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Chapter # 1 

 Introduction  

1.1 Background  

Shifting to a post-fossil energy setup is no small task. Merely the logistics side of the 

problem encompasses many challenging requirements such as replacing crude oil, coal and gas-

fired power plants with environment friendly, renewable energy technologies. It is not only a 

matter of removing one and plugging in the other. Renewable energy sources often require huge 

spaces to produce useful amounts of power, and need to be located in areas most suitable to their 

generation needs (bright regions for solar, airy for turbines and the ocean for wave etc.) and 

hence be located in far flung areas. These may be supposed to provide power to limited and 

isolated pockets or may be connected to the main grid. In both the scenarios there are definite 

peculiar control requirements for local or distributed power system networks.  

  
 If the alternate energy resources are used in conjunction with the conventional power 

generation setups in main grids, control for distributed power networks will be required. A setup 

of diverse, scattered sources of power generation is generally called "distributed energy network" 

and it has defined advantages over the existing, mainly centralized infrastructure. Distributed 

energy can be more strong against an accident or attack on the power grid. Failure of a 5 MW 

wind turbine would be undesirable, yet it will not be as disastrous as suddenly taking a 1000 MW 

coal power plant off the grid. Distributed power also permits more resource flexibility. The more 

varied the resources used to produce electricity, the less likely are outages resulting from limited 

availability of one of them. This is particularly more important due to the varied nature of air and 

solar energy. Output from a particular wind or solar farm will rise and fall with local conditions, 



but the overall availability of electric power from various locations and resources can still be 

consistent. 

  
Resorting to distributed energy is currently more complicated than centralised power. 

Some of the contributing factors are managing the difficulties related to variable power 

generation, changing usage patterns, distances involved, enormous increase in nodes of network 

and multiplicity of sources. In addition to dealing with variable, dispersed inputs, distributed 

networks will have to allow efficient routing of power, with lesser idle or unused generators. 

These would allow an overall lower level of generation to support continued levels of operation. 

The distributed power system computerised networks will be a fundamental part of post-oil era 

powered with green and environment friendly resources. Moreover, like computer networks, a 

successful grid would like to have a setup, where the intelligence of the system can be placed 

close to all important locations of requirement where decisions are to be made, instead of 

centralized network intelligence.  

 
Since power network is a large-scale system consisting of many subsystems, it is no 

longer the best solution to manage by using only the centralized control schemes or loosely 

decentralized control schemes. The reliability of the control system framework, which is highly 

coupled and interconnected with subsystems, decreases since a single failure can bring down the 

entire system. In order to overcome these problems, the control system should operate at a higher 

level of automation, flexibility, and robustness based on a new methodology which can work 

effectively in a large-scale distributed complex system. Recently, there has been a growing 

interest in distributed agent systems to deal successfully with the complexity and distributed 

problems in power systems. Each agent system can be assigned special functions to solve the 



distributed problems. Moreover, in the multiagent system the agents can work to solve problems, 

which are beyond the capabilities or knowledge of an individual agent. There have been many 

applications of agent-oriented mechanisms in control and monitoring systems. Agent based 

system can help in solving the distributed control problems by allocating responsibilities to 

various locations. The multiagent system also helps in monitoring the condition of system and 

providing effective asset management by diagnostics and protection against faults. Both areas are 

built upon the multiagent system properties, such as proactive, reactive, and social properties, as 

well as other fundamental properties.  
A major concern for the networked sensing and actuation of a large-scale system is the 

complexity, due to the number of components and their interaction patterns and communication 

delays. This complexity is raised when a control system is required to become intelligent by 

implementing a completely new variety of knowledge processing functions. The multiagent 

system paradigm, as the state-of-the-art software engineering concept provides a comprehensive 

and unifying framework for building large-scale  control systems. However, a review of the 

technical literature reveals a lack of design methodologies for multiagent systems, though few 

software development platforms are available with limited features. This points to the need for a 

new system design methodology for the control of large scale systems such as distributed power 

networks. A distributed system control concept has, therefore, been presented here as an 

effective methodology to control a large-scale distributed power network. An organization for 

the system has been described as the foundation of the distributed control system. It has several 

functions that provide efficient ways to control locally, and to accommodate and overcome the 

complexity in the large-scale distributed systems. 

 
1.2 Problem Statement and Objectives  



Green power based and conventional generation setups and infrastructure networks, 

encompassing vast distances, with fully centralized control will warrant full duplex, high baud 

rate communication channels with features of duplicity and redundancy, especially if the systems 

are interactive. These setups are susceptible to frequent failures owing to the fact that 

malfunctioning of one part of the network will disseminate unpredictably in no time not even 

sparing the central control. Consequently the central control will suffer from the same trouble 

which, it primarily is expected to rectify. 

 
The increasing complexity and interconnectedness of such systems poses fresh challenges 

for reliable and safe operation. Not a single entity can have control over distributed and highly 

interactive networks especially in real time. Moreover typical mathematical models that are 

employed for simulation and control are not able to properly handle the complexity and 

interconnection of more complex power networks. In most of the cases there are no procedures 

for understanding behaviour of the complex systems. Handling of disturbances in all these 

networks, along with avoiding of cascading effects through out and between networks requires a 

fundamental understanding of system’s dynamics, and ability to exercise effective distributed 

control. 

 
The challenge of managing distributed and interconnected systems therefore demands 

devising techniques capable of carrying out decentralized analysis of problems and intervening 

locally to fix and save the problems from propagating through distributed power networks, such 

as making use of multiagent systems.  

 
An agent is a computer software program that is autonomous and situated in some 

distributed environment in order to meet its design objectives. Since the agents are faced 



with different environments, they are designed differently for the given environment. In a large-

scale distributed complex system, the agent’s autonomous  properties can reduce the complexity 

by reducing the coupling problems between the subsystems. Furthermore, the proactive, reactive, 

and robust properties can be well suited for applications in a dynamic and unreliable situation. 

Since the agent is situated in an environment that is a distributed power network, it needs a 

perception and effecter to act and react. First, the sensed raw data is processed and mapped into a 

scenario. Then an objective (a sub-goal) is initialized under the situation to achieve the main goal 

which is the optimal operation. After confirming the objective, the best plan is chosen for the 

objective (sub-goal) in the decision-making. Depending on the plan, an algorithm module is 

selected to launch it. Finally, the action made by the algorithm module effects through the 

effecter into the environment.  

 

The objectives for this research are to propose Object, Use-case and State Machine 

models of a concept based upon agent system for control of distributed power system network. 

The proposed system should identify the requirement of different agents considering them as 

entities fully described with attributes and functions. The proposed model should specify 

interaction of different agents and events and should be able to serve as a basis for identification 

of requirements for control of distributed power networks. 

The objectives also include simulation of a typical power system for establishing the 

requirement of distributed control thereby highlighting the advantages achievable through 

making in-situ decisions rather than relying on central control for retaining synchronism in 

generators and avoiding overloading of the system especially under increasing load conditions..  

  
1.3 Approach 



An agent system for multi faceted distributed generation setup  has been proposed 

identifying role and requirements of each agent. The Object Model, treating various agents as 

Entity/ Object has been proposed showing their interaction/ interfacing. Each entity has been 

elaborated with its attributes. In addition, the services expected from each agent are highlighted. 

The Use-case Model is proposed showing assigned role of each agent.  Each use-case has been 

elaborated with its purpose, data handling, stimuli and responses. A lay out of the sub-systems of 

each of the proposed main agents has also been included. An elaborate State Machine Model is 

proposed showing behavior of system in real time scenarios and identifying different states, 

events and interactions. Finally a power system is simulated using Matlab/ Simulink platform to 

establish requirements of a local agent decision for assuring stability by resorting to decisions 

best suited to the environment. Static and dynamic load flow analysis of the selected system for 

ascertaining instantaneous values of each bus voltage along with its phase angle, active power 

and reactive power at each bus has been carried out using Newton Raphson technique. Rotor 

angle and speed of generators are found at defined intervals in pre fault, post fault, and on fault 

conditions as per defined intervals in various scenarios of load increase utilizing swing equation. 

Remedial measures commensurate with nature of disturbance are taken by distributed control to 

save the system from going out of synchronism or becoming overloaded. Expected delayed 

responses by central control or no responses and consequences thereof including system going 

out of synchronism or becoming overloaded etc have been demonstrated. 

 
1.4 Outline of the Thesis 
 

The thesis is organized into eight chapters. Chapter 1 is introduction to the thesis and 

Chapter 2 is based upon a literature survey to account for developments made in control of 



interconnected power systems and presents critical literature review. Different control aspects 

concerning the issue under discussion have been highlighted. 

 
Chapter 3 reviews control of real time systems and multiagents with an exhaustive 

discussion on drawbacks of existing system in the wake of increased complexity and feasibility 

of utilising distributed systems for control of complex power networks, identifying dividends 

which can be accrued by utilising multiagents. 

 
In Chapter 4, important features of requirement engineering have been taken up 

culminating into features of object modelling. It is followed by a discussion on object model of 

multiagent system proposed for control of distributed power network. 

 
The model of system use which interacts dynamically with environment, as 

recommended by UML, being a scenario based technique for requirement elicitation has been 

covered in detail in chapter 5. 

 

Chapter 6 describes concepts dealing with flow, interaction and sequencing of operations 

applied to the proposed state machine model of multiagent system for control of distributed 

network.  

Chapter 7 includes the simulation of a power system, static and dynamic load flow 

analysis of the selected system, solution of relevant swing equation and demonstration of 

advantages of distributed control as compared to central control or no control. 

 

Chapter 8 comprises of conclusion of the thesis describing the extent of work carried out 

and recommendations for future work. 



Chapter # 2 

Models for Control and Literature Survey 

2.1       Introduction  

In 1978, Sandell et al carried out a survey of a variety of alternates for decentralized 

control [1]. It was found that a fine amalgamation of professional assimilation and scrutiny may 

be used to define in a reasonable fashion an adhoc control mechanism in respect of a dynamic 

system. The authors reached at the conclusion that procedures were required that could present a 

design engineer with many acceptable control structure options for further consideration. 

 
In this chapter a resume and scrutiny of the previous work carried out in the field of 

control and management of distributed and multi machine power systems are given. A brief 

review of various techniques of modeling a problem of control has also been included. The 

contents of this chapter have been taken from [1] and [30]. 

2.2  Control Methodologies 

Here various types of concepts finding importance in overall control methodologies have 

been evaluated. The main task of control problems,  models that can be employed, models 

formulating a problem, and agent architectures finding utility in handling these problems have 

been assigned due consideration. 

2.2.1  Main Task of Control 

From the control point of view, a system is to behave in a defined manner. This must 

fulfill an assignment, that can encompass approaching certain goals while ensuring that none of 

the constraints which are possible are contradicted. 

 



Assignments can be identified by a person or some other object, or these may follow 

from certain characteristics of behavior of the system. Objectives can be either immediate goals 

or long term goals, e.g., to bring the system in a given state, or to maximize the long-term 

performance or to minimize the operation costs in long term. It is important that tasks should 

have one goal. These can possess many goals which can possibly be contradicting. In such 

scenario these are known as multi objective tasks. 

 
 

 

 

 

 

 

 

 

 

By keeping in view the dynamics of the system and probable constraints placed on the 

actions, tasks to be carried out on the system are to be selected such  that the requisite actions 

expected of the system are achieved. Actions that achieve the goal are found and process 

formulates Dynamic Control Problem (DCP). A standard DCP setting is shown in Figure 2.1. In 

order to determine an action such that system performance tends to approach the expected 

behavior as close as possible the control agent measures the state of the system. 

The general DCP can be formulated as: 

Find the actions such that the goal is achieved optimally 
subject to 

Figure 2.1  General Scheme for Controlling a System 

 

 



a model of the dynamic system 
with defined inter actions and states. 

 
 

This problem can be seen as an optimization problem, since the actions have to be chosen 

such that they achieve the goal in the best possible way. It is important that the goal remains 

independent of the definite model of the dynamic system. With a view to obtaining the goal it 

may be presumed that there exists a system model of the system under analysis. Ths model can 

be utilised to accurately identify  the goal  and to make a prediction about the system behavior 

given certain actions. A control problem model defines the exact control problem often based on 

the system model. The problem can be solved by agents using control problem model. Agent 

architecture provides the  organization of agents which adapt some communication protocol.  

 
2.2.2 System Models 

State of the system, behavior of the physical system,  actions on the system, and possible 

disturbances are described by a dynamic system model. There may be limits on possible actions 

and states in addition to system dynamics, which means the models are merely relevant in a 

given operating domain. The constraints can be due to  limitations which are technical, 

regulatory and measures of safety etc. Models of system may change with time, which means, 

the structural parameters of the model are not bound to stay constant. 

 

2.2.3  Control Problem Models 

The overall goal may consist of one central goal, a variety of decentralized goals, or 

hierarchical goals commensurate with system model structure. While resorting to a central goal 

there is a wholesome goal for the entire system. When parts of system in a wholesome system 

hold their own exclusive goals, decentralized goals become relevant. Hierarchical goals become 

relevant when subsystems possess goals which (partially) overlie, or when goals for a system can 



be ascertained on various levels of abstraction/ detail. The goals generally have a close 

association to the overall system.  

