
KEY MANAGEMENT IN WIRELESS SENSOR
NETWORKS

By

Firdous Kausar

A thesis submitted to the Faculty of Information Security Department, Military College of

Signals, National University of Sciences and Technology, Pakistan in partial fulfillment of

the requirements for the degree of Doctor of Philosophy in Information Security

Oct 2009

ABSTRACT

Wireless sensor networks(WSNs) consist of a large number of low power nodes, with limited

processing, communication, and storage resources. Large scale wireless sensor networks (WSNs)

are highly vulnerable to attacks because they consist of numerous resource constrained devices

communicating via wireless links.The standard security requirements in WSNs include confiden-

tiality, authentication and availability. These security requirements can be provided by encryption

and authentication services which in turn demands a comprehensive key management scheme.

The goal of key management is to pre-distribute cryptographic keys or keying materials among

the nodes prior to the deployment, revoke keys if nodes leave the network, assign new keys to the

nodes joining the network and periodically refreshing the keys. However, providing key manage-

ment in WSNs is difficult due to the unknown network topology prior to deployment, intermittent

connectivity and resource limitations of the sensor network environment.

Key management schemes consider hierarchical HSN consisting of a small number of high-end

sensors (H-node) and a large number of low-end sensors (L-node). A key generation process is

incorporated, where instead of generating a large pool of random keys, a key pool is represented

by a small number of generation keys, in order to address storage overhead problem in the con-

straint sensor nodes. For a given generation key and a publicly known seed value, a keyed-hash

function generates a key chain; these key chains collectively make a key pool. In the scheme

proposed, after discovering the shared pairwise keys with neighbors, all H-node and L-node de-

stroy their initial key rings and generate new key rings by applying one-way hash function on

node’s ID and initial key ring. As a consequence, new nodes can still be added in the network

beyond the initial deployment even after the deletion of initial key rings from nodes memory. In

addition, a self-healing group key distribution scheme is developed for secure multicast commu-

nications in HSN environment. This scheme presents a strategy for securely distributing rekeying

messages and specifies techniques for joining and leaving a group. Access control in multicast

system is usually achieved by encrypting the content using an encryption key, known as the group

key (session key) that is only known by the group controller and all legitimate group members. In

proposed scheme, all rekeying messages, except for unicast of an individual key, are transmitted

without any encryption using one-way hash function and XOR operation. Further, nodes are capa-

ble of recovering lost session keys on their own, without requesting additional transmission from

the group controller. Also the time-limited node revocation is achieved without any intervention

from the GC.

This research reports the implementation and the performance of the proposed schemes on Cross-

bow’s MicaZ motes running TinyOS and evaluates the computation and storage costs of two

keyed-hash algorithms for key chain generation, HMAC-SHA1 and HMAC-MD5. The results

show that proposed scheme can significantly reduce the storage requirements as compared to

other random key pre-distribution schemes. The performance analysis of the collusion resistant

mechanism shows that even if a large number of nodes are compromised, an adversary can only

exploit a small number of keys nearby the compromised nodes, while other keys in the network

remain safe. Also, the resiliency against node capture is better than previous key pre-distribution

schemes. The security analysis of secure group key distribution scheme shows that the proposed

scheme is computationally secure and meets the security requirements for forward and backward

secrecy.

iii

DEDICATION

Dedicated to My beloved family and to all those, whose prayers always paved the way to success

for me

iv

ACKNOWLEDGMENT

Praise to Almighty for bestowing upon me strength and knowledge, to conclude this aspiration in

time and craft a substantial contribution.

I owe a special debt of gratitude to Dr. Ashraf Masood who offered his expertise, constructive

critic, advice and guidance which made the present work a reality.

Dr. Sajid Hussain englightened me about the proper ways of writing papers, and more generally

about the various skills required for research. If not because of his encouragement, I would never

have taken the possibly once-in-a-lifetime opportunity to visit the Acadia University for a 5-month

research collaboration. I owe him dearly.

I gratefully acknowledge my committee members Dr. Muhammad Akbar, Dr. Noman Jafri and

Dr. Shamim Baig for generously sharing their ideas and enlightening and steering me to achieve

this landmark.

I am gratified to my colleague Ms. Ayesha Naureen for her valuable encouragement and sugges-

tions. Finally, I am most grateful to my parents and husband for their help and patience throughout

the research.

v

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Overview . 1

1.2 Background . 1

1.2.1 Key Management . 2

1.2.2 Secure Group Communication . 3

1.3 Problem Statement . 4

1.4 Contributions . 6

1.5 Organization of Research Work . 9

2 BACKGROUND 10

2.1 Introduction . 10

2.1.1 Sensor Hardware . 11

2.2 Previous Work : Key Management in Wireless Sensor Networks 14

2.2.1 Using a Single Network-Wide Key . 14

2.2.2 Using Pairwise Key Establishment . 15

2.2.3 Using Trusted Base Station . 16

2.2.4 Using Asymmetric/Public Key Cryptography . 18

2.2.5 Random Key Predistribution Scheme (Basic scheme) 22

2.2.6 Other Schemes based on Basic Random Key Predistribution Scheme 26

2.2.7 Key Management for Heterogeneous Sensor Networks 32

2.3 Previous Work: Secure Group Communication in Wireless Sensor Networks 35

2.4 Conclusion . 36

vi

3 SECURE AND EFFICIENT KEY MANAGEMENT SCHEME FOR HETEROGE-

NEOUS SENSOR NETWORKS 38

3.1 Introduction . 38

3.2 Network Model . 40

3.2.1 Threat Model . 42

3.3 Preliminaries . 42

3.4 Proposed Scheme . 42

3.4.1 Key Pre-Distribution Phase . 43

3.4.2 Cluster Formation Phase . 45

3.4.3 Cluster Head based Shared Key Discovery Phase 45

3.4.4 Inter-cluster Communication . 48

3.4.5 Addition of New Nodes . 49

3.4.6 Setting up Cluster Key . 50

3.4.7 Key Revocation . 50

3.4.8 Re-keying . 51

3.5 The Routing Structure in HSN . 51

3.5.1 Fault Tolerance . 53

3.6 Performance Evaluation . 54

3.6.1 Security Evaluation . 57

3.7 Implementation in Real Sensor Network . 59

3.8 Conclusion . 62

4 AN EFFICIENT COLLUSION RESISTANT SECURITY MECHANISMS FOR

HETEROGENEOUS SENSOR NETWORKS 65

vii

4.1 Introduction . 65

4.1.1 Collusion Attack . 67

4.2 Protocol . 68

4.2.1 Initial Deployment . 69

4.2.2 Cluster Heads Authentication . 69

4.2.3 Cluster Organization Phase . 70

4.2.4 Key Ring Update . 74

4.3 Other Security Issues in HSN . 74

4.3.1 Addition of a New Node . 75

4.3.2 Node Revocation . 76

4.3.3 Fault Tolerance . 76

4.3.4 Periodic Re-keying . 76

4.4 Performance Analysis . 77

4.4.1 Security Analysis . 80

4.5 Conclusion . 82

5 SECURE GROUP COMMUNICATION WITH SELF HEALING AND REKEY-

ING IN WIRELESS SENSOR NETWORKS 84

5.1 Introduction . 84

5.1.1 Node Revocation . 86

5.1.2 Session Key Distribution with Confidentiality . 87

5.2 Security Properties . 87

5.3 Proposed Scheme . 88

5.3.1 Adding a Group Member . 91

viii

5.3.2 Node Revocation . 92

5.4 Analysis . 93

5.4.1 Self-healing Property . 93

5.4.2 Key Independence . 94

5.4.3 Storage Requirements . 95

5.5 Conclusion . 96

6 CONCLUSION 98

6.1 Future Work . 100

BIBLIOGRAPHY 103

ix

LIST OF FIGURES

Figure Caption Page

2.1 Components of a Typical Sensor Node . 11

3.1 Network Model . 42

3.2 Key Chain Generation Process . 44

3.3 Neighboring Node Discovery . 46

3.4 Neighboring L-nodes with Common Preloaded Generation Key 46

3.5 Session Key Generation . 47

3.6 Neighboring L-nodes without Common Preloaded Generation Key 48

3.7 L-node to L-node Inter-cluster Communication 49

3.8 New Node Addition . 50

3.9 Message Transfer between H-node and L-node 54

3.10 The Probability of Key Sharing . 56

3.11 The Compromising Probability . 57

3.12 MicaZ and Stargate Sensor . 60

3.13 Comparison of Key Generation Process . 61

3.14 Energy Consumption in Key Management Phases 63

3.15 Energy Consumption in Proposed Key Management vs. Sensing 63

3.16 The provides and uses Interfaces for the Proposed Scheme Implementation in

TinyOS. 64

4.1 Key Ring Assignment (L Node) . 69

4.2 Key Ring Assignment (H Node) . 69

4.3 CH Authentication by BS . 70

x

4.4 Messages Transferred between Sensor Nodes and CHs 71

4.5 Unsupervised Nodes Key Establishment . 72

4.6 Indirect Key Discovery Phase . 74

4.7 Key Ring Update . 74

4.8 New Node Addition . 75

4.9 The Key Sharing Probability . 79

4.10 Unsupervised Nodes . 80

4.11 The Compromising Probability . 81

5.1 Node Revocation . 92

5.2 Self-healing in Node Life Cycle . 94

xi

LSIT OF TABLES

Table Caption Page

2.1 Comparison of Motes . 12

3.1 Time and Memory Requirements for MicaZ . 60

3.2 Memory Usage for Proposed Scheme . 61

4.1 Collusion Attack . 68

5.1 Example of Nodes Join/Leave Group: m=7, Node Life Cycle = 3 91

5.2 Time and Memory Requirements for Tmote Sky . 96

xii

ACRONYMS AND ABBREVIAIONS

Notation Definition
WSN Wireless sensor network
HSN Heterogeneous sensor network
BS Base station
CH Cluster head

PRNG Pseudorandom number generator
PRF Pseudorandom function
GC Group controller
idLi Identity of L-node i
idHi Identity of H-node i
K A pool of keys
M Total number of key chains
Ci Key chain i
gki Generation key of i-th key chain
RLi Set of the keys in L-node i initial key ring
RHi Set of the keys in H-node i initial key ring
ŔLi Set of the keys in L-node i new/update key ring
ŔHi Set of the keys inH-node i new/update key ring
r A number of keys in L-sensor key ring
S A number of keys in H-sensor key ring
KM Master key
CKi Cluster key of i-th cluster

xiii

ACRONYMS AND ABBREVIAIONS

Notation Definition
KM,Li Authentication key of L-sensor i
KX,Y A shared key between X and Y
AKX Authentication key of node X
SKi Session key of i− th session
KEK Key encryption key
KB Backward key
KF Forward Key
SF Forward key seed
SB Backward key seed
Bi Broadcast message of i− th session
〈m〉K An encryption of message m with key K
nonceLi A random number string generated by L-sensor i

MACK(m) A MAC of message m calculated using key K
| concatenation symbol

xiv

Chapter 1

INTRODUCTION

1.1 Overview

A WSN typically consists of a potentially large number of extremely resource constrained sensor

nodes. Each sensor node is usually battery powered, and has a low-end processor, a limited

amount of memory, and a low power communication module capable of short-range wireless

communication. Their lifetime is determined by their ability to conserve power. The sensor

nodes form an ad-hoc network through the wireless links. There are many technological hurdles

that must be overcome for ad hoc sensor networks to become practical though. All of these

constraints require new hardware designs, software applications, and network architectures that

maximize the motes capabilities while keeping them inexpensive to deploy and maintain. WSNs

are ideal candidates for a wide range of applications, such as military, security, health-care [1, 2],

industry automation, environmental and habitat monitoring [3, 4].

Secret communication is an important requirement in many sensor network applications [5], so

shared secret keys are used between communicating nodes to encrypt data. Some of the major

constraints like ad hoc nature, intermittent connectivity, and resource limitations of the sensor

networks prevent traditional key management and distribution schemes to be applicable to WSN.

1.2 Background

Due to limited resources of WSNs, it is challenging to incorporate basic security functions, such

as authentication, access control, data integrity, privacy, and key distribution. For instance, asym-

metric cryptography such as RSA or Elliptic Curve cryptography (ECC) is unsuitable for most

1

sensor architectures due to high energy consumption and increased code storage requirements.

To avoid the use of asymmetric cryptography, several alternative approaches have been devel-

oped to perform key management on resource-constrained sensor networks, such as random key

pre-distribution schemes, plain text key exchange schemes, and transitory master key schemes.

In WSNs, hierarchical clustering provides scalability, self-organization, and energy efficient data

dissemination [6]. A number of cluster formation protocols have been proposed but most existing

protocols assume benign environments, and are vulnerable to attacks from malicious nodes.

Most existing research mainly considers homogeneous sensor networks, where all sensor nodes

have identical capabilities in terms of communication, computation, sensing, and reliability; how-

ever, homogeneous WSNs are not scalable. Several recent works, on the other hand, investigate

HSNs.

1.2.1 Key Management

Secret communication is an important requirement in many sensor network applications, so shared

secret keys are used between communicating nodes to encrypt data. Some of the major constraints

like ad hoc nature, intermittent connectivity, and resource limitations of the sensor networks pre-

vent traditional key management and distribution schemes to be applicable to WSN.

It is not possible to setup an infrastructure to manage keys used for encryption in the traditional

internet style because of factors such as unknown and dynamic topology of such networks, va-

garies of the wireless link used for communications, and lack of physical protection. A practical

solution given these constraints is to pre-load the keys on the sensors before the sensor nodes are

deployed. Thus the node has some secret information in it before being deployed, and using this

information, they need to setup a secure communication infrastructure for use during operation.

The need to form a group might be driven by the requirement that a query being propagated

through any node and in turn, such a node need to define a multi cast group to make the query

2

initiated in those nodes and then collect the result over a time efficiently and securely, and also

modify such queries effectively over the time. One example of such multi cast group could be a

region defined with a geometric shape.

1.2.2 Secure Group Communication

Group communication is an internetwork service that provides efficient delivery of data from a

source to multiple recipients. Secure group communication enables each user to determine/obtain

the same session key (SK) without permitting unauthorized users to do likewise and securely

update keys to prevent the leaving/joining user from accessing the future/prior communications,

which is referred to as forward and backward secrecy.

Secure group communication is increasingly used as an efficient communication method for

group-oriented applications in WSNs. Group communication in WSNs are more susceptible to

unauthorized access because of the open nature of broadcast channel. One method for enabling

secure group communication is the periodic distribution of a new key (called a session key) to

group members. All messages exchanged within the group during a fixed interval of time, or

session, are communicated securely through encryption under this session key. Group controller

is responsible for distributing session key to the nodes in the group securely by encrypting them

using the Key Encrypting Key.

Moreover, considering the dynamic node topology due to nodes attachment and detachment, it is

necessary to refresh the session key to prevent the detached node from accessing future commu-

nications and the newly attached node from accessing previous communications. The updation of

session key after some fixed interval of time is called re-keying process, which ensure that newly

added nodes can not decrypt previous group communication and prevents the detached node from

eavesdropping future group communication. Self healing is the property which makes nodes’

enable to recover the missed session keys on their own from the latest re-keying message without

3

contacting the group controller.

1.3 Problem Statement

The key management scheme employed in a sensor network for secure application must integrate

authenticity, confidentiality, integrity, scalability, availability and flexibility. In addition to it some

other requirement for key management scheme include supporting in-network processing and

facilitating self-organization of data, among others. Key management is crucial to the secure

operation of WSNs and must also meet certain other criteria for efficiency in light of vulnerability

to adversaries, including resistance, revocation, and resilience.

Key management in most of the wired and wireless network is achieved through public key cryp-

tography. WSNs have a limited resource,which can make using public key cryptography, im-

practical as they use much more energy for their integral complex mathematical calculations and

increased code storage requirements. This constraint is mitigated by making use of more effi-

cient symmetric techniques that involve fewer computational procedures and require less energy

and memory to function. The symmetric key management schemes used in WSNs can be classi-

fied as single network-wide key, pairwise key establishment,trusted base station, and random key

pre-distribution.

Key pre-distribution schemes are a favored solution for establishing secure communication in

sensor networks. Often viewed as the safest way to bootstrap trust, the main drawback is seen to

be the large storage overhead imposed on resource-constrained devices and also these schemes are

quite insecure because pre-loading global secrets onto exposed devices strengthens the incentive

for attackers to compromise nodes.

Random key pre-distribution schemes are vulnerable to collusion attacks. Colluding attackers

mainly take advantage of the pairwise secret keys stored by each sensor node as these keys are

selected from same key pool and can be used throughout the network, yet ordinary sensors can

4

only communicate with the small fraction of nodes within radio range. An attacker can readily

exploit this lack of coordination between nodes and can now share its pairwise keys between

compromised nodes, enabling each to present multiple authenticated identities to neighboring

nodes while escaping detection.

Most existing research mainly considers homogeneous sensor networks, where all sensor nodes

have identical capabilities in terms of communication, computation, sensing, and reliability; how-

ever, homogeneous WSNs are not scalable. As large-scale homogeneous networks suffer from

high costs of communication, computation, and storage requirements. The HSNs are preferred

because they provide better performance and security solutions for scalable applications in dy-

namic environments.

Efficient solutions for the problem of key distribution are essential for the feasibility of secure

group communication in sensor networks. Secure group communication needs a secret shared

by all the group members for group oriented applications in WSNs. The shared key provides

group secrecy and source authentication. Secure group communication protocols should provide

efficient rekeying and self healing property. In rekeying, the session keys are updated periodi-

cally, when new users join or old users leave the group. Another important problem in multicast

communication is reliability. Since multicasting is an unreliable mode of communication, packets

may be lost during the communication. If a packet containing key updating information is lost,

authorized receivers may not be able to calculate the session key. This may influence rekeying

and so the rekeying system must be self-healing if packet loss occurs.A user who has been off-line

for some period is able to recover the lost session keys immediately after coming back on-line.

Thus self-healing approach of key distribution is stateless.

The taxonomy of attacks and challenges allow us to formulate the research questions investigated

in this thesis. It has been identified that key management and secure group communication are

5

two of the most important security aspects in WSNs. There is a need to design key management

schemes that counter the problem of collusion attack and scalability issue in random key pre-

distribution schemes.

1.4 Contributions

The objective of this research is to provide partial solution to the research problems given in the

previous section. HSN consisting of a small number of high-end sensors (H-node) and a large

number of low-end sensors (L-node) is considered. Further, for scalable solutions, the proposed

schemes use hierarchical structure, whereH-node act as cluster head (CH) and L-node as cluster

members.

A scalable and efficient protocol for key management is proposed that is sensitive to the sensor

nodes resource constraints, including storage, computation and communication. The proposed

key management scheme is based on random key pre-distribution for HSNs.

To address storage overhead problem in the constraint sensor nodes, a key generation process is

incorporated, where instead of generating a large pool of random keys, a key pool is represented

by a small number of generation keys. For a given generation key and a publicly known seed

value, a keyed-hash function generates a key chain; these key chains collectively make a key

pool. In pre-deployment phase eachH-node is preloaded with the master key and a large number

of generation keys. Each L-node is preloaded with authentication key (which is generated by

applying one way hash function on L-node id and master key) and a small number of generation

keys. As a result, by using generation keys, the proposed scheme significantly reduces the storage

requirements. Adversary or malicious nodes are precluded to join the cluster as each L-node is

authenticated by CH using L-noders authentication key.

Dynamic network topology is native to WSNs because nodes can fail or be added. As result,

the proposed scheme allows dynamic node addition and removal. In the case of node addition,

6

the proposed scheme is able to distinguish between legitimate and malicious nodes. Further, as

adversaries can compromise sensors and acquire all security information, a rekeying scheme is

incorporated to update all types of keys periodically. Secure inter-cluster communication is also

provided.

This research also reports the implementation and the performance of the proposed scheme on

Crossbows MicaZ motes running TinyOS and evaluate the computation and storage costs of two

keyed-hash algorithms for key chain generation, HMAC-SHA1 and HMAC-MD5. The results

show that proposed scheme can significantly reduce the storage requirements as compared to

other random key pre-distribution schemes. Also, the resiliency against node capture is better

than previous key pre-distribution schemes.

Random key distribution schemes are identified to be susceptible of collusion attacks. As a con-

sequence, a new random key distribution scheme is proposed to prevent collusion attacks in ubiq-

uitous HSN. The collusion attack on key pre-distribution scheme mainly takes advantage of the

globally applicable keys, which are selected from the same key pool. This attack can be pre-

vented if the initial key ring of each node is deleted after setting up the shared pairwise keys with

neighbors. But the random key pre-distribution schemes will be unable to add new nodes once

the initial key rings has been deleted from nodes memory.

As a result, in proposed scheme, after discovering the shared pairwise keys with neighbors, all

H-node and L-node destroy their initial key rings and generate new key rings by applying one-

way hash function on nodes ID and initial key ring. Further, in order to keep record of the keys

in its initial key ring, these newly generated key rings are assigned the same ids as that were of

the original keys. The proposed scheme can also add new nodes in the network beyond the initial

deployment even after the deletion of initial key rings from nodes memory.

In collusion attacks, adversary mainly takes advantage of globally applicable keys choosing form

7

the same key pool. But in proposed scheme, no two nodes in the network have common keys in

their key rings after deletion of the old key rings. As no more globally applicable secrets remain

in the nodes memory, it is not possible by adversary to launch a collusion attack.

The analysis of proposed scheme shows that even if a large number of nodes are compromised,

an adversary can only exploit a small number of keys nearby the compromised nodes, while other

keys in the network remain safe. It outperforms the previous random key pre-distribution schemes

by considerably reducing the storage requirement, while providing more resiliency against node

capture and collusion attacks.

As a third contribution, this research develops a computationally secure and efficient group key

distribution scheme with self-healing property and time-limited node revocation capability for

large and dynamic groups over insecure HSNs. This research presents a strategy for securely

distributing rekeying messages and specify techniques for joining and leaving a group.

Access control in multicast system is usually achieved by encrypting the content using an en-

cryption key, known as the group key (session key) that is only known by the group controller

and all legitimate group members. The session keys are updated periodically, where the update is

performed regardless of changes in network (group) topology. Periodic rekeying can significantly

reduce both the computation and communication overhead at the GC and the nodes, and thus

improve the scalability and performance of key distribution protocols.

The group life cycle is given by m, which determines the total number of sessions for a group.

The GC uses the pseudorandom number generator (PRNG) of a large enough period to produce

a sequence of m random numbers (r1, r2, . . . , rm). The GC randomly picks two initial key seeds,

the forward key seed SF and the backward key seed SB. In the pre-processing time, it computes

two hash chains of equal length m by repeatedly applying the same one-way hash function on

each seed. During the initial configuration setup, each node assigned a prearranged life cycle

8

(t1, t2) along with forward key at time t1 and t2 − t1 number of random numbers corresponding

to the sessions in which the node will participate in the group communication.

In each session, the GC compute the broadcast message by XOR of backward key and random

number corresponding to that session. when the node receives the broadcast message, it recovers

the backward key by Xoring the broadcast message with the random number of that session. It

then computes the forward key of that session by applying one-way hash function on its forward

key and then computes the session key from the forward and backward keys of that session.

