be chosen by other agents as well which means actions

can also be shared [27]. Many other agents may also be permitted to utilise capabilities of a

given agent. As an alternative, agents can opt actions to be performed democratically by

allowing various agents to cast vote about action to take place. This concept is based upon the

assumption that the majority knows what is right to do and hence it can prove fruitful [27].

Finally, agents may be allowed to trade their actions. In this case the agent having the bid which

is highest is allowed to choose the action that an agent should act upon. It can be beneficial in

scenarios where there is only a very limited resource available required to be shared.

2.3.6 Automatic Learning Features of Agents

Automatic learning is the latest concept which is likely to enhance the efficacy, broaden

the domain of applied fields and strengthen the flexibility/ adaptability of protocols related with

cooperation. As an example of applicability, learning may effectively be introduced for

identification of parameters, or for enhancement in capacity of problem-solving and decision-

making abilities. Learning imparts an agent the ability to predict about future actions of

neighbors . Learning specifically yields dividends when agents work asynchronously.

There exists a possibility of on-line identification procedure jointly based on a MIMO

parameterized model of the physical characteristics of the system and Kalman filtering [11]. In

addition to this, a Kalman optimal estimator defined on the grounds of the on-line identified

control can be employed with a view to making estimate of the state of the subsystems for which

the subproblem of an agent is has been identified. Neural networks may also be allocated to the

agents signifying nodes in a network [18]. Online computational requirements can be improved

by training the neural networks off line. The models of the nodes can be allowed to rely on

values acquired by neighboring nodes in future and each agent has to estimate these values [17].

2.3.7 Concepts of Artificial Intelligence

In practice, many nonlinear processes are approximated by reduced-order models,

possibly linear, that are clearly related to the underlying process characteristics. However, these

models may be valid only within certain specific operating ranges, and a different model may be

required in the wake of changed operating conditions, or the control system should adopt the

new system model parameters. The advent of Artificial Intelligence (AI) techniques, such as

neural networks, has solved this problem to a great extent. The neural technology offers many

more benefits in the area of nonlinear control problems, particularly when the system is

operating over the nonlinear operating range. The applications of neural networks in power

system control are available [28-29].

A new control scheme to incorporate the nonconforming load problem was presented, in

which an effort had been undertaken to develop algorithms capable of discriminating between

non controllable short-term excursions and controllable long-term excursions [30]. Out of the

two techniques described, one was developed using a neural network algorithm for pattern

recognition of controllable signals, and the other technique was based on the detection of the

controllable signal in the presence of a noisy random load using a random signal probability

model. Test results reveal that neural network-based control implementation had a significant

improvement over the modern control implementation. LFC system performance was evaluated

with a nonlinear neural network controller using a generalized neural structure to yield better

system dynamic performance than the individual neurons [31].

A four-area interconnected power system model with reheat nonlinearity effect of the

steam turbine and upper and lower constraints for generation rate nonlinearity of hydro turbine

was considered for the investigation [32]. It has been shown that the control problem can be

viewed as a stochastic multistage decision-making problem or a Markov Chain control problem

and have presented algorithms for designing control based on a reinforcement learning approach

[29].
The fuzzy logic control concept departs significantly from traditional control theory,

which is essentially based on mathematical models of the controlled process. Instead of deriving

a controller via modeling the controlled process quantitatively and mathematically, the fuzzy

control methodology tries to establish the controller directly from domain experts or operators

who are controlling the process manually and successfully. Many studies exploiting the fuzzy

logic concept in AGC regulator design dealing with various system aspects have appeared in the

literature [33–35].

Contribution considering the problem of decomposition of multivariable systems for the

purpose of distributed fuzzy control was reported by Gegov [89]. The proposed decomposition

method has reduced the number of interactive fuzzy relations among subsystems. The concept

and development of AGC using Artificial Neutral Networks and fuzzy set theory to utilize the

novel aspects of both in single hybrid AGC system design for power systems has also been

mooted [36].
These days, Genetic Algorithm (GA) is the most popular and widely used algorithm of all

the intelligent algorithms. GAs have been widely applied to solve complex nonlinear

optimization problems in a number of engineering disciplines in general and in the area of

control of power systems in particular [36-43].

A reinforced Genetic Algorithm has been proposed as an appropriate optimization

method to tune the membership functions and rule sets for fuzzy gain scheduling of load

frequency controllers of multi area power systems to improve the dynamic performance [38].

The proposed control scheme incorporates dead-band and generation-rate constraints also. Later,

contrary to the trial-and error selection of the variable structure feedback gains, a genetic

algorithm-based selection of feedback gains has been advocated for load frequency variable

structure controller [39]. The selection scheme provides an optimal feedback gain selection in the

variable structure control, and the test results show that not only the dynamic performance has

been improved, but also, the control effort is dramatically reduced. A comprehensive study on

control of an autonomous power system using combined intelligent techniques is also available

[36].

A higher order robust dynamic performance is achieved with LFC designs based on GA

and linear matrix inequalities [42]. The desired control parameters have been obtained by

coordinating GA with linear matrix inequalitie control toolbox optimization. A new GA based

fuzzy AGC scheme of a multi area thermal generating system is developed [43]. The scheme is

capable of evaluating the fitness of GA optimization by selecting a function like “figure of

merit,” which directly depends on transient performance characteristics like settling times,

undershoots, overshoots, and time derivative of frequency.

2.4 Identification of Research Area

After going through the literature, it can be inferred that the authors have generally

concentrated on single problem pertaining to control of distributed power networks. For

example, research is available on transient stability using various techniques such as Lyaponov

functions, fuzzy logic based power system stabilizer and nonlinear controllers with derivative

adaptive technique. Similarly performance prediction of distributed power system based on small

scale prototypes and a coordinated voltage control for power system voltage stability to control

dissimilar control actions at geographically distant locations has been proposed. Moreover work

on possible modeling techniques of complex systems is also available. However a relatively

comprehensive and wholesome solution has been deliberated upon which can encompass

functionally vital aspects of a control system of distributed power networks possessing features

of evolution, self healing and autonomous decision making at different nodes thus managing real

and reactive power along with allied ancillary services, reconfiguration on occurrence of fault

and restoration on rectification subsequently, data handling and award of autonomy to various

geographically scattered nodes for unhindered quality supply of electricity etc. Integration of

different dimensions of the complex problem of controlling distributed power network of today’s

magnitude is certainly an ambitious demand requiring efforts and resources of large, qualified

and experience consortia. These consortiums should comprise of experts from multi disciplinary

fields with support of world community as identified by large number of researchers in the field.

Stepping in the right direction and towards the objective is the only viable option.

With a view to providing a basis for further development a hierarchical conceptual model

based upon agents having communication and interface capabilities has therefore been proposed

[24-25,44-49]. Goals of each agent have been defined individually and iterations within states

have been described for automated negotiations, reconfiguration and risk management based

upon iterative evolutions. Actions of agents are autonomous yet each agent can initiate a request

for overarching actions, assignments and data.

2.5 Summary

 This chapter provides a critical overview of philosophies and work carried out in the field

of control of power system networks and modeling of systems. Common aspects in the available

research conducted in the relevant field have been identified. This has led to identification of

certain groups and attributes at a rather non mathematical level. Recent developments such as

control schemes based on concepts of neural networks, fuzzy logic and genetic algorithm have

been accounted for. Emphasis has been given to categorizing various control strategies reported

in literature that highlight their salient features.

Chapter # 3
Agent-Based Computing

3.1 Introduction

 Control of Real Time System encompassing geographically distributed areas warrants

conceiving innovative techniques to handle situations and scenarios. A promising solution is use

of multiagent systems. In this chapter a review of Agent Based Systems is carried out with

special emphasis on their properties and applications. In addition, a detailed discussion of using

multiagent system in distributed power networks is included, highlighting dividends that will be

accrued by utilizing multiagent systems for control of these networks. The contents of this

chapter have been mainly taken from [68-70] and [72].

3.2 Open and Dynamic Computing Environments

The trend of software development is shifting from stand alone computers to distributed,

open and dynamic systems presenting an environment made up of computers in infrastructures,

in support systems and embedded in vast arrays of devices. These computers are networked with

ability to interact dynamically forming new configurations to suit prevailing needs. However, the

characteristics of dynamic and open environments in which systems of different origins, make,

type and purpose must interact and operate effectively within rapidly changing circumstances

and with exponentially increasing quantities of available information, suggest that improvements

on the traditional computing models and paradigms are required [2].

In particular, the need for awarding autonomy, to enable components to respond to

changing circumstances while trying to achieve overarching objectives without the need for user

intervention is fundamental. Agent technologies have become the most valuable tool that is being

used to tackle the problems associated with managing the complexities that arise.

Agents are viewed as autonomous, problem-solving computational entities capable of

effective operation in dynamic and open environment. They are deployed in environments in

which they interact, and possibly cooperate, with other agents (including both people and

software) and may have conflicting aims. These are exactly the kinds of characteristics that are

needed in the new computational environments. Agent-based systems have emerged over the

past few years, from a convergence of technologies in distributed object systems and distributed

artificial intelligence, and have seen rapid and dramatic growth both academically and

commercially.

3.3 Object Technologies and Agents

The relation of agents to objects has caused difficulty in understanding what it is that

makes agents distinct [2]. While object-orientation as a programming paradigm has achieved

much success, and offers a valuable abstraction for the development of complex systems, agents

provide a different and higher level of abstraction. Like objects that provide encapsulation of

state and behavior, agents also encapsulate properties. However, objects are essentially passive

in nature. They have no choice to interact, and are simply invoked by other objects to perform

particular tasks or execute particular functionality. In contrast agents have the ability to decide

for themselves to participate in computational activity, and to perform the desired operation. This

is the fundamental distinction that marks out agents as distinct by virtue of their autonomy. It is

this autonomy that is also responsible for providing the flexibility that is needed for open and

dynamic environments.

In terms of modeling, objects are regarded as a valuable way to view the world, and an

agent-based approach offers a much more natural representation of real-world systems in which

different individuals, interact according to their own agenda and priorities. They, then, can come

together to achieve objectives that might not, or not as easily, be achieved by the individuals

alone, but they do so when it is appropriate. When the goals of individual agents are closely

aligned, and if they respond to requests made to them, and always provide information when

queried, then the resulting systems may come close to an object-oriented system.

In short, agents can be distinguished from objects in that they are autonomous entities

capable of having choice over their actions and interactions. However, they may be constructed

using object technology. Moreover, agents typically run in their own thread of control, as

opposed to standard object systems, which have one thread.

3.4 Concept of Agents

The concept of agents emerged due to the difficulties faced while attempting to solve

problems without considering real external environment or the entity involved in that problem-

solving process [2-3]. Thus, the solutions constructed to address these problems can be limited

and inflexible in not properly handling real-world situations. In response, agents can be proposed

as problem-solvers that are capable of flexible and effective operation in complex environments.

This means that the agent receives input from its environment through sensors, and acts so as to

affect that environment through effectors. Such a simple but powerful concept has been adopted

by many branches of computing because of its usefulness and broad applicability.

A generally accepted definition of agents is the computational entities that are capable of

exhibiting flexible behavior in dynamic and unpredictable environments [2]. Typically, agents

are characterized along certain dimensions, rather than defined precisely. For example, a weak

notion of agents involves autonomy or the ability to function without intervention, social ability

by which agents interact with other agents, reactiveness allowing agents to perceive and respond

to a changing environment, and proactiveness through which agents behave in a goal-directed

fashion [3]. As indicated, these characteristics are broadly accepted as representative of the key

qualities that can be used to assess agenthood.

Several alternative characterizations with additional properties like mobility, ability to

learn and the requirement that agents are rational and honest etcetera have also been mentioned

in the literature.

In addition, agents are also required to be based around control architectures comprising

mental components such as beliefs, desires, and motivations.

Several efforts have been made to explore the area in some depth, including

encompassing agent frameworks [51-53] and agent taxonomies [53], which help in identifying

the key features of agent systems and the characteristics of the different branches of the field. In

attempting to distinguish agents from programs, Franklin and Graesser constructed an agent

taxonomy aimed at identifying the key features of agent systems in relation to different branches

of the field [53].

There is now a variety of different labels for agents ranging from the generic autonomous

agents, software agents or intelligent agents to the more specific interface agents, virtual agents,

information agents, mobile agents and so on [50,54-60]. The diverse range of applications for

which agents are being used includes operating system interfaces, processing satellite imaging

data, air-traffic control, business process management, electronic commerce, and computer

games etcetera [61-66]. The richness of the agent metaphor that leads to such different uses of

the term is both a strength and a weakness. Its strength lies in the fact that it can be applied in

many different ways in many situations for many different purposes. The weakness, however, is

that the term agent is now used so frequently that it might be considered that there is no

commonly accepted concept of an agent.