 

Three varied classes of control problem models can be identified including, a central 

problem model consisting of a single DCP. The other model comprises of a decentralized 

problem of multiple smaller, independent, DCPs. If the smaller DCPs have no conflicting goals, 

the combination of the problems is equivalent to the overall DCP. However, if there are 

conflicting goals, the combination of the problems need not be equivalent. Lastly, a hierarchical 

problem model consists of a number of abstraction layers, in which higher layers contain more 

abstract DCPs, and lower layers more concrete DCPs. The higher layers depend on information 

from lower layers and vice versa. 

 
2.2.4  Types of Agent Architectures 

Solution of DCPs can be accomplished by using agents or controllers. Agents are  

softwares of problem solution that have many abilities including reasoning, learning, and 

communicating with others so as to find a solution to a given problem. Agents possess set of 

actions containing skills and they also have an information set containing their knowledge 

(including information from sensing and communicating)[2]. 

 
Architectures are used to organize agents, for example., via links of communication 

including, central agent architecture, having only single agent, a decentral agent architecture, 

having many agents possessing nil interaction with one another, and a hierarchical agent 

architecture, where there are various layers of agents. Higher layers may supervise and receive 

information from lower layers. Layers located at lower level can receive instructions from and 

offer information to upper layers. Agents situated on the similar level/ layer can be permitted to 



interact directly with one another, as well as via the layers located at upper level. Figure 2.2 

depicts a typical example of hierarchically structured agent architecture [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

Targets for levels located at lower level agents are defined by those located at upper 

level. Physical systems are handled by agents assigned the lowest level in the hierarchy. Besides 

structured in layers, Agents may also be categorized in groups within which they are allowed to 

interact with each other without seeking approval of any other entity. While finalising 

hierarchical architectures, it is not only essential to ascertain  information that can be 

communicated, but also the order in which the information can be  approached by agents, ie, 

communication protocol is the requirement. 

 
2.3 Control of Distributed Power Systems and Networks 

Figure 2.2:  Hierarchically Structured Agent Architecture 



Many scientists have considered using prediction as part of a distributed control 

architecture. Few of the examples of these are architectures in which a single predictive 

controller is used as replacement of decentralized PID controllers [4], multiple different 

controllers  are  manually engineered as replacement of  decentralized  PID controllers [5-6], or 

prediction is used as supervisory layer in a cascaded setting [7-8]. The control architectures 

involved are typically engineered with insight in the specific application domain. Other 

architectures consider multiple subsystems that depend on one another, and that employ Model 

Prediction Control (MPC) in order to optimize system performance [9-21]. Methods described 

by them are general in nature, less application specific, and hence relevant to different scenarios. 

A comprehensive and decentralized control methodology is, therefore, a much desired option. 

Agent-based models provide understanding of large scale, behaviour of complex power 

infrastructures which is non linear for better control of disturbances mainly concerning cascading 

[3]. Assignment of different responsibilities to subsystem is the key to simpler independent 

bahaviour of individual components. In succeeding paragraphs, system model decomposition, 

control problem decomposition and problem assignment techniques etc as handled in different 

research papers will be discussed. 

 

2.3.1 System Model Decomposition 

Typically there are two ways in which a decentralized or hierarchical system model is 

formed, based on the way the overall system is considered. The central system model will be 

applicable. It means a centralized system model has to be  constructed and then defragmented 

into many subsystems without affecting structural properties  present in the model of system. 

This approach is known as top-down approach where a linear dynamic system is decomposed 



analytically into a similar set of subsystems with inputs which are coupled[10,22]. The other is 

centralized system model considered implicitly. This typically involves modeling a subsystem 

and the relations with other subsystems directly ie the decomposition into subsystems is based on 

engineering understanding. In this case one resorts to a bottom-up approach and the subsystems 

are conceived without first bearing in mind a model for the overall system [9,11,16-17]. 

 
In general, a system can be subdivided by bearing in mind various time scales in a system 

and identifying weak couplings between subsystems [1]. No specific methods are available to 

resort to decomposition. 

 
2.3.1.1 Decentralized Model Decomposition  

In decentralized decomposition, all subsystems are independent of one another. However, 

many scientist use the word decentralized to address a group of subsystems that can 

communicate with one another. These subsystems are a special case of a hierarchical system 

model. Purely decentralized model decomposition is only possibly when two subsystems are 

completely independent of each other or when they are assumed to be independent of each other. 

The term decentralized should not be confused with the more general term distributed. The latter 

refers to systems consisting of subsystems in general, and not in particular to systems consisting 

of strictly independent subsystems. 

 
2.3.1.2 Hierarchical Model Decomposition  

 Hierarchical system model decomposition arises when coupled subsystems depend on 

each other. Higher levels in a hierarchy may be more abstract or may span a longer time period 

(e.g., they may have a lower communication, computation, or control rate). The coupling 

between subsystems can have different foundations. Sometimes the coupling is based on 



physical variables and modeled explicitly. In this case control of a system is divided in different 

sections as subsystems. In each subsystem model the controls and state of a neighboring 

subsystem are taken into account. Multi-vehicle formation stabilization can also be considered 

where system models of the vehicles (including constraints) are uncoupled [23]. However, one 

layer higher, at a more abstract level, the state vectors of the subsystems are coupled due to 

constraints that make the vehicles drive in a formation. Similarly optimal dynamic routing of 

messages is considered in a store-and-forward packet switching network [18]. The nodes in the 

network are seen as subsystems with connections to neighboring subsystems. In particular, by 

reformulating the subsystem model they get rid of constraints. Yet at other times the coupling is 

more artificial and does not have a clear physical meaning. As an example, subsystem model is 

defined for each section in a distribution network and compatibility equations between 

subsystems are to be satisfied. The decentralized approach is based on an augmented Lagrangian 

formulation, where the flow balancing equations are dualized. In this formulation, the 

Lagrangian multipliers become the coupling variables [11,16]. 

2.3.2 Control Problem Decomposition 

Generally the structure of the system model and the structure of the problem cannot be 

distinguished. A control problem is therefore associated with the goal of each sub system. It is 

believed that it is not always necessary to allocate a problem of control with each subsystem. 

One can opt to define goals over a number of subsystems, instead of separately for each 

subsystem Analytical decomposition of a centralized goal can ascertain goals for subsystems. It 

can be better understood with example of worst-case approach which is taken by defining for 

each subsystem, a subproblem of finding the Lagrangian multipliers that maximize the problem 

of finding the controls. The multipliers must  minimize the augmented Lagrangian [11,16], and 



an ad-hoc engineered subproblem goal specially where a goal is formulated for each subsystem 

[18]. 

 
Specific goals are not considered for the lowest layer at occasions [23]. However,  a 

centralized goal is identified on the subsystems of the lowest level [10] at a level higher than it, 

or exchange of predictions on the bounds of agents’ state trajectories [19-20]. This way the 

agents possess information regarding the trajectories that the subsystem of the other agents are 

likely to make. Through this prediction of behaviour of all other agents can be done while still 

keeping the control problem decomposition to subsystems. 

 
2.3.3 Agent Design and Problem Assignment 

The information set of the agents is generally assumed to contain sufficient information 

for solving the subproblems. The action sets of agents are assumed to be sufficient in this regard 

[11,16,18]. There are two options available in case  an agent does not possess access to certain 

information that it needs directly . These options include: collect the data via communication, or 

devise mechanism to predict the information. In the proposed model of control of distributed 

power networks, each agent has been assigned the capability to send request for obtaining 

required information from any other agent. The available information will be passed on, after 

carrying out updation and as per data structure of the requesting agent [24]. 

 
Optimal partitioning of agents into groups has drawn much of the interest of 

researchers[12]. Removing  the communication channel amongst agents (at least among agents 

in different sub-groups) is of essential value to a group of scientists [22]. By minimising 

communication between agents, they can work better at their own speeds. However this 

requirement must be weighed against the total cost of control actions. The authors have 



suggested a formulation wherein this trade-off can be inconsequentially implemented by finding 

an arrangement assigning agents to groups. Sensitivity-based criterion has also been proposed for 

considering how information must be communicated to the groups [22]. In systems having 

grouped agents, the closed-loop control action sensitivity when compared with measurement of 

output is used as a criterion for deciding regarding a given output measurement which should be 

made available to a particular group of agents.  

  
Specific agents are generally tasked to solve each control subproblem. Generally the 

designs for agent architectures are prepared being offline which do not change online [10]. The 

information that agents can exchange amongst each other is determined before hand such as by 

minimizing a communication cost, or objective function at system’s  overall level depending 

upon the requirement to be handled using artificial intelligence etc. The agent-based model 

covered in this thesis also proposes use of evolutionary softwares and genetic algorithms for 

prediction and objective function minimization. Each agent, however, has been assigned multiple 

tasks instead of increasing number of agents by allocating specific tasks to each agent [24]. 

 
2.3.4 Synchronous and Asynchronous Iterative Solutions by Agents 

When decisions are to be taken among agents with conflicting goals, it is easier and 

realistic to reach at a solution through iterations [12]. Considering the decisions of its 

neighboring agents, every agent revises its decisions. Agents arrive at optimal decisions 

independently if the dynamic subsidiary problems are not coupled. However, if this is not the 

case, there are two methods to handle couplings: synchronously or asynchronously.  

 

In the synchronous case precedence Constraints are placed as binding on the iterations in 

case of synchronous method. This necessitates that the faster agents  wait for slower agents. 



Serial synchronous methods and parallel synchronous methods can mutually be distinguished. In 

serial method one agent can take a step at a time whereas in the parallel case agents have to wait 

for all other agents to finish the step in hand before proceeding. 

 

Asynchronous treatment preferred over the synchronous case because it permits all 

agents to run at their own speed, and hence the agents spend no time waiting for one another. 

This, however, is achieved at the cost of uncertainty in information, since agents may not know 

precisely regarding actions of other agents. Asynchronous iterations can be noticed in state 

machine model of Figure 6.1, where state of automated negotiations and risk management 

continuously revises the information it holds through iterations, on reconfiguration of network, 

provision of ancillary services at identified nodes and on receipt of results from evolutionary 

programming/optimization for minimum power transfer [25]. 

Parallel synchronization can be dealt in two-step algorithm. On adapting this approach 

every agent handles its subproblem first, using some values or parameters of the previous step. 

With the help of information from other agents these values/ parameters are optimized.  In the 

next or second step this information is made available in which each agent exchanges 

information regarding its parameters with other agents [11,16]. In few cases agents also 

communicate and share their  future plans to each other at the end of each optimization step [19-

20,23]. Worst-case disturbances acquire priority because agents prefer to solve local min-max 

problems to optimize performance with respect to these. To acquire  conservative solutions and 

predictions, parameterized feedback of state is introduced into the multiagent formulation of 

MPC. Agents’ capabilities can be incorporated with a view to joining the trajectory formulaton 

with operational constraints and stabilization of dynamics of vehicles. This is done by adding a 

potential function reflecting the state information of a possibly moving obstacle or other agent to 



the cost function [26]. Efforts to incorporate optimization features through synchronous or 

asynchronous iterations for revising/improving the information and decisions by individual 

agents have thus proved quite useful. 

 

 
2.3.5 Choice of Action by Agents 

Agents can opt to use various methods of physically choosing actions to perform at a 

given point of time or scenario. As far as a typical single-agent MPC is concerned, the agent opts 

to invoke the very first action of the sequence found as a result of  solving the control problem 

assigned to it. While studying multiagent MPC, however, there are many available options since 

an agent may like to adopt suggestions from agents sitting in neighborhood regarding its actions. 

Agents can fully exercise option to select their actions and implement them such as, by merely 

opting the first action taken from the sequential list of optimal actions. A higher-layer agent can 

also be considered which collects data from various layers located at lower level to update 

parameters for each agent  exclusively[11,16]. 

 Actions of a particular agent may be chosen by other agents as well which means actions 

can also be shared [27]. Many other agents may also be permitted to utilise capabilities of a 

given agent. As an alternative, agents can opt actions to be performed democratically by 

allowing various agents to cast vote about action to take place. This concept is based upon the 

assumption that the majority knows what is right to do and hence it can prove fruitful [27]. 

Finally, agents may be allowed to trade their actions. In this case the agent having the bid which 

is highest is allowed to choose the action that an agent should act upon. It can be beneficial in 

scenarios where there is only a very limited resource available required to be shared. 

 
2.3.6 Automatic Learning Features of Agents 



Automatic learning is the latest concept which is likely to enhance the efficacy, broaden 

the domain of applied fields and strengthen the flexibility/ adaptability of protocols related with 

cooperation. As an example of applicability, learning may  effectively be introduced for 

identification of parameters, or for enhancement in capacity of problem-solving and decision-

making abilities. Learning imparts an agent the ability to predict about future actions of 

neighbors . Learning specifically yields dividends when agents work asynchronously. 

 
There exists a possibility of on-line identification procedure jointly based on a MIMO 

parameterized model of the physical characteristics of the system and Kalman filtering [11]. In 

addition to this, a Kalman optimal estimator defined on the grounds of the on-line identified 

control can be employed with a view to making estimate of the state of the subsystems for which 

the subproblem of an agent is has been identified. Neural networks may also be allocated to the 

agents signifying nodes in a network [18]. Online computational requirements can be improved 

by training the neural networks off line. The models of the nodes can be allowed to rely on 

values acquired by neighboring nodes in future and each agent has to estimate these values [17]. 