All rekeying messages, except for unicast of an individual key, are transmitted without any en-

cryption using one-way hash function and XOR operation. In proposed scheme, nodes are capable

of recovering lost session keys on their own, without requesting additional transmission from the

group controller. The time-limited node revocation is achieved without any intervention from

the GC. The dual direction (forward and backward) hash chains are used to provide forward and

backward secrecy of the session key.

The analysis shows that the proposed scheme is computationally secure and meets the security

requirements for forward and backward secrecy. Further, it can tolerate high channel loss rate

and hence make a good balance between performance and security which is suitable for WSN

applications.

1.5 Organization of Research Work

This thesis has been organized in Chapters. Chapter 2 presents a literature survey of key man-

agements and secure group communication in WSNs. Chapter 3 presents the scalable and effi-

cient key management scheme based on random key distribution for HSNs. Chapter 4 presents

the random key distribution scheme preventing collusion attacks in ubiquitous HSNs. Chapter 5

presents a key distribution scheme for secure group communication with self healing and rekeying

in HSNs. Lastly, chapter 6 concludes the research and highlights the future work.

9

Chapter 2

BACKGROUND

2.1 Introduction

A wireless sensor network typically consists of a potentially large number of incredibly resource

constrained sensor nodes. Each sensor node is usually battery powered, and has a low-end proces-

sor, a limited amount of memory, and a low power communication module capable of short-range

wireless communication. Their lifetime is determined by their ability to conserve power. The

sensor nodes form an ad-hoc network through the wireless links. There are many technological

hurdles that must be overcome for ad hoc sensor networks to become practical though. All of

these constraints require new hardware designs, software applications, and network architectures

that maximize the motes capabilities while keeping them inexpensive to deploy and maintain.

In the not too distant future, tiny, dirt-cheap sensors may be literally sprayed onto roads, walls, or

machine, crating a digital skin that sense a variety of physical phenomenon of interest: monitor

pedestrian or vehicular traffic in human aware environments and intelligent transportation grids,

report wildlife habitat conditioning for environmental conservation, detect forest fires to aid rapid

emergency response, and track job flows and supply chains in smart factories [6].

Sensor networks may consist of many different types of sensors such as seismic, low sampling rate

magnetic, thermal, visual, infrared, acoustic and radar, which are able to monitor a wide variety

of ambient conditions that include the following :temperature, humidity, vehicular movement,

lightning condition, pressure, soil makeup, noise levels, the presence or absence of certain kinds of

objects, mechanical stress levels on attached objects, and the current characteristics such as speed,

10

direction, and size of an object.Typical sensor network platforms have limited bandwidth. For

example, the UC Berkeley Mica platform’s transmitter has a bandwidth of 10 Kbps. Transmission

reliability can be low, which makes the communication of large blocks of data expensive [7].

2.1.1 Sensor Hardware

A sensor node is made up of four basic components as shown in Figure 2.1 a sensing unit, a pro-

cessing unit, a transceiver unit and a power unit. There are many types of sensors, e.g. thermistors

for measuring temperature; accelerometers for measuring acceleration; magnetometer and micro-

power impulse radar (MIR) sensors for detecting metallic objects; barometric pressure sensors;

dielectric-based humidity sensors; acoustic sensors; sensors for various types of chemicals etc.

The nature of the sensors may affect the cost and physical size of the sensor nodes, but does not

affect the general characteristics of WSNs.

Figure 2.1: Components of a Typical Sensor Node

The sensor nodes have featured commercial off the shelf (COTS) components integrated together

on a platform commonly referred to as a ”mote” [8, 9] Comparison of family of wireless sensor

nodes, or ”motes” both available in the market as well as in academia is given in Table 2.1.

Among microcontrollers, 4 MHz Atmels and the 8 MHz MSP430F149 are the more popular

choices, whereas Chipcon and RFM are popular among radio transceivers. 4 KB of RAM and

128 KB of program memory should be considered the current upper limits. All in all, motes are

11

Table 2.1: Comparison of Motes

Mote Type WeC Rene Rene 2 Dot Mica Mica2Dot MicaZ Telos
Year 1998 1999 2000 2000 2001 2002 2002 2004
Microcontroller
Type AT90LS8535 ATmega163 ATmega128 T1 MSP430
Program memory(KB) 8 16 128 60
RAM(KB) 0.5 1 4 2
Active Power(mW) 15 15 8 33 3
Sleep Power(µW) 45 45 75 75 6
Wakeup Time(µs) 1000 36 180 180 6
Nonvolatile Storage
Chip 24LC256 AT45DB041B ST M24M01S
Connection type I2C SPI I2C

Size(KB) 32 512 128
Communication
Radio TR1000 TR1000 CC1000 CC2420
Date rate(kbps) 10 40 38.4 250
Modulation Type OOK ASK FSK O-QPSK
Receive Power(mW) 9 12 29 38
Transmit Power at 0dBm(mW) 36 36 42 35
Power Consumption
Minimum Operation(V) 2.7 2.7 2.7 1.8
Total Active Power(mW) 24 27 44 89 41

notably characterized by their limitations slow processor, little storage, low bandwidth and scarce

energy reserve. Among these, energy is the most severe constraint [7]. For example, when used

with MICA2 motes, the effective lifetimes of alkaline, NiMH and LiSO2 batteries are 18 hours,

100 hours and 30 days [10] respectively, while these motes are meant to operate, ideally, for years.

Sensor nodes can be used for continuous sensing, event detection, event ID, location sensing,

and local control of actuators. The concept of micro-sensing and wireless connection of these

nodes promises many new application areas. The applications can be categorized into military,

environment, health, home and other commercial areas. It is possible to expand this classifica-

tion with more categories such as space exploration, chemical processing and disaster relief [3].

Some of the commercial applications are monitoring material fatigue; building virtual keyboards;

12

managing inventory; monitoring product quality; constructing smart office spaces; environmental

control in office buildings; robot control and guidance in automatic manufacturing environments;

interactive toys; interactive museums; factory process control and automation; monitoring disas-

ter area; smart structures with sensor nodes embedded inside; machine diagnosis; transportation;

factory instrumentation; local control of actuators; detecting and monitoring car thefts; vehicle

tracking and detection; and instrumentation of semiconductor processing chambers, rotating ma-

chinery, wind tunnels, and anechoic chambers.

Key distribution refers to the problem of establishing shared secrets on sensor nodes such that

secret symmetric keys for communication privacy, integrity and authenticity can be generated. In

a wireless sensor network, pre-distribution of secret keys is possibly the most practical approach

to protect network communications. To meet the stringent resource constraints of the sensor

nodes, such as limited storage capability, low computation capability, and limited battery life, key

pre-distribution schemes should be highly efficient, namely requiring as little storage space as

possible, and at the same time, maintain a strong security strength, i.e., high resilience against

node capture. Security of large scale densely deployed and infrastructure-less wireless networks

of resource limited sensor nodes requires efficient key distribution and management mechanisms.

This chapter gives the overview of wireless sensor network architecture, applications, limitations

and security requirements. Further, this chapter reviews several key distribution and key establish-

ment techniques for sensor networks. Brief description of several well known key establishment

schemes are given with a more detailed discussion on random key distribution.

Sensor networks have many characteristics that make them more vulnerable to attack than con-

ventional computing equipment. This physical attacks on sensor networks can be prevented if the

sensor nodes are made temper-resistant. As sensor nodes are deployed in hostile environment, it is

assumed the adversary can mount a physical attack on a sensor node and read secret information

13

from its memory or can simply destroy it. Therefore the costly solution of making these sensor

node temper-resistant in not acceptable/practical. In node replication attack the compromise of

even a single node might allow an adversary to populate the network with clones of the captured

node to such an extent that legitimate nodes could be outnumbered and the adversary can thus

gain full control of the network. In order to develop a key establishment scheme for sensor net-

works, sensor node constraints include battery life, transmission range, bandwidth, memory, and

prior deployment knowledge must be kept in mind.

This chapter gives the overview of wireless sensor network architecture, applications, limitations

and security requirements. Further, this chapter reviews several key distribution and key establish-

ment techniques for sensor networks. Brief description of several well known key establishment

schemes are given with a more detailed discussion on random key distribution.

2.2 Previous Work : Key Management in Wireless Sensor Networks

Key management schemes [11] in wireless sensor networks are categorized as follows: (1) Single

network-wide key [12, 13], (2) Pairwise key establishment, (3) Trusted base station [14], (4)

Public key schemes (elliptic curve cryptography) [15, 16, 17, 18] and (5)Key predistribution

schemes [? 19, 20, 21, 22, 23, 24, 25].

2.2.1 Using a Single Network-Wide Key

The simplest method of key distribution is to pre-load a single network-wide key onto all nodes

before deployment. After deployment, nodes establish communications with any neighboring

nodes that also possess the shared network key. This can be achieved simply by encrypting all

communications in the shared network-wide key and appending a message authentication code

(MAC) to ensure integrity. This method requires minimal memory storage because only a single

cryptographic key is needed to be stored in memory. No additional protocol steps are necessary

14

as the protocol works without needing to perform key discovery or key exchange. It is resistant

against DoS attack and packet injection. The MACs (message authentication code) guard against

arbitrary packet injection by an adversary that does not know the network-wide key. Replay

attacks can be prevented by including the source, destination, and a time stamp in the message.

The main drawback of the network-wide key approach is that the compromise of a single node

causes the compromise of the entire network, since the network-wide key is now known to the

adversary. Basagni use this approach to design a secure routing protocol [12]. No new nodes are

ever added to the system after deployment. In this case, the sensor nodes use the network wide

key to encrypt unique link keys which are exchanged with each of their neighbors. Zhu follow

this approach and set up all keys from a single network-wide key during a short, initial phase after

deployment, assuming that no nodes are compromised during this phase, and later all nodes erase

the single network key [13]. This approach, however, is vulnerable to compromise of a single

node that misses the key setup period, and does not erase its key.

2.2.2 Using Pairwise Key Establishment

In this approach, every node in the sensor network shares a unique symmetric key with every other

node in the network. Hence, in a network of n nodes, there are a total of n ∗ (n− 1) unique keys.

Every node stores n− 1 keys, one for each of the other nodes in the network. After deployment,

nodes must perform key discovery to verify the identity of the node that they are communicating

with.

This approach is perfectly resilient to node capture. Similar to the asymmetric cryptography

scheme, any node that is captured reveals no information about the communications being per-

formed in any other part of the network. Its pair-wise keys could be used to perform a node

replication attack throughout the network, but this could be countered using the same method as

described for asymmetric cryptography in the previous section.

15

In this approach compromised keys can be revoked because if a node is detected to be compro-

mised, its entire set of n− 1 pair-wise keys is simply broadcast to the network. No authentication

is necessary. Any node that hears a key in its set of pair-wise keys broadcast in the open immedi-

ately stops using it. This effectively cuts off the revoked node from the network. This approach

only uses symmetric cryptography. The pair-wise keys scheme achieves many of the benefits of

using asymmetric cryptography without needing dedicated hardware or software. This not only

makes the nodes cheaper but also makes the network less vulnerable to denial of service attacks.

The main problem with the pair-wise keys scheme is poor scalability. The number of keys that

must be stored in each node is proportional to the total number of nodes in the network. If there

are total n number of nodes in the network, each node must store n ∗ (n − 1) number of keys in

its memory in order to securely communicate with other nodes.

2.2.3 Using Trusted Base Station

This method of key distribution uses a trusted, secure base station as an arbiter to provide link

keys to sensor nodes, e.g., similar to Kerberos [26, 27]. The sensor nodes authenticate themselves

to the base station, after which the base station generates a link key and sends it securely to both

parties. An example of such a protocol is part of the SPINS security infrastructure [14].

A sketch of the events of the protocol could be as follows. Prior to deployment, a unique symmet-

ric key is generated for each node in the network. This node key is stored in the node’s memory

and will serve as the authenticator for the node as well as facilitate encrypted communications

between the node and the base station. The base station has access to all the node keys either

directly (they are stored in its memory) or indirectly (the base station relays all communications

to a secured workstation off site).

This method, unlike the other methods mentioned previously, assumes that some level of reliable

transport is available between the node and the base station before any key establishment has

16

taken place. Now assume that after deployment, node A wants to establish a shared secret session

key with node B. Since A and B do not share any secrets, they need to use a trusted third party

S, which is the base station in our case. SPINS includes a protocol where A and B can establish

through the base station [14]. Small memory is required in this approach because for every node, a

single secret symmetric key shared with the base station is needed, as well as one unique link key

for each one of its neighbors. Furthermore, the key establishment is efficient, as it only requires

symmetric cryptographic primitives. It provides perfect resilience to node capture. Any node that

is captured divulges no secret information about the rest of the network.

Revocation of nodes is simple. If a node is to be revoked, the base station securely transmits the

revocation message to all the nodes that may be in communication with the revoked node. This

revocation message is encrypted with the secret key that is shared only between the recipient node

and the base station hence secrecy and authentication are ensured. To prevent any other nodes

from establishing links with the revoked node, the base station simply needs to reject requests

that involve the revoked node as a principal. Node replication is easily controlled. Since all key

establishment activity takes place through the central base station, auditing becomes trivial.

This approach is not scalable and has significant communication overhead. If any two nodes wish

to establish a secure communications, they must first communicate directly with the base station.

In a large network, the base station may be many hops away, thus incurring a significant cost in

communication. The base station can become a target for compromise.

The base station has access to all the secret node keys in the sensor network, compromise of the

base station’s key store will expose the secrecy of all links that are established after the time of

the compromise. This may not be a problem if the communications base station merely acts

as a gateway to a workstation at a remote, secured site, since the adversaries would have to

successfully attack the secure workstation in order to gain the node keys.

17

2.2.4 Using Asymmetric/Public Key Cryptography

Traditionally, security is provided through public-key based protocols. However, these protocols

require large memory, bandwidth and complex algorithms. The limited resources of WSNs make

this type of security schemes unsuitable for implementation. Recently many researchers take this

as challenge and use the public key cryptography based schemes in order to provide security in

WSN. Two of the major techniques used to implement public-key cryptosystems are RSA and

ECC. In this section the review of several public key cryptography based techniques in WSNs is

given and come to the conclusion that the public key schemes based on elliptic curve cryptography

are more suitable in WSNs [28].

Malan propose that public key infrastructure is viable for TinySec key’s distribution [18]. Tiny-

Sec is the link layer security architecture for wireless sensor networks based on SKIPJACK in

cipher-block chaining mode [29]. It is shown that elliptic curves are believed to offer security

computationally equivalent to that of Diffie-Hellman based on discrete log problem with remark-

ably smaller key sizes of 163 bit for the secure distribution of 80-bit TinySec keys. They 1st

implement ECC on the MICA2 (ECCM 1.0),a TinyOS module based on code by Rosing [30],

but for larger keys (e.g., 63-bit), the module failed to produce results, instead causing the mote to

reset as a result of stack overflow. Since optimizations of EccM 1.0 failed to render generation

of even 63-bit keys possible, an overhaul of this popular implementation proved necessary for

realization of 163-bit keys. A point G is selected from an elliptic curve E, both of which are

public. A random integer KA is selected, which will act as the private key. The public key is then

TA = KA × G. Bob performs a similar set of operations to compute TB = KB × G. Alice and

Bob can now easily compute the shared secret using their own private keys and the public keys

that have been exchanged. In this case, Alice computes KA × TB = KA × KB × G while Bob

computes KB × TA = KB ×KA ×G. Because KA × TB = KB × TA, Alice and Bob now share

18

a secret key. The implementation results show that a fixed point multiplication takes 6.74 sec

and random point multiplication takes 17.28 sec. Key generation process consumes 6.74 sec. A

complete key exchange takes on average 17.28 sec. In Elliptic curve digital signature algorithms

the signature generation consists of only one point multiplication of the fixed point P taking only

around 6.88sec. A signature verification step takes about 24.17sec.

Blab give implementations of asymmetric encryption and signature generation schemes for the

8Bit ATMEL sensor platform that features acceptable run-time and memory consumption while

preserving a level of acceptable security for sensor networks [31]. They implement algorithms

i.e. Diffie-Hellman ,El-Gamal, DSA based on ECC that offer the same security than traditional

based algorithms but consume a lot less of memory and computing power. In this scheme fast

implementation is based on the pre-computation of points and it save main memory (RAM) by

moving all larger unchangeable data from RAM to flash-ROM.

Wander give the energy analysis of authentication and key exchange based on RSA and ECC on

an 8-bit microcontroller platform [32]. The mutual authentication and key exchange protocols is

based on SSL handshake [33]. They give the energy cost of digital signature and key exchange

by using RSA and ECDSA (elliptic curve digital signature algorithm). The RSA-based key ex-

change protocol relies on party A to encrypt a randomly generated secret key with party B’s public

key, and party B decrypting the key using its private key. With ECC, both parties perform a single

ECDH (elliptic curve Diffie-Hellman) operation to derive the secret key. For ECC, key generation

only involves generating a random number, which becomes the user’s private key, and executing

an ECDH operation to compute the corresponding public key. RSA key generation is much more

time consuming as it requires the generation of large prime numbers [34]. They analyze energy

usage of the simplified SSL handshake based on RSA-1024 and ECC-160. The amount of com-

bined energy spend by both parties is determined by public-key computation, transmitting and

19

receiving handshake messages, hash computation, and random number generation. The results

of [32] indicate that an RSA-1024 computation consumes 4.9 times the energy of ECC-160 com-

putations.

Abraham proposed a set of security protocols for wireless sensor networks based on Tiny Dif-

fusion [35] protocol, for the underlying network communication and ECC as a public key sys-

tem [36] . This paper discusses use of elliptic curve cryptosystems and how Tiny Diffusion

components of TinyOS [8] are to be modified to implement essential security protocols like es-

tablishing shared key between base station and any source node using ECDH, transferring data

with end-to-end security and authenticated rekeying using ECDSA. Implementation of ECDH

and ECDSA in this proposed work has considered Koblitz curve. The curve parameters are se-

lected over F P
2 field having degree P = 163 bits and is taken from recommended elliptic curves

for Federal Government use [37]. The simulation results of [36] show that the proposed protocols

are efficient in respect with memory requirement and communication delay compared to [32].

Watro focuses on providing authentication and key agreement between a sensor networks and

a third party as well as between two sensor networks using RSA public key cryptosystems and

Deffie-Hellman [38] key agreement techniques [17]. TinyPK is based on the well-known RSA

cryptosystem, using e = 3 as the public exponent. Any third party that wishes to interact with

the motes also requires its own public/private key pair and must have its public key signed by the

CA’s private key, thus establishing its identity. Finally, as each mote is loaded with CA’s public

key. TinyPk challenge response protocol for authenticating the third party starts when the third

party provides challenge consisting of its own public key, signed by the CA private key; and a

compound object consisting of a nonce and a message checksum, signed with the third party’s

own private key. Upon receipt of the message, a sensor node uses the preloaded CA public key to

verify the first part of the challenge and extract the third party’s public key. It then uses this public

20

key to verify the second part of the message and extract the nonce and checksum. If the nonce

and checksum pass validation, the third party has successfully authenticated to the sensor network

and is considered to be an authorized entity for sensor data. The sensor node now encrypts the

session key plus the received nonce using the third party’s public key. This combination is sent

back to the third party, which decrypts it using its private key, checks that the nonce is the same

as the one it sent, and if so, can record the session key for future use. They use Diffie-Hellman to

generate a secret suitable for use in creating a new or replacement TinySec key.

Gaubatz proposes a custom hardware assisted approach by implementing public key algo-

rithms [16] i.e. Rabin’s Scheme [39] and NtruEncrypt [40] on sensor nodes and analyze their

architecture and performance according to various established metrics like power consumption,

chip area, delay, throughput, level of security and energy per bit. For Rabin’s Scheme they se-

lect an operand size of 512 bits, which according to Lenstra and Verheul provides a security

level of around 60 bits [41]. In the case of NtruEncrypt they chose the system parameters as

(N, p, q) = (167, 3, 128), based on findings in [40], offering a security level of 57 bits. For

both algorithms only encryption operation is considered and the public key is either hardwired or

realized as look-up table in combinational logic.

Manley present a hybrid scheme that shared secrets, preloaded on nodes with a random key pre-

distribution scheme [42], to allow node-to-node authentication so that trust may be verified before

setting up cryptographic keys with public-key methods [43]. In this proposed public key extension

of the random key pre-distribution scheme, the key pre-distribution and shared key discovery

phases are performed as in basic approach. After the shared-key discovery phase, any two nodes

that share a key may set up a new key for secure communication using public-key methods. For

pairs of nodes in communication range that do not share a key, the public-key methods can also

be used, by using the following method. An authenticator set, s is defined when the network

21

is designed. Two nodes that wish to set up a new key must have s commonly shared trusted

neighbors. When a key-establishment message is sent between the two nodes, a MAC must be

computed for each of the s nodes in the authenticator set by using pre-distributed shared key.

These s codes are then sent to each of the nodes in the authenticator sent. Each node in the

authenticator set verifies the integrity of the message and then creates a new MAC using the

message and its key shared with the message’s receiver. Each authenticator sends the message

authentication code to the receiving party in the key setup. The receiver verifies all s MACs

before accepting the message and continues with the protocol.

2.2.5 Random Key Predistribution Scheme (Basic scheme)

In this subsection, Random Key Predistribution Scheme proposed by Eschenauer and Gligoris

described in detail [42]. This scheme is also referred to as Basic Scheme. In the Basic Scheme,

key distribution is divided into three stages: key predistribution, shared-key discovery, and path-

key establishment.

2.2.5.1 Key Predistribution Stage

In the key predistribution stage, a large key pool of ‖S‖ keys and their identifiers are generated.

From this key pool, K keys are randomly drawn and pre-distributed into each nodes key ring, in-

cluding the identifiers of all those keys. At the point that each node has K keys and the identifiers

of those keys, trusted nodes in the network are selected as controller nodes, and all the key iden-

tifiers of a key ring and the associated sensor identifiers on controller nodes are saved. Following

this, the ith controller node is loaded for each node with the key that is shared with that node.

This key predistribution process ensures that, though the size of the network is large, only a few

keys need to be stored in each nodes memory, thereby saving storage space. These few keys are

enough to ensure that two nodes share a common key, based on a selected probability.

22

2.2.5.2 Shared Key Discovery Stage

Once the nodes are initialized with keys, they are deployed in the respective places where they

are needed, such as hospitals, war fields, etc. After deployment, each node tries to discover its

neighbors with which it shares common keys. There are many ways for finding out whether two

nodes share common keys or not. The simplest way is to make the nodes broadcast their identifier

lists to other nodes. If a node finds out that it shares a common key with a particular node, it can

use this key for secure communication. This approach does not give the adversary any new attack

opportunities and only leaves room for launching a traffic analysis attack in the absence of key

identifiers. More secure alternate methods exist for finding out the common keys shared between

two nodes though. For example, for every key on a key ring, each node could broadcast a list

α,EKi(α), i = 1 . . . k, where α is a challenge. The decryption of EKi(α) with the proper key by

a recipient would reveal the challenge α and establish a shared key with the broadcasting node.