Etzioni and Weld summarize desirable agent characteristics as including autonomy,

temporal continuity by which agents are not simply "one-shot" computations, believable

personality in order to facilitate effective interaction, communication ability with other agents or

people, adaptability to user preferences, and mobility, which allows agents to be transported

across different machines and architectures [67]. They further characterize the first of these,

autonomy, as requiring that agents are goal-oriented, collaborative in that they can modify the

requests and clarify them, flexible in not having hard, scripted actions, and self-starting in that

they can sense changes and decide when to take action.

3.5 Applications of Agents

 Areas that find excessive application of agent systems include ambient intelligence and

grid computing. Both these areas are related to the concept of controlling a vast and distributed

network of power generation and transmission where a large number of generating units,

distribution tie lines, transformers, sensors and actuators come together to handle, optimize and

ensure unhindered power supply.

3.5.1 Ambient Intelligence

The ambient intelligence vision describes an environment of potentially thousands of

embedded and mobile devices (or software artifacts) interacting to support user-centered goals

and activity. This suggests a component-oriented view of the world in which the artifacts are

independent and distributed. Autonomy, distribution, adaptation, responsiveness, and so on, are

the key characterizing features of these ambient intelligent artifacts, and in this sense they very

strongly share the same characteristics as agents [68].

In particular, these ambient intelligence artifacts are likely to be function-specific and

interact with numerous other ambient intelligence artifacts in the environment around them in

order to achieve their goals. Interactions take place between pairs of artifacts (in one-to-one

cooperation or competition), between groups of artifacts (in reaching consensus decisions), and

between artifacts and the infrastructure resources that comprise their environments. Interactions

like these enable the establishment of electronic institutions or virtual organizations, in which

groups of agents come together to form coherent groups able to achieve some overarching goals.

3.5.2 Grid Computing

High-performance computing infrastructure, known as the Grid, for supporting large-

scale distributed scientific systems has recently gained interest from several communities. It

provides a computing infrastructure for supporting more general applications that involve large-

scale information handling, knowledge management, and service provision.

It is natural to view large systems in terms of the services they offer, and consequently in

terms of the entities providing or consuming services. Grid applications, in which typically many

services may be involved, spread over a geographically distributed environment, which new

services join and existing ones leave, very strongly suggest the use of agent-based computing. In

particular, agents will need to collaborate and to form coalitions of agents with different

capabilities in support of different organizations.

Initially aimed at high-performance computing, Grid computing is now being recognized

as the future model for service-oriented environments, within and across enterprises [69].

Chapter # 4

Object Model of Multiagent Based Control of Distributed Power

Networks

4.1 Introduction

Object modeling of the proposed multiagent system for control of complex and diverse

distributed power system networks has been discussed in this Chapter. The chapter has been

divided into two segments. First segment takes up relevant features of requirement engineering

in a generic way, culminating into features of object modeling. The second segment comprises of

the object model developed for innovative multiagent based control of complex and distributed

power system network.

4.2 Requirement Engineering

Software engineers have to often solve immensely complex problems. Understanding

nature of the problems can be very difficult, especially if the system is new. Consequently, it is

difficult to establish exactly what the system should do. The descriptions of the services and

constraints are the requirement for the system, which warrant finding out, analysing,

documenting and checking the system [86]. The term requirement is not used throughout the

software industry in a consistent way. A requirement is seen as a high-level, abstract statement of

a service that the system should provide or a constraint on the system.

Requirements engineering process comprises of different levels of description which are

user requirements to mean the high-level abstract requirements, and system requirements, that is,

the detailed description of what the system should do. As well as these two levels of detail, a

more detailed description (a software design specification) may be produced to bridge the

requirements engineering and design activities.

User requirements are statements, in a natural language plus diagrams, of what services,

the system is expected to provide and the constraints under which it must operate. System

requirements set out the system services and constraints in detail. The system requirements

document, sometimes called a functional specification, should be precise. It may serve as a

contract between the system buyer and software developer. A software design specification is an

abstract description of the software design which is a basis for more detailed design and

implementation. This specification adds further detail to the system requirements specification.

4.3 Object Models

An object-oriented approach to the whole software development is now commonly used,

particularly for interactive system development [86-88]. This means expressing the systems

requirements using an object model.

Object models developed during requirements analysis may be used to represent both

system data and its processing. In this respect, they combine some of the uses of data-flow and

semantic data models. They are also useful for showing how entities in the system may be

classified and composed of other entities.

An object class is an abstraction over a set of objects which identifies common attributes

and the services or operations which are provided by each object. Objects are executable entities

with the attributes and services of the object class. Objects are instantiations of the object class

and many different objects may be created from a class. Generally, the models are developed

using analysis focus on object classes and their relationships.

Models of systems which are developed during requirements analysis should model real-

world entities using object classes. Various types of object models can be produced showing how

object classes are related to each other, how objects are aggregated to form other objects, how

objects interact with other objects and so on. All of these can add to understanding of a system

which is being specified.

 The analysis process for identifying objects and object classes is recognized as one of the

most difficult areas of object-oriented development. Object identification is basically the same

for analysis and design.

 An object class in UML is represented as a vertically oriented rectangle with three

sections. Name of the object class is mentioned in top section, class attributes in the middle

section and the operations associated with the object class in the lower section of the rectangle.

4.4 Inheritance Models

Object-oriented modeling involves identifying the classes of object which are important

in the domain being studied. These are then organized into taxonomy [86,88]. Taxonomy is a

classification scheme showing relation of object class to other classes through common attributes

and services.

To display this taxonomy, the classes are organized into an inheritance hierarchy where

most general object classes are presented on the top of the hierarchy. More specialized objects

inherit their attributes and services. These specialized objects may have their own attributes and

services.

4.5 Object Aggregation

 In addition to acquiring attributes and services through an inheritance relationship with

other objects, some objects are made up of other objects. That is, an object is an aggregate of a

set of other objects. Considering the model described in section 4.8, the hierarchy of main agents

for control of distributed networks, namely, Failure Supervision Agent and Main Managements

Agent are an example of object aggregation.

Objects communicate by requesting services (calling methods) from other objects and, if

necessary, by exchanging the information required for service provision. Copies of information

needed to execute the service and the results of service execution are passed as parameters.

In some distributed systems, object communication is implemented directly as mutual

text message exchange. The receiving object parses the message, identifies the service and the

associated data and carries out the requested service. However, when the objects coexist in the

same program, method calls are implemented in the same way as procedure or function calls in a

language. When service requests are implemented in this way, communication between objects is

synchronous. That is, the calling object waits for the service request to be completed. However,

if the objects are implemented as “concurrent processes or threads” the object communication

may be asynchronous. The calling object may continue its operation while the requested service

is executing.

4.6 Concurrent Objects

Conceptually, an object requests a service from another object by sending a ‘service

request’ message to that object. There is no requirement for serial execution where one object

waits for completion of a requested service. Consequently, the general model of object

interaction allows objects to execute concurrently as parallel processes. These objects may

execute on the same computer or as distributed objects on different machines.

In practice, most object-oriented programming languages by default have a serial

execution model where requests for object services are implemented in the same way as function

calls.

4.7 An Object-Oriented Design Process

The general process used for object-oriented design has a number of stages [86-88].

The first stage is to understand and define the context and the modes of use of the system. After

this, design of the system architecture is carried out, followed by identifying principal objects in

the system. Then design model is developed and object interfaces are high lighted.

In fact, all of these activities are interleaved and influence each other. Objects are

identified and the interfaces fully or partially specified as the architecture of the system is

defined. As object models are produced, the individual object definitions may be refined and this

may mean changes to the system architecture.

4.8 Object Model for Control of Power Networks

Object model for control of distributed power system networks comprises of ten agents

in two strings, namely Failure Supervision Agent and Main Management Agent [24,46]. The

hierarchy of each alongwith relevant attributes has been included in Figure 4.1. Inheritance of

attributes of Failure Prediction Agent and Occurrence Identification Agent with Failure

Supervision Agent can be ascertained from the model. Similarly Status Monitoring, Power

Generation, Stability and Reconfiguration Agents inherit attributes from Main Management

Agent.

The agents in the object model are shown in Figure 4.1. After a thorough scrutiny of

essentially required activities for effective control of distributed power system networks, a

comprehensive list of functions was prepared. The problems handled in various research studies

and surveyed literature provided an outline of vital activities necessary for enforcing adequate

control of a self healing network. Based upon object model fundamentals, these functions were

grouped into performance viable classes of objects which formed the basis of devising a

multiagent based mechanism. “Identification” attribute associated with each agent describes the

component/gadget or sub system for which the data is being handled by it. The information is

extracted through a number of sensors located throughout the network and associated with

different components, bus bars, transformers, and generators. The decisions are made

autonomously and implemented through actuators packaged with sub systems of the network.

The system is implemented through micro controller based mechanism.

The agents shown in Figure 4.1 can be divided into two broad categories, the reactive

agents and the deliberative agents. The reactive agents perform programmed remedial measures

for situations warranting instant response. Their objective is autonomous and hence should be

able to implement fast control. The deliberative agents not only represent the system's current

status but also modify the plans if they do not match the real world model. The goals of the

deliberative agents are robustness and automatic remedial measures. These agents also carry out

co-ordination and use heuristic knowledge to identify triggering event from reactive agent that

are urgent, important and / or resource consuming.

The robustness of the software infrastructure is preserved by using analytically redundant

software architecture with two complementary entities (agents) on each job, wherein a simple

and highly reliable core agent that guarantees minimal essential services and a complex entity

Figure 4.1: Object Model of Agent System

that provides many desirable features are suggested. The reliable core will function in spite of a

failure in the complex agent.

The stochastic events arising from the dynamics of the power network drive the co-

ordination between distributed agents. An event driven real time communication architecture will

assemble relevant distributed agents into task driven teams and will provide the teams with

timely and consistent information to carry out coordinated actions.

The attribute of Identification shown in each object is used to identify the modality (e.g.

generator, load, transmission line, or compensator) the agent is associated with.

Interface service of each object provides interface functions for agents to access the

knowledge base of each other and also for agent communication (knowledge exchange). This is

an essential service and hence should form part of each agent because in a distributed system of

greater magnitude and dimensions, communication from one or several agents will be interrupted

from time to time. Under these unfavorable conditions, the remaining agents should be robust

enough to make decisions that do not jeopardize grid stability or reliability. Fault tolerant agents

that can make decisions in the absence of data from one of their adjacent agents are, thus,

required. Since the primary role of different agents differs from each other, required data from a

particular agent may be missing, but it can be inferred from load flow and voltage information

from neighboring agents. This arrangement, therefore, facilitates collaborative fault detection.

A separate agent for compensation can be developed to provide an array of services such

as reactive power generation, power flow control, harmonic compensation, voltage regulation, or

dynamic control over frequency and voltage. It can, however, also be made part of any other

agent with relevant features. In our case it has been mde part of Main Management Agent.

Failure prediction agent will constantly analyze the scenario of functioning so as to have

a logical foresight, through look-ahead simulations for predicting failure events in power system

network.

One of the major tasks of occurrence identification agent is to convert events into alarm

signals to trigger the fault isolation/ relevant remedial sub agents. It will also carry out data

filtering and routine interfacing of data.

Since the quantum of data to be handled is expected to be enormous because of

continuous real time incoming of parameters, the scrutiny/ filtering of data as per requirement of

operation, coordination/ display (if applicable) etc is mandatory [25].

Protection agent and power generation control agent are simple ones, performing as an

option in case of failure of complex agents i.e. Fault isolation agent and Stability agent. They are

therefore providing redundancy to the system.

Designated softwares such as Failure Supervision and Main Management Agents will

read/ compute voltage magnitudes, phase angles and transmission line power flows for a network

under steady state operating conditions. Other results such as transformer tap settings and

generator reactive power outputs can also be computed. As an analyzing support, high-speed

printers should be employed to print out the complete solution in tabular form for analysis by the

planning engineer/ R&D setups. Main Management Agent will also carryout consistency checks

and decision support with partial inputs and presence of errors. Provision of compensation

services, restoration of network and real time failure analysis are also some of its designated

tasks.

Stability agent helps the network under disturbance conditions such as sudden loss of a

generator/ transmission line, sudden load increase and decrease, short circuits and switching

operations. This agent utilizes power flow equations and machine dynamic equations to compute

the angular swings of machines during disturbances. The agent also computes critical times for

network faults and allows the evolutionary programme/ expert system to determine the effects of

various machine parameters, network modifications and control schemes.

Status monitoring agent will carry out real time system observability, contingency

planning, flagging of rare events and metering for track enforcement etc. Separate short circuit

programmes will form part of Fault Isolation Agent to compute three phase and line to ground

faults in power system networks in order to select circuit breakers for fault interruption, select

relays to detect faults and control circuit breakers and determine relay settings. Short circuit

currents is computed for each relay and circuit breaker location for various system-operating

conditions such as lines or generating units out of service, in order to determine minimum and

maximum fault currents via Failure Prediction Agent.

4.9 Summary

 This chapter presented an object model based on multiagent systems for control of

distributed power networks, with a brief description of each agent. Essential features of a typical

object model were also deliberated upon.