2.3.7 Concepts of Artificial Intelligence 
 

In practice, many nonlinear processes are approximated by reduced-order models, 

possibly linear, that are clearly related to the underlying process characteristics. However, these 

models may be valid only within certain specific operating ranges, and a different model may be 

required in the wake of changed operating conditions, or the control system should adopt the 

new system model parameters. The advent of Artificial Intelligence (AI) techniques, such as 

neural networks, has solved this problem to a great extent. The neural technology offers many 

more benefits in the area of nonlinear control problems, particularly when the system is 



operating over the nonlinear operating range. The applications of neural networks in power 

system control are available [28-29].  

           

A new control scheme to incorporate the nonconforming load problem was presented, in 

which an effort had been undertaken to develop algorithms capable of discriminating between 

non controllable short-term excursions and controllable long-term excursions [30]. Out of the 

two techniques described, one was developed using a neural network algorithm for pattern 

recognition of controllable signals, and the other technique was based on the detection of the 

controllable signal in the presence of a noisy random load using a random signal probability 

model. Test results reveal that neural network-based control implementation had a significant 

improvement over the modern control implementation. LFC system performance was evaluated 

with a nonlinear neural network controller using a generalized neural structure to yield better 

system dynamic performance than the individual neurons [31]. 

 

A four-area interconnected power system model with reheat nonlinearity effect of the 

steam turbine and upper and lower constraints for generation rate nonlinearity of hydro turbine 

was considered for the investigation [32]. It has been shown that the control problem can be 

viewed as a stochastic multistage decision-making problem or a Markov Chain control problem 

and have presented algorithms for designing control based on a reinforcement learning approach 

[29]. 
The fuzzy logic control concept departs significantly from traditional control theory, 

which is essentially based on mathematical models of the controlled process. Instead of deriving 

a controller via modeling the controlled process quantitatively and mathematically, the fuzzy 

control methodology tries to establish the controller directly from domain experts or operators 

who are controlling the process manually and successfully. Many studies exploiting the fuzzy 



logic concept in AGC regulator design dealing with various system aspects have appeared in the 

literature [33–35]. 

Contribution considering the problem of decomposition of multivariable systems for the 

purpose of distributed fuzzy control was reported by Gegov [89]. The proposed decomposition 

method has reduced the number of interactive fuzzy relations among subsystems. The concept 

and development of AGC using Artificial Neutral Networks and fuzzy set theory to utilize the 

novel aspects of both in single hybrid AGC system design for power systems has also been 

mooted [36].  
These days, Genetic Algorithm (GA) is the most popular and widely used algorithm of all 

the intelligent algorithms. GAs have been widely applied to solve complex nonlinear 

optimization problems in a number of engineering disciplines in general and in the area of 

control of power systems in particular [36-43]. 

A reinforced Genetic Algorithm has been proposed as an appropriate optimization 

method to tune the membership functions and rule sets for fuzzy gain scheduling of load 

frequency controllers of multi area power systems to improve the dynamic performance [38]. 

The proposed control scheme incorporates dead-band and generation-rate constraints also. Later, 

contrary to the trial-and error selection of the variable structure feedback gains, a genetic 

algorithm-based selection of feedback gains has been advocated for load frequency variable 

structure controller [39]. The selection scheme provides an optimal feedback gain selection in the 

variable structure control, and the test results show that not only the dynamic performance has 

been improved, but also, the control effort is dramatically reduced. A comprehensive study on 

control of an autonomous power system using combined intelligent techniques is also available 

[36]. 



A higher order robust dynamic performance is achieved with LFC designs based on GA 

and linear matrix inequalities [42]. The desired control parameters have been obtained by 

coordinating GA with linear matrix inequalitie control toolbox optimization. A new GA based 

fuzzy AGC scheme of a multi area thermal generating system is developed [43]. The scheme is 

capable of evaluating the fitness of GA optimization by selecting a function like “figure of 

merit,” which directly depends on transient performance characteristics like settling times, 

undershoots, overshoots, and time derivative of frequency. 

2.4 Identification of Research Area 

After going through the literature, it can be inferred that the authors have generally 

concentrated on single problem pertaining to control of distributed power networks. For 

example, research is available on transient stability using various techniques such as Lyaponov 

functions, fuzzy logic based power system stabilizer and nonlinear controllers with derivative 

adaptive technique. Similarly performance prediction of distributed power system based on small 

scale prototypes and a coordinated voltage control for power system voltage stability to control 

dissimilar control actions at geographically distant locations has been proposed. Moreover work 

on possible modeling techniques of complex systems is also available. However a relatively 

comprehensive and wholesome solution has been deliberated upon which can encompass 

functionally vital aspects of a control system of distributed power networks possessing features 

of evolution, self healing and autonomous decision making at different nodes thus managing real 

and reactive power along with allied ancillary services, reconfiguration on occurrence of fault 

and restoration on rectification subsequently, data handling and award of autonomy to various 

geographically scattered nodes for unhindered quality supply of electricity etc. Integration of 

different dimensions of the complex problem of controlling distributed power network of today’s 



magnitude is certainly an ambitious demand requiring efforts and resources of large, qualified 

and experience consortia. These consortiums should comprise of experts from multi disciplinary 

fields with support of world community as identified by large number of researchers in the field. 

Stepping in the right direction and towards the objective is the only viable option.  

With a view to providing a basis for further development a hierarchical conceptual model 

based upon agents having communication and interface capabilities  has therefore been proposed 

[24-25,44-49]. Goals of each agent have been defined individually and iterations within states 

have been described for automated negotiations, reconfiguration and risk management based 

upon iterative evolutions. Actions of agents are autonomous yet each agent can initiate a request 

for overarching actions, assignments and data. 

2.5 Summary 

 This chapter provides a critical overview of philosophies and work carried out in the field 

of control of power system networks and modeling of systems. Common aspects in the available 

research conducted in the relevant field have been identified. This has led to identification of 

certain groups and attributes at a rather non mathematical level. Recent developments such as 

control schemes based on concepts of neural networks, fuzzy logic and genetic algorithm have 

been accounted for. Emphasis has been given to categorizing various control strategies reported 

in literature that highlight their salient features. 



Chapter # 3 
Agent-Based Computing 

 
3.1  Introduction 

 Control of Real Time System encompassing geographically distributed areas warrants 

conceiving innovative techniques to handle situations and scenarios. A promising solution is use 

of multiagent systems. In this chapter a review of Agent Based Systems is carried out with 

special emphasis on their properties and applications. In addition, a detailed discussion of using 

multiagent system in distributed power networks is included, highlighting dividends that will be 

accrued by utilizing multiagent systems for control of these networks. The contents of this 

chapter have been mainly taken from [68-70] and [72]. 

3.2 Open and Dynamic Computing Environments 

The trend of software development is shifting from stand alone computers to distributed, 

open and dynamic systems presenting an environment made up of computers in infrastructures, 

in support systems and embedded in vast arrays of devices. These computers are networked with 

ability to interact dynamically forming new configurations to suit prevailing needs. However, the 

characteristics of dynamic and open environments in which systems of different origins, make, 

type and purpose must interact and operate effectively within rapidly changing circumstances 

and with exponentially increasing quantities of available information, suggest that improvements 

on the traditional computing models and paradigms are required [2]. 

In particular, the need for awarding autonomy, to enable components to respond  to 

changing circumstances while trying to achieve overarching objectives without the need for user 

intervention is fundamental. Agent technologies have become the most valuable tool that is being 

used to tackle the problems associated with managing the complexities that arise. 



 
Agents are viewed as autonomous, problem-solving computational entities capable of 

effective operation in dynamic and open environment. They are deployed in environments in 

which they interact, and possibly cooperate, with other agents (including both people and 

software) and may have conflicting aims. These are exactly the kinds of characteristics that are 

needed in the new computational environments. Agent-based systems have emerged over the 

past few years, from a convergence of technologies in distributed object systems and distributed 

artificial intelligence, and have seen rapid and dramatic growth both academically and 

commercially. 

 
3.3  Object Technologies and Agents 

The relation of agents to objects has caused difficulty in understanding what it is that 

makes agents distinct [2]. While object-orientation as a programming paradigm has achieved 

much success, and offers a valuable abstraction for the development of complex systems, agents 

provide a different and higher level of abstraction. Like objects that provide encapsulation of 

state and behavior, agents also encapsulate properties. However, objects are essentially passive 

in nature. They have no choice to interact, and are simply invoked by other objects to perform 

particular tasks or execute particular functionality. In contrast agents have the ability to decide 

for themselves to participate in computational activity, and to perform the desired operation. This 

is the fundamental distinction that marks out agents as distinct by virtue of their autonomy. It is 

this autonomy that is also responsible for providing the flexibility that is needed for open and 

dynamic environments.  

 
In terms of modeling, objects are regarded as a valuable way to view the world, and an 

agent-based approach offers a much more natural representation of real-world systems in which 



different individuals, interact according to their own agenda and priorities. They, then, can come 

together to achieve objectives that might not, or not as easily, be achieved by the individuals 

alone, but they do so when it is appropriate. When the goals of individual agents are closely 

aligned, and if they respond to requests made to them, and always provide information when 

queried, then the resulting systems may come close to an object-oriented system. 

 
In short, agents can be distinguished from objects in that they are autonomous entities 

capable of having choice over their actions and interactions. However, they may be constructed 

using object technology. Moreover, agents typically run in their own thread of control, as 

opposed to standard object systems, which have one thread.  

 
3.4  Concept of Agents 

The concept of agents emerged due to the difficulties faced while attempting to solve 

problems without considering real external environment or the entity involved in that problem-

solving process [2-3]. Thus, the solutions constructed to address these problems can be limited 

and inflexible in not properly handling real-world situations. In response, agents can be proposed 

as problem-solvers that are capable of flexible and effective operation in complex environments. 

This means that the agent receives input from its environment through  sensors, and acts so as to 

affect that environment through effectors. Such a simple but powerful concept has been adopted 

by many branches of computing because of its usefulness and broad applicability. 

 
A generally accepted definition of agents is the computational entities that are capable of 

exhibiting flexible behavior in dynamic and unpredictable environments [2]. Typically, agents 

are characterized along certain dimensions, rather than defined precisely. For example, a weak 

notion of agents involves autonomy or the ability to function without intervention, social ability 



by which agents interact with other agents, reactiveness allowing agents to perceive and respond 

to a changing environment, and proactiveness through which agents behave in a goal-directed 

fashion [3]. As indicated, these characteristics are broadly accepted as representative of the key 

qualities that can be used to assess agenthood. 

 
Several alternative characterizations with additional properties like mobility, ability to 

learn and the requirement that agents are rational and honest etcetera have also been mentioned 

in the literature. 

 
In addition, agents are also required to be based around control architectures comprising 

mental components such as beliefs, desires, and motivations.  

 
Several efforts have been made to explore the area in some depth, including 

encompassing agent frameworks [51-53] and agent taxonomies [53], which help in identifying 

the key features of agent systems and the characteristics of the different branches of the field. In 

attempting to distinguish agents from programs, Franklin and Graesser constructed an agent 

taxonomy aimed at identifying the key features of agent systems in relation to different branches 

of the field [53].  

There is now a variety of different labels for agents ranging from the generic autonomous 

agents, software agents or intelligent agents to the more specific interface agents, virtual agents, 

information agents, mobile agents and so on [50,54-60]. The diverse range of applications for 

which agents are being used includes operating system interfaces, processing satellite imaging 

data, air-traffic control, business process management, electronic commerce, and computer 

games  etcetera [61-66]. The richness of the agent metaphor that leads to such different uses of 

the term is both a strength and a weakness. Its strength lies in the fact that it can be applied in 



many different ways in many situations for many different purposes. The weakness, however, is 

that the term agent is now used so frequently that it might be considered that there is no 

commonly accepted concept of an agent. 

 
Etzioni and Weld summarize desirable agent characteristics as including autonomy, 

temporal continuity by which agents are not simply "one-shot" computations, believable 

personality in order to facilitate effective interaction, communication ability with other agents or 

people, adaptability to user preferences, and mobility, which allows agents to be transported 

across different machines and architectures [67]. They further characterize the first of these, 

autonomy, as requiring that agents are goal-oriented, collaborative in that they can modify the 

requests and clarify them, flexible in not having hard, scripted actions, and self-starting in that 

they can sense changes and decide when to take action. 
 

3.5 Applications of Agents 

 Areas that find excessive application of agent systems include ambient intelligence and 

grid computing. Both these areas are related to the concept of controlling a vast and distributed 

network of power generation and transmission where a large number of generating units, 

distribution tie lines, transformers, sensors and actuators come together to handle, optimize and 

ensure unhindered power supply. 

 
3.5.1 Ambient Intelligence 

The ambient intelligence vision describes an environment of potentially thousands of 

embedded and mobile devices (or software artifacts) interacting to support user-centered goals 

and activity. This suggests a component-oriented view of the world in which the artifacts are 

independent and distributed. Autonomy, distribution, adaptation, responsiveness, and so on, are 



the key characterizing features of these ambient intelligent artifacts, and in this sense they very 

strongly share the same characteristics as agents [68]. 