2.2.5.3 Path Key Establishment Stage

A link exists between two nodes only if they share a key, but the path key establishment stage

facilitates provision of the link between two nodes when they do not share a common key. Suppose

that node u wants to communicate with node v, but they do not share a common key between

them. Node u can send a message to node y saying that it wants to communicate with node v;

this message is then encrypted using the common key shared between node u and node y and, if

node y has a key in common with node v, it can generate a pairwise key Ku,v for nodes u and v,

thereby acting like a key distribution center or a mediator between the communication of nodes

u and v. As all the communications are encrypted using their respective shared keys, there will

not be a security breach in this process. After the shared key discovery stage is finished there will

be a number of keys left in each sensors key ring that are unused and can be put to work by each

sensor node for path key establishment.

23

2.2.5.4 Key Revocation

A compromised sensor node can cause a lot of damage to a network and therefore, revocation

of a compromised node is very important in any key distribution scheme. In the Basic Scheme,

node revocation is conducted by the controller node. When a node is revoked, all the keys in

that particular node key ring have to be deleted from the network. Assume that the controller

node has knowledge about a compromised node in the network and broadcasts a message to all

the nodes in the network, the message includes a list of the key identifiers of the compromised

nodes key ring. To sign the list of key identifiers, the controller node uses a signature Ke and

then encrypts its message with Kci , which is the key that the controller node shares with the

nodes during the key predistribution stage. Once each node receives the message, it decrypts the

message using the key already shared with the controller node. When the signature is verified,

the nodes search their key rings for the list of identifiers provided in the message and, if there

is any match, the corresponding keys are deleted from the key ring. After the matching keys are

completely deleted from all the nodes, there may be links missing between different ones and they

then have to reconfigure themselves starting from the shared key discovery stage so that new links

can be formed between them. As only few keys are removed from the network, the revocation

process only affects a part of it and does not incur much communication overhead.

The keys used in a sensor network must be rekeyed to lessen the chance that an adversary may

access all of the network keys when a few nodes and their keys are captured. Rekeying effec-

tively increases a networks resilience without incurring much communication and computation

overhead.

2.2.5.5 Analysis of the Basic Scheme

Let us assume that the probability of a common key existing between two nodes in the network is

p, and the size of the network is n. The degree of a node d is derivable using both p and n since

24

the degree of any node is simply the average number of edges connecting that node with other

nodes in its neighborhood; therefore,d = p × (n − 1). First we have to find the value of d such

that a network of n nodes is connected with a given probability Pc. We then must calculate the

key ring size k and the size of the key pool |S|.

According to Random Graph Theory, a random graph G(n, p) is a graph consisting of n nodes

and p representing the probability of establishing a link between two nodes. Erdos and Renyi [12]

showed that there exists a probability state p, which moves from state zero to state one for large

random graphs. The function that defines p is called the threshold function of a property. If we are

given a desired probability (Pc) for graph connectivity, then p is given as Pc = limn→∞Pr[G(n,p)

is connected]= ee
−c , p = ln(n)

n
+ c

n
, where c is a real constant.

Then, to calculate the key ring size k and the size of the key pool |S|, we need to first note that

wireless constraints limit the number of nodes in a range to be smaller than n, represented by the

value ń. Now the probability of sharing a key between two neighbor nodes varies to ṕ = d/(ń−1),

for a given d value. Also, ṕ can be denoted as the difference between the total probability and the

probability that two nodes do not share a common key; i.e., ṕ = 1− Pr[two nodes do not share

any key] and, thus, ṕ = 1− (1− k
p

)2(p−k+
1
2)

(1− 2k
p

)(p−2k+1
2)

, where |S| is the size of the key pool and k is the key

ring size.

Eschenauer and Gligor [42] have shown that for a pool size S = 10,000 keys, only 75 keys need

to be stored in a nodes memory to have the probability that they share a key in their key rings to

be p = 0.5. If the pool size is ten times larger, i.e., S = 100,000, then the number of keys required

is still only 250. Thus, the Basic Scheme is a key management technique that is scalable, flexible

and can also be used for large networks.

Trade-offs in the Basic Scheme can be made between sensor memory and connectivity, but it does

not provide the node-to-node authentication property that ascertains the identity of a node with

25

which another node is communicating. This property is very useful when revoking misbehaving

nodes from the network and also helps in resisting the node replication attack.

Many key management schemes [19], [20] , [21], [22], [23], [24], [25], etc. are proposed as ex-

tensions of the basic scheme to make it even more secure and reliable. Advantages of this scheme

include flexible, efficient, and fairly simple to employ, while also offering good scalability. Dis-

advantages of this scheme include that it cannot be used in circumstances demanding heightened

security and node to node authentication.

2.2.6 Other Schemes based on Basic Random Key Predistribution Scheme

Chan et al. [19] propose the q-composite key pre-distribution, which allows two sensors to setup

a pairwise key only when they share at least q common keys. The q-composite keys scheme is

a modification to the basic scheme [42], where q common keys (q > 1) are needed, instead of

just one. By increasing the amount of key overlap required for key-setup, the scheme increases

the resilience of the network against node capture. The q-composite keys scheme first proceeds

in a similar manner to the basic random keys scheme. That is, the deployer picks a set S of

random keys out of the total key space and for each node in the network, selects m random keys

from S and stores them into the node’s key ring. Nodes then perform key discovery with their

neighbors. After key discovery, each node can identify every neighbor node with which it shares

at least q keys. Let the number of actual keys shared be q́, where q́ ≥ q . A new communication

link key K is generated as the hash of all shared keys, e.g.K = hash(k1, k2, . . . , kq́) . The

probability of connection keys are hashed in some canonical order, for example, based on the

order they occur in the original key pool S. Key-setup is not performed between nodes that share

fewer than q keys. The analysis shows that as the amount of required key overlap increases, it

becomes exponentially harder for an attacker with a given key set to break a link. However, to

preserve the given probability p of two nodes sharing sufficient keys to establish a secure link, it

26

is necessary to reduce the size of the key pool |S|. This allows the attacker to gain a larger sample

of S by breaking fewer nodes. The interplay of these two opposing factors results in an optimal

amount of key overlap to pose the greatest obstacle to an attacker for some desired probability of

eavesdropping on a link.

In multi-path key reinforcement [19] it is assumed that initial key-setup has been completed.

There are now many secure links formed through the common keys in the various nodes’ key

rings. Suppose node A has a secure link to node B after key-setup. This link is secured us-

ing a single key k from the key pool S. k may be residing in the key ring memory of some

other nodes elsewhere in the network. If any of those nodes are captured, the security of the

link between A and B is compromised. To address this, the communication key is updated to

a random value after key-setup. The key-update is coordinated over multiple independent paths

in this approach. It is assumed that enough routing information can be exchanged such that A

knows all disjoint paths to B created during initial key-setup that are h hops or less. Specif-

ically, A,N1, N2, . . . , Ni, B is a path created during the initial key-setup if and only if each

link(A,N1), (N1, N2, . . . , (Ni−1, Ni), (Ni, B)) has established a link key during the initial key-

setup using the common keys in the nodes’ key rings. Let j be the number of such paths that are

disjoint (do not have any links in common). A then generates j random values v1, . . . , vj . A then

routes each random value along a different path to B. When B has received all j keys, then the

new link key can be computed by both A and B as:

ḱ = k ⊕ v1 ⊕ v2 ⊕ . . .⊕ vj (2.1)

The secrecy of the link key k is protected by all j random values. Unless the adversary success-

fully manages to eavesdrop on all j paths, they will not know sufficient parts of the link key to

27

reconstruct it. However, for any given path, the probability that the adversary can eavesdrop on

the path increases with the length of the path. If any one link on the path is insecure then the entire

path is made insecure. Further, it is increasingly expensive in terms of communication overhead

to find multiple disjoint paths that are very long. This approach has the advantage that path dis-

covery overhead is minimized and the paths are naturally disjoint and no further effort needs to

be taken to guarantee this property.

Zhu et al. [22] adopted the similar mechanism which uses threshold secret sharing for key rein-

forcement. SA generates a secret key Kγ
A,B, j − 1 random shares ski, and skj = Kγ

A,B ⊕ sk1 ⊕

. . . ⊕ skj−i. SA sends the shares through j disjoint secure paths. SB can recover Kγ
A,B upon

receiving all shares.

Di Pietro et al. [23] provide further improvements to basic scheme [42]. Keys are assigned to

a node according to the output of a pseudorandom generator with a public seed and the node’s

ID as inputs. In Co-operative pair-wise key establishment protocol, SA first chooses a set C =

(c1, c2, . . . , cm) of co-operative nodes. A co-operative node provides a hashHMAC(kc1,B, IDA).

Reinforced key is then Kγ
A,B = KA,B⊕HMAC(kc,B, IDA) where KA,B and KC,B are the estab-

lished link keys. Node SA shares set C with node SB; therefore, SB can generate the same key.

This approach requires nodes SA and SB to send and receive cmore messages. Moreover, cooper-

ative nodes have to send and receive two extra messages. In addition to increased communication

cost, each cooperative node has to execute HMAC function twice for SA and SB. When a node

joins the network, it discovers its neighbors’ keys by just knowing its neighbors’ IDs.

The key reinforcement solutions in general increase processing and communication complexity,

but provide good resilience in the sense that a compromised key-chain does not directly affect se-

curity of any links in the WSN. But, it may be possible for an adversary to recover initial link keys.

An adversary can then recover reinforced link keys from the recorded multi-path reinforcement

28

messages when the link keys are compromised.

Zhu Localized Encryption and Authentication Protocol (LEAP) is a complete key management

framework for static WSNs [13]. For key deployment, each node has to store 4 kinds of keys:

(1)an individual key, (2)a group key, (3)cluster keys, and (4)pairwise shared keys. In addition

to these keys: a node also has to store a one-way key chain it creates, the commitments of the

key chains its neighbors create, and the commitment of the base station’s key chain. In key

establishment phase, a node uses its individual key to encrypt messages it sends to the base station.

Messages broadcast by the base station are encrypted with the group key but authenticated with

µTESLA. The combination of cluster key and one-way key chain is interesting because if only the

cluster key is used, a compromised neighbor would disclose the cluster key; if only the key chain

is used, the keys in the key chain would have to be broadcast in clear, allowing replay attacks to

take place; but if used together, the cluster key can be used to hide the keys in the key chain from

cluster-outsiders, so that the keys do not need to be disclosed according to a schedule as in SPINS,

and the keys in the key chain can be used for authentication as usual [14]. In order to add a new

node to the network, a new node u is imprinted with an individual key for communication with

the base station, the group key, the commitment of the base station’s key chain, and an initial key

. To evict a node, the base station broadcasts an eviction message using µTESLA.

Cheng propose an efficient pair-wise key establishment and management scheme [24]. In this

approach, a two-dimensional key matrix is generated to distribute symmetric keys into sensor

nodes. Each sensor randomly stores a row and a column from the matrix before the deployment.

Since each row has an intersection entry with each column in the matrix, every pair of sensors

would share at least two common keys between them. After the deployment, two neighboring

nodes combine their shared common keys and their node identities to generate a pairwise key

between them. Because all the established pairwise keys are distinct to each other, any sensor’s

29

compromise cannot affect the secure communication between non-compromised nodes. The com-

munication overhead for this scheme is still too high for large scale dense networks, too many keys

need to be pre-loaded into sensor nodes, node addition is a complicated and energy consuming

procedure.

Liu propose the Polynomial Pool Based Key Predistribution Scheme [44]that offers several ef-

ficient features the other key predistribution schemes lack, including:(1) Any two sensors can

definitely establish a pairwise key when there are no compromised sensors (2) Even with some

nodes compromised, the others in the network can still establish pairwise keys (3) A node can find

the common keys to determine whether or not it can establish a pairwise key and thereby help re-

duce communication overhead. In the initialization stage, the setup server randomly generates a

bivariate t degree polynomial f(x, y) over a finite field Fq, where f(x, y) =
∑t
i,j=0 aijx

iyj . The

setup server then generates a polynomial share of the equation for every node in the sensor net-

work; e.g., node i in the network receives an f(i, y) share and node j receives an f(j, y) share.

If both nodes i and j want to establish a common key f(i, j) between them, then node i can

compute the common key by computing f(i, y) at node j and then node j can compute f(j, y)

at node i for the common key f(i, j). Advantages of this scheme include that it allows the net-

work to grow to a larger size after deployment. Disadvantages of this scheme include t-collision

resistance (compromising more than t polynomials leads to network compromise).

Hypercube Key Distribution Scheme guarantees that any two nodes in the network can establish

a pairwise key if there are no compromised nodes present as long as the two nodes can commu-

nicate [45]. Also, nodes can still communicate with high probability if compromised nodes are

present. Nodes can decide whether or not they can directly communicate with other nodes and

what polynomial they should use when transmitting messages [45]. If the total the number of

nodes in the network to N , then this scheme computes an n-dimensional hypercube with mn−1

30

polynomials. Before node distribution, a setup server assigns each node an exclusive coordinate

in a matrix. Also the setup server assigns each node a set of polynomials in which it can com-

pute a pairwise key with other nodes for communication. To compute the initial polynomials, the

setup server makes n×mn−1 number of polynomials over a space of Fq. Each node occupies an

empty space in the matrix. If nodes a and b share a common polynomial, they can make a direct

connection and compute a pairwise key to communicate. If the two nodes do not share a common

polynomial they have to use the path discovery method to compute an indirect key.

Oliveira show how random key pre-distribution, widely studied in the context of flat networks,

can be used to secure communication in hierarchical (cluster-based) protocols [20] such as

LEACH [46]. They presented SecLEACH, a protocol for securing node-to-node communication

in LEACH-based networks. A large pool of S keys and their ids are generated in pre-deployment

phase of SecLEACH,. Each node is then assigned a ring of m keys drawn from the pool pseudo-

randomly, without replacement. Also prior to deployment, for each node is assigned a pairwise

key shared with the BS. The LEACH clustering algorithm can then be run with the given modifi-

cations: when a self-elected CH broadcasts its advertise message , it includes the ids of the keys

in its key ring; the remaining nodes now cluster around the closest CH with whom they share a

key. Their estimates show that the overhead incurred by SecLEACH is manageable; and memory

usage, energy efficiency, and security level can be each traded off for another, depending on what

is most critical in a system.

Jolly proposed a low-energy key management protocol for hierarchical WSNs [47]. In their

scheme, a wireless sensor network is partitioned into several distinct clusters by some gateway

nodes. Before deployment, each gateway node stores a set of keys in its memory; each sensor ran-

domly selects a key from a gateway node and stores it with the gateway node’s id in its memory.

After the deployment, each sensor exchanges its key information with its cluster head, if the clus-

31

ter head has the key in its memory, they can establish a secure link directly. Otherwise, the cluster

head request the intended key from the corresponding gateway node. This scheme provides bet-

ter network performance than previous key pre-distribution schemes since a hierarchical network

model is used, but it does not address the node capture attack problem which is the major threat

in WSNs. If a gateway node is compromised, the adversary could track all the communications

between gateway nodes. Since all the communications in the hierarchical network are relayed by

the gateway nodes, the whole network would be crashed by a single gateway node’s failure.

Ren proposed a new approach for random key pre-distribution to achieve both efficiency and

security goals [25]. The novelty of this approach lies in that, instead of using a key pool consisting

of random keys, a key generation technique is carefully designed such that a large number of

random keys can be represented by a small number of key-generation keys. Then, instead of

storing a big number of random keys, each sensor node stores a small number of key-generation

keys while computing the shared secret keys during the bootstrapping phase on the fly using the

computationally efficient hash function. This scheme outperforms the previous random key pre-

distribution schemes in that it reduces the storage requirement significantly while holding the

comparable security strength.

2.2.7 Key Management for Heterogeneous Sensor Networks

There is also active research in key management for heterogeneous sensor networks. Du proposes

the asymmetric pre-distribution (AP) scheme for heterogeneous sensor networks consisting of a

small number of high end sensor(H-sensor) and a large number of low end sensors(L-sensor) [48] .

Further, they assumed that H-sensors are equipped with temper resistant hardware and are utilized

to provide simple, efficient and effective key set up schemes for L-sensors. The AP scheme

provides better security with low complexity and significant reduction on storage requirement by

storing more number of pre-configured keys on H-sensors and small number of pre-configured

32

keys on L-sensors.

Bulusu proposes two key predistribution based scheme for heterogeneous networks which consist

of nodes which are stationary as well as highly mobile [49] . The first scheme uses a separate

key pool for links between mobile and static nodes. From this key pool the mobile and station-

ary nodes randomly select mkeys and e(e << m) keys respectively. Having fewer keys in the

stationary nodes ensures that the capture of a stationary node compromises a small fraction of

the mobile key pool. The second scheme uses a large key pool which is segmented into smaller

key pools. All the nodes of a particular stationary network select m keys randomly from one of

the small segments whereas the mobile nodes select m nodes from the entire key pool. It is en-

sured that the probability that a mobile node would have some keys from each of the segments is

high. The advantage of using a separate disjoint key pool to establish links between the stationary

and mobile nodes of the network is that the compromise of keys in one network would not lead

to compromise of keys in all the networks. The main disadvantage of key pre-distribution with

separate key pools scheme is that the mobile key pool must be known before the deployment of

stationary nodes.The main disadvantage of key predistribution with segmented key pools scheme

is that it is not scalable if the number of networks becomes high.

Traynor demonstrate that a probabilistic unbalanced distribution of keys throughout the network

that leverages the existence of a small percentage of more capable sensor nodes can not only pro-

vide an equal level of security but also reduce the consequences of node compromise [50]. In [51]

they characterize the effects of the unbalanced key management system, and design a comple-

mentary suite of key establishment protocols known as LIGER, a hybrid key management system

for heterogeneous sensor networks, as extension of the work done in [50]. Similar to [48, 50], it is

assumed that there are nodes in the network that are more powerful and more secure than others,

and these more powerful nodes are also in tamper proof boxes or well guarded. A node that has

33

limited memory and processing power is identified as L1 and a node that have more memory and

more processing power is identified as L2. L2 nodes act as head nodes for the L1 nodes and

have the responsibility of routing packets throughout the network. These L2 nodes have access

to gateway servers which are connected to a wired network. All nodes are loaded with a ran-

dom set of keys drawn from a common pool before being deployed. In addition, the mapping

of keys to nodes is stored in a KDC. An architecture is created that allows networks to operate

securely in the absence and presence of a key distribution center(KDC). In the absence of a KDC,

a stand-alone protocol, referred to as LION is used to implement the theory in many papers based

on probabilistic keying, differ from most of the previously defined systems by supporting opti-

mizations that allow keys to be deployed in an unbalanced manner, i.e., more keys are deployed

in more capable nodes (L2). The scheme relying upon the presence of the KDC is referred to as

TIGER. If the network has access to a KDC, the knowledge of the pre-deployed keys is used to

perform probabilistic authentication with a high degree of confidence. In addition, session keys

are established with the enforcement of least privilege. Nodes gather information in this mode

of operation so that they may continue to perform some level of probabilistic authentication if

the KDC becomes unavailable for periods of time. The mode of operation may change between

stand-alone and KDC-mode.The combination of slightly modified versions of these two schemes

results in LIGER - a more robust method of key management for heterogeneous sensor networks.

The combination enables different levels of probabilistic authentication without increasing mem-

ory requirements of the L1 sensor nodes. Lu proposes a framework for key management schemes

in distributed wireless sensor networks with heterogeneous sensor nodes [52].

2.3 Previous Work: Secure Group Communication in Wireless Sensor Networks

Recently there have been several proposals to address the secure group communication issues.

The most known technique is the construction of a logical key tree where group members are

34

associated with leaves and each member is given all the keys from his leaves to the root, as

proposed in [53, 54, 55, 56], where root key is the group key. This approach allows reducing

the communication cost for key update, on the event of group membership change, to O(logM)

where M is the number of group members.

Several extensions are proposed to deal with reliability [57], node dependent group dynamics

[58], and time variant group dynamics [59]. Extensions to wireless networks are discussed in

[60] and several secure multicast protocols are proposed in [61] [62].

Park proposes a lightweight security protocol(LiSP) for efficient rekeying in dynamic groups

[63]. LiSP utilizes broadcast transmission to distribute the group keys and uses one-way key

chains to recover from lost keys. While this scheme is very efficient, LiSP requires the use of

static administration keys to perform periodic administrative functions. This leaves those keys

vulnerable to disclosure.

Wong proposes three rekeying strategies: user-oriented, key-oriented, and group-oriented and

specify join/leave protocols based upon these rekeying strategies [64]. A user u who wants to

join (leave) a secure group sends a join (leave) request to the key server, denoted by s. For a join

request from user , it is assumed that group access control is performed by server using an access

control list provided by the initiator of the secure group.6 A join request initiates an authentication

exchange between and . If user u is not authorized to join the group, server s sends a join-denied

reply to u . If the join request is granted, it is assumed that the session key distributed as a result of

the authentication exchange will be used as the individual keyKu of u. The group rekeying, which

relies only on current rekeying message and the node’s initial configuration. A non-revoked node

can decrypt the new session keys independently from the previous rekeying messages without

contacting the GC, even if the node is off-line for a while. They use keys of multiple granularity

to reduce the rekeying overhead associated with membership management.

35

Carman gives a comprehensive analysis of various group key schemes and find that the group

size is the primary factor that should be considered when choosing a scheme for generating and

distributing group keys in a WSN [65].

Staddon proposes a self-healing group key distribution scheme based on two-dimension t-degree

polynomials [66]. Liu further improves the work in [66] by reducing the broadcast message size

in situations where there are frequent but short-term disruptions of communication, as well as

long-term but infrequent disruptions of communication [44]. Blundo also presents a design of

self-healing key distribution schemes which enables a user to recover from a single broadcast

message where all keys are associated with sessions where it is a member of the communication

group [67].

Jiang proposes a key distribution scheme with time-limited node revocation based on dual direc-

tional hash chains for WSNs [68]. Dutta proposes two constructions for self-healing key distribu-

tion based on one-way hash key chains with t revocation capability using polynomial based node

revocation [69].

2.4 Conclusion

In this chapter the idea of WSNs is being put in the broader perspective. The particular charac-

teristics of sensor node and its hardware constraints are reviewed and discussed. The wireless

sensor network model, its communication architecture and number of application scenarios are

also given. In addition many Key management protocols for WSNs have been proposed in lit-

erature are discussed. It is shown that they suffer from one or more of the problems of weak

security guarantees if some nodes are compromised, lack of scalability, high energy overhead for

key management, and increased end to end data latency. In general key pre-distribution protocols

expose the security of the whole network when a certain fraction of nodes is compromised. Se-

cure group communication in wireless sensor networks is also discussed. Based on the analysis of

36

above schemes, it is concluded that there are significant tradeoffs and, there is no one-size-fits-all

solution for key distribution problems in WSNs.

37

Chapter 3

SECURE AND EFFICIENT KEY MANAGEMENT SCHEME FOR

HETEROGENEOUS SENSOR NETWORKS

3.1 Introduction

Cryptography is the foundational technology used for protecting and securing the communication

in sensor networks [70]. This technology relies on keys as the centerpieces, and many attacks fo-

cus on disclosing these keys. As a result, the management of the keys (the process by which keys

are generated, stored, protected, distributed, used, and destroyed) is a very important and chal-

lenging problem in a large-scale network consisting of several hundreds or thousands of sensor

nodes.

Conventional security protocols are usually master key based or distributed key based manage-

ment schemes. In master key based schemes, every node shares a single pre-loaded master key.