Chapter # 5

Use-case Model of Multiagent Based Control of Distributed Power

Networks

5.1 Introduction

Use-case Model is a dynamic model that describes system interaction with the

environment. The approach recommended by UML is to develop a use-case model where each

use-case represents an interaction or service in the system [87]. The use-case description helps to

identify objects and operations in the system. Use-case model, therefore, is a scenario-based

technique for requirement elicitation. It is a fundamental feature of UML notation for describing

object oriented system models. Use-case Model of the agent system based control of distributed

power networks has been described in this chapter.

5.2 Scenario-based Elicitation

 People usually find it easier to relate to real-life examples rather than abstract

descriptions. They understand and criticize a scenario of how they might interact with a software

system. Scenarios are particularly useful for adding detail to an outline requirements description.

These are descriptions of example interaction sessions. Each scenario covers one or a few

possible interactions. Different types of scenarios are developed which provide information at

different levels of detail about the system.

The scenario starts with an outline of the interaction and, during elicitation, details are

added to create a complete description of the interaction. A scenario may include a system state

description at the beginning of the scenario, a description of the normal flow of events in the

scenario, a description of undesired eventualities and remedies, information about other

concurrent activities and a description of the state of the system after completion of the scenario.

Scenario-based elicitation is carried out informally where the “Requirements Engineer”

works with stakeholders to identify scenarios and to capture details of these scenarios.

Alternatively, a more structured approach of event scenarios or use-cases may be used.

5.3 Use-cases

 Use-cases are a scenario-based technique for requirements elicitation. It was first

introduced in the Objectory method [86-88]. These have now become a fundamental feature of

UML notation for describing object-oriented system models. A use-case identifies the actors

involved in an interaction and names the type of interaction.

5.4 System Context and Models of Use

It is essential to develop an understanding of the relationships between the software being

conceived and its external environment. Developing this understanding helps to decide methods

for providing the required system functionality and ways to structure the system so that it can

communicate effectively with its environment.

The system context and system use model represent two complementary models of the

relationships between a system and its environment. System context is a static model that

describes other systems in the environment and the system use model is a dynamic model that

describes its interaction with environment. A standard representation of use-case model is shown

in Figure 5.1 [86].

Figure 5.1: Standard Representation of Use-cases

The context model of a system is represented using associations where, essentially, a

block diagram of the overall system architecture is produced. This is expanded by representing a

sub-system model using UML packages shown in Figure 5.2 [86].

Failure
Prediction

Occurrence
Identification

Protection Fault
Isolation

Communication

Status
Monitoring

Power
Generation
Control

Stability

Reconfiguration

Failure Supervision Main Management

Figure 5.2: Agent System/ Sub Systems

The modeling of interactions of a system with its environment should use an abstract

approach that does not include too much detail of these interactions. The approach proposed in

UML is to develop a use-case model where each use-case represents an interaction with the

system. In use-case models every possible interaction is named in an ellipse and the external

entity involved in the interaction is represented by a stick figure.

Any technique for describing use-cases is valid as long as the description is short and

easily understandable. It is necessary to develop descriptions for each use-case shown in the

model. The use-case description helps to identify objects and operations in the system.

5.5 Object Identification

In practice object identification is actually concerned with identifying object classes. The

design is described in terms of these classes. Inevitably, the object classes initially identified are

to be refined and revisited as deeper understanding of the design process is developed [86-88].

Many proposals have been made to identify object classes. Grammatical analysis of a

natural language description of a system is used for this purpose. In this case objects and

attributes are nouns and operations or services are verb. This approach has been used in the

HOOD method for object-oriented design widely used in European aerospace industry [87].

Another possibility is to use tangible entities (things) in the application domain such as aircraft,

roles such as manager, events such as request, interactions such as meetings, locations such as

offices and organizational units such as companies etc. Or yet another approach is to use a

behavioural approach in which the designer first understands overall behaviour of the system.

Various behaviours are assigned to different parts of the system and an understanding of actors

initiating and participating in these behaviours is derived. Participants who play significant roles

are recognized as objects.

Finally a scenario-based analysis is used where various scenarios of system use are

identified and analysed in turn. As each scenario is analysed, the team responsible for the

analysis must identify the required objects, attributes and operations. A method of analysis where

analysis and designers take on the role of objects is effective in supporting this scenario-based

approach.

In practice, different sources of knowledge are used to discover objects and object

classes. Objects and operations initially identified from the informal system description are a

starting point for the design. Further information from the application domain knowledge or

scenario analysis is then used to refine and extend the initial objects. This information is

collected from requirements documents, discussions with users and from an analysis of existing

system.

5.6 Use-cases of Agents

Layout of sub systems proposed in Figure 5.2 has been considered for proceeding

onwards. Use-cases of each agent are described in this section [24,25]. Each use-case has been

described under headings of Data, Stimulus and Response. Data refers to the handling of data by

a particular use-case, stimulus is the event when a particular use-case has to perform and

response is the expected outcome of that use-case.

5.6.1 Failure Supervision Agent (Actor)

It’s identified use-cases are Collect Data, Real Power Calculation, Reactive Power

Calculation, Interfacing, Automated Negotiation and Data Filtering/ Manipulation. These use-

cases are briefly described in this section, following the prescribed pattern and stylized form of

description [86].

5.6.1.1 Data Collection

This use-case collects real time data at defined intervals, remains active

throughout and provides information to the requesting agent. Description of the use-case is

shown in Table 5.1.

Table: 5.1 Data Collection

Use-case Collect Data
Data It collects real time data of voltage, frequency, current, and phase etc from

sensors/instruments of subsystems in each data collection interval which
keeps on updating itself, at a twenty second interval. The data handled also
includes maximum allowable and nominal voltage, current overload
capability with nominal value and mechanical system torque.

Stimulus It is active all the time to receive digital data from I/O card and Modems
through sensors.

Response It provides data to various agents/ Actors.

5.6.1.2 Real Power Calculation

This use-case is meant for calculation of instantaneous real value of power at

different nodes of distributed network. Description as per format has been included in Table 5.2.

Table: 5.2 Real Power Calculation

Use-case Real Power Calculation
Data For a polyphase circuit of M Phases, each ones instantaneous power is

calculated as:
 p(t) = v(t) i(t)
and the total instantaneous power is the sum of active powers of each
individual phase:
 p(t) = Σ vi(t) ii(t) i=1 to M

Stimulus It calculates active power in real time and is available for use by another
actor or service on request.

Response Calculated active power is sent on receipt of request.
5.6.1.3 Reactive Power Calculation

It calculates Volt-Ampere Reactive for different nodes of the network. This

information is primarily used for management of ancillary services and compensation. Relevant

aspects of use-case are given in Table 5.3.

Table: 5.3 Reactive Power Calculation

Use-case Reactive Power Calculation
Data Average power ‘P’ over a cycle is calculated. Then rms values of voltage

and current are calculated to find apparent power ‘S’. Reactive power is then
calculated as under:
Q = √ (S2 – P2)

Stimulus Real time values are available on request.
Response Values are sent on receipt of request.

5.6.1.4 Interfacing for Data Structures

This use-case is mainly responsible for ensuring compatibility of data structures

of transferred information in a distributed network of hybrid nature. Stylised form of use-case is

shown in Table 5.4.

Table: 5.4 Interfacing for Data Structures

Use-case Interfacing
Data Instantaneous basic parameters and the calculated values of active/ non

active power in the form of data structure mutually agreed upon and
acceptable to other agents/ actors and services are handled.

Stimulus Request from other systems serves as stimulus.
Response The desired data is sent in the form (data structure) acceptable to the

requesting agent.

5.6.1.5 Automated Negotiation

This use-case either manages provision of reactive power at nodes with adequate

reactive power, or else the request for reconfiguration of networks is sent. Relevant description is

included in Table 5.5.

Table: 5.5 Automated Negotiation

Use-case Automated Negotiation
Data Real time data from sensors/ calculated values from other use-cases are

obtained by sending requests on all identified nodes on the system network.
Stimulus Request to reconfigure/ supply various quantities at nodes in need of

ancillary services prior to arriving at serious situations is sent.

Response Response is provision of ancillary services or approaching relevant agent for
reconfiguration.

5.6.1.6 Data Filtering/ Manipulation

This use-case handles collection, updation and analysis of data with source

traceability. The use-case has been described in Table 5.6.

Table: 5.6 Data Filtering/ Manipulation

Use-case Data Filtering/ Manipulation
Data All real time parameters are handled with source tag.
Stimulus Request for deciphering, analyzing, integrating, generating, gathering,

representing, updating and elimination of data acts as stimulus.
Response Provision of the desired results of the processed data/ updating is the

response.

5.6.2 Failure Prediction Agent

Its proposed use-cases are Collect Data, Risk Management and Interfacing. The

description of the use-case not defined earlier is “Risk Management”. This use-case handles the

scenario developed after the outcome of automated negotiations with support from evolutionary

programme and local expert system. Description as per format is included in Table 5.7.

Table: 5.7 Risk Management

Use-case Risk Management
Data Results of Automated Negotiation service of Failure Supervision Agents are

received as data to be handled by this use-case.
Stimulus Request from Failure Supervision Agents services to manage the situation in

a given scenario serves as stimulus.
Response Response is to handle the new context and update the evolutionary process

of genetic algorithms in collaboration with local expert system advice.
5.6.3 Occurrence Identification Agent

The proposed use-cases are Convert Event to Alarm, Data Filtering and

Interfacing.

The description of new use-case with title, “Covert Event to Alarm” will be given

now. This use-case is responsible for identifying situation codes generated by different agents

and subsequently generate code of the best response for action by acuators, in addition to

initiation of alert signals for crew, as described in Table 5.8.

Table: 5.8 Conversion of Event to Alarm

Use-case Convert Event to Alarm
Data Coded identification for recognition of a particular event (disturbance or

malfunctioning) and code of identification for the best response as per
evolutionary process of genetic algorithms in collaboration with local expert
system is handled as data.

Stimulus Signal from Risk Management and Automated Negotiation regarding
occurrence of a particular event/ events is regarded as stimulus.

Response It generates signal from/for relevant actuators for remedial measures. It also
initiates visual/ audio indication to maintenance crew, specific to nature of
event for ease of identification by the crew.

5.6.4 Fault Isolation Agent

The use-cases are Event Identification, Circuit Protection, Inhibition Signal

Generation, Model Updating and Interfacing. The description of these use-cases is provided next.

5.6.4.1 Circuit Protection

This use-case is assigned the task of identifying from pre-defined events as per

code generated by different use-cases and activate necessary circuit protection mechanisms

accordingly, as per information contained in Table 5.9.

Table: 5.9 Circuit Protection

Use-case Circuit Protection
Data Data code for identifying particular event/ events.
Stimulus It activates on receipt of signal/ data from Event Identification and Convert

Event to Alarm.
Response Activation of relevant circuit protection mechanism is the response.

5.6.4.2 Fault Isolation Inhibition Signal Generation

If circuit protection mechanism fails to prove effective, it invokes this use-case

for emergency shutdown of identified portion of network and facilitates passage of this

information to various agents. The use-case has been described in Table 5.10.

Table: 5.10 Fault Isolation Inhibition Signal Generation

Use-case Inhibition Signal Generation
Data It deals with data code meant for circuit stoppage
Stimulus Request for circuit protection regarding emergency shut off of a part or

whole of the identified circuit as per coded data is the stimulus.
Response Response is emergency shut off and passage of information to this effect to

Model Updating service, Stability Agent and Reconfiguration Agent.

5.6.4.3 Model Updating

Information regarding inhibition or resumption of circuit is used by this use-case

for constant and iterative updation of network model, as described in Table 5.11.

Table: 5.11 Model Updating of Fault Isolation

Use-case Model Updating
Data Information code regarding shut off or resumption of whole or part of a

circuit is the relevant data for this use-case.
Stimulus Intimation from Inhibition Signal Generator regarding shut off or

resumption acts as stimulus.
Response It carries out model updating and informs reconfiguration agent accordingly.

5.6.5 Protection Agent

It provides redundancy/ duality to Fault Isolation Agent and comprises of a simple

algorithm to handle emergency possessing the singular use-case of circuit inhibition, as shown in

Table 5.12.

Table: 5.12 Initiate Inhibition Signal for Protection Agent

Use-case Initiate Inhibition Signal

Data Data handled by this is the output of occurrence Identification Agent.

Stimulus It stimulates on receipt of signal regarding failure of Fault Isolation Agent
and handing over the control to agent providing redundancy.

Response Its response is to shut off indicated malfunctioning circuit in emergency.

5.6.6 Main Management Agent

The suggested use-cases are Command Decipher, Consistency Check,

Compensation, Restoration and Interfacing. These will be described in next paragraphs.

5.6.6.1 Command Decipher

This use-case receives input from agents of Failure Supervision and assesses

effect on network by identifying potentially calostrophic abnormalities, as shown in Table 5.13.

Table: 5.13 Command Decipher

Use-case Command Decipher

Data It handles filtered Data from Failure Supervision Agent.

Stimulus It is stimulated on receipt of data from Failure Supervision Agent Hierarchy
that includes all agents of the hierarchy.