 
In particular, these ambient intelligence artifacts are likely to be function-specific and 

interact with numerous other ambient intelligence artifacts in the environment around them in 

order to achieve their goals. Interactions take place between pairs of artifacts (in one-to-one 

cooperation or competition), between groups of artifacts (in reaching consensus decisions), and 

between artifacts and the infrastructure resources that comprise their environments. Interactions 

like these enable the establishment of electronic institutions or virtual organizations, in which 

groups of agents come together to form coherent groups able to achieve some overarching goals. 

 

3.5.2 Grid Computing 

High-performance computing infrastructure, known as the Grid, for supporting large-

scale distributed scientific systems has recently gained interest from several communities. It 

provides a computing infrastructure for supporting more general applications that involve large-

scale information handling, knowledge management, and service provision. 

 

It is natural to view large systems in terms of the services they offer, and consequently in 

terms of the entities providing or consuming services. Grid applications, in which typically many 

services may be involved, spread over a geographically distributed environment, which new 

services join and existing ones leave, very strongly suggest the use of agent-based computing. In 

particular, agents will need to collaborate and to form coalitions of agents with different 

capabilities in support of different organizations. 

 

Initially aimed at high-performance computing, Grid computing is now being recognized 

as the future model for service-oriented environments, within and across enterprises [69]. 



Chapter # 4 

Object Model of Multiagent Based Control of Distributed Power 

Networks 
 

4.1  Introduction 

Object modeling of the proposed multiagent system for control of complex and diverse 

distributed power system networks has been discussed in this Chapter. The chapter has been 

divided into two segments. First segment takes up relevant features of requirement engineering 

in a generic way, culminating into features of object modeling. The second segment comprises of 

the object model developed for innovative multiagent based control of complex and distributed 

power system network. 

 

4.2  Requirement Engineering 

Software engineers have to often solve immensely complex problems. Understanding 

nature of the problems can be very difficult, especially if the system is new. Consequently, it is 

difficult to establish exactly what the system should do. The descriptions of the services and 

constraints are the requirement for the system, which warrant finding out, analysing, 

documenting and checking the system [86]. The term requirement is not used throughout the 

software industry in a consistent way. A requirement is seen as a high-level, abstract statement of 

a service that the system should provide or a constraint on the system. 

 

Requirements engineering process comprises of different levels of description which are 

user requirements to mean the high-level abstract requirements, and system requirements, that is, 

the detailed description of what the system should do. As well as these two levels of detail, a 



more detailed description (a software design specification) may be produced to bridge the 

requirements engineering and design activities.  

 

User requirements are statements, in a natural language plus diagrams, of what services, 

the system is expected to provide and the constraints under which it must operate. System 

requirements set out the system services and constraints in detail. The system requirements 

document, sometimes called a functional specification, should be precise. It may serve as a 

contract between the system buyer and software developer. A software design specification is an 

abstract description of the software design which is a basis for more detailed design and 

implementation. This specification adds further detail to the system requirements specification. 

 
4.3 Object Models 
  

An object-oriented approach to the whole software development is now commonly used, 

particularly for interactive system development [86-88]. This means expressing the systems 

requirements using an object model.  

  

Object models developed during requirements analysis may be used to represent both 

system data and its processing. In this respect, they combine some of the uses of data-flow and 

semantic data models. They are also useful for showing how entities in the system may be 

classified and composed of other entities. 
  

An object class is an abstraction over a set of objects which identifies common attributes 

and the services or operations which are provided by each object. Objects are executable entities 

with the attributes and services of the object class. Objects are instantiations of the object class 

and many different objects may be created from a class. Generally, the models are developed 

using analysis focus on object classes and their relationships. 

  



Models of systems which are developed during requirements analysis should model real-

world entities using object classes. Various types of object models can be produced showing how 

object classes are related to each other, how objects are aggregated to form other objects, how 

objects interact with other objects and so on. All of these can add to understanding of a system 

which is being specified. 

 

 The analysis process for identifying objects and object classes is recognized as one of the 

most difficult areas of object-oriented development. Object identification is basically the same 

for analysis and design. 

 

 An object class in UML is represented as a vertically oriented rectangle with three 

sections. Name of the object class is mentioned in top section, class attributes in the middle 

section and the operations associated with the object class in the lower section of the rectangle. 

 

4.4 Inheritance Models 

Object-oriented modeling involves identifying the classes of object which are important 

in the domain being studied. These are then organized into taxonomy [86,88]. Taxonomy is a 

classification scheme showing relation of object class to other classes through common attributes 

and services. 
  

To display this taxonomy, the classes are organized into an inheritance hierarchy where 

most general object classes are presented on the top of the hierarchy. More specialized objects 

inherit their attributes and services. These specialized objects may have their own attributes and 

services. 

4.5 Object Aggregation 
 
 In addition to acquiring attributes and services through an inheritance relationship with 

other objects, some objects are made up of other objects. That is, an object is an aggregate of a 



set of other objects. Considering the model described in section 4.8, the hierarchy of main agents 

for control of distributed networks, namely, Failure Supervision Agent and Main Managements 

Agent are an example of object aggregation.  

  
 

Objects communicate by requesting services (calling methods) from other objects and, if 

necessary, by exchanging the information required for service provision. Copies of information 

needed to execute the service and the results of service execution are passed as parameters. 

 

In some distributed systems, object communication is implemented directly as mutual 

text message exchange. The receiving object parses the message, identifies the service and the 

associated data and carries out the requested service. However, when the objects coexist in the 

same program, method calls are implemented in the same way as procedure or function calls in a 

language. When service requests are implemented in this way, communication between objects is 

synchronous. That is, the calling object waits for the service request to be completed. However, 

if the objects are implemented as “concurrent processes or threads” the object communication 

may be asynchronous. The calling object may continue its operation while the requested service 

is executing. 

 

4.6 Concurrent Objects 

Conceptually, an object requests a service from another object by sending a ‘service 

request’ message to that object. There is no requirement for serial execution where one object 

waits for completion of a requested service. Consequently, the general model of object 

interaction allows objects to execute concurrently as parallel processes. These objects may 

execute on the same computer or as distributed objects on different machines.  

 



In practice, most object-oriented programming languages by default have a serial 

execution model where requests for object services are implemented in the same way as function 

calls. 

 

4.7 An Object-Oriented Design Process 
 
The  general process used for object-oriented design  has a  number  of  stages [86-88]. 

The first stage is to understand and define the context and the modes of use of the system. After 

this, design of the system architecture is carried out, followed by identifying principal objects in 

the system. Then design model is developed and object interfaces are high lighted. 

 

In fact, all of these activities are interleaved and influence each other. Objects are 

identified and the interfaces fully or partially specified as the architecture of the system is 

defined. As object models are produced, the individual object definitions may be refined and this 

may mean changes to the system architecture. 

 

4.8 Object Model for Control of Power Networks 

Object model for control of distributed power system networks  comprises of ten agents 

in two strings, namely Failure Supervision Agent and Main Management Agent [24,46]. The 

hierarchy of each alongwith relevant attributes has been included in Figure 4.1. Inheritance of 

attributes of Failure Prediction Agent and Occurrence Identification Agent with Failure 

Supervision Agent can be ascertained from the model. Similarly Status Monitoring, Power 

Generation, Stability and Reconfiguration Agents inherit attributes from Main Management 

Agent. 

 



The agents in the object model are shown in Figure 4.1. After a thorough scrutiny of 

essentially required activities for effective control of distributed power system networks, a 

comprehensive list of functions was prepared. The problems handled in various research studies 

and surveyed literature provided an outline of vital activities necessary for enforcing adequate 

control of a self healing network. Based upon object model fundamentals, these functions were 

grouped into performance viable classes of objects which formed the basis of devising a 

multiagent based mechanism. “Identification” attribute associated with each agent describes the 

component/gadget or sub system for which the data is being handled by it. The information is 

extracted through a number of sensors located throughout the network and associated with 

different components, bus bars, transformers, and generators. The decisions are made 

autonomously and implemented through actuators packaged with sub systems of the network. 

The system is implemented through micro controller based mechanism. 

 

The agents shown in Figure 4.1 can be divided into two broad categories, the reactive 

agents and the deliberative agents. The reactive agents perform programmed remedial measures 

for situations warranting instant response. Their objective is autonomous and hence should be 

able to implement fast control. The deliberative agents not only represent the system's current 

status but also modify the plans if they do not match the real world model. The goals of the 

deliberative agents are robustness and automatic remedial measures. These agents also carry out 

co-ordination and use heuristic knowledge to identify triggering event from reactive agent that 

are urgent, important and / or resource consuming. 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The robustness of the software infrastructure is preserved by using analytically redundant 

software architecture with two complementary entities (agents) on each job, wherein a simple 

and highly reliable core agent that guarantees minimal essential services and a complex entity 

Figure 4.1:         Object Model of Agent System 



that provides many desirable features are suggested. The reliable core will function in spite of a 

failure in the complex agent. 

 

The stochastic events arising from the dynamics of the power network drive the co-

ordination between distributed agents. An event driven real time communication architecture will 

assemble relevant distributed agents into task driven teams and will provide the teams with 

timely and consistent information to carry out coordinated actions. 

 

The attribute of Identification shown in each object is used to identify the modality (e.g. 

generator, load, transmission line, or compensator) the agent is associated with. 

 

Interface service of each object provides interface functions for agents to access the 

knowledge base of each other and also for agent communication (knowledge exchange). This is 

an essential service and hence should form part of each agent because in a distributed system of 

greater magnitude and dimensions, communication from one or several agents will be interrupted 

from time to time. Under these unfavorable conditions, the remaining agents should be robust 

enough to make decisions that do not jeopardize grid stability or reliability. Fault tolerant agents 

that can make decisions in the absence of data from one of their adjacent agents are, thus, 

required. Since the primary role of different agents differs from each other, required data from a 

particular agent may be missing, but it can be inferred from load flow and voltage information 

from neighboring agents. This arrangement, therefore, facilitates collaborative fault detection. 

A separate agent for compensation can be developed to provide an array of services such 

as reactive power generation, power flow control, harmonic compensation, voltage regulation, or 

dynamic control over frequency and voltage. It can, however, also be made part of any other 

agent with relevant features. In our case it has been mde part of Main Management Agent. 



 

Failure prediction agent will constantly analyze the scenario of functioning so as to have 

a logical foresight, through look-ahead simulations for predicting failure events in power system 

network.  
 

One of the major tasks of occurrence identification agent is to convert events into alarm 

signals to trigger the fault isolation/ relevant remedial sub agents. It will also carry out data 

filtering and routine interfacing of data. 

 

Since the quantum of data to be handled is expected to be enormous because of 

continuous real time incoming of  parameters, the scrutiny/ filtering of data as per requirement of 

operation, coordination/ display (if applicable) etc is mandatory [25]. 

 

Protection agent and power generation control agent are simple ones, performing as an 

option in case of failure of complex agents i.e. Fault isolation agent and Stability agent. They are 

therefore providing redundancy to the system. 

 

Designated softwares such as Failure Supervision and Main Management Agents will 

read/ compute voltage magnitudes, phase angles and transmission line power flows for a network 

under steady state operating conditions. Other results such as transformer tap settings and 

generator reactive power outputs can also be computed. As an analyzing support, high-speed 

printers should be employed to print out the complete solution in tabular form for analysis by the 

planning engineer/ R&D setups. Main Management Agent will also carryout consistency checks 

and decision support with partial inputs and presence of errors. Provision of compensation 

services, restoration of network and real time failure analysis are also some of its designated 

tasks. 
 



Stability agent helps the network under disturbance conditions such as sudden loss of a 

generator/ transmission line, sudden load increase and decrease, short circuits and switching 

operations. This agent utilizes power flow equations and machine dynamic equations to compute 

the angular swings of machines during disturbances. The agent also computes critical times for 

network faults and allows the evolutionary programme/ expert system to determine the effects of 

various machine parameters, network modifications and control schemes. 

 

Status monitoring agent will carry out real time system observability, contingency 

planning, flagging of rare events and metering for track enforcement etc. Separate short circuit 

programmes will form part of Fault Isolation Agent to compute three phase and line to ground 

faults in power system networks in order to select circuit breakers for fault interruption, select 

relays to detect faults and control circuit breakers and determine relay settings. Short circuit 

currents is computed for each relay and circuit breaker location for various system-operating 

conditions such as lines or generating units out of service, in order to determine minimum and 

maximum fault currents via Failure Prediction Agent. 
 

 

4.9  Summary 

 This chapter presented an object model based on multiagent systems for control of 

distributed power networks, with a brief description of each agent. Essential features of a typical 

object model were also deliberated upon. 



 

Chapter # 5 

Use-case Model of Multiagent Based Control of Distributed Power 

Networks 

5.1 Introduction 
 
Use-case Model is a dynamic model that describes system interaction with the 

environment. The approach recommended by UML is to develop a use-case model where each 

use-case represents an interaction or service in the system [87]. The use-case description helps to 

identify objects and operations in the system. Use-case model, therefore, is a scenario-based 

technique for requirement elicitation. It is a fundamental feature of UML notation for describing 

object oriented system models. Use-case Model of the agent system based control of distributed 

power networks has been described in this chapter. 

 
5.2 Scenario-based Elicitation 

 People usually find it easier to relate to real-life examples rather than abstract 

descriptions. They understand and criticize a scenario of how they might interact with a software 

system. Scenarios are particularly useful for adding detail to an outline requirements description. 