Further, master key is used to negotiate session keys for securing different wireless links. For

example, Menezes uses a simple three way handshaking and authentication protocol based on the

master-key for setting up session keys [71]. This type of key management scheme has the underly-

ing assumption that the sensor nodes are tamper proof and the master key that is stored inside each

node cannot be retrieved by the adversary. However, the assumption that the nodes are tamper

proof cannot be ensured in many sensor network applications because sensor nodes are usually

left unattended in a hostile and remote environments. Once the master key is compromised, the

adversary can use it to break the security of the entire network.

Other commonly used schemes in WSNs are key pre-distribution schemes [19, 20, 42, 21, 22,

38

23, 24, 25]. In these approaches, with minimal resources, one can achieve a known probability

of connectivity within a network. These efforts assume a deployment of homogeneous nodes,

and therefore use a balance distribution of random keys among the nodes. Most existing research

mainly considers homogeneous sensor networks, where all sensor nodes have identical capabil-

ities in terms of communication, computation, sensing, and reliability; however, homogeneous

WSNs are not scalable.

Several recent works, on the other hand, investigate heterogeneous sensor networks (HSNs).

Girod develops tools to support heterogeneous systems as well as the measurement and visual-

ization of operational systems [72]. Lazos studies the coverage problem in planar heterogeneous

sensor networks and formulate the coverage problem as a set intersection problem [73]. They

formulate expressions in order to determine the required number of sensors for a field of interest.

Ma proposes a resource oriented protocol for heterogeneous sensor networks to build the network

model that adapts according to the members’ resources [74]. Du proposes a differentiated cover-

age algorithm which can provide different coverage degrees for different areas; the algorithm is

energy efficient since it only keeps minimum number of sensors in active state [75]. Melo analyze

the energy consumption and lifetime of HSN by providing periodic data from a sensing field to a

remote receiver [76].

In this chapter, a scalable and efficient protocol for key management is proposed that is sensi-

tive to the sensor nodes resource constraints, including storage, computation and communication.

The proposed key management scheme is based on random key pre-distribution for HSNs; As

large-scale homogeneous networks suffer from high costs of communication, computation, and

storage requirements, the HSNs are preferred because they provide better performance and secu-

rity solutions for scalable applications in dynamic environments. The propose scheme consider

heterogeneous sensor network consisting of two types of sensors: high-end (H-node) and low-end

39

(L-node). Further, for scalable solutions, the proposed scheme uses hierarchical structure, where

H-node act as CH and L-nodes as cluster members.

To address storage overhead problem in the constraint sensor nodes, a key generation process is

incorporated, where instead of generating a large pool of random keys, a key pool is represented

by a small number of generation keys. For a given generation key and a publicly known seed

value, a keyed-hash function generates a key chain; these key chains collectively make a key

pool. Further, each sensor node is assigned a small number of randomly selected generation

keys. As a result, by using generation keys, the proposed scheme significantly reduces the storage

requirements.

Dynamic network topology is native to WSNs because nodes can fail or be added. As result,

the proposed scheme allows dynamic node addition and removal. In the case of node addition,

the proposed scheme is able to distinguish between legitimate and malicious nodes. Further, as

adversaries can compromise sensors and acquire all security information, a re-keying scheme is

incorporated to update all types of keys periodically.

This chapter also reports the implementation and the performance of the proposed scheme on

Crossbow’s MicaZ motes running TinyOS where it consider the computation and storage costs

of two keyed-hash algorithms for key chain generation, HMAC-SHA1 and HMAC-MD5.The

results indicate that the proposed scheme can be applied efficiently in resource-constrained sensor

networks.

3.2 Network Model

The heterogeneous sensor network is considered, consisting of three types of nodes: base station,

H-node, and L-node.

Base Station: The BS is assumed to be secure, not prone to failures, and does not have any

resource constraints such as bandwidth, energy, memory, and processing.

40

H-Nodes: H-nodes have more memory and processing capability. These nodes are equipped with

tamper resistant hardware and communicate directly with the BS. Although H-nodes have rich

resources, but these are still limited as compared to the BS. For instance, Crossbow’s stargate

nodes can be used asH-nodes.

L-Nodes: L-nodes are ordinary sensor nodes that are limited in terms of memory and process-

ing capability. The L-nodes acquire data from the surrounding environment and forwards the

collected data to theH-node. Further each L-node (andH-node) is aware of its own location.

In a typical initial HSN deployment, there would be a small number of H sensors and a large

number of L-nodes. Further, for scalability and easy maintenance, bothH-nodes and L-nodes can

be added as needed. H-nodes and L-nodes are assumed to be uniformly and randomly distributed

in the field. Clustering of sensors enable local data processing, which reduces communication

load in the network in order to provide scalable solutions.

HSN consists of a hierarchical structure where sensors are divided into clusters and each cluster

is managed by a CH, as shown in Figure 3.2. All H-nodes act as CHs; whereas each L-node is a

cluster member and cannot act as a CH.

Most traffic in HSN can be classified as many-to-one, one-to-one and local communication. In

many-to-one communication, multiple H-nodes and L-nodes send sensor readings to a BS or

aggregation point in the network. In one-to-many communication, a single node (either a BS or

H-nodes) multicasts or floods a query or control information to several L-nodes. In local commu-

nication the neighboring L-nodes and H-nodes send localized messages to discover and coordi-

nate with each other. A node may broadcast messages intended to be received by all neighboring

nodes or unicast messages intended for a only single neighbor.

Each L-node is able to securely communicate with all other L-nodes in its neighborhood and its

CH (H-senor). Moreover, H-nodes maintain secure communication with following entities: BS,

41

Figure 3.1: Network Model

cluster member (L-node) and other CHs (H-nodes).

3.2.1 Threat Model

A malicious node can be either an external node that does not know the cryptographic keys, or an

internal node (L-node), that possesses the keys. An adversary can create an internal compromised

node by capturing a legitimate L-node. All these malicious nodes can exhibit Byzantine behavior

which can be described as a behavior when one or more sensors or devices work in collusion to

disrupt the network. It could include several security challenges such as denial of service attack,

dropping or altering packets, topology distortion, impersonation, and wormholes.

3.3 Preliminaries

A few terms and definitions used in the rest of the thesis are given in appendix 1.

3.4 Proposed Scheme

This section presents an efficient key management scheme designed for heterogeneous sensor

networks. The proposed scheme uses a symmetric-key mechanism to distribute, revoke, and

renew keys during the lifetime of HSN.

42

3.4.1 Key Pre-Distribution Phase

The key pre-distribution phase includes key pool generation and key ring assignment.

3.4.1.1 Key Pool Generation

This section describes the process of key pool generation. Generate a large pool of random sym-

metric keys as follows. First, the cardinality (size) of key pool |K| is selected. Then, the number

of key chains M is chosen accordingly. A key pool K consists of M different key chains, as given

in Equation 1. Further, there are no common keys between any two key chains, which is formally

given as follows:

Ci ∩ Cj = φ, ∀i 6= j (3.1)

As a key chain Ci is generated independently via a unique generation key gki and publicly known

seed S by applying a keyed hash algorithm repeatedly [25], the j-th key of the key chain Ci is

computed as:

kCi,j =


HMAC(gki, S) : j = 0

HMAC(gki, kCi,j−1
) : 1 ≤ j ≤ N − 1

(3.2)

Figure 3.2 shows a block diagram to illustrate the process of key generation. The first key is gen-

erated by using seed S and gki as inputs to keyed hash function (HMAC); however, the remaining

keys are generated by applying HMAC over gki and the previous key. The total number of keys

in a key chain is N, where

N =
K

M
(3.3)

Further, BS generates a special key KM known as master key, which is used for authentication.

43

Figure 3.2: Key Chain Generation Process

3.4.1.2 Key Ring Assignment

For each node (L-node or H-node), a unique identity (id) is generated using a pseudorandom

function (PRF). Before deploying the nodes, each node is loaded with its assigned key ring R,

where R consists of the number of generation keys used to generate corresponding key chains.

According to the assigning rules, each L-node is assigned r number of randomly selected gen-

eration keys of corresponding key chains. First, input the L-node id as seed to pseudorandom

number generator (PRNG) of a large enough period to produce a sequence of r numbers, as given

in Equation 3.4.

PRNG(idi) = n1, n2, . . . nr (3.4)

Second, the set of key ids assigned to L-node, can then be obtained by mapping each number in

the sequence to its correspondent value modulus M, as given in Equation 3.5.

idgki = ni mod M (3.5)

where 0 ≤ idgki ≤ M − 1. From these r generation keys, r×N random keys can be calculated

effectively. In addition, each L-node is preloaded with an authentication key KM,Li , which is

generated by applying one way hash function on the id of L-node and master key i.e. KM,Li =

44

H(KM , idLi).

EachH-node is preloaded with S randomly selected generation keys of corresponding key chains

as described above. However, it should be noted that S >> r. Each H-node is also preloaded

with a master key KM .

3.4.2 Cluster Formation Phase

During the cluster formation phase, all H-nodes broadcast Hello messages to nearby L-nodes

with some random delay, in order to avoid collisions of Hello messages from neighboring H-

nodes.The probability of collision is quite small when a non-persistent CSMA protocol is used

for medium access control [77]. Moreover, an H-node can broadcast its ID multiple times to

increase the probability so that is received by all its neighbors. The Hello message includes the

ID of the H-node. The transmission range of the broadcast is large enough so that all L-nodes

can receive Hello messages from several H-nodes. Then, each L-node selects the H-node as the

CH whose Hello message has the best received signal strength indicator(RSSI) value. Each L-

node also records the ids of other H-nodes from which it receives the Hello messages, and these

H-nodes are listed as backup CHs in case the primary CH fails. Only H-node can act as a CH;

whereas the L-nodes act as cluster members; the details of clustering scheme can be found in

[78].

3.4.3 Cluster Head based Shared Key Discovery Phase

The shared key discovery phase begins after cluster formation phase. First, each cluster member

sends to its CH a message, which includes its ID, nonce, its neighboring nodes information, and

MAC which is calculated on all these values using a key KM,Li .

Second, this phase also includes a neighborhood discovery, as shown in Figure 3.3. In message

1, L-node (Li) broadcasts hello messages for a short range in order to discover neighbors. In

45

message 2, one of Li’s neighbor, say Lj acknowledges with HelloReply message. Then, Li adds

Lj’s id in its neighbors list. The neighborhood discovery phase ends when all the L-nodes have

obtained neighborhood information.

1 Li ⇒ ∗ : Hello(idLi)
2 Lj ⇒ Li : HelloReply(idLj)
3 Li : adds the idLj into List
4 Lj : Repeat 2 and 3 for every HelloReply

Figure 3.3: Neighboring Node Discovery

Third, CH discovers the shared generation keys between neighboring L-nodes in its cluster, as

shown in Figure 3.4.

1 Li ⇒ Ha : idLi , nonceLi , List,MACKM,Li (idLi‖nonceLi‖List)
2 Lj ⇒ Ha : idLj , nonceLj , List,MACKM,Lj (idLj‖nonceLj‖List)
3 Ha ⇒ Li : n, idgkm , idLi , idLj ,MACKM,Li (n‖idgkm‖idLi‖idLj‖nonceLi)
4 Ha ⇒ Lj : n, idgkm , idLi , idLj ,MACKM,Lj (n‖idgkm‖idLi‖idLj‖nonceLj)

Figure 3.4: Neighboring L-nodes with Common Preloaded Generation Key

In messages 1 and 2, L-nodes Li and Lj send messages to CH Ha, where messages contain their

ids, nonce, the list of their neighboring L-nodes ids, and MAC on all these values. Ha determines

the generation keys in Li and Lj’s key rings (RLi and RLj) by using the pseudorandom scheme

described above in (Section 3.4.1). The CH chooses the common generation key gkm, where

gkm ∈ RLi ∩ RLj ; a generation key with minimum index is selected in case of multiple common

keys. Then, Ha determines the shared pairwise key between Li and Lj by generating a random

number n, where [0 ≤ n ≤ N − 1], which is used as an index in the key chain Cm for selecting

the pairwise shared key, i.e. KCm,n . Then, Ha disseminates the shared-key information to Li and

Lj sensors, as shown in messages 3 and 4. The shared-key information consists of the following:

a) ids of neighboring L-nodes (Li and Lj), b) id of the common generation key, i.e. idgkm , c)

n that represents the index of shared pairwise key of Cm key chain, d) nonce, and e) MAC that

46

is calculated on all these values using corresponding authentication keys KM,Li and KM,Lj . In

other words, L-nodes Li and Lj share n-th key of Cm key chain by applying the common key

generation algorithm shown in Figure 3.5 on n and gkm. Further, L-nodes Li and Lj also share

the same n-th key of Cm key chain with their CH.

1: function GetKey (n, gkm)
/* param n: random number */
/* param gkm: common generation key */

2: KCm,0 = HMAC(gkm, seed)
3: for i=1 to n-1
4: KCm,i = HMAC(gkm, KCm,i−1

)
5: end for
6: return KCm,n−1

Figure 3.5: Session Key Generation

3.4.3.1 No Common Preloaded Generation Key between L-nodes

Some L-nodes may not share any preloaded generation key with their neighbors. For each pair

of L-nodes (say X and Y) that do not share any generation key, Rx ∩ Ry = φ, CH Ha obtains

a shared-key between Ha and Lx and a shared-key between Ha and Ly. Then, Ha generates a

pair-wise key for each pair (Lx and Ly), and securely sends the key to them.

Figure 3.6 shows an example for neighboring L-nodes that do not share common preloaded gen-

eration key. Ha first checks if it has a preloaded generation key shared with the L-nodes (e.g.,

Lx and Ly), RLx ∩ RHa 6= φ and RLy ∩ RHa 6= φ. As Ha is preloaded with a large number of

generation keys, there is a high probability that Ha can find at least one shared generation key

with Lx and Ly, i.e. gki ∈ RLx ∩ RHa and gkj ∈ RLy ∩ RHa . Ha generates random numbers

p, where [0 ≤ p ≤ N − 1] and q where [0 ≤ q ≤ N − 1]. Ha sends messages 3 and 4, which

means that Ha shares the p-th key (KCi,p) of Ci key chain with node Lx and q-th key (KCj,q) of

Cj key chain with node Ly. Then, Ha generates a new shared key between Lx and Ly and sends

this key to both Lx and Ly, encrypting with shared key between nodes (Lx, Ly) and Ha, as shown

47

in messages 5 and 6.

1 Lx ⇒ Ha : idLx , nonceLx , List,MACKM,Lx (idLx‖nonceLx‖List)
2 Ly ⇒ Ha : idLy , nonceLy , List,MACKM,Ly (idLy‖nonceLy‖List)
3 Ha ⇒ Lx : idLx , idgi , p,MACKM,Lx (idLx‖idgi‖p‖nonceLx)
4 Ha ⇒ Ly : idLy , idgj , q,MACKM,Ly (idLy‖idgj‖q‖nonceLy)
5 Ha ⇒ Lx :

〈
KLx,Ly

〉
KHa,Lx

6 Ha ⇒ Ly :
〈
KLx,Ly

〉
KHa,Ly

Figure 3.6: Neighboring L-nodes without Common Preloaded Generation Key

3.4.3.2 No Common Preloaded Generation Key Between CH and L-node

In case that an L-node does not share any preloaded generation key with its CH, then CH finds a

key to communicate securely with that L-node. CH Ha generates a key KHa,Li and sends the key

to L-node encrypted with that L-node’s authentication key KM,Li , as given in Equation 3.6

Ha → Li : 〈KHa,Li〉KM,Li (3.6)

3.4.4 Inter-cluster Communication

An inter-cluster communication between CHs (say Hi and Hj) is achieved through a key KHi,Hj

generated by applying hash function on idHi and idHj using key KM , as given in Equation 3.7.

KHi,Hj = HMAC(KM , idHi‖idHj) (3.7)

If node La wishes to communicate with a node that lies in a different cluster, then two CHs are

involved in order to setup a session key between L-nodes. Say La lies in Cluster i and Lb in

j and the respective CHs are Hi and Hj . As shown in Figure 3.7, in line 1, La sends request

to Hi consisting of its id (idLa), the id of L-node with which it wants to communicate (idLb), a

nonce, and MAC that is calculated on all these values using KM,La . Hi determines the common

48

generation key (gkm) in the key rings of L-nodes (La and Lb). Then Hi generates a random

number n and sends the shared key message to La consisting of both L-nodes ids (idLa , idLb), id

of the common generation key (idgkm),n, nonceLa and MAC that is calculated by using KM,La ,

as shown in line 2 of Figure 3.7. Similarly, in line 3, Hi sends a message to Hj containing the

shared key information between La and Lb. After receiving this message, Hj forwards the shared

key message to Lb consisting of ids of both La and Lb, id of the common generation key, n, and

MAC that is calculated on all these values using KM,Lb , as shown in line 4. Now L-nodes La and

Lb use n-th key of Ci key chain to communicate securely.

1: La ⇒ Hi : idLa , idLb , nonceLa ,MACKM,La (idLa‖idLb‖nonceLa)
2: Hi ⇒ La : idLa , idLb , idgki , n,MACKM,La (idLa‖idLb‖idgki‖n‖nonceLa)
3: Hi ⇒ Hj : idLa , idLb , idgki , n,MACKM (idLa‖idLb‖idgki‖n)
4: Hj ⇒ Lb : idLa , idLb , idgki , n,MACKM,Lb (idLa‖idLb‖idgki‖n)

Figure 3.7: L-node to L-node Inter-cluster Communication

3.4.5 Addition of New Nodes

A desirable property in a scalable key management scheme is the ability of adding new sensors

to the network. These newly deployed sensor nodes need to establish secret key with existing

nodes. However, before adding new nodes into network, it should be ensured that the newly

deployed sensor node is not an adversary node. The proposed scheme is robust for adding new

legitimate L-nodes in the network. After an L-node Lx is deployed in the network, Lx determines

its neighbors using neighboring node discovery as described in Figure 3.3. Lx sends join request

to the CH (say Ha), for which it has the best RSSI and LQI values, as shown in Figure 3.8. Ha

authenticates the node Lx by verifying the MAC. If authenticated, Ha determines the shared key

for each of Lx’s neighbors and unicasts the shared key message to Lx and its neighbors.

49

Lx → Ha : idLx , nonceLx , List,MACKM,Lx (idLx‖nonceLx‖List)

Figure 3.8: New Node Addition

3.4.6 Setting up Cluster Key

Cluster key is used by both CH and cluster members to securely broadcast messages within a

cluster. After setting up shared pairwise key between cluster members, CH (say Ha) generates

a cluster key CKa, which is sent to each cluster member, where CKa is encrypted with the

corresponding shared key between CH and the cluster member. For example, CH Ha sends to

Lu (cluster member) the message shown in Equation 3.8,where KHa,Lu is the shared key between

L-node Lu and CH Ha.

Ha → Lu : 〈CKa〉KHa,Lu (3.8)

3.4.7 Key Revocation

Revocation procedures are involved after detecting compromised or faulty nodes. The BS is re-

sponsible for monitoring sensor behavior and detecting a sensor failure or compromise. For a

compromised node, the BS sends this information to the corresponding CH. The CH (say Ha)

broadcasts to its member the Revocation message containing the list of key ids to be revoked,

where the message is signed with CKa. The Revocation message is formed as shown in Equa-

tion 3.9

list(idgk1 , idgk2 , . . . idgkr),MACCKa(list) (3.9)

Each L-node when receives a Revocation message, it verifies the MAC to check the integrity of

message and to locate those key ids in its key ring, and remove the keys (if any). After key revo-

50

cation, some links may disappear and affected nodes need to reconfigure those links by restarting

the shared key discovery phase.

3.4.8 Re-keying

Using the same encryption key for extended duration may result in a cryptanalytic attack. A

remedy could be to ignore this threat because it is anticipated that in most cases the lifetime of

nodes would be less than the lifetime of the shared key between two nodes [14]. However, in some

cases, since it is possible that lifetime of keys expires, it is necessary to renew the encryption keys

(session keys). In order to accomplish the renewal of the session keys, the affected nodes remove

the expired keys and restart the shared key discovery phase with CHs.

3.5 The Routing Structure in HSN

From the routing point of view, hierarchy can significantly increase the routing efficiency by

reducing the number of nodes involving in the routing. Thus the network throughput can be

increased (for given radio link capabilities), data packet delay can be improved, and routing over-

head can be reduced.

Routing in HSN consists of two phases: 1) Intra-cluster routing: Each cluster member (L-node)

sends data to its CH (aH-node); and 2) Inter-cluster routing: Each CH receives messages from the

cluster members(L-nodes) and transmits the aggregated messages to a distant BS via theH-node

backbone.

The intra-cluster routing scheme in [79] determines how to route packets from a L-node to its

CH. When a L-node sends a packet to its CH (say Ha), the packet is forwarded by other L-nodes

in the cluster. The basic idea is to let all L-nodes (in a cluster) form a tree rooted at the CH Ha.

It has been shown in [75] that: (1) If complete data fusion is conducted at intermediate nodes,

(i.e., two k-bit packets come in, and one k-bit packet goes out after data fusion) then a minimum

51

spanning tree (MST) consumes the least total energy in the cluster. (2) If there is no data fusion

within the cluster, then a shortest-path tree (SPT) consumes the least total energy. (3) For partial

fusion, it is a NP complete problem of finding the tree that consumes the least total energy.

For sensor networks where data generated by neighbor sensors are highly correlated (e.g., two

k-bit packets are aggregated to one m-bit packet, where m is close to k), a MST may be used

to approximate the least energy consumption case. To construct a MST, each L-node sends its

location information to the CH Ha, and then Ha can run a centralized MST algorithm to con-

struct the tree. After constructing the MST, Ha can disseminate the tree structure (parent-child

relationships) to all L-nodes using one or more broadcasts.

For example, a pair (Lu, Lv) can be used to denote that L-node Lu is Lvs parent node. If the

cluster is small, one broadcast message can include all the pairs. If the cluster is large, then

it can be divided into several sections and H-nodes can notify L-nodes in each section by one

broadcast. Note that the broadcast from a CH needs to be authenticated. Otherwise, an adversary

may broadcast malicious messages and disrupt the dissemination of routing information. The

cluster key is used for authenticating broadcasts from H-nodes. When H-nodes broadcasts the

routing structure information (e.g., the MST) to L-nodes, a MAC is calculated over the message

using cluster key CKi of that cluster. Each L-node can verify the MAC by using cluster key, and

thus authenticate the broadcast.

For sensor networks where the data from neighbor sensors have little correlation, a SPT can be

constructed; using either centralized or distributed algorithms.

Since L-nodes are small, unreliable devices and may fail overtime, robust and self-healing routing

protocols are critical to ensure reliable communications among L-nodes. During the tree setup,

the MST or SPT algorithm can find more than one parent nodes for each L-node. One parent node

serves as the primary parent, and other parent nodes serve as backup parents. In case the primary

52

parent node fails, a L-node uses a backup parent for routing.

After the routing tree (an MST or an SPT) is constructed, the following secure data forwarding

scheme is used by L-nodes. Assume that L-node Lu sends data packets to its parent Lv as shown

in Equation 3.10, where the data is encrypted with the shared-key KLu,Lv and packetID (not

encrypted) is a local ID assigned by the sender Lu.