Response It is expected to establish/ assess effect of command on network.
5.6.6.2 Consistency Check

After updating/resumption of network configuration, various built in tests are

conducted by this use-case for assurance of expected performance. The use-case has been

described in Table 5.14.

Table: 5.14 Consistency Check

Use-case Consistency Check
Data Details of recent change in the model/ configuration of the system network

from any of the relevant use-cases is the received data.
Stimulus This receipt of information regarding system modification serves as stimulus

for the use-case.

Response It conducts the built in tests so as to ensure ability of the modified setup to
meet the designated objectives of optimum power supply within specified
constraints. Results are sent to Fault Supervision Agent, occurrence
identification agent and reconfiguration agent.

5.6.6.3 Provision of Compensation

Request for ancillary services as initiated by any node on network through

Stability or Fault Supervision Agents is entertained by this use-case, as shown in Table 5.15.

Table: 5.15 Provision of Compensation

Use-case Compensation
Data Phase angles, voltages and reactance are the handled data.
Stimulus Request for ancillary services provision by optimization service of Stability

Agent / Fault Supervision Agent serves as stimulus.
Response Reactive power supply, harmonic compensation and dynamic control over

frequency, voltage and power flow are the expected responses from use-case
of compensation.

5.6.6.4 Restoration of Network

When the networks returns back to normal operation, all reconfigurations are to

be set aside for optimum performance. This use-case implements restoration through actuators,

as shown in Table 5.16.

Table: 5.16 Restoration of Network

Use-case Restoration
Data Data from Fault Isolation Agent or Reconfiguration agent is received.
Stimulus Information regarding normalization of performance parameters of the

inhibited circuit serves as stimulus.
Response It initiates signals to actuators for reverting back to a setup closer to original

system configuration as far as possible.

5.6.7 Stability Agent

Its Use-cases are Generation Control, Inhibition Signal Generation, Optimization,

f, v,Φ Stability and Interfacing

5.6.7.1 Generation Control

This use-case is assigned the prime responsibility of exercising control over

generation under disturbance conditions, in collaboration with a number of use-cases of different

agents, as described in Table 5.17.

Table: 5.17 Generation Control

Use-case Generation Control
Data Variables of power flow equations and machine dynamics equations are the

parameters required by this use-case.
Stimulus Disturbance conditions such as loss of generator/ transmission line, load

fluctuations, short circuits, switching operations act as stimulus for it.
Response Its response is calculation of new machine parameters such as angular

swings and initiation of instructions to actuators for implementation of
remedial measures in collaboration with Failure Supervision,
Reconfiguration Agents and local expert system advice as per evolutionary
process.

5.6.7.2 Optimization for Stability

Optimization of cost of production, power transfer and optimized network

configuration is done by this use-case. Relevant description is included in Table 5.18.

Table: 5.18 Optimization for Stability

Use-case Optimization

Data All real time data as required for calculations to achieve optimization is
handled by it.

Stimulus Being an important use-case, it conducts optimization interactions all the
time.

Response It carries out cost optimization and formulation of optimized network
updation proposals for maximum power transfer. Initiation of signals for
shutting down or resumption of generation (full or partial) as per load flow
and power requirements of the load is also done by it to maintain stability.

5.6.7.3 f, v,Φ Stability

This use-case compares the real time data of parameters of power flow equations

etc with reference/nominal values and on identifying deviations it resorts to bring the values back

within limits, as shown in Table 5.19.

Table: 5.19 f, v,Φ Stability

Use-case f, v,Φ Stability

Data Data handled by this use-case includes variables of power flow equations
and machine dynamics equations, and error signals after comparison with
reference values.

Stimulus It does not require stimulus and remains active throughout.

Response On exceeding the error signals from reference value, it resorts to respective
control mechanisms as adapted.

5.6.7.4 Inhibition Signal Generation for Stability

From point of view of stability, at times it becomes necessary to shut off various

portions of network in emergency. This use-case implements this requirement on receipt of

information from automated negotiation. Use-case has been described in Table 5.20.

Table: 5.20 Inhibition Signal Generation for Stability

Use-case Inhibition Signal Generation
Data Output of Occurrence Identification Agent.
Stimulus Situation code forwarded by Automated Negotiation serves as stimulus for

this use-case.
Response It generates circuit inhibition signal for emergency protection or circuit

inhibition and forwards relevant information to generation control for
calculation of new parameters.

5.6.8 Reconfiguration Agent

This use-case is designated the responsibility of physical implementation of

updated configuration of network on request from Fault Isolation Agent or Power Generation

Control. The use-cases are Model Updation and Interfacing. Model Updation use-case has been

described in Table 5.21

Table: 5.21 Model Updation of Reconfiguration Agent

Use-case Model Updation
Data Active and inhibited parts of the network are identified.
Stimulus Inhibition Signal generated by Fault Isolation Agent or Power Generation

Control Agent act as stimulus for this use-case.
Response It instructs actuators/ circuit breakers for reconfiguration of system and

issues instructions to Restoration Service of Main Planning Agent

5.6.9 Power Generation Control Agent

It provides redundancy to Stability Agent and assumes control only on failure of

complex algorithms of Stability Agent. Its only use-case is Initiate Inhibition Signal, as described

in Table 5.22.

Table: 5.22 Initiate Inhibition Signal of Power Generation Control

Use-case Initiate Inhibition Signal.
Data Output of Occurrence Identification Agent intimates failure of main agent.
Stimulus Receipt of signal regarding failure of Stability Agent, therefore, acts as

stimulus for this use-case.
Response It shuts off the indicated malfunctioning circuit in emergency as response.
5.7 Summary

Important use-cases of the agent system proposed for control of complex and distributed

power system methods have been described. Stimulus, responses and data handling for each use-

case has been included. A layout of sub systems has also been proposed. Besides, few essential

aspects of use-case models and their utilization have also been described. These use-cases will

form basis for development of state machine model of the proposed multiagent system for

control of distributed power network presented in Chapter 6.

Chapter # 6

State Machine Model of Multiagent Based Power

Networks

6.1 Introduction

 A system is best understood by first examining its static structure, that is, the structure of

its objects and their relationships to each other at a single moment in time. Then changes to the

objects and their relationships over time are examined. Aspects of a system that are time

dependent are visible in the dynamic model only. Control of a system describes the sequences of

operations that occur in response to external stimuli.

 This chapter describes flow of control, interactions, and sequencing of operations in a

system of concurrently-active objects. The major dynamic modeling concepts are events,

representing external stimuli, and states, representing values of objects. A detailed state machine

diagram of the proposed system showing events and states is also included in this chapter.

6.2 Real-Time System Modeling

 Real-time systems are required to respond to events occurring at regular or irregular

intervals [87]. These events (or stimuli) may cause the system to move to a different state. For

this reason, state machine modeling, may be used to describe a real-time system.

 A state model assumes that, at any time, the system is in one of a number of possible

states. When a stimulus is received, this may cause a transition to another state. A system

controlling a valve may move from a state ‘Valve open’ to a state ‘Valve closed’ when an

operator command (the stimulus) is received.

 The rounded rectangles represent system states and the arrowed labels represent stimuli

which force a transition from one state to another. The names chosen in the state machine

diagram are descriptive and the associated information indicates actions taken by the system

actuators or information that is displayed. Operation of the system is traced by reading the model

in the direction of arrows.

 State machine models are a good, language-independent way of representing the design

of a real-time system. For this reason, they are an integral part of real-time system design

methods.

6.3 Events and States

In Chapter 4, the object model described possible patterns of objects, attributes, and links

that exist in a system. The attribute values and links held by an object are treated as state. The

objects stimulate each other, resulting in a series of changes to their states. An individual

stimulus from one object to another is an event. The response to an event depends on the state of

the object receiving it,and can include a change of state or the sending of another event to the

original sender or to a third object. Pattern of events, states, and state transitions for a given class

are represented as a state diagram [86]. A state diagram is a network of states and events, just as

an object diagram is a network of classes and relationships. The dynamic model consists of state

diagrams, with important dynamic behavior, and shows the pattern of activity for an entire

system. Each state machine executes concurrently and can change state independently. The state

diagrams for various classes combine into a single dynamic model via shared events.

6.4 Controlling Operations

A behavioral description of an object must specify what the object does in response to

events. Operations attached to states or transitions are performed in response to the

corresponding states or events.

An activity is an operation that takes time to complete. An activity is associated with a

state. Activities include continuous operations, such as displaying a picture on a television

screen, as well as sequential operations that terminate by themselves after an interval of time,

such as closing a valve or performing a computation. A state may control a continuous activity,

(such as raising an alarm indicating a malfunction) that persists until an event terminates it by

causing a transition from the state. The notation “do: A” within a state box indicates that activity

A starts on entry to the state and stops on exit. A state may also control sequential activity, such

as moving an actuator, which progresses until it completes or until it is interrupted by an event

that terminates it prematurely. The same notation “do: A” indicates that sequential activity A

begins on entry to the state and stops when complete. If an event causes a transition from the

state before the activity is complete, then the activity is terminated prematurely.

6.5 State Machine Model of the Proposed System

Behavioural models are used to describe overall behaviour of the system [24,25]. These

include data flow models which model the data processing in the system and the state machine

models which model the system reactions to events but a strict demarcation between these

models is seldom possible because of an ever existing overlap.

Keeping the above in view, state machine diagram highlighting major events being

handled by various agents, and the offered services depicted as states pertaining to multiagent

system of software for control of distributed power networks is shown in Figure 6.1. Since the

diagram contains two super states also, it will be pertinent to describe these in some detail.

Data Filtering /
Manipulation

**

To concerned node
as identified by

generation control

Sensed Parameters

do: solve power flow
and machine dynamics

equations

Real P Calculation

do: p(t)=∑vi(t)ii(t)
 i= 1 to M

Reactive P Calculation
(Q)

 do: √(S2 - P2) = Q

*

Automated Negotiation

Reconfiguration

Provide Ancillary
Services

Generation Control

 do: calc new parameters
as per disturbances

Interfacing

 do: convert data
structure as desired by

requester

Request

Reconfiguration

 do: implement remedial
measures

 do: Optimisation

data

Circuit Inhibition

 do: Activate relevant circuit
breaker

 do: generate inhibition
signal

Emergency protection

 do: shut off circuit in
emergency

Convert event
to alarm

Initiate signal
to actuators

Audio visual
signal for

crew
Signal For Inhibition

If Inhibition Fails

Risk Management

do: update
evolutionary process
of genetic algorithms

Output to
requester

Restoration

 do: signals to
actuators for

restoration closer
to original model

Compensation

 do: supply reactive
power, Harmonic

compensation

Model updation

 do: update
model as per

data

Consistency check

 do: Run built-in
tests to check

performance of
modified system

R
e
q
u
e
st

Data Data

Incompatible Data

Situation Code

Situation Code
Information

Information

Request for
 Ancillary

Conduct built-in test

Situation Warranting Restoration

If
 T

e
st

 F
a
ils

 D
e
sp

ite
 A

n
ci

lla
ry

S

u
p
p
lie

s

Inform Circuit Inhibited

In
fo

rm
a
tio

n
 O

f
U

p
d
a
tio

n

Inhibited Circuit
Normalized

New data

Table: 6.1 State Machine Model

6.5.1 Super State of Reactive Power Calculation

Super state of Reactive Power calculation of Figure 6.1 is shown in Figure 6.2 with allied

sub states [25]. Average power of one cycle of the waveform is calculated by integrating the

power contained in cycle between 0 to 2π using the formula:

1.6)()(1 2

0

dttitv
T

P ∫=
π

After calculating value of ‘P’ from equation 6.1, the next step is to calculate RMS value

of current and RMS value of voltage using the formula:

[] dtwtSinI
TT

I P

T

T
RMS

2

12

)(1 2

1

∫−
= 6.2

2
P

RMS
VV = 6.3

Apparent power denoted by ‘S’ is then calculated using the formula:

ZIS 2= 6.4

or

Z
ES

2

= 6.5

Finally the reactive power is calculated through expression

6.6)(22 PSQ −=

Figure 6.2: Reactive Power Calculation

6.5.2 Super State of Data Filtering and Manipulation

Super State of Data Filtering and Manipulation has been described in substate model of

Figure 6.3. All real time / interactive systems have to provide some way of presenting

information to sub systems, other systems or users. The data is to be generated in the desired

pattern, deciphered from codes, integrated with different sources of information analysed in a

logical fashion, and finally represented, discarding the data which has outlived its utility.

The information presentation may simply be a direct representation of input information

as a text file, or it may present it graphically. Information presentation should be kept separate

from information itself. It is not true that the designer always knows the best way to present the

data, and hence object structures should not be “hard-wire” presentation operations. By

separating the data presentation system from data, the representations can be changed without

having to change the underlying computational system. When the object state changes, all places

where this data is involved are automatically notified and updated to reflect the change. Since the

Failure Prediction Agent (object that maintains data information) does not always know specific

data structure of the requesting object, interfacing of data for making it compatible with data

structure of the requester is required. The output of super state of data filtering and manipulation

therefore, goes to state of interfacing and then to the requester as per the desired format.