These are descriptions of example interaction sessions. Each scenario covers one or a few 

possible interactions. Different types of scenarios are developed which provide information at 

different levels of detail about the system. 

  

The scenario starts with an outline of the interaction and, during elicitation, details are 

added to create a complete description of the interaction. A scenario may include a system state 



description at the beginning of the scenario, a description of the normal flow of events in the 

scenario, a description of undesired eventualities and remedies, information about other 

concurrent activities and a description of the state of the system after completion of the scenario. 

 
Scenario-based elicitation is carried out informally where the “Requirements Engineer” 

works with stakeholders to identify scenarios and to capture details of these scenarios. 

Alternatively, a more structured approach of event scenarios or use-cases may be used. 

 
5.3 Use-cases 
 
 Use-cases are a scenario-based technique for requirements elicitation. It was first 

introduced in the Objectory method [86-88]. These have now become a fundamental feature of 

UML notation for describing object-oriented system models. A use-case identifies the actors 

involved in an interaction and names the type of interaction.  

 
5.4 System Context and Models of Use 

It is essential to develop an understanding of the relationships between the software being 

conceived and its external environment. Developing this understanding helps to decide methods 

for providing the required system functionality and ways to structure the system so that it can 

communicate effectively with its environment. 

 

The system context and system use model represent two complementary models of the 

relationships between a system and its environment. System context is a static model that 

describes other systems in the environment and the system use model is a dynamic model that 

describes its interaction with environment. A standard representation of use-case model is shown 

in Figure 5.1 [86]. 



 

 

 

 

 

  

 

 

Figure 5.1:   Standard Representation of Use-cases 

 

The context model of a system is represented using associations where, essentially, a 

block diagram of the overall system architecture is produced. This is expanded by representing a 

sub-system model using UML packages shown in Figure 5.2 [86]. 
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The modeling of interactions of a system with its environment should use an abstract 

approach that does not include too much detail of these interactions. The approach proposed in 

UML is to develop a use-case model where each use-case represents an interaction with the 

system. In use-case models every possible interaction is named in an ellipse and the external 

entity involved in the interaction is represented by a stick figure. 

 

Any technique for describing use-cases is valid as long as the description is short and 

easily understandable. It is necessary to develop descriptions for each use-case shown in the 

model. The use-case description helps to identify objects and operations in the system. 

5.5 Object Identification  

In practice object identification is actually concerned with identifying object classes. The 

design is described in terms of these classes. Inevitably, the object classes initially identified are 

to be refined and revisited as deeper understanding of the design process is developed [86-88]. 

  

Many proposals have been made to identify object classes. Grammatical analysis of a 

natural language description of a system is used for this purpose. In this case objects and 

attributes are nouns and operations or services are verb. This approach has been used in the 

HOOD method for object-oriented design widely used in European aerospace industry [87]. 

Another possibility is to use tangible entities (things) in the application domain such as aircraft, 

roles such as manager, events such as request, interactions such as meetings, locations such as 

offices and organizational units such as companies etc. Or yet another approach is to use a 

behavioural approach in which the designer first understands overall behaviour of the system. 

Various behaviours are assigned to different parts of the system and an understanding of actors 

initiating and participating in these behaviours is derived. Participants who play significant roles 

are recognized as objects. 



 

Finally a scenario-based analysis is used where various scenarios of system use are 

identified and analysed in turn. As each scenario is analysed, the team responsible for the 

analysis must identify the required objects, attributes and operations. A method of analysis where 

analysis and designers take on the role of objects is effective in supporting this scenario-based 

approach. 
 

In practice, different sources of knowledge are used to discover objects and object 

classes. Objects and operations initially identified from the informal system description are a 

starting point for the design. Further information from the application domain knowledge or 

scenario analysis is then used to refine and extend the initial objects. This information is 

collected from requirements documents, discussions with users and from an analysis of existing 

system. 
 

5.6 Use-cases of Agents 

Layout of sub systems proposed in Figure 5.2 has been considered for proceeding 

onwards. Use-cases of each agent are described in this section [24,25]. Each use-case has been 

described under headings of Data, Stimulus and Response. Data refers to the handling of data by 

a particular use-case, stimulus is the event when a particular use-case has to perform and 

response is the expected outcome of that use-case. 
 

5.6.1  Failure Supervision Agent (Actor) 

It’s identified use-cases are Collect Data, Real Power Calculation, Reactive Power 

Calculation, Interfacing, Automated Negotiation and Data Filtering/ Manipulation. These use-

cases are briefly described in this section, following the prescribed pattern and stylized form of 

description [86]. 

 



5.6.1.1  Data Collection  

This use-case collects real time data at defined intervals, remains active 

throughout and provides information to the requesting agent. Description of the use-case is 

shown in Table 5.1.  
 

Table: 5.1    Data Collection  

Use-case Collect Data 
Data It collects real time data of voltage, frequency, current, and phase etc from 

sensors/instruments of subsystems in each data collection interval which 
keeps on updating itself, at a twenty second interval. The data handled also 
includes maximum allowable and nominal voltage, current overload 
capability with nominal value and mechanical system torque. 

Stimulus It is active all the time to receive digital data from I/O card and Modems 
through sensors. 

Response It provides data to various agents/ Actors. 

 
5.6.1.2  Real Power Calculation 

This use-case is meant for calculation of instantaneous real value of power at 

different nodes of distributed network. Description as per format has been included in Table 5.2. 

Table: 5.2    Real Power Calculation 

Use-case Real Power Calculation 
Data For a polyphase circuit of M Phases, each ones instantaneous power is 

calculated as: 
 p(t) = v(t) i(t) 
and the total instantaneous power is the sum of  active powers of each 
individual phase: 
 p(t) = Σ vi(t)  ii(t)     i=1 to M 

Stimulus It calculates active power in real time and is available for use by another 
actor or service on request. 

Response Calculated active power is sent on receipt of request. 
5.6.1.3 Reactive Power Calculation 

It calculates Volt-Ampere Reactive for different nodes of the network. This 

information is primarily used for management of ancillary services and compensation. Relevant 

aspects of use-case are given in Table 5.3. 



Table: 5.3    Reactive Power Calculation 

Use-case Reactive Power Calculation 
Data Average power ‘P’ over a cycle is calculated. Then rms values of voltage 

and current are calculated to find apparent power ‘S’. Reactive power is then 
calculated as under: 
Q = √ ( S2 – P2) 

Stimulus Real time values are available on request. 
Response Values are sent on receipt of request. 

 

5.6.1.4 Interfacing for Data Structures 

This use-case is mainly responsible for ensuring compatibility of data structures 

of transferred information in a distributed network of hybrid nature. Stylised form of use-case is 

shown in Table 5.4. 

Table: 5.4    Interfacing for Data Structures 

Use-case Interfacing 
Data Instantaneous basic parameters and the calculated values of active/ non 

active power in the form of data structure mutually agreed upon and 
acceptable to other agents/ actors and services are handled. 

Stimulus Request from other systems serves as stimulus. 
Response The desired data is sent in the form (data structure) acceptable to the 

requesting agent. 
 

5.6.1.5 Automated Negotiation 

This use-case either manages provision of reactive power at nodes with adequate 

reactive power, or else the request for reconfiguration of networks is sent. Relevant description is 

included in Table 5.5. 

Table: 5.5    Automated Negotiation 

Use-case Automated Negotiation 
Data Real time data from sensors/ calculated values from other use-cases are 

obtained by sending requests on all identified nodes on the system network. 
Stimulus Request to reconfigure/ supply various quantities at nodes in need of 

ancillary services prior to arriving at serious situations is sent. 



Response Response is provision of ancillary services or approaching relevant agent for 
reconfiguration. 

 

5.6.1.6 Data Filtering/ Manipulation 

This use-case handles collection, updation and analysis of data with source 

traceability. The use-case has been described in Table 5.6. 

Table: 5.6    Data Filtering/ Manipulation 

Use-case Data Filtering/ Manipulation 
Data All real time parameters are handled with source tag. 
Stimulus Request for deciphering, analyzing, integrating, generating, gathering, 

representing, updating and elimination of data acts as stimulus. 
Response Provision of the desired results of the processed data/ updating is the 

response. 
 

5.6.2   Failure Prediction Agent 

Its proposed use-cases are Collect Data, Risk Management and Interfacing. The 

description of the use-case not defined earlier is “Risk Management”.  This use-case handles the 

scenario developed after the outcome of automated negotiations with support from evolutionary 

programme and local expert system. Description as per format is included in Table 5.7. 

Table: 5.7    Risk Management 

Use-case Risk Management 
Data Results of Automated Negotiation service of Failure Supervision Agents are 

received as data to be handled by this use-case. 
Stimulus Request from Failure Supervision Agents services to manage the situation in 

a given scenario serves as stimulus. 
Response Response is to handle the new context and update the evolutionary process 

of genetic algorithms in collaboration with local expert system advice. 
5.6.3   Occurrence Identification Agent 

The proposed use-cases are Convert Event to Alarm, Data Filtering and 

Interfacing. 

The description of new use-case with title, “Covert Event to Alarm” will be given 

now. This use-case is responsible for identifying situation codes generated by different agents 



and subsequently generate code of the best response for action by acuators, in addition to 

initiation of alert signals for crew, as described in Table 5.8. 

 

Table: 5.8    Conversion of Event to Alarm 

Use-case Convert Event to Alarm 
Data Coded identification for recognition of a particular event (disturbance or 

malfunctioning) and code of identification for the best response as per 
evolutionary process of genetic algorithms in collaboration with local expert 
system is handled as data. 

Stimulus Signal from Risk Management and Automated Negotiation regarding 
occurrence of a particular event/ events is regarded as stimulus. 

Response It generates signal from/for relevant actuators for remedial measures. It also 
initiates visual/ audio indication to maintenance crew, specific to nature of 
event for ease of identification by the crew. 

  
5.6.4  Fault Isolation Agent 

The use-cases are Event Identification, Circuit Protection, Inhibition Signal 

Generation, Model Updating and Interfacing. The description of these use-cases is provided next. 

 

5.6.4.1  Circuit Protection 

This use-case is assigned the task of identifying from pre-defined events as per 

code generated by different use-cases and activate necessary circuit protection mechanisms 

accordingly, as per information contained in Table 5.9. 

Table: 5.9        Circuit Protection 

Use-case Circuit Protection 
Data Data code for identifying particular event/ events. 
Stimulus It activates on receipt of signal/ data from Event Identification and Convert 

Event to Alarm. 
Response Activation of relevant circuit protection mechanism is the response. 

 

5.6.4.2 Fault Isolation Inhibition Signal Generation 



If circuit protection mechanism fails to prove effective, it invokes this use-case 

for emergency shutdown of identified portion of network and facilitates passage of this 

information to various agents. The use-case has been described in Table 5.10. 

 

Table: 5.10        Fault Isolation Inhibition Signal Generation 

Use-case Inhibition Signal Generation 
Data It deals with data code meant for circuit stoppage 
Stimulus Request for circuit protection regarding emergency shut off of a part or 

whole of the identified circuit as per coded data is the stimulus. 
Response Response is emergency shut off and passage of information to this effect to 

Model Updating service, Stability Agent and Reconfiguration Agent. 

 
5.6.4.3 Model Updating 

Information regarding inhibition or resumption of circuit is used by this use-case 

for constant and iterative updation of network model, as described in Table 5.11. 

 

Table: 5.11        Model Updating of Fault Isolation 

Use-case Model Updating 
Data Information code regarding shut off or resumption of whole or part of a 

circuit is the relevant data for this use-case. 
Stimulus Intimation from Inhibition Signal Generator regarding shut off or 

resumption acts as stimulus. 
Response It carries out model updating and informs reconfiguration agent accordingly. 

 
 

5.6.5  Protection Agent 

It provides redundancy/ duality to Fault Isolation Agent and comprises of a simple 

algorithm to handle emergency possessing the singular use-case of circuit inhibition, as shown in 

Table 5.12. 

 

Table: 5.12        Initiate Inhibition Signal for Protection Agent 

Use-case Initiate Inhibition Signal 



Data Data handled by this is the output of occurrence Identification Agent. 

Stimulus It stimulates on receipt of signal regarding failure of Fault Isolation Agent 
and handing over the control to agent providing redundancy. 

Response Its response is to shut off indicated malfunctioning circuit in emergency. 

 
5.6.6  Main Management Agent 

The suggested use-cases are Command Decipher, Consistency Check, 

Compensation, Restoration and Interfacing. These will be described in next paragraphs. 

 

5.6.6.1  Command Decipher 

This use-case receives input from agents of Failure Supervision and assesses 

effect on network by identifying potentially calostrophic abnormalities, as shown in Table 5.13. 

 

Table: 5.13        Command Decipher 

Use-case Command Decipher 

Data It handles filtered Data from Failure Supervision Agent. 

Stimulus It is stimulated on receipt of data from Failure Supervision Agent Hierarchy 
that includes all agents of the hierarchy. 

Response It is expected to establish/ assess effect of command on network. 
5.6.6.2 Consistency Check 

After updating/resumption of network configuration, various built in tests are 

conducted by this use-case for assurance of expected performance. The use-case has been 

described in Table 5.14. 

Table: 5.14        Consistency Check 
 
Use-case Consistency Check 
Data Details of recent change in the model/ configuration of the system network 

from any of the relevant use-cases is the received data. 
Stimulus This receipt of information regarding system modification serves as stimulus 

for the use-case. 