Lu → Lv : packetID + 〈Data〉KLu,Lv +MACKLu,Lv (v, ...) (3.10)

The packetID is used by Lu to monitor packet transmission from Lv to next node. A MAC is

appended at the end of the packet to detect any modification. The input to the MAC is everything

before the MAC. Node Lv sends the packet to its parent node in the tree. To guarantee the

delivery, each L-node is responsible for confirming that its successor has successfully forwarded

the packet. This may be implemented by the transmitter monitoring the packet just sent out to the

next node and overhearing if that node has passed it on within a time period using the packetID

field. The acknowledgment scheme reduces the impact of channel or node error and can detect

selective forwarding attack. If Lu does not get an acknowledgment within a certain time period,

Lu will re-transmit the packet to Lv. If the transmission to Lv fails again, Lu will send the packet

to a backup parent node. The process continues until the data packet reaches the CH HA.

3.5.1 Fault Tolerance

Our approach should support the ability to allow L-nodes to change the cluster even after the

initial deployment. This research develops a new solution capable of handling the change in

network topology based on node mobility. Suppose an L-node Lx moves from cluster a to cluster

b. So it needs to find a cluster key CKb, shared pairwise key with CH Hb and also the shared

pairwise keys with its new neighboring L-nodes.

53

So the Lx sends the join request to Hb consisting of its id, id of the previous CH (idHa),a nonce,

list of its new neighbors and MAC is calculated on all these values using its authentication key as

shown in message 1 of Figure 3.9 . The CH (Hb) authenticates the node Lx by verifying the MAC.

If authenticated, CH determines the shared key for each of Lx’s neighbors and unicasts the shared

key message to Lx and its neighbors. Hb will also send the message 2 shown in Figure 3.9 to Ha

reporting the change in the topology of cluster a because of the mobility of Lx. Ha verifies the

message by recalculating the MAC and then unicasts the topology change information to L-nodes

which were either parent or children of Lx.

1: Lx → Hb : idLx , idHa , nonceLx , List,MACKM,Lx (idLx‖nonceLx‖List)
2: Hb → Ha : idLx , nonceHa ,MACKHa,Hb (idLx‖nonceHa)

Figure 3.9: Message Transfer between H-node and L-node

3.6 Performance Evaluation

In this section, the proposed key distribution scheme is compared with other commonly used key

distribution techniques. The results show that the proposed scheme can significantly reduce the

storage requirements, while providing similar probability of key sharing among nodes.

The key pool size ‖K‖ is a critical parameter because in random key distribution schemes the

amount of storage reserved for keys in each node is likely to be a preset constraint, which makes

the size of the key ring ‖R‖ a fixed parameter. Once R is set then for larger values of ‖K‖ the

probability that two L-nodes will share a key is small. Further, the probability that a randomly

chosen link is compromised when a node that is at neither end of the compromised link decreases

by increasing the value of ‖K‖. There is a need to find the largest key pool size ‖K‖, such that

the probability of key sharing between two L-nodes, as well as L-node and H-node is not less

then the threshold p.

Let p be the probability that an L-node and H-node share at least one common key in their key

54

ring. The number of possible key ring assignments for an L-node is

M !

r!(M − r)!
(3.11)

The number of possible key ring assignment for anH-node is

M !

S!(M − S)!
(3.12)

The total number of possible key ring assignment for an L-node andH-node is

M !

r!(M − r)!
× M !

S!(M − S)!
(3.13)

The probability that an L-node andH-node share a common key can be given as

p = 1− (M − r)!(M − S)!

M !(M − r − S)!
(3.14)

Figure 3.10 shows probability of key sharing for different schemes. For different values of K, M,

S and r the probability of sharing at least one key is plotted, under our proposed scheme, the key

pre-distribution scheme [42] which will refer as basic scheme, and Asymmetric Pre-distribution

scheme [48] which will refer as AP scheme. In Figure 3.10(a), the key pool size ranges from

1,000 to 50,000 and key ring size is fixed to 100 for basic scheme. For AP scheme, H-node keys

are 500 and L-node keys are 20. For our proposed scheme, the number of key chains (M) varies

from 100 to 1000, S=90, and r=2. In other words, the number of key chains (M) is 0.02 times of

the corresponding key pool size.

Figure 3.10(a) shows that for the proposed scheme, the same probability of key sharing among

55

0.5

43

1.0

21
0.0

Key Pool Size(K)

p
0.25

5

0.75

104

Our Proposed Scheme

Basic Scheme

AP Scheme

(a)

1.0

Number of Key Chains (M)

0.75

600
0.0

400

0.5

0.25

p

200 1,000800

S=100 and r=2

S=100 and r=5

S=100 and r=10

(b)

Figure 3.10: The Probability of Key Sharing

nodes can be achieved by just loading 2 generation keys in sensor node as compared to 100 keys

in basic scheme [42] and 20 keys in AP scheme [48]. For instance, if there are 1000 L-nodes and

10H-nodes in an HSN, where each L-node is pre-loaded with 2 generation keys and eachH-node

is pre-loaded with 100 generation keys, the total memory requirement for our proposed scheme in

the unit of key length is 2×1000+100×10 = 3000. However, in AP scheme [48], if eachH-node

is loaded with 500 keys and each L-node is loaded with 10 keys, the total memory requirement for

storing these keys will be 500×10+1000×20=25,000, which is 8 times larger than our proposed

scheme. Further, for a homogeneous sensor network with 1000 L-nodes, where each L-node

is preloaded with 100 keys, the memory requirements will be 100×1000=100,000, which is 33

times larger than our proposed scheme.

Figure 3.7 shows that the probability of key sharing among nodes and CH increases by a very little

increase in the number of preloaded generation keys in L-nodes. For instance, if preloaded keys

are increased from 2 to 5, the key sharing probability increases from 0.5 to 0.8 approximately, for

400 key chains.

56

3.6.1 Security Evaluation

This section investigates the security resilience of our proposed scheme against node compromise

attack. Further, the expected number of compromised links due to key revealing of captured nodes

are calculated.

Each L-node has a knowledge of r×N keys. The probability that a given key does not belong

to an L-node is 1 − r
M

. If there are n compromised nodes, the probability that a given key is

not compromised is (1 − r
M

)n. The probability of total number of compromised keys, where n

number of L-nodes are captured, is given in Equation 3.15.

p = 1−
(

1− r

M

)n
(3.15)

Figure 3.11 shows the compromising probability with respect to the number of compromised

nodes. In this Figure, the proposed scheme (PS) is compared to EG [42] and q-composite [19]

schemes. For the given parameters: M=1000, K=50,000, r=5, and m=100, the results show that

PS is more resilient against node capture as compared to EG and q-composite schemes.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of compromised nodes

co
m

pr
om

is
in

g
pr

ob
ab

ili
ty

EG
q=2
q=3
PS

Figure 3.11: The Compromising Probability

Network layer attacks against sensor networks fall into one of the following categories: manip-

57

ulating routing information [80], selective forwarding [80], Sybil [81], Sink-hole [82], worm-

hole [83], and Hello flooding (unidirectional) attacks [82]. Brief descriptions of these attacks can

be found in [84]. In the following, it is discussed that how routing structure described above can

defend against various attacks on sensor network routing.

In Sybil attack [81], a single node presents multiple identities to other nodes in the network.

Authentication is used to ensure one node cannot pretend to be other nodes, i.e., when a sensor

node Lu sends a packet to another node Lv, Lu must present a MAC computed using the shared

pairwise key KLu,Lv between Lu and Lv. Since the pairwise key KLu,Lv is only known by Lu and

Lv, no adversary node can pretend to be node Lu (unless Lu is captured and the keys in Lu are

obtained by the adversary). Thus, the Sybil attack does not work.

The proposed routing structure includes two parts - intra-cluster routing and inter-cluster routing.

For intra-cluster routing, an L-node only sends the data to its parent node of the (MST or SPT)

tree, and the parent-child relationship is determined by the CH. For inter-cluster routing, given the

locations of the H-node and the BS, a serial of cells is determined as Relay Cells, and the packet

is forwarded only by H-nodes in the Relay Cells. Other nodes should not participate in routing.

An adversary is not able to route in proposed routing structure, and therefore it is resistant to

wormhole attack and sink-hole attack.

In proposed routing structure, the routing information is distributed by the CH. Since a CH is an

H-node with tamper-resistant hardware, it is well protected and can not be compromised by the

adversary. A CH appends keyed MAC to each routing control message. Only the L-node and

the CH know the key used to generate the MAC, and thus an adversary is not able to send false

routing information.

H-nodes are protected by the tamper-resistant hardware, henceH-nodes can not be compromised,

and the selective forwarding attack can not be launched on H-nodes. However, a selective for-

58

warding attack may happen on an L-node. For example, a powerful adversary always serves as a

relay node in a cluster, and she can selectively forward some packets while dropping other pack-

ets. The packetID field is used to defend this attack. Recall that each relay L-node is responsible

for confirming that its successor has successfully forwarded the packet by overhearing the trans-

mission. The packetID field is used to identify the particular packet. If a node selectively drops a

packet, this will be detected by the up-stream sender.

3.7 Implementation in Real Sensor Network

In this section, the implementation issues are investigated to show that the proposed scheme can

be efficiently implemented on resource-constrained sensor nodes.

In this thesis a representative sensor structure for L-nodes used is called MICAz as shown in

Figure 3.12(a). It is from the Crossbow Company [85]. The MICAz is a 2.4GHz, IEEE 802.15.4

compliant, Mote module used for enabling low-power, wireless, sensor networks. The operating

system is TinyOS and environment is Cygwin, which are discussed in detail in the next section.

Crossbow’s Stargate nodes are used as H-nodes as shown in Figure 3.12(b). The Stargate is a

high-performance processing platform designed for sensor, signal processing, control and wire-

less sensor network applications [86]. It is a gateway node with the following specifications: 400

MHz Intel PXA255 Xscale processor, 64 MB of SDRAM and 32 MB of flash memory. Further,

on another set of tests, Stargates were replaced by desktops – desktop specifications: 1.8 GHz

AMD Turion(tm) 64X2 mobile TL-56 processor and 2GB of RAM running windows XP.

The proposed protocols are implemented for TinyOS using nesC [87] programming language.

Our assessment includes how to discover the neighbors, the delay overhead of generating the

shared key by applying keyed hash algorithm on generation keys and seed, and an evaluation of

the overall key setup time for proposed scheme.

First, two one-way hash algorithms, SHA-1 and MD5, are implemented. A data stream of 64

59

(a) (b)

Figure 3.12: MicaZ and Stargate Sensor

bytes is taken. As shown in Table 3.1, for SHA-1 the code consumes 128 bytes of RAM, 4048

bytes of ROM, and takes approximately 10.5 ms to produce a 160-bit hash of a 64-byte message.

MD5 produces a 128-bit message digest for a given data stream. The code consumes 176 bytes

of RAM, 12.5 KB of ROM, and takes approximately 5.75 ms to hash a message of 64 bytes using

64-byte blocks.

Table 3.1: Time and Memory Requirements for MicaZ
Time RAM ROMPrimitive

(msec) (Bytes) (Bytes)
SHA-1 10.545 128 4,048
MD5 5.757 176 12,500

HMAC-SHA1 21.959 30 4,424
HMAC-MD5 12.217 90 12,986

A keyed hash message authentication code (HMAC) is a MAC calculated using a cryptographic

hash function in combination with a secret key. As with any MAC, it can be used to verify the data

integrity and the authenticity of a message. However, in our proposed scheme, HMAC is used

to generate key chains from generation keys. Any iterative cryptographic hash function, such

as MD5 or SHA-1, may be used in the calculation of an HMAC; the resulting MAC algorithm

is termed HMAC-MD5 or HMAC-SHA-1 accordingly, where size of the output is same as the

underlying hash function. Further, both HMAC-SHA1 and HMAC-MD5 implementations were

validated using the test cases given in [88].

60

This research implements both HMAC-SHA1 and HMAC-MD5 algorithms. The HMAC-SHA1

code consumes 30 bytes of RAM, 4424 bytes of ROM, and takes approximately 21.9 ms to pro-

duce of MAC of 64 bytes of data stream, as shown in Table 3.1. Whereas the HMAC-MD5 code

consumes 90 bytes of RAM, 12986 bytes of ROM, and takes approximately 12.2 ms to produce a

MAC of 64 bytes of data.

The proposed scheme is implemented with both algorithms (HMAC-SHA1 and HMAC-MD5)

for key generation. The memory consumption for HMAC-SHA1 (780 bytes RAM and 22.2 KB

ROM) is less than HMAC-MD5 (840 bytes RAM and 30.7 KB ROM), as shown in Table 3.2.

Table 3.2: Memory Usage for Proposed Scheme
Proposed Scheme RAM ROM

using (Bytes) (Bytes)
HMAC-SHA1 780 bytes 22206 bytes
HMAC-MD5 840 bytes 30728 bytes

2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

400

450

number of keys

tim
e

m
se

c

HMAC−MD5
HMAC−SHA1

Figure 3.13: Comparison of Key Generation Process

However, the time required to generate MAC using HMAC-SHA1 is greater than HMAC-MD5,

as shown in Figure 3.13. Keys are generated from generation keys (8 bytes) and seed (28 Bytes)

using both HMAC-MD5 and HMAC-SHA1. Figure 3.13 shows that as the number of keys are

increased, the processing time for key-chain generation increases accordingly. However, the in-

61

crease in HMAC-SHA1 is significantly greater than HMAC-MD5.

One of the major constraints on implementing any scheme on a sensor platform is the small avail-

able payload size of packets. Specifically, under TinyOS, this limitation is commonly set to 29

bytes. As a result, all of the wireless interactions between nodes must adhere to this restriction.

For instance, each of the generation keys deployed in L-nodes or H-nodes are of 8 bytes, which

matches the key size used for the TinySec implementation of the RC5 block cipher [29]. Two

bytes are allocated for node identifier as well as 2 bytes for nonce value. It is believed that 2

bytes (65,536 or 216) would be sufficient for a large sensor network. Further, for current battery

lifetimes, 2 bytes for nonce would provide sufficient protection against nonce reuse. Authentica-

tion is provided by TinySec’s CBCMAC and it occupies a total of 4 bytes. While not appropriate

for other environments, an online attack of this authentication mechanism would require an av-

erage attack span of 20 months because of the limited bandwidth in this setting [29]. Further,

the L-nodes life time in the network is also calculated in term of its communication energy as

shown in Figure 3.7 and Figure 3.7. As it can be observed that energy consumed in proposed key

management scheme is negligible as compared to the energy consumed in sensing.

Figure 3.16 gives the details of the interfaces that are provided and used by the implementation

of our proposed scheme in TinyOS. The component provides only one interface Sensor. The

component uses either SHA1 or MD5 interface with HMAC interface. Further, also use the in-

terface BlockCipher provided by component RC5 of TinySec. Moreover, there are several

standard TinyOS interfaces used in the implementation, such as Boot, Leds, Packet, and

SplitControl.

3.8 Conclusion

In this chapter, a key management scheme is proposed for heterogeneous sensor networks based

on random key pre-distribution. In our scheme, instead of storing all the assigned keys in a

62

Figure 3.14: Energy Consumption in Key Management Phases

Figure 3.15: Energy Consumption in Proposed Key Management vs. Sensing

sensor node, a small number of generation keys are stored. Adversary or malicious nodes are

precluded to join the cluster, as eachL-node is authenticated by CH usingL-node’s authentication

key. In pre-deployment phase each H-node is preloaded with the master key and L-node with

authentication key (which is generated using master key). This research also provides secure

63

module SensorP {
/* Provides Interfaces */
provides interface Sensor;
/* Uses Interfaces */
/* Interfaces defined in Proposed Scheme */
uses interface SHA1;
uses interface MD5;
uses interface HMAC;
/* TinySec Interface */
uses interface BlockCipher;
/* Standard TinyOS interfaces */
uses interface Boot;
uses interface Leds;
uses interface Packet;
uses interface AMPacket;
uses interface AMSend as RadioSend[am_id_t id];
uses interface Receive as RadioReceive[am_id_t id];
uses interface SplitControl as AMControl;
uses interface Timer<TMilli> as Timer0;
...
}

Figure 3.16: The provides and uses Interfaces for the Proposed Scheme Implementation in TinyOS.

inter-cluster communication. Further, for scalable solution and easy maintenance, dynamic nodes’

addition and keys’ revocation, in case of node compromise is provided. The results show that our

scheme can significantly reduce the storage requirements as compared to other random key pre-

distribution schemes. For instance, storage requirements can be reduced by 8 times as compared to

AP [48], and 33 times as compared to basic scheme [42]. Also, the resiliency against node capture

is better than previous key pre-distribution schemes. The TinyOS implementation shows that the

proposed scheme can be efficiently implemented in real sensor networks. This research compares

both HMAC-SHA1 and HMAC-MD5 to generate key chains. The results show that although

HMAC-SHA1 consumes less memory resources than HMAC-MD5, it is more computationally

intensive.

64

Chapter 4

AN EFFICIENT COLLUSION RESISTANT SECURITY MECHANISMS

FOR HETEROGENEOUS SENSOR NETWORKS

4.1 Introduction

An important area of research interest is a general architecture for wide-area sensor networks that

seamlessly integrates homogeneous and heterogeneous sensor networks. HSNs have different

types of sensors, with a large number of ordinary sensors in addition to a few powerful sensors.

Further, as sensor devices are typically vulnerable to physical compromise and they have very

limited power and processing resources, it is unacceptable to completely trust the results reported

from sensor networks, which are deployed outside of controlled environments without proper

security.

In random key pre-distribution (RKP) schemes, a large key pool of random symmetric keys is

generated along with the key identifiers. All nodes are given a fixed number of keys randomly se-

lected from a key pool. In order to determine whether or not a key is shared, each node broadcasts

its keys’ identifiers. The, neighbors sharing a key associated with one of those identifiers, issue

a challenge/response to the source. If two nodes do not share keys directly, they can establish a

session key with the help of neighbors with which a key is already shared. It is highly likely that

all nodes in the network will share at least one key if the following are carefully considered: a)

the network density, b) the size of the key pool, and c) the number of keys pre-configured in each

sensor node.

While pre-distributing pairwise keys does protect confidentiality, it still loads nodes with a large

65

number of globally-applicable secrets. By eliminating the eavesdropping attack, the pairwise

scheme makes another type of malicious behavior more attractive. As several nodes possess

the same keys, any node can make use of them by simply combining the keys obtained from a

few nodes, which greatly increases the attacker’s chances of sharing keys with other nodes. A

collusive attacker can share its pairwise keys between compromised nodes by enabling each node

to present multiple ‘authenticated’ identities to neighboring nodes while escaping detection [89].

Colluding nodes can grow their knowledge about the network security measures. Therefore, it

is conceivable that few compromised nodes can collude and reveal all the keys employed in the

network to an adversary. Such scenario is considered as capturing the entire network since the

adversary would be capable of revealing all encrypted communications in the network.

An adversary who obtains compromised nodes’ keys can inject malicious sensor nodes elsewhere

in the network since the pool keys that were obtained are always valid and are used to authenticate

each node. As a result, RKP is unable to protect the sensor network against collusion attack. In

order to counter the collusion attacks, nodes should discard unused keys from the node’s memory

after the initialization phase; however, it means that new nodes can no longer join the system after

the initial network deployment. The other possible way to prevent collusion attacks is updating

the preloaded keys in order to prevent the compromised and revoked nodes from launching a

collusive attack in which they pool together their keys with the goal of jeopardizing the secure

channels between other nodes. Without key updating, both the performance and security of the

system will degrade greatly with the number of compromised nodes.

In the previous chapter a scalable and efficient protocol for key management is proposed that is

sensitive to the sensor nodes resource constraints, including storage, computation and commu-

nication. However this scheme is vulnerable to collusion attacks. In this chapter, an efficient

collusion resistant security mechanisms [90, 91] is proposed for sensor networks including both

66

heterogeneous and homogeneous network. HSN consist of a small number of powerful high-

end H-nodes and a large number of ordinary low-end L-nodes as discussed in the Section 3.2 of

Chapter 3. However, homogeneous sensor networks (MSN) consists of only L-nodes. Since the

collusion attack on key pre-distribution scheme mainly takes advantage of the globally applicable

keys, which are selected from the same key pool, update the key ring after initial deployment and

generate new key rings by using one-way hash function on nodes’ IDs and initial key rings. Fur-

ther, in the proposed scheme, every node is authenticated by the BS in order to join the network. A

good security practice is to use different keys for different cryptographic operations; this prevents

potential interactions between the operations that might introduce weaknesses in a security pro-

tocol. Therefore propose scheme is using different keys for encryption and authentication. The

analysis of the proposed scheme shows that even if a large number of nodes are compromised,

an adversary can only exploit a small number of keys near the compromised nodes, while other

keys in the network remain safe. It outperforms the previous random key pre-distribution schemes

by: a) considerably reducing the storage requirement, b) providing more resiliency against node

capture and collusion attacks.

4.1.1 Collusion Attack

In collusion attacks two or more nodes cooperate with each other by sharing their knowledge of

pre-deployed secrets and thus increasing their capabilities in overcoming the network security

measures. In RKP a collusion attack can be possible in the scenarios: a)when compromised

nodes are in the transmission range of one another b) when compromised nodes are not in the

transmission range of one another.

In the latter case, for example, consider two compromised nodes n1 and n2 which are not in the

transmission range of each other. Suppose n1’s neighbors are n3, n5 and n6 and it shares key

with n5 and n9. Similarly n2’s neighbors are n4,n7 and n9 and it shares keys with n3, n6, n7 as

67

Table 4.1: Collusion Attack
Nodes Neighbors Key Share Without Collusion With Collusion
n1 n3, n5, n6 n5, n9 (n1, n5) (n1, n5),(n2, n3),(n2, n6)
n2 n4, n7, n9 n3, n6, n7 (n2, n7) (n2, n7),(n1, n9)

shown in table 4.1. Accordingly, n1 can communicate securely with n5 and n2 can communicate

securely with n7. If n1 colludes with n2 the resultant keys known to both of them would be

Keys(n1) ∪ Keys(n2). As a result, n1 can communicate with n6 and n3 masquerading as n2

and similarly n2 can communicate with n9 masquerading as n1. It can be seen that compromised

nodes not in the communication range of each other can collude to launch an attack to uncover a

large number of employed keys.

Sensor networks are often deployed in hostile environments, yet nodes cannot afford expensive

tamper-resistant hardware. The threat model is assumed to be an adversary that tries to capture

and compromise a number of nodes in the network. Also, there is no unconditional trust on

any sensor node. An adversary may try to eavesdrop on the messages exchanged in the system,

intercept these messages as well as inject false messages. If an adversary compromises a node,

the memory of that node is known to the adversary; CHs can also be compromised. The goal of

the adversary is to uncover the keys used in the network for secure communication. The nodes

can collude with each other by sharing their keys with other attacker nodes. The main objective

of node collusion is to incrementally aggregate the uncovered keys of individual nodes to a level

that allows revealing all encrypting traffic in the network.

4.2 Protocol

In this section a key management protocol is presented that increases the network resilience to

collusion attacks.

68

for every key ki ∈ P , where P = (k1, k2, ..., kP)
compute z = fki(idLx)
if z ≡ 0 mod (P

r
) then

put ki into RLx , the key ring of L-node.

Figure 4.1: Key Ring Assignment (L Node)

for every key ki ∈ P , where P = (k1, k2, ..., kP)
compute z = fki(idHx)
if z ≡ 0 mod (P

S
) then

put ki into RHx , the key ring ofH-node.