Figure 6.3: Data Filtering/ Manipulation

6.5.3 Description of State Machine Model

State machine model depicted in Figure 6.1 suggests that there are a number of events,

activities/actions, states and transitions involved in each scenario, or sequence of events.

Iterations of cycles commencing at each state concurrently or otherwise, will continue till natural

or forced termination/interruption is implemented. Selected sequences will be described here for

convenience of understanding a rather complex diagram. The diagram, however, has to be

consulted in conjunction with object and use-case models already described in preceding

chapters.

Processed data obtained from sensors is utilized for solving power flow and machine

dynamic equations and real and reactive power etc. If an instantaneous value of various

parameters is required at an identified node, bus, generator or transformer etc the request will be

forwarded to data filtering/manipulation service. The requisite information with time tag will be

provided to interfacing service available to all the objects, where the data structure will be made

compatible for ready consumption of the requester, keeping in view the diverse nature of objects

and machines forming part of the network.

6.5.3.1 Description of Main Loop of State Machine Model

Looking at the diagram for main loop reveals that, as a consequence of conducting a

built-in test for performance and consistency check of a modified system, the result is sent to

automated negotiation for considering reconfiguration, or provision of ancillary services. A

situation code commensurate with the arising situation will be directed towards “Convert Event

to Alarm” where audio visual signal for crew will be initiated. Concurrently the identified

actuators will be mobilized for remedial action if required. An inhibition signal will be sent to

circuit inhibition service to activate relevant circuit breaker. Information regarding inhibited

circuit will be dispatched to generation control where new parameters will be calculated in

consonance with the observed disturbance. New data will be sent to circuit inhibition service to

activate relevant circuit breaker. This data will be sent to reconfiguration service to implement

remedial measures and launch algorithms for fresh optimization. On the other hand the data will

be sent to Risk Management for updating evolutionary process of genetic algorithms. The output

of Risk Management will be available to generation control and circuit restoration. When

situation normalizes, the restoration will signal the actuator for restoration of network as close to

original model as possible. Outputs of consistency check and automated negotiation will

supervise provision of ancillary services and compensation etc to concerned node in the complex

network as identified by generation control.

6.5.3.2 Loop for Provision of Compensation

 Request for provision of compensation or ancillary services will be initiated from either

automated negotiation, generation control, or consistency check. The provision of services will

however only be from compensation state. Automated negotiation, risk management and

reconfiguration states remain active throughout and keep on performing the assigned tasks

iteratively, as shown by arrows initiating and terminating on themselves in Figure 6.1.

6.5.3.3 Loop for Generation Control

 Generation control commences operation on receipt of information from Risk

Management or Circuit Inhibition. However, it can be invoked directly, as a result of abnormal

parameters of power flow or machine dynamics equations. Each time the generation control

comes in operation, new parameters are calculated and this information is passed on to

reconfiguration state. Reconfiguration state, then verifies the information as received from model

updation and implements remedial measures as necessary. If the inhibited signal has ceased,

circuit restoration is ordered which is implemented through actuators. Restoration state however

always consults the results of latest iterations of genetic algorithms/evolutionary programmes

before making the decision.

6.5.3.4 Failure of Ancillary Services

 If despite provision of ancillary services, built in tests conducted by consistency check

still generate unsatisfactory results, this information is passed on to automated negotiation. Here

the reconfiguration is again considered and proposal is forwarded to Risk Management.

 The evolutionary process is again provided with new data and the best response to new

situation is worked out. This response is sent to generation control. At this moment, the latest

information from convert event to alarm, initiation of signals to actuators and circuit inhibition

details are again considered and new data is transferred to reconfiguration state for

implementation and optimization. The situation continues till Risk Management generates

restoration signal to reconfiguration. After this circuit restoration close to original configuration

is ordered and implemented through actuators at restoration state.

6.6 Summary

The dynamic model represents control information; the sequences of events, states, and

operations that occur within a system of objects. Like the object model, the dynamic model is a

pattern that specifies the allowable scenarios that may occur. The notation for the dynamic model

represents a compromise between simplicity and expressiveness; there are some meaningful

constraints that cannot be expressed by the notations. The state machine model of the proposed

system has been covered in this chapter which should be read in conjunction with object and use-

case models of the distributed power system networks.

Chapter # 7
Simulated System and Results

7.1 Introduction

 This chapter handles the details of simulation of a power system in matlab/ simulink for

ascertaining performance under increasing load conditions when controlled by a central control or no

control and when controlled locally. Remedial actions taken by local control by being proactive to avert

overloading of the generators has also been demonstrated. The details of load flow calculations used for

the simulation adapting Newton Raphson Method for finding out bus voltages, phase angles, active

power, and reactive power at each instant during various contingencies and normal operation have also

been included. Similarly the details of swing equations used for finding rotor angle and speed of

generators at each instant have also been described. At the end the results of the simulations have been

described under various load conditions experienced by the selected system.

7.2 System for Simulation

With a view to validate the efficacy and advantages of distributed control a three bus system as

shown in figure 7.1 has been selected and simulated in matlab/ simulink. The system comprises of

synchronous machines employed as generators, transformers and shunt capacitance for maintaining

voltage of 1 pu at the bus.

Figure 7.1: System for Simulation

Implementation of generators and buses is shown in figure 7.2 and that of lines and loads has

been displayed in figure 7.3. carried out in Matlab.

Figure 7.2: Bus and Generator Data of System

Figure 7.3 Line and Load Data of Selected System

7.2.1 Rotor Angle Stability

 It refers to the ability of synchronous machines of an interconnected power system to

remain in synchronism after being subjected to a disturbance. Instability that may result occurs in

the form of increasing angular swings and hence increasing difference of rotor angles between

the two or more generators.

 When the two generators stay in synchronism with each other the system remains stable

and ready to sustain any disturbance faced at later stage. If any of the generators goes out of

synchronism, oscillations start which result in cascaded failures which keep on increasing till

disseminated in entire power system. To avert the situation it is best to make arrangements to

keep the generators in synchronism at all times by reduction in load, elimination of fault or

increasing loadability of the system. The load flow analysis and swing equation parameters

provide values of each bus voltage along with angle, active and reactive power and speed as well

as rotor angle with respect to dq axis. If difference of rotor angles in dq frame is converging with

respect to time, the system does not go out of synchronism. If the value of difference of angles

between generators keeps on increasing, system is bound to go out of synchronism [90]. The

chances of system going out of synchronism are increased on sudden enhancement of load on

any of the buses. A prompt remedial action taken on immediately sensing the problem saves the

system from loosing synchronism. At times a proactive approach by sensing the problem before

it actually happens saves many contingencies and normalized performance of power systems is

assured. The decision to introduce series compensation to increase loadability of the lines by

reducing overall line reactance can be taken [90]. It may also prove prudent to render the line

with fault or enhanced load out of circuit before the circuit breaker nominal values are surpassed

with a view to save the system from a probable collapse. In any case the reaction time available

for resorting to remedial measures remains critical.

 As already described in detail in chapter 3, central control faces many difficulties in

taking timely action to ALL the situations due to time lagged communication of data on serial

lines, channel speed and bottlenecks developed at the receiving site, non availability of direct

transmission path, digital processing delays, transitions to and from fibres, data rate and volume

of thousands of measurements, requirement of immense processing power, limitations of on line

analysis tools, FIFO mechanisms of Ethernet protocols with difficulty in assigning priority to

emergent communications etc.

 Distributed control proves to be quite effective in certain situations where delayed actions

taken by central control, or no action taken at all results in disturbed systems.

7.2.2 Dynamic Modeling of Selected System

 The variables to be calculated for solving the power system shown in figure 7.1 include

voltages and phase angles on each bus (Uk and өk), rotor angle and speed (δk and ωk) of each

machine along with active and reactive power Pk and Qk on each bus. elevant equations for

solving the system are of the form as mentioned below [91]:

kk ωδ =

kP = ∑
=

−
N

l
lklkkl UUB

1
)(sin θθ

kQ = - ∑
=

−
N

l
lklkkl UUB

1
)(cos θθ

And

0

0

=+

=+

QQ
PP

LKk

LKk

Where M denotes mutual inductance, U the voltage, X’ the transient reactance, B the

susceptance and PLK and QLK
the active and reactive powers of the load at bus k.

 If ‘x’ variables are those which require solution of differential equations and ‘y’ variables

are the ones which are ascertained by solving algebraic equations then:

[]Tnnx ωωδδ,........ 11=

[]TNN UUy,........ 11 θθ=

Equations 7.1 and 7.3 can be rewritten as:

−

′
−=)sin(

'
1

kk
dk

kqk
mk

k
k X

UE
P

M
θδω

 7.1

 7.2

 7.3

 7.4

 The above is a set of differential-algebraic equations which describe the dynamics of

multi machine system. The differential equation describes the dynamics of generator and

contribution of dynamic loads is also included. The algebraic equations consist of network

equations based on Kirchoff’s current law ie sum of all currents and hence powers flowing into

bus k must be zero.

7.2.3 Load Flow Calculations in the Power Network

 The technique for determining all bus voltages in a network is called Load Flow.

If voltage magnitudes and voltage angles at all buses are known, the system is completely

determined. In a network, power can be generated and consumed at many different locations. All

locations where a line ends is called bus or node. At bus k expression for complex power in per

unit system can be written as:

∑
=

=−
N

j
kjDkGk SSS

1

 7.6

Where

=+= DkGkGk jQPS Complex power by the generator

=+= GkDKDK jQPS Load consumed complex power

=+= kjkjkj jQPS Transmitted power to bus j

The power balance at the bus according to equation 7.6 must hold both for active and for

reactive part of the expression. By using PGDK and Q GDK as notation for net generation of active

and reactive power at bus ‘k’ respectively, the expressions 7.7 and 7.8 hold.

),(0
),(

.

yxg
yxfx

=
= 7.5

kj

N

j
DkGkGDk PPPP ∑

=

=−=
1

 7.7

kj

N

j
DkGkGDk QQQQ ∑

=

=−=
1

 7.8

The above equations imply that for every bus in the system, the power balance must hold

for both active and reactive power.

At each bus, four variables are of interest ie net generation of active power PGDK, net

generation of reactive power QGDK, voltage magnitude Uk and voltage phase angle Qk. This

means that total number of variables for a system are mx4 where “m” is number of buses. The

voltage phase angles must be given as an angle in relation to reference angle. This reduces

number of system variables to (mx4)-1.

If there are three buses in a power system, six equations can be made using equations 7.7

and 7.8. However a total of 12 variables (P, Q, U & θ for each bus) will be required to be

known. Excluding reference angle, 11 variables will be required to be known. Since only 6

equations are held, another 5 equations will be required, or else 5x quantities must be known to

be able to calculate remaining six variables. Depending on what quantities are known at a certain

bus, the buses are modeled in three different ways. PQ or the load bus is the one for which net

generated power PGDK and QGDK are assumed to be known. In the system under consideration

depicted in figure 7.1, bus 3 has been taken as PQ bus. For PU bus or the generator bus, the net

active power generation PGDK as well as the voltage magnitude Uk are assumed to be known. In

the power system under study, bus 1 is taken as PU bus. Only one bus in the entire system is

selected as slack or reference bus. The voltage angle is chosen as a reference angle kθ (often

00) and the voltage angle is assumed to be known. Un known quantities are the net generation

of both active and reactive power. Bus 2 in the system is slack bus.

If the values of U and ө are known, active and reactive power flow between all buses can

be found using equations 7.9 and 7.10.

 −+= kjCosRkjSinX

Z
UU

R
Z
UP jkk

kj θθ22

2

 7.9

 []kjkj
jkk

kkj CosSinR
Z
UU

Z
UBUQ θθ ×+−×+−= 22

2
2 7.10

The above equations are nonlinear since the expressions for power flow on a line includes

squared voltages as well as trigonometric expressions. The system can therefore be solved by

using Newton-Raphson Method.

7.2.4 Application of Newton Raphson Method to Selected Power System

 The aim is to determine voltages at all buses in the system by applying Newton
Raphson method. Consider a power system with N buses with all variables in P.U.

[])()(
1

kjjkkjkjj

N

j
kk SinBCosGUUP θθ += ∑

=

[])()(
1

jkkjkjkjj

N

j
kk CosBSinGUUQ θθ −= ∑

=

 7.11

Further more

kj

N

j
k PP ∑

=

=
1

kj

N

j
k QQ ∑

=

=
1

 7.12

and

Pk-PGDK=0 7.13

Qk – QGDK=0

For using standard Newton Raphson Method assume:

=

=

N

N

U

UU
x

1

1

θ

θ

θ
,

=

=

N

N

Q

p

Q

Q
P

P

Uf

Uf
Uf

1

1

),(

),(

),(
θ

θ

θ ,

=

GDN

DG

GDN

DGD

Q

P

Q

Q
P

P

b
b

b

!