Response It conducts the built in tests so as to ensure ability of the modified setup to 
meet the designated objectives of optimum power supply within specified 
constraints. Results are sent to Fault Supervision Agent, occurrence 
identification agent and reconfiguration agent. 

 
5.6.6.3 Provision of Compensation 

Request for ancillary services as initiated by any node on network through 

Stability or Fault Supervision Agents is entertained by this use-case, as shown in Table 5.15. 

Table: 5.15        Provision of Compensation 

Use-case Compensation 
Data Phase angles, voltages and reactance are the handled data. 
Stimulus Request for ancillary services provision by optimization service of Stability 

Agent / Fault Supervision Agent serves as stimulus. 
Response Reactive power supply, harmonic compensation and dynamic control over 

frequency, voltage and power flow are the expected responses from use-case 
of compensation. 

 

5.6.6.4 Restoration of Network 

When the networks returns back to normal operation, all reconfigurations are to 

be set aside for optimum performance. This use-case implements restoration through actuators, 

as shown in Table 5.16. 

Table: 5.16        Restoration of Network 

Use-case Restoration 
Data Data from Fault Isolation Agent or Reconfiguration agent is received. 
Stimulus Information regarding normalization of performance parameters of the 

inhibited circuit serves as stimulus. 
Response It initiates signals to actuators for reverting back to  a setup closer to original 

system configuration as far as possible. 

 
5.6.7  Stability Agent 

Its Use-cases are Generation Control, Inhibition Signal Generation, Optimization, 

f, v,Φ Stability and Interfacing 



 

5.6.7.1  Generation Control 

This use-case is assigned the prime responsibility of exercising control over 

generation under disturbance conditions, in collaboration with a number of use-cases of different 

agents, as described in Table 5.17. 

 

Table: 5.17        Generation Control 

Use-case Generation Control 
Data Variables of power flow equations and machine dynamics equations are the 

parameters required by this use-case. 
Stimulus Disturbance conditions such as loss of generator/ transmission line, load 

fluctuations, short circuits, switching operations act as stimulus for it. 
Response Its response is calculation of new machine parameters such as angular 

swings and initiation of instructions to actuators for implementation of 
remedial measures in collaboration with Failure Supervision, 
Reconfiguration Agents and local expert system advice as per evolutionary 
process. 

 
5.6.7.2 Optimization for Stability 

Optimization of cost of production, power transfer and optimized network 

configuration is done by this use-case. Relevant description is included in Table 5.18. 

Table: 5.18        Optimization for Stability 

Use-case Optimization 

Data All real time data as required for calculations to achieve optimization is 
handled by it. 

Stimulus Being an important use-case, it conducts optimization interactions all the 
time. 

Response It carries out cost optimization and formulation of optimized network 
updation proposals for maximum power transfer. Initiation of signals for 
shutting down or resumption of generation (full or partial) as per load flow 
and power requirements of the load is also done by it to maintain stability. 

 

5.6.7.3 f, v,Φ Stability 



This use-case compares the real time data of parameters of power flow equations 

etc with reference/nominal values and on identifying deviations it resorts to bring the values back 

within limits, as shown in Table 5.19. 

 

Table: 5.19        f, v,Φ Stability 

Use-case f, v,Φ Stability 

Data Data handled by this use-case includes variables of power flow equations 
and machine dynamics equations, and error signals after comparison with 
reference values. 

Stimulus It does not require stimulus and remains active throughout. 

Response On exceeding the error signals from reference value, it resorts to respective 
control mechanisms as adapted. 

 

5.6.7.4 Inhibition Signal Generation for Stability 

From point of view of stability, at times it becomes necessary to shut off various 

portions of network in emergency. This use-case implements this requirement on receipt of 

information from automated negotiation. Use-case has been described in Table 5.20. 

Table: 5.20        Inhibition Signal Generation for Stability 

Use-case Inhibition Signal Generation 
Data Output of Occurrence Identification Agent. 
Stimulus Situation code forwarded by Automated Negotiation serves as stimulus for 

this use-case. 
Response It generates circuit inhibition signal for emergency protection or circuit 

inhibition and forwards relevant information to generation control for 
calculation of new parameters. 

 
 

5.6.8   Reconfiguration Agent 

This use-case is designated the responsibility of physical implementation of 

updated configuration of network on request from Fault Isolation Agent or Power Generation 



Control. The use-cases are Model Updation and Interfacing. Model Updation use-case has been 

described in Table 5.21 
 

Table: 5.21        Model Updation of Reconfiguration Agent 

Use-case Model Updation 
Data Active and inhibited parts of the network are identified. 
Stimulus Inhibition Signal generated by Fault Isolation Agent or Power Generation 

Control Agent act as stimulus for this use-case. 
Response It instructs actuators/ circuit breakers for reconfiguration of system and 

issues instructions to Restoration Service of Main Planning Agent 
 

5.6.9  Power Generation Control Agent 

It provides redundancy to Stability Agent and assumes control only on failure of 

complex algorithms of Stability Agent. Its only use-case is Initiate Inhibition Signal, as described 

in Table 5.22. 

 

Table: 5.22        Initiate Inhibition Signal of Power Generation Control 

Use-case Initiate Inhibition Signal. 
Data Output of Occurrence Identification Agent intimates failure of main agent. 
Stimulus Receipt of signal regarding failure of Stability Agent, therefore, acts as 

stimulus for this use-case. 
Response It shuts off the indicated malfunctioning circuit in emergency as response. 
5.7 Summary 

Important use-cases of the agent system proposed for control of complex and distributed 

power system methods have been described. Stimulus, responses and data handling for each use-

case has been included. A layout of sub systems has also been proposed. Besides, few essential 

aspects of use-case models and their utilization have also been described. These use-cases will 

form basis for development of state machine model of the proposed multiagent system for 

control of distributed power network presented in Chapter 6.  

 



Chapter # 6 

State Machine Model of Multiagent Based Power  

Networks 

 
6.1  Introduction  
  
 A system is best understood by first examining its static structure, that is, the structure of 

its objects and their relationships to each other at a single moment in time. Then changes to the 

objects and their relationships over time are examined. Aspects of a system that are time 

dependent are visible in the dynamic model only. Control of a system describes the sequences of 

operations that occur in response to external stimuli. 

 
 This chapter describes flow of control, interactions, and sequencing of operations in a 

system of concurrently-active objects. The major dynamic modeling concepts are events, 

representing external stimuli, and states, representing values of objects. A detailed state machine 

diagram of the proposed system showing events and states is also included in this chapter. 

 
6.2  Real-Time System Modeling 

 Real-time systems are required to respond to events occurring at regular or irregular 

intervals [87]. These events (or stimuli) may cause the system to move to a different state. For 

this reason, state machine modeling, may be used to describe a real-time system.  
 

 A state model assumes that, at any time, the system is in one of a number of possible 

states. When a stimulus is received, this may cause a transition to another state. A system 

controlling a valve may move from a state ‘Valve open’ to a state ‘Valve closed’ when an 

operator command (the stimulus) is received. 



 
 The rounded rectangles represent system states and the arrowed labels represent stimuli 

which force a transition from one state to another. The names chosen in the state machine 

diagram are descriptive and the associated information indicates actions taken by the system 

actuators or information that is displayed. Operation of the system is traced by reading the model 

in the direction of arrows. 

 
 State machine models are a good, language-independent way of representing the design 

of a real-time system. For this reason, they are an integral part of real-time system design 

methods. 

 
 
6.3 Events and States 

  
In Chapter 4, the object model described possible patterns of objects, attributes, and links 

that exist in a system. The attribute values and links held by an object are treated as state. The 

objects stimulate each other, resulting in a series of changes to their states. An individual 

stimulus from one object to another is an event. The response to an event depends on the state of 

the object receiving it,and can include a change of state or the sending of another event to the 

original sender or to a third object. Pattern of events, states, and state transitions for a given class 

are represented as a state diagram [86]. A state diagram is a network of states and events, just as 

an object diagram is a network of classes and relationships. The dynamic model consists of state 

diagrams, with important dynamic behavior, and shows the pattern of activity for an entire 

system. Each state machine executes concurrently and can change state independently. The state 

diagrams for various classes combine into a single dynamic model via shared events. 

 



6.4 Controlling Operations 
 
A behavioral description of an object must specify what the object does in response to 

events. Operations attached to states or transitions are performed in response to the 

corresponding states or events. 

 

An activity is an operation that takes time to complete. An activity is associated with a 

state. Activities include continuous operations, such as displaying a picture on a television 

screen, as well as sequential operations that terminate by themselves after an interval of time, 

such as closing a valve or performing a computation. A state may control a continuous activity, 

(such as raising an alarm indicating a malfunction) that persists until an event terminates it by 

causing a transition from the state. The notation “do: A” within a state box indicates that activity 

A starts on entry to the state and stops on exit. A state may also control sequential activity, such 

as moving an actuator, which progresses until it completes or until it is interrupted by an event 

that terminates it prematurely. The same notation “do: A” indicates that sequential activity A 

begins on entry to the state and stops when complete. If an event causes a transition from the 

state before the activity is complete, then the activity is terminated prematurely. 

 
6.5 State Machine Model of the Proposed System 

Behavioural models are used to describe overall behaviour of the system [24,25]. These 

include data flow models which model the data processing in the system and the state machine 

models which model the system reactions to events but a strict demarcation between these 

models is seldom possible because of an ever existing overlap. 



Keeping the above in view, state machine diagram highlighting major events being 

handled by various agents, and the offered services depicted as states pertaining to multiagent 

system of software for control of distributed power networks is shown in Figure 6.1. Since the 

diagram contains two super states also, it will be pertinent to describe these in some detail. 
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Table: 6.1       State Machine Model 



6.5.1 Super State of Reactive Power Calculation 

Super state of Reactive Power calculation of Figure 6.1 is shown in Figure 6.2 with allied 

sub states [25]. Average power of one cycle of the waveform is calculated by integrating the 

power contained in cycle between 0 to 2π using the formula: 
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After calculating value of ‘P’ from equation 6.1, the next step is to calculate RMS value 

of current and RMS value of voltage using the formula: 
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Apparent power denoted by ‘S’ is then calculated using the formula: 
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Finally the reactive power is calculated through expression 
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Figure 6.2:  Reactive Power Calculation 



 

6.5.2 Super State of Data Filtering and Manipulation 

 

Super State of Data Filtering and Manipulation has been described in substate model of 

Figure 6.3. All real time / interactive systems have to provide some way of presenting 

information to sub systems, other systems or users. The data is to be generated in the desired 

pattern, deciphered from codes, integrated with different sources of information analysed in a 

logical fashion, and finally represented, discarding the data which has outlived its utility. 

 
The information presentation may simply be a direct representation of input information 

as a text file, or it may present it graphically. Information presentation should be kept separate 

from information itself. It is not true that the designer always knows the best way to present the 

data, and hence object structures should not be “hard-wire” presentation operations. By 

separating the data presentation system from data, the representations can be changed without 

having to change the underlying computational system. When the object state changes, all places 

where this data is involved are automatically notified and updated to reflect the change. Since the 

Failure Prediction Agent (object that maintains data information) does not always know specific 

data structure of the requesting object, interfacing of data for making it compatible with data 

structure of the requester is required. The output of super state of data filtering and manipulation 

therefore, goes to state of interfacing and then to the requester as per the desired format. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3:   Data Filtering/ Manipulation 

 

6.5.3 Description of State Machine Model 

State machine model depicted in Figure 6.1 suggests that there are a number of events, 

activities/actions, states and transitions involved in each scenario, or sequence of events. 

Iterations of cycles commencing at each state concurrently or otherwise, will continue till natural 

or forced termination/interruption is implemented. Selected sequences will be described here for 

convenience of understanding a rather complex diagram. The diagram, however, has to be 

consulted in conjunction with object and use-case models already described in preceding 

chapters. 



Processed data obtained from sensors is utilized for solving power flow and machine 

dynamic equations and real and reactive power etc. If an instantaneous value of various 

parameters is required at an identified node, bus, generator or transformer etc the request will be 

forwarded to data filtering/manipulation service. The requisite information with time tag will be 

provided to interfacing service available to all the objects, where the data structure will be made 

compatible for ready consumption of the requester, keeping in view the diverse nature of objects 

and machines forming part of the network. 

 
6.5.3.1 Description of Main Loop of State Machine Model 

Looking at the diagram for main loop reveals that, as a consequence of conducting a 

built-in test for performance and consistency check of a modified system, the result is sent to 

automated negotiation for considering reconfiguration, or provision of ancillary services. A 

situation code commensurate with the arising situation will be directed towards “Convert Event 

to Alarm” where audio visual signal for crew will be initiated. Concurrently the identified 

actuators will be mobilized for remedial action if required. An inhibition signal will be sent to 

circuit inhibition service to activate relevant circuit breaker. Information regarding inhibited 

circuit will be dispatched to generation control where new parameters will be calculated in 

consonance with the observed disturbance. New data will be sent to circuit inhibition service to 

activate relevant circuit breaker. This data will be sent to reconfiguration service to implement 

remedial measures and launch algorithms for fresh optimization. On the other hand the data will 

be sent to Risk Management for updating evolutionary process of genetic algorithms. The output 

of Risk Management will be available to generation control and circuit restoration. When 

situation normalizes, the restoration will signal the actuator for restoration of network as close to 

original model as possible. Outputs of consistency check and automated negotiation will 



supervise provision of ancillary services and compensation etc to concerned node in the complex 

network as identified by generation control. 