Figure 4.2: Key Ring Assignment (H Node)

4.2.1 Initial Deployment

Generate a large key pool K consisting of a P number of random symmetric keys and their ids

prior to network deployment. Before deploying the nodes, each node is loaded with its assigned

key ring R as follows: each L-node is pre-loaded with r number of keys and eachH-node is pre-

loaded with S number of keys, randomly selected from the key pool, where S >> r. As given

in [92], the assigning rules for L-nodes are shown in Figure 4.1. In addition to that every L-node

is pre-loaded with an authentication key AKLx shared with BS and public key of BS. Further

the key ring assignment to H-nodes is shown in Figure 4.2. In addition to that every H-node is

pre-loaded with an authentication key AKHx shared with BS.

4.2.2 Cluster Heads Authentication

Before entering into the cluster organization phase each H-node need to be authenticated by

BS. Let H-node Ha sends a request to BS consisting of its id, a random number nonce, and

MAC is calculated on all these values using it authentication key AKHa as shown in message

1 of Figure 4.3. BS authenticate Ha by verifying the MAC. If authentication is successful, BS

randomly selects a key, suppose km from the key ring of Ha. BS then sends message 2 shown in

Figure 4.3 consisting of the id of km, nonce, and idHa encrypting with AKHa . Ha gets all these

69

values by decrypting the message 2 and then generates the shared secret key KBS,Ha between BS

and Ha by applying one-way hash function on idBS , idHa , and 0 using km as shown in message

3. Propose scheme uses different keys for date encryption and message authentication, therefore

Ha generate the MAC key ḰBS,Ha by applying one-way hash function on idBS , idHa , and 1 using

km as shown in message 4. After joining the network, Ha deletes AKHa from its memory.

1 Ha → BS : idHa , nonce,MACAKHa (idHa|nonce)
2 BS → Ha : 〈idkm , nonce, idHa〉AKHa
3 KBS,Ha = H(km, idBS|idHa|0)

4 ḰBS,Ha = H(km, idBS|idHa|1)

Figure 4.3: CH Authentication by BS

4.2.3 Cluster Organization Phase

After authentication by BS, H-nodes enter into the cluster organization phase. Let H-node, Ha

broadcasts an advertisement message adv, consisting of its id (idHa) and nonce as shown in

message 1 of Figure 4.4. The nearby L-nodes, suppose Lb upon receiving the adv message,

determines whether it shares a common key with Ha as follows: for every key kj ∈ RLb , Lb

computes z = fkj(idHa). If z ≡ 0 mod(P
S

), it means that Ha also has a key kj in its key ring i.e.

RHa ∩RLb = kj .

As Lb could receive adv broadcast messages from several H-nodes, it would be possible that

Lb shares a common key with more than one H-node. From these H-nodes, it will choose the

H-node as its CH with whom it has the best received signal strength and link quality.

Lb sends the join request to the selected CH (say Ha) protected by MAC, using kj and include the

nonce from CH broadcast (to prevent replay attack), as well as the id of shared key (idkj) chosen

to protect this link (so that the receiving CH knows which key to use to verify the MAC) as shown

in message 2 of Figure 4.4.

Ha upon receiving the join request from Lb, authenticates the Lb by verifying the MAC using

70

kj . Ha generate the shared pairwise key (KHa,Lb) with Lb by applying one-way hash function on

idLb , idHa , and 0 using kj as shown in message 3. Ha generate the MAC key (ḰHa,Lb) with Lb by

applying one-way hash function on idLb , idHa , and 1 using kj as shown in message 4 and sends

message 5 to Lb consisting of cluster key CKa encrypted with KHa,Lb along with MAC on idHa ,

idLb , nonce, and CKa calculated using ḰHa,Lb .

Lb gets the cluster key CKa by decrypting the message using KHa,Lb , verifies the MAC by using

ḰHa,Lb to ensure the message authenticity and integrity and hence join the cluster.

Each L-node also records other H-nodes from which it receives the adv messages and it has

common key with them, as theseH-nodes will serve as backup cluster heads in case the CH (Ha)

fails.

1 Ha → ∗ : idHa , nonce
2 Lb → Ha : idLb , idHa , idkj , nonce,MACkj(idLb |idHa |idkj |nonce)
3 KHa,Lb = H(kj, idHa|idLb|0)

4 ḰHa,Lb = H(kj, idHa|idLb|1)
5 Ha → Lb : 〈CKa〉KHa,Lb ,MACḰHa,Lb

(idLb|idHa|nonce|CKa)

Figure 4.4: Messages Transferred between Sensor Nodes and CHs

4.2.3.1 Unsupervised Nodes

At the end of cluster organization phase, it is expected that a fraction of the L-nodes will not be

matched with a CH because of key sharing constraints; these nodes are called unsupervised nodes.

Suppose the unsupervised node Lx have best RSSI with Ha. Lx sends request to Ha consisting of

its id, id of Ha, nonce and MAC is calculated on all these values using AKLx shown in message

1 of Figure 4.5. Ha forwards this message to BS. BS authenticate the Lx by verifying the MAC

and select key kj from the key ring of Lx. BS sends kj and idkj to Ha encrypting with the key

KBS,Ha along with MAC on kj , idkj , and nonce using key ḰBS,Ha as shown in message 3. Ha

generates the shared pairwise key with Lx by applying one-way hash function on idHa , idLx , and

71

0 by using kj as shown in message 4. Ha generates the MAC key with Lx by applying one-way

hash function on idHa , idLx , and 1 by using kj as shown in message 5. Ha sends message 6 to

Lx consisting of its idHa , idLx , id of the key kj to be used as common shared key, and cluster

key encrypted with KHa,Lx and MAC on all these values using ḰHa,Lx . Lx receives this message

and calculate the KHa,Lx and ḰHa,Lx by using kj and use it to get cluster key and hence join the

network.

1 Lx → Ha : idLx , idHa , nonce,MACAKLx (idLx|idHa|nonce)
2 Ha → BS : Forward Message 1 to BS
3 BS → Ha : idkj , 〈kj〉SKBS,Ha
4 KHa,Lx = H(kj, idHa|idLx|0)

5 ḰHa,Lx = H(kj, idHa|idLx|1)
6 Ha → Lx : idLx , idHa , idkj , nonce, 〈CKa〉KHa,Lx ,MACḰHa,Lx (idLx|idHa|idkj |nonce|CKa)

Figure 4.5: Unsupervised Nodes Key Establishment

There may be some L-nodes, suppose Ly in the network that may have common key shared with

a CH Ha but have better RSSI with Hb then Ha. However, Ly do not have common key shared

with Hb. In that case Ly can contact with Hb as unsupervised node to request key as explained

above.

4.2.3.2 Direct Key Discovery Phase

After cluster organization phase, L-nodes learn their neighbors through the exchange of hello

messages, and then attempt to establish keys with them. To accomplish this, L-nodes broadcasts

hello messages.

Consider an L-node, La, it broadcasts a hello message consisting of its id idLa . Then, it waits

for hello messages from its neighboring L-nodes. Suppose, it receive hello message from one

of its neighbor Lb, it extracts the node id from message i.e. idLb . For every key kj ∈ RLa , La

computes z = fkj(idLb). If z ≡ 0 mod(P
r
), it means that node Lb also has a key kj in its key ring

i.e. RLa ∩ RLb = kj . After discovering the common key in their key rings, they will generate the

72

shared pairwise key by applying one-way hash function on idLa and idLb by using kj as given in

Equation 4.1.

KLa,Lb = H(kj, idLa|idLb|0) (4.1)

If La and Lb share more than one common keys in their key rings, the key with the least id would

be used to generate the shared pairwise key.

4.2.3.3 Indirect Key Discovery Phase

L-nodes gather information about both types of neighbors: 1) nodes with which they share a key,

and 2) nodes with which they do not share keys. When the direct key discovery phase ends, the

nodes would have discovered the common keys, if any, with their neighbors. L-nodes use the

CH with which keys are already shared to assist it in establishing secure connections with the

neighboring L-nodes with which common keys are not found.

Let L-nodes Lx and Ly are neighboring nodes in the same cluster; however, they do not share a

common key in their key rings, RLa ∩RLb = φ.

The L-node Lx, having already established a link with its CH (Ha), transmits a message to Ha, as

shown in Figure 4.6, requesting to transmit a key with L-node Ly encrypted with key KHa,Lx .

Ha generates a key ki and unicasts the message 2 to Lx and message 3 to Ly shown in Figure 4.6.

When Lx (or Lj) receives its message from Ha, it decrypts the message using key KHa,Lx to get

key ki. Similarly, Ly uses key KHa,Ly for decrypting the message. Now, Lx and Ly generate the

shared pairwise by applying one-way hash function on idLx and idLy by using ki, as shown in

message 4.

73

1 Lx → Ha : idLx , idLy , nonce,MACḰHa,Lx (idLx|idLy |nonce)
2 Ha → Lx : idLx , idLy , nonce, 〈ki〉KHa,Lx
3 Ha → Ly : idLx , idLy , nonce, 〈ki〉KHa,Ly
4 KLx,Ly = H(ki, idLx|idLy)

Figure 4.6: Indirect Key Discovery Phase

4.2.4 Key Ring Update

After indirect key-discovery phase, all L-nodes and H-nodes destroy their initial key rings. Be-

cause these key rings have globally applicable secrets which can be used by adversary to launch

a collusion attack, these initial key rings are deleted from node’s memory.

First, before a node (say Lx) destroys its initial key ring, it generates a new key ring as shown

in Figure 4.7. For every key ki ∈ RLx , it generates a new key ḱi by applying one-way hash

function on its id (idLx) and ki. In this way, it generates a set of new keys from keys in its initial

key ring. Further, in order to keep record of the keys in its initial key ring, these newly generated

keys are assigned the same ids as those of the original keys. Then, Lx deletes ki from its key ring

RLx .Further, the above procedure is also applied forH-nodes to update their key rings.

procedure keyRingUpdate()
for ∀ki ∈ RLx

ḱi = H(ki, idLx)
idḱi = idki
delete(ki)

endfor

Figure 4.7: Key Ring Update

4.3 Other Security Issues in HSN

In this Section, other security issues in HSN are discussed, including setting up keys for newly

deployed sensor nodes, node revocation, and periodic re-keying.

74

1 Lx → ∗ : idLx , nonce
2 Ha → Lx : idHa , nonce
3 Lx → Ha : idLx ,MACḱj(idLx|idkj |nonce)
4 KLx,Ha = H(ḱj, idHa|idLx|0)

5 ḰLx,Ha = H(ḱj, idHa|idLx|1)

Figure 4.8: New Node Addition

4.3.1 Addition of a New Node

The common key pre-disribution schemes are unable to add new nodes in the network if the initial

key rings are deleted from node’s memory. As a result, this reserach develop a new solution

capable of handling addition of new legitimate L-nodes beyond the initial deployment, even after

the deletion of initial key rings from node’s memory.

Suppose new L-node Lx wants to join a network, it broadcasts a join request consisting of its id

(idLx) and a random number nonce, as shown in message 1 of Figure 4.8. Then, it waits for reply

from nearby CHs. Let Lx receives a reply message from CH (sayHa). For every key kj ∈ RLx , Lx

computes z = fkj(idHa). If for any kj , z ≡ 0 mod(P
S

), it means that kj ∈ RHa , but it is no longer

available now because RHa has been deleted. So, Lx computes the corresponding key i.e. ḱj of

Ha’s new key ring ŔHa by applying one-way hash function on idHa and kj i.e. ḱj = H(kj, idHa).

Then, Lx sends a message to Ha consisting of its id idLx , id of kj (idkj = idḱj), nonce and MAC

is calculated on all these values using ḱj as shown in message 3 of Figure 4.8. Now, Lx and

Ha generate the shared pairwise key by applying one-way hash function on idHa , idLx and 0 by

using ḱj , as shown in message 4. Both Lx and Ha generate MAC key by applying one-way hash

function on idHa , idLx and 1 by using ḱj , as shown in message 5.

Then, Lx discovers the shared key with its neighboring L-nodes by using either direct or indirect

key discovery phase, as given above.

75

4.3.2 Node Revocation

In the proposed scheme there is no need to revoke the key rings of compromised nodes because the

initial key rings of all the nodes in the network has been updated and no two nodes in the network

has any key common in their key rings after initial deployments. If a node is compromised only

the links that are directly associated with that node will be compromise. Therefore, our scheme

does not need the revocation of key rings of compromised nodes.

4.3.3 Fault Tolerance

Our approach should support the ability to allow L-nodes to change the cluster even after the

initial key rings has been updated. As the above described scheme will not allow the nodes to

change cluster once their initial key ring has been updated. As a result, it is imperative that a

new solution is developed capable of handling the change in network topology beyond the initial

deployment. Suppose an L-node Lx moves from cluster a to cluster b. So it needs to find a

cluster key CKb, shared pairwise key with CH Hb and also the shared pairwise keys with its new

neighboring L-nodes. As Lx has updated its initial key ring, it will not have any common key

with Hb or any of neighboring L-nodes.

There are three problems that need to be solved, How can Hb who no longer has the initial key

rings authenticate Lx?; How can Hb and Lx setup a pairwise key between each other? and How

can Lx setup a pairwise key with its neighboring L-nodes? In that case Lx contacts the BS for

joining the Hb as CH, as described above in section 4.2.3.1. Lx will setup the pairwise key with

neighboring L-nodes by using the indirect key discovery phase described in section 4.2.3.3.

4.3.4 Periodic Re-keying

Periodic re-keying has to be performed if any node finishes 22k/3 number of encryptions using the

same key, where k is the number of bits in the key. The cluster key re-keying is initiated by CH

76

by generating the new cluster key, encrypting it with the old cluster key and distributing to the

cluster members.

Re-keying of cluster key is also necessary, when a cluster member leaves the cluster because of

either its battery power gets exhausted or when it is being compromised by an adversary. In that

case CH needs to distribute the new cluster key by unicast it toL-nodes encrypting with the shared

pair-wise keys so the nodes that have leave cluster do not receive new cluster key.

4.4 Performance Analysis

This section analyzes the proposed scheme and explains its features that make this scheme feasible

to implement and a better alternative option as compared to the other key pre-distribution schemes.

For any pair of nodes to find a secret key between them, the key sharing graph G(V,E) needs

to be connected. Given the size and the density of a network, the objective is to determine the

key pool size P , the number of keys assigned to L-nodes r, and the number of keys assigned

to H-nodes S such that, the graph G is connected with high probability. [19] propose the q-

composite keys scheme that allows two sensors to setup a pairwise key only when they share at

least q common keys.. The q-composite keys scheme provides better security for sensor networks.

The key management schemes proposed in this paper can be easily extended to require at least

q shared keys. There is a need to find the largest key pool size such that the probability of an

L-node and anH-node sharing at least q keys is no less than a threshold p.

Let p(j) be the probability that an L-node and anH-node have exactly j keys in common. Recall

that an L-node and anH-node are pre-loaded with r and S keys, respectively.

An L-node has
(
P
r
)

different ways of picking r keys from a key pool with the size P , and an

H-node has
(
P

S

)
different ways of picking S keys from the key pool.

Thus, the total number of ways for an L-node and an H-node to pick r and S keys, respectively,

77

is
(
P
r
)(

P

S

)
. Suppose that the two nodes have j keys in common. There are

(
P
j

)
ways to pick j

common keys.

After the j common keys are picked, there remain S + r − 2j distinct keys in the two key rings

which are to be picked from the remaining pool of P − j keys.

The number of ways to do so is
(

P−j
S + r − 2j

)
. The S + r − 2j distinct keys must then be

partitioned between the L-node and theH-node. The number of such partitions is
(
S+r−2j

r − j
)

.

Hence the total number of ways to choose two key rings with j keys in common is the product of

the three terms, i.e.,
(
P
j

)(
P−j

S + r − 2j

)(
S+r−2j

r − j
)

Thus the probability of sharing at least j keys in common is given in Equation 4.2

p(j) =

(
P
j

)(
P−j

S + r − 2j

)(
S+r−2j

r − j
)

[(
P
r
)(

P

S

)] (4.2)

Let pc be the probability that an L-node and an H-node share sufficient keys to form a secure

connection. If q shared-keys are required, then: pc = 1 − (p(0) + p(1) + · · · + p(q − 1)). For

given key ring size r and S, key overlap q, and minimum connection probability p, the largest key

pool size P can be computed such that pc ≥ p.

The probability of an L-node and H-node with key rings sizes r and S sharing at least one key

with each other is given in Equation 4.3:

psk = 1−

(
P

S

)(
P−S
r
)

(
P

S

)(
P
r
) = 1− (P − r)!(P − S)!

P !(P − r − S)!
(4.3)

Similarly the probability of sharing at least one key between two L-node is given in Equation 4.4

78

psk = 1−

(
P
r
)(

P−r
r
)

(
P
r
)2 = 1− (P − r)!2

P !(P − 2γ)!
(4.4)

Figure 4.9 shows the probability of key sharing among H-node and L-node with respect to key

pool size. Further, a fixed number of pre-loaded keys are used in H-nodes, S = 500; whereas

pre-loaded keys for L-nodes vary as r = 10, 20, 30. The graphs show that the pre-loaded keys in

L-nodes can be significantly reduced with acceptable probability of key sharing.

Figure 4.9: The Key Sharing Probability

In our scheme, only a fraction of CHs is probabilistically accessible by an ordinary node. Prob-

ability of key sharing between H-node and L-node and the number of CHs β in the network can

also determine the expected number of unsupervised nodes, i.e. the probability that an ordinary

node will be unsupervised. Given p and β, the probability of the number of unsupervised nodes

is given in Equation 4.5:

pus =

(
1− (1− (P − r)!(P − S)!

P !(P − r − S)!
)

)β
(4.5)

79

In a network with N number L-nodes, it is then expected thatN×pus nodes will be unsupervised.

Figure 4.10 shows fraction of unsupervised nodes as a function of β under different values of p.

As β increases, the number of unsupervised nodes decrease rapidly. Further, as p increases, the

number of unsupervised nodes also increase.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

number of CH

un
su

pe
rv

is
ed

 n
od

e
ra

te

gamma= 10
gamma=20

 gamma=30

Figure 4.10: Unsupervised Nodes

4.4.1 Security Analysis

Proposed key pre-distribution scheme is evaluated in terms of its resilience against node capture

and collusion attack. There is a need investigate when α number of nodes are captured, what

fraction of the additional communication (i.e. communication among uncaptured nodes) would

be compromised?

To compute this fraction, first compute the probability that any one of the additional communica-

tion links is compromised after α nodes are captured. In this analysis, those links are considered

which are secured using a pairwise key computed from the common key shared by the two nodes

of this link. It should also be noticed that during shared key discovery process, two neighboring

nodes find the common key in their key rings and use this key to agree upon another random

key to secure their communication. Because this new key is generated by applying one-way hash

80

function on common shared key and node ids, the security of this new random key does not di-

rectly depend on whether the key rings are broken. Further, the nodes’ initial key rings are also

deleted from their memory, after setting up shared pairwise keys with neighbors. As a result, the

fraction of communications compromised when α number of nodes being compromised can be

given as

number of links in α compromised nodes

Total number of links

which means that only those links will be affected which are directly connected with α compro-

mised nodes, while the other links in the network will remain safe. Figure 4.11 shows the graphs

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of compromised node

fr
ac

tio
n

of
 c

om
m

un
ic

at
io

n
co

m
pr

om
is

ed

EG
q=2
q=3
PS

Figure 4.11: The Compromising Probability

of number of compromised communication links with respect to the number of compromised

nodes. The proposed scheme (PS) is compared with basic scheme (EG) [42] and q-composite

scheme [19]. The graphs show that as the number of compromised nodes increases, the tradi-

tional schemes are severely affected as compared to PS.

Further, in collusion attacks, the adversary takes advantage of the pairwise secret keys stored

by each sensor node as these keys are globally applicable secrets and can be used throughout the

81

network, yet ordinary sensors can only communicate with the small fraction of nodes within radio

range. So, the adversary can launch a collusion attack by exploiting this lack of communication

between nodes and can now share its pairwise keys between compromised nodes, enabling each

node to present multiple ‘authenticated’ identities to neighboring nodes, while escaping detection.

In proposed scheme, the initial key rings are deleted from nodes memory after setting up shared

pairwise keys with neighbors. However, nodes generate new key rings from initial key rings by

applying one-way hash function on node ids and keys in their initial key rings.

Consider two arbitrary L-nodes, La and Lb, where RLa = {k1, k2, . . . , kr}, RLb =

{k1, k2, . . . , kr}, and RLa ∩ RLb = ki. As La and Lb are not within the communication range of

each other, they do not use ki. After setting up shared pairwise keys with neighbors, both La and

Lb delete the initial key rings (RLa and RLb) and generate the new key rings (say ŔLa and ŔLb)

by applying one-way hash function on all the keys in their initial key rings and node ids. As a

result, ŔLa ∩ ŔLb = φ. Similarly, in α number of compromised nodes, there will be no common

key in their new key rings i.e ŔL1 ∩ ŔL2 ∩ . . .∩ ŔLα = φ. As no more globally applicable secrets

remain in the node’s memory, it is not possible by adversary to launch a collusion attack.

4.5 Conclusion

Key establishment is a fundamental prerequisite for secure communication in wireless sensor

networks. A key pre-distribution scheme is one of the common solutions for establishing secure

communication in sensor networks. Random key pre-distribution schemes are vulnerable to collu-

sion attacks because pre-loading global secrets onto exposed devices can be used in these attacks.

This work present a new efficient key distribution scheme for heterogeneous sensor networks

which is secure against collusion attack. The analysis shows that the proposed scheme provide

more resiliency against node capture and collusion attack by deleting the initial key rings from

their memory after generating the shared pairwise key with neighbors. It also allow new nodes

82

to join the system once initialization is completed and initial key ring has been destroyed from

node’s memory.

83

Chapter 5

SECURE GROUP COMMUNICATION WITH SELF HEALING AND

REKEYING IN WIRELESS SENSOR NETWORKS

5.1 Introduction

Secure group communication needs a secret shared by all the group members for group oriented

applications in wireless sensor networks (WSNs). The shared key provides group secrecy and

source authentication. A single symmetric key known only to the group members can effectively

protect a multicast group. However, only legitimate users should have access to the group commu-

nication in order to achieve privacy [93]. In rekeying, the session keys are updated periodically,

when new users join or old users leave the group. The keys are securely redistributed to the exist-

ing members of the group in order to provide forward secrecy (FS) as well as backward secrecy

(BS). The newly joined users should not be able to derive the previous group keys, even if they

are able to derive future group keys with subsequently distributed keying information. Similarly,

the revoked users should not be able to derive the future session keys, even if they are able to

compute the previous session keys with previously distributed keying information.

The rekeying is performed by the group controller (GC). The most important parameters when

performing group rekeying are as follows: the number of keys stored by the GC, the number

of keys stored by each group member, the number of keys delivered in the initialization stage,

bandwidth required for updating the keys, and latency for updating the session key [94].

As the size of the group grows and/or the rate of membership change increases, the frequency of

rekeying becomes the primary bottleneck for rekeying on each membership change. Therefore,

84

scalable group rekeying is an important and challenging problem to be addressed in order to

support secure multicast communication.