1

 7.14

It is also known that

][][][)()()(iii xgxfbxg −=−=∆ 7.15

 Now from equations 7.14 and 7.15

 ∆Pk =PGDk-Pk
 ∆ Qk= QGDK-Qk

Based upon the Jacobian Matrix of Newton Raphson method

′
′

=

∂

∂

∂

∂
∂

∂
∂

∂

=
LJ
NH

U
UfUf

U
UfUf

JAC
QQ

PP

),(),(

),(),(

θ
θ
θ

θ
θ
θ

 7.16

The entries of the these matrics are given by

Uj
PkN

j
PkH kjkj ∂

∂
=

∂
∂

= '
θ

Uj
QkL

j
QkJ kjkj ∂

∂
=

∂
∂

= '
θ

Now since

[]][][0)()()()(xxx iiii ggxJAC ∆=−=∆ 7.17

[]

=

'
')(

LJ
NH

xJAC i and

∆
∆

=∆
U

x(i) θ
 and

g(x) = ∆Pk and ∆Qk

Putting all above in 7.17 one gets

∆
∆

=

∆
∆

Q
P

ULJ
NH θ
'
'

 7.18

To simplify entries of matrices N’ and L’ these matrices are multiplied with U, and

equation 7.18 can be written as:

∆
∆

=

∆
∆

Q
P

U
ULJ

NH θ
 7.19

Now from equation 7.11, and taking partial differentiation as required, besides

multiplying with Uj, the values of kjN ' and kjL' :

Where K≠j ie not on same bus

 [])()(kjkjkjkjjk
j

k
kj CosBSinGUU

P
H θθ

θ
−=

∂
∂

=

[])()(' kjkjbjkjjk
j

k
jkjjkj SinBCosGUU

U
P

UNUN θθ +=
∂
∂

== 7.20

[])()(kjkjkjkjjk
j

k
kj SinBCosGUU

Q
J θθ

θ
+−=

∂
∂

=

 [])()(' kjkjkjkjjk
j

k
jkjjlk CosBSinGUU

U
Q

ULUL θθ −=
∂
∂

==

and for k=j i.e, on the same bus

2
kkkk

k

k
kj UBQ

P
H −−=

∂
∂

=
θ

kkk UN = 2
kKKk

k

k UGP
U
P

+=
∂
∂

2
kkkk

k

k
kk UGP

Q
J −=

∂
∂

=
θ

 7.21

2
kkkk

k

k
kkk UBQ

U
Q

UL −=
∂
∂

=

Now based upon equation 7.19

∆
∆

=

∆
∆ −

Q
P

LJ
NH

U
U
Q 1

 7.22

And hence values of U and ө are obtained as implemented in software.

Finally U and ө will be updated as:-

θθθ kkk ∆+=

 7.23

 ∆
+=

k

k
kk U

U1UU

The relevant portion of M File for load flow is shown in figure 7.4.

Figure 7.4: Load Flow of Power System

7.2.5 Swing Equation for the System

 When the rotor is rotated by the turbine, a rotating magnetic flux is produced in the air

gap. The magneto motive force (mmf) produced by the field current in the field winding

combines with the mmf produced by currents in the stator winding. The result and flux across the

air gap between stator and rotor, induces voltages in each phase of armature winging. These

induced voltages have the same magnitudes, but at phase shifted by 120 electrical degrees.

The resultant flux also provides the electromagnetic torque (or the electrical output torque

denoted by ‘Te measured in Nm) between stator and rotor. This electromagnetic torque

(developed in the generator when it delivers power) opposes torque of turbine (other mechanical

input torque denoted by ‘Tm’ also measured in Nm).

One of the most important factors in studying stability of a power system is to motion of

rotor. The dynamics of this motion is described by a set of differential equation based on

Newton’s second law:

 em
m TT

dt
dw

J −==2
m

2

dt
Bd J 7.24

Where Bm= Mechanical rotor angle which defines the instantaneous position of rotor d-

axis with respect to a stationary reference frame and

Bm=Wmt + Bmo

Where Wm= mechanical speed or angular speed of rotor and Bmo is the initial position of

rotor i.e, at t=0 with respect to reference axis.

J= Total Moment of inertia of turbine, shaft and generator measured in Kgm2.

Wms = Rotor mechanical synchronous speed=2Пno where no is revolutions per minute.

Multiplying swing equation 7.24 with Wm, the obtained expression is.

 em PP −=
dt

Dwn J Wm 7.25

Where

Pm= Wm Tm which is mechanical power input given in watts

Pe=Wm Te which is three phase electrical power output given in watts.

Next, the inertia constant H of the generator is defined by

Sng
msJw 25.0

 Sng
WksH == 7.26

Where

Wks= Total kinetic energy stored in the generator in steady state (or stored KE in the

rotating inertia at speed Wms)

Sng= Generator rated volt Amperes

Typically H ranges between 1 and 6 seconds, depending on the size and type of

generator. The inertia constant states how many seconds it will take to bring the generator from

synchronous speed to stand still if rated power is extracted from it while no mechanical power in

supplied by the turbine

Substituting value of “J” from equation 7.26 in equation 7.25,

em
m PP

dt
dwSngH

−==
 msW

2 W 2m 7.27

Now consider equations as under:-

mw
2
pWg = 7.28

gw=
dt
dβ 7.29

Co ts)-(wg += ωδ 7.30

wwswg
dt
d

=−==)(.δδ 7.31

....
2

2

)(WWgwswg
dt
d

dt
d

==−== δδ 7.32

s

m

m

m

s

g

w
w

w
p

wp

w
w

==

22

2 7.33

Where

p= number of poles

Co= Constant (in steady state, S=Co: Wg=Ws)

 Using equation 7.28 to 7.32 , we can write equation 7.27 as:

eem
g

s

s

PPPP
w
w

dt
dwg

w
HSng

−≅−==)(2 7.34

)1(Assuming ≅
g

s

w
w

Dividing both sides of equation 7.27 with P base it results into:

pupu

base

emwg PePm
P

PP
dt

d
−=

−
=M 7.35

Where

=

−− *

Re2M IEalPeand
P
Sng

w
H

q
pu

bases

Next apply equation 7.30 and 7.31

.
δ = (w g- w s) = w

.
w =)(1 pupu PePm

M
− 7.36

Furthermore the contribution of damping power provided by damper windings may be

included in the swing equation 7.36. The damper power is denoted by

PD=D(w g- w s)

Where D is a small positive constant. Thus equation 7.36 can be re written as:

.
δ = w

)(1.

w
pu

e
pu

m DPP
M

w −−= 7.37

Here “pu” superscript is omitted which means all values are in pu. Further more in steady

state w g= w s i.e, generator rotates with a speed equal to nominal speed.

 If valves of H, M, D are known one can solve for δ and w and value of J will not be

required.

7.2.6 Scenarios for Simulation

The system is either uncontrolled, controlled with the help of a central control or it can be

controlled with the help of local agents. Similarly, either the load is increased to a limit where a

series compensator of 0.78 pu helps to maintain synchronism of the two generator system. If the

load increases further, then load shedding at Bus 1 is resorted to. All these contingencies have

been covered under three scenarios which are Pre fault scenario, On fault scenarios and Post fault

scenario.

System is solved for load flow and initial values of state variables and algebraic variables

i.e, voltages on each bus and their phase angles, Active and reactive power at each bus, EMF of

each generator, rotation angles of generator and speeds are calculated. .

A fault has been introduced at 0.5 sec and depending upon nature of fault, new values of

parameters are calculated and difference of rotation angles of both the generators have been

plotted against time in each scenario, This has been done under separate headings of SCADA

control and Agent control. It is observed that if the fault is cleared using local agents within 130

m seconds, the generators remain in synchronism. Similarly if system is uncontrolled or SCADA

control, where response is received after 136 m sec, the system goes out of synchronism.

At each time Interval as selected for Pre fault, On fault and post fault scenarios, the

equations are solved using Matlab “ode 45” function by file titled “f_xy” and state variables of

swing equation i.e, δ and ω for both the generators are returned. Similarly at each time interval,

algebraic equations are solved using Matlab function “f solve” and file titled “g_xy” . This

returns values of algebraic variables that include voltages of buses, angles of voltages, and

active/reactive power at each bus.

7.2.7 Simulation Results

 The simulation in matlab for the system described in figure 7.1 reveals that if it runs in

pre fault or normal conditions, the generators stay in synchronization as shown in figure 7.5. The

value acquired for the difference of angles depends upon values of Mk, emf of generator E’qk,

bus voltage Uk, transient reactance x’dk and the relationship between dq axis reference frame and

network reference frame as given by equation 7.4.

Figure 7.5: System in Synchronism
 On enhancement of load on the system bus 2 if the distributed intelligent agent is not

available and on non availability of any remedial action, or delayed response by a central control

surpassing time in milliseconds, the generators go out of synchronization as shown in the

simulation results of Figure 7.6.

 However, if a response of introducing series compensation immediately on sensing the

enhanced load within the permissible limits of series compensator capacitance is taken, the

system regains synchronism. The simulation result is shown in Figure 7.7. The maximum series

compensation limit for this simulation is 0.76 pu. If the load enhancement is such that the

requirement surpasses the capacity of series compensator, then the solution to this will be

dropping of load to retain system stability. The simulated result of a case where no remedial

action was taken on enhancement of too much of load beyond handling capability of series

compensator is shown in figure 7.8. Figure 7.15 on the other hand demonstrates the decision

taken by distributed control to drop the load from line.

Figure 7.6: Delay in Remedial Action on Increase in Load

Figure 7.7: Achievement of Synchronism with Series Compensation

 Relatively quicker synchronism is achieved if the load is dropped as compared to the

one achieved from incorporation of series compensation shown in Figure 7.7. The simulation

result is shown in figure 7.9.

Figure 7.8: Enhancement of Load Beyond Capacity of Series Compensator

Figure 7.9: Synchronism on Dropping of Load from Line

7.2.8 Proactive Response by Agents with Simulation Results

The three bus multiple generation system with shunt capacitance has been simulated

using Simulink platform as depicted in Figure 7.10. [92].

Figure 7.10: Three Bus Multiple Generator Model

 In absence of fault and as per nominal parameters the system performs around 0.6 to 0.7

pu of the electrical power (Pe) on the synchronous generator. When the three phase fault occurs

on the line as shown, the value of Pe increases to around 0.93 pu showing that any other

disturbance will force the system to be unstable. The value of Pe on fault is shown in Figure

7.11.

 If the system possesses an intelligent agent, it will immediately sense the problem and

introduce series compensation to reduce the loading of generator thus saving it from any other

disturbance which will certainly cause the system to become unstable. The series compensated

model is shown in Figure 7.12. The reduced value of Pe is shown in Figure 7.13.

Figure 7.11 Excessive Loading of Synchronous Generator on Fault

Pe

sec

Figure 7.12: Series Compensation Incorporation by Agent

 If the load increases beyond the capacity of series compensation, the agent controlled

network will opt to drop the load by opening relevant circuit breaker to retain stability before

rated values of circuit breaker are approached. In Figure 7.14, the load has been doubled and

agent on sensing the enhanced load beyond the capacity of series compensator, opened the

circuit breaker reducing the loading of generator to a value of Pe around 0.56 pu as shown in

Figure 7.15.

Figure 7.13: Reduced Loading on Fault with Compensation

Pe

sec

Figure 7.14: Line Opening at Double the Rated Load

Figure 7.15: Reduction in Loading on Opening of Line

Pe

sec

7.3 Summary

 The results shown in preceding paragraphs indicate that system lost synchronism when

remedial measures were delayed as expected in a central control. Similar situation is likely to

crop up when no control is exercised as in the case of most of the networks, especially those

found in developing countries. Proactive approach by sensing overloading of the system resulted

in taking appropriate decision of introducing series compensation to enhance loadability, or

elimination of line with fault or overload to ensure smooth performance of rest of the network.

Chapter # 8

Conclusion and Recommendations

8.1 Overview

Today's complex electric power distribution systems (EPDS) in data centres, require

sophisticated control techniques to support all aspects of operation including failures. In many

critical applications, they need to maintain minimal operating conditions under failure

conditions. When a high degree of survivability is desired the effects of failures must be

mitigated and control must be maintained in survivable scenarios. To achieve this goal it is

necessary to make a series of decisions and control actions. The fault has to be detected, its

source identified and its magnitude estimated. Depending on the nature of the failure, actions are

to be taken that compensate it. After this, a new functional network topology is chosen and

EPDS has to be reconfigured. All these decisions must be made by a self-reconfigurable control

system that incorporates not only simple regulatory loops and the supervisory control logic but

also a set of components that detect, isolate, and manage faults, in coordination with the control

functions. The goal is to increase survivability, eliminate human mistakes, make intelligent

reconfiguration decisions more quickly, reduce manpower required to perform the functions, and

provide electric power to critical loads through the surviving system. In fact, it is envisioned that

in future, the EPDS will have distributed intelligence for rapid self-reconfiguration under fault

scenarios. In order to achieve distributed intelligence in the EPDS, state-of-the-art software

techniques must be used. As a sub-field of Distributed Artificial Intelligence, Agent Systems are

a promising technology to fulfill these requirements. An agent is an abstraction, a logical model

that describes software that “acts on behalf of” a user or other program; that software agent has

the authority to decide if and when an action is appropriated, also it has the autonomy to activate

itself or it can be invoked by a task. Keeping in view the expected dividends as highlighted, an

innovative conceptual model based upon distributed system has been proposed for control of

power networks.