 
6.5.3.2 Loop for Provision of Compensation 

 Request for provision of compensation or ancillary services will be initiated from either 

automated negotiation, generation control, or consistency check. The provision of services will 

however only be from compensation state. Automated negotiation, risk management and 

reconfiguration states remain active throughout and keep on performing the assigned tasks 

iteratively, as shown by arrows initiating and terminating on themselves in Figure 6.1. 

 
6.5.3.3 Loop for Generation Control 

 Generation control commences operation on receipt of information from Risk 

Management or Circuit Inhibition. However, it can be invoked directly, as a result of abnormal 

parameters of power flow or machine dynamics equations. Each time the generation control 

comes in operation, new parameters are calculated and this information is passed on to 

reconfiguration state. Reconfiguration state, then verifies the information as received from model 

updation and implements remedial measures as necessary. If the inhibited signal has ceased, 

circuit restoration is ordered which is implemented through actuators. Restoration state however 

always consults the results of latest iterations of genetic algorithms/evolutionary programmes 

before making the decision. 

 
6.5.3.4 Failure of Ancillary Services 

 If despite provision of ancillary services, built in tests conducted by consistency check 

still generate unsatisfactory results, this information is passed on to automated negotiation. Here 

the reconfiguration is again considered and proposal is forwarded to Risk Management.  



 

 The evolutionary process is again provided with new data and the best response to new 

situation is worked out. This response is sent to generation control. At this moment, the latest 

information from convert event to alarm, initiation of signals to actuators and circuit inhibition 

details are again considered and new data is transferred to reconfiguration state for 

implementation and optimization. The situation continues till Risk Management generates 

restoration signal to reconfiguration. After this circuit restoration close to original configuration 

is ordered and implemented through actuators at restoration state. 

 

6.6 Summary 
 
The dynamic model represents control information; the sequences of events, states, and 

operations that occur within a system of objects. Like the object model, the dynamic model is a 

pattern that specifies the allowable scenarios that may occur. The notation for the dynamic model 

represents a compromise between simplicity and expressiveness; there are some meaningful 

constraints that cannot be expressed by the notations. The state machine model of the proposed 

system has been covered in this chapter which should be read in conjunction with object and use-

case models of the distributed power system networks. 

 
 
 
 
 
 
 
 
 
 



Chapter # 7 
Simulated System and Results 

 
7.1 Introduction 
 
 This chapter handles the details of simulation of a power system in matlab/ simulink for 

ascertaining performance under increasing load conditions when controlled by a central control or no 

control and when controlled locally. Remedial actions taken by local control by being proactive to avert 

overloading of the generators has also been demonstrated. The details of load flow calculations used for 

the simulation adapting Newton Raphson Method for finding out bus voltages, phase angles, active 

power, and reactive power at each instant during various contingencies and normal operation have also 

been included. Similarly the details of swing equations used for finding rotor angle and speed of 

generators at each instant have also been described. At the end the results of the simulations have been 

described under various load conditions experienced by the selected system. 

 
7.2 System for Simulation  

With a view to validate the efficacy and advantages of distributed control a three bus system as 

shown in figure 7.1 has been selected and simulated in matlab/ simulink. The system comprises of 

synchronous machines employed as generators, transformers and shunt capacitance for maintaining 

voltage of 1 pu at the bus. 

 

Figure 7.1:  System for Simulation  
  

  



Implementation of generators and buses is shown in figure 7.2 and that of lines and loads has 

been displayed in figure 7.3. carried out in Matlab. 

 

 

 

 
Figure 7.2: Bus and Generator Data of System 

 
 



 

Figure 7.3 Line and Load Data of Selected System 

7.2.1 Rotor Angle Stability 

 It refers to the ability of synchronous machines of an interconnected power system to 

remain in synchronism after being subjected to a disturbance. Instability that may result occurs in 

the form of increasing angular swings and hence increasing difference of rotor angles between 

the two or more generators. 

 When the two generators stay in synchronism with each other the system remains stable 

and ready to sustain any disturbance faced at later stage. If any of the generators goes out of 

synchronism, oscillations start which result in cascaded failures which keep on increasing till 

disseminated in entire power system. To avert the situation it is best to make arrangements to 

keep the generators in synchronism at all times by reduction in load, elimination of fault or 

increasing loadability of the system. The load flow analysis and swing equation parameters 

provide values of each bus voltage along with angle, active and reactive power and speed as well 



as rotor angle with respect to dq axis. If difference of rotor angles in dq frame is converging with 

respect to time, the system does not go out of synchronism. If the value of difference of angles 

between generators keeps on increasing, system is bound to go out of synchronism [90]. The 

chances of system going out of synchronism are increased on sudden enhancement of load on 

any of the buses. A prompt remedial action taken on immediately sensing the problem saves the 

system from loosing synchronism. At times a proactive approach by sensing the problem before 

it actually happens saves many contingencies and normalized performance of power systems is 

assured. The decision to introduce series compensation to increase loadability of the lines by 

reducing overall line reactance can be taken [90]. It may also prove prudent to render the line 

with fault or enhanced load out of circuit before the circuit breaker nominal values are surpassed 

with a view to save the system from a probable collapse. In any case the reaction time available 

for resorting to remedial measures remains critical. 

 As already described in detail in chapter 3, central control faces many difficulties in 

taking timely action to ALL the situations due to time lagged communication of data on serial 

lines, channel speed and bottlenecks developed at the receiving site, non availability of direct 

transmission path, digital processing delays, transitions to and from fibres, data rate and volume 

of thousands of measurements, requirement of immense processing power, limitations of on line 

analysis tools, FIFO mechanisms of Ethernet protocols with difficulty in assigning priority to 

emergent communications etc. 

 Distributed control proves to be quite effective in certain situations where delayed actions 

taken by central control, or no action taken at all results in disturbed systems. 

7.2.2 Dynamic Modeling of Selected System 



 The variables to be calculated for solving the power system shown in figure 7.1 include 

voltages and phase angles on each bus ( Uk and өk),  rotor angle and speed (δk  and ωk) of each 

machine along with active and reactive power Pk and Qk on each bus. elevant equations for 

solving the system are of the form as mentioned below [91]: 
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Where M denotes mutual inductance, U the voltage, X’ the transient reactance, B the 

susceptance and PLK  and QLK
the active and reactive powers of the load at bus k. 

 If ‘x’ variables are those which require solution of differential equations and ‘y’ variables 

are the ones which are ascertained by solving algebraic equations then: 
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Equations 7.1 and 7.3 can be rewritten as: 
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 The above is a set of differential-algebraic equations which describe the dynamics of 

multi machine system. The differential equation describes the dynamics of generator and 

contribution of dynamic loads is also included. The algebraic equations consist of network 

equations based on Kirchoff’s current law ie sum of all currents and hence powers flowing into 

bus k must be zero.  

7.2.3 Load Flow Calculations in the Power Network 

 The technique for determining all bus voltages in a network is called Load Flow. 

If voltage magnitudes and voltage angles at all buses are known, the system is completely 

determined. In a network, power can be generated and consumed at many different locations. All 

locations where a line ends is called bus or node.  At bus k expression for complex power in per 

unit system can be written as: 

∑
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Where  

=+= DkGkGk jQPS Complex power by the generator 
           

=+= GkDKDK jQPS Load consumed complex power  

=+= kjkjkj jQPS Transmitted power to bus j  

The power balance at the bus according to equation 7.6 must hold both for active and for 

reactive part of the expression. By using PGDK and Q GDK as notation for net generation of active 

and reactive power at bus ‘k’  respectively, the expressions 7.7 and 7.8 hold. 
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The above equations imply that for every bus in the system, the power balance must hold 

for both active and reactive power. 

At each bus, four variables are of interest  ie net generation of active power PGDK, net 

generation of reactive power QGDK, voltage magnitude Uk and voltage phase angle Qk. This 

means that total number of variables for a system are mx4  where “m” is number of buses. The 

voltage phase angles must be given as an angle in relation to reference angle. This reduces 

number of system variables to (mx4)-1.    

If there are three buses in a power system, six equations can be made using equations 7.7 

and 7.8. However a total of 12 variables (P, Q, U & θ  for each bus) will be required to be 

known. Excluding reference angle, 11 variables will be required to be known. Since only 6 

equations are held, another 5 equations will be required, or else 5x quantities must be known to 

be able to calculate remaining six variables. Depending on what quantities are known at a certain 

bus, the buses are modeled in three different ways. PQ or the load bus is the one for which net 

generated power PGDK and QGDK are assumed to be known. In the system under consideration 

depicted in figure 7.1, bus 3 has been taken as PQ bus. For PU bus or the generator bus, the net 

active power generation PGDK as well as the voltage magnitude Uk are assumed to be known. In 

the power system under study, bus 1 is taken as PU bus. Only one bus in the entire system is 

selected as slack or reference bus.  The voltage angle is chosen as a reference angle kθ  (often 

00 ) and the voltage angle is assumed to be known. Un known quantities are the net generation 

of both active and reactive power. Bus 2 in the system is slack bus. 

If the values of U and ө are known, active and reactive power flow between all buses can 

be found using equations 7.9 and 7.10.         
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The above equations are nonlinear since the expressions for power flow on a line includes 

squared voltages as well as trigonometric expressions. The system can therefore be solved by 

using Newton-Raphson Method.     

 

7.2.4 Application of Newton Raphson Method to Selected Power System 

 The aim is to determine voltages at all buses in the system by applying Newton 
Raphson method. Consider a power system with N buses with all variables in P.U.  
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Further more  
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and  

Pk-PGDK=0 7.13  
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For using standard Newton Raphson Method assume: 
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It is also known that  
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 Now from equations 7.14 and 7.15  
 
 ∆Pk =PGDk-Pk 
 ∆ Qk= QGDK-Qk    

 

Based upon  the Jacobian Matrix  of Newton Raphson method  
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The entries of the these matrics are given by  
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Now since  
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Putting all above in 7.17 one gets  
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To simplify entries of matrices N’ and L’ these matrices are multiplied with U, and 

equation 7.18 can be written as:  
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Now from equation 7.11, and taking partial differentiation as required, besides 

multiplying with Uj, the values of kjN '  and kjL'  :  

Where K≠j       ie  not on same bus  
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And hence values of  U and ө are obtained  as implemented in software.  
 
 
Finally U and ө will be updated as:- 
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The relevant portion of M File for load flow is shown in figure 7.4.  

 

 



 
Figure 7.4: Load Flow of Power System  

7.2.5 Swing Equation for the System 

 When the rotor is rotated by the turbine, a rotating magnetic flux is produced in the air 

gap. The magneto motive force (mmf) produced by the field current in the field winding 

combines with the mmf produced by currents in the stator winding. The result and flux across the 

air gap between stator and rotor, induces voltages in each phase of armature winging. These 

induced voltages have the same magnitudes, but at phase shifted by 120 electrical degrees.  

The resultant flux also provides the electromagnetic torque (or the electrical output torque 

denoted by ‘Te measured in Nm) between stator and rotor. This electromagnetic torque 

(developed in the generator when it delivers power) opposes torque of turbine (other mechanical 

input torque denoted by ‘Tm’ also measured in Nm).  



One of the most important factors in studying stability of a power system is to motion of 

rotor. The dynamics of this motion is described by a set of differential equation based on 

Newton’s second law:  

     em
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Where Bm= Mechanical rotor angle which defines the instantaneous position of rotor d-

axis with respect to a stationary reference frame and   

Bm=Wmt + Bmo  

Where Wm= mechanical speed or angular speed of rotor and Bmo is the initial position of 

rotor i.e, at t=0 with respect to reference axis.  

J= Total Moment of inertia of turbine, shaft and generator measured in Kgm2.  

Wms = Rotor mechanical synchronous speed=2Пno where no is revolutions per minute.  

Multiplying swing equation 7.24 with Wm, the  obtained expression is.  

  em PP −=
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Where   

Pm= Wm Tm which is mechanical power input given in watts  

Pe=Wm Te which is three phase electrical power output given in watts.  

Next, the inertia constant H of the generator is defined by  

Sng
msJw 25.0

 Sng
WksH ==       7.26 

Where  

Wks= Total kinetic energy stored in the generator in steady state (or stored KE in the 

rotating inertia at speed Wms)  



Sng=  Generator rated volt Amperes  

Typically H ranges between 1 and 6 seconds, depending on the size and type of 

generator. The inertia constant states how many seconds it will take to bring the generator from 

synchronous speed to stand still if rated power is extracted from it while no mechanical power in 

supplied by the turbine  

Substituting value of “J” from equation 7.26 in equation 7.25,  
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Now consider equations as under:-  
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Where  

p= number of poles  

Co=  Constant (in steady state, S=Co: Wg=Ws)  

 Using equation 7.28 to 7.32 , we can write equation 7.27 as:  
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Dividing both sides of equation 7.27 with P base it results into:   
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Next apply equation 7.30 and 7.31  
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Furthermore the contribution of damping power provided by damper windings may be 

included in the swing equation 7.36. The damper power is denoted by  

PD=D( w g- w s)  

Where D is a small positive constant. Thus equation 7.36 can be re written as:  
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Here “pu” superscript is omitted which means all values are in pu. Further more in steady 

state w g= w s i.e,  generator rotates with a speed equal to nominal speed.  