Another important problem in multicast communication is reliability. Since multicasting is an

unreliable mode of communication, packets may be lost during the communication. If a packet

containing key updating information is lost, authorized receivers may not be able to calculate

the session key. This may influence rekeying and so the rekeying system must be self-healing

if packet loss occurs. In a large and dynamic group communication over an unreliable network,

the main concept of self-healing in key distribution schemes is that users can recover lost session

keys on their own, without requesting additional transmissions from the group manager, even if

some previous key distribution messages are lost. This reduces network traffic, the risk of user

exposure through traffic analysis, and the work load on the group manager.

The key idea of self-healing key distribution schemes is to broadcast information that is useful

only for trusted members. Combined with its pre-distributed secrets, this broadcast information

enables a trusted member to reconstruct a shared key. On the contrary, a revoked member is

unable to infer useful information from the broadcast. The only requirement that a user must

satisfy to recover the lost keys through self-healing is its membership in the group both before

and after the sessions in which the broadcast packet containing the key is sent. A user who has

been off-line for some period is able to recover the lost session keys immediately after coming

back on-line. Thus self-healing approach of key distribution is stateless.

The need to form a group might be driven by the query being propagated through a node. As a

result, a node may need to define a multicast group to make the query initiated in those nodes and

then collect the result efficiently and securely. Further, a node may also modify such queries ef-

fectively over the time. For instance, a multicast group could be a region defined with a geometric

shape.

85

As mentioned in Chapter 3, Section 3.4.6 (Setting up Cluster Key), the establishment of clus-

ter/group key is too trivial. The CH/GC sends cluster key to each individual L-Sensor in its

cluster. This procedure for group key distribution is computationally not efficient along with no

guarantee of forward and backward secrecy and any provision of group based rekeying.

In this chapter a self-healing group key distribution scheme [95] is developed for secure multi-

cast group communications for hierarchical HSN environment. It present a strategy for securely

distributing rekeying messages and specify techniques for joining and leaving a group/cluster. Ac-

cess control in multicast system is usually achieved by encrypting the content using an encryption

key, known as the group key that is only known by the GC and all legitimate group members. In

our scheme, all rekeying messages, except for unicast of an individual key, are transmitted without

any encryption using one-way hash function and XOR operation. In proposed scheme, nodes are

capable of recovering lost session keys on their own, without requesting additional transmission

from the GC. The proposed scheme provides both backward and forward secrecy. The proposed

scheme is analyzed to verify that it satisfies the security and performance requirements for secure

group communication.

5.1.1 Node Revocation

The concept of node revocation can be described as follows. Let G be the set of all possible

group nodes, and Rev be the set of revoked nodes, where Rev ⊆ G. The group node revocation

is required to offer a secure way for GC to transmit rekeying messages over a broadcast channel

shared by all nodes so that any node ni ∈ {G−Rev} can decrypt the rekeying messages, whereas

any node in Rev, ni ∈ Rev, cannot decrypt rekeying messages.

86

5.1.2 Session Key Distribution with Confidentiality

The confidentiality in the session key distribution requires that for any node ni, the session key is

efficiently determined from the personal secret of ni and the broadcasted rekeying message from

GC. However, for any node in Rev it is computationally infeasible to determine the session key.

What any node ni learns from broadcast rekeying message, it cannot be determined from broad-

casts or personal keys alone. Let a group of k nodes is defined as n1, n2, . . . , nk. If either the set of

m broadcasts {B1, . . . , Bm} or the set of k personal keys {S1, . . . , Sk} are considered separately,

it is computationally infeasible to compute session key SKj (or other useful information) from

either set.

Let m denote the total number of sessions in the life cycle of the group communication. Each

node is assigned a pre-arranged life cycle (t1, t2), which depends on the time of joining. In other

words, it can be said that each node will participate in the group communication for k = t2 − t1

number of sessions. Due to which, once a node’s life cycle is expired, it is automatically detached

from the group session without requiring the direct intervention of the GC.

For a group with life cycle (0,m), the group key for session j is as follows:

SKj = KF
j +KB

m−j+1 (5.1)

where KF
j is the forward key and KB

m−j+1 is the backward key for session j.

5.2 Security Properties

A rekeying scheme should provide the following types of security. A rekeying protocol provides

forward secrecy if for any set Rev ⊆ G, where all nl ∈ Rev are revoked before session j, it is

computationally infeasible for the members in Rev to get any information about SKi for all i ≥ j,

even with the knowledge of session keys {SK1, . . . , SKj−1} before session j.

87

A rekeying protocol provides backward secrecy if for any set J ⊆ G, where all nl ∈ J are

newly joined nodes after session j, it is computationally infeasible for the members in J to get any

information about SKi for all i ≤ j, even with the knowledge of group keys {SKj+1, . . . , SKm}

after session j.

A rekeying protocol is key-independent, if it is both forward-secret and backward-secret.

5.3 Proposed Scheme

This section presents the details of proposed scheme of self-healing key distribution with time

limited node revocation capability. First, nodes are divided into clusters by using the cluster

organization phase discussed already in Section 3.4.2 of Chapter 3, where each cluster is managed

by the CH. However, the clusters are dynamic and regrouping is done after specific duration. The

details of cluster formation is not discussed in this chapter. In the rest of chapter the cluster will

be referred as group and cluster head(CH) will be referred as group controller(GC).

The group life cycle is given by m, which determines the total number of sessions for a group.

The GC uses the pseudorandom number generator (PRNG) of a large enough period to produce

a sequence of m random numbers (r1, r2, . . . , rm). The GC randomly picks two initial key seeds,

the forward key seed SF and the backward key seed SB. In the pre-processing time, it computes

two hash chains of equal lengthm by repeatedly applying the same one-way hash function on each

seed. For KF
0 = SF and KB

0 = SB, the hash sequences are generated as given in Equation 5.2

and Equation 5.3.

{KF
0 , H(KF

0), . . . , H i(KF
0), . . . , Hm−1(KF

0), Hm(KF
0)} (5.2)

{KB
0 , H(KB

0), . . . , H i(KB
0), . . . , Hm−1(KB

0), Hm(KB
0)} (5.3)

88

During the initial configuration setup, each node ni is first assigned a prearranged life cycle (t1, t2)

where t1 ≥ 1 and t2 ≤ m. ni will participate in the group communication k = t2− t1 + 1 number

of sessions. The node ni joins the group at time t1 in session p and will have to leave the group at

time t2 in session q, where q > p.

The node ni receives its personal secret from GC consisting of: 1) a forward key in session p

i.e. KF
p , and 2) k number of random numbers corresponding to the sessions in which node ni

will participate in the group communication. Further, GC securely sends the personal secret to

ni using key encryption key KEKi shared between ni and GC (using the method described in

Section 3.4.3 of Chapter 3) , as given in Equation 5.4:

GC → ni : EKEKi(K
F
p , (rp, rp+1, . . . , rq)),MAC(KF

p ‖(rp, rp+1, . . . , rq)) (5.4)

The node ni decrypts the message by its corresponding KEKi to retrieve its secret. In the j-th

session the GC locates the backward key KB
m−j+1 in the backward key chain and computes the

broadcast message as given in Equation 5.5.

Bj = G(KB
m−j, rj) (5.5)

When the nodes receive the broadcast message Bj , the session key is generated. First, when any

node ni in the group receives the broadcast message, it recovers the backward key KB
m−j+1 for

session j from Bj , by applying XOR on both Bj and rj , as given in Equation 5.6.

KB
m−j+1 = Bj ⊕ rj (5.6)

89

From Equation 5.5 and Equation 5.6:

KB
m−j+1 = G(KB

m−j, rj)⊕ rj (5.7)

By substituing the value of G i.e. G(x, y) = H(x)⊕y, backward key is given as given in Equa-

tion 5.8

KB
m−j+1 = H(KB

m−j)⊕ rj ⊕ rj (5.8)

The backward key is obtained:

KB
m−j+1 = H(KB

m−j) (5.9)

Second, the node ni computes the j − th forward key by applying one-way hash function on its

forward key KF
p as given in Equation 5.10.

KF
j = Hj−p(KF

p) (5.10)

Finally, the node ni computes the current session key SKj as given in Equation 5.11.

SKj = KF
j +KB

m−j+1 (5.11)

Table 5.1 illustrates the example for nodes joining and leaving the group. There are 6 number of

nodes n1, n2, · · ·n6, where each node has a life cycle(1,3) of 3 sessions. In other words, the node

will enter the group in session 1 and will leave the group after session 3. Further, the group life

cycle m is 7, which means that the total number of sessions for group life time is 7.

Initially, nodes n1 and n3 request GC to join the group. The GC transmits n1 and n3 their per-

sonal secrets consisting of forward keyKF
1 and 3 random numbers for node’s life cycle (r1, r2, r3),

90

Table 5.1: Example of Nodes Join/Leave Group: m=7, Node Life Cycle = 3
Session n1 n2 n3 n4 n5 n6

KF
1 , (r1, r2, r3) KF

1 , (r1, r2, r3)

1 √
–

√
– – –

KF
2 , (r2, r3, r4)

2 √
–

√ √
– –

KF
3 , (r3, r4, r5) KF

3 , (r3, r4, r5)

3 √ √ √ √ √
–

KF
4 , (r4, r5, r6)

4 ×
√

×
√ √ √

5 ×
√

× ×
√ √

6 × × × × ×
√

7 × × × × × ×

where secrets are encrypted with their corresponding key-encryption keys. The nodes participa-

tion in the current session is represented by a check mark (
√

) symbol and the nodes that have not

yet joined the network are represented by a dash (–) line. The first row shows that nodes n1 and

n3 have joined the group whereas n2, n4, n5, n6 have not yet joined. Then, n4 joins in session 2.

Similarly, n2 and n5 join in session 3.

In session 4, n1 and n3 detach from the group, which is shown as a cross (×) symbol in the table;

however, n2, n4, and n5 remain active in the group communication. Further, n6 also joins the

group. In session 5, n4’s life time expires. In session 6, only n6 is active. Finally, by the end of

session 7, all nodes are detached from the group.

5.3.1 Adding a Group Member

When a node ni wants to join an active group, first it obtains the permission to attach to the

group communication from the GC. If it is successful, ni establishes a common secret key KEKi

shared with the GC. GC assigns a life cycle to ni i.e. t1, t2. Then, the GC sends the current system

configuration to ni using an InitGroupKey message, as given in Equation 5.12.

GC → ni : EKEKi(K
F
p , (rp, rp+1, . . . , rq)),MAC(KF

p ‖(rp, rp+1, . . . , rq)) (5.12)

91

where KF
p and (rp, rp+1, . . . , rq) are shared personal secret for ni with life cycle (t1, t2). Upon

receiving the broadcast message from GC, ni computes the current session key and participates

in the network communication.

5.3.2 Node Revocation

A node with a life cycle (t1, t2) detaches from the group at time t2. Figure 5.1 shows a time line to

illustrate node life cycle and revocation. The node participates only between t1 and t2, where the

interval is divided into a l number of sessions. Further, as each node is assigned with a l = t2−t1+

1 number of random numbers, it cannot derive the session keys SKt = KF
t + KB

m−t+1 for t < t1

and t > t2. These l random numbers correspond to the sessions in which the node participate

in the group. So, these random numbers can be used for specified sessions only and cannot be

used for the remaining sessions. In order to recover KB
m−t+1 at time t from the Bt, it requires rt,

which is not available. Thus, a time limited node revocation is achieved implicitly without any

intervention from the GC. As a result, the communication and the computation overhead on the

GC and group nodes are remarkably reduced.

Figure 5.1: Node Revocation

92

5.3.2.1 Compromised Node

If a compromised node is detected, all nodes are forced to be re-initialized. Let ni with life cycle

(t1, t2) is compromised in session k, where t1 < k < t2, as shown in Figure 5.1. The GC re-

initializes the group communication system by re-computing a new random number sequence of

length t2 − k + 1 and then unicast it to all group nodes securely.

5.4 Analysis

This section shows that the proposed scheme realizes self-healing key distribution scheme with

time limited revocation capability. Further, the forward and backward secrecy is assured with the

time-limited node revocation.

A group of sensor nodes is considered as G, G = {n1, n2, . . . , nN}, Rev represents a set of

revoked nodes Rev ⊆ G, J represents a set of newly joining nodes J ⊆ G, and m is the total

number of sessions in the group life cycle.

5.4.1 Self-healing Property

Consider a node nk ∈ G with life cycle (t1, t2), which means that nk joins the group at t1 (session

p) and leaves the group at time t2 (session q), where 1 ≤ p ≤ q, as shown in Figure 5.2.

Suppose node nk goes offline in session p + 1 and comes online again in session p + j where

(p + j) < q, as shown in Figure 5.2. As a result, the node nk will miss the broadcast mes-

sages Bp+1 · · ·Bp+j−1 from GC; hence, the session keys SKp+1 · · ·SKp+j−1 will not be avail-

able. When node nk comes online in session p + j, it receives the broadcast message Bp+j from

GC and recovers the backward keyKB
m−(p+j)+1 for session p+j. So, it can obtain the sequence of

backward keys {KB
m−(p+j−1)+1 . . . K

B
m−(p+1)+1} by repeatedly applying H on KB

m−(p+j)+1. The

node nk also holds the forward key KF
p = Hp(KF

0) of the session p, and hence can obtain the

sequence of forward keys {KF
p+1, . . . , K

F
p+j} by repeatedly applying H on KF

p . Now nk can find

93

Session # Forward key Backward Key

1 H(KF
0) Hm(KB

0)

2 H2(KF
0) Hm−1(KB

0)
...

...
...

p Hp(KF
0) Hm−(p)+1(KB

0) ←− t1

p+ 1 Hp+1(KF
0) Hm−(p+1)+1(KB

0) offline
...

...
...

p+ j − 1 Hp+j−1(KF
0) Hm−(p+j−1)+1(KB

0)

p+ j Hp+j(KF
0) Hm−(p+j)+1(KB

0) online
...

...
...

q Hq(KF
0) Hm−(q)+1(KB

0) ←− t2
...

...
...

m− 1 Hm−1(KF
0) H2(KB

0)

m Hm(KF
0) H(KB

0)

Figure 5.2: Self-healing in Node Life Cycle

all the session keys from session p + 1 to session p + j without requiring any extra information

from GC.

5.4.2 Key Independence

The proposed scheme also meets the security requirement for forward and backward secrecy,

which gives key independence. Informally, forward-secrecy means that the compromise of one

or more secret keys does not compromise previous secret keys. Likewise, backward-secrecy

refers to that the compromise of one or more secret keys does not compromise future secret keys.

Key-independence means that the secret keys used in different sessions are basically indepen-

dent. Thus, even if the attacker finds out the secret key of a certain session, it does not give any

advantage in finding the secret keys of other sessions.

5.4.2.1 Forward Secrecy

It is shown that a single revoked node or a collusion of revoked nodes cannot learn anything about

the future group keys since the secrets they knew while they were authorized member of the group

94

will no longer be used in any future rekeying message.

Let Rev be the set of revoked nodes and all nodes nk ∈ Rev are revoked before the current

session j. The node nk cannot get any information about the current session key SKj even with

the knowledge of {SKi, SKi+1, . . . , SKj−1} before session j, where i is the earliest session of all

the nodes in Rev, or in other words, i is the minimum for all t1’s of nodes in Rev. In order to find

SKj , node nk needs the random number rj of that session and that rj will not be available to nk.

Also, because of the one-way property ofH , it is computationally infeasible to computeKB
j1

from

KB
j2

for j1 < j2. The nodes in Rev may know the sequence of backward keys KB
m, . . . , K

B
m−j+2;

however, they cannot compute KB
m−j+1 in order to find current session key SKj .

5.4.2.2 Backward Secrecy

Let J is the set of nodes that join the group in session j. The collusion of newly joining nodes can-

not get any information about any previous session keys before session j even with the knowledge

of group keys after session j. Each nk ∈ J when joins the group, GC gives it j − th forward key

i.e. KF
j , instead of initial forward seed KF

0 . As KF
j = H(KF

j−1), it is computationally infeasible

for nk to compute the previous forward keys which are required to compute session keys before

current session j. Hence, the proposed scheme is backward secure.

5.4.3 Storage Requirements

In our scheme the GC and all nodes do not need any encryption/decryption process of a re-keying

message to update session keys. All computation needed for re-keying is one-way hash function

and XOR operation, and all information needed for re-keying is in the current transmission and

the initial information.

This research implement two one-way hash algorithms, SHA-1 and MD5 using nesC [87] pro-

gramming language in TinyOS for Moteiv’s Tmote Sky sensors. This implementation have con-

95

sidered voltage level of 3 volts and nominal current (with Radio off) as 1.8×10−3 amps, as given

in Tmote Sky’s data sheet [96]. It takes data stream of 64 bytes. As shown in Table 5.2, for

SHA-1 the code consumes 128 bytes of RAM, 4048 bytes of ROM, takes approximately 10.5 ms

to produce a 160-bit hash of a 64-byte message, and the energy consumption is 56.94 µJoules.

MD5 produces a 128-bit message digest for a given data stream. The code consumes 176 bytes

of RAM, 12.5 KB of ROM, takes approximately 5.75 ms to hash a message of 64 bytes using

64-byte blocks, and the energy consumption is 31.09 µJoules. The above implementation shows

that SHA-1 consumes less memory than MD5; however, it’s processing overhead is almost double

than MD5.

Table 5.2: Time and Memory Requirements for Tmote Sky

Algorithm Time (seconds) RAM (bytes) ROM (bytes) Energy (Joules)

SHA-1 10.545×10−3 128 4, 048 56.94×10−6

MD5 5.757×10−3 176 12, 500 31.09×10−6

5.5 Conclusion

Efficient solutions for the problem of key distribution are essential for the feasibility of secure

group communication in sensor networks. In this chapter, a key distribution scheme for secure

group communication is developed in HSNs. The scheme provides a self-healing mechanism for

session key-recovery on possible packet loss in the lossy environment using one-way key chain.

Other features include periodic re-keying of group key and time-limited group node revocation.

The session keys are updated periodically, where the update is performed regardless of changes

in network (group) topology. Periodic rekeying significantly reduces both the computation and

communication overhead at the GC and the nodes, and thus improves the scalability and perfor-

96

mance of the proposed scheme. Further, the time-limited node revocation is achieved without any

intervention from the GC.

The analysis shows that the proposed scheme is computationally secure and meets the security

requirements for forward and backward secrecy. The implementation of two one-way hash algo-

rithms SHA-1 and MD5 on resource constraint sensor nodes (Tmote Sky) shows the feasibility of

the proposed scheme for current wireless sensor network technology. Hence, the scheme results

scalable, and particularly attractive for large dynamic groups.

97

Chapter 6

CONCLUSION

Wireless sensor network (WSN) is an emerging research field with several interesting application

domains ranging from battlefield monitoring to environmental observation. Secure communica-

tion in sensor networks is the biggest constraint in the successful deployment of sensors. Security

is not, however, the only hurdle in applicability of WSN. Based on resource limited nature of sen-

sors, efficient energy and memory consumption and speed efficiency are also some of the issues

that need to be catered for. The most important requirement in WSN scenario is the adjustment

of security level according to the availability of resources i.e. achieving a level where system

security and system efficiency both are acceptable.

This research presents a key management architecture based on random key pre-distribution for

hierarchical HSN. The novelty of this work lies in the introduction of a specialized key generation

process which significantly reduces the storage requirements in resource constrained sensor net-

works and also provide better resiliency against node capture as compared to other random key

pre-distribution schemes.

This research also proposes an efficient collusion resistant security mechanisms for sensor net-

works. This is the first work that aims to provide a countermeasure to collusion attacks on random

key pre-distribution schemes.

Further a group key distribution scheme for secure multicast communications is presented that

is optimized for self-healing , and designed to facilitate secure data aggregation, an important

operation primitive in HSNs. It present a strategy for securely distributing rekeying messages and

specify techniques for joining and leaving a group. Nodes are capable of recovering lost session

98

keys on their own, without requesting additional transmission from the group controller. The

proposed scheme provides both backward and forward secrecy.

Based on these contributions, now review what have achieved in broader terms.

To start with, a key management scheme is proposed based on random key pre-distribution in

respect to all the three phases of pre-deployment, at deployment and post-deployment. In a key

generation process, instead of generating a large pool of random keys, a key pool is represented

by a small number of generation keys. For a given generation key and publicly known seed value,

a one-way hash function generates a key chain, and these key chains collectively make a key

pool. Each sensor node is assigned a small number of randomly selected generation keys. The

results show that our scheme can significantly reduce the storage requirements as compared to

other random key pre-distribution schemes. For instance, storage requirements can be reduced by

8 times as compared to AP Du [48], and 33 times as compared to basic scheme Eschenauer and

Gligor [42]. Also, the resiliency against node capture is better than previous key pre-distribution

schemes. The TinyOS implementation shows that the proposed scheme can be efficiently im-

plemented in real sensor networks. HMAC-SHA1 and HMAC-MD5 are compared to generate

key chains. The results show that although HMAC-SHA1 consumes less memory resources than

HMAC-MD5, it is more computationally intensive. The ease of implementation, the low resource

requirement, combined with the level of security it provides, should be appealing to any WSN de-

veloper that is concerned by the complexity and resource requirement of many current schemes.

A special type of collusion attacks is identified on random key pre-distribution schemes and pro-

pose a mechanism which shows that collusion attacks on random key pre-distribution are avoided

by deleting the initial key rings from nodes’ memory after generating the shared pairwise key with

neighbors. Our propose mechanism also allow new nodes to join the system once initialization

is complete and initial key ring has been destroyed from nodes memory. The analysis shows that

99

even if a large number of nodes are compromised, an adversary can only exploit a small number

of keys near the compromised nodes, while other keys in the network remain safe.

A computationally secure and efficient group key distribution scheme is provided with self-

healing property and time-limited node revocation capability for large and dynamic groups over

insecure HSNs. Other features include periodic re-keying of group key and time-limited group

node revocation. The group keys are updated periodically, where the update is performed re-

gardless of changes in network (group) topology. Periodic rekeying significantly reduces both

the computation and communication overhead at the GC and the nodes, and thus improves the

scalability and performance of the proposed scheme. Further, the time-limited node revocation is

achieved without any intervention from the GC. The results show that the proposed scheme can

tolerate high channel loss rate, and hence make a good balance between performance and security,

which is suitable for HSN applications.

6.1 Future Work

This thesis provides a suite of effective key management techniques that will be of significant

value to designers of future HSNs and help to ensure that their deployment provides a safe and

reliable environment for their many useful and important applications. As future work, it is pro-

posed that current research work in collision resistant key management methodologies can be

extended to deal with dynamic topologies. Furthermore, our proposed secure group communica-

tion scheme can be extended to overcome the constraint of time limited node revocation. A secure

routing structure can also be devised as an application of our proposed key management scheme

so that the network throughput can be increased (for given radio link capabilities), data packet

delay can be improved, and routing overhead can be reduced. As a final thought, there is a plan to

carry out large scale deployment of the proposed schemes for critical applications to unveil other

deficiencies which could not be dealt with under current limitations.

100

APPENDIX 1

Definition 1 A one-way hash functionH can map an inputM of the arbitrary length to an output

of the fixed length, which is called hash value h : h = H(M) , where the length of M is m-bits.