In this chapter summary of work and the goals achieved has been included. Limitations

and recommended future work in the identified domains has also been discussed.

8.2 Achievements

After identifying the problem and establishing that resorting to employment of a

distributed control system for effective, autonomous and proactive control will yield dividends

mandatory for handling multifarious issues of existing and future power distribution networks,

vitally important assignments concerning control of a complex and distributed network were

identified. Agent based approach offered a much more natural representation of real world

systems where various locations can make decisions according to their own agenda and

priorities. Each individual location can achieve overarching objectives that are not achievable by

the individuals alone. When the goals of individual agents are closely aligned, and they are

completely benevolent and veracious so that they always respond to requests made to them, and

always provide information when queried, then the resulting system comes very close to

resembling an object oriented system. Realising this, a detailed object model was prepared for

agent based system assigning different groups of tasks to individual agents in the hierarchical

and concurrent model thus prepared. Every agent was treated as an entity with identified

attributes and functions. This was followed by a use-case model where every function was

treated as a distinct use-case with defined stimuli, data handling and responses to various

recipients in the multiagent system. Taking this model as a basis, a state machine model was

prepared focusing on the design of logical and physical architectures, but independent of

physical constraints and non functional requirements. An effort to incorporate scheduling

approach and identification of terminal objects has been made. Requirement of distributed

control has been established by simulating a power system thereby analyzing the performance

under distributed as well as central or no control

8.3 Limitations

Despite an effort to enhance the scope of the proposed model through incorporating a

large number of activities compulsory for optimum functioning of control for power network,

there are still domains which have not been included. An enhancement in identified

functionalities is therefore not only possible for this model but also for any other model that will

include more functions and activities, such as modeling of extreme interdependencies in system

inputs, harmonic interference of large population of semi conductor based electronic equipment

alongwith harmonic cancellation, thermal and electric energy storage/energy conservation and

CO2 emission control, minimization of transmission losses and natural gas cogeneration etc.

Non functional requirements of the system have also not been taken up in detail such as

timings, dependability and security. Difference in reading period of different sensors has been

ignored and timing attributes have not been associated with objects. These may be required by

some structured design methods which are targeted towards real time systems. There are

however design methods that do not impose a computational model that will ensure that effective

timing analysis of the final system is undertaken. In real time system design and software

development method life cycle, timing problem is not catered for, in requirement specification,

architecture design, detailed design and coding phases and is identified in testing or deployment

phase.

8.4 Future Work

Proposed areas for future work include incorporation of genetic algorithms/ fuzzy logic in

tandem with agent systems for optimisation of generation scheduling, economic despatch and

self healing of networks.

A research into enhanced number of layers of hierarchy of agents by using concept of

nesting is another area of exploring the possibility of furthering the performance of control

structures.

Automation of assigning sub problems to various agents is also a possibility. Agents can

be made to possess the capability of negotiating extensively amongst themselves as to how best

they can distribute responsibilities at a given instance, or swap the functionalities with a view to

furthering the efficiency and robust control of distributed power networks.

Conditions for convergence to optimal solutions of individual agents for solving overall

problem may be worked out to fit in the overall structure proposed in models included in the

thesis.

Generation of annotated behaviour models from end user scenarios will simplify the

requirement elicitation process by developing a tool for automation of generating desired

behaviours. This work can further be enhanced to interactively produce additional scenarios that

the end user can classify as positive or negative behaviours from the point of view of desired

behaviours.

After having detailed use-case, object and state machine modeling, either a multiagent

system development platform can be used to simulate the functioning, or coding in an object

oriented programming language can commence in tandem with hardware design for different

modules of system.

8.5 Challenge of Implementation

Challenge of implementing this system requires a balanced, risk-managed, and cost-

effective approach to investments and use of technology that can make a sizable difference in

mitigating the risk. Revolutionary developments in both information technology (such as

Artificial Intelligence, System Dynamics, Network/Complexity Theory and Mechatronics) and

materials science (such as Nanotechnology, Microfabrication and Advance Materials) promise

significant improvement in the security, reliability, efficiency, and cost effectiveness of power

distribution infrastructures [89]. Steps taken now can ensure that this critical infrastructure

continues to support population growth and economic growth without environmental harm.

Considering their impact, regulatory agencies should be able to induce electricity producers to

plan and fund the process, which might be the most efficient way to get it into operation.

Simply replicating the existing system through expansion or replacement will not only be

technically inadequate to meet the changing demands for power, but will also produce a

significantly higher price tag for electricity. Through the transformative technologies, the

countries can put in place a 21st century power system capable of eliminating critical

vulnerabilities while meeting intensified consumer demands.

A phased approach to system implementation will probably be a prudent approach. For

example, equipment purchased, should emphasize switchgears, regulators, transformers,

controls, and monitoring equipment that can be easily integrated with automated transmission

and distribution systems. Long-term plans for equipment upgrades should also address system

integration considerations.

Energy policy, technological development and innovation require long-term

commitments as well as sustained and patient investments in innovation, technology creation,

and development of human capital. Keeping in view economic, societal, and quality-of-life

issues and the pivotal role of the electricity infrastructure, a self healing grid is essential. Every

node in the power network of the future will be awake, responsive, adaptive, price-smart, real-

time, flexible, and interconnected, which essentially is the prime focus of the work covered in the

thesis.

8.6 Summary

Scenario based use-case and state machine models are recognised as effective means for

requirement elicitation and documentation. They support an informal, narrative and concrete

style of description that focuses on the dynamic aspects of software-environment interaction. A

scenario is a temporal sequence of interactions among system components, that is, software-to-be

together with its environment. This has to be made up of active components conceived as agents

that control system behaviours.

References

[1]. Sandell, jr., P. Varaiya, M. Athans, and M.G. “Safonov. Survey of decentralized control methods for large
scale systems”. IEEE Transactions on Automatic Control, 23(2):108–128, April 1978.

[2]. Michael Luck, Ronald Ashri, Mark D’ Inverno, “Agent Based Software Development” ISBN 1-58053-605-
0, 2004, Artech House Inc.

[3]. [10] Wooldridge, M. J., and N. R. Jennings, "Intelligent Agents: Theory and Practice," Knowledge
Engineering Review, Vol. 10, No. 2,1995, pp.115-152.

[4]. D. Pomerleau, A. Pomerleau, D. Hodouin, and ´E. Poulin. A procedure for the design and evaluation of
decentralised and model-based predictive multivariable controllers for a pellet cooling process. Computers
and ChemicalEngineering, 27:217–233, 2003.

[5]. R. Irizarry-Rivera and W. D. Seider. Model-predictive control of the Czochralski crystallization process.
Part I. Conduction-dominated melt. Journal of Crystal Growth, 178:593–611, 1997.

[6]. S. Ochs, S. Engell, and A. Draeger. Decentralized vs. model predictive control of an industrial glass tube
manufacturing process. Proceedings of the 1998 IEEE Conference on Control Applications, pages 16–20,
Trieste, Italy, 1998.

[7]. R.N. Silva, L.M. Rato, J.M. Lemos, and F. Coito. Cascade control of a distributed collector solar field.
International Journal of Process Control, 7(2):111–117, 1997.

[8]. F.D. Vargas-Villamil and D.E. Rivera. Multilayer optimization and scheduling using model predictive
control: Application to reentrant semiconductor manufacturing lines. Computers and Chemical
Engineering, 24:2009–2021, 2000.

[9]. M.W. Braun, D.E. Rivera, M.E. Flores, W.M. Carlyle, and K.G. Kempf. A model predictive control
framework for robust management of multiproduct, multi-echelon demand networks. Annual Reviews in
Control, 27:229–245, 2003.

[10]. M.R. Katebi and M.A. Johnson. Predictive control design for large-scale systems. Automatica, 33(3):421–
425, 1997.

[11]. G. Georges. Decentralized adaptive control for a water distribution system. Proceedings of the 3rd IEEE
Conference on Control Applications, pages 1411–1416, Glasgow, UK, 1999.

[12]. E. Camponogara, D. Jia, B.H. Krogh, and S. Talukdar. Distributed model predictive control. IEEE Control
Systems Magazine, 1:44–52, February 2002.

[13]. M. Aicardi, G. Casalino, R. Minciardi, and R. Zoppoli. On the existence of stationary optimal receding-
horizon strategies for dynamic teams with common past information structures. IEEE Transactions on
Automatic Control, 37:1767–1771, November 1992.

[14]. [60] L. Acar. Some examples for the decentralized receding horizon control. Proceedings of the 31st
IEEE Conference on Decision and Control, pages 1356–1359, Tucson, Arizona, 1992.

[15]. S. Sawadogo, R.M. Faye, P.O. Malaterre, and F. Mora-Camino. Decentralized predictive controller for
delivery canals. Proceedings of the 1998 IEEE International on Systems, Man, and Cybernetics, pages
3380–3884, San Diego, California, 1998.

[16]. H. El Fawal, D. Georges, and G. Bornard. Optimal control of complex irrigation systems via
decomposition-coordination and the use of augmented lagrangian. Proceedings of the 1998 IEEE
International on Systems, Man, and Cybernetics, pages 3874–3879, San Diego, California, 1998.

[17]. M. Gomez, J. Rodellar, F. Vea, J. Mantecon, and J. Cardona. Decentralized predictive control of multireach
canals. Proceedings of the 1998 IEEE International on Systems, Man, and Cybernetics, pages 3885–3890,
San Diego, California, 1998.

[18]. M. Baglietto, T. Parisini, and R. Zoppoli. Neural approximators and team theory for dynamic routing: A
receding-horizon approach. Proceedings of the 38th IEEE Conference on Decision and Control, pages
3283–3288, Phoenix, Arizona, 1999.

[19]. D. Jia and B. Krogh. Min-max feedback model predictive control for distributed control with
communication. Proceedings of the 2002 American Control Conference, pages 4507–4512, Anchorage,
Alaska, May 2002.

[20]. D. Jia and B.H. Krogh. Distributed model predictive control. Proceedings of the 2001 American Control
Conference, pages 2767–2772, Arlington, Virginia, June 2001.

[21]. W.B. Dunbar and R.M. Murray. Model predictive control of coordinated multi-vehicle formations.
Proceedings of the 41st IEEE Conference on Decision and Control, pages 4631–4636, Las Vegas, Nevada,
December 2002.

[22]. N. Motee and B. Sayyar-Rodsari. Optimal partitioning in distributed model predictive control. Proceedings
of the 2003 American Control Conference, Denver, Colorado, June 2003.

[23]. W.B. Dunbar and R.M. Murray. Distributed receding horizon control with application to multi-vehicle
formation stabilization. Technical report, Division of Engineering and Applied Science, California Institute
of Technology, Pasadena, California, 2004.

[24]. Syed M Alamdar Raza, Muhammad Akbar, Farrukh Kamran, M N Jafri, “An Innovative Conceptual
Model of Multiagent System for Control of Distributed Power System Networks including Green Power
Resources” Journal Energy Exploration and Exploitation(ISSN: 0144-5987)· Volume 24 · Number 4+5 ·
2006 pp. 297–312.

[25]. Syed M Alamdar Raza, Muhammad Akbar, Farrukh Kamran, M N Jafri, "State Machine Model of
Evolutionary Programs of Multiagent Systems for Control of Distributed Renewable Energy Networks"
WSEAS Transactions on Power Systems ISSN(1790-5060), Issue 10, Volume 1, October 2006.

[26]. D.H. Shim, H.J. Kim, and S. Sastry. Decentralized reflective model predictive control of multiple flying
robots in dynamic environment. Proceedings of the 42nd IEEE Conference on Decision and Control, 2003.

[27]. E. Camponogara. Controlling Networks with Collaborative Nets. PhD thesis, ECE Department,
CarnegieMellon University, Pittsburgh, Pennsylvania, August 2000.

[28]. B. Franoise, Y. Magid, andW. Bernard, “Application of neural networks to load-frequency control in power
systems,” Neural Netw., vol. 7, no. 1, pp. 183–194, 1994.

[29]. T. P. I. Ahamed, P. S. N. Rao, and P. S. Sastry, “A reinforcement learning approach to automatic
generation control,” Elect. Power Syst. Res., vol. 63, pp. 9–26, Aug. 2002.

[30]. L. D. Douglas, T. A. Green, and R. A. Kramer, “New approaches to the AGC nonconforming load
problem,” IEEE Trans. Power Syst., vol. 9, no. 2, pp. 619–628, May 1994.

[31]. D. K. Chaturvedi, P. S. Satsangi, and P. K. Kalra, “Load frequency control: A generalized neural network
approach,” Elect. Power Energy Syst., vol. 21, no. 6, pp. 405–415, Aug. 1999.