 If valves of H, M, D are known one can solve for δ  and w  and value of J will not be 

required.   

7.2.6 Scenarios for Simulation 

The system is either uncontrolled, controlled with the help of a central control or it can be 

controlled with the help of local agents.  Similarly, either the load is increased  to a limit where a 

series compensator of 0.78 pu helps to maintain synchronism of the two generator system. If the 

load increases further, then load shedding at Bus 1 is resorted to. All these contingencies have 

been covered under three scenarios which are Pre fault scenario, On fault scenarios and Post fault 

scenario.  

System is solved for load flow and initial values of state variables and algebraic variables 

i.e, voltages on each bus and their phase angles, Active and reactive power at each bus, EMF of 

each generator, rotation angles of generator and speeds are calculated. .  

A fault has been introduced at 0.5 sec and depending upon nature of fault, new values of 

parameters are calculated and difference of rotation angles of both the generators have been 

plotted against time in each scenario, This has been done under separate headings of SCADA 

control and Agent control. It is observed that if the fault is cleared using local agents within 130 

m seconds, the generators remain in synchronism. Similarly if system is uncontrolled or SCADA 

control, where response is received after 136 m sec, the system goes out of synchronism.  

At each time Interval as selected for Pre fault, On fault and post fault scenarios, the 

equations are solved using Matlab “ode 45” function by file titled “f_xy” and state variables of 

swing equation i.e, δ  and ω  for both the generators are returned. Similarly at each time interval, 

algebraic equations are solved using Matlab function “f solve” and file titled “g_xy” . This 

returns values of algebraic variables that include voltages of buses, angles of voltages, and 

active/reactive power at each bus. 

 



7.2.7 Simulation Results 

 The simulation in matlab for the system described in figure 7.1 reveals that if it runs in 

pre fault or normal conditions, the generators stay in synchronization as shown in figure 7.5. The 

value acquired for the difference of angles depends upon values of Mk, emf of generator E’qk, 

bus voltage Uk, transient reactance x’dk and the relationship between dq axis reference frame and 

network reference frame as given by equation 7.4.  

 

Figure 7.5:  System in Synchronism  
 On enhancement of load on the system bus 2 if the distributed intelligent agent is not 

available and on non availability of any remedial action, or delayed response by a central control 

surpassing time in milliseconds, the generators go out of synchronization as shown in the 

simulation results of Figure 7.6. 

 However, if a response of introducing series compensation immediately on sensing the 

enhanced load within the permissible limits of series compensator capacitance is taken, the 

system regains synchronism. The simulation result is shown in Figure 7.7. The maximum series 

compensation limit for this simulation is 0.76 pu. If the load enhancement is such that the 



requirement surpasses the capacity of series compensator, then the solution to this will be 

dropping of load to retain system stability. The simulated result of a case where no remedial 

action was taken on enhancement of too much of load beyond handling capability of series 

compensator is shown in figure 7.8. Figure 7.15 on the other hand demonstrates the decision 

taken by distributed control to drop the load from line.  

 

Figure 7.6:  Delay in Remedial Action on Increase in Load 

 



 

 

Figure 7.7:   Achievement of Synchronism with Series Compensation 

 Relatively quicker synchronism is achieved if the load  is dropped as compared to the 

one achieved from incorporation of series compensation shown in Figure 7.7. The simulation 

result is shown in figure 7.9. 

 

 

Figure 7.8:  Enhancement of Load Beyond Capacity of Series Compensator 



 

 

Figure 7.9:  Synchronism on Dropping of Load from Line 

7.2.8 Proactive Response by Agents with Simulation Results  

The three bus multiple generation system with shunt capacitance has been simulated 

using Simulink platform as depicted in Figure 7.10. [92]. 

 

 

 

Figure 7.10:  Three Bus Multiple Generator Model 



 In absence of fault and as per nominal parameters the system performs around 0.6 to 0.7 

pu of the electrical power ( Pe) on the synchronous generator. When the three phase fault occurs 

on the line as shown, the value of Pe increases to around 0.93 pu showing that any other 

disturbance will force the system to be unstable. The value of Pe on fault is shown in Figure 

7.11. 

 If the system possesses an intelligent agent, it will immediately sense the problem and 

introduce series compensation to reduce the loading of generator thus saving it from any other 

disturbance which will certainly cause the system to become unstable. The series compensated 

model is shown in Figure 7.12. The reduced value of Pe is shown in Figure 7.13. 

 
 

 

 
Figure 7.11   Excessive Loading of Synchronous Generator on Fault 
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Figure 7.12:  Series Compensation Incorporation by Agent  

 
 If the load increases beyond the capacity of series compensation, the agent controlled 

network will opt to drop the load by opening relevant circuit breaker to retain stability before 

rated values of circuit breaker are approached. In Figure 7.14, the load has been doubled and 

agent on sensing the enhanced load beyond the capacity of series compensator, opened the 

circuit breaker reducing the loading of generator to a value of Pe around 0.56 pu as shown in 

Figure 7.15. 

 

 

Figure 7.13:  Reduced Loading on Fault with Compensation  
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Figure 7.14: Line Opening at Double the Rated Load    

 

 

 

Figure 7.15: Reduction in Loading on Opening of Line  
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7.3 Summary 

 The results shown in preceding paragraphs indicate that system lost synchronism when 

remedial measures were delayed as expected in a central control. Similar situation is likely to 

crop up when no control is exercised as in the case of most of the networks, especially those 

found in developing countries. Proactive approach by sensing overloading of the system resulted 

in taking appropriate decision of introducing series compensation to enhance loadability, or 

elimination of line with fault or overload to ensure smooth performance of rest of the network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter # 8 
 

Conclusion and Recommendations 
 
 
8.1 Overview  
 

Today's complex electric power distribution systems (EPDS) in data centres, require 

sophisticated control techniques to support all aspects of operation including failures. In many 

critical applications, they need to maintain minimal operating conditions under failure 

conditions. When a high degree of survivability is desired the effects of failures must be 

mitigated and control must be maintained in survivable scenarios. To achieve this goal it is 

necessary to make a series of decisions and control actions. The fault has to be detected, its 

source identified and its magnitude estimated. Depending on the nature of the failure, actions are 

to be taken that compensate it. After this, a new functional network topology is chosen and 

EPDS has to be reconfigured. All these decisions must be made by a self-reconfigurable control 

system that incorporates not only simple regulatory loops and the supervisory control logic but 

also a set of components that detect, isolate, and manage faults, in coordination with the control 

functions. The goal is to increase survivability, eliminate human mistakes, make intelligent 

reconfiguration decisions more quickly, reduce manpower required to perform the functions, and 

provide electric power to critical loads through the surviving system. In fact, it is envisioned that 

in future, the EPDS will have distributed intelligence for rapid self-reconfiguration under fault 

scenarios. In order to achieve distributed intelligence in the EPDS, state-of-the-art software 

techniques must be used. As a sub-field of Distributed Artificial Intelligence, Agent Systems are 

a promising technology to fulfill these requirements. An agent is an abstraction, a logical model 

that describes software that “acts on behalf of” a user or other program; that software agent has 



the authority to decide if and when an action is appropriated, also it has the autonomy to activate 

itself or it can be invoked by a task. Keeping in view the expected dividends as highlighted, an 

innovative conceptual model based upon distributed system has been proposed for control of 

power networks.  

 

In this chapter summary of work and the goals achieved has been included. Limitations 

and recommended future work in the identified domains has also been discussed. 

 

8.2        Achievements 

After identifying the problem and establishing that resorting to employment of a 

distributed control system for effective, autonomous and proactive control will yield dividends 

mandatory for handling multifarious issues of existing and future power distribution networks, 

vitally important assignments concerning control of a complex and distributed network were 

identified. Agent based approach offered a much more natural representation of real world 

systems where various locations can make decisions according to their own agenda and 

priorities. Each individual location can achieve overarching objectives that are not achievable by 

the individuals alone. When the goals of individual agents are closely aligned, and they are 

completely benevolent and veracious so that they always respond to requests made to them, and 

always provide information when queried, then the resulting system comes very close to 

resembling an object oriented system. Realising this, a detailed object model was prepared for 

agent based system assigning different groups of tasks to individual agents in the hierarchical 

and concurrent model thus prepared. Every agent was treated as an entity with identified 

attributes and functions. This was followed by a use-case model where every function was 

treated as a distinct use-case with defined stimuli, data handling and responses to various 

recipients in the multiagent system. Taking this model as a basis, a state machine model was 



prepared focusing on the design of logical and physical architectures, but independent of 

physical constraints and non functional requirements. An effort to incorporate scheduling 

approach and identification of terminal objects has been made. Requirement of distributed 

control has been established by simulating a power system thereby analyzing the performance 

under distributed as well as central or no control 

 

8.3       Limitations 

Despite an effort to enhance the scope of the proposed model through incorporating a 

large number of activities compulsory for optimum functioning of control for power network, 

there are still domains which have not been included. An enhancement in identified 

functionalities is therefore not only possible for this model but also for any other model that will 

include more functions and activities, such as modeling of extreme interdependencies in system 

inputs, harmonic interference of large population of semi conductor based electronic equipment 

alongwith harmonic cancellation, thermal and electric energy storage/energy conservation and 

CO2 emission control, minimization of transmission losses and natural gas cogeneration etc.  

 

Non functional requirements of the system have also not been taken up in detail such as 

timings, dependability and security. Difference in reading period of different sensors has been 

ignored and timing attributes have not been associated with objects. These may be required by 

some structured design methods which are targeted towards real time systems. There are 

however design methods that do not impose a computational model that will ensure that effective 

timing analysis of the final system is undertaken. In real time system design and software 

development method life cycle, timing problem is not catered for, in requirement specification, 

architecture design, detailed design and coding phases and is identified in testing or deployment 

phase. 



 

8.4       Future Work 

Proposed areas for future work include incorporation of genetic algorithms/ fuzzy logic in 

tandem with agent systems for optimisation of generation scheduling, economic despatch and 

self healing of networks. 
 

A research into enhanced number of layers of hierarchy of agents by using concept of 

nesting is another area of exploring the possibility of furthering the performance of control 

structures. 
 

Automation of assigning sub problems to various agents is also a possibility. Agents can 

be made to possess the capability of negotiating extensively amongst themselves as to how best 

they can distribute responsibilities at a given instance, or swap the functionalities with a view to 

furthering the efficiency and robust control of distributed power networks. 

 

Conditions for convergence to optimal solutions of individual agents for solving overall 

problem may be worked out to fit in the overall structure proposed in models included in the 

thesis. 

 

Generation of annotated behaviour models from end user scenarios will simplify the 

requirement elicitation process by developing a tool for automation of generating desired 

behaviours. This work can further be enhanced to interactively produce additional scenarios that 

the end user can classify as positive or negative behaviours from the point of view of desired 

behaviours. 

 

After having detailed use-case, object and state machine modeling, either a multiagent 

system development platform can be used to simulate the functioning, or coding in an object 



oriented programming language can commence in tandem with hardware design for different 

modules of system. 

 

8.5 Challenge of Implementation 

Challenge of implementing this system requires a balanced, risk-managed, and cost-

effective approach to investments and use of technology that can make a sizable difference in 

mitigating the risk. Revolutionary developments in both information technology (such as 

Artificial Intelligence, System Dynamics, Network/Complexity Theory and Mechatronics) and 

materials science (such as Nanotechnology, Microfabrication and Advance Materials) promise 

significant improvement in the security, reliability, efficiency, and cost effectiveness of power 

distribution infrastructures [89]. Steps taken now can ensure that this critical infrastructure 

continues to support population growth and economic growth without environmental harm. 

Considering their impact, regulatory agencies should be able to induce electricity producers to 

plan and fund the process, which might be the most efficient way to get it into operation. 

 

Simply replicating the existing system through expansion or replacement will not only be 

technically inadequate to meet the changing demands for power, but will also produce a 

significantly higher price tag for electricity. Through the transformative technologies, the 

countries can put in place a 21st century power system capable of eliminating critical 

vulnerabilities while meeting intensified consumer demands.  

 

A phased approach to system implementation will probably be a prudent approach. For 

example, equipment purchased, should emphasize switchgears, regulators, transformers, 

controls, and monitoring equipment that can be easily integrated with automated transmission 



and distribution systems. Long-term plans for equipment upgrades should also address system 

integration considerations. 
 

Energy policy, technological development and innovation require long-term 

commitments as well as sustained and patient investments in innovation, technology creation, 

and development of human capital. Keeping in view economic, societal, and quality-of-life 

issues and the pivotal role of the electricity infrastructure, a self healing grid is essential. Every 

node in the power network of the future will be awake, responsive, adaptive, price-smart, real-

time, flexible, and interconnected, which essentially is the prime focus of the work covered in the 

thesis. 

 
8.6 Summary 

Scenario based use-case and state machine models are recognised as effective means for 

requirement elicitation and documentation. They support an informal, narrative and concrete 

style of description that focuses on the dynamic aspects of software-environment interaction. A 

scenario is a temporal sequence of interactions among system components, that is, software-to-be 

together with its environment. This has to be made up of active components conceived as agents 

that control system behaviours. 
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