One-way hash function H has the following properties [97]:

• Given a hash value h, it is computationally infeasible to find the inputM such thatH(M) =

h

• Given an input M , it is computationally infeasible to find a second input Ḿ such that

H(Ḿ) = h, where Ḿ 6= M

Definition 2 A cryptographically secure one-way keyed hash function HMAC has the following

property: for y = HMAC(k, x), 1) given x, it is computationally infeasible to find y without

knowing the value of k; 2) given y and k, it is computationally infeasible to find x.

Definition 3 (Key Graph) Let V represent all the nodes in the sensor network. A Key-Sharing

graph G(V,E) is constructed in the following manner: For any two nodes i and j in V , there exists

an edge between them if and only if nodes i and j have at least one common key in their key ring.

Note that |V | = n for a WSN of size n, the key graph G(V;E) is connected if and only if any two

nodes i and j belonging to V can reach each other via edge set E only.

Definition 4 A pseudo-random function is an efficient (deterministic) algorithm which given an

h-bit seed,y, and an h-bit argument, x, returns an h-bit string, denoted fy(x), so that it is infeasible

to distinguish the responses of fy , for a uniformly chosen y, from the responses of a truly random

function.

Definition 5 Let H be a one-way hash function and s be a random seed. Then, a hash chain can

be deduced by iteratively hashing s, which can be written as: H i(s) = H(H(i−1)(s)), i = 1, 2, . . .

101

where, s is regarded as “trust anchor” of the one-way hash chain. The hash chain includes a se-

quence of hash values, which can be denoted by h1 = H(s), h2 = H(h1), . . . , hi = H(hi−1), i =

(1, 2, . . .)

Definition 6 Let G(x, y) = H(x) ⊕ y, where H is a one-way hash function and ⊕ denotes the

bitwise XOR. Given x and G(x, y), without the knowledge of y, it is computationally infeasible

to find ý such that G(x, ý) = G(x, y)

Terms

• Key Pool: A key pool K is a large pool of random symmetric keys.

• Key Chain: A key chain C is a subset of K, C⊆K. Each key chain is generated indepen-

dently via a unique generation key and a publicly known seed S by applying a keyed hash

algorithm repeatedly. A publicly known seed value is same for every key chain. Each key

chain can be uniquely identified as Ci, where i = 0 . . .M − 1. The key pool K consists of

M equal sized key chains, as given in Equation 1.

K = C0 ∪ C1 . . . ∪ CM−1 (1)

• Key Ring: A key ring R consists of randomly selected generation keys of corresponding key

chains. Each sensor node is assigned a ring of R keys.

102

BIBLIOGRAPHY

[1] T. Gao, L. K. Hauenstein, A. Alm, D. Crawford, C. K. Sims, A. Husain, and D. M. White,

“Vital signs monitoring and patient tracking over a wireless network.,” Conf Proc IEEE Eng

Med Biol Soc 1 (2005).

[2] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, T. H. Qing Cao, J. A. Stankovic, T.

Abdelzaher, and B. H. Krogh, “Lightweight detection and classification for wireless sensor

networks in realistic environments,” In SenSys ’05: Proceedings of the 3rd international

conference on Embedded networked sensor systems, pp. 205–217 (ACM, New York, NY,

USA, 2005).

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Net-

works,” IEEE Communications Magazine (2002).

[4] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges: mobile networking

for Smart Dust,” In MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international

conference on Mobile computing and networking, pp. 271–278 (ACM, New York, NY,

USA, 1999).

[5] in ESAS, Vol. 3313 of Lecture Notes in Computer Science, C. Castelluccia, H. Hartenstein,

C. Paar, and D. Westhoff, eds., (Springer, 2005).

[6] F. Zhao and L. J. Guibas, Wireless sensor networks : an information processing approach,

The Morgan Kaufmann series in networking. (Morgan Kaufmann, Amsterdam ; San Fran-

cisco, 2004).

[7] J. Zhao and R. Govindan, “Understanding packet delivery performance in dense wireless

103

sensor networks,” In International Conference on Embedded Networked Sensor Systems

(SenSys 2003), pp. 1–13 (2003).

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architecture

directions for networked sensors,” SIGPLAN Not. 35, 93–104 (2000).

[9] J. Hill, System Architecture for Wireless Sensor Networks, PhD Thesis (University of Cali-

fornia, Berkeley, 2003).

[10] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, “Field testing a wireless sensor

network for reactive environmental monitoring,” In International Conference on Intelligent

Sensors, Sensor Networks & Information, (IEEE Computer Society, 2004).

[11] X. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A survey of key management

schemes in wireless sensor networks,” Computer communications (2007).

[12] E. R. S. Basagni, K. Herrin and D. Bruschi, “Secure Pebblenets,” In International Sym-

posium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 156–163 (ACM,

2001).

[13] S. S. S. Zhu and S. Jajodia, “LEAP: Efficient security mechanisms for large-scale distributed

sensor networks,” In CCS, pp. 62–72 (ACM, 2003).

[14] A. Perrig, R. Szewczyk, J. Tygar, Victorwen, and D. E. Culler, “Spins: Security protocols

for sensor networks,” In Seventh Annual Int’l Conf. on Mobile Computing and Networks,

(2001).

[15] A. W. H. E. N. Gura, A. Patel and S. Shantz, “Comparing elliptic curve cryptography and

RSA on 8-bit CPUs,” In Workshop on Cryptographic Hardware and Embedded Systems,

(2004).

104

[16] G. Gaubatz, J.-P. Kaps, and B. Sunar, “Public Key Cryptography in Sensor Networks -

Revisited,” In ESAS, pp. 2–18 (2004).

[17] R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus, “TinyPK: securing

sensor networks with public key technology,” In SASN ’04: Proceedings of the 2nd ACM

workshop on Security of ad hoc and sensor networks, pp. 59–64 (ACM, New York, NY,

USA, 2004).

[18] M. D. Malan and M.Smith, “A public-key infrastructure for key distribution in tinyos based

on elliptic curve cryptography,” In First IEEE International Conference on Sensor and Ad

Hoc Communications and Networks, (2004).

[19] H. Chan, A. Perrig, and D. Song, “Random Key Pre-Distribution Schemes For Sensor Net-

works,” In IEEE Symposium on Security and Privacy, pp. 197–213 (2003).

[20] L. B. Oliveira, H. C. Wong, M. Bern, R. Dahab, and A. A. F. Loureiro, “Sec LEACH: A

Random Key Distribution Solution for Securing Clustered Sensor Networks,” In 5th IEEE

international symposium on network computing and applications, pp. 145–154 (2006).

[21] H. Chan, A. Perrig, and D. Song, “Random Key Pre-Distribution Schemes For Sensor Net-

works,” In IEEE Symposium on Research in Security and Privacy, (2003).

[22] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing Pairwise Keys For Secure Communi-

cation In Ad Hoc Networks: A Probabilistic Approach,” In 11th IEEE International Confer-

ence on Network Protocols (ICNP’03), (2003).

[23] R. D. Pietro, L. V. Mancini, and A. Mei, “Random Key Assignment Secure Wireless Sensor

Networks,” In 1st ACM workshop on Security of Ad Hoc and Sensor Networks, (2003).

105

[24] Y. Cheng and D. P. Agrawal, “Efficient pairwise key establishment and management in static

wireless sensor networks,” In Second IEEE International Conference on Mobile ad hoc and

Sensor Systems, (2005).

[25] K. Ren, K. Zeng, and W. Lou, “A New Approach For Random Key Pre-Distribution In

Large-Scale Wireless Sensor Networks,” Wireless communication and mobile computing 6,

307–318 (2006).

[26] S. P. Miller, C. Neuman, J. I. Schiller, and J. H. Saltzer, “Kerberos authentication and autho-

rization system,” In Project Athena Technical Plan, Section E.2.1, (1987).

[27] J. Kohl and B. C. Neuman, “The Kerberos Network Authentication Service (V5),” In RFC

1510, (1993).

[28] F. Kausar and A. Masood, “An Analysis of Public Key Cryptography based Techniques in

Wireless Sensor Networks,” In International Multi-Conference of Engineers and Computer

Scientists, (Hong Kong, 2007).

[29] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer security architecture for wireless

sensor networks,” In SenSys ’04: Proceedings of the 2nd international conference on Em-

bedded networked sensor systems, pp. 162–175 (ACM Press, New York, NY, USA, 2004).

[30] M. Rosing, “Implementing Elliptic Curve Cryptography,” In Ed. Manning Publications Co,

(1999).

[31] E.-O. Blab and M. Zitterbart, “Towards Acceptable Public-Key Encryption in Sensor Net-

works,” In ,

[32] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy Analysis of Public-

Key Cryptography for Wireless Sensor Networks,” In PERCOM ’05: Proceedings of the

106

Third IEEE International Conference on Pervasive Computing and Communications, pp.

324–328 (IEEE Computer Society, Washington, DC, USA, 2005).

[33] P. K. A. Freier and P. Kocher, “The SSL Protocol Version 3.0,” In ,

[34] A. Juels and J. Guajardo, “RSA Key Generation with Verifiable Randomness,” In PKC ’02:

Proceedings of the 5th International Workshop on Practice and Theory in Public Key Cryp-

tosystems, pp. 357–374 (Springer-Verlag, London, UK, 2002).

[35] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan, “Build-

ing efficient wireless sensor networks with low-level naming,” SIGOPS Oper. Syst. Rev. 35,

146–159 (2001).

[36] J. Abraham and K. S. Ramanatha, “Security Protocols for Wireless Sensor Networks based

on Tiny Diffusion and Elliptic Curves,” In IASTED international conference Network and

Communication Systems, (2006).

[37] “Recommended elliptic curves for Federal Government Use,” In National Institute of Stan-

dards and Technology, (1999).

[38] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on

Information Theory IT-22, 644–654 (1976).

[39] R. M.O, “Digitalized signatures and public key functions as intractable as factorization,”

Mit/lcs/tr-212,Massachusetts Institute of Technology (1979).

[40] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A Ring-Based Public Key Cryptosys-

tem,” In ANTS-III: Proceedings of the Third International Symposium on Algorithmic Num-

ber Theory, pp. 267–288 (Springer-Verlag, London, UK, 1998).

107

[41] A. K. Lenstra and E. R. Verheul, “Selecting Cryptographic Key Sizes,” In PKC ’00: Pro-

ceedings of the Third International Workshop on Practice and Theory in Public Key Cryp-

tography, pp. 446–465 (Springer-Verlag, London, UK, 2000).

[42] L. Eschenauer and V. D. Gligor, “A Key Management Scheme For Distributed Sensor Net-

works,” In ACM CCS, (2002).

[43] E. D. Manley, J. Deogun, and H. A. Nahas, “Public-Key Cryptography in Sensor Networks,”

In Fifth IASTED international Multi-Confernce Wireless Networks and Emerging Technolo-

gies, (2005).

[44] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor networks,” In 10th

ACM Conference on Computer and Communications Security (CCS 03), pp. 52–61 (2003).

[45] D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in distributed sensor networks,” ACM

Trans. Inf. Syst. Secur. 8, 41–77 (2005).

[46] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communi-

cation protocol for wireless microsensor networks,” In IEEE Hawaii Int. Conf. on System

Sciences, pp. 4–7 (2000).

[47] G. Jolly, M. C. Kusçu, P. Kokate, and M. Younis, “A Low-Energy Key Management Protocol

for Wireless Sensor Networks,” In ISCC ’03: Proceedings of the Eighth IEEE International

Symposium on Computers and Communications, p. 335 (IEEE Computer Society, Wash-

ington, DC, USA, 2003).

[48] X. Du, Y. Xiao, M. Guizani, and H.-H. Chen, “An Effective Key Management Scheme for

Heterogeneous Sensor Networks,” Ad Hoc Networks 5, 24–34 (2007).

108

[49] V. Bulusu, A. Durresi, V. Paruchuri, M. Durresi, and R. Jain, “Key Distribution in Mo-

bile Heterogeneous Sensor Networks,” In Global Telecommunications Conference, 2006.

GLOBECOM ’06. IEEE, pp. 1–5 (2006).

[50] P. Traynor, R. Kumar, H. B. Saad, G. Cao, and T. L. Porta, “Establishing Pair-Wise Keys in

Heterogeneous Sensor Networks,” In INFOCOM 2006. 25th IEEE International Conference

on Computer Communications. Proceedings, pp. 1–12 (2006).

[51] P. Traynor, R. Kumar, H. B. Saad, G. Cao, and T. L. Porta, “Efficient Hybrid Security Mech-

anisms for Heterogeneous Sensor Networks,” IEEE Transactions on Mobile Computing 6,

663–677 (2007).

[52] K. Lu, Y. Qian, and J. Hu, “A framework for distributed key management schemes in het-

erogeneous wireless sensor networks,” In IEEE International Performance Computing and

Communications Conference, pp. 513–519 (2006).

[53] H. Kurnio, R. Safavi-Naini, and H. Wang, “A Secure Re-keying Scheme with Key Recovery

Property,” In Proceedings of the 7th Australian Conference on Information Security and

Privacy, pp. 40–55 (Springer-Verlag, London, UK, 2002).

[54] L. Wang and C.-K. Wu, “Authenticated Group Key Agreement for Multicast,” In The 5th

International Conference on Cryptology and Network Security, (Springer-Verlag, 2006).

[55] J. H. Ki, H. J. Kim, D. H. Lee, and C. S. Park, “Efficient Multicast Key Management for

Stateless Receivers,” Information Security and Cryptology - ICISC 2002 2587/2003, 497–

509 (2002).

[56] J. Pegueroles, W. Bin, M. Soriano, and F. Rico-Novella1, “Group Rekeying Algorithm Us-

109

ing Pseudo-random Functions and Modular Reduction,” Grid and Cooperative Computing

3032/2004, 875–882 (2004).

[57] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam, “Reliable group rekeying: a perfor-

mance analysis,” In SIGCOMM ’01: Proceedings of the 2001 conference on Applications,

technologies, architectures, and protocols for computer communications, pp. 27–38 (ACM

Press, New York, NY, USA, 2001).

[58] R. Poovendran and J. S. Baras, “An Information Theoretic Analysis of Rooted-Tree Based

Secure Multicast Key Distribution Schemes,” In CRYPTO ’99: Proceedings of the 19th

Annual International Cryptology Conference on Advances in Cryptology, pp. 624–638

(Springer-Verlag, London, UK, 1999).

[59] G. Noubir, F. Zhu, and A. H. Chan, “Key Management for Simultaneous Join/Leave in

Secure Multicast,” In Proceedings of MILCOM, (2003).

[60] L. Gong and N. Shacham, “Multicast security and its extension to a mobile environment,”

Wirel. Netw. 1, 281–295 (1995).

[61] D. Bruschi and E. Rosti, “Secure multicast in wireless networks of mobile hosts: protocols

and issues,” Mob. Netw. Appl. 7, 503–511 (2002).

[62] T. Kostas, D. Kiwior, G. Rajappan, and M. Dalal, “Key Management for Secure Multicast

Group Communication in Mobile Networks,” In Proceedings of DARPA Information Sur-

vivability Conference and Exposition, (2003).

[63] T. Park and K. G. Shin, “LiSP: A lightweight security protocol for wireless sensor networks,”

Trans. on Embedded Computing Sys. 3, 634–660 (2004).

110

[64] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,”

IEEE/ACM Trans. Netw. 8, 16–30 (2000).

[65] G. C. D. Carman, B. Matt, “Energy-efficient and low-latency key management for MSN

networks,” In Proceedings of 23rd Army Science Conference, Orlando FL, (2002).

[66] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean, “Self-healing key

distribution with revocation,” In Proceedings of IEEE Symposium on Security and Privacy,

pp. 241 – 257 (2002).

[67] C. Blundo, P. Darco, A. D. Santis, and M. Listo, “Design of Self-Healing Key Distribution

Schemes,” Des. Codes Cryptography 32, 15–44 (2004).

[68] Y. Jiang, C. Lin, M. Shi, and X. Shen, “Self-healing group key distribution with time-limited

node revocation for wireless sensor networks.,” Ad Hoc Networks 5, 14–23 (2007).

[69] R. Dutta, E.-C. Chang, and S. Mukhopadhyay, “Efficient Self-healing Key Distribution with

Revocation for Wireless Sensor Networks Using One Way Key Chains,” In Proceedings of

5 th International Conference on Applied Cryptography and Network Security (ACNS’07),

(2007).

[70] O. Goldreich, Foundations of Cryptography: Basic Tools (Cambridge University Press, New

York, NY, USA, 2000).

[71] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography

(CRC Press, 1996).

[72] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil, and T. Schoell-

hammer, “A System for Simulation, Emulation, and Deployment of Heterogeneous Sensor

Networks,” In 2nd international conference on Embedded networked sensor systems, (2004).

111

[73] L. Lazos and R. Poovendran, “Stochastic Coverage in Heterogeneous Sensor Networks,”

ACM Transactions on Sensor Networks (TOSN) 2, 325–358 (2006).

[74] Y. Ma, S. Dala1, M. Alwan, and J. Aylor, “ROP: A Resource Oriented Protocol for Hetero-

geneous Sensor Networks,” In Virginia Tech Symposium on Wireless Personal Communica-

tions, (2003).

[75] X. Du and F. Lin, “Maintaining Differentiated Coverage in Heterogeneous Sensor Net-

works,” EURASIP Journal on Wireless Communications and Networking pp. 565–572

(2005).

[76] E. J. Duarte-Melo and M. Liu, “Analysis of energy consumption and lifetime of heteroge-

neous wireless sensor networks,” In Proceedings of IEEE Globecom, (2002).

[77] A. Woo and D. E. Culler, “A transmission control scheme for media access in sensor net-

works,” In MobiCom ’01: Proceedings of the 7th annual international conference on Mobile

computing and networking, pp. 221–235 (ACM Press, New York, NY, USA, 2001).

[78] X. Du and Y. Xiao, “Energy Efficient Chessboard Clustering and Routing in Heterogeneous

Sensor Network,” International Journal of Wireless and Mobile Computing 1, 121–130

(2006).

[79] X. Du, M. Guizani, Y. Xiao, and H.-H. Chen, “Two Tier Secure Routing Protocol for Hetero-

geneous Sensor Networks.,” IEEE Transactions on Wireless Communications 6, 3395–3401

(2007).

[80] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,” Computer 35, 5462

(2002).

[81] J. R. Douceur, “The Sybil attack,” In IPTPS, p. 251260 (2002).

112

[82] C. Karlof and D. Wagner, “Secure routing in sensor networks: Attacks and countermea-

sures,” In IEEE 1st Int. Workshop Sensor Network Protocols Applications, p. 113127 (2003).

[83] Y. Hu, A. Perrig, and D. B. Johnson, “Wormhole detection in wireless ad hoc networks,”

Technical Report TR01-384, Department of Computer Science, Rice University (2002).

[84] X. Du, Y. Xiao, H.-H. Chen, and Q. Wu, “Secure cell relay routing protocol for sensor

networks,” Mobile Computing 6, 375391 (2006).

[85] http://www.xbow.com, “Crossbow Technology Inc.,” Processor/Radio Modules .

[86] www.xbow.com/products/Product pdf files/Wireless pdf/Stargate Datasheet.pdf, .

[87] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC language:

A holistic approach to networked embedded systems,” SIGPLAN Not. 38, 1–11 (2003).

[88] P. Cheng and R. Glenn, “Test Cases for HMAC-MD5 and HMAC-SHA-1,” In RFC 2202,

(1997).

[89] T. Moore, “A Collusion Attack on Pairwise Key Predistribution Schemes for Distributed

Sensor Networks,” In PERCOMW ’06: Proceedings of the 4th annual IEEE international

conference on Pervasive Computing and Communications Workshops, p. 251 (IEEE Com-

puter Society, Washington, DC, USA, 2006).

[90] F. Kausar, S. Hussain, J. H. Park, and A. Masood, “A Key Distribution Scheme Preventing

Collusion Attacks in Ubiquitous Heterogeneous Sensor Networks,” In SecUbiq-07, pp. 745–

757 (LNCS, Springer, Taiwan, 2007).

[91] F. Kausar, S. Hussain, T. hoon Kim, and A. Masood, “Attack Resilient Key Distribution

113

Scheme for Distributed Sensor Networks,” In TRUST-07, pp. 1–11 (LNCS, Springer, Tai-

wan, 2007).

[92] R. D. Pietro, L. V. Mancini, and A. Mei, “Energy efficient node-to-node authentication

and communication confidentiality in wireless sensor networks,” Wirel. Netw. 12, 709–721

(2006).

[93] D. Wallner, E. Harder, and R. Agee, “Key Management for Multicast: Issues and Architec-

tures,” (1999).

[94] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, “Multicast Security:

A Taxonomy and Some Efficient Constructions,” In INFOCOMM’99, (1999).

[95] F. Kausar, S. Hussain, J. H. Park, and A. Masood, “Secure Group Communication with

Self-Healing and Rekeying in Wireless Sensor Networks,” In 3rd International Conference

on Mobile Ad Hoc and Sensor Networks (MSN 07),, pp. 737–748 (LNCS, Springer, Beijing,

China, 2007).

[96] http://www.moteiv.com/products/docs/tmote-sky datasheet.pdf, .

[97] NIST, “Secure Hash Standard,” In National Institute for Standards and Technology,

Gaithersburg, MD, USA, (1995).

114

	Introduction
	Overview
	Background
	Key Management
	Secure Group Communication

	Problem Statement
	Contributions
	 Organization of Research Work

	Background
	Introduction
	Sensor Hardware

	Previous Work : Key Management in Wireless Sensor Networks
	Using a Single Network-Wide Key
	Using Pairwise Key Establishment
	Using Trusted Base Station
	Using Asymmetric/Public Key Cryptography
	Random Key Predistribution Scheme (Basic scheme)
	Other Schemes based on Basic Random Key Predistribution Scheme
	Key Management for Heterogeneous Sensor Networks

	Previous Work: Secure Group Communication in Wireless Sensor Networks
	Conclusion

	Secure and efficient key management scheme for heterogeneous sensor networks
	Introduction
	Network Model
	Threat Model

	Preliminaries
	Proposed Scheme
	Key Pre-Distribution Phase
	Cluster Formation Phase
	Cluster Head based Shared Key Discovery Phase
	Inter-cluster Communication
	Addition of New Nodes
	Setting up Cluster Key
	Key Revocation
	Re-keying

	The Routing Structure in HSN
	Fault Tolerance

	Performance Evaluation
	Security Evaluation

	Implementation in Real Sensor Network
	Conclusion

	An Efficient Collusion Resistant Security Mechanisms for Heterogeneous Sensor Networks
	Introduction
	Collusion Attack

	Protocol
	Initial Deployment
	Cluster Heads Authentication
	Cluster Organization Phase
	Key Ring Update

	Other Security Issues in HSN
	Addition of a New Node
	Node Revocation
	Fault Tolerance
	Periodic Re-keying

	Performance Analysis
	Security Analysis

	Conclusion

	secure group communication with self healing and rekeying in wireless sensor networks
	Introduction
	Node Revocation
	Session Key Distribution with Confidentiality

	Security Properties
	Proposed Scheme
	Adding a Group Member
	Node Revocation

	Analysis
	Self-healing Property
	Key Independence
	Storage Requirements

	Conclusion

	Conclusion
	Future Work

	BIBLIOGRAPHY