[32]. H. L. Zeynelgil, A. Demiroren, and N. S. Sengor, “The application of ANN technique to automatic
generation control for multi-area power system,” Elect. Power Energy Syst., vol. 24, no. 5, pp. 345–354,
Jun. 2002.

[33]. C. S. Indulkar and B. Raj, “Application of fuzzy controller to automatic generation control,” Elect.
Machines Power Syst., vol. 23, no. 2, pp. 209–220, Mar.–Apr. 1995.

[34]. A. E. Gegov and P. M. Frank, “Decomposition of multivariable systems for distributed fuzzy control
[power system load frequency control],” Fuzzy Sets Syst., vol. 73, no. 3, pp. 329–340, Aug. 1995.

[35]. J. Talaq and F. Al-Basri, “Adaptive fuzzy gain scheduling for load-frequency control,” IEEE Trans. Power
Syst., vol. 14, no. 1, pp. 145–150, Feb. 1999.

[36]. Y. L. Karnavas and D. P. Papadopoulos, “AGC for autonomous power system using combined intelligent
techniques,” Elect. Power Syst. Res., vol. 62, no. 3, pp. 225–239, Jul. 2002.

[37]. Y. L. Abdel-Magid and M. M. Dawoud, “Optimal AGC tuning with genetic algorithms,” Elect. Power Syst.
Res., vol. 38, no. 3, pp. 231–238, Sep. 1996.

[38]. C. S. Chang, W. Fu, and F. Wen, “Load frequency control using genetic- algorithm based fuzzy gain
scheduling of PI controllers,” Elect. Machines Power Syst., vol. 26, no. 1, pp. 39–52, Jan. 1998.

[39]. Z. M. Al-Hamouz and H. N. Al-Duwaish, “A new load frequency variable structure controller using
genetic algorithms,” Elect. Power Syst. Res., vol. 55, no. 1, pp. 1–6, Jul. 2000.

[40]. A. Abdennour, “Adaptive optimal gain scheduling for the load frequency control problem,” Elect. Power
Compon. Syst., vol. 30, no. 1, pp. 45–56, Jan. 2002.

[41]. S. K. Aditya and D. Das, “Design of load frequency controllers using genetic algorithm for two area
interconnected hydro power system,” Elect. Power Compon. Syst., vol. 31, no. 1, pp. 81–94, Jan. 2003.

[42]. D. Rerkpreedapong, A. Hasanovic, and A. Feliachi, “Robust load frequency control using genetic
algorithms and linear matrix inequalities,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 855–861, May
2003.

[43]. S. P. Ghoshal, “Application of GA/GA-SA based fuzzy automatic generation control of a multi-area
thermal generating system,” Elect. Power Syst. Res., vol. 70, no. 2, pp. 115–127, Jul. 2004.

[44]. Syed M Alamdar Raza, Muhammad Akbar, Farrukh Kamran, “An abstract approach for control of complex
distributed power system networks” International Journal of Information and Systems Sciences ISSN
(1708-296X), Issue 1 Vol 2007.

[45]. Syed M Alamdar Raza, Muhammad Akbar, Farrukh Kamran, " Use-Case Model of Genetic Algorithms of
Agents for Control of Distributed Power System Networks" , Scientific Khyber Journal(ISSN: 1017-3471),
Vol 19, No 1 2006.

[46]. Syed M Alamdar Raza, Muhammad Akbar, Farrukh Kamran, "Object Model of Genetic Algorithms of
Agents for Control of Distributed Renewable Energy Resources", IEEE PES 2005 Conference and
Exposition in Africa Durban, South Africa, 11-15 July 2005, pp 282-285.

[47]. Syed M Alamdar Raza, Muhammad Akbar, Farrukh Kamran, " Use-Case, State Machine and Event Loop
Model of Genetic Algorithms of Agents for Control of Distributed Power System Networks" , SOAS 05
Workshop at University of Paisley , Glasgow, UK, 11-13 December 2005.

[48]. Syed M Alamdar Raza, Farrukh Kamran, Muhammad Akbar, " Dynamic and Scenario Based Elicitation of
Genetic Algorithms of Agents for Control of Distributed Power System Networks and Renewable Energy
Resources, IEEE ICM 2005 Conference, Islamabad, 13-15 December 2005,pp 148-154.

[49]. Syed M Alamdar Raza, Farrukh Kamran, Muhammad Akbar, " State and Event Loop Model of
Evolutionary Programs of Multiagent Systems for Control of Distributed Renewable Energy Networks" ,
IEEE INMIC 05 Conference Karachi, 23-25 Dec 2005,pp 34-39.

[50]. Wooldridge, M. J., and N. R. Jennings, "Intelligent Agents: Theory and Practice," Knowledge Engineering
Review, Vol. 10, No. 2,1995, pp.115-152.

[51]. d'lnvemo, M., M. Luck, and UKMAS Contributors, "Multiagent Systems Research into
the 21st Century," Knowledge Engineering Review, Vol. 16, No. 3, 2001, pp. 271-275.

[52]. Luck, M., and M. d'lnvemo, "A Formal Framework for Agency and Autonomy,"
Proceedings of the First International Conference on Multiagent Systems, Menio Park,
CA: AAAI Press / MIT Press, 1995, pp. 254-260.

[53]. Franklin, S., and A. Graesser, "Is It an Agent, or Just a Program? A Taxonomy for Autonomous Agents,"
Intelligent Agents III — Proceedings of the Third International Workshop on Agent Theories,
Architectures, and Languages, Lecture Notes in Artificial Intelligence, 1. P. Mtiller, M. Wooldridge, and N.
Jennings, (eds.). Volume 1193 of LNCS, Springer, 1997,pp.21-35.

[54]. Johnson, W. L., and B. Hayes-Roth, (eds.). Proceedings of the First International
Conference on Autonomous Agents, New York: ACM Press, 1997.

[55]. Genesereth, M. R., and S. P. Ketchpel, "Software Agents," Communications of the ACM,
Vol. 37, No. 7, 1994, pp. 48-53.

[56]. Lashkari, Y., M. Metral, and P. Maes, "Collaborative Interface Agents," Proceedings of
the Twelfth National Conference on Artificial Intelligence, 1994, pp. 444-449.

[57]. Aylett, R., and M. Luck, "Applying Artificial Intelligence to Virtual Reality: Intelligent
Virtual Environments," Applied Artificial Intelligence, Vol. 14, No. 1, 2000, pp. 3-32.

[58]. Kuokka, D., and L. Harada, "Matchmaking for Information Agents," Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, 1995, pp. 672-679.

[59]. Chess, D., et al., "Itinerant Agents for Mobile Computing," IEEE Personal
Communications, Vol. 2, No. 5, 1995, pp. 34-49.

[60]. Wong, D., N. Paciorek, and D. Moore, "Java-Based Mobile Agents," Communications of the ACM, Vol.
42, No. 3, 1999, pp. 92-102.

[61]. Etzioni, O., et al., "The Softbot Approach to OS Interfaces," IEEE Software, Vol. 12, No.
4, 1995, pp. 42-51.

[62]. Toomey, C., and W. Mark, "Satellite Image Dissemination Via Software Agents," IEEE
Expert, Vol. 10, No. 5, 1995, pp. 44-51.

[63]. Kinny, D., M. Georgeff, and A. Rao, "A Methodology and Modeling Technique for
Systems of BDI Agents," Agents Breaking Away: Proceedings of the Seventh European
Workshop on Modeling Autonomous Agents in a Multiagent World, Lecture Notes in
Artificial Intelligence 1038, Y. Demazeau and J.-P. Miller (eds.), New York: Springer,
1996, pp. 56-71.

[64]. Jennings, N. R., et al., "Agent-Based Business Process Management," International
Journal of Cooperative Information Systems, Vol. 5, Nos. 2 & 3, 1996, pp. 105-130.

[65]. Guttman,R. H.,A.G.Moukas, and P.Maes, "Agent-Mediated Electronic Commerce: A
Survey," Knowledge Engineering Review, Vol. 13, No. 2, 1998, pp. 147-159.

[66]. Grand, S., and D. Cliff, "Creatures: Entertainment Software Agents with Artificial Life," Autonomous
Agents and Multiagent Systems, Vol. 1, No. 1,1998, pp. 39-57.

[67]. Etzioni, O., and D. Weld, "Intelligent Agents on the Internet: Fact, Fiction, and Forecast," IEEE Expert,
Vol. 10, No. 4,1995, pp.44-49.

[68]. M. Amin, “National Infrastructures as Complex Interactive networks” in “Automation, Control and
Complexity” Samad and Wryrach (Eds), John Wiley and Sons, 1999.

[69]. M.Amin, John Stringer, “The Electric Power Grid: Today and Tomorrow” in “Harnessing Materials for
Energy, Vol 33, No.4, pp 399-407, April 2008.

[70]. M. Amin, “Automation Control and Complexity. New Developments and Directions,” Samad and Weyrach
(Eds), John Willey and Sons, 1999.

[71]. Eickstedt, Benjamin, “Adaptive Control of Heterogeneous Marine Sensor Platforms in Autonomous Sensor
Network” IEEE Intelligent Robot and Systems Oct 2006 pp 5514-5521.

[72]. M. Amin “Towards Self Healing Energy Infrastructure System”, IEEE Computer Applications in Power,
2001, pp 20-28.

[73]. Gehrlce and and Bindner, “Building a Test Platform for agents in Power System Control” in IEEE
Intelligent System Applications to Power Systems, November 2007, pp 5-8.

[74]. Kulwora Wanichpoong, Goodman, “Optimal Area Control of AC Railway System via PWM Traction
Drives” IET Journal of Electric Power Applications, Volume 152 Issue 1 January 2005, pp 33-40.

[75]. Hai Jang Zhuang and Shen, “Distributed Medium Access Control” IEEE Journal of Wireless
Communications Volume 14, Issue 3, June 2007 pp 25-31.

[76]. JinJun Liu, Xiaogang, “Stability Margin Monitoring for DC Distributed Power Systems via Perturbation
Approaches” IEEE Transactions on Power Electronics Volume 18, Issue 6, Nov 2003 pp 1254-1261.

[77]. Ladoux P, Postigione, “A Comparative Study of AC/DC Converters for High Power DC are Furnace” IEEE
Transactions on Industrial Electronics, Volume 52, Issue 3 June 2005 pp 747-757.

[78]. Heydt G.T, “Power Quality Engineering,” IEEE Power Engineering Review Volume 21, Issue 9,
September 2001 pp5-7.

[79]. Heur and Daggle, official report on “Recent Reliability Issues and System Events” prepared by US
Department of Energy, Dec 1999.

[80]. Chi, Lin and Shin, “Distributed Optimal Power Flow with Discrete Control Variables of Large Distributed
Power Systems” IEEE Transactions on Power System, Volume 23, Issue 3, Aug 2008.

[81]. Abe, Hirokawa, “Optimal Intermediate Bus Capacitance for System Stability on Distributed Power
Architecture” IEEE Power Electronics and Motion Control Conference, September 2008 pp 393-399.

[82]. Abe, Hirokawa, “Stability Design Consideration for on Board Distributed Power System Consisting of Full
Regulated Bus Converter and POLs” IEEE Power Electronics Specialist Conference, June 2006 pp 1-5.

[83]. Abe, Hirokava, “Output Impedance Design Consideration of three Control Schemes for Bus Converter in
On Board Distributed Power System” IEEE Power Electronics and Drive Systems November 2007 pp-
1199-1204.

[84]. http://go.worldbank.org/DUCPVCOG20

[85]. Aylett, R., and M. Luck, "Applying Artificial Intelligence to Virtual Reality: Intelligent Virtual
Environments," Applied Artificial Intelligence, Vol. 14, No. 1, 2000, pp. 3-32.

[86]. Ian Somerville, “Software Engineering’ 6th edition, Addison Wesley, August 2000.

[87]. James Reinbaugh, Michael Blaha, “Object Oriented Modeling and Design”, 6th edition, Prentice Hall Inc,
April 2000.

[88]. Rober Fautina, “Practical Software Process Improvement,” Artech House Inc, 2005.

[89]. Ronan Doherty, Hugh Outhred and Mark O Malley, “Establishing the Role that Wind Generation may have
in Future Generation Portfolios”, IEEE Transactions on Power Systems, Vol.21, No.3, August 2006.

[90] Mehrdad Ghandhari, “ Dynamic Analysis of Power Systems” Part I and Part II, Royal Institute of
Technology Sweden 2007.

[91] Lennart Soder, “ Static Analysis of Power Systems”, Royal Institute of Technology Sweden 2004.

[92] Blockset Tutorials of Simpower Systems concerning series compensation demonstrations.

	List of Figures
	7.12 Series Compensation Incorporation by Agent 113
	7.13 Reduced Loading on Fault with Compensation 113
	7.14 Line Opening at Double the Rated Load 114
	7.15 reduction of Loading on Opening of Line 114
	List of Tables
	Chapter # 4
	Chapter # 5

